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Translational Science

Transcriptomics and Transposon Mutagenesis
Identify Multiple Mechanisms of Resistance to the
FGFR Inhibitor AZD4547
Sjors M. Kas1,2, Julian R. de Ruiter1,2,3, Koen Schipper1,2, Eva Schut1,2,
Lorenzo Bombardelli2,4, Ellen Wientjens1,2, Anne Paulien Drenth1,2,
Renske de Korte-Grimmerink1,2, Sunny Mahakena5, Christopher Phillips6,
Paul D. Smith7, Sjoerd Klarenbeek8, Koen van de Wetering4, Anton Berns2,4,
Lodewyk F.A.Wessels2,3,9, and Jos Jonkers1,2

Abstract

In human cancers, FGFR signaling is frequently hyperacti-
vated by deregulation of FGF ligands or by activating muta-
tions in the FGFR receptors such as gene amplifications, point
mutations, and gene fusions. As such, FGFR inhibitors are
considered an attractive therapeutic strategy for patients with
mutations in FGFR family members. We previously identified
Fgfr2 as a key driver of invasive lobular carcinoma (ILC) in an
in vivo insertional mutagenesis screen using the Sleeping Beauty
transposon system. Here we explore whether these FGFR-
driven ILCs are sensitive to the FGFR inhibitor AZD4547 and
use transposonmutagenesis in these tumors to identify poten-
tial mechanisms of resistance to therapy. Combinedwith RNA
sequencing-based analyses of AZD4547-resistant tumors, our
in vivo approach identified several known and novel potential
resistance mechanisms to FGFR inhibition, most of which

converged on reactivation of the canonical MAPK–ERK sig-
naling cascade. Observed resistance mechanisms included
mutations in the tyrosine kinase domain of FGFR2, over-
expression of MET, inactivation of RASA1, and activation of
the drug-efflux transporter ABCG2. ABCG2 and RASA1 were
identified only from de novo transposon insertions acquired
during AZD4547 treatment, demonstrating that insertional
mutagenesis in mice is an effective tool for identifying poten-
tial mechanisms of resistance to targeted cancer therapies.

Significance: These findings demonstrate that a com-
bined approach of transcriptomics and insertional muta-
genesis in vivo is an effective method for identifying poten-
tial targets to overcome resistance to therapy in the clinic.
Cancer Res; 78(19); 5668–79. �2018 AACR.

Introduction
FGFRs are members of the receptor tyrosine kinase (RTK)

family that bind to different FGF family members and are

upstream of both the MAPK–ERK and PI3K–AKT signaling path-
ways. FGFRs dimerize upon FGF ligand binding, which results in
cross-phosphorylation of the receptors cognate kinase domains
and allows the binding of the adaptor protein FGFR substrate 2a
(FRS2a), a key transducer of FGFR signaling (1). Once bound,
subsequent phosphorylation of FRS2a induces the recruitment of
growth factor receptor-bound 2 (GRB2) and son of sevenless
(SOS), resulting in activation of the MAPK–ERK signaling path-
way. In contrast, activation of the PI3K–AKT signaling pathway is
mediated by interactions between the FRS2a complex and GRB2-
associated binding protein 1 (GAB1; ref. 1).

In human cancers, FGFR signaling is frequently hyperactivated
by deregulation of FGF ligands or by activating mutations in the
receptors, which predominantly consist of gene amplifications,
pointmutations, and gene fusions (2, 3). As such, FGFR inhibitors
are considered to be an attractive therapeutic strategy for patients
with mutations in FGFR family members. Currently, no FGFR-
targeted therapies are approved for the treatment of human
cancer, but multiple therapeutics targeting FGFR signaling are
under investigation in several phase I/II clinical trials in different
types of cancer (2, 3). These encompass several different
approaches for inhibiting FGFR, including nonselective and selec-
tive FGFR small-molecule tyrosine kinase inhibitors, monoclonal
antibodies against FGFRs and FGF ligand traps.

Although these initial trials have shown promising results
concerning tolerability and antitumor activity of several FGFR
inhibitors in a subset of patients (2, 4–9), more research is
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required to determine the right criteria for patient selection and to
tackle potential resistancemechanisms to improve FGFR-targeted
therapies. Several studies have already identified resistance
mechanisms to FGFR-targeting agents, including polyclonal sec-
ondary FGFR mutations (including gatekeeper mutations;
refs. 10–12), activation of alternative RTKs (13–16), and para-
crine signaling of the tumor stroma (17, 18). However, because
most of these mechanisms are identified in in vitro studies, they
may not encompass the complete spectrum of resistancemechan-
isms to FGFR inhibitors.

In a previous study, we identified Fgfr2 as a key driver of
invasive lobular breast carcinoma (ILC) using a Sleeping Beauty
(SB)-based transposon insertional mutagenesis screen in mice
(19). In this work, we explore how mouse ILCs (mILC) with SB
transposon insertions in Fgfr2 respond to treatment with the
selective FGFR inhibitor AZD4547, and by which mechanisms
they acquire resistance to FGFR inhibition. Our results show that
the tumors exhibit increased FGFR signaling and initially regress
upon treatment with AZD4547, but eventually develop treat-
ment resistance. By performing a multiomics analysis focusing
on the resistant tumors, we identify several known and novel
mechanisms by which tumors become resistant to AZD4547
treatment. Two of these mechanisms were uniquely identified
from de novo transposon insertions that were acquired during
treatment, demonstrating that insertional mutagenesis in mice
is an effective tool for identifying resistance mechanisms to
targeted cancer therapies.

Materials and Methods
Orthotopic transplantations and AZD4547 intervention

Orthotopic transplantations of small tumor fragments were
performed as previously described by Doornebal and collea-
gues (20). For the WESB-Fgfr2 tumor-derived cells, 200,000
cells were injected orthotopically into the right fat pad of 8- to
15-week-old wild-type syngeneic recipient FVB females in 20 mL
Matrigel (Corning) and PBS (1:1). For the WESB-Fgfr2-EV and
WESB-Fgfr2-ABCG2 cells, 200,000 cells were injected orthoto-
pically into the right fat pad of 8-week-old NMRI-nude females
(Janvier Labs) in 20 mL Matrigel (Corning) and PBS (1:1). All
the drug interventions were initiated as soon as the mammary
tumors reached a size of 5 � 5 mm (62.5 mm3; tumor volume:
length � width2 � 0.5). The treatments were performed daily
by oral gavage for the indicated time with either the vehicle
(1%-Tween-80 in demineralized water) or AZD4547 (AstraZe-
neca) at a dose of 12.5 mg/kg/day. The experimental cohort was
monitored and mice were sacrificed (overall survival) when the
(total) mammary tumor burden reached a size of approximate-
ly 1500 mm3 (tumor volume: length � width2 � 0.5) or
suffered from clinical signs of distress (respiratory distress,
ascites, distended abdomen, rapid weight loss, and severe
anemia) caused by mammary tumor burden or metastatic
disease. One hour after the last dosing, mice were sacrificed
and the tumor, lungs, liver, spleen, and tumor-draining lymph
nodes were collected for further analysis. The mouse techni-
cians were blinded to the sample groups for the treatments of
WESB-Fgfr2 and WESB-Fgfr2-ABCG2 established tumors in
mice. All animal experiments were approved by the Animal
Ethics Committee of the Netherlands Cancer Institute and
performed in accordance with institutional, national and Euro-
pean guidelines for Animal Care and Use.

Cell culture
The isolation of primary tumor cells of the SB-induced mILCs

(referred to asWESB cells) was performed as previously described
by Kas and colleagues (19). WESB cells were cultured in
DMEM-F12 medium containing 10% FBS, 100 IU/mL penicillin,
100mg/mLstreptomycin(all fromLifeTechnologies).MEF3.8cells
wereculturedinDMEM-F12mediumcontaining10%FBS,100IU/
mL penicillin, 100 mg/mL streptomycin (all from Life Technolo-
gies). Phoenix packaging cells were cultured in Iscove's medium
(Life Technologies) containing 10% FBS, 100 IU/mL penicillin,
and 100 mg/mL streptomycin. WESB-Fgfr2 cells were transduced
with LZRS-IRES-GFP or LZRS-Bcrp1-IRES-GFP as previously
described by Allen and colleagues (21). Single GFPþ cells were
sorted and allowed to recover before they were used in the experi-
ments. Cell authentication was not conducted. All cell lines were
kept at low passage and routinely tested for Mycoplasma contam-
ination using the MycoAlert Mycoplasma Detection Kit (Lonza).

Additional experimental details regarding the cell viability,
clonogenic, and competition assays are described in the Supple-
mentary Data.

Vesicular transport assays
Vesicular transport assays were performed using the rapid

filtration method as previously described (22, 23). Additional
experimental details are described in the Supplementary Data.

Nucleic acid isolation
DNAandRNAwere isolated fromwhole tumor pieces using the

Allprep DNA/RNA Mini Kit (Qiagen) according to the manufac-
turer's protocol.

Additional experimental details regarding the detection of the
endogenous Fgfr2–Tbc1d1 fusion and theMet qPCR copy number
analysis are described in the Supplementary Data.

Analysis of SB transposon insertions
Transposon insertions were amplified andmapped following a

previously described tagmentation-based DNA sequencing pro-
tocol (24). Additional experimental details and the analysis of the
insertions sites are described in the Supplementary Data.

Antibodies
The primary antibodies to the following proteins were used:

FGFR2 (1:1,000, GeneTex 10648), phospho-FGFR (1:1,000, CST
3471), FRS2 (1:1,000, ProteinTech 11503-1-AP), phospho-FRS2
(Tyr436) (1:1,000, Abcam 193363), AKT1 (1:1000, CST 2938),
phospho-AKT(Ser473; 1:1,000, CST 4060), p44/42 MAP kinase
(1:1,000, CST 4695), phospho-p44/42 MAPK ERK1/ERK2
(Thr202/Tyr204; 1:1,000 CST 9101), ABCG2 (1:400, Abcam
24115) and b-actin (1:50,000, Sigma A5441).

Additional details regarding immunoblotting and IHC are
described in the Supplementary Data.

In silico modeling of the FGFR2 kinase in complex with the
inhibitor AZD4547

A composite complex of AZD4547 bound to mutated FGFR2
wasbuilt using the crystal structure of the FGFR1kinase domain in
complex with AZD4547 (PDB code V405) as a template. A
structural alignment of the FGFR2 kinase domain crystal structure
(PDB code 2PVF) was performed and the positions of the resis-
tance mutations were mapped onto this alignment. Molecular
graphic images were prepared using the CHIMERA package (25).

Resistance Mechanisms to FGFR-Targeted Therapy in ILC

www.aacrjournals.org Cancer Res; 78(19) October 1, 2018 5669

on August 31, 2020. © 2018 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst August 16, 2018; DOI: 10.1158/0008-5472.CAN-18-0757 

http://cancerres.aacrjournals.org/


Statistical analysis
For the mouse studies, no statistical tests were performed to

determine the appropriate sample size. Survival probabilities
were estimated using the Kaplan–Meier method and compared
using the Mantel–Cox test. The effect of AZD4547 treatment on
tumor growth of WESB-Fgfr2-EV and WESB-Fgfr2-ABCG2 estab-
lished tumors was tested using mixed linear models (details in
Supplementary Data). To test for differential expression of Abcg2,
Rasa1, and Pcdh15 over the insertion sites across all SB-induced
tumors, we used the group-wise differential expression test imple-
mented in IM-Fusion (26). The investigators were not blinded to
the sample groups for all experiments. Graphs and error bars
represent mean � SD. Python 3.5, R 3.3.1 and GraphPad Prism
7.03 were used for the statistical analyses. P values < 0.05 were
considered significant.

Data availability
Raw tagmentation and RNA-sequencing data are available in

ENA under accession number PRJEB25507.

Results
Activation of Fgfr2 induces mILC formation

In a previous study, we performed a SB insertional mutagenesis
screen in mice with mammary-specific inactivation of Cdh1
(encoding E-cadherin) to identify genes and pathways driving
the development of ILC (19). Analysis of common insertion sites
(CIS) in the SB-induced mILCs showed that a majority (56 of 99)
of these tumors had SB insertions in Fgfr2, providing strong
evidence that Fgfr2 is a driver of ILC.

To confirm active FGFR signaling in mILCs with SB insertions
in Fgfr2, we established cell lines from two SB-induced tumors,
one with an insertion upstream of Fgfr2 (WESB-Fgfr2) and one
without an insertion in or near Fgfr2 (WESB). We next com-
pared the expression of FGFR2 and downstream signaling
proteins between the two tumor cell lines. Although immuno-
blot analysis with an anti-FGFR2 antibody revealed no expres-
sion of native FGFR2 in either of the cell lines, we observed a
doublet of approximately 240 kDa that was only expressed in
the WESB-Fgfr2 cell line (Fig. 1a). This size coincided with the
predicted protein size of a gene fusion between Fgfr2 and
Tbc1d1 (Supplementary Fig. S1A and S1B), which we previously
identified in RNAseq data from this SB-induced mILC (26).
Similar FGFR2 gene fusions were previously identified in sev-
eral other studies, which demonstrated that these fusions result
in increased FGFR signaling (27). In line with this, comparison
of signaling proteins downstream of FGFR2 showed increased
expression of phosphorylated FRS2a in WESB-Fgfr2 tumor-
derived cells compared with WESB cells.

These results demonstrate thatWESB-Fgfr2 cells show increased
expression of an Fgfr2–Tbc1d1 fusion gene, which is driven by an
SB insertion upstream of Fgfr2. The increased expression of this
fusion gene results in activation of FGFR signaling, suggesting that
FGFR inhibition could be an interesting therapeutic strategy in
these tumors.

Mouse ILCs with SB insertions in Fgfr2 are dependent on FGFR
signaling

To determine if WESB-Fgfr2 cells were indeed sensitive to
FGFR inhibition, we treated these cells with the selective
FGFR inhibitor AZD4547, which is currently being evaluated

in several early-phase clinical trials (2). After treatment with
100 nmol/L AZD4547, WESB-Fgfr2 cells showed a decrease
in expression of phosphorylated FGFR, FRS2a, and ERK1/2
(Fig. 1b), confirming inhibition of the FGFR signaling path-
way. Compared with WESB cells, the WESB-Fgfr2 cells also
showed reduced viability upon exposure to increasing concen-
trations of AZD4547 (Supplementary Fig. S1C), indicating that
WESB-Fgfr2 cells are dependent on FGFR signaling for their
survival in vitro.

To determine the efficacy of AZD4547 in vivo, we orthotopically
transplanted WESB-Fgfr2 tumor fragments into multiple wild-
type syngeneic recipient FVB animals and treated these animals
with vehicle or AZD4547 (12.5 mg/kg/day) daily via oral gavage
(Fig. 1C). To reduce the potential toxicity of prolonged treatment
and to test the effect of a "drug holiday" on tumor growth, the
animals were treated using either a continuous or an intermittent
dosing schedule (Supplementary Fig. S1D). In both dosing sche-
dules, tumors treated with AZD4547 showed decreased expres-
sion of downstream FGFR signaling and increased expression of
cleaved caspase-3 (Supplementary Fig. S1E–S1G), which resulted
in tumor regression within 10 to 20 days after start of the
treatment (Fig. 1D and E). Furthermore, the majority of the
AZD4547-treated tumors (9 of 10 continuous-treated and 13 of
14 intermittent-treated tumors) did not show any regrowth with-
in the first treatment cycle of 24 days.

In the majority of mice, continuous treatment with AZD4547
resulted in tumor control for at least 40 days after start of
the treatment, resulting in an increased overall survival com-
pared with the vehicle-treated animals (Fig. 1F). Notably, 2 of
10 sacrificed animals did not show any remaining tumor cells.
In contrast, all intermittently treated mice showed tumor
regrowth after the first treatment cycle of 24 days. However,
these tumors remained sensitive to multiple additional cycles
of AZD4547 treatment (Supplementary Fig. S2A), resulting in
an increased overall survival compared with the vehicle-treated
animals (Fig. 1G). Similar results were obtained with contin-
uous AZD4547 treatment of mice after the orthotopic injection
of WESB-Fgfr2 tumor-derived cells (Supplementary Fig. S2B
and S2C).

Although the overall survival of AZD4547-treated mice was
increased compared with vehicle-treated animals, there was no
significant difference in survival between the continuous dosing
(107 days) and the intermittent dosing (126 days) groups. How-
ever, in the continuous dosing group an increased number of
animals succumbed due to clinical signs of distress (respiratory
distress, ascites, distended abdomen, rapidweight loss, and severe
anemia), suggesting that the intermittent treatment schedule is
less toxic for the animals (Supplementary Fig. S2D). In spite of the
potent anticancer activity of AZD4547, both treatment schedules
failed to deliver long-term tumor control, most likely due to the
emergence of acquired therapy resistance. This reflects the major
problem observed in patients with cancer treated with targeted
anticancer therapies.

Transcriptome analysis identifies known and novel
secondary FGFR2 mutations and increased MET expression
in AZD4547-resistant tumors

To explore potential resistance mechanisms to FGFR inhibi-
tion, we performed RNA-sequencing of AZD4547-sensitive and
-resistant tumors obtained from vehicle-treated and AZD4547-
treated animals (Supplementary Table S1), respectively, and
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compared their mutational spectra to identify mutations that
were acquired during AZD4547 treatment. In this approach, we
initially focused on known resistance mechanisms to FGFR-
targeting therapeutics (10–16), which include upregulation of
alternative RTKs and secondary FGFR mutations.

To assess if upregulation of other RTKs could explain the
resistance of these tumors, we used RNA-sequencing data to
determine changes in gene expression for Kit, Met, and all
FGFR-, EGFR-, and IGF-related RTKs. For this purpose, we used
DIDS, an algorithm that is specifically designed to identify
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Figure 1.

Intervention study with AZD4547 in mILCs with active FGFR signaling. A, Representative immunoblot (n ¼ 3) for the expression of FGFR2 and its downstream
signaling proteins inWESB andWESB-Fgfr2 cells. b-Actinwas used as a loading control.B, The effect of FGFR inhibition on FGFR signaling inWESB-Fgfr2 cells after
short-term treatment with the FGFR inhibitor AZD4547 (100 nmol/L), as visualized by immunoblotting with antibodies detecting total and phosphorylated
FGFR, FRS2a, AKT, andERK1/2.b-Actinwas used as a loading control.C,Schematic overviewdepicting theorthotopic transplantation of SB-inducedmILC fragments
into wild-type syngeneic recipient mice and the subsequent drug interventionwith AZD4547.D and E, Tumor growth kinetics of orthotopically transplantedWESB-
Fgfr2 tumors under the continuous (D) and intermittent (E) treatment schedules with vehicle (blue) or AZD4547 (red). F and G, Kaplan–Meier curves showing
the overall survival of tumor-bearing mice under continuous (F) and intermittent (G) treatment with vehicle (blue) or AZD4547 (red). P values were
calculated using a Mantel–Cox test.
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differentially expressed genes in heterogeneous populations (28).
Although this analysis did not identify any RTKs that were
significantly differentially expressed across multiple samples, it
did identify twoAZD4547-resistant tumorswith increased expres-
sion of Met [also known as hepatocyte growth factor receptor
(HGFR)] and one AZD4547-resistant tumor with increased
expression of insulin-like growth factor 1 receptor (Igf1r), com-
pared with vehicle-treated tumors (Fig. 2A; Supplementary Fig.
S3A). Subsequent analysis of IGF1R and MET protein expression
by IHC did not support IGF1R as a potential resistance mecha-
nism, because no correlation was observed between expression
levels of Igf1rmRNAand IGF1Rprotein (Fig. 2B). In contrast, both
AZD4547-resistant tumors with high Met mRNA expression
showed amplification ofMet (Supplementary Fig. S3B) and over-
expression of MET protein (Fig. 2C), whereas vehicle-, AZD4547-
treated, and other AZD4547-resistant tumors were negative
forMET expression (Supplementary Fig. S3C). These in vivo results
are in linewith previous in vitro studies showing that upregulation
of MET attenuates the efficacy of FGFR inhibition in tumor cells

(14, 15), indicating that upregulation ofMETmay also counteract
the therapeutic efficacy of AZD4547 in vivo. In contrast to previous
in vitro studies (13, 16), we did not observe an obvious increase in
mRNA expression of the Egfr or other EGFR-family members in
any of the AZD4547-resistant tumors.

Next, to determine if any mutations in RTKs or members of
the MAPK–ERK pathway could explain the resistance of these
tumors, we used the RNA-sequencing data to identify muta-
tions in the above-mentioned RTKs and genes involved in the
MAPK–ERK signaling pathway (Supplementary Table S2).
Using this approach, we identified 12 missense mutations in
Fgfr2 affecting 11 different amino acids, of which four were
located in the third immunoglobulin (Ig)-like domain (IgIII)
and seven were located in the tyrosine kinase domain (Fig. 2D).

To predict the effects of the mutations in the FGFR2 kinase
domain on AZD4547 binding, we mapped the seven missense
mutations onto the FGFR2 protein structure and observed that
residues I567, N568, V581, E584, S587 reside in the ATP-binding
pocket of FGFR2 (Fig. 2E). As a consequence, these mutated
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Figure 2.

Transcriptome analysis of AZD4547-
resistant tumors. A, Differential
expression analysis of Met and Igf1r in
AZD4547-sensitive (n ¼ 15) and
-resistant (n¼ 27) tumors using DIDS,
showing outliers for Met (n ¼ 2) and
Igf1r (n¼ 1). B, Quantification of IGF1R
expression in AZD4547-sensitive
(n ¼ 4) and -resistant (n ¼ 8) tumors.
AU, arbitrary unit. C, Representative
immunohistochemical stainings of
MET in AZD4547-sensitive (vehicle)
and -resistant tumors. Scale bar, 50
mm. D, Schematic overview showing
the locations of mutations identified
for Fgfr2 in the AZD4547-resistant
tumors. Red mutations have been
previously reported in patients with
FGFR2 fusion–positive
cholangiocarcinoma, whose tumors
acquired resistance to the selective
FGFR inhibitor NVP-BGJ398.
Numbers indicate amino acid residue
positions (mouse). Ig,
immunoglobulin-like domain; TM,
transmembrane domain; TK, tyrosine
kinase domain. E, In silicomodeling of
AZD4547 (middle) in the ATP-binding
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domain is depicted as a sky-blue
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colored by atom type: carbon, pink;
nitrogen, blue; oxygen, red. AZD4547
is colored by atom type: carbon, gray;
nitrogen, blue; oxygen, red.
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residues directly perturb thebinding site of AZD4547. In addition,
the E584Gmutation is located in the kinase hinge and introduces
flexibility at the key recognition motif for AZD4547. The K660R
mutation is adjacent to the binding site, which suggests that the
binding of AZD4547 is indirectly perturbed. Finally, the K678M
mutation is located in the kinase activation loop, suggesting that
thismutation alters thedynamics of the activation loop and favors
the active conformation.

Interestingly, four out of the seven missense mutations in the
tyrosine kinase domain reflected recurrent point mutations that
were previously reported in patients with FGFR2 fusion–
positive cholangiocarcinoma, whose tumors acquired resis-
tance to the selective FGFR inhibitor NVP-BGJ398 (10). In this
previous work, structural characterization combined with
functional in vitro studies showed that these FGFR2 kinase
mutations either induce a steric clash with NVP-BGJ398 in the
ATP-binding pocket or destabilize the inactive conformation of
the kinase. Together, these data indicate that the seven muta-
tions in the ATP-binding pocket of FGFR2 disrupt the binding
of selective FGFR tyrosine kinase inhibitors and therefore
hamper their therapeutic efficacy.

AZD4547-resistant SB-induced tumors show de novo insertions
in candidate resistance genes

Because of the presence of a constitutively active SB transpo-
sase, the SB-induced mILCs could be capable of developing
resistance by acquiring de novo transposon insertions in or near
resistance genes during AZD4547 treatment. To determine if SB-
mediatedmutagenesismight indeed be driving resistance in some
of these tumors, we performed an insertion analysis of 27
AZD4547-resistant SB-induced tumors and compared the iden-
tified SB insertions to those found in the donor tumor and 15
vehicle-treated tumors. Globally, this analysis showed that the
majority of the clonal insertions in the donor tumor (e.g., Fgfr2,
Ppp1r12a, Slc16a9, and Trps1) were maintained after orthotopic
transplantation and long-term treatment of the tumor-bearing
mice (Supplementary Fig. S4A; Supplementary Tables S1 and S3).
Interestingly, additional SB insertions were observed in both
vehicle- and AZD4547-treated tumors, indicating that mobiliza-
tion of transposons still occurs after transplantation of SB-
induced tumors.

To specifically identify de novo insertions that might be driving
resistance to AZD4547, we filtered for genes that contained SB
insertions in the AZD4547-resistant tumors but not in the donor
or vehicle-treated tumors (Supplementary Fig. S4B). This analysis
revealed three candidate resistance genes (Abcg2, Rasa1, and
Pcdh15) with insertions in at least three AZD4547-resistant
tumors (Fig. 3A). Of these three genes, Abcg2 contained several
independent insertions that were mainly in the sense orientation
and located upstream of the transcription start site (Fig. 3B),
indicating that these insertions result in increased Abcg2 expres-
sion. In support of this, these insertions coincided with increased
mRNA and protein expression of ABCG2 (Fig. 3C; Supplementary
Fig. S5A–S5C). Variable ABCG2 expression highlights intratumor
heterogeneity in mechanisms of AZD4547 resistance. In contrast
to Abcg2, Rasa1, and Pcdh15 contained either a mix of sense/
antisense insertions or purely antisense insertions, suggesting that
these genes are inactivated (Fig. 3D–G). Further analysis revealed
decreased expressionof exons downstreamof the insertion sites in
Rasa1, supporting inactivation ofRasa1 via truncation of the gene,
whereas expression of Pcdh15 was not markedly affected.

To investigate whether insertions from the donor tumor
might contribute to intrinsic treatment resistance, we compared
the relative support scores of insertions between untreated
tumors (vehicle-treated tumors and the donor tumor) and
AZD4547-resistant tumors to determine if insertions in specific
genes were enriched after AZD4547 treatment. This analysis
identified six genes (Arid1a, Myh9, Fbxw7, Matr3, Slc16a9, and
Map4k4) with increased support scores in AZD4547-resistant
tumors, indicating that subclones with insertions in these genes
are selected for during treatment (Supplementary Fig. S5D).
These genes might therefore be involved in intrinsic resistance
to AZD4547. Interestingly, the top three genes (Arid1a, Myh9,
and Fbxw7) were previously identified as candidate driver genes
in ILC formation (19).

Collectively, these results show that persistent mobilization of
transposons in SB-induced mILCs allows them to acquire new
insertions during treatment and that this approach can be used to
identify novel resistance mechanisms. Our analysis implicates
upregulation of Abcg2 and inactivation of Rasa1 as additional
resistance mechanisms to AZD4547, which were not previously
identified with our mutational analyses. This demonstrates that
combining insertionalmutagenesiswithdrug treatments poses an
effective strategy for identifying resistancemechanisms to targeted
therapies in mice.

Loss of RASA1 reduces sensitivity of WESB-Fgfr2 tumor cells to
AZD4547

To test whether inactivation of Rasa1 induces resistance to
AZD4547 treatment, we transfected WESB-Fgfr2 tumor-derived
cells with modified pX330 vectors containing single guide RNAs
(sgRNA) targeting three different genomic regions of Rasa1 or a
nontargeting sgRNA (sgNT). All the Rasa1 targeting sgRNAs
induced efficient modification of the Rasa1 target sites in the
transfected cell populations (Supplementary Fig. S5E–S5G), as
determined by tracking of insertions or deletions [indels] by
decomposition (TIDE) analysis (29). To test for drug sensitivity,
we performed an in vitro competition assay with a mixture of
WESB-Fgfr2-sgNT and WESB-Fgfr2-sgRasa1 cells (1:1 ratio) in the
presence or absence of 2 mmol/L AZD4547 and subsequently
quantified the allele distribution of the polyclonal population
using the frequency of frameshift mutations in Rasa1 (Fig. 3H).
After prolonged AZD4547 treatment, the polyclonal population
was enriched for Rasa1 frameshift mutations for all three Rasa1-
targeted regions (Fig. 3I), indicating thatRasa1-depleted cellswere
less sensitive to AZD4547 treatment compared with control cells.
In contrast, the allele distributions were not affected when cells
were cultured without AZD4547, demonstrating that the
observed effect was not due to a difference in proliferation
between WESB-Fgfr2-sgNT and WESB-Fgfr2-sgRasa1 cells. Alto-
gether, these data show that inactivation of Rasa1 reduces the
sensitivity of WESB-Fgfr2 cells to AZD4547 treatment.

AZD4547 is a substrate of ABCG2
Abcg2 is an ATP-binding cassette (ABC) efflux transporter,

suggesting that overexpression of this gene may induce resistance
through increased extrusion of AZD4547 from the tumor cells. To
determine if this is indeed the case, we first sought to confirm that
AZD4547 is a substrate for the ABCG2 transporter. To this end, we
performed a vesicular transport assay (Fig. 4a), in which we
measured the uptake of tritium-labeledmethotrexate ([3H]-MTX)
in inside-out Sf9-membrane vesicles expressing ABCG2
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(Sf9-ABCG2), both in the presence and absence of increasing
concentrations of AZD4547, and compared the results to the
uptake of [3H]-MTX in control Sf9-membrane vesicles (Sf9-con-
trol). This showed that ATP-dependent uptake of [3H]-MTX by
ABCG2 was inhibited by AZD4547 (Fig. 4b), indicating that
AZD4547 is indeed a substrate of ABCG2.

Overexpression of ABCG2 reduces sensitivity to AZD4547
To further explore whether increased expression of Abcg2

reduces the sensitivity of cells to AZD4547, we used mouse
embryonic fibroblasts (MEF) derived from Abcb1a�/�;
Abcb1b�/�;Abcc1�/� mice (hereafter referred to as MEF3.8),
which have very low background expression of endogenous
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Overview of insertions and corresponding gene expression of candidate resistance genes.A,Overview of insertions in candidate resistance genes that weremutated
in at least three AZD4547-resistant tumors (n¼ 27) and were not mutated in any of the donor (two technical replicates) or vehicle-treated (n¼ 15) tumors. Relative
clonality of insertions is indicated by "relative support" scores (blue), which were calculated by counting the number of mate pairs supporting an
insertion and normalizing these "support" scores to the highest score of the corresponding sample. B–G, Left, visualization of SB insertions (arrows) in Abcg2 (B),
Rasa1 (D), andPcdh15 (F). Right, normalized gene expression values after the insertion sites ofAbcg2 (C),Rasa1 (E), and Pcdh15 (G) in all SB-induced tumorswith and
without insertions in the respective genes. P values were calculated using a Mann–Whitney U test, as implemented in IM-Fusion. H, Schematic overview of
the in vitro competition assay performed with WESB-Fgfr2 cells transfected with modified pX330 vectors containing sgRNAs targeting Rasa1 (sgRasa1) or a
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ABCG2 (21). Furthermore, these MEFs lack both P-glycoprotein
(P-gp, encoded by Abcb1a and Abcb1b), and the multidrug
resistance-associated protein 1 (MRP1, encoded by Abcc1),
allowing us to exclude confounding influences of these other
drug efflux transporters. To test for drug sensitivity, MEF3.8
cells were transduced with an empty retroviral expression vector
(MEF3.8-EV) or a vector containing Abcg2 (MEF3.8-ABCG2)
and subsequently exposed to increasing concentrations of
AZD4547 in long-term clonogenic assays (Fig. 5A). Compared
with MEF3.8 cells, MEF3.8-ABCG2 cells were able to survive
higher concentrations of AZD4547 (Fig. 5B and C), indicating
that increased ABCG2 expression reduces the efficacy of
AZD4547.

To confirm that increased expression of ABCG2 also reduces
the sensitivity of treatment-naive WESB-Fgfr2 cells to AZD4547,
we transduced these cells with an empty retroviral expression
vector (WESB-Fgfr2-EV) or a vector containing Abcg2
(WESB-Fgfr2-ABCG2) and treated the transduced cells with
AZD4547. Short-term treatment of WESB-Fgfr2-EV cells with
AZD4547 resulted in decreased phosphorylation of FGFR,
FRS2a, and ERK1/2, whereas the phosphorylation levels of
these proteins were less affected in AZD4547-treated
WESB-Fgfr2-ABCG2 cells (Fig. 5D).

To test the effect of ABCG2 overexpression on the responsive-
ness of established tumors to AZD4547, we injected WESB-Fgfr2-
EV and WESB-Fgfr2-ABCG2 cells into the mammary glands of
immunocompromised NMRI-nude mice and these animals were
treatedwith either vehicle or AZD4547 (12.5mg/kg/day) daily for
30 days when the tumors reached the size of 62.5 mm3. Inter-
estingly, the NMRI-nude mice did not show tumor regression
upon treatment with AZD4547, in contrast to the previously used
FVB syngeneic animals (Supplementary Fig. S2B), suggesting that
an intact immune system might enhance the therapeutic efficacy
of AZD4547. Nonetheless, mice with WESB-Fgfr2-EV tumors did
show stable disease, whereas WESB-Fgfr2-ABCG2 tumors pro-
gressed during treatment (Fig. 5E–G). These results show that
increased ABCG2 expression also reduces the sensitivity of
FGFR2-activated tumors to AZD4547 in vivo, confirming that
upregulation of this drug efflux transporter can drive resistance
to AZD4547.

Discussion
In this work, we performed an SB-based insertional mutagen-

esis screen in a mouse model of ILC to identify genes that are
involved in the development of resistance to FGFR-targeting
therapies. As a starting point for this screen, we used SB-induced
mILCs, in which we previously identified Fgfr2 as the most
frequently mutated candidate gene (19). By orthotopically trans-
planting an SB-induced mILC with activated FGFR signaling into
multiple recipient mice, we showed that treatment with the FGFR
inhibitor AZD4547 initially results in tumor regression and
provides long-term tumor control, but eventually results in
acquired treatment resistance. Our mutational analysis of the
AZD4547-resistant tumors identified several potential resistance
mechanisms, including secondary mutations in FGFR2, inactiva-
tion of RASA1, a negative regulator of RAS signaling, and over-
expression of MET and the drug-efflux transporter ABCG2.
Together, these mechanisms explain acquired resistance to
AZD4547 in (21 of 27) tumors (Fig. 6A). Resistance mechanisms
in the remaining six tumors remain to be identified.

In line with previous studies in a mouse model of melanoma
(30) and Arf�/�mice (31), we show that transposonmutagenesis
in mice cannot only be used to identify candidate cancer genes,
but is also an effective strategy to identify genes involved in in vivo
drug resistance. In our mutational analysis of the AZD4547-
resistant tumors, we exploited the constitutive activity of the
SB-mediated insertional mutagenesis system in SB-induced
mILCs to identify potential resistance mechanisms in an unbi-
ased, genome-wide fashion. This allowed us to identify two
resistance mechanisms (activation of ABCG2 and inactivation of
RASA1), which might not have been identified without SBmuta-
genesis. However, resistance mechanisms that involve specific
amino acid substitutions may not be uncovered by transposon
mutagenesis, but only arise from spontaneous mutations. A
comprehensive characterization of the various mechanisms of
resistance to targeted anticancer therapeutics may therefore
require a multipronged approach, combining transposon muta-
genesis with other sequencingmodalities to identify spontaneous
mutations and/or transcriptional changes that may be driving
resistance. Given enough sequencing depth, RNA-sequencing
based approaches for identifying transposon insertions may be
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able to provide the most comprehensive analysis from a single
dataset (26, 32), by allowing detection of transposon insertions,
mutations, gene-fusions, and transcriptional changes in RNA-
sequencing data. However, targeted DNA-sequencing approaches
(aswehaveusedhere todetect SB transposon insertions) are likely
to yield more detailed detection of insertions and/or mutations
with a low frequency, by effectively providing deeper sequencing
at a lower cost.

The diverse spectrum of identified resistancemechanisms illus-
trates the major challenge that (intra-) tumor heterogeneity poses
for the prevention of therapy resistance, as we observe multiple
resistance mechanisms arising from and within a single (donor)
tumor. All of the identified mechanisms center on reactivation of
the canonical MAPK–ERK signaling pathway, suggesting that this
is a dominant mechanism for overcoming vulnerability to FGFR
inhibition (Fig. 6B). Reactivation of MAPK–ERK signaling has
also been identified as a predominant resistance mechanism to
EGFR inhibitors (33). In our analysis of AZD4547-resistant
tumors, we observed recurrent alterations in several components
of the MAP–ERK pathway, including secondary mutations in
FGFR2, overexpression of the MET receptor and inactivation of
RASA1. MET overexpression can induce resistance by driving
reactivation of signaling pathways downstream of FGFR2, as has
previously been shown in the context of FGFR and other RTK
inhibitors (2, 14, 15, 34). Also loss of RASA1, which is a negative
regulator of RAS, may cause resistance to FGFR inhibition via
reactivation of the MAPK–ERK pathway (35).

Our analysis of the secondarymutations in FGFR2 showed that
the majority of these mutations occurred in the tyrosine kinase

domain, suggesting that they mainly provide resistance by pre-
venting the inhibitor frombinding to the ATP-binding pocket and
thereby reactivating the FGFR signaling pathway. This finding
agrees with previous studies with other FGFR inhibitors, which
identified polyclonal secondary FGFRmutations (including gate-
keeper mutations) as a main resistance mechanism to FGFR-
targeting treatments (10–12). Our observations are further sup-
ported by studies with other RTK inhibitors, which also describe
secondary mutations in the receptor as one of the main resistance
mechanisms to tyrosine kinase inhibitors (34).

Our validation of the drug efflux transporter Abcg2 showed that
increasedABCG2expression can induce resistance by reducing the
concentration of AZD4547 within tumor cells, which results in
decreased inhibition of FGFR and reactivation of the FGFR sig-
naling pathway. In patients, overexpression of the drug efflux
pump MDR1 (encoded by ABCB1) has been observed in chemo-
therapy-resistant ovarian cancer (36). Our results suggest that
drug efflux transporters such as ABCG2 cannot only drive therapy
resistance in hematologic malignancies (37), but may also have
similar effects on therapy efficacy in solid tumors.

Recent approaches have aimed to overcome resistance to FGFR-
targeting therapies either by combining multiple existing RTK
inhibitors (14, 15), or by designing irreversibly binding inhibitors
such as FIIN-2, FIIN-3, and PRN1371 (38, 39), which cannot be
disrupted as easily by secondary mutations in the receptor.
However, our results suggest that combining FGFR andMEK/ERK
inhibitors might be a more effective strategy, as this prevents
reactivation of MAPK–ERK signaling. In addition, to avoid resis-
tance resulting from drug efflux transporters, novel inhibitors
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should be specifically designed to be poor substrates for common
transporters. Alternatively, CRISPR/Cas9 genetic screens could be
used to identify synthetic lethal interactions with FGFR inhibitors
in the context of FGFR inhibitor-resistant tumors to design ratio-
nal and more effective combination therapies to overcome drug
resistance (40).

In summary, SB insertional mutagenesis in mice is an effective
tool to identify mechanisms of drug resistance. A comprehensive
analysis of AZD4547-resistant mILCs, in which SB-based muta-
genesis is combined with targeted DNA- and RNA-sequencing,
allowed us to explain the mechanism of resistance in 78% of the
resistant tumors, of which all converged to the reactivation of the
canonical MAPK–ERK signaling cascade. Altogether, our findings
suggest that FGFR-targeting drugs might be improved by design-
ing FGFR inhibitors that are poor substrates of drug efflux trans-
porters and irreversibly bind to the ATP-binding pocket of the
receptor to prevent secondary mutations in the tyrosine kinase
domain. In addition, combining these novel FGFR inhibitorswith
MEK/ERK inhibitors might be an even more effective strategy for
preventing resistance to FGFR-targeted therapies.
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