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Abstract

Currently, inland waterway shipping mainly includes barges and bulk transportation with
little to no variation in volume, product, and route. Since transport over water emits less
CO2 per tonne-km than road transport, a potential way to reduce CO2 emissions is to trans-
port more containers via inland waterways. Large delays cause unreliability, which in their
turn cause an opportunity cost and increased operational costs. These increased costs have
a negative impact on the competitiveness of inland water transport with regards to road
transport.

An alternative to the way planning is handled currently is by solving a Vehicle Rotaton
Planning Problem (VRPP). The problem is solved by minimizing a cost function. For
example, the total time spent in a port area (called the sojourn time) can be minimized.

Solving the VRPP results in a rotation plan that dictates the order in which vessels visit
terminals and how many containers they should transport from one terminal to another.
There are multiple ways to solve the VRPP, one of which is through the use of the Distributed
Pseudotree Optimization Protocol (DPOP), where the vessel operators reach an optimal
solution together by sharing only information about those variables that share the same
constraints with other variables from other agents. An attractive property of DPOP is that
it is possible to include privacy constraints in the algorithm, such that vessel operators only
have to share minimal information about their journey and not lose a competitive advantage
to one another. For example, the operators might only want to share variables like the arrival
time, and only want to share it with operators that have the approximately same arrival time.

To ensure the problem can be solved and that the message size does not run out of memory
bounds, the memory-bounded version of DPOP is implemented. Because Memory-Bounded
Distributed Pseudotree Optimization Protocol (MB-DPOP) requires an exponential number
of messages when the inference width is above a certain threshold, an alternative way of for-
mulating and solving the problem is considered using the Maximum Gain Messaging (MGM)
algorithm and a formulation that includes how much vessel operators are willing to change
their current rotation plan for a lower overall cost. With this formulation, when something
changes in the problem definition, the entire calculation does not have to be done again
because starting from the previous solution is possible.
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Two simulated case studies in the port area of Rotterdam are done to performed the per-
formance of the algorithms. The results show while MB-DPOP can guarantee some level of
privacy, it does not scale very well and is thus not really useful in real life. While the algorithm
yields a global solution and can guarantee a certain level of privacy, its execution time is in
the order of hours, even for relatively small problem sizes. Conversely, the MGM algorithm
with reformulation scales quite well and can possibly guarantee some level of privacy as well
with extension. While the algorithm does not come up with a global solution, it can be a
decent trade off between a level of privacy, and scalable algorithms that are centralized, such
as a genetic algorithm.
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Chapter 1

Introduction

This thesis has been produced in an attempt to increase the acceptability of distributed
algorithms in inland waterway transport. Some problems are naturally distributed: when
multiple parties are competing over a limited resource, some way of dividing the resource has
to be implemented. It would be advantageous to come up with a good overall solution that is,
in a way, fair. This would also allow to plan for a maximization of the capacity of a waterway,
which could help reach the CO2 emission reduction goals the world has set itself since transport
over water has a low specific emission with 31 g CO2/tonne − km [2], with only transport
over rail doing better. One way of doing such a thing is by centralizing all planning and
operations. Many decision makers, however, are unwilling to share certain information about
their plans. For example, in airport slot allocation, some airlines do not want competitors
to find out which routes they plan to fly [3]. Similarly, inland water vessel operators can be
unwilling to share information about their plans. Next to that, container shipment demands
often change and new solutions have to be obatained. It would be unproductive to start from
scratch again to come up with these solutions. Distributed algorithms can offer a solution to
both these problems: when operators are unwilling to share certain information about their
plans because they can guarantee a certain level of privacy, and some algorithms are able to
use previously obtained results to come up with a new solution.

1-1 Problem Statement: Rotterdam Data

To reach the CO2 emission reduction goals in order to battle climate change, a lot of research
and efforts go towards technologies that can lower carbon emissions. Because inland waterway
transport has a low specific carbon emission, making sure a modal shift happens from road to
waterway transport would be advantageous. However, currently, due to a lack of automation
and communication, the full capacity of the waterways is not effectively used. A reasonable
goal would be to minimize the rotation time (the total time spent in a port area). According
to [4], [12], [16], the average rotation time in the port area of Rotterdam is 22.5 hours of
which only 7.5 hours are used for loading and unloading, and only 62 % of the inland water
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2 Introduction

vessels leave the port area on time. It therefore is clear that there are still a lot of gains to be
made. The problem statement leading the rest of this thesis will thus be: How can distributed
algorithms be made more adoptable such that they can be used in real-world scenarios in order
to minimize the rotation time in port areas.

1-2 Contributions

In this report, two main contributions are made to the literature. Firstly, whilst privacy
options have been implemented with Distributed Pseudotree Optimization Protocol (DPOP)
in [3], it has not been tested on a case study with many shared constraints. To do this, the
memory-bounded variant of DPOP is implemented with privacy and tested on a larger scale
problem with many shared constraints.

Secondly, the Maximum Gain Messaging (MGM) algorithm and problem formulation are
extended with a dynamic utility, which allows for the problem to be dynamic whilst also
giving the vessel operators a control parameter that indicates how willing they are to change
their plans in exchange for a better overall solution. This way, both the dynamics of a free
market and its advantages, as well as the advantages of coming up with a joint solution can
be obtained.

1-3 Organization of the Report

Throughout the coming chapters, the given problem statement will be recast, reformulated,
solved, and extended.

The report starts of by reformulating the problem statement as a Vehicle Rotaton Planning
Problem (VRPP), which can be recast as a Distributed Constraint Optimization Problem
(DCOP). After it is reformulated as a DCOP, multiple algorithms are listed to solve it.
Among these are the MGM algorithm, which is an incomplete algorithm, and DPOP, which
is a complete algorithm. DPOP is then extended with a parameter that bounds its memory
usage, which is its main disadvantage.

Following the listing of the basic algorithms, they are extended in Chapter 3. The MGM
algorithm is extended with variable utility and an unwillingness parameter whilst the memory-
bounded version of DPOP is extended in a way that guarantees a certain level of privacy.
Next to that, the problem formulation is extended such that water locks can be modeled as
well.

After that, in Chapter 4, two case studies are done to compare the performance of the extended
algorithms to each other and to other algorithms such as a genetic algorithm.

Finally, in Chapter 5, the conclusions of the report are given. Next to that, some recommen-
dations are given as to where this research may be applied and what future points of research
could be.

S. Geboers Master of Science Thesis



Chapter 2

Formulation of the Problem as a
Vehicle Rotation Planning Problem

In this chapter, the problem introduced in Chapter 1 will be formulated as a Vehicle Rotaton
Planning Problem (VRPP). This in turn allows us to cast it as a Distributed Constraint
Optimization Problem (DCOP). There are multiple ways to solve the VRPP as a DCOP,
such as the Maximum Gain Messaging (MGM) algorithm and the Distributed Pseudotree
Optimization Protocol (DPOP). Both of these algorithms will be elaborated upon in this
chapter.

2-1 Vehicle Rotation Planning Problem

With the goal of efficient ship deployment from Chapter 1 in mind, a more elaborate problem
statement can be made, which is also done in [8]. This problem statement is called the VRPP
and is widely used in the deployment of vehicles such as ships and trains [1]. It consists of
deciding on the order in which terminals are visited, which is called the rotation plan, as
well as the number of containers transported between terminals for each vessel whilst still
satisfying the container transportation demand. The VRPP is a combinatorial optimization
problem, as well as an integer problem. It is typically applied in a large port area, and
with a planning horizon of several days. To find the most efficient vessel rotation plan, it is
important to first define the efficient deployment of a fleet. Often, a cost function is used
to minimize the total sojourn time1. Other cost functions are possible as well, e.g. fuel use,
number of ships, or burdening of terminals. The reason we want to use the sojourn time is
that the main goal is to make inland water transport competitive with road transport first,
after which other cost functions can be implemented to drive down e.g. emissions. If the
sojourn time is to be limited whilst the container demand is to be satisfied, then the weighted

1The sojourn time is the total time spent at the port. It includes the traveling time, the service time, and
the waiting time of a vessel.
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4 Formulation of the Problem as a Vehicle Rotation Planning Problem

cost function for a single vessel is given as:

rm = p1

 n∑
i=1

n∑
j=1

zm
ij (li + uj) +

n∑
i=1

wm
i +

n∑
i=1

n∑
j=1

xm
ij τm

ij


+ p2

 n∑
i=1

n∑
j=1

(rm
ij − zm

ij )

 (2-1)

where i and j represent terminals, zm
ij is the number of containers transported from terminal

i to j by vessel m. The variable xm
ij is a binary variable that indicates whether vessel m is

traveling from terminal i to j. The variables li and ui represent the loading and unloading
time at terminal i respectively. The variable wi denotes the waiting time at terminal i.
Furthermore, τm

ij is the traveling time from terminal i to terminal j of vessel m, rm
ij is the

number of containers that need to be transported from terminal i to terminal j by vessel
m. Finally, the weights p1 and p2 are used to make a trade-off between the sojourn time
and containers not being delivered (inducing a so-called penalty time). In [8], a number of
extra constraints are enforced for one vessel of which a list is shown below. Some of these
constraints are based on assumptions, such as constraint 2, 3, and 4. Constraints 1 and 5 are
added to ensure the solutions of the VRPP are sensible.

1. No containers should be transported unnecessarily, which means that the number of
containers transported should be lower or equal to the required number of containers
transported from one terminal to another terminal

2. Terminals are only visited once except for the entrance terminal

3. All terminals are connected.

4. The starting and end terminal are the same

5. There are no round-trips between two terminals

6. The container capacity of a ship is not exceeded

For multiple vessels, the objective becomes to minimize the sum of all these utility values:

M∑
m=1

(rm + riam) (2-2)

Here, rm is the cost function of a single vessel (agent), and riam represents the so-called inter
agent utility function which is a way to penalize overlap between the rotation plan of multiple
vessels. In the context of a rotation plan to distribute containers around a port area this
would be cost function with a high value when several agents have the same time slots at
the same terminal. For example, when there are more vessels scheduled in slot than there is
space.
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2-2 Distributed Constraint Optimization Problem 5

2-2 Distributed Constraint Optimization Problem

In real life, there are multiple vessel operators (agents) making their own decisions. For that
reason, it might be appropriate to model our VRPP in a way that reflects this behavior. A
way to do that is to formulate the VRPP as a DCOP. Often, these DCOPs operate on a
so-called constraint graph, where an edge between two nodes indicates a common constraint
and a node reflects a variable. These variables are controlled by so-called agents. From
here onward, the terms variable, node, and agent can be used interchangeably. The main
idea behind the use of distributed constraint optimization problem algorithms, and more
specifically those involving a pseudo tree arrangement 2 is that because of the single-layer
tree structure, every branch is relatively independent of other nodes in different branches and
can thus be searched in parallel. An example of such a constraint graph or pseudo tree graph
can be seen in Figure 2-1.

There exist several algorithms to solve DCOP problems. These algorithms usually have
one agent controlling one variable at a time, so that more virtual agents are present in the
problem solution than there are real-life agents. The authors of [9] divide the algorithms into
two categories: incomplete and complete algorithms. Complete algorithms are guaranteed
to give the optimal solution if it exists, while incomplete algorithms use local optimization
to find locally optimal solutions. Whilst it may be beneficial to know a solution is also the
global solution, often, in real life, incomplete algorithms are used because of their scalability.
Some examples of complete algorithms are the SyncBB algorithm [20] [5], DPOP [14], and its
memory-bounded version, Memory-Bounded Distributed Pseudotree Optimization Protocol
(MB-DPOP) [15]. Some examples of incomplete algorithms are the MGM [11] algorithm, the
DSA algorithm [22] and the DBA algorithm [21].

2-2-1 Distributed Pseudotree Optimization Protocol

The DPOP procedure was initially proposed in [14]. To understand how it works, it is worth
explaining the Distributed Tree (DTREE) [13], which was in its turn based on the sum-
product algorithm [6]. As explained above, a DCOP can be viewed as a so-called constraint
graph that connects all the variables that share a utility function. Since there is a general
utility function to be maximized (or minimized in case of a cost function), the variables such
as arrival time, departure time, and order in which vessels visit terminals are connected. The
DTREE algorithm is a so-called utility propagation algorithm, which has UTIL messages
propagating through the network asynchronously. These UTIL messages contain the utility
values associated with all the combinations of values variables can hold. The algorithm is
initiated by the leaf nodes (the nodes with only one neighbor) in the tree, after which the
so-called n − 1 rule is used to propagate messages through the tree network. The n − 1 rule
entails that if a node has n neighbors, it will only send out a message to its kth neighbor
after having received n − 1 messages. That is, it only sends a message once it has received
messages from all its neighbors except one, which is its parent. At some point, the node will
receive a message back from its nth neighbor. When that happens, the node has enough
information to choose its own optimal value, and will send out n − 1 messages to its other

2A pseudo tree arrangement of a graph G is a rooted tree with the same vertices as G and the property
that adjacent vertices from the original graph fall in the same branch of tree.
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6 Formulation of the Problem as a Vehicle Rotation Planning Problem

X1 X2

X6X3 X4 X5

X0

X7 X8

Figure 2-1: This figure illustrates the concept of a pseudo tree arrangement. A pseudo tree
arrangement of a graph G is a rooted tree with the same vertices as G and the property that
adjacent vertices from the original graph fall in the same branch of tree (e.g. X0 and X11 in
this figure). The solid lines are called edges and define the relationship between a child and a
parent. The dotted lines are called backedges and define the relationship between pseudoparents
and pseudochildren. The figure is based on [14].

neighbors, called its having received a message from that kth neighbor. This rule makes the
tree dynamic because it has no root node, and allows for asynchronous processing of nodes.
The algorithm requires a linear number of messages in the number of nodes of the tree. In
these kinds of problems, where a tree-structured network is used to formulate a problem and
polynomial-time algorithms such as the DTREE algorithm are used there are two sets: a set
of agents X each responsible for a variable, and a set of agents A that are interested in the
assignments made to these variables. For example, X1 could represent the arrival time of a
vessel, and A1 would represent that vessel. Then, all the agents in A declare their relations
Ri to the agents Xi concerned in those relations. Note again that the actual agents (vessels)
are only used to set relations. They are not actively used in the optimization, since artificial
agents are made for each separate decision variable.

In the DTREE algorithm, each agent Xi executes the following steps (asynchronously from

S. Geboers Master of Science Thesis



2-2 Distributed Constraint Optimization Problem 7

other agents):

1. Examine its own relations. That is, find out who the node is connected to through
relations and hence who are its neighbors.

2. Determine whether it is a leaf in the constraint tree or not. That is, if it has a single
neighbor. If Xi is a leaf node, it sends the UTIL value to its only neighbor.

3. Wait for incoming messages and respond to them. For example, a neighbor Xj of node
Xi would send Xi a vector of all the optimal utilities that can be achieved for the subtree
of Xi that contains Xj , and this for all the values Xi can take. The size of the message
is thus (in a discrete case) equal to the |dom(Xi)|. Messages by agents are sent following
the k −1 rule. At some point it will receive a message back from the kth neighbor, from
which node Xi will be able to choose its optimal value and pass this message on to the
other k − 1 neighbors. This can only happen if the root node can choose an optimal
value based on all incoming UTIL messages.

After these steps, the algorithm is finished for agent Xi, and the algorithm stops if all agents
have finished the algorithm. For an example problem to which the algrorithm may be applied,
refer to the pseudo tree containing solid edges in Figure 2-1 Here, the variables Xi are variables
that can take on multiple values.

A major shortcoming of the DTREE algorithm is that it does not work on cyclic graphs (it
only works on tree-shaped topologies). DPOP solves that issue by making an extension to
arbitrary topologies using pseudo trees. Cyclic graphs can always be rearranged as pseudo
trees. The easiest way to do this is by just doing a depth first search and then keep track
of the relations by creating both direct relations such as children and parents conform the
DTREE algorithm, and indirect relations such as pseudoparents and pseudochildren. These
indirect relations signify that simply using direct relations would result in a cyclic graph and
are indicated by dotted lines. For example, the parent of a parent of a node may also be the
parent of that node itself (e.g. X1, X4, and X7 in Figure 2-1).

DPOP starts by choosing a root node followed by a labeling protocol. This labeling protocol
takes care of labeling all the parents, children, pseudoparents, and pseudochildren. Then,
just like the DTREE algorithm, DPOP is initiated at the leaf nodes. In Figure 2-1, the leaf
nodes are X3, X5, X6, X7, and X8. Once the leaf nodes send UTIL messages towards their
neighbors, the neighbors collect these UTIL messages in a table that contains all the possible
combinations of values that its children and pseudochildren can take and their corresponding
util value. It is here that the weakness of the DTREE algorithm and DPOP lies, since the
biggest message size sent in the protocol scales exponentially with the highest induced width
(the highest number of variables a certain variable has influence on). With small problems, as
well as with problems that are very disconnected in nature, this is not a problem because some
values can be inferred from the context and the dimension of the message can be collapsed to
a smaller one again. Assuming everything goes as planned and no message is sent that is too
large, the root node will eventually get a UTIL table out of which it can choose its optimal
value. It will then communicate its value to its children, all the way back to the leaf nodes.

Master of Science Thesis S. Geboers



8 Formulation of the Problem as a Vehicle Rotation Planning Problem

2-2-2 Memory-Bounded Distributed Pseudotree Optimization Protocol

Building on DPOP, MB-DPOP implements the feature of a tunable memory bound for the
algorithm. The algorithm also uses a depth first search arrangement to perform search in
parallel on independent branches, which it then combines. The algorithm is different with
respect to DPOP because there is a memory bound which is controlled by a control parameter
k (the maximum dimensionality of a message).

The algorithm behaves the same as the DPOP algorithm in areas with a low inferred width.
In areas with width higher than k, clusters are formed with each cluster having a width lower
or equal to k. The control parameter k specifies the maximal amount of so-called inference
(the maximum message dimensionality). This could be based on the minimum amount of
memory available at each node (i.e. the memory should be greater than dk; this is because
it can be proven that the message size is at most dk in size). Here, d is a discrete, finite
variable domain size of values, e.g. d contains the number of possible values for a given agent
(variable). Subgraphs are identified where the width is higher than kk at that point clusters
are made with cluster roots. Whilst MB-DPOP makes it possible to solve some problems
by making the memory footprint manageable, it comes with a trade-off. Because it creates
clusters in high-width areas, extra messages have to be sent to communicate between these
clusters. This means that while the memory is bounded by dω, the number of messages sent
in the procedure grows exponentially.

2-2-3 Maximum Gain Message Algorithm

The MGM [11] works by broadcasting a gain message to all its neighbors that represents
the maximum change in its local utility if it is able to choose its own value based on the
context. Note that each agent can for itself determine how much it values a change in its
variable. It can be based on an (approximated) model, or on intuition/experience if a person
is set in charge of this. If its gain message is larger than all the gain messages received by
its neighbors, it is allowed to change its variable (act). It is clear that this algorithm will
not always reach the global optimum but will reach a local optimum. Because of its ease of
implementation and intuition, it allows for an adaptation of the cost function.

2-3 Conclusions

In this chapter the problem formulated in Chapter 1 was mathematically formulated as a
VRPP. After formulating it that way, it was recast as a DCOP that can be solved by means
of a distributed algorithm. Three such algorithms were elaborated upon: the DPOP as well
as its memory-bounded version: MB-DPOP, and the MGM algorithm. DPOP is a complete
algorithm and thus results in a globally optimal solution, but it can be computationally and
memory expensive because it can require a memory size that exponentially scales with the
highest induced width, or require an exponential number of messages in case the memory-
bounded version is used with the formation of clusters. The MGM algorithm is easy to
implement and intuitively leads to an optimum, but it is an incomplete algorithm and thus
does not guarantee the global optimum.
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Chapter 3

Possible Extensions to the Algorithms

As was mentioned in the previous chapter, there are some problems with distributed constraint
optimization algorithms that need to be addressed. For example, whilst distributed algorithms
such as Memory-Bounded Distributed Pseudotree Optimization Protocol (MB-DPOP) could
be used for privacy-sensitive calculations, some changes still have to be made for this to
happen. Furthermore, a port area is a very dynamic environment where requirements can
quickly change. To support this, a way to incrementally come up with a good solution
should also be elaborated upon. To solve these problems, some extensions to the algorithms
can be made such that they could be better suited to real-life scenarios. In this chapter,
the theoretical background for these extensions will be developed. Firstly, an extension to
MB-DPOP is made to include privacy measures into the algorithm. These privacy measures
can increase the willingness shippers have to share information and to take part in coming up
with a collective solution. With these privacy measures, a minimum amount of privacy can be
mathematically guaranteed. Secondly, an extension to the Maximum Gain Messaging (MGM)
algorithm is made to include incremental improvements of the current solution. Since solving
a Distributed Constraint Optimization Problem (DCOP) is often computationally expensive,
it would be beneficial to be able to reuse a part of the current best solution instead of going
back to the drawing table all over again. The extension to the MGM algorithm does exactly
that: when the requirements change and a new solution has to be obtained, all vessel operators
can indicate how willing they are to change their individual plans in exchange for an overall
lower rotation time in port by means of a control parameter called the unwillingness. The
resulting solution will look similar to the original one if there is only a small change, because
largely the solution can be used again. In case there is a big change in the problem definition,
the MGM algorithm works as usual. Because the cost of MGM algorithm is monotonically
decreasing, it can easily be tweaked to make use of the old solution.

3-1 Privacy Extension

It would be beneficial to be able to guarantee a certain level of privacy towards the agents.
However, let us first define privacy within a distributed optimization protocol context.

Master of Science Thesis S. Geboers



10 Possible Extensions to the Algorithms

The authors in [3] define four types of privacy:

1. Agent privacy: no agent learns the identity of other agents. That is, no agent knows
which variable is controlled by which agent.

2. Topology privacy: no agent learns the topological constructs such as constraints of
agents it does not share a constraint with. That is, an agent does not know the identity
of any other agent in the constraint graph except for its neighbors. It shares a constraint
(i.e. has a neighbor) when it controls at least one variable in the constraint.

3. Constraint privacy: no agent learns the nature or content of a constraint of another
agent. In an optimization setting, an agent cannot learn what value another agent
attaches to a certain variable setting. Full constraint privacy is preserved when no such
information is shared. Limited constraint privacy applies if the information that an
agent can learn about such a combination of variable settings is bounded by a threshold
ϵ.

4. Decision privacy: no agent learns the outcome of any decision that other agents make
in the final solution. Full decision privacy is preserved if no agent can learn the values
of any variable that it does not control in the final solution. Limited decision privacy
occurs if no agent can learn the values of any variable that it does not control and that
is not part of the neighborhood of a variable it controls.

Over the next few subsections, adaptations to MB-DPOP are given to include these privacy
measures into the algorithm. As will be shown, some of the modes of privacy are already
present in the algorithm, but some still require some work. Three phases are present in
MB-DPOP: the LABEL phase, the UTIL phase, and the VALUE phase. All of these phases
are possible candidates for increasing privacy.

3-1-1 LABEL phase

The LABEL phase in Distributed Pseudotree Optimization Protocol (DPOP) makes sure
every node is labeled. After the LABEL phase every node knows who its parents, pseudo-
parents, children, and pseudochildren are. In addition to the LABEL phase in DPOP, the
LABEL phase in MB-DPOP also identifies clusters with an inferred width higher than a
given value k, as well as cycle-cut nodes. Privacy can be implemented by performing some
extra initialization. First, each agent creates a vector of random obfuscating keys for each
constraint it encounters, after which it sends this vector to its neighbor that is also in that
constraint. Its neighbor then does the same. After this, for each variable, the agent generates
a codename as well as for each of the domain values of this variable, which it then shares with
all its neighbors. When the initialization is finished, the agents anonymously elect a leader
as the root of the Depth First Search (DFS) tree, which then starts the labeling phase as in
normal DPOP.

3-1-2 UTIL phase

The UTIL phase works by sending UTIL messages starting from the leaves of the DFS tree,
which were identified in the LABEL phase. Just like with MB-DPOP, the privacy-extended

S. Geboers Master of Science Thesis



3-2 Incremental Improvements 11

algorithm also waits for the UTIL phases of all its children. It then deobfuscates these
messages and combines them, as usual. After combining the messages, it then obfuscates its
own UTIL message which it then sends to its parent.

3-1-3 VALUE phase

After the UTIL phase, the root node of the DFS tree can choose its optimal value. It then
sends messages top-bottom towards the leaves. Every agent waits for the VALUE messages
from its parent, after which the message is deobfuscated and its own optimal value can be
calculated. It then obfuscates its own VALUE message, which it sends to its children.

3-1-4 Privacy Properties

By making a limited number of adaptations to MB-DPOP, some privacy guarantees for the
different privacy modes can be given. Agent privacy is preserved because all agents are referred
to by codenames, and codenames of variables are only communicated with agents that control
a variable that shares constraints with the respective variables. Like agent privacy, topology
privacy is also preserved because codenames are used. In case the constraint graph is cyclical,
there is a backedge present from which a cyclical nature of the graph can be derived. Because
the variable present in that backedge is the variable that can derive the cyclical nature of the
graph itself, topology privacy is preserved. Limited constraint privacy is obtained, but the
privacy that is leaked is necessary to inform neighbors.
An eavesdropping agent could theoretically derive a constraint variable, but that can be
countered by including extra obfuscations to make the lost privacy arbitrarily small. Lastly,
only limited decision privacy is obtained because variables learn what decisions their neighbors
make because they use this information to make their own decisions. Note that this loss of
privacy is necessary for the algorithm to work.

3-2 Incremental Improvements

Solving a DCOP is often time, resource, and energy intensive. Imagine having solved a DCOP
but then something changes in the problem. Starting to calculate the solution from scratch
would not be beneficial because it would require a lot of processing power, time, and maybe
lead to a solution that is completely different from the current solution so that vessel operators
will have to change their destination, which they would be unwilling to do unless there is a
large benefit to it. To illustrate the idea of the implementation of willingness imagine 4
different phases in time:

• Phase 1: The cost equals a very high number and nothing is planned or done. To start
the algorithm, random values are assigned to each variable. This just resembles an
unsolved problem without any constraints added.

• Phase 2: Then, some constraints are added. For example: some containers may need to
be delivered, which results in a cost value that penalizes containers not being delivered.
The current cost, when no vessels are dispatched, is still very high.
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12 Possible Extensions to the Algorithms

• Phase 3: After the constraints are added, an attempt is made to dispatch vessels in
order to decrease the total cost value. With the MGM algorithm, this cost would be
monotonically decreasing. After a while, no better solution is found and a local optimum
is reached.

• Phase 4: Something suddenly happens. For example, a higher container shipment
demand occurs. Doing the complete calculation again would be unproductive because
a solution similar to the current one but with a few tweaks will probably also be a
good enough solution. We now propose an additional term in the cost calculation that
represents the willingness of a certain vessel to change its route. This way, a control
parameter is introduced that can change to what extent vessel operators are willing to
change the current solution in exchange for an overall lower cost. The total cost value
then becomes

cost = sojourn time +
n∑

m=1
unwillingnessm (3-1)

where n equals the number of vessels and the unwillingness is a positive value that can
be calculated with

unwillingness = p3(x̂ − x)2 + p4(ẑ − z)2 (3-2)

where p3 and p4 are weighting factors, and x̂ and ẑ signify the vectors of the values of
the currently best known solution. Note that this unwillingness is calculated per vessel,
since x and z refer to a single vessel as per (2-1).

• Phase 5: If a vessel decides to change some of its values because the overall gain is
large enough, the associated unwillingness cost goes away and is replaced by a new
unwillingness such that we arrive back at Phase 4.

By tweaking the parameters p3 and p4, a vessel operator can indicate how willing it is to
change their current plans in exchange for a better overall solution. In case the unwillingness
value is too high, the vessel operator will not have their plan changed. However, because
of this, any extra containers that can be shipped will also not be shipped by that operator
because another operator might be more willing to change its plans in order to pick up certain
containers, and thus get a competitive advantage.

3-3 Water Lock

To increase the willingness of vessel operators to adopt distributed algorithms such as MB-DPOP
or MGM, it is beneficial to extend the problem formulation to water locks. With this ex-
tended problem formulation, the possibility to take a water lock can be implemented instead
of only having the possibilities to go from one terminal to another via open waterways. The
extension here is merely proposed in theory, and not actually tested in the results section like
the previous two extensions. A water lock can be implemented by including it as an extra
terminal that has no loading or unloading slots, but does have a certain time attached to it.
This time refers to the time it takes to pass the water lock. Next to the variables xm

ij and
zm

ij , an extra variable ym
ij is then introduced. This variable can take the values 0 or 1, which

indicates whether a water lock is taken or not. In the case the water lock is not taken, an
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other, possible longer route has is taken. Note that the water lock is not just implemented
as another terminal, because then the loading and unloading times of containers transported
to the water lock would have to be taken into account. The use of this extra variable is best
illustrated by means of an example. Say there is a vessel that needs to go from a terminal
with index 1 to a terminal with index 3, with the travel time between the two terminals being
4 hours. If one takes the direct route from terminal 1 to terminal 3, this is indicated by
setting x13 = 1. Now, let us introduce a water lock that can be used to get from terminal 1 to
terminal 3 via an alternative route; we note this water lock as another terminal in the distance
matrix, but there comes a transfer time cost associated with it in the total travel rotation time
equation. The variable yij can then be used to signify whether a water lock will be used or
not. If it equals 1, that signifies the route with the water lock is taken. In this case, y13 = 1,
the travel length t from terminal 1 to terminal 3 then becomes t = y13(τ12 + τ23 − τ13) + τ13.
Note that when y13 = 0, the travel time is just the normal travel time from through open
water. The cost function rm then changes to

rm = p1

 n∑
i=1

n∑
j=1

zm
ij (li + uj) +

n∑
i=1

wm
i +

n∑
i=1

n∑
j=1

xm
ij (ym

ij (τm
is + τm

ks − τij) + τm
ij )


+ p2

 n∑
i=1

n∑
j=1

(rm
ij − zm

ij )

 (3-3)

Where s is the travel time matrix index corresponding to the water lock. This way, ym
ij

becomes a control parameter like xm
ij and zm

ij .

3-4 Conclusions

In this chapter extensions to MB-DPOP and the MGM algorithm, as well as the way of
modeling were given. The goal of these extensions is to increase the willingness of vessel
operators to adopt a common scheduling system that can help with a better planning. In the
first section it was shown that privacy can be added to MB-DPOP to ensure some privacy
guarantees for the vessel operators. In the second section, a control parameter was introduced
that gives shippers the opportunity to weigh in how willing they are to change their current
plans in exchange for a slightly better deal both for themselves and for the overall solution.
In the last section, the problem formulation is extended to water locks as well so that the
algorithm can be used in a large port area with water locks as well.
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Chapter 4

Case Studies: Simple and Complex
Container Moving in the Port of

Rotterdam

In Chapter 2, the theoretical background has been given to Distributed Constraint Optimiza-
tion Problem (DCOP) algorithms. After that, in Chapter 3, some possible extensions were
proposed to increase the acceptability of these distributed algorithms in industry. In this
chapter, these extensions will be tested on some case studies and compared to a base case.
First, two fictional case studies will be presented.

The first one is a simple case study in the port area of Rotterdam with only one vessel
transporting containers and is covered in Section 4-2. This simple case study is slightly
adapted depending on the algorithm it is used for. The base case study is used for the analysis
of the Memory-Bounded Distributed Pseudotree Optimization Protocol (MB-DPOP) and the
Maximum Gain Messaging (MGM) algorithm, and to compare it to a genetic algorithm. The
reuse of a previous solution in the MGM algorithm is tested on a slightly modified version
of the simple case study. Since only one vessel is present, it makes no sense testing the
unwillingness in the simple case study.

The second case study is a more elaborate case study with two vessels able to transport
containers and a higher container demand and will be covered in Section 4-3. Here again,
the base case study is used for the analysis of the MB-DPOP and the MGM algorithm, and
to compare it to a genetic algorithm. To test the reuse of a previous solution, as well as the
unwillingness, two slightly modified case studies are used. That is, the problem definition
that will be fed into the algorithm will differ slightly.

Both case studies have trivial solutions, such that the performance of the algorithms can be
easily analyzed. Since the MB-DPOP is a complete algorithm and the MGM algorithm is
an incomplete algorithm, they will be covered separately in the results sections of the case
studies, after which they are both compared to the genetic algorithm at the same time. All the
results shown in this chapter were obtained using a laptop running Linux with an i5-1240P at
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16 Case Studies: Simple and Complex Container Moving in the Port of Rotterdam

a clock frequency of 4.4 GHz and a total memory of 64 GB. Lastly, some concluding remarks
are given in Section 4-4.

4-1 Determining the Memory-Bounding Parameter k

The MB-DPOP requires us to choose a memory-bounding parameter k. This parameter
limits the maximum message size to dk, where d is the maximum finite domain size of a
variable. Since the variable with the maximum domain size is zm

ij , that variable is chosen to
calculate the bounding parameter k. Given that the maximum number of containers that can
be transported by a vessel is 96 and the minimum is 0, that gives us 97 discrete values. With
a 64 bit size for each of these numbers, the corresponding maximum message size is bounded
by (64 × 97)k, which has to be lower than the maximum amount of memory an agent has
available. In this case, that is 64 GB of RAM, or 512 × 109 bits. Plugging in the results
yields a bounding parameter k = 3, which is the bounding parameter used in the sections
that follow. Note that this is quite a low bounding parameter, which follows from the fact
that some of the variables used are not binary, but integers which can take on a lot of different
values. This results in a faster growing exponential than would be the case with variables
with a lower domain.

4-2 Simple Case Study

In this first case study, several terminals which are all in the general Rotterdam Port area are
included. These terminals can be seen in Table 4-1.

Terminal Index

Rotterdam World Gateway 1
Rotterdam Container Terminal 2
Broekman Distriport 3
CTT Rotterdam 4

Table 4-1: The terminals chosen for the simple case study.

The location of the terminals with respect to each other can be seen in Figure 4-1. With
these terminals and indices, a distance matrix can be created that shows the distance from
terminal i to terminal j. These distances can be seen in Table 4-2. Note that this distance
matrix is symmetric.

For the simple case study, one vessel is chosen as an example. This vessel was picked randomly
from marinetraffic.com, but because of privacy reasons the name and ENI number of the vessel
are not shared. The vessel has a capacity of 96 TEU and its average speed was estimated
from historical data to be 7.2 kts, or 13.3 km/h.

This average speed can be used to estimate an average traveling time from terminal i to
terminal j. This is represented by the matrix T where each element τij represents the traveling
time from terminal i to terminal j in hours. The traveling times can be seen in Table 4-3.
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4-2 Simple Case Study 17

Figure 4-1: The terminals chosen for the simple case study, the numbers on the map denote the
indices of the terminals. © OpenStreetMap Contributers

Now that the fixed parameters of the problem have been set, a container shipment demand
can be constructed. An example container shipment demand could for example be:

• 5 containers from Rotterdam World Gateway to Rotterdam Container Terminal

• 10 containers from Rotterdam World Gateway to Broekman Distriport

• 5 containers from Broekman Distriport to CTT Rotterdam

• 5 empty containers from CTT Rotterdam to Rotterdam World Gateway

From this demand, a so-called demand matrix R can be calculated. Here, each element rij

with indices ij represents the containers shipment demand from terminal i to terminal j. The

j

i 1 2 3 4

1 0 16.2 37.5 34.5
2 16.2 0 34.76 32.16
3 37.5 34.76 0 2.6
4 34.5 32.16 2.6 0

Table 4-2: The distances from a terminal with index i to a terminal with index j in km.
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18 Case Studies: Simple and Complex Container Moving in the Port of Rotterdam

j

i 1 2 3 4

1 0 1.22 2.82 2.59
2 1.22 0 2.61 2.42
3 2.82 2.61 0 0.20
4 2.59 2.42 0.20 0

Table 4-3: The traveling time from a terminal with index i to a terminal with index j in hours.

demand matrix R is then given by:

R =


0 5 10 0
0 0 0 0
0 0 0 5
5 0 0 0

 (4-1)

Note that conversely to the other matrices, this matrix is not symmetric due to the fact that
containers do not necessarily have to be transported back from a certain terminal to another
one.

The cost function rmhat will have to be minimized is the one given in (2-1), but for the sake
of clarity it is repeated here:

rm = p1

 n∑
i=1

n∑
j=1

zij(li + uj) +
n∑

i=1
wi +

n∑
i=1

n∑
j=1

xijτij

 + p2

n∑
i=1

n∑
j=1

(rij − zij) (4-2)

The waiting time wi is taken to be 0 in this case study.

Here, the control variables for which the objective function is minimized are zm
ij being a

variable that represents how many containers are transported from terminal i to terminal j by
vessel m and a binary variable xm

ij that represents whether a vessel m is moving from terminal
i to terminal j respectively. The variables li and uj represent the loading and unloading time
at terminals i and j respectively, which are assumed to be 1 min [7]. Furthermore, rij and
τij are read from the matrices R and T respectively. The weighting parameters p1 and p2
allow finding a balance between minimizing the sojourn time and making sure all containers
are delivered. For example, if p2 is taken very large, the problem values satisfying container
shipment demand.

4-2-1 Results of the Simple Case Study

After the simple case study is defined, the extended algorithms can be tested. For the
MB-DPOP algorithm, it measured how long it takes to come up with a solution. Since
it is a complete algorithm, the solution found is also a global optimum. The unextended ver-
sion of MB-DPOP takes 25,092 seconds to come up with the complete solution. The privacy
extended version of this algorithm takes 26,773 seconds to finish. That means that whilst
there is a relatively small overhead, it is still there. To come up with the solution, a total of
143,307 messages were sent.
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4-2 Simple Case Study 19

To analyze the results of MGM algorithm and its extension, it is helpful to plot them together
and look at what kind of impact the extension has. Let us imagine a case where, after an
optimal solution of the original problem was found, a parameter in the problem formulation
changes. In this case, let us imagine that the container demand from terminal 1 to terminal
2 changes from 5 to 10 containers. The results of such a simulation can be seen in Figure 4-2.
The blue line signifies how the initial solution was found, after about 15 iterations, it arrives
at a stable minimum. Because the case study is trivial, it can be checked that this is indeed
the global optimum. Now, something such as the container demand changes. It might seem
like a decent idea to just repeat the previous process. However, it can be beneficial to take
into account the currently best known solution. Those two cases are signified by the orange
and green line, respectively. From the figure, it can be concluded that there is a much faster
convergence towards the optimal solution when the previous solutions are used in the process.
The original MGM algorithm approached its optimum after 20 seconds of runtime. The MGM
algorithm that used the previously obtained values obtained its optimum after 2.3 seconds of
runtime.

4-2-2 Genetic Algorithm

Both the MB-DPOP and the MGM algorithm will be compared to a base case algorithm. In
this case, a genetic algorithm was chosen. The parameters for this algorithm are elaborated
upon in this subsection. All parameters for the problem formulation are taken the same as
with the simple case study given earlier.

For the genetic algorithm to be implemented, we need a way to model the possible solutions
and a way to determine the fitness of each algorithm. Since the variables xm

ij and zm
ij always

come in pairs, it makes sense to pair them up per subscript. Looking at their domains,
together they can be represented as one byte. An example representation of an xm

ij − zm
ij pair

is xij |zij = 1|0000011 where a vessel travels from terminal i to terminal j and takes three
containers from i to j.

Gluing all the encoded pairs together gives the total solution. In total there are n2 xm
ij − zm

ij

pairs, where n is the number of terminals which means that each solution can be encoded in
n2 byte. The fitness of said solution can then be calculated with the cost function when the
pairs are decoded and plugged into (4-2).

Now that the encoding and cost function have been constructed, the genetic algorithm can
be implemented. There are multiple choices that can be made to come to a solution, in this
report it is chosen to vary the selection procedure of the parents and the number of crossover
points; all other parameters are chosen to be constant with respect to the tested variation. All
variations of the genetic algorithm below have five children per couple of parents, a population
size of 200, a time span of 50 generations, and a mutation chance of 1

8×n×n . Here, n is the
number of terminals; the mutation rate is chosen such that on average there is exactly one
mutation per parent, which corresponds to a chance of 0.8 % bit mutation chance for the
simple case study. All variations are run ten times.

For the selection of the parents, two variations were implemented. These variations are the
tournament selection [19], and the roulette wheel selection [10]. The tournament selection
works by choosing a number of contestants (in this report this number is taken to be 10) from
the population randomly, the two winners from that tournament are then chosen as parents
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Figure 4-2: This figure shows how the cost function progresses throughout different iterations
of the MGM algorithm. Three different lines are shown: two normal MGM cost progressions, and
a cost progression that takes into account the current best solution. The blue and orange lines
correspond to MGM ran with randomized starting values, the green line corresponds to reusing
the solution obtained at iteration 20 as the starting values for MGM
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Figure 4-3: The residual error of the genetic algorithm with tournament selection. The different
lines represent the varying number of crossovers.

for their 5 children. This process is repeated until the population is filled again. The roulette
wheel selection works by choosing parents from the population with a given probability. The
probability to choose a parent from a population is directly proportional to its fitness; the
higher its fitness, the higher the chance it is being chosen. For the purpose of the roulette
wheel selection, the cost of each parent is inverted.

The other thing that will be varied is the number of crossovers. The crossover type is chosen
to be a k-point crossover [18] at random places, where k is varied. The variations are chosen
from the discrete list 1, 2, 5, 10, 20, 32, 40, 50. The reason why so many were chosen in such
a large range is to see what the effect is on the rate of convergence and the final solution of
the genetic algorithms. The number of crossovers 32 was chosen because it exactly equals one
crossover per variable on average.

The averages for all converging iterations were obtained to plot Figure 4-3 and Figure 4-
4. From Figure 4-3, it can be concluded that for tournament selection, an increase in the
number of crossovers leads to a faster convergence up to a certain point. An even further
increase beyond this point (32) leads to a deterioration of the convergence as can be seen in
the Figure 4-3. This deterioration is also present and more visible in Figure 4-4.

Both the tournament selection and the roulette wheel selection were able to get close to
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Figure 4-4: The residual error of the genetic algorithm with roulette selection. The different
lines represent the varying number of crossovers.

S. Geboers Master of Science Thesis



4-2 Simple Case Study 23

1 2 5 10 20 32 40 50
Number of crossovers [-]

0

5

10

15

20

25

Re
sid

ua
l e

rro
r [

-]

Residual error with tournament selection

Figure 4-5: Box plots of the residual error after 50 generations with tournament selection. Each
plot corresponds to a different number of crossovers.

the known optimum within 50 generations. For each of the ten iterations per variation, the
residual error of each best member at the end of the 50 generations was logged and used
to make the box plot shown in Figure 4-5. Whilst the genetic variation with roulette wheel
selection often came close to the actual solution, it often stops at a certain point. It is
theorized that the reason for this is that the roulette wheel favors local minima so much
that there is no evolution anymore, as is also the case in [17]. This is also the reason the
box plot for the roulette selection was omitted, because it sometimes results in high-cost
outliers, skewing the plot. A possible way to prevent this would be to use stochastic universal
sampling. The tournament selection variation has almost always a negligible residual error
from ten crossovers onward and has a small standard deviation comparing to the roulette
wheel selection method.

From the residual error plots and the residual error box plot, it can clearly be seen that
the tournament selection variation is the better choice. Whilst the roulette wheel selection
method is simple to implement, it introduces stochastic noise and tends to be stuck at local
minima.
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Figure 4-6: Box plot of the residual error after 50 generations with roulette selection. Each plot
corresponds to a different number of crossovers. Note that the scale is messed up because of an
outlier.
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Algorithm Execution Time [s] Optimum Privacy

MB-DPOP 25,092 global no
MB-DPOP (P) 26,773 global some guaranteed
MGM 20.3 local some possible
Genetic algorithm 45 local no

Table 4-4: This table shows a comparison of the algorithms for the simple case study.

4-2-3 Comparison with Other Algorithms

In this subsection, the extended MB-DPOP and MGM algorithms will be compared to a
genetic algorithm. Comparing the genetic algorithm to extended MB-DPOP, the genetic
algorithm comes up with a solution significantly faster. Compared to MGM, it comes up
with a solution in about the same time range. Whilst the solution time is better, the solution
is not guaranteed to be a global solution with both the genetic algorithm and the MGM
algorithm. The MB-DPOP algorithm does guarantee a global solution, and can guarantee
a certain level of privacy, but this comes at the cost of an exponential number of messages
when the inferred width of the constraint graph is too high. Looking at the solving time
versus optimality and privacy trade-off between MB-DPOP and the genetic algorithm, the
extended MGM algorithm lies somewhere in the middle. While it can not guarantee a global
solution, it can be tweaked to include some measures of privacy, and it makes problems still
very tractable to solve. See Table 4-4 for an overview.

4-3 Complex Case Study

Now that the simple case has been presented, a more complex case can be considered as well.
Like the simple case study, this study too is in the port area of Rotterdam, with an extra
inland terminal at a large distance and the waiting time wi will be taken to be 0. The study
is made more complex by adding a terminal located far inland, having a higher shipment
demand and especially by introducing a second vessel, to test the unwillingness parameter.
The terminals chosen for this study and their respective indices can be seen in Table 4-5; their
locations with respect to each other can be seen in Figure 4-7. Note that the only difference
with regard to the terminals is an extra terminal farther inland.

Terminal Index

Rotterdam World Gateway 1
Rotterdam Container Terminal 2
Broekman Distriport 3
CTT Rotterdam 4
Wijk bij Duurstede 5

Table 4-5: The terminals chosen for the complex case study.

To force multiple ships to be used, a higher container demand is simulated. This container
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Figure 4-7: The terminals chosen for the complex case study, the numbers on the map denote
the indices of the terminals. © OpenStreetMap Contributers

demand matrix R is given by

R =


0 50 100 0 0
0 0 0 0 0
0 0 0 50 0
50 0 0 0 50
0 0 0 0 0

 (4-3)

The traveling times are given by Table 4-6.

j

i 1 2 3 4 5

1 0 1.22 2.82 2.59 8.51
2 1.22 0 2.61 2.42 8.34
3 2.82 2.61 0 0.20 6.12
4 2.59 2.42 0.20 0 5.92
5 8.51 8.34 6.12 5.92 0

Table 4-6: The traveling time from a terminal with index i to a terminal with index j in hours.

4-3-1 Results of the Complex Case Study

After the simple case study is defined, the extended algorithms can be tested. Just like with
the simple case study, for the MB-DPOP algorithm it measured how long it takes to come up
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4-3 Complex Case Study 27

with a solution. The unextended version of MB-DPOP takes 39,206 seconds to come up with
the complete solution. The privacy extended version of this algorithm takes 43,597 seconds to
finish. Note again here that there is a notable overhead, and that even with a small increase
in problem difficulty, the computation time almost doubles. To come up with the solution, a
grand total of 283,052 messages were sent.

Mirroring the simple case study, here to the results of the MGM algorithm as well as its
extension are plotted together to analyze what the impact of the extension is. The change in
the base case study is taken a bit differently since the original case study is also a bit different.
To test the reuse of previous results for the MGM algorithm, the container shipment demand
from terminal 4 to terminal 5 is changed from 50 containers to 60 containers. The results
of such a simulation can be seen in Figure 4-8. The blue line corresponds to how the initial
solution was found. Again, after about 15 iterations, it arrives at a relatively stable minimum.
Even though the cost still diminishes after the 15th iteration, the drop in cost per iteration
becomes a lot less. When the previous results are fed into the MGM algorithm, a quasi-instant
convergence to the optimum is obtained. From the figure, it can be concluded that there is a
much faster convergence towards the optimal solution when the previous solutions are used
in the process.

Lastly, the unwillingness is tested. Because two different vessels are present in the case study,
and they start from the same depot, the MGM algorithm yields the result that gives the
least sojourn time. This result only uses one vessel. When an additional container demand
is added from terminal 4 to terminal 5, the MGM algorithm again results in a solution that
only utilizes one vessel. In practice, this vessel may not be willing to pick up the extra 10
containers because it may interfere with their already made plans. This is not ideal, because
we want the best solution to the Vehicle Rotaton Planning Problem (VRPP) overall. To solve
this problem, the first vessel can choose a certain unwillingness value to indicate how willing it
is to change its plans by choosing two weighting parameters p3 and p4. For example, the vessel
operator might choose p3 = p4 = 100. In this example, the operators choose their weighting
values every 20 iterations, but this can also be done at any other number of iterations. That
way, the MGM algorithm can be tricked into coming up with a solution that better suits the
needs of the operators. The result of vessel operator 1 choosing the weighting parameters p3
and p4 can be seen in red in Figure 4-8. Note that the cost on which it stabilizes is significantly
higher than the other graphs, this is because there is an extra (high) unwillingness added by
a vessel operator, which we still need to subtract to come at the eventual cost value. By
choosing lower values for p3 and p4, at some point a tip-over point will be reached again
where the first operator would be willing to change its plans, resulting in the overall lowest
sojourn time.

This works as expected, and could even be used with multiple vessel operators indicating
their own different costs.

4-3-2 Genetic Algorithm

Just like with the simple case, the MB-DPOP and the MGM algorithm will be compared to
a genetic algorithm. The parameters for the genetic algorithm are chosen to be the same as
with the simple case study. Mirroring the simple case study, here to the genetic algorithm
is analyzed to try and pick the best parameters. The plots and figures look similarly to the
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Figure 4-8: This figure shows how the cost function progresses throughout different iterations
of the MGM algorithm. Three different lines are shown: two normal MGM cost progressions, and
a cost progression that takes into account the current best solution. The blue and orange line
correspond to two different initial starts of the MGM algorithm. The green line corresponds to
an MGM algorithm using the previously obtained results (at iteration 20) as starting values.
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Figure 4-9: Box plots of the residual error after 50 generations with tournament selection. Each
plot corresponds to a different number of crossovers. Note that the residual error here is higher
than was the case with the simple case study. It is hypothesized that this is because 50 iterations
might not be enough to fully converge to a local optimum given the larger solution space. This
hypothesis is backed up by the fact that the residual error has not stabilized yet at iteration 50
in Figure 4-10.

ones in the simple case study, so not all of them are repeated here. In this case too, the
tournament selection comes out on top, of which a box plot can be seen in Figure 4-9. The
residual error plot can be seen in Figure 4-10.

4-3-3 Comparison with other Algorithms

Comparing the genetic algorithm to the extended MB-DPOP, the genetic algorithm comes up
with a solution significantly faster. Compared to MGM, the genetic algorithm comes up with
a solution in about the same time range. Whilst the solution time is faster, the solution is not
guaranteed to be a global solution with both the genetic algorithm and the MGM algorithm.
The MB-DPOP algorithm does guarantee a global solution, and can guarantee a certain level
of privacy, but at the cost of an exponential number of messages when the inferred width of
the constraint graph is too high. Looking at the solving time versus optimality and privacy
trade-off between MB-DPOP and the genetic algorithm, the extended MGM algorithm lies
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Figure 4-10: Residual error with tournament selection with different numbers of crossovers.
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somewhere in the middle. While it can not guarantee a global solution, it can be tweaked to
include some measures of privacy, and it makes problems still very tractable to solve.

See Table 4-7 for an overview.

Algorithm Execution Time [s] Optimum Privacy

MB-DPOP 39,206 global no
MB-DPOP (P) 43,597 global some guaranteed
MGM 42.3 local some possible
Genetic algorithm 45 local no

Table 4-7: This table shows a comparison of the algorithms for the complex case study.

4-4 Conclusions

In this chapter, two case studies were done to evaluate the performance of the MB-DPOP
algorithm and the MGM algorithm while solving the VRPP. Even though MB-DPOP has
a control parameter that bounds the maximum size of messages sent, it only gains that
advantage by making a trade-off in the number of messages sent. When agents share numerous
constraints, as often happens in the real world, the algorithm is not that scalable and becomes
very impractical to use. Even with relatively small case studies as are used in this report,
the execution times are in the order of multiple hours. Conversely, the MGM algorithm is
more scalable and gives reasonable (albeit local) solutions within the order of a few seconds
or minutes. In industry, it seems that the extended version of MGM would be the best option
because it is both scalable, and can be tweaked to have some level of privacy. This can be
done by encrypting messages it shares with its neighbors. The genetic algorithm can also
be used, and gives results in a reasonable time-frame. However, it has no way to guarantee
privacy because a central institution would have to collect all the data. A final comparison
of the algorithms is shown in Table 4-8.

Algorithm Execution Time Optimum Privacy

MB-DPOP very slow global no
MB-DPOP (P) very slow global some guaranteed
MGM fast local some possible
Genetic algorithm fast local no

Table 4-8: This table shows a comparison of the algorithms.
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Chapter 5

Conclusions and Future
Recommendations

In this thesis, implementations were tested that could increase the willingness of vessel oper-
ators to adopt a unified approach in their scheduling of their rotation plans in a port area.
That way, a more efficient use can be made of the inland waterway capacity present. In this
chapter, first a summary of the thesis is given. After that, the conclusions from Chapter 4
are aggregated and repeated. Finally, some recommendations for future research are given.

5-1 Summary

In Chapter 1, an introduction to the current problem was given. Because vessel operators
often do not want to share specifics of their plans in fear out of losing a competitive advantage,
it is useful if a certain level of privacy can be guaranteed whilst not needing a central agency
that could potentially leak data. Next to that, the container demands often change and it
would be beneficial to use previous solutions because they do not differ that much. Apart
from the problem, the contributions as well as the report layout were listed.
After that, in Chapter 2, it was shown that the problem of efficiently routing containers to
terminals can be recast as a Vehicle Rotaton Planning Problem (VRPP), which in turn can be
recast as a Distributed Constraint Optimization Problem (DCOP). Distributed algorithms
can then be used to determine a solution to the vessel rotation planning problem, and have
the possibility to guarantee a certain level of privacy. To achieve this, some other issues
had to be addressed first such as the scaling of the algorithms by introducing Memory-
Bounded Distributed Pseudotree Optimization Protocol (MB-DPOP), a memory bounded
variant of the Distributed Pseudotree Optimization Protocol (DPOP). The scalable version
of the algorithm was introduced in Chapter 2, as well the Maximum Gain Messaging (MGM)
algorithm, which iteratively gives a local solution instead of a global solution.
In Chapter 3, some extensions to the MB-DPOP and the MGM algorithms were given that
might increase the acceptability of them in the real world. In this chapter, a privacy im-
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plementation was done that guarantees a certain level of privacy for the agents. Next to a
certain level of privacy, the problem formulation was extended such that water locks can be
implemented as well. Lastly, a varying utility method was proposed that introduces a control
variable called the unwillingness into the MGM algorithm that makes it possible for vessel
operators to weigh how much they are willing to change their current plan for a better plan.

Lastly, in Chapter 4, two case studies were done, a simple one and a more complex one,
both of which simulated a container shipment demand in the port area of Rotterdam. The
simple case study included only one vessel and a relatively small number of containers to
be transported, whilst the more complex case study included multiple vessels and a larger
shipment demand. With these simple case studies, the algorithms were compared to each
other (MB-DPOP and MGM), as well as to other algorithms such as a genetic algorithm.

5-2 Conclusions

In the simulations section, some conclusions were drawn with respect to the speed and feasi-
bility of implementation in real life. Whilst the possibility for a guaranteed level of privacy
makes the MB-DPOP algorithm attractive, it is not very tractable when a large number of
agents are present. In real life, where agents often share many constraints with one another,
the number of constraints quickly becomes too high. Even though MB-DPOP has a control
parameter to limit the maximum size of the messages sent, it is only gained at the cost of
a trade-off with regards to the number of messages sent. Conversely, the MGM algorithm
is a more realistic option. The algorithm iteratively gives local solutions, and with a utility
implementation the algorithm is able to combine both market forces due to vessel operators
being able to specify their unwillingness, as well as a collective resulting solution with a low
cost.

5-3 Recommendations

Following from the conclusions, some recommendations can be made with regards to possi-
ble applications and research areas. Because many problems are distributed in nature, the
algorithms could be applied to many problems in different environments. Examples of such
environments are scheduling in railway systems, airport slot reservations, large terminals (in-
ternally), and sensor placement. Some of these environments such as container yards are high
paced and would benefit more from a local optimization algorithm that yields a reasonable
solution fast and scales well. Conversely, others might benefit from knowing the global solu-
tion. In a system where different railway operators want access to a railway track that has
to be provided by a governing body, different railway companies might attach different costs
to different combinations of railway obtained track. These railway operators would proba-
bly want to keep this information private, which is where the privacy-extended MB-DPOP
version could be used.

Below, recommendations will be given for three different time horizons: short term, medium
term, and long term. The short term recommendations are recommendations that could be
implemented in a few weeks. The medium term would be around the size of a new MSc thesis
study, and the long term recommendations would be even longer than that.
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5-3-1 Short Term

• Check whether the MB-DPOP algorithm can be improved upon further. The authors
of the algorithm in [15] have already come up with some improvements to the algorithm
that makes it more scalable.

• A way to lower the complexity of the problem would be to do some kind of local
optimization, such that the inferred width of the problem becomes less. This could
result in a non-global optimum, but it is deemed worthwhile investigating.

• Investigate if there is a threshold that can make MGM be stuck in a bad local opti-
mum. That is, when is a starting value so bad that we can better start with a random
initialization, or any other initialization.

• Investigate how much privacy is lost according to the 4 levels of privacy. How can MGM
be adapted to guarantee as much privacy as possible, and how much privacy would that
be?

5-3-2 Medium Term

• Combine multiple algorithms with the goal to negate some of the disadvantages of the
algorithms while also trying to keep the advantages of the algorithms. For example,
an computationally less expensive MB-DPOP (as obtained from the recommendation
above) could be combined with a MGM algorithm that reuses old solutions. The global
optimum of the MB-DPOP could then be used to check the correctness of the solutions
that are provided by the MGM algorithm, as well as provide the starting values for the
MGM algorithm. Because the MB-DPOP takes way longer to yield a result, it could
be run each time a number of iterations of the MGM algorithm has run.

• What is the ideal number of iterations that MGM would have to be run to implement
the above recommendation? What parameters would be in the trade-off?

5-3-3 Long Term

• Investigate how the DCOP framework can be unified and tied in further with other
optimization algorithms. What conversions are possible, and what can those conversions
mean for the speed at which certain algorithms can be used?
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Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering
DCOP Distributed Constraint Optimization Problem
DCSC Delft Center for Systems and Control
DFS Depth First Search
DPOP Distributed Pseudotree Optimization Protocol
DTREE Distributed Tree
MB-DPOP Memory-Bounded Distributed Pseudotree Optimization Protocol
MGM Maximum Gain Messaging
VRPP Vehicle Rotaton Planning Problem
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List of Symbols

τm
ij Traveling time from terminal i to terminal j of vessel m

d Discrete variable domain size of a variable
i Departure terminal index
j Destination terminal index
k MB-DPOP memory bounding parameter
li Loading time at terminal i

n Number of neighbors
p1 Sojourn time trade-off weight
p2 Undelivered container trade-off weight
p3 Change of vector x trade-off weight
p4 Change of vector z trade-off weight
rm VRPP cost function for a vessel m

riam Inter agent utility function
rij Container shipment demand matrix entry, denoting how many containers should

be transported from terminal i to terminal j

s Travel time matrix index corresponding to a water lock
t Travel length
ui Unloading time at terminal j

wi Waiting time at terminal i

Xi Agent i controlling a variable
xm

ij Binary variable that indicates whether vessel m goes from terminal i to terminal
j

ym
ij Binary variable that denotes whether a vessel m takes a water lock going from

terminal i to terminal j

zm
ij Integer variable denoting how many containers vessel m transports from terminal

i to terminal j

R Container shipment demand matrix
T Traveling time matrix
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