
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Reinforcement Learning for Landing
the Variable Skew Quad Plane on a
Moving Platform
Achieving Optimal Guidance for Ship Landings

Cansu Yıkılmaz

Reinforcement
Learning for Landing

the Variable Skew
Quad Plane on a

Moving Platform
Achieving Optimal Guidance for Ship Landings

by

Cansu Yıkılmaz

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on August 14, 2024

Supervisor: Dr.ir. Christophe de Wagter

Chair: Dr.ir. Ewoud J.J. Smeur

External Examiner: Dr.ir. Francesca De Domenico

Project Duration: December, 2023 - August, 2024

Faculty: Faculty of Aerospace Engineering, Delft

Acknowledgements

With this work, I put an end to one of the most chaotic, unpredictable, emotional, and hardest

journeys of my life. Looking back, it would have been impossible to foresee all the things that happened

in these two years. Standing at the end of it, closing this chapter hits so hard but also so soft at the same

time.

I am proud to have completed the master’s program with this thesis, especially given the limited

time and challenging circumstances. Studying this particular topic was both difficult and immensely

rewarding. I must admit that the landing animations exceeded my expectations, and I often found

myself admiring them as if they were pieces of art. This achievement is thanks to my supervisor,

Dr. Christophe De Wagter, who has been very understanding of my constraints and flexible with the

outcomes, always kind and respectful towards me.

I also want thank Dr. Ewoud Smeur for his valuable feedback on the model, and PhD students Robin

Ferede and Tomaso de Ponti for their help in implementation.

On a personal note, I want to first acknowledge my family, who are exhausted from watching me go

through all this. I guess the summer when I will have no assignments to deal with has finally arrived.

Thank you for supporting and believing in me no matter what.

My good friend Ege, thank you for being with me on this journey, always ready to listen and help.

Thank you for convincing me to apply when I was about to give up and maybe being the reason for

my presence here. Thank you for being the only person who knows and understands why I inverted

that axis at that time and why I once acted frozen in the most random meeting. Sharing life’s cringiest

moments with you is always a pleasure. I will always look up to you as an engineer and be proud of

everything you do.

Finally, my dear Ata, I want to thank you from the deepest parts of my heart for being there for me

and cooking my favourite dessert at the hardest times. Thank you for being my home and family in

Delft.

I want to conclude this chapter with words for the future me since I will probably be the only one

reading this. These two years were everything but easy. I just hope that I can find the same strength

again to go through life when the time necessitates.

Cansu Yıkılmaz
Delft, August 2024

i

Contents

1 Introduction 1

2 Research Plan 3

3 Scientific Article 7

4 Autonomous Landing Problem for UAVs 21
4.1 The landing problem . 21

4.1.1 Landing on a ship . 21

4.2 Challenges in Autonomous Landing . 22

4.2.1 Challenges specific to ship landing problems . 23

4.3 Key phases in autonomous landing . 23

4.3.1 Target Detection . 24

4.3.2 Relative state estimation . 26

4.3.3 Tracking and Landing . 26

4.4 Conclusion and Discussion . 27

5 Machine Learning for Optimal Guidance 28
5.1 Optimal Control Theory . 28

5.1.1 Formulation of the optimal control problem . 28

5.2 Solving Continuous Optimal Control Problems . 29

5.2.1 Numerical Methods for Optimal Control Problems 30

5.2.2 Optimal control applied to landing problems . 31

5.3 Machine Learning . 32

5.3.1 Neural Networks . 32

5.3.2 Supervised Learning . 33

5.3.3 Unsupervised Learning . 34

5.3.4 Deep Neural Networks for Optimal Control . 34

5.4 Reinforcement Learning . 36

5.4.1 Elements of Reinforcement Learning . 36

5.5 State of the Art Deep Reinforcement Learning Techniques 39

5.5.1 Model-Free RL . 39

5.5.2 Reinforcement Learning for optimal control . 40

5.5.3 Applications of Reinforcement Learning for autonomous landing 41

5.6 Conclusion and Discussion . 47

6 Variable Skew Quad Plane 48
6.1 Background on hybrid UAVs . 48

6.2 Variable Skew Quad Plane (VSQP) . 48

6.2.1 Model Configuration . 49

6.3 Guidance and Control Scheme of the VSQP . 49

6.3.1 INDI . 49

ii

iii

6.3.2 Adaptive INDI (ANDI) . 50

6.4 One-loop ANDI for the VSQP . 51

6.5 Conclusion and Discussion . 52

7 Preliminary Analysis 54
7.1 Drone Model . 54

7.1.1 Incorporating the black box model in the loop . 55

7.1.2 Transfer function for the acceleration response . 55

7.2 Ship Model . 59

7.3 Conclusion and Discussion . 60

8 Conclusion 62

References 66

A Simulations for Landing the Parrot Bebop 1 on a stationary platform 70

B ANDI Input-Output Representation 84

C Evaluation of the reward combinations for the VSQP 93

D Validation of the reward combinations for the VSQP 100

List of Figures

2.1 Gantt chart for the thesis plan . 6

4.1 Recovery phases of a ship landing [2] . 22

4.2 A generic landing control diagram (adapted from [18]) 24

4.3 Autonomous landing classification for vision based systems [66] 25

5.1 Classification of methods for continuous time optimal control problems 29

5.2 Optimal control profiles for different models and objective functions considered [52] . . 31

5.3 Machine learning algorithms classification [40] . 33

5.4 The structure of a single neuron . 33

5.5 Neural network vs Deep neural network representation 34

5.6 Transition from quadratic control (h = 0) to mass optimal control (h = 1)[52] 35

5.7 Agent-environment interaction . 36

5.8 State-of-the-art reinforcement learning algorithms [42] 39

5.9 Landmark detection and vertical descent [45] . 41

5.10 Bounding boxes for target detection [45] . 42

5.11 Flight trajectories from training [36] . 42

5.12 Actor-critic framework for vision based autonomous landing [36] 43

5.13 Reinforcement Learning Framework [46] . 43

5.14 Hybrid strategy used in [65] . 45

5.15 Deviation values for RL and PID [49] . 46

6.1 Configuration of the VSQP with different skew angles . 49

6.2 Actuators of the VSQP . 49

6.3 Guidance and Control Scheme of the VSQP . 52

6.4 Reference model for position . 52

7.1 Incorporating the black box model in the loop . 55

7.2 Actuators used in the controller . 56

7.3 Simplified control diagram with attitude dynamics . 57

7.4 Step Response and Bode diagrams for the acceleration transfer function 58

7.5 Step Response and Bode diagrams for the acceleration transfer function 59

7.6 Step Response comparison of the 4th order with the 6th order transfer function 59

7.7 Gaussian Noise and Random Walk . 60

A.1 State parameters for reward R1 under nominal conditions 73

A.2 Generated control inputs for reward R1 under nominal conditions 73

A.3 State parameters for reward R3 with a deviation of 2m . 74

A.4 Generated control inputs for reward R1 with a deviation of 2m 74

A.5 State parameters for reward R3 with a deviation of 4m . 75

A.6 Generated control inputs for reward R1 with a deviation of 4m 75

A.7 State parameters for reward R2 under nominal conditions 76

A.8 Generated control inputs for reward R2 under nominal conditions 76

iv

v

A.9 State parameters for reward R2 with a deviation of 2m . 77

A.10 Generated control inputs for reward R2 with a deviation of 2m 77

A.11 State parameters for reward R2 with a deviation of 4m . 78

A.12 Generated control inputs for reward R2 with a deviation of 4m 78

A.13 State parameters for reward R3 under nominal conditions 79

A.14 Generated control inputs for reward R3 under nominal conditions 79

A.15 State parameters for reward R3 with a deviation of 2m . 80

A.16 Generated control inputs for reward R3 with a deviation of 2m 80

A.17 State parameters for reward R3 with a deviation of 4m . 81

A.18 Generated control inputs for reward R3 with a deviation of 4m 81

A.19 State parameters for reward R4 under nominal conditions 82

A.20 Generated control inputs for reward R4 under nominal conditions 82

A.21 State parameters for reward R4 with a deviation of 2m . 83

A.22 Generated control inputs for reward R4 with a deviation of 2m 83

B.1 Reference Model Step-1 . 84

B.2 Reference Model Step-2 . 84

B.3 Reference Model Step-3 . 85

B.4 Reference Model Step-4 . 85

B.5 Reference Model Step-5 . 85

B.6 ANDI with attitude dynamics Step - 1 . 86

B.7 ANDI with attitude dynamics Step - 2 . 86

B.8 ANDI with attitude dynamics Step - 3 . 86

B.9 ANDI with attitude dynamics Step - 4 . 86

B.10 ANDI with attitude dynamics Step - 5 . 87

B.11 ANDI with attitude dynamics Step - 6 . 87

B.12 ANDI with attitude dynamics Step - 7 . 87

B.13 ANDI with attitude dynamics Step - 8 . 87

B.14 ANDI with attitude dynamics Step - 9 . 88

C.1 Reward R1 Evaluation Scenarios . 95

C.2 Reward R1 Evaluation Scenarios - zoom in . 95

C.3 Reward R2 Evaluation Scenarios . 96

C.4 Reward R2 Evaluation Scenarios - zoom in . 96

C.5 Reward R3 Evaluation Scenarios . 97

C.6 Reward R3 Evaluation Scenarios - zoom in . 97

C.7 Reward R4 Evaluation Scenarios . 98

C.8 Reward R4 Evaluation Scenarios - zoom in . 98

C.9 Reward R5 Evaluation Scenarios . 99

C.10 Reward R5 Evaluation Scenarios - zoom in . 99

D.1 Reward R1 Ship Validation Scenarios . 101

D.2 Error Plots for Reward R1 . 102

D.3 Reward R2 Ship Validation Scenarios . 103

D.4 Error Plots for Reward R2 . 104

D.5 Reward R3 Ship Validation Scenarios . 105

D.6 Error Plots for Reward R3 . 106

D.7 Reward R4 Ship Validation Scenarios . 107

D.8 Error Plots for Reward R4 . 108

D.9 Reward R5 Ship Validation Scenarios . 109

D.10 Error Plots for Reward R5 . 110

List of Tables

4.1 Key Phases in Autonomous Landing . 27

4.2 Challenges in Autonomous Landing . 27

4.3 Limitations of Classical Techniques . 27

5.1 The considered models and corresponding optimal control problems 31

5.2 Landing performance comparison of PID and RL for different movement types 45

5.3 Machine Learning Techniques for UAV Guidance and Control 47

5.4 Reinforcement Learning Algorithms for UAV Landing . 47

6.1 Actuators and Their Functions . 49

7.1 The VSQP Actuator Descriptions . 56

7.2 Coefficients of the reference models and the error controllers 56

A.1 Model parameters . 71

A.2 Inertia and Gravity Parameters . 71

A.3 Motor parameters . 71

A.4 Reward combinations used for the Parrot Bebop 1 . 72

C.1 Reward Coefficients . 93

C.2 Ship Motion Characteristics for the evaluation . 93

vi

Nomenclature

Abbreviations

Abbreviation Definition

ANDI Adaptive Nonlinear Dynamic Inversion

ANN Artificial Neural Networks

DDPG Deep Deterministic Policy Gradient

DNN Deep Neural Networks

DQN Deep Q-Networks

G&NC Guidance and Control Networks

GPS Global Positioning System

INDI Incremental Nonlinear Dynamic Inversion

INS Inertial Navigation System

LMS Least Mean Squares

MAVLab Micro Air Vehicle Laboratory

MDP Markov Decision Process

MOC Mass Optimal Control

MPC Model Predictive Control

NLP Nonlinear Programming

PID Proportional - Integral - Derivative

PID𝑎𝑏𝑠 Proportional - Integral - Derivative for absolute velocity

PID𝑟𝑒𝑙 Proportional - Integral - Derivative for relative velocity

PPO Proximal Policy Optimization

POMDP Partially Observable Markov Decision Process

OFW Oblique Flying Wing

QC Quadratic Control

QUAD Quadcopter

RL Reinforcement Learning

RMSE Root Mean Square Error

RQ-AL Research Questions for Autonomous Landing

RQ-ML Research Questions for Machine Learning

RQ-PF Research Questions for Problem Formulation

RQ-EV Research Questions for Evaluation

RWSC Reaction Wheel Spacecraft

SAC Soft Actor Critic

SQP Sequential Quadratic Programming

SSC Simple Spacecraft

SAC Soft Actor Critic

TPBVP Two Point Boundary Value Problem

TRPO Trust Region Policy Optimization

TOC Time Optimal Control

TSR Tracking Success Rate

TVR Thrust Vectoring Rocket

VSQP Variable Skew Quad Plane

VTOL Vertical Take-off and Landing

UAV Unmanned Aerial Vehicle

WLS Weighted Least Squares

vii

viii

Symbols

Symbol Definition Unit

𝐴𝑝𝑖 Amplitude of the platform for each axis 𝑖 [m]

𝑎𝑛 Acceleration in north [m/s
2
]

𝑎𝑒 Acceleration in east [m/s
2
]

𝑎𝑑 Acceleration in down [m/s
2
]

𝑎𝑛𝑑𝑒𝑠 Desired acceleration in north [m/s
2
]

𝑎𝑒𝑑𝑒𝑠 Desired acceleration in east [m/s
2
]

𝑎𝑑𝑑𝑒𝑠 Desired acceleration in down [m/s
2
]

𝒂𝑑 Drone acceleration vector [m/s
2
]

¤𝒂𝑑 Drone 1st order acceleration vector [m/s
3
]

¥𝒂𝑑 Drone 2nd order acceleration vector [m/s
4
]

𝒂𝑑 Drone 3rd order acceleration vector [m/s
5
]

ℎ Height [m]

ℎ𝑡 Reference height [m]

𝑘1 The vertical plane coefficient [-]

𝑘2 The horizontal plane coefficient [-]

𝑘3 The vertical plane coefficient for the relative velocity collision penalty [-]

𝑘4 The horizontal plane coefficient for the relative velocity collision penalty [-]

𝑘5 The vertical plane coefficient for the absolute velocity collision penalty [-]

𝑘6 The horizontal plane coefficient for the absolute velocity collision penalty [-]

𝑝𝑛 Position in north [m]

𝑝𝑒 Position in east [m]

𝑝𝑑 Position in down [m]

𝑝𝑟
old𝑣

Old relative position in vertical plane [m]

𝑝𝑟new𝑣
New relative position in vertical plane [m]

𝑝𝑟
oldℎ

Old relative position in horizontal plane [m]

𝑝𝑟newℎ
New relative position in horizontal plane [m]

𝒑𝒅 Drone position vector [m]

𝒑𝒓 Relative position vector [m]

𝒑𝒔 Ship position vector [m]

𝑅𝑝 Position reward [m]

𝑅𝑣 Velocity reward [m/s]

𝑅𝑐1 First collision penalty [m/s]

𝑅𝑐2 Second collision penalty [m/s]

𝑣𝑛 Velocity in north [m/s]

𝑣𝑒 Velocity in east [m/s]

𝑣𝑑 Velocity in down [m/s]

𝒗𝒅 Drone velocity vector [m/s]

𝒗𝒓 Relative velocity vector [m/s]

𝒗𝒔 Ship velocity vector [m/s]

𝑣𝑟
old𝑣

Old relative velocity in vertical plane [m/s]

𝑣𝑟new𝑣
New relative velocity in vertical plane [m/s]

𝑣𝑟
oldℎ

Old relative velocity in horizontal plane [m/s]

𝑣𝑟newℎ
New relative velocity in horizontal plane [m/s]

𝑤𝑖 Angular frequency for each axis 𝑖 [Hz]

𝜙 Roll angle [rad]

𝜓 Yaw angle [rad]

𝜃 Pitch angle [rad]

𝜇𝑖 Random walk component [-]

1
Introduction

Unmanned Aerial Vehicles have become increasingly popular and found applications in many areas

including military operations, search and rescue, delivery services, wireless communication, and aerial

surveillance. The usability of UAVs depends on their flight capabilities across various flight phases:

take-off, climb, cruise, descent, and notably, landing. Most UAVs are capable of autonomous take-off

and cruise, but autonomous landing, especially on moving targets like ships, is a more challenging

task. To achieve a successful autonomous landing, the UAV system must operate close to perfection in a

limited time and space to avoid the risks of crashes or operational failures. The risks associated with

landing mainly depend on factors such as the type of landing (indoor or outdoor), the design of the

UAV (fixed-wing, rotary-wing, or hybrid), and the characteristics of the landing target (stationary or

moving). Overall, the landing problem is defined under considerations and limitations specific to the

system and operation.

This report studies the problem of landing on a moving target (ship) for the Variable Skew Quad

Plane (VSQP), a hybrid UAV developed by the Micro Air Vehicle Laboratory at TU Delft. The VSQP

combines the capabilities of rotary-wing UAVs and fixed-wing planes into one, capable of operating in

hover mode like a quadrotor and in forward flight mode like a fixed-wing plane. The hybrid design of

the VSQP provides several operational advantages, such as improved cruise efficiency, reduced drag in

forward flight, and enhanced control authority in hover mode.

The main research objective is to develop an optimal guidance policy for trajectory generation

and tracking to land the VSQP precisely on a moving ship. This is a highly challenging task as it

involves landing on a moving target for a hybrid drone. Landing on a ship involves dealing with a

constantly moving target affected by arbitrary factors like sea state, wind, and the ship’s maneuvers.

These factors introduce additional variables that must be accounted for in the VSQP’s guidance system.

The unpredictable movements of the ship, along with strong wing gusts acting on the UAV, require a

highly adaptive yet robust approach to landing.

The current guidance and control scheme of the VSQP consists of a one-loop architecture that

applies the Adaptive Incremental Nonlinear Dynamic Inversion approach (ANDI). ANDI based control

includes a Weighted Least Squares (WLS) routine for allocating the control signals such that the overall

control effort and the difference between the demanded and achieved control are minimized while

satisfying the priorities set by the weighting factors. The inputs to the WLS are sent from the reference

models through error controllers defined for both the position and attitude of the drone. The overall

system accepts the position waypoints as inputs and tries to find the optimal control inputs via ANDI

accordingly. Although ANDI is highly efficient in terms of tracking and disturbance avoidance, the

new hard-to-predict parameters introduced by the ship require more effective guidance algorithm that

considers the ship’s specific movements before determining the desired position.

Given the challenges related to the landing problem and the limitations of the current guidance and

control scheme, this study explores the potential of reinforcement learning as a solution for calculating

the optimal guidance inputs to the inner controller. In recent years, reinforcement learning has emerged

as a faster and more computationally efficient option for a wide variety of optimal control problems.

Instead of relying on intense numerical solvers for computing an optimal trajectory at every time step, a

more adaptable and flexible reinforcement learning architecture offers solutions to both the trajectory

1

2

generation and tracking problems. This thesis aims to employ the capabilities of reinforcement learning

to develop an optimal guidance strategy for the VSQP, ensuring its safe and precise landing on a moving

ship, which is highly critical in extending the operational versatility of UAVs.

The report is structured as follows: Chapter 2, outlines the overall research framework, research

proposal, research objective and research questions under the topic of the thesis. This chapter

is particularly important as it also outlines the overall structure of the report, with each section

corresponding to the related research questions. Chapter 4 introduces the landing problem for UAVs,

with a specific focus on ship landings. The challenges and key phases of autonomous landing are given

in the sub-sections. This section investigates the landing phase from both a general perspective and in

terms of its sub-phases. In Chapter 5, machine learning techniques, including supervised, unsupervised,

and reinforcement learning, are investigated as solutions to optimal control problems. In this context,

reinforcement learning has been the focus for landing problems, with state-of-art algorithms and their

corresponding real life applications discussed. With the details of the guidance and control structure of

the Variable Skew Quad Plane taken into consideration in Chapter 6, literature review part is completed.

The preliminary analysis and the implementation details are given in Chapter 7. The thesis concludes

with the conclusion Chapter 8 and additional work is provided in Appendix.

2
Research Plan

This section provides an overview of the research plan, including the research proposal, research

objective, and research questions. The literature review will be based on these research questions and

have the purpose of answering them.

Research Proposal
The Variable Skew Quad Plane (VSQP) is a hybrid drone designed by the Micro Air Vehicle Laboratory

(MAVLab) at TU Delft. It can function as both a fixed-wing plane and a quadcopter, depending on its skew

angle. The current model of the VSQP uses a one-loop adaptive incremental nonlinear dynamic inversion-

based controller, which employs a Weighted Least Squares (WLS) routine for optimally allocating

control tasks among actuators. The drone’s task is to land precisely on moving targets, particularly

ship platforms. Achieving this requires real-time trajectory planning, necessitating the formulation of

an optimal guidance policy. GN&C networks have emerged as faster, more computationally efficient

structures for calculating optimal control inputs compared to traditional techniques, which often rely

on computationally intensive numerical solvers. In this thesis, GN&C networks will be explored for

achieving optimal guidance for landing the VSQP.

Research Objective
Constructing a good research objective is crucial as it provides a general but clear purpose for the study.

The research objective for this work is given as follows:

Research Objective

This research aims to develop an optimal guidance policy by exploring the use of learning based

approaches for a hybrid drone (VSQP). By doing so, it is expected to have optimal control inputs

(accelerations) that will be fed back to the existing adaptive incremental nonlinear dynamic

inversion based controller and improve the overall performance.

Research Questions
This section outlines the research questions that will be answered throughout the report. The questions

are formulated to define the scope of the project by partitioning the research objective into several

sub-tasks. It is expected that answering these questions will achieve the research objective.

Autonomous landing is a significant part of a standard UAV flight. While it has great importance

as a whole, landing for a UAV can also be divided into several phases such as target detection, state

estimation, tracking, and landing. Understanding these phases is crucial to clearly indicate what the

potential solution addresses. Therefore, the first set of research questions will define the landing problem

in general, classify landing in terms of platform characteristics, discuss the challenges associated with

landing, and highlight the limitations of conventional methods to motivate learning-based approaches.

These questions are labelled as RQ-AL.

3

4

Research Questions (RQ-AL) - Autonomous landing for UAVs

RQ-AL 1. How is the autonomous landing procedure is defined in the literature?

RQ-AL 2. What are biggest challenges associated with autonomous landing?

RQ-AL 3. What type of methods are used for the landing problem and what conventional

methods lack so that it creates a specific need for the learning based approaches?

The second set of questions, labelled as RQ-ML, investigates the applicability of different machine

learning algorithms to the landing problem. Specifically, GN&C networks have been used for certain

guidance and control problems, employing supervised and reinforcement learning techniques. For this

thesis, the methodology regarding how these networks should learn remains an open question. While

linked to the nature of the problem, these questions are expected to shape the primary methodology

and its details. This set of questions with the previous one lays the foundation for the literature review.

Research Questions (RQ-ML) - Machine Learning for Optimal Control

RQ-ML 1. Which machine learning technique suits better for landing the VSQP on a moving

platform?

RQ-ML 2. How is an objective function is structured for the landing problem?

RQ-ML 3 What metrics are used to asses the performance of the landing?

The third set of questions determines the methodology and its specifics. These questions develop

the learning-based problem formulation for landing the VSQP, specifically questioning how this new

black-box model would be placed in the loop and the necessary inputs and outputs for it. Since the

landing problem requires consideration of two different dynamics (the drone and the platform), it is

important to answer questions regarding the states of these dynamics for the problem’s formulation.

These questions are given under the category of "Learning based Problem Formulation for the VSQP"
labelled as RQ-PF.

Research Questions (RQ-PF) - Learning based Problem Formulation for the VSQP

RQ-PF 1. How the black box model should be integrated into the loop?

RQ-PF 1.1. Considering the existing control architecture and characteristics of the given

landing problem, what should be the inputs and outputs to the system?

RQ-PF 1.2. How the response of the controller will be modelled for an overactuated

system such as the VSQP, especially for training purposes?

RQ-PF 2. How the landing platform will be modelled for the simulations?

RQ-PF 2.1. What states will be considered for the platform?

RQ-PF 2.2. How is the model for the target platform will be integrated with the rest of the

system (drone)?

The final set of questions verifies and validates the proposed technique. They specifically inquire

about the parameters used to evaluate the drone’s performance for the defined landing problem.

Moreover, they set a benchmark for the proposed solution for further validation purposes. These

questions are given under the category of "Evaluation of the proposed framework" and labelled as RQ-EV..

Research Questions - Evaluation of the proposed framework

RQ-EV 1. How could the proposed solution (ex.reinforcement learning) be verified and

validated?

RQ-EV 2. What type of performance metrics would be applicable to the designed framework?

RQ-EV 3. Can the proposed solution be compared to a benchmark controller and if so, what

would be the choice for it?

5

Research Plan
Considering the research objective and the related research questions, the comprehensive thesis plan is

outlined in the Gantt chart shown in Figure 2.1 .

6

T
as

k
St

ar
t D

at
e

D
ue

 D
at

e
2

0
2

3
2

0
2

4

D
ec

Ja
n

Fe
b

M
ar

A
p

r
M

ay
Ju

n
Ju

l
A

ug

1
5

3
0

5
1

5
3

0
5

1
5

3
0

5
1

5
3

0
5

1
5

3
0

5
1

5
3

0
5

1
5

3
0

5
1

5
3

0
5

1
5

3
0

M
ile

st
on

es

K
ic

k-
of

f s
es

si
on

0
8

/1
2

/2
0

2
3

0
8

/1
2

/2
0

2
3

C
hr

is
tm

as
 H

ol
id

ay
2

0
/1

2
/2

0
2

3
2

2
/1

2
/2

0
2

3

Li
te

ra
tu

re
 S

tu
d

y
R

ep
or

t
1

2
/0

1
/2

0
2

4
1

2
/0

3
/2

0
2

4

W
in

te
r H

ol
id

ay
0

4
/0

2
/2

0
2

4
1

4
/0

2
/2

0
2

4

M
id

 T
er

m
 R

ev
ie

w
1

4
/0

3
/2

0
2

4
1

4
/0

3
/2

0
2

4

Su
b

m
it

D
ra

ft
 T

he
si

s
1

5
/0

7
/2

0
2

4
1

5
/0

7
/2

0
2

4

G
re

en
 li

g
ht

 re
vi

ew
1

5
/0

7
/2

0
2

4
1

5
/0

7
/2

0
2

4

R
es

ea
rc

h
P

or
tf

ol
io

 S
ub

m
is

si
on

1

9
/0

6
/2

0
2

4
1

9
/0

6
/2

0
2

4

M
as

te
r T

he
si

s
p

re
se

nt
at

io
n

an
d

 d
ef

en
ce

1
5

/0
8

/2
0

2
4

1
5

/0
8

/2
0

2
4

Li
te

ra
tu

re
 S

tu
d

y

In
iti

al
 re

se
ar

ch
 &

 F
un

da
m

en
ta

ls

1
/1

2
/2

0
2

4
 - 1

5
/0

2
/2

0
2

4

R
es

ea
rc

h
on

 th
e

pr
op

er
tie

s
of

 V
SQ

P
an

d
th

e
ex

is
tin

g
co

nt
ro

l s
ch

em
e

R
es

ea
rc

h
on

 th
e

st
at

e-
of

-th
e-

ar
t a

ut
on

om
ou

s
la

nd
in

g
te

ch
ni

qu
es

R
es

ea
rc

h
on

 th
e

le
ar

ni
ng

 b
as

ed
 a

ut
on

om
ou

s
la

nd
in

g
te

ch
ni

qu
es

W
rit

in
g

Li
te

ra
tu

re
 R

ev
ie

w

P
re

lim
in

ar
y

Si
m

ul
at

io
ns

G
et

tin
g

fa
m

ilia
r w

ith
 th

e
en

vi
ro

nm
en

ts
 in

 s
ta

bl
e

ba
se

lin
es

1
5

/0
2

/2
0

2
4

 - 0
5

/0
3

/2
0

2
4

Te
st

in
g

ou
t t

he
 d

iff
er

en
t r

ew
ar

d
fu

nc
tio

ns
 a

nd
 tr

ai
ni

ng
 th

e
R

L

Si
m

ul
at

io
n

of
 d

iff
er

en
t l

an
di

ng
 s

ce
na

rio
s

us
in

g
en

d-
to

-e
nd

 R
L

ap
pr

oa
ch

Si
m

ul
at

io
ns

 o
n

th
e

V
SQ

P M
od

el
in

g
th

e
re

du
ce

d
fo

rm
 o

f t
he

 V
SQ

P
fo

r t
he

 g
ui

da
nc

e
lo

op

0
5

/0
3

/2
0

2
4

 - 1
5

/0
5

/2
0

2
4

M
od

el
in

g
th

e
m

ov
em

en
t o

f t
he

 s
hi

p
pl

at
fo

rm

Im
pl

em
en

tin
g

bo
th

 m
od

el
s

an
d

cr
ea

tin
g

an
 e

nv
iro

nm
en

t f
or

 th
e

V
SQ

P
la

nd
in

g

R
ew

ar
d

fu
nc

tio
n

de
si

gn

Te
st

in
g

ou
t t

he
 d

iff
er

en
t r

ew
ar

d
fu

nc
tio

ns
 a

nd
 tr

ai
ni

ng
 th

e
R

L

Si
m

ul
at

io
n

of
 d

iff
er

en
t l

an
di

ng
 s

ce
na

rio
s

w
ith

 R
L

fo
r t

he
 g

ui
da

nc
e

C
om

pl
et

e
an

al
ys

is
 o

n
th

e
re

su
lts

T
he

si
s

R
ep

or
t a

nd
 P

re
se

nt
at

io
n

Th
es

is
 R

ep
or

t S
tru

ct
ur

e

1
5

/0
6

/2
0

2
4

- 1
5

/0
7

/2
0

2
4

W
rit

in
g

Sc
ie

nt
ifi

c
Pa

pe
r

M
od

ifi
ca

tio
ns

 b
as

ed
 o

n
fe

ed
ba

ck
s

Pr
ep

ar
in

g
Pr

es
en

ta
tio

n

Th
es

is
 p

re
se

nt
at

io
n

an
d

de
fe

nc
e

T
h

es
is

 P
la

n

Figure 2.1: Gantt chart for the thesis plan

3
Scientific Article

7

Reinforcement Learning based Optimal Guidance for
Landing the Variable Skew Quad Plane on a Ship

Cansu Yıkılmaz
Delft University of Technology, Delft, The Netherlands

Faculty of Aerospace Engineering, Control & Simulation

ABSTRACT

In this work, we present a reinforcement
learning based approach for optimal guid-
ance in landing a Variable Skew Quad Plane
(VSQP) on a moving ship platform. We
develop a reinforcement learning framework
that computes the optimal acceleration inputs
for the inner adaptive incremental nonlinear
dynamic inversion based controller. Through
extensive simulations, we assess the perfor-
mance of different reward function combi-
nations based on key performance metrics:
touchdown velocity, deviation, and duration.
Having identified the most optimal form of the
reward for the given landing problem, we fur-
ther validate our approach on real ship data
that incorporates dynamics that do not exist
in the training set. Our results indicate that
the reinforcement learning based approach
outperforms the benchmark PID controller in
achieving smoother and safer landings even
under complex motion characteristics.

1 INTRODUCTION

Unmanned Aerial Vehicles have found use in a wide
variety of applications including environmental monitoring,
search and rescue missions, and surveillance [1, 2] due to
their capability to collect real-time data while being able to
operate in remote and hazardous locations. However, the op-
erational range of UAVs, particularly in highly dangerous sea
environments, is often limited. This limitation necessitates
the recovery of the UAV on the ship which in turn requires an
advanced autonomous landing technology that is a combina-
tion of highly accurate sensing, guidance, and control tech-
niques.

The complexity of autonomous landing significantly ex-
ceeds that of other flight phases such as takeoff, climb, and
cruise. This is due to the fact that obtaining accurate mea-
surements or close to optimal estimates of both the UAV and
the target while ensuring a robust trajectory following is an
extremely challenging task. The complexity is even further
amplified in dynamic scenes where the target is moving in

an unpredictable manner under the effect of external distur-
bances and uncertainties [3]. This becomes particularly ev-
ident in the case of ship landing, where the unpredictability
of the sea environment adds an extra layer of difficulty to the
problem.

An autonomous landing problem has been extensively
studied [4, 5, 6, 7, 8, 3] in terms of its sub-phases: target
detection, relative state estimation, tracking and landing. The
majority of studies relied on using vision-based systems for
target detection and relative state estimation tasks with meth-
ods differing according to the characteristics of the landing
platform (static vs dynamic). These systems are specifically
preferred in maritime operations [9, 10] since reliance on in-
ertial navigation is not feasible due to concerns related to the
accuracy of the measurements and security.

In the context of tracking and landing, the classical con-
trol techniques for autonomous landing have relied on a va-
riety of methods. These include PID controllers [8, 11, 12],
adaptive control techniques [13, 14], robust flight [15] and
model predictive control [16, 17] methods. While these tech-
niques are effective in certain cases, they come with their own
set of challenges.

PID controllers often face problems with robustness and
flexibility due to dependency on fixed gains and perform
poorly under the effect of external disturbances [18]. More
advanced controllers like model predictive and robust flight
control techniques require a detailed model and obtaining a
perfect representation of the real-world system is often chal-
lenging. Moreover, the full formulation of the landing as an
optimal control problem to be solved with numerical meth-
ods introduces additional complexities. Such a formulation
is not only computationally intense but also quite challeng-
ing due to the dynamic motion characteristics of the target.
These facts highlight the need for more efficient and robust
solutions in autonomous landing.

Reinforcement learning as a machine learning algorithm
has gained significant popularity in recent years and found
use in solving guidance and control problems [19, 20]. In
the context of optimality, the progress of reinforcement learn-
ing has been towards filling the existing gaps in traditional
methods. Optimal control techniques often require to have
complete knowledge of the system dynamics which may not
always be feasible when uncertainties and disturbances are
involved. However, reinforcement learning offers a robust
framework for dealing with such changes due to its ability to

1

learn from raw environmental data without having prior in-
formation on the system and adapt to unknown dynamics and
unpredictable changes in the environment. This attribute of
reinforcement learning makes it highly suitable for complex
control problems as in the case of ship landing.

In this work, we use reinforcement learning, particularly
Proximal Policy Optimization (PPO) to develop an optimal
guidance policy for landing the Variable Skew Quad Plane
(VSQP) on a moving platform (ship). By doing so, we com-
pute the optimal control inputs (accelerations) and feed them
back into the existing adaptive incremental nonlinear dy-
namic inversion based controller which includes a Weighted
Least Square (WLS) based optimization routine for control
allocation. Against most approaches in the literature, we ac-
count for the motion in the z direction and search for the best
objective function through a comparison between different re-
ward combinations. Finally, we test our approach with real-
world ship data and compare it with a PID controller.

2 RELATED WORK

Reinforcement learning has recently become an effective
approach for solving autonomous landing problems. One of
the earliest studies by Polvara et al. [21] utilized Deep Q-
Networks (DQN) for landing on a static platform using low-
resolution images coming from a downward facing camera.
They have divided the landing task into landmark detection
and vertical descent, with each managed by separate DQNs
that can communicate with each other via an internal trigger.
Later on, Lee et al. [22] developed an actor-critic framework
where they included a PID based inner attitude controller, a
ground-looking camera model, and a laser rangefinder. Their
approach focused on generating appropriate roll and pitch
commands for successful tracking and landing while for alti-
tude and heading they provided constant control commands.

These studies considered the platform to be stationary,
however, real-life situations (ship landing) require UAV land-
ing to be on moving platforms. The challenge of landing on
a dynamic target was addressed by Rodriguez et al. in [23]
where they used Deep Deterministic Policy Gradient (DDPG)
in combination with the Gazebo platform for simulations. Al-
though their study was successful in the implementation, it
is claimed in [24] that not considering motion in the z-axis
in the problem definition and weak generalization capabil-
ity of the Gazebo platform result in autonomously incapable
agents. In their study, Xie et al. divide the problem into
two parts: perception and relative pose estimation; trajec-
tory optimization and control, and only consider the latter.
In contrast to the previous studies, they have also accounted
for sensor noise, intermittent measurements, randomness in
UAV movement, and, incomplete or inaccurate observations.
Moreover, they explored a hybrid approach that combined re-
inforcement learning with heuristic methods for tracking and
landing tasks. While tracking part of the hybrid strategy is
accomplished with DDPG in an end-to-end way, the landing

task is assumed to be successful if the vertical distance is less
than 0.1m while the horizontal distance is less than 0.8m.

In the context of ship landing, Saj et al. [25] claim that
previous studies lack the robustness component which leads
to the development of not fully efficient algorithms for ship
landing problems. Considering the associated challenges,
they adapted the twin delayed DDPG (TD3) algorithm for a
vision-based ship landing. To overcome the reality gap prob-
lem, they have applied the domain randomization approach
[26] through a variation of environment parameters. They
showcased the superior performance of their framework over
a PID controller in the real-life tests made under varying wind
conditions.

These studies collectively highlight the capabilities of re-
inforcement learning in solving a variety of autonomous land-
ing problems.

3 VARIABLE SKEW QUAD PLANE (VSQP)
The Variable Skew Quad Plane is a hybrid UAV designed

by the Micro Air Vehicle Laboratory (MAVLab) at TU Delft.
The VSQP has two modes of operation - hover and cruise
which is controlled through skew angle Λ. In hover mode
(Λ = 0deg), the drone operates as a quadrotor and is con-
trolled using differential thrust attitude. In the cruise mode
(λ = 90), it operates as a quad-plane and achieves forward
speed with a push propeller located at the tail. The VSQP,
with changing skew angle uses the concept of Oblique Flying
Wing (OFW) plane. This design offers better gust rejection
in hover mode and lower drug during cruise mode, providing
improved packability and ease of operation. The configura-
tion modes of the VSQP are shown in Figure 1. Note that dur-
ing landing, the VSQP operates as a quadrotor with its skew
angle set to zero, aligning its wings with the body, making it
more stable in case of external disturbances and allowing a
safer landing.

The current guidance and control model of the VSQP in-
corporates an Adaptive Incremental Nonlinear Dynamic In-
version (ANDI) controller with the Weighted Least Square
based control allocation as the VSQP is an overactuated sys-
tem [27]. This structure allows one-loop architecture rep-
resentation of the controller as opposed to previous studies
where the inner and outer controllers were designed sepa-
rately running two different optimization routines [28]. In
this way, it is expected to have a robust controller that can
distribute the control load optimally throughout the control
surfaces of the VSQP. The diagram showing the overall guid-
ance and control scheme of the VSQP is given in Figure 3.

Within the G&C structure, the WLS block takes the vir-
tual control parameters of which values are calculated in the
error controllers for the position and attitude with the gains
set according to the desired response of the drone. While er-
ror controllers ensure the reference models are being tracked
closely, reference models are used to shape the given desired
set point into reference signals that are compatible with the

1.2. Research Formulation 2

applicability to other hybrid vehicles sharing a similar quad­plane configuration.

(a) VSQP in quad­mode configuration. (b) VSQP in transition (c) VSQP in forward flight configuration.

Figure 1.1: Different skew angle on the VSQP Prototype. In quad­mode configuration 1.1a, the wing is placed over the
fuselage and hover motors are extended. In forward flight configuration 1.1c, the wing is completely extended and hover

motors are stowed in the fuselage for reduced drag.

1.2. Research Formulation
The work was initiated with the general goal of improving the safety of the VSQP using Fault Tolerant
Control (FTC) methods. The literature study in Part II helped narrow down the scope of the research
to the development of a synthetic air data system and pitot tube fault detector for the VSQP. As such,
the main goal of this work is:

To obtain pitot tube­free airspeed estimation and provide pitot tube failure detection capa­
bilities for the Variable Skew Quad Plane (VSQP) in its whole flight envelope, using existing
conventional sensors.

Research Objective

The main objective is airspeed estimation without the use of a pitot tube. Pitot tube detection comes
as a secondary objective, as fault detection is a well­covered topic in literature. It is nevertheless
included to provide a functional pitot tube fault detection system using the developed airspeed estima­
tion. Research questions were defined to guide the thesis work for the different sections of the research
objective. First, different airspeed estimation methods were investigated and developed:

What methods can be used to provide a synthetic airspeed estimation for the variable skew
quad plane, using existing conventional sensors?

Research Question 1

Conventional sensors are defined as sensors already present on the vehicle such as the Global Navi­
gation Satellite System (GNSS) receiver and Inertial Measurement Unit (IMU). Angle of attack and side
slip vane will not be used to limit modifications to the vehicle.

The research question was broken down in sub­questions. Aerodynamic forces are function of air­
speed. Knowing the physical characteristics of the vehicle’s aerodynamic surfaces and their angle of
attack, airspeed could be estimated. Therefore, the following research sub­question is defined:

How can the forces generated by the VSQP’s components such as the wing, fuselage, pro­
pellers, etc. be used to precisely estimate airspeed?

Research Question 1.1

The different components of the VSQP can be modelled with varying fidelity. It is necessary to strike a
balance between achieving sufficient fidelity for accurate airspeed estimation and developing a simple,
adaptable model that can be easily customized:

Figure 1: The configuration modes of the VSQP

characteristics of the controller.

Although the controller is robust and adaptive to changes
in the states of the UAV and the environment, the inputs to
be tracked are dependent on the given desired waypoint posi-
tion and the reference model parameters. In the case of a ship
landing, it may not be desired to only track the position of
the ship with fixed response characteristics since ship motion
exhibits characteristics that are continuously changing under
the effect of external disturbances and uncertainties. Addi-
tionally, it is not possible to assess how optimal the guidance
inputs are by considering the whole system. Therefore, the
guidance scheme of the VSQP is replaced by a reinforcement
learning-based model to learn the optimal acceleration inputs
entering into the controller. With reinforcement learning in
the loop, it now becomes possible to assess the optimality of
the guidance model over different objectives while exploring
different landing trajectories that are generated during land-
ing.

The simplified diagram for the reinforcement learning
framework is shown in Figure 3. Box number 1 denotes the
reinforcement learning framework and contains deep neural
network structure whereas box number 2 illustrates the re-
sponse of the vehicle to given control inputs by the controller.
Box number 1 takes the states of the VSQP as inputs and gen-
erates the corresponding optimal acceleration inputs which
are denoted as ades. The response of the vehicle, symbol-
ized as areal corresponds to the actual accelerations resulting
from the applied control inputs. To effectively map the given
commands to the actual accelerations and use them in the
training process, a simplified model for both the UAV and the
controller is necessary. In a previous study [29] where rein-
forcement learning is used in combination with an Incremen-
tal Nonlinear Dynamic Inversion (INDI), a first-order trans-
fer function was used to model the controller’s response to
given attitude control signals. However, this approach is not
directly applicable to the VSQP as it is an overactuated sys-
tem that incorporates a separate routine for control allocation.
This optimization routine complicates the overall framework
as all actuators affect the acceleration response of the VSQP.

In addition to the existing actuators of the VSQP, the WLS
also uses pitch and roll angles as its virtual control inputs
within its optimization routine which later are fed back to the

attitude reference model. These Euler angles have the slowest
response among all actuators, therefore limiting the vehicle’s
response to the given control input. Taking this factor into
consideration, the simplified model for the VSQP is obtained
by only considering the attitude dynamics in the loop. As a
result, a transfer function that maps the desired accelerations
to the actual ones is given in Eq.1.

acctf = 206s3+861.1s2+287s+95.68
s6+20.22s5+143.3s4+682s3+1021s2+340.2s+95.68 (1)

The response of the transfer function to a step input is
shown in Figure 2. Note that although the drone model is
represented with a sixth-order transfer function an equivalent
fourth-order model is used to avoid the numerical issues pre-
viously encountered in the initial phase of the training.

0 1 2 3 4 5
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
cc

el
er

at
io

n
(m

/s
2)

Acceleration Response
Step Input

Figure 2: Response of the VSQP to a step input

4 REINFORCEMENT LEARNING BASED PROBLEM
FORMULATION

4.1 Background in Reinforcement Learning
Reinforcement learning is an area of machine learning

focusing on how an agent should interact with the environ-
ment to take actions that maximize the cumulative reward
over time. At each time step t, the agent receives a state st
from a state space S and chooses an action at from an action
space A, based on a policy π(at | st). The policy could be
stochastic π(a | s), with a probability associated with each
possible action, or deterministic π(s), indicating the agent’s

Midterm ReviewGuidance and Control Scheme of the VSQP

Error Controllers

Reference Model

Attitude

Reference Model

Position

WLS Actuators Plant

Desired

Waypoint

Position

1 2

RL Framework

1

2

𝒌𝒂𝒓𝒎

𝒑𝒐𝒔𝒓𝒆𝒇𝒑𝒐𝒔𝒅𝒓𝒆𝒇
𝒑𝒐𝒔𝟐𝒅𝒓𝒆𝒇

𝒑𝒐𝒔𝟑𝒅𝒓𝒆𝒇

𝒅𝒕 𝒅𝒕 𝒅𝒕

𝒛ି𝟏 𝒛ି𝟏 𝒛ି𝟏

𝒂𝒅𝒆𝒔

ANDI + Plant

2

Figure 3: Reinforcement learning framework integrated into the existing control stucture

decision-making process from states to actions. Upon taking
an action, the agent receives a reward rt and makes the tran-
sition to the next state st+1, according to the reward function
R(s, a) and state transition probability P(st+1 | st, at). This
process continues until the agent reaches a terminal state and
it restarts. The cumulative reward, defined as the return func-
tion Rt =

∑∞
k=0 γ

krt+k discounted with a factor γ ∈ (0, 1].
The expectation of cumulative reward for a specific policy

is represented as V π , the value function, and is given in Eq.
2.

V π (st) = E [Rt | st, at = π (st)] (2)

The action-value function Qπ in Eq.3, is equivalent to the
value function for every action-state pair (st, at).

Qπ (st, at) = r (st, at) + γ
∑

p (st+1 | st, at)V π (st+1) (3)

The goal is to find the optimal policy π∗ as in Eq. 4 that
maximizes the value function and the corresponding value
function is called the optimal value function.

π∗ = argmax
π

V π (st) (4)

Policy gradient methods are a class of reinforcement
learning algorithms that are particularly effective in environ-
ments with continuous state and action spaces. In a policy
gradient algorithm, the policy is presented as πθ where θ are

the neural network parameters. Given that the expected re-
turn is J(θ) = Es [Vπθ

(s)], the goal is to find optimal param-
eters θ∗ = argmaxθ J(θ) through a gradient ascent update
θk+1 = θk + αk∇J (θk) where αk is the learning rate. The
gradient of J(θ) is calculated using the policy gradient theo-
rem which is given by:

∇J(θ) = Eπθ
[Qπθ

(s, a)∇ log πθ(s, a)] (5)

There are many types of policy gradient algorithms such
as TRPO [30], SAC [31], and PPO [32]. In this work, we
adapt the PPO algorithm to solve the landing problem of the
VSQP on a moving platform. PPO is a highly stable and ef-
ficient policy gradient algorithm that introduces techniques
like clipping the objective and using an adaptive penalty co-
efficient to improve the stability and efficiency of the learn-
ing process [32]. It employs an actor-critic model where the
actor takes outputs actions and the critic evaluates their per-
formance.

PPO uses the following objective:

LCLIP (θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(6)

where rt(θ) =
πθ(at|st)

πθold
(at|st) represents the probability ratio of

the action under the new and old policies, Ât is advantage at
timestep t, and ϵ is a hyperparameter that defines the clipping
range to keep the ratio within reasonable bounds.

4.2 Problem Formulation
The UAV landing problem can be described as a Markow

decision process (MDP). Typical MDP can be defined as a

four tuple (S,A, R,Ω), where S is the state space, A is the
action space, R(s, a) represents the immediate rewards, and
⊗ is the observation space. Based on this model, the landing
problem is formulated as follows:

1. State Space Sd: The state space Sd represents the states
of the UAV. Previously, it was mentioned that a fourth-
order transfer function is used to model the response
of the VSQP and controller. Therefore, the state space
for the drone consists of extra three acceleration deriva-
tives ȧd, äd,

...
a d on top of the position pd, velocity vd,

and acceleration ad components as in Eq. 7.

S = {pd,vd,ad, ȧd, äd,
...
a d} (7)

2. State Space Ss: The state space Ss represents the states
of the ship platform. It consists of platform position ps
and velocity vs components as given in Eq. 5

Ss = {ps,vs} (8)

The motion of the ship is characterized by sinusoidal
signals that are governed by specific frequencies, am-
plitudes, and initial conditions. The definitions for po-
sition and velocity is expressed in the following equa-
tions Eq.9 and Eq. 10.

pi(t) = Ap,i sin (ωit+ ϕi) + pinit,i + ξi(t) (9)

vi(t) = ωiAp,i cos (ωit+ ϕi) + ηi(t) (10)

where Ap,i is the amplitude of the sinusoidal motion for
each axis i, ωi denotes the angular frequency, ϕi is the
phase shift, and finally ηi(t) captures the random walk
component. This random component helps to simulate
unpredictable movements or external disturbances af-
fecting the ship’s motion.

3. Observation Space Ω: Although the state space for the
drone and ship has the full state information, the input
to the reinforcement learning algorithm is given as the
relative position pr and velocity vr components of the
drone with respect to the moving platform along with
the real acceleration ad of the drone. As a result, ob-
servation space is defined in Eq. 11

Ss = {pr,vr,ad} (11)

4. Action Space A: The action space Eq. 12 A consists
of desired acceleration components andes

, aedes , addes

determined based on the inputs of the reference model
given in Figure 6.

A = {andes
, aedes , addes

} (12)

Within the reinforcement learning framework, the con-
trol input parameters an and ae are used to steer the
drone onto the platform while ad is mainly used to find
the right time to accomplish landing.

5. Reward Function R: Designing a reward function that
is suitable for a landing on a moving target problem
is not a straightforward task, requiring many iterations
over different objective functions. Considering the sub-
phases of the landing problem, we classify the reward
function in terms of three components: position track-
ing, velocity tracking, and collision penalty.

(a) Position Tracking: The reward function Rp in Eq.
14 is designed for accurate tracking of the moving
platform by the minimization of the deviation in
both vertical and horizontal planes relative to the
target.

Rp = k1
∣∣proldv

| − k1|prnewv

∣∣

+ k2

∥∥∥proldh
∥ − k2∥prnewh

∥∥∥ (13)

The parameters proldv
and prnewv

represent the
old and new vertical distances; proldh

and prnewh

represent the horizontal distances between the
UAV and the target, respectively. The term∣∣proldv

| − |prnewv

∣∣ rewards the agent based on
the absolute difference in vertical position and
∥prnewv

∥ − ∥prnewh
∥ uses the norm of both x and

y components together to compute the difference.
The importance of one motion with respect to an-
other is measured by the weights k1 and k2 which
are determined to be 2 and 1, respectively.

(b) Velocity Tracking: The velocity reward Rv is de-
signed to ensure that the speed of the UAV is well
adjusted in a way that it gets higher rewards as
the UAV slows down at every time step while
also getting close to the platform. Similarly to
the position reward Rp, the parameters vroldv

and
vroldh

represent the old and new relative velocities
in vertical plane whereas vroldv

and vroldh
repre-

sent the corresponding parameters in the horizon-
tal plane. The reward function is dynamically
scaled by a factor that depends on the drone’s
height. The scaling factor is important since it
fine-tunes the UAV’s speed so that the touchdown
velocity does not get too big while also making
sure that velocity tracking only takes place close
to the platform.

Rv = k1
(
vroldv

− vrnewv

)(ht + h

ht

)

+ k2

(
vroldh

− vrnewh

)(
ht + h

ht

)
(14)

(c) Collision Penalty: The collision penalty is de-
signed to be the most critical part of the reward
function since it directly penalizes the UAV based
on its speed at the touchdown point on the plat-
form. To assess the performance of the landing,
two different reward functions, based on relative
velocities and absolute velocities are considered
for the collision penalty.
The first reward function Rc1 as given in Eq.15 is
defined as the relative velocity collision penalty
that penalizes the relative velocity of the UAV
with respect to the platform’s. The constants k3
and k4 again allow for tunning the sensitivity of
the penalty to the different directional velocities,
avoiding lateral collisions as well as maintaining
a safe descent speed.

Rc1 = k3
∣∣vrnewv

∣∣2 + k4

∥∥∥vrnewh

∥∥∥
2

(15)

The second collision reward Rc2 , absolute veloc-
ity collision penalty, focuses on the vertical ve-
locity components at the point of landing. The
vdnewz

indicates the vertical velocity of the drone
and vpnewz

refers to the platform’s vertical veloc-
ity.
These collision rewards only get active at the final
point of landing, returning a reward with the cor-
responding velocities of the drone and the plat-
form. This approach resembles a form of Clif-
fwalk [33] since the agent does not receive in-
termediate rewards till the point of touchdown.
While this makes the search for an optimal pol-
icy more challenging, the agent gains greater free-
dom in its actions as opposed to the reward func-
tions used in the previous studies [23, 25, 24], that
defined a separate reward function for each alti-
tude range. In case this reward is combined with
the reward for velocity tracking 5, the agent re-
ceives intermediate rewards on slowing its veloc-
ity down beforehand.

Rc2 = k5
∣∣vdnewz

∣∣2 + k6
∣∣vpnewz

∣∣2 (16)

These reward functions are strategically combined to
identify the most effective objective for the given problem.
The table 1 outlines various combinations used in our study.
Reward number R1 only consists of the position reward Rp

encouraging the agent to minimize the difference between the
old and new positions. With this reward, the agent behavior
is examined without any limitation on its velocity. R2 and
R3 incorporate the collision penalties Rc1 and Rc2 along with
the position reward. These combinations aim to explore the
agent’s response in terms of speed reduction in the absence
of intermediate rewards, thereby assessing the necessity of
such rewards. Lastly, rewards R4 and R5 combine everything
including the velocity reward Rv with the collision penalties.
This is crucial for determining which type of collision penalty
is most effective for the specific problem at hand.

Table 1: Reward combinations used in the study

Reward Number Combination

R1 Rp

R2 Rp + Rc1

R3 Rp + Rc2

R4 Rp + Rv + Rc1

R5 Rp + Rv + Rc2

5 TRAINING

For training the reinforcement learning framework, a gym
environment including classes for both the UAV and the ship
platform dynamics, in accordance with their state space mod-
els, has been created in Python. The UAV model is derived
from converting the transfer function provided in Eq.5 to
equivalent differential equations and solving it through the
Euler method. The fourth-order differential of accelerations
is propagated until the position, velocity, and acceleration
components of the UAV are computed.

The ship model uses sinusoidal signals with mixed fre-
quencies and random walk components to simulate a wide
variety of signals that resemble real ship motion. This vari-
ety in the ship motion is critical to prevent overfitting during
the training process, as the validation will be done with real
ship data, which incorporates dynamics that are more com-
plex than standard sinusoidal signals.

In alignment with the observation space Ω (see Eq.11),
the environment is set to receive information on relative po-
sition, relative velocity, and real drone accelerations at every
time step. The outputs are determined to be the desired accel-
eration inputs which are later used to propagate the states of
the drone to obtain the velocity and position information.

While the initial simulations incorporated motion in north
and east for the ship, this is later limited to only motion in
the z-direction. This is due to the fact that vertical track-
ing is paramount to achieving a successful landing, given
the ship’s constant exposure to wave-induced hard-to-predict
random motions. For horizontal tracking, the performance is
evaluated by selecting different initial conditions. The train-
ing process is repeated for all the combinations indicated in

Table 1 until a stopping condition is satisfied. The simu-
lations are ended when any of the following conditions are
met: a ground collision occurs, the drone exists the desig-
nated area, the maximum number of steps is reached, or the
drone achieves a landing condition, specifically being 0.1m
above the platform.

5.1 Initializing the drone dynamics
For training, a vectorized environment is used to run sev-

eral environments in parallel. To do so, initial drone states are
uniformly sampled from the following integrals given in Eq.
17.

pn ∈ [−1, 1] + pni
pe ∈ [−1, 1] + pei pd ∈ [−1, 1] + pdi

vn ∈ [−0.5, 0.5] ve ∈ [−0.5, 0.5] vd ∈ [−0.5, 0.5]

an ∈ [−0.05, 0.05] ae ∈ [−0.05, 0.05] ad ∈ [−0.05, 0.05]

(17)

Here, pni
, pei , pdi

represent the initial position elements
of the drone. The parameters pni

and pei are chosen in a
way that the drone aligns itself with the platform and pdi

is determined to be 10 meters as the starting altitude at the
beginning of the training procedure. Additionally, nine ad-
ditional state elements which are the derivatives of accelera-
tions (ȧd, äd,

...
a d) up to a third degree are also initialized with

a value of zero with the given state elements. This is because
the drone model uses a fourth-order transfer function to com-
pute its actual accelerations and all the numerical derivations
take place within the model.

5.2 Initializing the ship dynamics
Similarly to the drone model, ship states are also uni-

formly sampled from the given intervals in Eq. 18.
For the ship, wave parameters amplitude A and frequency

f are used to initialize the sinusoidal motion characteristics.
To create variation in the generated sinusoidal motions addi-
tional parameters such as mix frequency fmix, random walk
step size rwts, and low pass filter coefficient α are also given
as an input to the model. The values for these parameters are
determined as 0.2, 0.01, and 0, respectively.

Ax ∈ [−0.1, 0.1] Ay ∈ [−0.1, 0.1] Az ∈ [−0.1, 0.1] +Az

fx ∈ [−0.1, 0.1] fy ∈ [−0.1, 0.1] fz ∈ [−0.1, 0.1] + fz
(18)

An example of noise characteristics incorporated in the
ship model is shown in Figure 4.

6 EVALUATION

In this section, the performance of given reward combi-
nations will be assessed based on three key metrics: touch-
down velocity, deviation, and duration. This evaluation will
be completed for a specific test case scenario.

As a result of this assessment, the best combination of re-
ward elements will be identified. Once this combination is de-
termined, an additional analysis by adjusting the coefficients

1

0

1

N
oi

se
 In

te
ns

ity

Gaussian Noise

0 2 4 6 8 10
Time (s)

2

0

2

Po
si

tio
n

Random Walk

Figure 4: Noise characteristics for the ship motion

k5 and k6 will be completed to refine the reward function fur-
ther. The results of these analyses will be presented using box
plots that allow for a clear comparison of the reward functions
across the considered parameters.

6.1 Test Case
As is indicated in Section 5, the frequency and amplitude

of the platform were randomized within the intervals in Eq.18
to cover a wide range of scenarios in the training process. In
this section, a test case scenario is chosen for a fair compar-
ison of the given reward functions. A sinusoidal wave in z-
direction with the characteristics given in Eq.19 is generated
for testing the reward functions in the simulations.

Az ∈ [−0.1, 0.1] +Az, fz ∈ [−0.1, 0.1] + fz (19)

While generating the test case scenario, the motion of the
ship in the north and east is ignored since the vertical motion
has the greatest importance in mimicking the response of the
waves. Still, the associated frequency fz and amplitude Az

are randomized, though now the intervals are kept smaller for
a more stable performance. The figure showing the generated
ship motion in the z direction for a number of 15 simulations
is given in Figure 5.

0 2 4 6 8 10 12 14 16
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

H
ei

gh
t (

m
)

Figure 5: Ship motion for the test case

Note that while the generated wave is 15 seconds long,

the simulations are stopped at the point where any of the end
conditions are satisfied.

6.2 Testing reward functions for different sinusoidal waves

An analysis has been performed to understand the influ-
ence of given reward combinations on the drone’s perfor-
mance and identify the one that best addresses the landing
problem through three key criteria: touchdown velocity, de-
viation from the target center, and time to collision.

The touchdown velocity is a critical metric for assessing
the safety and the smoothness of the UAV’s landing. While
a lower touchdown velocity signifies a softer landing, higher
ones point out that a landing resulted in a crash. The deviation
metric measures the accuracy of the UAV’s landing by eval-
uating how close the UAV lands to the intended target point.
Lastly, time to collision represents the duration that a landing
takes.

The assessment of the drone based on these performance
metrics is visualized with box plots in Figure 6. The top plots
aim to determine which reward combination (R1 to R5) yields
the best results, especially regarding touchdown velocity for
further analysis. On the other hand, the bottom figures result
from an additional analysis to determine the coefficients (k5
and k6) for the best reward combination chosen, which in this
case, the final indicates the reward R5 with tuned coefficients.

The top-left subplot shows the distribution of touchdown
velocities for each reward combination. The y-axis represents
the vertical descent velocity vdz

in meters per second (m/s),
and the x-axis lists the reward combinations (R1 to R5) and
the final (R5 with tuned coefficients). R1 has the highest me-
dian touchdown velocity at around 3.0 m/s, with a range of
values extending from about 2.5 to 3.5 m/s. This indicates
that with only a position element in the reward, the landing
is less controlled, leading to higher impact speeds. In con-
trast, the value of the median velocity drops significantly for
R2 and R3, while the latter has a slightly lower median value.
This shows that having a collision penalty, either absolute or
relative, has a significant effect in reducing touchdown veloc-
ity. By the addition of the velocity element in R4 and R5, the
velocity values further decrease, with touchdown velocities
close to zero, indicating the landing is extremely smooth and
controlled.

The middle box plot shows the deviation from the target
center (dxy) in meters for each reward combination. While
the deviation values are easily negligible for rewards R2, R3,
and R4, R1 and R5 show that the drone slightly deviates from
the center. Finally, the top-right shows the landing duration in
seconds. As expected, the duration gets longer as the velocity
values decrease, resulting in a less aggressive flight.

While different performance parameters are used, more
weight is put into having lower velocities. Based on the
results given in the top-left figure, the reward function R5,
which uses the absolute velocities of the drone, has been iden-
tified as having the most optimal form for the given problem.

Further analysis was conducted to determine the effect of co-
efficients (k5 and k6) on the UAV’s performance that was pre-
viously given a value of 1. Both coefficients k5 and k6 are
tested with the values of 10, 25, 50, 75, and 100, respectively.
The results are given in the bottom box plots which shows the
effect of of different coefficients on the UAV’s performance
for the chosen reward combination.

The first plot on the left again shows the distribution of
touchdown velocities, but this time for the same combination
R5. Generally, all coefficient values result in relatively low
touchdown velocities, showing stable behavior. However,
there are visible differences in the value distribution. Among
the coefficients, k:100 achieves the lowest median value of
almost 0.0 m/s. Even though the coefficients do not strongly
show a linear relationship, it was expected that high penalty
values would lead to extremely small velocities. While this is
proved to be true in the simulations, it was also observed that
very high coefficients either lead to extremely long flights or
no landing at all. Specifically, high penalty values for the col-
lision stop the drone way earlier, making it extremely hesitant
to take any action. Therefore, the coefficients above 100 are
not shown in the graph as the number of successful cases was
pretty low.

Despite the lowest touchdown velocity achieved by k:100,
this coefficient was not chosen due to its relatively larger devi-
ation from the center, which compromises landing accuracy.
The given deviation and duration plots generally show similar
results and thus do not suggest a strong relationship between
these coefficient values. The graphs indicate that coefficients
between 10 and 100 provide a good balance in terms of per-
formance metrics. Considering the negative effect of higher
penalties on performance and the low deviation values, the
coefficient k:25 was chosen to for R5. The final form of the
reward function is given in Eq. 5.

Rfinal =
∣∣proldv

∣∣−
∣∣prnewv

∣∣+ 2
∥∥∥proldh

∥∥∥− 2
∥∥∥prnewh

∥∥∥

+
(
vroldv

− vrnewv

)(ht + h

ht

)

+ 2
(
vroldh

− vrnewh

)(
ht + h

ht

)

+ 25
∣∣vdnewz

∣∣2 + 25
∣∣vpnewz

∣∣2

(20)

It is important to clarify that these simulations only valid
for the given test case scenario and may vary slightly in case
a different sinusoidal signal is chosen. The objective here is
not to pinpoint an exact value for the coefficients, but rather
to demonstrate that within a certain range, the chosen reward
combination yields consistent performance. Therefore, the
resultant reward form would still result in successful landings
even if a different coefficient had been selected.

R1 R2 R3 R4 R5 final

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

v d
z (

m
/s

)

velocity

R1 R2 R3 R4 R5 final
reward combinations

0.0

0.1

0.2

0.3

0.4

0.5

d x
y

(m
)

deviation

R1 R2 R3 R4 R5 final

4

5

6

7

8

9

10

11

12

t (
s)

duration

k:10 k:25 k:50 k:75 k:100

0.00

0.05

0.10

0.15

0.20

v d
z (

m
/s

)

velocity

k:10 k:25 k:50 k:75 k:100
coefficient values

0.0

0.1

0.2

0.3

0.4

0.5

d x
y

(m
)

deviation

k:10 k:25 k:50 k:75 k:100

11.0

11.2

11.4

11.6

11.8

12.0

t (
s)

duration

Figure 6: The analysis of reward combinations in terms of performance metrics

7 VALIDATION

Although the assessment of different reward functions
was completed using randomized sinusoidal motion, real ship
movements often not carry the characteristics of a sine wave.
To determine if the reinforcement framework could success-
fully land on waves that are not sinusoidal-like, validation
with real ship data is both valuable and necessary. For this
purpose, real ship data is gathered at a frequency of 5 Hz was
used for the simulations. Since the simulations run at a dif-
ferent frequency (10 Hz), the data was interpolated using a
quadratic fit and sampled for the validation.

Similar to the analysis conducted in the training section,
the performance of the reinforcement learning framework
was tested on the real ship data using the final form of the
reward function (see Eq. 20). The assessment was again
completed in terms of previously given performance metrics:

downward velocity, deviation, and duration.
Additionally, the RL framework was tested against a PID

based benchmark controller. Figure 8 shows the considered
PID-based controllers that were designed for position and ve-
locity tracking namely, PIDrel and PIDabs. The former takes
the relative velocity of the drone with respect to the platform,
while the latter generates velocity commands based on the
position tracking only, as it may not be desired to track the
platform’s velocity from the beginning.

The left plot in Figure 6 compares the vertical descent
velocities (vdz

) of the RL framework and the two PID con-
trollers. While the figures show that PIDrel works slightly
better than the PIDabs in terms of downward velocity, the RL
framework achieves the lowest median velocity among them,
with values close to 0.1 m/s. Setting the limit at around 0.5
m/s for a successful landing, these results indicate that RL
shows a superior performance with extremely smooth land-

0 2 4 6 8 10 12 14 16 18
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.33 m/s RL
0.59 m/s PID

Scenario 1

0 3 6 9 12 15 18
Time (s)

H
ei

gh
t (

m
)

0.08 m/s RL0.12 m/s PID

Scenario 2

0 2 4 6 8 10 12 14
Time (s)

H
ei

gh
t (

m
)

-0.10 m/s RL
0.37 m/s PID

Scenario 3

0 2 4 6 8 10 12 14 16
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.26 m/s RL
0.64 m/s PID

Scenario 4

0 2 4 6 8 10 12
Time (s)

H
ei

gh
t (

m
)

-0.31 m/s RL0.48 m/s PID

Scenario 5

0 2 4 6 8 10 12 14 16
Time (s)

H
ei

gh
t (

m
)

0.10 m/s RL0.37 m/s PID

Scenario 6

0.0

0.2

0.4

0.6

0.8

1.0

D
ow

nw
ar

d
V

el
oc

ity
 v

z (
m

/s
)

Figure 7: Validation trajectories

RL PIDrel PIDabs

0.00

0.25

0.50

0.75

1.00

1.25

v z
 (m

/s
)

velocity

RL PIDrel PIDabs
0.000

0.025

0.050

0.075

0.100

0.125

d x
y

(m
)

deviation

RL PIDrel PIDabs
5.0

7.5

10.0

12.5

15.0

17.5

t (
s)

duration

Figure 8: Validation box plots

ings, even leaving some margin in velocity.
Reinforcement learning and PID frameworks were also

tested for the deviation and the duration parameters. While
PID controllers make a precise landing almost at the center
point, the RL framework show slight deviation from the cen-
ter. Also for the duration, RL takes a little bit more time
to land which is consistent with its low touchdown velocities.
The statics for the reinforcement learning and PID controllers
are given in Table 2.

The Figure 7 visualizes the trajectories of a drone con-
trolled both PID (PIDrel) and reinforcement learning frame-
work over real ship data, across six different scenarios. The y-
axis indicates the height (in meters) and the x-axis shows the
duration of the flight (in seconds). The trajectories are color-
coded to indicate the downward velocity (vdz

) of the drone,
with green representing low velocities and red representing
high velocities. The color coding has the purpose of showing
how different the velocity varies along the trajectory for RL
compared to the benchmark PID controller. Additionally, the

Table 2: Summary Statistics for RL and PID Controllers

Label Min Max Mean Std Dev

RL-vz 0.0176 0.2265 0.1017 0.0453
PIDrel-vz 0.0617 1.3303 0.4779 0.2459
PIDabs-vz 0.0325 1.2563 0.4828 0.3082

RL-xy 0.0258 0.1320 0.0692 0.0243
PIDrel-xy 0.0001 0.0433 0.0073 0.0091
PIDabs-xy 0.0002 0.0453 0.0084 0.0097

RL-ttc 12.4600 19.7600 15.3107 1.6582
PIDrel-ttc 5.9500 14.0100 9.0416 1.9637
PIDabs-ttc 5.700 12.990 8.5610 1.7039

impact velocities are indicated in circles for both controllers.

The trajectories controlled by the PID consistently result
in more aggressive landings with high touchdown velocities.
In each scenario, PID makes a relatively rapid descent as its
velocity is characterized by the almost fully red-colored tra-
jectories shown in the figure. In contrast, the reinforcement
learning framework displays significantly different landings.
It closely tracks the wave patterns of the ship and wait for op-
timal conditions before landing, with the velocities making a
smooth transition from red to green along the descent path.
It consistently show lower touchdown velocities leading to a
stable and controlled flights as opposed to the PID control
that often results in crashes instead of successful landings.

8 CONCLUSION

This study demonstrated the effectiveness of a reinforce-
ment learning-based framework for the autonomous landing
of the Variable Skew Quad Plane on a moving platform (ship).
Several simulations performed with randomized sinusoidal
signals revealed that the reinforcement learning could adapt
to a wide variety of signals, sinusoidal or non-sinusoidal,
and generate control inputs that effectively adjust the drone’s
speed and trajectory to achieve successful landings.

The validation with real ship data which incorporated
non-sinusoidal and unpredictable movements, confirmed the
robustness and adaptability of our framework. Compared to
the benchmark controller, reinforcement learning achieved
significantly lower impact velocities that resulted in con-
trolled, safer landings by closely tracking the wave patterns
of the ship and waiting for the optimal landing point.

This work highlighted the capabilities of reinforcement
learning for a challenging autonomous landing task which re-
quires an enhanced performance against environmental vari-
ability and operational uncertainty. The integration of rein-
forcement learning as a guidance model within the control
loop promotes safer and more reliable autonomous opera-
tions.

Future work may expand upon this study to target the
landing problem fully with the given platform detection
methodologies in the literature. By formulating the whole
landing process, real-life experiments could be completed
and especially the robustness property of the proposed al-
gorithm would be tested to its limits. In addition to that, a
different network structure (ex. Recurrent Neural Networks)
that has ability to learn the patterns between the data may
be suitable for this kind of landing problem since real data
shows a pattern of mixed sinusoidal signals. Lastly, a more
detailed analysis of the reward elements may be performed to
incorporate ship characteristics further into the objective.

REFERENCES

[1] JeongWoon Kim, Yeondeuk Jung, Dasol Lee, and
David Hyunchul Shim. Outdoor autonomous landing
on a moving platform for quadrotors using an omni-
directional camera. In 2014 International Conference
on Unmanned Aircraft Systems (ICUAS), pages 1243–
1252. IEEE, 2014.

[2] Kun Li, Peidong Liu, Tao Pang, Zhaolin Yang, and
Ben M Chen. Development of an unmanned aerial ve-
hicle for rooftop landing and surveillance. In 2015 In-
ternational Conference on Unmanned Aircraft Systems
(ICUAS), pages 832–838. IEEE, 2015.

[3] Yi Feng, Cong Zhang, Stanley Baek, Samir Rawashdeh,
and Alireza Mohammadi. Autonomous landing of a uav
on a moving platform using model predictive control.
Drones, 2(4):34, 2018.

[4] Oualid Araar, Nabil Aouf, and Ivan Vitanov. Vision
based autonomous landing of multirotor uav on mov-
ing platform. Journal of Intelligent & Robotic Systems,
85:369–384, 2017.

[5] Marcin Skoczylas. Vision analysis system for au-
tonomous landing of micro drone. acta mechanica et
automatica, 8(4):199–203, 2014.

[6] Liguo Tan, Juncheng Wu, Xiaoyan Yang, and Senmin
Song. Research on optimal landing trajectory planning
method between an uav and a moving vessel. Applied
Sciences, 9(18):3708, 2019.

[7] Pablo R Palafox, Mario Garzón, João Valente,
Juan Jesús Roldán, and Antonio Barrientos. Robust
visual-aided autonomous takeoff, tracking, and landing
of a small uav on a moving landing platform for life-
long operation. Applied Sciences, 9(13):2661, 2019.

[8] Ajmal Hinas, Jonathan M Roberts, and Felipe Gonza-
lez. Vision-based target finding and inspection of a
ground target using a multirotor uav system. Sensors,
17(12):2929, 2017.

[9] Bochan Lee, Vishnu Saj, Dileep Kalathil, and Moble
Benedict. Intelligent vision-based autonomous ship
landing of vtol uavs. Journal of the American Heli-
copter Society, 68(2):113–126, 2023.

[10] Xuancen Liu, Shifeng Zhang, Jiayi Tian, and Longbin
Liu. An onboard vision-based system for autonomous
landing of a low-cost quadrotor on a novel landing pad.
Sensors, 19(21):4703, 2019.

[11] Lizhen Wu, Chang Wang, Pengpeng Zhang, and
Changyun Wei. Deep reinforcement learning with cor-
rective feedback for autonomous uav landing on a mo-
bile platform. Drones, 6(9):238, 2022.

[12] Lirong Zhou, Anton Pljonkin, and Pradeep Kumar
Singh. Modeling and pid control of quadrotor uav based
on machine learning. Journal of Intelligent Systems,
31(1):1112–1122, 2022.

[13] Botao Hu, Lu Lu, and Sandipan Mishra. Fast, safe and
precise landing of a quadrotor on an oscillating plat-
form. In 2015 American Control Conference (ACC),
pages 3836–3841. IEEE, 2015.

[14] JeongWoon Kim, YeonDeuk Jung, DaSol Lee, and
David Hyunchul Shim. Landing control on a mobile
platform for multi-copters using an omnidirectional im-
age sensor. Journal of Intelligent & Robotic Systems,
84:529–541, 2016.

[15] Shyh-Pyng Shue and Ramesh K. Agarwal. Design of
automatic landing systems using mixed h2/h1 control.

Journal of Guidance, Control, and Dynamics, 22(1),
1999.

[16] Yi Feng, Cong Zhang, Stanley Baek, Samir Rawashdeh,
and Alireza Mohammadi. Autonomous landing of a uav
on a moving platform using model predictive control.
Drones, 2(4), 2018.

[17] Alireza Mohammadi, Yi Feng, Cong Zhang, Samir
Rawashdeh, and Stanley Baek. Vision-based au-
tonomous landing using an mpc-controlled micro uav
on a moving platform. In 2020 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), pages
771–780, 2020.

[18] Man Yuan, Chang Wang, Pengpeng Zhang, and
Changyun Wei. PID with Deep Reinforcement Learn-
ing and Heuristic Rules for Autonomous UAV Landing,
pages 1876–1884. 03 2023.

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[20] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971,
2015.

[21] Riccardo Polvara, Massimiliano Patacchiola, Sanjay
Sharma, Jian Wan, Andrew Manning, Robert Sutton,
and Angelo Cangelosi. Toward end-to-end control for
uav autonomous landing via deep reinforcement learn-
ing. In 2018 International conference on unmanned air-
craft systems (ICUAS), pages 115–123. IEEE, 2018.

[22] Seongheon Lee, Taemin Shim, Sungjoong Kim, Junwoo
Park, Kyungwoo Hong, and Hyochoong Bang. Vision-
based autonomous landing of a multi-copter unmanned
aerial vehicle using reinforcement learning. In 2018 In-
ternational Conference on Unmanned Aircraft Systems
(ICUAS), pages 108–114. IEEE, 2018.

[23] Alejandro Rodriguez-Ramos, Carlos Sampedro, Hri-
day Bavle, Paloma de la Puente, and Pascual Cam-
poy. A deep reinforcement learning strategy for uav
autonomous landing on a moving platform. Journal of
Intelligent Robotic Systems, 93:351–366, 2019.

[24] Jingyi Xie, Xiaodong Peng, Haijiao Wang, Wenlong
Niu, and Xiao Zheng. Uav autonomous tracking and
landing based on deep reinforcement learning strategy.
Sensors, 20:5630, 2020.

[25] Vishnu Saj, Bochan Lee, Dileep Kalathil, and Moble
Benedict. Robust reinforcement learning algorithm
for vision-based ship landing of uavs. arXiv preprint
arXiv:2209.08381, 2022.

[26] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider,
Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from
simulation to the real world. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 23–30, 2017.

[27] TML De Ponti, EJJ Smeur, and BWD Remes. In-
cremental nonlinear dynamic inversion controller for a
variable skew quad plane. In 2023 International Con-
ference on Unmanned Aircraft Systems (ICUAS), pages
241–248. IEEE, 2023.

[28] HJ Karssies and C De Wagter. Extended incre-
mental non-linear control allocation (xinca) for quad-
planes. International Journal of Micro Air Vehicles,
14:17568293211070825, 2022.

[29] End-to-end neural network based optimal quad-
copter control. Robotics and Autonomous Systems,
172:104588, 2024.

[30] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy opti-
mization. In International conference on machine learn-
ing, pages 1889–1897. PMLR, 2015.

[31] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning,
pages 1861–1870. PMLR, 2018.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[33] Tom Schaul, John Quan, Ioannis Antonoglou, and
David Silver. Prioritized experience replay, 2016.

APPENDIX: ERROR GRAPHS FOR THE VALIDATION
SCENARIOS

In this section, error graphs for the given validation sce-
narios are presented in Figure 9. The graphs illustrate the
variations in the position and the velocity errors of the drone
with respect to the platform. The groups of parameters epn,
epe, epd for position and evn, eve, evd for velocity represent
the errors in the north, east, and down directions respectively.
Each scenario shows an initial high error, particularly in the
down direction, which significantly decreases over time. This
pattern demonstrates the drone’s ability to adapt and correct
its trajectory towards the desired path.

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 1

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 1

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 2

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 2

evn

eve

evd

0 3 6 9 12 15 18
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 3

epn

epe

epd

0 3 6 9 12 15 18
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Ve

lo
ci

ty
 E

rr
or

 (m
)

Scenario 3

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 4

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 4

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 5

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 5

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 6

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 6

evn

eve

evd

Figure 9: Error graphs for the validation scenarios

4
Autonomous Landing Problem for

UAVs

The autonomous landing is one of the most important and complex phases of UAV operations. It

involves navigating through several distinct phases, each with specific tasks and requirements. This

chapter aims to understand the nature of the autonomous landing problem by addressing the first set of

research questions RQ-AL. In the beginning, a comprehensive definition of the autonomous landing

problem will be provided, with a particular focus on the challenges of ship landing problems. Later, the

challenges associated with autonomous landing, including the dynamic and unpredictable maritime

environment will be introduced. The key phases of a landing operation will be explored, highlighting

the steps involved from target detection to the final landing maneuver. By examining the tracking and

landing phases in the context of traditional techniques, the limitations of the existing approaches will be

discussed and set the stage for exploring learning-based techniques.

4.1. The landing problem
Unmanned Aerial Vehicles (UAVs) have gained significant popularity in recent years so that UAVs

are now found in a variety of applications, from environmental monitoring to military operations.

Regardless of the task, a standard UAV flight consists of various phases, including take-off, climb,

cruise, descent, and, most critically, landing. While certain phases, such as take-off and cruise, are

relatively easy to achieve in UAV operations, autonomous landing is one of the most challenging due

to the risks involved. Moreover, it has been found that most UAV crashes occur during the landing

stage [19]. This is due to the fact that while landing, a strong air current is generated under the drone,

which can cause a crash with any minor faulty input. This situation gets much worse if the system

is subjected to strong gusts, such as in the case of ship landings. Therefore, the autonomous landing

of UAVs demands near-perfect system operation, requiring a combination of highly accurate sensing,

guidance, and control techniques.

The specific definition of a landing problem depends on the parameters such as the type of vehicle,

assumptions made in the problem design, available resources, techniques, and the applicability of the

problem to real world situations. In the context of this report, the particular type of landing problem

considered is ship landing a hybrid drone (VSQP).

4.1.1. Landing on a ship
The use of UAVs in maritime operations has become increasingly common, including oceanographic

data collection and search and rescue missions. This is because the characteristics of UAVs have a

significant contribution to the operational efficiency and effectiveness, offering unique capabilities such

as advanced surveillance, real-time data collection, and the ability to operate in remote and hazardous

locations. However, UAVs are limited in range to operate in highly dangerous sea-environments, making

the recovery of the UAV on the ship deck a necessity [2].

Landing a UAV on a ship involves several phases, each requiring precise tracking and control. Figure

4.1 illustrates the landing on a ship in terms of both drone and ship dynamics, along with the four

21

4.2. Challenges in Autonomous Landing 222 S. Abujoub et al. / Aerospace Science and Technology 106 (2020) 106169

Fig. 1. Recovery phases of a UAV tracking, high hover, low hover and final descent. The various coordinate frames and motions are also illustrated.

platform capability, interoperability [9], between UAVs and ships
without specialised hardware or systems.

The trend to land UAVs are with the aid of vision systems [10–
18] or tethered systems [8,19–22]. With respect to interoperabil-
ity, a potential limiting factor of vision systems is that they often
require specific geometry, objects or markers on the ship [18]. Ad-
ditionally, vision systems often require a supplementary system
when operating in the night, fog or other inclement weather con-
ditions [23]. To alleviate some of the risk during heavy weather,
tethered systems could be used. However, tethers generally require
specialised ship hardware [22] and could limit interoperability.

The current work proposes three new landing methodologies
for autonomous UAVs to land on a moving vessel without addi-
tional ship hardware, ground crew, a tether or a vision system;
thus promoting interoperability. In the current work, all of required
sensory equipment is aboard the UAV. The methods address the fi-
nal descent of the UAV, while other techniques [6,7] could be used
for flight dynamics, tracking and homing of the UAV’s mission. The
new methodologies can be used in conjunction with each other
to enhance the performance and reliability. The proposed methods
are tested within simulation using a small autonomous quadcopter
UAV and, as a benchmark, compared against a basic controller
for landing. The methods are independent of the specific UAV
and can be applied to various vertical landing aircrafts. The flight
controllers are linear Proportional-Integral-Derivative controllers as
they “have shown adequate performance” [7].

The presented work provides a basis of laboratory and scale
testing of the new landing methodologies. As the current work
is simulation based it is difficult to emulate and provide a com-
parison to defacto vision systems and a comparison could lead to
misinterpretations. It has been mentioned that ship landings are
an “unsolved problem” [8] so is unwise to make “state-of-the-art”
claims to other marine landing methods for a comparison study.
Therefore, to compare and contrast the current work, a simple
feedback landing system is used which other researchers can use
as a benchmark.

In the following section a summary of past related work is
presented followed by a description of the UAV and ship used
throughout this work. The details of the new proposed landing
methodologies are described in Section 4. Additionally, within Sec-
tion 4 there is a small comparative discussion of their relative
performance. Section 5 presents the results of a case study per-
formed in simulation and the methodologies are ranked and show
an improvement when compared to the benchmark feedback land-
ing system. The paper concludes with some final remarks and
future avenues of work.

2. Background

Many researchers have examined various aspects of the ship
tracking and landing process of UAVs. Focusing on ship tracking,

Arora et al. [14] found success by using Light Detection and Rang-
ing (LIDAR) and camera based control to track a helicopter to a
ship without secondary deck mounted infrastructure; however, the
landing deck geometry and markings are known. Sanchez et al.
[13] suggest that using a downward facing camera with a state
estimator could be used to track ship motion for autonomous land-
ing. Oh et al. [20,21] propose using a tether between a helicopter
and ship to assist with landing; however, unlike the Recovery,
Assist, Secure and Traverse (RAST) system [22], the tether angle
would be used to find the relative orientation between the heli-
copter and ship to facilitate the ship deck tracking.

Not focusing on landing specifically, Razmi and Afshinfar [24]
developed a neural network based control system for position and
attitude tracking control of a UAV. Focusing on the landing, Gar-
ratt and Anavatti [25] used a neural network controller to produce
heave trajectories for a UAV. Similarly, Moriarty et al. [16] suggest
using a stereo camera to track a ship’s landing zone and a neu-
ral network to predict opportune landing windows. Hervas et al.
[26] developed a landing control algorithm for unmanned vehi-
cles on moving platforms that controlled the landing based solely
on the relative heave motion between UAV and ship deck. While
their simulations showed the algorithm was effective, the algo-
rithm did not discriminate between safe landing times nor provide
a method for tracking the ship trajectory. Ngo and Sultan [27]
presented a model predictive control (MPC) design for helicopter
shipboard operations in the presence of ship air wakes and rough
seas. While the MPC method proved to be feasible in simulations,
the researchers did not address the issue of the compatibility of
their control method to other helicopter-ship combinations other
than that which was simulated. Xia et al. [28] proposed a mission
planning technique that focuses on the approaching and landing
stage. In their simulation results, the UAV lands near or close to
the centre-of-gravity where the roll and pitch motions are mini-
mal, while in practice most landings occur at the aft of a marine
vessel. Additionally, their simulations assume that the UAV has
access to the ship’s motion information through a direct communi-
cation and measurement system, which could be a hinderance to
interoperability. Huang et al. [29] developed a fixed-time landing
controller, which was examined within simulation for a sea state 2
and 6. Their simulation work did yield promising results; however,
the work did not provide insight into appropriate landing oppor-
tunities as for their work the ship motions reported primarily fell
within the common safe operating limits [4,5].

Examining ship motion, Ferrier et al. [30] used an Energy Index
(EI) to predict quiescent periods of a vessel’s motion such that

E I = a1 ẇ2 + a2 ẅ2+a3 j̇2 + a4 j̈2

+ a5 ṗ2 + a6 p̈2 + a7q̇2 + a8q̈2,
(1)

where ai are weighted dynamic coefficients, w is heave, j is sway,
p is roll, and q is pitch, while the dot notation indicates the first

Figure 4.1: Recovery phases of a ship landing [2]

phases, tracking, high hover, low hover, and final descent [2]. Understanding the necessity of these

phases is critical for a safe and successful landing.

The first phase, known as the tracking or homing phase, involves the UAV approaching the ship at its

cruise altitude. In this phase, the UAV maintains its altitude while homing in on the vessel to ensure that

it is on the correct path toward the landing area. As it gets closer to the ship, it transitions to the high

hover phase. During this stage, the UAV reduces its altitude to a position clear of the ship’s structures

while still hovering above the deck. This phase acts as a preparatory stage, where final adjustments are

made to ensure the UAV is correctly aligned and ready for descent.

Once the UAV is positioned itself correctly in the high hover phase, it can move into the other:

low hover phase. Here, the UAV shows a similar behaviour response to the previous phase while

maintaining a safe distance from the ship. This phase is important since the UAV must ready in terms of

orientation and height for the final landing preparations. The final phase, where the UAV makes the last

descent, accounts for the duration of controlled landing on the deck of the ship.

The UAV must be able to navigate through all these phases while correcting its position and orientation

against the dynamic and unpredictable maritime environment. Especially the continuously changing

ship dynamics (e.g., ship pitch and roll angles) and sudden waves turn the standard autonomous

landing into an extremely complex problem. The complexity of ship landing requires highly advanced

flight guidance and control systems onboard, allowing the UAV to make real-time decisions regarding

the flight phases.

4.2. Challenges in Autonomous Landing
The major challenges involved with autonomous landing can summarized as obtaining accurate

measurements or close-to-optimal estimates of the landing platform and the UAV, as well as achieving

trajectory following that is robust to the presence of disturbances and uncertainties [14].

Going into further detail, these two challenges are connected to the following characteristics of

autonomous landing:

• Real-time massive information processing: Autonomous landing requires considering the

interaction between the environment and the UAV, including detecting the target and computing

the relative states of the UAV even in complex scenarios such as moving platforms.

• Limited onboard resources As previously mentioned, the necessary computing power is high,

specifically for vision-oriented algorithms due to the time required for image processing. Thus,

the limited capacity of available resources adds another layer of complexity.

• High manoeuvrability of UAV platforms: UAVs, especially rotary-wing types, have high maneu-

vering capability, which requires obtaining fast and accurate feedback of the state information.

• Limited image processing algorithms: Vision based systems rely on traditional image processing

algorithms for target tracking. However, different scenarios require different designs, making

4.3. Key phases in autonomous landing 23

it challenging to transition from one scenario to another, especially in terms of stability and

robustness.

• Dynamic scenes: Dynamic scenes introduce a unique set of challenges to the autonomous landing

problem. The motion of the platform requires more advanced navigation and control systems

capable of reacting not only to the UAV but also to the platform itself. Although techniques

used in static scenes still apply to dynamic ones, they often need some level of adaptation to

cope with the newly added dynamics. For instance, current target detection and recognition

algorithms struggle with recognizing the moving platform, thus needing cooperative targets

having distinctive features.

4.2.1. Challenges specific to ship landing problems
The autonomous landing problem of UAVs on a ship is a highly complex engineering issue [33].

Compared to land-based UAV operations, the sea environment introduces challenges that extend beyond

these encountered during typical UAV operations. That is because the maritime environment lacks

necessary landmarks and space for landing [60], complicating the overall problem further.

The challenges specific to ship landing can be broadly categorized into the dynamic operational

environment, guidance and navigation difficulties, and technical requirements and hardware limitations.

Dynamic Operational Environment
The dynamic nature of the sea environment is one of the significant challenges of ship landing. Ships

are subject to continuously changing, hard-to-predict waves, creating motions such as rolling, pitching

and heaving. These continuous external effects not only complicate the ship motion but also the relative

motion of the drone with respect to the ship. With the risk of the UAV falling into the sea in case of

a system failure, maintaining a stable trajectory during the UAV’s approach and landing sequences

becomes extremely challenging.

Guidance and Navigation Difficulties
Guidance and navigation are particularly challenging in maritime environments. Unlike land-based

operations, the sea environment does not provide static reference commands for precise positioning and

navigation. For instance, vision based systems struggle in adverse conditions such as fog, rain or night

operations. These systems often require specific markers or objects for a successful landing, which may

not be always feasible. Additionally, unpredictable dynamics of the sea necessitates advanced real-time

processing and decision making capabilities.

Technical Requirements and Hardware Limitations
To process real-time data, respond to rapid changes in environment, and make quick decisions, UAVs

must be equipped with advanced sensors along with robust and sophisticated algorithms. While there

is a need for autonomous landing technology, it is also important that the hardware is not specialized

only for a certain vehicle type of operation, ensuring flexibility across different platforms. This indicates

that the mission mostly relies on the UAV’s onboard systems which must be highly reliable and capable

of operating under various environmental conditions. Additionally, the limited space on a ship’s deck

adds another layer of complexity, leaving the recycling of UAVs as an open discussion point, still.

4.3. Key phases in autonomous landing
Autonomous landing consists of multi sub-phases to achieve a successful operation. The key phases in

autonomous landing are target detection, relative state estimation, and finally, tracking and landing.

The first phase, the target detection, aims to identify the landing target. Depending on the mission,

the target could be a landing pad, a moving vehicle, or a natural landmark. Vision-based system are

commonly used in the detection process. Once the target is detected, the next step involves estimating

the relative state of the UAV with respect to the target. The second phase, relative state estimation, involves

determining the position, velocity, and orientation of the UAV relative to the target. This process is

crucial in steering the UAV towards the target. It often uses the Global Positioning System (GPS) in

combination with the Inertial Navigation System (INS) via state estimation techniques such as Kalman

filters or algorithms for target localization [14]. The final phase, tracking and landing, focuses on closely

tracking the target and finding a position to execute the landing maneuver. This is achieved by the

vehicle’s guidance and control scheme, which generates the required control inputs.

4.3. Key phases in autonomous landing 24

A generic diagram showing the main features of an autonomous landing system is shown in Figure

4.2.Following the key phases in landing, the system typically includes four blocks: sensors/navigation

system, guidance and flight controller, and the UAV to be controlled. Sensors/navigation block is

responsible of providing the state information of the UAV either via state estimation techniques through

sensor fusion or extracting features using vision-based techniques. Combining the sensory input

with the desired trajectory, guidance system produces the commands for the controller, which are

the corresponding required changes in state variables. Finally, the controller computes the necessary

increments in control surfaces. This diagram includes the common techniques used for achieving the

given sub-landing tasks, which will be explained in more detail in the following sections.

GPS
INS

Vision
Optic Flow

Linear Control
Nonlinear Control

Hybrid Control
Robust Control

Intelligent Control

Quadrotor
Fixed Wing UAV

Hybrid UAV

Pure Pursuit
Pseudo Pursuit

Time to go polynomial guidance law
Proportional Navigation guidance law

Desired Trajectory

Sensor/Navigation System

Flight ControllerGuidance Controller UAV

Figure 4.2: A generic landing control diagram (adapted from [18])

4.3.1. Target Detection
Target detection is a crucial phase in the autonomous landing process. It involves identifying the

landing target so that the extracted information can be used for the subsequent steps of the landing. The

detection process is often achieved by the use of vision based system, the details of which are provided

in the following section.

Vision Based Systems
Vision based systems are commonly found in autonomous landing systems due to the characteristics

such as strong autonomy, low cost, and anti-interference [66]. Especially the problems in which the exact

location of the platform is either unknown or involves random movement (e.g., ship landings) require an

algorithm based on computer vision. Moreover, in naval operations, vision-based algorithms enhance

target detection without compromising security, as ships may not want to take a risk of jeopardizing its

security by informing the UAV about its position.

Vision-based target detection involves different feature extraction techniques. These techniques

analyse visual data to identify and track the landing target. This information is crucial for the guidance

and control structure of the UAV, since the UAV positions itself relative the landing target based on this

real-time information. Feature extraction is achieved by the use of sensory systems, which can be either

active or passive. One of the most commonly used sensors in these systems is the infrared camera, a

passive sensor detecting and measuring radiation naturally emitted by the landing target [67]. This

makes them an obvious choice as they do not rely on visible light and can operate in various weather

conditions. Similarly to the infrared cameras, other sensors like ultrawideband radar and lidar can also

4.3. Key phases in autonomous landing 25

be used in vision based systems. When combined with infrared cameras, these sensors improve the

accuracy and reliability of the target detection process [53].

Xin et al. [66] classified the landing problem into three categories based on the characteristics of

the target: static, dynamic, and complex scenes. Within static scenes, cooperative targets and natural

scenarios are considered. Dynamic scenes are examined in terms of vehicle and ship based systems and

lastly, complex scenes involve the consisted selections of safe landing areas for UAVs. The classification

of UAV autonomous landing based on the target area is shown in Figure 4.3.

Aerospace 2022, 9, 634 2 of 20

(3) High maneuverability of UAV platforms:

The high maneuverability of the UAV itself brings higher requirements to the control
system, which means it is necessary to give more rapid and accurate feedback results for
the pose estimation and motion state.

(4) Limitations of traditional image processing algorithms:

At present, the target detection algorithms carried on UAV embedded systems are
basically based on traditional image processing algorithms. Usually, different detection
icons need to be designed in different scenarios. The detection algorithm is limited by
specific geometric icons, so different detection icons need to be designed. According to the
situation above, it is difficult to easily migrate the feature extraction algorithm from one
scenario to another, so the stability and robustness need to be improved.

In recent years, research and literatures on the autonomous landing of UAVs continue
to emerge. Among them, scholars have reviewed general target detection, UAV target
detection, UAV autonomous landing, etc. However, the existing literature only briefly
describe various methods, lacking a systematic classification and summary of application
scenarios [2–4], and there are few studies on autonomous landing of UAVs in complex
scenes. In order to further promote the research in the field of UAV autonomous landing,
combine the existing algorithms to prepare for the future research work on autonomous
landing in complex scenes, it is necessary to sort out and analyze the existing results.

After studying the existing achievements, this paper innovatively classifies the au-
tonomous landing of UAVs based on vision into static scenes, dynamic scenes and complex
scenes. According to the different detection targets, static scenes are divided into coop-
erative target based and natural scenario based. According to the carrier of the moving
platform, the dynamic scene is divided into vehicle-based and ship-based. Complex scenes
include the selection of safe landing areas for UAVs, vision-based multi-sensor fusion, etc.
Figure 1 provides autonomous landing classification of this paper. Finally, we summarize
the problems to be solved of the existing achievements in the field, provide solutions and
discuss the future development direction.

Aerospace 2022, 9, x FOR PEER REVIEW 2 of 20

(3) High maneuverability of UAV platforms
The high maneuverability of the UAV itself brings higher requirements to the control

system, which means it is necessary to give more rapid and accurate feedback results for
the pose estimation and motion state.
(4) Limitations of traditional image processing algorithms:

At present, the target detection algorithms carried on UAV embedded systems are
basically based on traditional image processing algorithms. Usually, different detection
icons need to be designed in different scenarios. The detection algorithm is limited by
specific geometric icons, so different detection icons need to be designed. According to
the situation above, it is difficult to easily migrate the feature extraction algorithm from
one scenario to another, so the stability and robustness need to be improved.

In recent years, research and literatures on the autonomous landing of UAVs con-
tinue to emerge. Among them, scholars have reviewed general target detection, UAV tar-
get detection, UAV autonomous landing, etc. However, the existing literature only briefly
describe various methods, lacking a systematic classification and summary of application
scenarios [2–4], and there are few studies on autonomous landing of UAVs in complex
scenes. In order to further promote the research in the field of UAV autonomous landing,
combine the existing algorithms to prepare for the future research work on autonomous
landing in complex scenes, it is necessary to sort out and analyze the existing results.

After studying the existing achievements, this paper innovatively classifies the au-
tonomous landing of UAVs based on vision into static scenes, dynamic scenes and com-
plex scenes. According to the different detection targets, static scenes are divided into co-
operative target based and natural scenario based. According to the carrier of the moving
platform, the dynamic scene is divided into vehicle-based and ship-based. Complex
scenes include the selection of safe landing areas for UAVs, vision-based multi-sensor fu-
sion, etc. Figure 1 provides autonomous landing classification of this paper. Finally, we
summarize the problems to be solved of the existing achievements in the field, provide
solutions and discuss the future development direction.

Figure 1. UAV autonomous landing classification.

The rest of the paper is organized as follows. In Section 2, we discuss UAV autono-
mous landings in static scenes. UAV autonomous landings in complex scenes are ex-
pounded in Section 3. In Section 4, UAVs landing in dynamic scenes are provided corre-
spondingly. Section 5 involves the problems to be solved, the future development and
gives workable solutions.

Figure 1. UAV autonomous landing classification.

The rest of the paper is organized as follows. In Section 2, we discuss UAV autonomous
landings in static scenes. UAV autonomous landings in complex scenes are expounded
in Section 3. In Section 4, UAVs landing in dynamic scenes are provided correspond-
ingly. Section 5 involves the problems to be solved, the future development and gives
workable solutions.

Figure 4.3: Autonomous landing classification for vision based systems [66]

Vision methodologies for target detection
In this section, the main vision methodologies for both static and dynamic scenes are discussed by

providing an overview of cooperative targets, classical feature based solutions, machine learning based

approaches, and natural scenario based autonomous landing techniques.

• Cooperative Targets based solutions: In these solutions, artificial markers are used to help the

UAV orient itself for landing by identifying specific features. Different shapes like "T", "H", circular

markers are used based on the problem definition. However, some landmarks are unsuitable for

placing those such markers, making it highly challenging to land using these methods.

• Classical Feature-Based Solutions Feature based solutions involve artificial markets of which

their design is solely on geometric patterns. Similar to cooperative targets based solutions, various

shapes are used for target detection and UAV attitude estimation. However, these methods some

limitations, such as the dependence on the quality of the visual markers, which are easily affected

by noise and other environmental conditions.

• Machine Learning-Based Solutions Machine learning techniques focus on increasing the adapt-

ability and robustness of the solutions beyond what traditional techniques propose. Most common

machine learning techniques include classifier based methods, like Support Vector Machine (SVM),

deep learning approaches such as convolutional neural networks for the purposes of enhancing

the target detection and landing performance in various scenarios.

• Natural Scenario Based Autonomous Landing Unlike the previously mentioned techniques, the

natural scenario based method does not rely on markers. It is particularly useful in situations

like rescue missions where the UAV needs to operate without prior setup. This involves scene

matching and 3D reconstruction via sensor and Simultaneous Localization and Mapping (SLAM)

technology.

4.3. Key phases in autonomous landing 26

4.3.2. Relative state estimation
GPS-INS Systems
Autonomous landing of UAVs requires the accurate measurement of the state parameters of both the

drone and the landing site to obtain relative position and attitude. The key technologies used in this

process involve a combination of various sensors and navigation techniques. The Global Positioning

System (GPS) and Inertial Navigation System (INS) are two of the most common techniques used as

part of a sensor navigation system. During the autonomous landing of UAVs, the INS provides a set

of navigation parameters, including position, velocity, and attitude [64] at a high rate of transmission.

Although GPS transmits data at a slower rate, providing more accurate sensory information regarding the

geological and time data. As both systems are essential elements of the sensory navigation system, they

are often used together through various sensor estimation techniques. Combining the characteristics of

both systems to obtain highly accurate data is crucial for making the necessary adjustments for a precise

landing.

4.3.3. Tracking and Landing
Tracking the target closely and searching for a point to execute the landing manoeuvre are the final steps

for achieving a successfully landing procedure. This final phase is accomplished with an advanced

guidance and control scheme. Various guidance and control techniques have been applied to landing

problems in the literature, ranging from simple PID controllers to advanced learning based adaptive

approaches. While the classical techniques and how they are used for the landing will not be given in

this section, the limitations that create a strong need for learning based approaches will be discussed in

detail.

Addressing the limitations of classical techniques in autonomous landing
Classical techniques for autonomous landing have mostly relied on Proportional Integral Derivative (PID),

robust flight, and model predictive controllers. While these methods have their specific contribution to

the problem, each have certain limitations which may cause them to fail in specific situations.

PID controllers have been a simple yet efficient choice for landing problems in many studies.

Although they are widely used, they face many challenges. One significant challenge the need for

manual tuning of its parameters [68, 65]. In the context of UAV landing, the parameters of PID controllers

need to be tuned to operate effectively in highly dynamic environments. A PID controller with fixed

gains may not respond well to external, nonlinear dynamic disturbances, which are highly common in

especially maritime operations. To address the challenges, recent studies have proposed to use machine

learning techniques such as a reinforcement learning. This approach allows the controller to adapt to

autonomously adapt to various scenarios. This combination of PID controllers with deep reinforcement

learning has shown great promise in improving landing performance.

More advanced techniques such as Model Predictive Controllers (MPCs) and Robust Flight Control

techniques are also commonly used for autonomous landing of UAVs. Compared to PID controllers,

MPC offers additional advantages, such as the ability to predict and calculate the landing trajectory

in advance [14]. This planning process continues until the UAV gets very close to the platform, at

which point the sampling time decreases, leading to re-planning at high frequency. While being

computationally expensive, this high frequency results leads to high accuracy trajectory planning. MPC

can also be used in conjunction with other controllers, such as Incremental Nonlinear Dynamic Inversion

(INDI) [23], to improve robustness against external disturbances. Robust flight controllers, such as fuzzy

logic, H2 and Hinf, are also common methods for autonomous landing. These controllers can adapt to

varying environmental conditions, making them suitable for a wide range of applications.

However, both methods have struggles with the models used for the problem. While MPC relies

on high-fidelity models that may not be always available, robust techniques face issues with model

uncertainties. Additionally, both methods, especially MPC, are computationally expensive. MPC

generally tries to solve a generic, possibly non-convex, nonlinear program which can lead to numerical

issues [41]. Furthermore, due to the complex nature of the landing process, it may be slow and

extremely power-consuming. These limitations highlight the need for more efficient and adaptive

control techniques for autonomous landing.

4.4. Conclusion and Discussion 27

4.4. Conclusion and Discussion
This chapter has provided an in-depth exploration of the autonomous landing problem for UAVs,

particularly focusing on the unique challenges and requirements of ship landing scenarios. By addressing

the first set of research questions, RQ-AL, a comprehensive understanding of the nature of autonomous

landing and a motivation adopting advanced, learning-based solutions have been established.

To summarize the key points discussed in the chapter, the key phases and challenges in autonomous

landing and the limitations of classical techniques are given in Table 4.1, 4.2, and 4.3.

Table 4.1: Key Phases in Autonomous Landing

Phase Description

Target Detection Identifying the landing target using vision-based

systems.

Relative State Estimation Determining the UAV’s position, velocity, and orien-

tation relative to the target using GPS-INS systems.

Tracking and Landing
Closely tracking the target and executing the landing

maneuver through advanced guidance and control

schemes.

Table 4.2: Challenges in Autonomous Landing

Challenge Description

Real-time Massive Information
Processing

Handling large amounts of data in real-time, con-

sidering the interaction between the UAV and its

environment.

Limited Onboard Resources High computing power required for vision-oriented

algorithms and limited onboard resources.

High Maneuverability of UAV
Platforms

Fast and accurate feedback of state information re-

quired due to high maneuvering capability of rotary-

wing UAVs.

Limited Image Processing Algo-
rithms

Traditional algorithms face challenges in adapting

to different scenarios, impacting stability and robust-

ness.

Dynamic Scenes Advanced navigation and control systems needed to

react to both the UAV and the moving platform.

Table 4.3: Limitations of Classical Techniques

Technique Limitations

PID Controllers Requires manual tuning of parameters and struggles

with nonlinear disturbances.

Model Predictive Controllers Computationally expensive, relies on high-fidelity

models, and can lead to numerical issues.

Robust Flight Controllers Faces challenges with model uncertainties and high

computational costs.

This comprehensive overview provides a solid foundation for the subsequent chapters, which will

dive into the implementation and evaluation of learning based solutions for the autonomous landing of

UAVs.

5
Machine Learning for Optimal

Guidance

The application of machine learning in UAV operations has been transformative as UAVs become more

commonly used in various areas, from environmental monitoring to military operations, necessitating

more sophisticated adaptive guidance and control techniques.

Machine learning techniques offer promising solutions to address the existing challenges of the

autonomous landing problem and shortcomings of the traditional techniques, as detailed in Chapter 4.

In line with the given research questions RQ -ML, this chapter aims to discuss the machine learning

techniques in the context of optimal control and guidance problems. The discussion begins with

an overview of optimal control theory, specifically for defining the role of objective functions and

corresponding optimal inputs. This is followed by an in-depth look at different machine learning

techniques, including supervised learning, unsupervised learning, and reinforcement learning. Each

method’s specifics and potential applications in UAV operations are examined, highlighting their

strengths and limitations.

A significant portion of this chapter is dedicated to reinforcement learning due to its ability to

learn optimal policies through interactions with the environment (trial and error) while being highly

adaptive and robust at the same time. This makes reinforcement learning an effective solution, as

these abilities are critical during ship landing under extreme conditions. Within the chapter, the

state-of-the-art techniques of reinforcement learning for landing problems are discussed in detail, and

real life applications where reinforcement learning outperforms the classical methods are provided.

5.1. Optimal Control Theory
Classical control systems make use of several methods to determine the namely "acceptable system"

through a trial and error process. The performance of this system is judged by parameters such as rise

time, settling time, peak overshoot, gain and phase margin, and bandwidth. However, as these systems

are constrained by the requirements (ex. min fuel) of the real world classical control techniques often

fall short. Optimal control theory as a more direct approach to such complex problems has been made

feasible with the development of digital computers. The main objective of optimal control theory is

defined as a process to satisfy these physical constrains while minimizing (or maximizing) some kind of

performance criteria [34].

5.1.1. Formulation of the optimal control problem
Optimal control problems can be formulated in different ways depending on the system’s equations,

objectives, and constraints.

Consider the following dynamical system:

¤x(𝑡) = f(x(𝑡), u(𝑡)) (5.1)

where x ∈ 𝑅𝑛 is the state vector and u is the control vector.

28

5.2. Solving Continuous Optimal Control Problems 29

In optimal control, the purpose is to find the "admissible control" inputs that satisfy the constraints

during the entire time interval. To find the state-control trajectory {x(𝑡), u(𝑡) : 0 ≤ 𝑡 ≤ 𝑇}, the general

optimal control formulation could be defined as follows:

minimize

u(t),𝑇
𝐽(x(𝑡), u(𝑡), 𝑇)

subject to ¤x(𝑡) = f(x(𝑡), u(𝑡)) ∀𝑡 ,
x(0) = x𝑜
x(𝑇) = x 𝑓

(5.2)

where x𝑜 is the initial state, x 𝑓 is the target state, 𝐽 is the objective function determining the path cost

and 𝑇 is the total trajectory time. Objective functions are defined based on the selected performance

measures which are limited by the system and environment.

The value function that represents the minimal cost to reach the goal location for the cases where the

final time 𝑇 is left free is defined as

𝑣 (x0) = min

u
𝐽(x(𝑡), u(𝑡)) (5.3)

Note that the finite horizon control problem carries characteristics similar to an infinite horizon

problem. The value function 5.3 can be introduced as the solution to the partial differential equation

[52]:

min

u
{ℒ(x, u) + f(x, u) · ∇x𝑣(x)} = 0 (5.4)

which is subject to the boundary conditions 𝑣 (x𝑡) = ℎ
(
x
(
𝑡 𝑓
))
, ∀x𝑡 ∈ 𝒮. The optimal control policy

is then defined as:

u∗(x) = argminu {ℒ(x, u) + f(x, u) · ∇x𝑣(x)} (5.5)

Equations 5.4 and 5.5 represent the Hamilton-Jacobi-Bellman (HJB) equations for the free time,

deterministic, optimal control problem. These equations are important as they indicate the uniqueness

of an optimal state-feedback 𝑢∗(𝑥).

5.2. Solving Continuous Optimal Control Problems
Solving an optimal control problem is the determination of a policy that satisfies a certain objective.

The main methods to solve specifically continuous optimal control problems are given in the diagram

shown in Figure 5.1.

CONTINOUS TIME OPTIMAL CONTROL PROBLEM

Indirect Method
Pontryagin Minimum Principle

Two Point Boundary Value Problem

Dynamic Programming
Hamilton-Jacobi-Belman Equation

Direct Method
Transformation into Nonlinear

Programming

PDE

Differential Dynamic Programming

Dynamic Programming

Single Shooting Method

Finite Discretization or Collocation

Multiple Shooting

Direct Single Shooting Method

Direct Collocation

Direct Multiple Shooting

Figure 5.1: Classification of methods for continuous time optimal control problems

5.2. Solving Continuous Optimal Control Problems 30

These methods are used based on the specific requirements of the problem such as the dynamics

involved, the presence of uncertainty, and the computing resources available. In this section, only

numerical methods are considered since they stand out with their efficiency, applicability and flexibility

to the real-world applications when dealing with continuous time optimal control problems.

5.2.1. Numerical Methods for Optimal Control Problems
Optimal control problems are often quite complex, nonlinear problems for which coming up with an

analytic solution is not straightforward or possible at all. Numerical methods, on the other hand, can

efficiently handle the the complexity and nonlinearity of such problems and find approximate solutions.

With the use of advanced technology, they can be used for solving a wide range of problems that were

previously too computationally intensive to solve.

Numerical methods incorporate a certain type of iteration process with a finite set of unknowns

[7] for solving optimal control problems. The common numerical techniques with the corresponding

application areas are given in the following.

Direct Shooting
Direct shooting method is mostly used for launch vehicle and orbit transfer applications as these

problems could be parameterized with a relatively small number of NLP variables. The programs

namely POST and GST both make use of direct shooting technique. Earyl versions of POST utilized a

reduced gradient optimization algorithm whereas recent releases have implemented the Sequential

Quadratic Programming (SQP) method. GST on the other hand, uses a modified form of the reduced

gradient algorithm that incorporates quasi-Newton updates for constraint elimination and Hessian

approximation [9].

Indirect shooting
Indirect shooting is another numerical technique that transforms the original problem into a Two-Point

Boundary-Value Problem (TPBVP) based on Pontryagin’s maximum principle. However, it focuses on

special cases (ex. launch vehicle trajectory design) due to the sensitivity of this method to the initial

guess. As an example, The DUKSUP program [57] uses this technique to solve high thrust launch

vehicle trajectory design and optimization problem.

Multiple Shooting
Direct and indirect shooting methods both suffer from small variations that are made early in the

trajectory and propagate into nonlinear changes at the end of the trajectory. To overcome this issue,

multiple shooting is introduced to solve two point boundary problems. Multiple shooting divides the

trajectory into several pieces to enhance the robustness of the solution. Additionally, different phases

could be run on individual process. This method is mostly used for examples with high difficulties such

optimal interplanetary orbit transfer planning or landing in the presence of wind shear [8].

Direct Transcription
Direct methods could be used without deriving the necessary conditions such as adjoint, transversality,

and maximum principle. On top of this, these method do not require an prior specification of the arc

sequence for problems with path inequalities.

5.2. Solving Continuous Optimal Control Problems 31

5.2.2. Optimal control applied to landing problems
Optimal control techniques, particularly numerical methods, have been used to address the landing

problems. In this section, optimal control for landing is only examined in terms of the resultant control

profiles and associated objective functions for specific landing problems.

In [51], Sanchez and Izzo builds on their previous work where they have used direct methods and

failed to address complex problems such as pinpoint and thrust vector landing. Since direct methods

caused numerical instabilities in the solution, the optimal solutions were obtained with indirect methods

instead. In their work, they have considered different type of landing problems which are classified

based on the dynamic models including a quadcopter, simple spacecraft, reaction wheel spacecraft and

thrust vectoring rocket. The details of the models and the corresponding optimal control profiles is

given in Table 5.1 and in Figure 5.6.

Time optimal control (TOC) and quadratic control (QC) are considered for the quadcopter models

and mass optimal control (MOC) and quadratic control are considered for the spacecraft models.

Table 5.1: The considered models and corresponding optimal control problems

Model 𝑛x 𝑢1 𝑢2

Variable

mass

g Optimization

problems

Quadcopter (QUAD) 5 N rad/s No Earth TOC, QC

Simple Sc. (SSC) 4 N rad Yes Moon MOC, QC

Reaction Wheel Sc. (RWSC) 5 N rad/s Yes Moon MOC, QC

Thrust Vectoring Rocket (TVR) 6 N rad Yes Moon MOC, QC

Table 1 The four considered models at a glance.

Model nx u1 u2

Variable
mass g

Optimization
problems

Quadcopter (QUAD) 5 N rad/s No Earth TOC, QC

Simple Sc. (SSC) 4 N rad Yes Moon MOC, QC

Reaction Wheel Sc. (RWSC) 5 N rad/s Yes Moon MOC, QC

Thrust Vectoring Rocket (TVR) 6 N rad Yes Moon MOC, QC

QC: Quadratic control, TOC: Time-Optimal control, MOC: Mass-Optimal control.

nx: length of the state vector x

lmin

lmax

c 1
u

1
[N

]

QUAD

t [s]
lmin

0

lmax

c 3
u

2
[ra

d/
s]

lmin

lmax

c 1
u

1
[N

]

SSC

t [s]
lmin

0

lmax

u
2

[ra
d]

lmin

lmax

c 1
u

1
[N

]

RWSC

t [s]
lmin

0

lmax

c 3
u

2
[ra

d/
s]

lmin

lmax

c 1
u

1
[N

]

TVR

t [s]
lmin

0

lmax

u
2

[ra
d/

s]

QC TOC MOC

Fig. 1 Optimal control profiles of the models and objective functions here considered.

model and mass optimal control (MOC) and quadratic control for the spacecraft models. The

resulting set of test cases represent different classes of control profiles, as illustrated in Fig. 1,

including continuous control, discontinuous control, bang-off-bang control and saturated control. A

summary of the models’ characteristics is shown in Table 1.

In the following subsections the details of each of the models considered are described and Pon-

tryagin Maximum principle is used to derive the corresponding two point boundary value problem

(TPBVP). If values for the initial values of the co-states and for the final time tf are found so that

the dynamics and boundary conditions are satisfied as well as the additional condition H(tf) = 0

(a free time problem is considered), the corresponding control along the trajectory is assumed to be

optimal and is used to create a number of optimal state-action pairs used for training the DNNs.

7

Figure 5.2: Optimal control profiles for different models and objective functions considered [52]

Figure 5.6 illustrates different control profiles including continuous control, discontinous control,

bang-off-bang control and saturated control.

Sanchez et at all. distinguishes between different optimal control problems through the parameters

in the cost function. For the quadcopter, the following cost function is given:

𝐽 = (1 − 𝛼)
∫ 𝑡 𝑓

0

(
𝛾1𝑐

2

1
𝑢2

1
+ 𝛾2𝑐

2

2
𝑢2

2

)
𝑑𝑡 + 𝛼

∫ 𝑡 𝑓

0

𝑑𝑡 (5.6)

where 𝑢1 and 𝑢2 are the control and 𝛼 is the continuation parameter. The parameter 𝛼 lies in the

range of ∈ [0, 1] and defines the transition between quadratic optimal control problem (QC), 𝛼 = 0

and a time optimal control problem (TOC), 𝛼 = 1. Similarly, the same 𝛼 parameter is used to make

the transition between a quadratic optimal control problem (QC) and a mass optimal control problem

(MOC) for a spacecraft model via the following cost function:

5.3. Machine Learning 32

𝐽 =
1

𝑐2

[
(1 − 𝛼)

∫ 𝑡 𝑓

0

𝛾1𝑐
2

1
𝑢2

1
𝑑𝑡 + 𝛼

∫ 𝑡 𝑓

0

𝑐1𝑢1𝑑𝑡

]
(5.7)

In previous studies that considered the optimal control problem for drone racing [16] where the

requirement is to finish the racing by passing through some obstacles, the trade-off is mostly done

between energy and time optimality. Considering the given cost functions in Eq. 5.6 and Eq. 5.7 and

generalizing them to this case, the example cost function that covers both situations in that case is given

as follows:

𝐽 = (1 − 𝜖)𝑇 + 𝜖

∫ 𝑇

0

∥u(𝑡)∥2𝑑𝑡 (5.8)

Here, the objective function is weighted by using the hybridization parameter 𝜖 with 𝜖 = 1

corresponds to energy optimal flight and 𝜖 = 0 corresponds to time optimal flight.

The choice of a good objective function is highly critical not only in optimal control problems but

also in machine learning. In the context of optimal control, the objective function helps define the

desired outcomes and be the determining factor for computing optimal control inputs. The accuracy

and stability of control profiles that are generated are directly influenced by how well the objective

function is designed for the problem. A poorly chosen objective can lead to sub-optimal or even unstable

control operation which is a risk that cannot be taken in applications such as autonomous landing.

5.3. Machine Learning
Machine learning, particularly its field of deep learning, has extended to be used for guidance and control

problems traditionally dominated by classical control techniques. These traditional techniques, while

effective, of have their limitations in terms of model precision, disturbance rejection, and computational

cost [46]. Since the pioneering work of Ivakhenko [30], which demonstrated the capabilities of multi-layer

neural networks, machine learning has evolved to address these limitations.

The advantage of machine learning in optimal control comes from its ability to approximate and

learn nonlinear functions and handle large datasets without explicitly considering or programming

every possible outcome. This is particularly useful in control problems where a wide rang of initial

conditions and external disturbances must be considered [52].

Machine learning techniques can be categorized into three groups: supervised learning, unsupervised

learning, and reinforcement learning. Supervised learning is for classification and regression where

the models are trained to match the data with the predefined label and predict values, respectively.

Common techniques could be given as support vector machines, decision trees etc. On the other

hand, unsupervised learning tries to find patterns in the data without having labels on. Algorithms

like K-means clustering and Mean Shift clustering are popular techniques used to group data into

clusters. Lastly, reinforcement learning is another decision making branch of machine learning where

the learning happens through maximizing a specific reward function over many steps. The diagram

showing an overview of machine learning techniques are given in Figure 5.3.

5.3.1. Neural Networks
Neural networks (NNs) are models inspired by the biological neurons in the human brain. In a similar

way, ANNs have interconnected nodes that are linked together and operate according to a set of learning

rules. Each node in the neuron uses an activation function to process input signals and give outputs

based on weight and bias parameters. Learning rules set the way the networks weights are adjusted

adn changing thruohgut the training. These components together allow the neural network to learn and

adapt to the given input. In the following Figure 5.4 a structure of a single neuron is shown.

Building upon the concepts introduced by ANNs, deep neural networks extend the structure of

ANNs by incorporating multiple hidden layers between input and output layers. This multi layered

structure allows neural network to have a more depth understanding of the input data and draw complex

pattern out of it. This is especially useful for more sophisticated tasks such as speech recognition,

predictive analysis etc. A representation of a deep neural network is given in Figure 5.5.

5.3. Machine Learning 33

Machine Learning

Unsupervised
Learning

Supervised
Learning

Reinforcement
Learning

Classification Regression Clustering Decision Making

• Support Vector
Machines

• Decision Tree
• Random Forest

• Linear Regression
• Neural Network

Regression
• Support Vector

Regression

• K-Means
Clustering

• Mean Shift
Clustering

• Q-learning
• R-learning

Figure 5.3: Machine learning algorithms classification [40]

𝒘𝟏

𝒘𝟐

𝒘𝒏

𝒙𝟏

𝒙𝟐

𝒙𝒏

𝒚

Figure 5.4: The structure of a single neuron

Activation Functions
Activation functions are mathematical operations that affect the output from ANNs. They allow network

to capture complex model interdependences by introducing non-linearity into the network. By doing

that, they influence the network’s ability to express target functions[35]. Activation functions play a

crucial role in neural networks and the choice of a certain activation function has a large impact on

the learning capability and performance of the neural network. Expressions for common activation

functions like Sigmoid, Hyperbolic Tangent, Rectified Linear Unit are given below in Eq. 5.9.

Sigmoid(𝑥) = 1

1 + 𝑒−𝑥 ,

Tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 ,

ReLU𝑥 = max(0, 𝑥),

Softmax(𝑥𝑖) =
𝑒𝑥𝑖∑
𝑘 𝑒

𝑥𝑘
.

(5.9)

5.3.2. Supervised Learning
Supervised learning is one of the fundamental approaches in machine learning where a model learns

from a set of labelled data which is provided by an external supervisor [10]. This supervisor is generally

a human expert who can label the data correctly. Each sample in the data set includes the situation

5.3. Machine Learning 34

Figure 5.5: Neural network vs Deep neural network representation

description with the corresponding label that happens to be either an action or category for that situation.

The main goal in supervised learning is to find patters in the existing training data so that accurate

predictions could also be made when faced new, unseen situations. However, supervised learning

faces challenges in complex and dynamic environments. This is due to the fact that obtaining a data

set that covers all possibilities that can happen in that environment is nearly impossible. For instance,

interactive environments require the agent to discover and learn from its own experiences and in such

cases, supervised learning would not work in an efficient way.

5.3.3. Unsupervised Learning
Unsupervised learning is mostly about discovering the pattern hidden within unlabeled data. Unlike

supervised learning, unsupervised learning does not need an external supervisor to learn thus no

prior human intervention is required. The nature of the supervised learning is more suitable tasks

like clustering where the aim is group similar data together. Another application areas include

dimensionality reduction, anomaly detection [21] etc.

5.3.4. Deep Neural Networks for Optimal Control
Solving an optimal control problem comes with a high computational cost which often makes it

unfeasible for onboard real-time applications. Hence, in current applications, the optimal trajectory is

precomputed while in real time it is tracked by an additional controller to correct the deviations from

flight trajectory.

Although the application areas of DNNs were more parallel with perception related tasks, it has

been just recently discovered its potential in control problems [37]. Some studies [38, 17] explored

the use DNNs in deterministic continuous time nonlinear systems, however these were limited to

simple scenarios involving linear systems or unbounded control. Others [22] have focused on solving

Hamilton-Jacobi-Belmann equations and two point boundary value problem that arise from Pontryagin’s

optimal control theory. Furthermore, a lot of research used NNs to approximate the value function 𝑣(𝑡 , 𝑥)
while also looking solutions to the states, co-states and the controls to make sure that the assembled

Hamiltonian respects Pontryagin’s conditions [13]. Ongoing research indicates that deep architectures

has the potential to replace all or some parts of the onboard decision-making system for the navigation

and control. In the following section, the applications of DNNs to landing problems will be examined.

Deep Neural Networks for landing problems
In this section, studies that combine optimal control with deep neural for landing problems will be

given and discussed in detail.

Sanchez et. all first make use of deep neural networks with supervised learning in the domain

of optimal landing [52] to represent the optimal control structure for multicopter and spacecraft

models which are deterministic, non-linear continuous systems. Optimal control problems differed

in complexity and dimension are considered, namely the pinpoint landing of a multicopter and the

landing for two different models of spacecraft. Additionally, different cost functions resulting in variety

of control variables, i.e. smooth, saturated and bang-bang are considered. For each problem, only initial

conditions are taken into account for the generation of training data.

5.3. Machine Learning 35

Training and Data generation
For deep neural networks to mimic the solution to the optimal control problem, it is necessary to obtain

the optimal state feedback pair with one of the numerical optimal control techniques.

Sanchez et all. use the direct method "Hermite-Simpson transcription" to solve the corresponding

non-linear programming via a sequential quadratic programming NLP solver, namely SNOPT [20].

They generate 150,000 different trajectories starting from a point that is randomly sampled within the

initialization areas A. They used 90% of the data to train the model while the rest is kept for validation.

Due to the problems cause by the use of direct method with saturated controls inputs, they have

encountered chattering effects that negatively affected the learning process. This problem is tried be

solved by the addition of a regularization term to the objective function however as seen from the results,

this by itself was not enough to remove chattering effects completely which in turn made it not possible

to study complex problems such as pinpoint landing and thrust vectoring.

In their later work [51], state action pairs for data generation were calculated with indirect methods

and continuation techniques (i.e. single shooting) instead of direct methods to avoid such problems.

Continuation methods were used to have a better initial guess as especially TOC and MOC problems

require relatively precise guesses.

0 60
t [s]

0

44

u
1

[k
N

]

 h

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 5 Continuation from quadratic control (h = 0) to mass optimal control (h = 1) for the

RWSC model.

x

y x

z

vx

vz

θ

m

Fig. 6 Location of initial states generated by 100 random walks and distribution of initial

states (RWSC).

here, thus the random walk is initialized around a perfect vertical landing scenario x = 0 vx = 0

θ = 0 ω = 0 with the remaining variables being randomly initialized in A. The random walk will

then take care of continuing this trivial case into diverse initial conditions, but will not be able to

fill A uniformly. Example of the optimal trajectories thus computed and the histograms of their

initial states are shown in Figure 7. We can see how, due to the repetition of the initial state, the

distribution of some variables, particularly x, vx, θ and ω, approximates a Gaussian distribution

around the nominal descent. In the same figure the joint distribution of x and vx is included, show-

ing an inverse relation between these variables that corresponds to trajectories roughly pointing to

the landing position in the horizontal axis. Trajectories with a high initial vx pointing away from x

18

Figure 5.6: Transition from quadratic control (h = 0) to mass optimal control (h = 1)[52]

Sanchez and Izzo [52] uses DNNs to represent the solution to the corresponding Hamilton-Jacobi

equation for four different cases of pinpoint landing that involved a quadcopter model, a mass varying

spacecraft with bounded thrust, a mass varying spacecraft equipped with a reaction wheel and finally a

mass varying rocket with thrust vector control.

Given the assumptions in the model, DNNs can be directly trained in a supervised way using the

optimal state-action pairs previously calculated. These trained networks make an ideal choice for

real-life applications as they require minimal CPU resources. In addition to that, the training process is

completed offline thus not affecting the real-time optimal control architecture.

The trained networks as a result of this process enable the capabilities of real-time control without

having an extra need for on-board optimal control methods (direct or indirect). Furthermore, they

can operate even in situations they are not trained to handle which contribute to their robustness and

potential applications.

5.4. Reinforcement Learning 36

5.4. Reinforcement Learning
Reinforcement learning can be defined as the process of agents interacting with an environment to

maximize cumulative rewards. To do so, agents must go through a trial and error process to discover

which actions return the most rewarded. In most cases, actions do not only affect the immediate reward

but all subsequent ones. As a result, delayed reward and trial and error process are known as the most

important features of reinforcement learning [58].

Reinforcement learning is fundamentally different from supervised and unsupervised learning.

Unlike supervised learning where an external supervisor provides the actions that are associated

certain situations, RL operate in a unsupervised way in unfamiliar environment without having any

guidance. Furthermore, reinforcement learning is not about finding out the hidden structure within

data like unsupervised learning. Instead, it’s maximizing a reward function through interactions with

the environment.

Agent

Environment

Action
𝐚𝐭

State, Reward
𝒔𝒕, 𝒓𝒕

Figure 5.7: Agent-environment interaction

5.4.1. Elements of Reinforcement Learning
There are four elements that are defined as the main concepts in reinforcement learning: a policy, a

reward, a value function and, a model of the environment [3].

Policy
In RL framework, a policy is defined as the way the agent behaving at a time. It is basically a mapping

from inputs (states from the environment) to actions that are associated with those states. The policy

may be as simple as a look up table or it may involve an extensive search. In either situiation, it is alone

sufficient to define the agent’s behaviour thus could also be defined as the core of RL.

Policies can be deterministic or stochastic, either specifying a single action or probabilities for each

action, respectively.

Deterministic policy is denoted by 𝜇:

𝑎𝑡 = 𝜇 (𝑠𝑡) , (5.10)

where stochastic policy is denoted by 𝜋

𝑎𝑡 ∼ 𝜋 (· | 𝑠𝑡) (5.11)

If the agent is following the policy 𝜋 at time 𝑡, the expression 𝜋(𝑎 | 𝑠) defines the probability that

𝐴𝑡 = 𝑎 when 𝑆𝑡 = 𝑠 [58].

Reward
Reward function in reinforcement learning is the objective of agent. The main goal for the agent to

maximize the cumulative reward over time. Based on the received reward signal at a time, the agent

could understand which actions are simply good and bad. The reward function is fundamental criteria

to modify the policy. For instance, an agent received a low reward while following a certain policy may

change it afterwards to choose a different action in similar situations in the future.

The reward function 𝑅 depend on the current state, the current action and the next state and is

represented as follows in Eq.5.12

5.4. Reinforcement Learning 37

𝑅𝑡 = 𝑅 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) (5.12)

Return
Return is one of the central concepts in RL which is defined based on the cumulative reward received

after certain time steps. The important parameter in calculating the return is discounting which impacts

the selection of future actions. Eventually, the agent tries to take the actions that will return the

maximum cumulative reward in time.

In mathematical terms, the return parameter 𝐺𝑡 is expressed in terms of sum of the rewards received

after time 𝑡, with each reward adjusted with the discount factor 𝛾 raised to the power of how many

steps in the future the reward is received. The expression for the discounted return is given in Eq. 5.13.

𝐺𝑡 � 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + · · · =
∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (5.13)

The discount factor 𝛾 varies from 0 to 1, representing the degree to which future rewards are

considered less valuable then immediate ones. If the value of 𝛾 is lower, the less value the future

rewards will hold and vice versa. As 𝛾 approaches 1, the agent becomes more farsighted [58] giving

nearly equal weights to immediate and distant future rewards.

Value Function
Value function is similar to a reward function in a sense that it assess the performance of a certain

policy but considering long term advantages instead of immediate benefits as it happens in the reward

function. Essentially, the value of a state is a representation of the total rewards an agent expect to

gather in the future, starting from that state. For instance, a state that often returns a low reward may

still not be discarded in case it leads to other states with higher rewards. To express it in terms of

human analogy, while rewards are like the feelings of pleasure or pain, values are more of refined and

farsighted judgements of the relationship we have with the environment [58].

The value function of a state 𝑠 under a policy 𝜋 is expressed as 𝑣𝜋(𝑠) follows:

𝑣𝜋(𝑠) � E𝜋 [𝐺𝑡 | 𝑆𝑡 = 𝑠] = E𝜋

[∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 | 𝑆𝑡 = 𝑠

]
, for all 𝑠 ∈ 𝒮, (5.14)

where 𝑣𝜋(𝑠) is the expected value of random variable for the agent under the policy 𝜋 at time step 𝑡.
This is defined as the state-value function for policy 𝜋.

In a similar way, the value of taking action 𝑎 in state 𝑠 under a policy 𝜋 is defined as 𝑞𝜋(𝑠, 𝑎):

𝑞𝜋(𝑠, 𝑎) � E𝜋 [𝐺𝑡 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] = E𝜋

[∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]
(5.15)

𝑞𝜋 is the action-value function for policy 𝜋.

Optimal Policies and Optimal Value Functions
The solution to a reinforcement learning problem comes from finding a policy that will maximize the

cumulative reward over time. A policy 𝜋 is better or equal to another policy 𝜋′
if the expected return is

also better or equal to that of 𝜋′
for all states. Mathematically, 𝜋 ≥ 𝜋′

if and only if 𝑣𝜋(𝑠) ≥ 𝑣𝜋′(𝑠) for all

𝑠 ∈ 𝒮.

The optimal policy is defined as the one that works better than all other policies. There may be more

than one optimal policy, but they have the same same optimal state-value function, defined as 𝑣∗

𝑣∗(𝑠) = max

𝜋
𝑣𝜋(𝑠) for all 𝑠 ∈ 𝑆. (5.16)

Optimal policies also share the same optimal action-value function 𝑞∗:

𝑞∗(𝑠, 𝑎) = max

𝜋
𝑞𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠). (5.17)

We can write 𝑞∗ in terms of 𝑣∗ as

5.4. Reinforcement Learning 38

𝑞∗(𝑠, 𝑎) = 𝐸 [𝑅𝑡+1 + 𝛾𝑣∗ (𝑆𝑡+1) | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] . (5.18)

This expression represents the expected return for taking action 𝑎 in state 𝑠 after following an optimal

policy.

Exploration vs Exploitation
The most famous challenge known as only specific to RL is known as the exploration - exploitation

dilemma. This dilemma leads agent to create balance between exploiting what has been discovered

and exploring to find better action selections in the future. To be able to maximize the cumulative

reward, the agent should prefer the actions that had previously found effective. However, to have those

actions it should also keep discovering and try the actions that is has not selected before. Neither of

these two actions can be done without failing at a task hence, the agent must keep trying and progress

what appears to be at the conditions. Even though there are certain approaches that work better for

deterministic or stochastic cases, the exact solution to this dilemma still does not exist [58].

Overall, reinforcement learning is a unique framework that focuses on the entire system of a goal

directed agent interacting with an uncertain environment. By definition, it includes explicit goals

associated with the environments and agents, environmental perception and action selection under

uncertainty and distinguishes it from methods that overlook between the interior elements or only

address isolated components without considering their integration into a broader system.

Policy and Value functions
• RL consists of three important parameters: policy, value function, and model.

• Deterministic policy 𝑎∗ = arg𝑎 max𝜋(𝑎 | 𝑠) outputs the action that has the highest probability.

• There are two kinds of value functions as 𝑉𝜋(𝑠) and 𝑄𝜋(𝑠, 𝑎), The first kind of value function

𝑉𝜋(𝑠) = 𝐸𝜋 [𝐺𝑡 | 𝑠𝑡 = 𝑠] = 𝐸𝜋
[∑∞

𝑘=0
Υ𝑘𝑟𝑡+𝑘+1 | 𝑠𝑡 = 𝑠] means when we use policy 𝜋, how much

value the agent can accumulate from status 𝑠 to the end status; the second value function can

be called 𝑄 function, Q𝜋(s, a) = 𝐸𝜋 [Gt | St = s,At = a] = 𝐸𝜋
[∑∞

k=0
𝛾k

Rt+k+1 | St = s,At = a

]
, this

value function use the current state and current action to estimate expectations for future rewards.

On-policy vs Off-policy Learning
In an reinforcement learning framework, two approaches: on and off policy methods define how the

agent learn from the environment.

On-policy: On policy methods are about learning from what the agent is doing currently. They do

not make use of old data, thus they are weaker in terms of sample efficiency. However, this leads the

algorithm to directly optimize the objective by trading off sample efficiency for a stable performance.

This method allows the agent to react and adapt through direct engagements with the environments. As

an example, on policy learning could be a robot trying to find its way in a maze by trying and learning

from its own actions.

Off-policy: In contrast to on-policy methods, off-policy methods improve a policy by using a

different one that is used the generate the data.This way, they are able to utilize very old data. This gives

the chance to exploit the Bellman’s equation however, there is no guarantee that satisfying Bellman’s

equations will lead to having a great policy performance. Hence, compared to on-policy methods, this

class of algorithms are more brittle and unstable [62].

5.5. State of the Art Deep Reinforcement Learning Techniques 39

5.5. State of the Art Deep Reinforcement Learning Techniques
Deep reinforcement learning extend upon the traditional reinforcmeent learning by incorporating deep

neural networks to handle high dimensional, continuous state and action spaces. Deep RL algorithms

are categorized into two groups as model-free and model based approaches. Model free methods make

no assumption about the model and directly learn from interactions with the environment. These

techniques have the advantage of simplicity in implementation however, they may require large number

of samples to obtain an efficient policy.

On the other hand, model-based approaches learn through the model of the environment. These

techniques may benefit from the models ability to generate data for training however, there is also

a possibility of of suffering from model bias in case the model is not an accurate representation of

the environment. The diagram showing the model free and model based approaches exist in deep

reinforcement learning is given in Figure 5.8.

In this section, only model-free approaches are considered due to their applicability to continuos

control problems where the state and action spaces are high dimensional and nonlinear dynamics are

involved.

RL Algorithms

Model-Free RL Model-Based RL

Policy Optimization Q-learning Learn the model Learn the model

Policy Gradient

A2C / A3C

PPO

TRPO

DDPG

TD3

SAC

DQN

C51

QR-DQN

HER

World Models

I2A

MBMF

MBVE

AlphaZero

Figure 5.8: State-of-the-art reinforcement learning algorithms [42]

5.5.1. Model-Free RL
In model-free reinforcement learning, agent train without modeling the dynamics of the environment.

The focus in on learning directly from the experience gathered from the environment. There two

approaches involved with model free RL for training agents: policy optimization and Q learning.

Policy Optimization
Policy optimization methods are centered around directly adjusting the policy𝜋𝜃(𝑎 | 𝑠). The optimization

of the parameters 𝜃 is done either through gradient descent on the performance objective or maximizing

local approximations of 𝐽(𝜋𝜃). This optimization is often performed on-policy, showing that the policy

updates are done with data collected only from the current policy not from a different policy’s actions.

In policy optimization, an approximator𝑉𝜙(𝑠) is used to update the policy in consideration by indicating

if it is preferred or not to stay in the current state. Common examples of Policy Optimization algorithms

are given as follows:

• A2C/A3C: This method has an actor-critic architecture in which the actor directly updates the

policy according to the gradient and the critic estimates the value function.

• PPO (Proximal Policy Optimization): PPO makes the learning proces more stable by employing

a surrogate objective function which gives a rather conservative estimate for the amount 𝐽(𝜋𝜃).

5.5. State of the Art Deep Reinforcement Learning Techniques 40

PPO limits the size of policy updates, avoiding destructive large updates. It makes use of trust

regions to ensure that the deviations from the current policy are not significantly large, making

the learning process more reliable and stable.

Q learning
Q-learning is another model-free reinforcement learning technique that learns an approximator 𝑄𝜃(𝑠, 𝑎)
for the optimal-action value function 𝑄∗(𝑠, 𝑎) which indicates the maximum expted value of the total

reward, in state 𝑠 with the action 𝑎.
Q-learning typically operates off-policy which means that the agent learns indirectly by using data

that may be collected from different policies. The associated policy is obtained from the connection of

𝑄∗ with 𝜋∗. The actions taken by the agent in Q-learning is given as follows:

𝑎(𝑠) = arg max

𝑎
𝑄(𝑠, 𝑎). (5.19)

Common examples of Q-learning methods are given in the following.

• Deep Q Network (DQN): DQN uses neural network to approximate the state-value function in

Q-learning framework. It is generally used in combination with Experience Replay to store the

episodes in memory for off policy learning where samples are randomly drawn from the buffer

later in the process. On top of this, the network is generally optimized towards a frozen target

network of which paramaters are updated periodically. These two properties together propose a

solution to the autocorrelation problem in on-line learning and have the purpose of making the

training more stable [28].

• Categorical DQN (C51): Categorical DQN builds upon the DQN network by modelling the value

function as a continous probability distribution. This way, the entire distribution of possible

outcomes are predicted rather than just an average. Some of the hyperparameters included in C51

are the number of atoms, minimum Q-value, maximum Q-value etc. [11].

5.5.2. Reinforcement Learning for optimal control
Fundamentally, reinforcement learning acts as a bridge bringing together the concepts like traditional

optimal control, adaptive control and bio-inspired methods [bibid]. From this perspective, RL could

be defined as a heuristic process where an agent tries to maximize its future rewards, in equivalence,

minimizing the overall control cost. This process of learning could be seen as development of the

optimal policy.

Reinforcement learning, particularly q-learning, was recognized as a technique for achieving adaptive

control by Sutton et al. in [59]. The authors further discussed in 1995 that dynamic programming based

learning could actually bridge the gap between artificial intelligence and real time control and planning

[4]

The nature of adaptive control in reinforcement learning could be traced back to the development of

the adaptive actor-critic model by Barto and Sutton [5] for which later Xin and Balakrishnan provided a

convergence proof. Later on, Bertsekas provided the details of the optimal adaptive control theory via

Adaptive Dynamic Programming in his work [6]. Adaptive actor-critic methods are recognized as one

of the most effective approaches in reinforcement learning for achieving optimal adaptive control [26].

The progress of RL has been towards to filling the gaps in optimal control by being able to adapt to

unknown dynamics and unpredictable changes (ex. unpredictable motions) in the environment which

traditional techniques often fail to accomplish [1, 39]. In conventional optimal control, it is required to

have complete knowledge of the system dynamics with the predefined models of the environment thus

making it not suitable for more dynamic environments. On the other hand, reinforcement learning offers

a robust framework for dealing with such changes thanks to its ability to learn from raw environmental

data without having prior information of the system dynamics. This attribute makes RL highly suitable

for robotics and complex control tasks where more sophisticated methods are required to use.

Reality gap problem
Despite being highly efficient in solving control problems, RL faces a challenge known as the reality

gap problem in real world applications [50]. The reality gap occurs due to relying too much on

simulations and having a performance gap between simulation and real life. Even though these

5.5. State of the Art Deep Reinforcement Learning Techniques 41

simulation environments are often good representatives of real world situations, as the complexity

of the problem increases, the reality gap becomes also bigger and performance of the RL framework

degrades. Due to this reason, studies often adapt an approach where they combine the high level RL

framework with a low level controller [44].

However, it is indicated that [32] these combined approaches limit the optimality of the controller

with margins put for potential disturbances. Recent studies show that end to end RL frameworks that

directly map raw sensor data to control inputs and get rid of the intermediate steps in between could

actually outperform the combined approaches [29]. The further implementations included modelling

the thrust and moment models externally and then putting in the control loop [16].

5.5.3. Applications of Reinforcement Learning for autonomous landing
The use of reinforcement learning in autonomous landing problems is relatively new and research in

this topic is highly limited in the literature. Only a few studies have made attempts to solve this problem

in which the considered landing problems differed in terms of application area, the type of sensory

input (low resolution images [45], monocular camera [49]) received and the motion characteristics of the

platform (moving or stationary) targeted. In this section, the approaches used in these studies will be

given and examined in detail to understand how the choice of environment, RL algorithm, and reward

function relate to the type of landing problem.

The authors in [45] made one of the first attempts and proposed a Deep Q-Network based algorithm

for UAV autonomous landing on a static pad using only low-resolution images coming from a down-

looking camera. Taking the complexity of the problem into account, two sub-tasks: landmark detection,

and vertical descent are considered which are both handled by two independent DQNs that can

communicate with each other via an internal trigger. For the landmark detection, the UAV moved only

in the xy plane until it aligned itself with the marker. In the vertical descent phase, it decreased its

altitude by keeping the marker in the center. The representation of these sub-tasks is shown in Figure

5.14.

Toward End-to-End Control for UAV Autonomous Landing via
Deep Reinforcement Learning

Riccardo Polvara1∗, Massimiliano Patacchiola2∗

Sanjay Sharma1, Jian Wan1, Andrew Manning1, Robert Sutton1 and Angelo Cangelosi2

Abstract— The autonomous landing of an unmanned aerial
vehicle (UAV) is still an open problem. Previous work focused
on the use of hand-crafted geometric features and sensor-data
fusion for identifying a fiducial marker and guide the UAV
toward it. In this article we propose a method based on deep
reinforcement learning that only requires low-resolution images
coming from a down looking camera in order to drive the
vehicle. The proposed approach is based on a hierarchy of Deep
Q-Networks (DQNs) that are used as high-end control policy
for the navigation in different phases. We implemented various
technical solutions, such as the combination of vanilla and
double DQNs trained using a form of prioritized buffer replay
that separates experiences in multiple containers. The optimal
control policy is learned without any human supervision,
providing the agent with a sparse reward feedback indicating
the success or failure of the landing. The results show that
the quadrotor can autonomously land on a large variety of
simulated environments and with relevant noise, proving that
the underline DQNs are able to generalise effectively on unseen
scenarios. Furthermore, it was proved that in some conditions
the network outperformed human pilots.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are already deployed
in various situations such as surveillance [1], agriculture
[2], [3], mapping [4], inspection [5] and search and rescue
[6]. Recently, they have been taken into account for the
transportation and delivery of packages and goods. In this
case, one of the most delicate phase is the identification of
a fiducial marker and the descending maneuver to ground
level. Landing must be done in a limited amount of time
and space, using high precision sensing techniques for an
accurate control and path planning. Until now this task was
performed using hand-crafted features analysis and external
sensors (e.g. ground cameras, range scanners, differential
GPS, etc.). In this paper we propose instead a different
approach, inspired by a recent breakthrough achieved with
Deep Reinforcement Learning (DRL) [7]. Our method is
based on a hierarchy of Deep Q-Networks (DQNs) taking
in input a sequence of low-resolution images acquired by
a down-looking camera mounted on the UAV. The DQNs
directly communicate with the closed loop flight controller
acting as an high level navigator that identifies the position
of the marker and moves the drone toward it. The most
remarkable advantage of DRL is the total absence of human

*Both first and second author contributed equally and should be consid-
ered co-first authors.

1Autonomous Marine System Research Group, School of Engineering,
Plymouth University, United Kingdom.

2Centre for Robotics and Neural Systems, School of Computing, Elec-
tronics and Mathematics, Plymouth University, United Kingdom.

Fig. 1: Components of the proposed landing system. A first
DQN takes care of the marker detection on the xy-plane. The
second DQN handles the descending maneuver from 20 to
1.5 meters. The last module is a closed loop controller that
takes control from 1.5 meter to ground level.

supervision during the learning process. The quadrotor can
autonomously learn what is the best action to perform in
order to land.

The applicability of DRL in robotics is not straightfor-
ward. So far, the research focused on deterministic envi-
ronment, such as the Atari game suite [7], and the Doom
platform [8]. The success of DRL in complex robotics tasks
has been limited. In order to tackle the landing problem we
introduced different technical solutions. First, we adopted a
divide-and-conquer approach splitting the problem in two
sub-tasks: landmark detection and vertical descent. Both
tasks are addressed by two independent DQNs that are able
to call each other through an internal trigger. We encountered
different problems, such as the overestimation of the utilities
and the reward sparsity. In order to face the overestimation
we adopted the double DQN architecture proposed in [9].
To solve the reward sparsity we developed a new form
of prioritized experience replay called partitioned buffer
replay. Using a partitioned buffer replay it is possible to
split experiences based on their relevance and guarantee the
presence of rare transitions in the training batch. An overview
of the system is shown in Figure 1.

The overall contribution of this article can be summarized
in three points. (i) As far as we know, this work is the first
to use an unsupervised learning approach in autonomously
landing. The training phase has been completed using low-
resolution images, without any direct human supervision or
hand-crafted features. For this reason, this method represents
a significant improvement compared to previous research. (ii)
We introduce new technical solutions such as a hierarchy of
deep Q-networks able to autonomously trigger each other,
and a new form of prioritized buffer replay. (iii) The pro-
posed method has been used to train a commercial quadrotor

2018 International Conference on Unmanned Aircraft Systems (ICUAS)
Dallas, TX, USA, June 12-15, 2018

978-1-5386-1353-5/18/$31.00 ©2018 IEEE 115

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2024 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

Figure 5.9: Landmark detection and vertical descent [45]

The given figure shows the component of the proposed landing system where the first DQN handles

the marker detection and the second DQN is for the descending maneuver that takes place between 20

to 1.5 meters. For the last phase of the landing, they made use of a closed loop controller working from

the height of 1.5 m to ground level.

5.5. State of the Art Deep Reinforcement Learning Techniques 42

(a) (b)

Fig. 6: Bounding boxes for landmark detection (a) and
vertical descent (b). The drone is generated in the red box at
the beginning of each episode. The green box (target-zone)
gives the positive reward.

action was repeated for 2 seconds then the drone was stopped
and a new action was sampled. The buffer replay was filled
before the training with 4×105 frames using a random policy.
We trained the two DQNs for 6.5 × 105 frames. We used
an ε-greedy policy with ε decayed linearly from 1.0 to 0.1
over the first 5× 105 frames and fixed at 0.1 thereafter. The
discount factor γ was set to 0.99. As optimizer we used the
RMSProp algorithm [32] with a batch size of 32. The weights
were initialized using the Xavier initialization method [33].
The DQN algorithm was implemented in Python using the
Tensorflow library [34]. Simulations were performed on a
workstation with an Intel i7 (8 core) processor, 32 GB
of RAM, and the NVIDIA Quadro K2200 as graphical
processing unit. On this hardware the training took 5.2 days
to complete.

To test the performance of the policies we measured
the landing success rate of both DQN-single and DQN-
multi in a new environment using 21 unknown textures.
We also measured the performances of a random agent,
human pilots and the AR-tracker proposed in [35] on the
same benchmark. The random agent data has been collected
sampling the actions from a uniform distribution at each time
step. The human data has been collected using 7 volunteers.
The subjects used a space-navigator mouse that gave the
possibility to intuitively and naturally control the drone in
the three dimensions. In the landmark detection test the
subjects had to align the drone with the ground marker and
trigger the landing procedure when inside the target-zone. A
preliminary training allowed the subject to familiarize with
the task. After the familiarization phase the real test started.
The subjects performed five landing attempts for each one of
the 21 textures contained in the test set (randomly sampled).
A time limit was applied accordingly to the procedure used
for testing our algorithms. A negative reward was given when
the subjects triggered the landing outside the target-area.

2) Results: The results for both DQN-single and DQN-
multi show that the agents were able to learn an efficient
policy for maximizing the reward. In both conditions the
reward increased stably without any anomaly (Figure 7). The

accumulated reward for the DQN-single condition reaches
an higher value in the last iterations. The results of the
test phase are summarized in Figure 7 (top). The bar chart
compares the performances of the DQN-single, DQN-multi,
human subjects, random agent and the AR-tracker. The AR-
tracker has the highest reported landing success rate with an
overall accuracy of 95%, followed by the DQN-multi with
a value of 89%. The score obtained by the agent trained on
a single texture (DQN-signle) are significantly lower (38%).
The human performance is close to the DQN-multi (86%).
The performance on the different classes of textures shows
that the DQN-multi obtained top performances in most of
the environments. The DQN-single had good performances
only on two textures: asphalt and grass. We verified using
a two-sample t-test if the difference between DQN-multi
and human pilots was statistically significant. The results
showed that the difference is significant (t = 2.37, p < .05)
and the DQN outperformed humans. It is possible to further
analyze the DQN-multi policy observing the action-values
distribution in different states (Figure 8). When the drone
is far from the marker the DQN for landmark detection
penalizes the landing action. However when the drone is over
the marker this utility significantly increases triggering the
vertical descent state. In order to better compare the DQN-
multi with the AR-tracker, we performed an experiment
using the corrupted marker showed in Figure 5-h. We noted a
drop in performance from 94% to 0% in the the AR-tracker,
due to the failure of the underlying template matching
algorithm in detecting the corrupted marker at long distances.
Differently, the DQN-multi performed fairly well, with a
limited drop in performance from 89% to 81%.

B. Second series of simulations

In the second series of simulations we trained and tested
the DQNs specialized in the vertical descend. To encourage
a vertical descend during the ε-greedy action selection we
sampled the action from a non-uniform distribution were
the descend action had a probability of ρ and the other
N actions a probability 1−ρ

N . We used exploring-start to
generate the UAV at different altitudes and to ensure a wider
exploration of the state space. Instead of the standard buffer
replay we used the partitioned buffer replay described in
Section III-B. We trained two networks, the former in a
single texture condition (DQN-single) and the latter in multi-
texture condition (DQN- multi).

1) Methods: The training environment was represented by
a flat floor of size 100×100 m with the landmark positioned
in the center. The state-space in the vertical descend phase
is significantly larger than in the marker detection and
exploration is expensive. For this reason we reduced the
number of textures used for the training, randomly sampling
20 textures from the 71. We hypothesize that using the entire
training set lead to better performance. The action space
available was represented by five actions: forward, backward,
left, right, down. A single action was repeated for 2 seconds
leading to an approximate shift of 1 meter (constant speed
of 0.5 m/s). The descend action was performed at a lower

120

Authorized licensed use limited to: TU Delft Library. Downloaded on February 06,2024 at 14:18:58 UTC from IEEE Xplore. Restrictions apply.

Figure 5.10: Bounding boxes for target detection [45]

The authors indicate that highly challenging nature of the landing problem is caused by its being a

form of Blind Cliffwalk where the agent gets a negative or positive reward at the end of the landing

process while it has to pass through all intermediate phases successfully. This problem is extra

challenging cause the target area is only a small portion of the state space [45]. As a solution, they

propose the use of double DQN approach [63] with partitioned buffer replay to guarantee a fair sampling

between experiences.

Actor-Critic Framework for the Autonomous Landing
Lee et all. [36] developed an actor-critic framework for solving the vision based autonomous landing

problem. Their approach included a PID based inner attitude controller, a ground looking camera

model and a laser rangefinder. The system is trained to generate suitable roll and pith commands for

successful tracking and landing while altitude and heading was not controlled by the agent but instead

given constant control commands.

The actor-critic framework used for the corresponding system is given in Figure 5.12. The networks

included two fully connected hidden layers with different weights. Reward function is used to update

the critic network which is only activated during training. After the training is completed, only actor

network is used for the landing in case there is a need from the human pilot.

Fig. 8. Flight trajectories druing reinforcement learning (top view).

Fig. 9. Flight trajectories druing reinforcement learning (side view 1).

Fig. 10. Flight trajectories druing reinforcement learning (side view 2).

IV. FLIGHT EXPERIMENTS

A. System Descriptions

For the flight experiment, we used Tarot T810 hexa-
copter frame to build a test vehicle. Table I. shows the
overall specifications of the test vehicle. For inner loop
attitude control, we used off-the-shelf Naza flight controller.
Image processing for targeting landing-site tracking and
parallel computations for the actor neural network processing
are done by onboard Graphics Processing Unit (GPU).
Secondary flight control computer takes outer loop for
altitude and heading control and interprets actions from the
GPU to give desired roll and pitch command to the inner
loop controller.

Fig. 11. Configurations of the experimental vehicle.

TABLE I. EXPERIMENTAL UAV SYSTEM SPECIFICATIONS

 Specifications

Dimensions (W x H, mm) 800 x 500

Empty Weight 3.5 kg

Maximum Take-off

Weight
12.9 kg

Flight Time 7 mins (with 9.2 kg take-off weight)

Flight Control Computer

(Inner loop controller)
DJI NAZA-M V2

Flight Control Computer

(Outer loop bridge)

TI TMS320C28346 (@300MHz) based

self-designed computer

Onboard Graphics

Processing Unit

NVIDIA Jetson TX2
with 256 CUDA Cores

Laser Rangefinder Astech LDS-30A

Camera Logitech C920 HD webcam

B. Flight Experiment Results

Images in Fig. 12 to Fig. 14 show the flying UAV and
transmitted scenes that onboard GPU is processing during
flight experiments. Graphs in Fig. 15 to Fig. 17 are flight
trajectories based on the GPS measurements. In Fig. 12 to
Fig. 14, green box indicates target tracker is activated, and
the center of the box is used for calculating the difference
𝑑𝑋𝐼 and 𝑑𝑌𝐼 . Red arrow starting from the image center
marker ‘+’ tells body velocity of the UAV.

112

Authorized licensed use limited to: TU Delft Library. Downloaded on April 23,2024 at 07:49:13 UTC from IEEE Xplore. Restrictions apply.

(a) Flight trajectories (top view)

Fig. 8. Flight trajectories druing reinforcement learning (top view).

Fig. 9. Flight trajectories druing reinforcement learning (side view 1).

Fig. 10. Flight trajectories druing reinforcement learning (side view 2).

IV. FLIGHT EXPERIMENTS

A. System Descriptions

For the flight experiment, we used Tarot T810 hexa-
copter frame to build a test vehicle. Table I. shows the
overall specifications of the test vehicle. For inner loop
attitude control, we used off-the-shelf Naza flight controller.
Image processing for targeting landing-site tracking and
parallel computations for the actor neural network processing
are done by onboard Graphics Processing Unit (GPU).
Secondary flight control computer takes outer loop for
altitude and heading control and interprets actions from the
GPU to give desired roll and pitch command to the inner
loop controller.

Fig. 11. Configurations of the experimental vehicle.

TABLE I. EXPERIMENTAL UAV SYSTEM SPECIFICATIONS

 Specifications

Dimensions (W x H, mm) 800 x 500

Empty Weight 3.5 kg

Maximum Take-off

Weight
12.9 kg

Flight Time 7 mins (with 9.2 kg take-off weight)

Flight Control Computer

(Inner loop controller)
DJI NAZA-M V2

Flight Control Computer

(Outer loop bridge)

TI TMS320C28346 (@300MHz) based

self-designed computer

Onboard Graphics

Processing Unit

NVIDIA Jetson TX2
with 256 CUDA Cores

Laser Rangefinder Astech LDS-30A

Camera Logitech C920 HD webcam

B. Flight Experiment Results

Images in Fig. 12 to Fig. 14 show the flying UAV and
transmitted scenes that onboard GPU is processing during
flight experiments. Graphs in Fig. 15 to Fig. 17 are flight
trajectories based on the GPS measurements. In Fig. 12 to
Fig. 14, green box indicates target tracker is activated, and
the center of the box is used for calculating the difference
𝑑𝑋𝐼 and 𝑑𝑌𝐼 . Red arrow starting from the image center
marker ‘+’ tells body velocity of the UAV.

112

Authorized licensed use limited to: TU Delft Library. Downloaded on April 23,2024 at 07:49:13 UTC from IEEE Xplore. Restrictions apply.

(b) Flight trajectories (side view)

Figure 5.11: Flight trajectories from training [36]

5.5. State of the Art Deep Reinforcement Learning Techniques 43

C. Ground Looking Camera Model

Now the last thing to prepare is a ground looking camera
model mounted on the gimbal assembly (distorted picture).
Fig. 3 shows the schematics of a ground looking camera
model. Here a gimbal assembly can control two axes, i.e.,
roll and pitch angles of the gimbal. In this configuration, the
assembly controls the camera image frame to be aligned with
the world frame that ZW and ZI are pointing the same
direction regardless of the UAV attitude change.

The detailed description of the image frame 𝐼 with
respect to the world frame 𝑊 is pictured in Fig. 4. In this
diagram, optical axis 𝑍𝐼 is parallel with the 𝑍𝑊 axis that
𝑋𝑊 − 𝑌𝑊 plane, which is centered at the targeting landing
location and 𝑋𝐼 − 𝑌𝐼 plane, which is centered at the digitized
image frame are also parallel. Therefore, the difference of
target center pixel with respect to the image center pixel can
be used to control the position of multi-copter UAV in order
to keep the targeting location within a camera field of view.

Fig. 3. Schematics and coordinate system of a ground looking camera

model.

Fig. 4. Coordinate system of a image frame.

III. REINFORCEMENT LEARNING FRAMEWORK

Here we adopt Reinforcement Learning (RL) algorithm
to substitute pilot commands, which give desired roll and
pitch commands to the attitude controller. In RL schematics,
we let our agent to get states, take actions, i.e., roll and pith
commands from the given states, and get rewards from the
simulation environments repeatedly. To be more specific, we
trained a policy function called the actor, and a value
function called the critic simultaneously to decide proper
actions from given states by giving feedback to the actor to
maximize the rewards.

Many RL algorithms can be found from [9], and deep RL
algorithms that represent the policy function and/or value
function as deep neural networks. This framework showed
remarkable performance on various fields, such as Atari
games [10], Go [11], and several dynamic simulation
environments [12]. Since we are also dealing with the states
and actions of UAV in continuous domain, deep RL
approach can be applied to solve the problem.

A. Actor-Critic Framework for the Autonomous Landing

The overall schematics of an actor-critic framework for
the vision-based autonomous landing is summarized in Fig. 5.
When the training is completed, only actor activates when
there is a need for the autonomous landing assistance to a
human pilot. Altitude and heading control is not controlled
by the agent, yet supposed to have constant speed
descending with fixed heading direction. The detailed
training procedures for deep reinforcement learning with the
actor-critic algorithm can be found from [12]. Therefore, we
only summarize states in use, desired actions, and reward
function for the framework from (9) to (11).

Fig. 5. Framework for the vision-based autonomous landing using actor-

critic reinforcement learning.

110

Authorized licensed use limited to: TU Delft Library. Downloaded on April 23,2024 at 07:49:13 UTC from IEEE Xplore. Restrictions apply.

Figure 5.12: Actor-critic framework for vision based autonomous landing [36]

Resultant flight trajectories from the training process are shown in Figure 5.11. As a final note, the

authors mentioned that the real life experiments resulted in non-smooth trajectories for which delay in

sensor systems and external unmodelled disturbances are given as the main reasons.

Autonomous landing on moving platforms
Studies that are mentioned so far considered the target as a stationary platform however, certain real life

situations (ex. ship landing) require UAV landing to be on moving platforms. [46] carries the importance

of being the first study accomplished RL based landing on a moving platform. The study utilized the

Deep Deterministic Policy Gradients (DDPG) for the landing problem and for simulations they used the

Gazebo platform. The considered framework is given in Figure 5.13

356 J Intell Robot Syst (2019) 93:351–366

operation. It has been used to enable the operation of the
UAVs in both training and testing time, though its full
explanation is out of the scope of this work. For further
information, please refer to [37].

In this framework, the environment interface shown in
Fig. 1 implements an interface between Gazebo/Aerostack
and the agent, being in charge of parsing all the incoming
data, in order to adapt it to an intelligible structure which
the agent can use. Furthermore, taking into consideration
future extensions of either agents, environments, robots or
simulation systems, the framework has been designed in
a versatile manner at a programming level. Since all the
communication interfaces are standard and cross-language,
both the agent and the environment interface can be
implemented in a wide variety of programming languages,
such as C++, Python, or Java.

Finally, our framework is designed to be used with
Gazebo, but it can be adapted to any other simulation
systems (as well as simulated robots), due to the standard
nature of its communications. Also, the simulation time can
be speeded up or slowed down, in order to reduce training
times and to adapt the simulation to computationally-
expensive experiments, respectively.

3.2 Reinforcement Learning Based Formulation

In the context of reinforcement learning, the formulation
of the experiment can be decisive for the algorithm to
converge, since there are an increasing number of possible
designs which ideally would lead to the same result. In
practice, the formulation of the state and action spaces, as
well as the design of the reward function, determines the
speed of convergence and even the possibility of divergence
of the reinforcement learning algorithm. We have designed
the state, action and reward function in a way that it
minimizes information passed to the agent, speeds up
learning and avoids learning divergence.

As previously stated, a reinforcement learning experi-
ment is defined by the state space s ∈ S, the action space

a ∈ A and the reward function r . In our proposed approach,
the state space S is defined by Eq. 8.

S = {px, py, pz, vx, vy, C} (8)

Where px , py and pz are the positions of the UAV with
respect to the Moving Platform (MP) in x, y and z axes
respectively at time t , vx and vy are the velocities of the
UAV with respect to the MP in x and y axes respectively
at time t and C is the binary state of a pressure sensor
located on the top of the horizontal surface of the MP. All the
sensory information is retrieved from Gazebo simulator and
parsed by the environment interface component, as shown in
Fig. 2. Regarding the action space A, it is defined by Eq. 9.

A = {ax, ay} (9)

Where ax and ay are the reference velocities, input to
the velocity controller (see Fig. 2), in x and y axes at
time t . In this paper, the velocity reference in the z axis
has not been included in the action space. This is due
to the fact that we are tackling a complex problem with
continuous state and action spaces and the full behaviour
is completely self-learned in simulation, by means of a
deep reinforcement learning algorithm not previously tested
on this type of robotic tasks. Hence, the inclusion of z
axis has been left as future work since it involves a much
higher order of complexity out of the scope of this study.
Instead, a constant velocity reference is commanded in the
z axis in each time step. This fact simplifies the action
space, increasing the speed of convergence of the algorithm
without losing generality of the approach. The resulting
state and action spaces are a continuous 6-dimensional
space and a continuous 2-dimensional space respectively,
with normalized variables ranging from + 1 to − 1 values.

The reward function is one of the most important
components in the reinforcement learning framework. A
proper design of the reward function can lead to a faster
convergence of the algorithm and a better performance at
testing time. In our proposed approach, where the agent is
meant to generate continuous control actions, the reward

Agent
Env

Interface

Velocity
Controller

Gazebo + RotorS

x y z

x_uav y_uav z_uav x_mp y_mp z_mp

x_uav y_uav z_uav x_mp y_mp z_mp
x y z

x y z

x y x_ref y_ref

Fig. 2 Architecture of our proposed reinforcement learning framework for the case of the experiment of study
Figure 5.13: Reinforcement Learning Framework [46]

The formulation of the reinforcement learning framework is given through the following state 5.20

and action space 5.21 definitions.

S =
{
𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 , 𝑣𝑥 , 𝑣𝑦 , 𝐶

}
(5.20)

5.5. State of the Art Deep Reinforcement Learning Techniques 44

A =
{
𝑎𝑥 , 𝑎𝑦

}
(5.21)

Here, 𝑝𝑥 , 𝑝𝑦 and 𝑝𝑧 are defined as the relative positions of the UAV with respect to the platform, 𝑣𝑥
and 𝑣𝑦 are the relative velocities and finally, 𝐶 is the state of a pressure sensors located on the platform.

𝑎𝑥 , 𝑎𝑦 are determined as reference velocities and given as inputs to the controller (see Fig 5.13). However,

the work did not consider the z-motion due to reasons given for the higher complexity of the vertical

motion. Instead, a constant velocity commands were feeded at every time step.

To be able to generate smooth and continuous control actions, the following reward function was

designed.

shaping 𝑡 = − 100

√
𝑝2

𝑥 + 𝑝2

𝑦 − 10

√
𝑣2

𝑥 + 𝑣2

𝑦 −
√
𝑎2

𝑥 + 𝑎2

𝑦

+ 10𝐶 (1 − |𝑎𝑥|) + 10𝐶
(
1 −

��𝑎𝑦 ��)
𝑟 = shaping 𝑡 − shaping 𝑡−1

(5.22)

In the design of the reward function, relative states of the UAV with respect to the platform are

weighted with different coefficients to effectively vary their contribution to the overall reward function.

Additionally, shaping technique was used to speed up the simulations. In the study, a chosen network

has been tested in two scenarios, namely slow and fast where the maximum velocity is given as 0.4 𝑚/𝑠
and 1.2 𝑚/𝑠, respectively. The success condition is defined as if the UAV touched the platform surface

within an area of 1.0 m x 1.0 m. As indicated by the authors, unsuccessful cases were mostly due to the

fact that the UAV was getting out of range and the given velocity was constant during the flight.

Although the study was successful in the implementation, [65] claims that non-existency of z axis in

the problem definition and weak generalization capability of Gazebo platform result in autonomously

incapable agents. In their study, Xie et all. divides the problem into two different parts: perception and

relative pose estimation; trajectory optimization, and control of which they only considered the latter.

They take the sensor noise, intermittent measurements and, randomness in the UAV movement into

account in their definition of the landing problem. Additionally, as opposed to previous research [45,

46], incomplete and inaccurate observations were also taken into account. With these in consideration,

a dynamic model based partially observable Markov decision process (POMDP) [56] was defined to

present the UAV tracking and landing problem.

The state space considered in the paper is given as:

𝑠 =
{
𝑋𝑢 , 𝑌𝑢 , 𝑍𝑢 , 𝑣𝑢𝑥 , 𝑣𝑢𝑦 , 𝑣𝑢𝑧 , 𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡 , 𝑣𝑡𝑥 , 𝑣𝑡𝑦 , 𝑣𝑡𝑧

}
(5.23)

where 𝑣𝑢𝑥 , 𝑣𝑢𝑦 ∈ [−10, 10], 𝑣𝑢𝑧 ∈ [−1, 3], 𝑣𝑡𝑥 , 𝑣𝑡𝑦 ∈ [−5, 5], 𝑣𝑡𝑧 = 0.

The action space 𝐴 used the speeds of the UAV as 𝐴 =
{
𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧

}
. Finally, the observation space is

defined as

Ω =
{
𝑋𝑢

′, 𝑌𝑢
′, 𝑍𝑢

′, 𝑣𝑢𝑥
′, 𝑣𝑢𝑦

′, 𝑣𝑢𝑧
′, 𝑋𝑡

′, 𝑌𝑡
′, 𝑍𝑡

′, 𝑣𝑡𝑥
′, 𝑣𝑡𝑦

′, 𝑣𝑡𝑧
′} . (5.24)

Since one of the main goals is to minimize the distance of the UAV to the moving platform, reward

function is defined based on the distance parameters as given in 5.25

𝑅 =


−10, dist > 6

−0.1 × dist , 0.8 ≤ dist ≤ 6

+10, dist < 0.8
(5.25)

where the variable dist is

dist =

√
(𝑋𝑢 − 𝑌𝑡)2 + (𝑋𝑢 − 𝑌𝑡)2.

Here, reward distribution is made considering the problem of agent not receiving enough rewards

till it reaches the target location thus requiring intermediate steps to make the landing.

5.5. State of the Art Deep Reinforcement Learning Techniques 45

Hybrid Strategy
Similar to the previous studies, Xie et all. also considered a hybrid approach to solve the landing

problem. In their approach, tracking and landing is handled differently, the former by making use

of reinforcement learning and the latter with heuristic rules defined by the authors themselves. The

schematic for the hybrid strategy is shown in Figure C.10

Sensors 2020, 20, 5630 6 of 17

and landing experience history to train the network to learn the optimal tracking strategy. Once the
platform is tracked, a rule-based landing strategy is used to land the UAV.

3.1. Hybrid Strategy Method

The hybrid strategy adopted in this paper is shown in Figure 4. The strategy consists of two parts:
tracking and landing modules. The tracking module introduces the reinforcement learning method to
adjust the speed of the UAV in the horizontal direction, aiming to achieve the stable tracking of the
moving platform. The landing module adjusts the height of the UAV in the vertical direction based on
heuristic rules, so as to land the UAV on the platform.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 18

tracking of the moving platform. The landing module adjusts the height of the UAV in the vertical

direction based on heuristic rules, so as to land the UAV on the platform.

Critic

FC1 FC2 scale ai

Actor

QiFC3

Tracking Model

UAV initial

height 5m

Tracking

error < 4m
Y

N

Landing Model

State

Update

Tracking Model

Landing Module

State

Update

t

Si

Si+1

Figure 4. Hybrid strategy consisting of two parts: tracking and landing modules. The tracking module

introduces the deep reinforcement learning method, and the landing module adopts heuristic rules,

so as to land the UAV on the platform.

Tracking module: The UAV autonomous tracking and landing problem has a continuous state

and decision space, and the DDPG, which combines the DQN and DPG, is a deterministic strategy

for a continuous action space. This method combines reinforcement learning with deep learning and

has good potential for dealing with complex tasks. Thus, this network is introduced in this paper for

mapping the observation to proper action in an end-to-end way.

Details of the decision network structure are shown in Figure 4. The network adopts the actor-

critic architecture [41], in which the actor network input is the system state, mainly including the

motion state information of the UAV and moving platform in the system. The output layer is a two-

dimensional continuous action space, which corresponds to the speed value of the UAV in the

longitudinal and lateral directions after scale conversion. The critic network estimates the action-

value function that describes the expected reward after following policy π. Since the decision is a

deterministic action, to ensure that the environment is fully explored during the training process, we

constructed a random action by adding noise sampled from a noise process Ni, in which the noise is

only needed in the training process:

  | i i ia s N  

(6)

where 𝑎𝑖 is the output action, 𝑠𝑖 represents the current state information, 𝜇(𝑠𝑖|𝜃
𝜇) represents the

decision taken when the policy parameter is 𝜃𝜇 in state 𝑠𝑖, and 𝑁𝑖 is the artificially added Gaussian

noise attenuated over time.

As shown in Figure 4, the network consists of three fully connected layers, the FC1 and FC3

layers are followed with the relu activation function, and the FC2 layer is followed with the tanh

layer. The parameters of each layer in the network are shown in Table 1. Furthermore, the effects of

different network parameters on the UAV tracking performance are shown in Appendix C.

Table 1. Network parameters.

Network Name Number of Hidden Layers Activation Function

FC1 30 relu

FC2 2 tanh

FC3 30 relu

Landing module: The landing module adjusts the height of the UAV in the vertical direction

based on heuristic rules (shown in Table 1). As show in Table 2, dist has been defined in Equation (4),

and height is defined as ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑍𝑢 − 𝑍𝑡. According to the rules table, the speed of the UAV in the

Figure 4. Hybrid strategy consisting of two parts: tracking and landing modules. The tracking module
introduces the deep reinforcement learning method, and the landing module adopts heuristic rules,
so as to land the UAV on the platform.

Tracking module: The UAV autonomous tracking and landing problem has a continuous state
and decision space, and the DDPG, which combines the DQN and DPG, is a deterministic strategy
for a continuous action space. This method combines reinforcement learning with deep learning and
has good potential for dealing with complex tasks. Thus, this network is introduced in this paper for
mapping the observation to proper action in an end-to-end way.

Details of the decision network structure are shown in Figure 4. The network adopts the actor-critic
architecture [41], in which the actor network input is the system state, mainly including the motion state
information of the UAV and moving platform in the system. The output layer is a two-dimensional
continuous action space, which corresponds to the speed value of the UAV in the longitudinal and
lateral directions after scale conversion. The critic network estimates the action-value function that
describes the expected reward after following policy π. Since the decision is a deterministic action,
to ensure that the environment is fully explored during the training process, we constructed a random
action by adding noise sampled from a noise process Ni, in which the noise is only needed in the
training process:

ai = µ(si
∣∣∣θµ) + Ni (6)

where ai is the output action, si represents the current state information, µ(si
∣∣∣θµ) represents the decision

taken when the policy parameter is θµ in state si, and Ni is the artificially added Gaussian noise
attenuated over time.

As shown in Figure 4, the network consists of three fully connected layers, the FC1 and FC3
layers are followed with the relu activation function, and the FC2 layer is followed with the tanh layer.
The parameters of each layer in the network are shown in Table 1. Furthermore, the effects of different
network parameters on the UAV tracking performance are shown in Appendix C.

did not get
this part
completely

Figure 5.14: Hybrid strategy used in [65]

Tracking part of the hybrid strategy is accomplished with the algorithm DDPG in an end to end way

whereas the landing part is assumed to be successful if the vertical distance is less than 0.1m while the

horizontal distance error is less than 0.8 m.

The performance of RL was evaluated using the root mean square error (RMSE) and a parameter

called tracking success rate (TSR) which was only considered during tracking tests [65]. The definition

of the TSR variable is given as follows:

TSR =

𝑁∑
𝑖=0

𝐷𝑖

𝑁
× 100%, 𝐷𝑖 =

{
1, dist < 3

0, dist ≥ 3

}
(5.26)

where 𝐷𝑖 is assessed either 1 or 0 based on the success of landing, and N is the number of total time

steps.

Given these performance parameters, Xie et all. made a comparison between RL and PID control.

During the tests, the platform was moved in four different ways: linear, circular, and random motions.

It was found that the motion of the platform has an effect on which algorithm outperforms the other

one. According to the results given in Table 5.2, the proposed algorithm was being outperfermed in a

linear and circulate motion while there is a significant performance upgrade in random motions. The

reason for this was indicated as the PID control could not find the patterns of nonlinearity in its control

inputs thus leading to a suboptimal performance.

Movement Type Linear Circular Random1 Random2

PID method 97 % 85 % 56 % 41 %

Proposed method 94 % 83 % 70 % 74 %

Table 5.2: Landing performance comparison of PID and RL for different movement types

5.5. State of the Art Deep Reinforcement Learning Techniques 46

Reinforcement Learning for Ship landing
Ship landing is a challenging problem for RL to solve due to small landing space, hard-to-predict ship

movements, limited resources for localization and harsh environment conditions such as wind gusts. Saj

et all. [49] claim that previous studies on using RL for landing problems lack the robustness component

which lead to development of not fully efficient algorithms that are not useful for ship landing problems.

Considering all these challenges, they adapt the state of the art twin delayed DDPG (TD3) algorithm to

land an UAV on a ship of which position to UAV was previously computed with vision based tracking.

They define the state space for the given problems as follows:

𝑠𝑡 =
(
𝑝𝑡 , 𝑣𝑡 , 𝑝𝑡−1 , 𝑣𝑡−1 , . . . , 𝑝𝑡−5 , 𝑣𝑡−5

)
(5.27)

where 𝑝𝑡 and 𝑣𝑡 are the relative position and velocity of the UAV with respect to the ship.

Action space was determined based on the characteristics of the Parrot Anafi drone they used for

real world demonstrations. The drone has four different control inputs: roll, pitch, yaw and heave.

According to the experiments they have completed, they saw that wind disturbances mostly affect the

angles pitch and roll thus, these were the only two angles considered for the vertical landing.

In terms of the reward function variables, the authors take a different direction and use action values

instead. Again, the reward is designed depending on the region the drone is in 5.28.

Reward =



− 1

20
|𝑎diff | − 1

10
|𝑎| if |𝑑| ≤ 0.1

(Region-1)

−2|𝑑| − 1

20
|𝑎diff | − 1

10
|𝑎| if 0.1 ≤ |𝑑| ≤ 0.4

(Region-2)

−1 if 0.4 ≤ |𝑑| ≤ 2

− (𝑇max − 𝑇inside) (Region-3)

− if |𝑑| > 2

(5.28)

As it is mentioned previously, reality gap problem is a serious problem that often occurs within

RL frameworks. To overcome this, Saj and et all. applied the domain randomization approach [47,

61, 43] by varying the parameters of the simulation environment. In their case, they used the Gazebo

simulator to create several wind conditions. Wind conditions were chosen as constant, sudden and,

sinusoidal wind which they have been applied for time periods of 10 to 50 seconds. It was observed

that the headwind has an effect on the forward drift and the crosswind affects the sideward drift hence,

they have applied them for roll and pitch controller training, respectively.

The tests were made for hovering and landing conditions and compared the performance of the RL

with PID controller as similarly done in. They observed that while RL has the ability to make a landing

PID controller was not able to make the deviations in the forward and sideward distance to go zero.

The results of both algorithms showing their reaction to the given disturbances are shown in Figure 5.15

(a) Sudden cross wind (b) Sinusoidal head wind (c) Time varying wind (d) Time varying wind

Fig. 5: Deviation from the desired position in different wind scenarios for the hovering task.

(a) (b) (c) (d)

Fig. 6: Distance from the target position in different wind scenarios for the landing task.

hovering task where the goal is to hover over the target
and landing task where the goal is to perform vertical
landing on the target, despite the adversarial wind conditions
present during these tasks. The different wind scenarios
we considered in our evaluation is shown in Fig. 4. As a
benchmark, we use a PID control based algorithm developed
in our prior work, described in the technical report [36].
We show that our robust RL controller achieves superior
performance compared to this PID controller benchmark.

A. Hovering task in different wind scenarios
Figure 5a shows the sideward deviation from the desired

position of the UAV in the presence of a sudden cross
wind (magnitude changes from 0 to 5 m/s at the 8 second
mark). The maximum sideward deviation for our robust RL
approach is only one-third of the deviation for benchmark
PID controller. Moreover, our robust RL approach is able to
return the UAV to the desired position in less than 2 seconds,
while this took at least 15 seconds for the PID controller.
Figure 5b shows the forward deviations in presence of
sinusoidal head wind. The maximum forward deviation for
our robust RL approach is less than 20 cm and it is only
one-tenth of the deviation for the benchmark PID control.
Figure 5c shows the forward deviation in a more challenging
scenario where both the magnitude and direction of the
wind change over time. The wind magnitude is a sinusoidal
function with an amplitude of 5 m/s and a time period of 20
seconds. The wind direction also changes continuously from
0◦ to 360◦ in every 40 seconds. Here also, the maximum
deviation for our RL approach is less than 20 cm and it
is only one-tenth of the deviation for the benchmark PID

controller. Figure 5d shows the sideward deviation for the
same time varying wind scenario.

B. Landing task in different wind scenarios

Figures 6a and 6b show the distance of the UAV from the
target landing position as a function of time in the presence
of a time varying wind scenario described in the above
subsection. Note that both the sideward and forward distance
converges to zero for our robust RL approach. At the same
time, the benchmark PID control approach is not able to
make a safe landing in this wind scenario. Figures 6c and
6d show that the roboust RL controller comfortably makes
landing in a number of wind scenarios.

V. REAL-WORLD UAV DEMONSTRATIONS

A. Experimental Setup

For the real-world demonstration, we use Parrot Anafi
quadrotor UAV [47]. The schematic of the control system
is shown in Fig. 8. The UAV has an embedded (onboard)
inner-loop autopilot that controls the rotational speed of each
propeller to achieve the commanded inputs generated by the
outer-loop RL based control system (offboard). The UAV
is controlled by a Python script that runs on an external
computer which communicates with the UAV through the
WiFi connection. The UAV transmits raw images captured
by the onboard camera to the external computer in real-time,
and the computer processes these images to provide estimates
of relative position and other state variables. Based on the
state estimate, the robust RL controller generates the roll
and pitch control actions. The control actions are sent back

Figure 5.15: Deviation values for RL and PID [49]

5.6. Conclusion and Discussion 47

5.6. Conclusion and Discussion
In this chapter, an overview of machine learning techniques for use in optimal control and guidance

problems has been given. The chapter started with a very general description of the definition of an

optimal control problem. The underlying optimal control theory helps to formulate the structure of

the problem at hand and understand where the actual optimality element comes from. After this

description, existing techniques to solve a continuous optimal control problem are provided with a

special focus on numerical methods. This classification is important because the majority of studies and

engineering applications have been using numerical methods to come up with solutions to optimal

control problem.

Furthermore, the literature on using machine learning techniques for landing problems first shows

the use of supervised learning with different numerical methods, thus providing a description of them.

The initial studies addressing optimal control problems introduced what is known as GNC networks,

where typical guidance and control tasks are solved using learning based approaches. This includes

first computing the optimal inputs with a numerical technique and then trying to learn the input-output

relationship in a supervised manner. This combined approach allows for fully exploiting the capabilities

of neural networks and numerical methods together. However, the progress in obtaining optimal control

inputs is restricted by the numerical method used, as each one of them has specific characteristics that

may lead to unstable behaviour.

Thus, later studies have focused on using reinforcement learning in continuous optimal control and

guidance problems. Unlike other techniques, reinforcement learning has made progress in filling the

gaps in optimal control by being highly adaptable and flexible to variations in system dynamics and

environment, while at the same time requiring no prior model. These attributes of reinforcement learning

make it highly suitable for landing problems, as the challenges associated with them can be compensated

for with what reinforcement learning offers. In the context of autonomous landing, state-of-the-art

deep learning techniques are discussed in terms of target motion characteristics, sensor integration

methods, and vehicle capabilities. While the literature highlights the efficiency and generalizability of

reinforcement learning, further validation was also provided with benchmark controllers.

The progress in this chapter has been made to how reinforcement learning stands out compared to

the other techniques for autonomous landing problems.

Table 5.3: Machine Learning Techniques for UAV Guidance and Control

Technique Applications Strengths and Limitations
Supervised Learn-

ing

Used for classification and regression

tasks in UAV operations.

Effective for labeled data; limited in

dynamic and complex environments.

Unsupervised

Learning

Finds patterns in unlabeled data; used

for clustering and anomaly detection.

No prior human intervention needed;

less effective for interactive environ-

ments.

Reinforcement

Learning

Learns optimal policies through trial

and error; highly adaptable.

Effective for dynamic environments; re-

quires extensive training and computa-

tional resources.

Table 5.4: Reinforcement Learning Algorithms for UAV Landing

Algorithm Description Applications and Results

Deep Q-Network (DQN)

Uses neural networks to approx-

imate state-value function; com-

bines experience replay for stabil-

ity.

Applied to static pad landing; handles

low-resolution images; shows success-

ful implementation in simplified envi-

ronments.

Proximal Policy Optimiza-

tion (PPO)

Employs a surrogate objective

function; uses trust regions to

ensure stable learning.

Used for continuous control tasks; effec-

tive in complex and dynamic environ-

ments; stable and reliable performance.

Deep Deterministic Policy

Gradients (DDPG)

Combines policy gradient with

Q-learning; suitable for continu-

ous action spaces.

Applied to landing on moving plat-

forms; shows improved performance

in handling unpredictable dynamics.

6
Variable Skew Quad Plane

The diverse requirements of flight operations have driven the evolution of UAVs in terms of their shape,

size, and configuration. Typically, UAVs can be broadly classified into fixed-wing and rotary-wing

categories, each serving offers unique advantages and faces limitations.

In this work, the vehicle in consideration is the Variable Skew Quad Plane, a hybrid drone that

combines the capabilities of both fixed-wing and rotary-wing UAVs, offering a flexible and adaptable

structure suitable for different flight modes. This section introduces the modelling details, the role of

actuators, and the guidance and control scheme of the VSQP. By understanding this one-loop adaptive

controller, questions regarding the learning-based problem formulation RQ-PF have been addressed.

6.1. Background on hybrid UAVs
Unmanned aerial vehicles (UAVs) have become increasingly popular for their ease of deployment, low

maintenance costs and high mobility. Today, UAVs are used in a wide range of applications from military

operations to delivery of goods. The most common two types of UAV platforms that are currently in use

are known as fixed wing UAVs and rotorcraft UAVs. Both designs have their specific capabilities and

limitations finding use in operations that align with their specifications. The fixed-wing UAV is faster,

can carry heavier payloads, and has a longer flight range and endurance. However, it requires special

equipment for takeoff and landing and is not suitable for missions that require a low flight speed or

confined environment. The rotorcraft UAV, on the other hand, is more flexible when it comes to takeoff

and landing requirements and can hover in place. However, it has limitations on speed and endurance,

which restricts its capabilities for wide range coverage or long endurance missions [48]. The aim to

combine the capabilities of both designs for a much broader range of applications under additional

requirements such as good wing rejection capacities and better performance in gusty environments has

led to the innovation of hybrid UAVs. Hybrid UAVs make use of the VTOL capabilities of multicopter in

vertical phases but are also be able to have the efficiency of a wing in cruise. These are achieved either

with a change in attitude and control system or a modification to the standard geometry of the drone.

With hybrid UAVs, easier and more efficient operation in different flight phases becomes possible.

6.2. Variable Skew Quad Plane (VSQP)
The Variable Skew Quad plane is a hybrid UAV designed by the Micro Air Vehicle Laboratory (MAVLab)

at TU Delft. The VSQP has two modes of operation - hover and cruise. In hover mode, the drone

operates as a quadrotor and is controlled using differential thrust attitude. In the cruise mode, the

drone operates as a quad-plane and achieves forward speed with a push propeller located at the tail.

The VSQP does not have a fixed wing configuration but instead utilizes the rotations concept seen in the

Oblique Flying Wing (OFW) plane [27]. To deploy the wings, a central rotating pivot is used while the

lateral rotors are folded into the fuselage. This design offers better gust rejection in hover mode and

lower drag during cruise mode, while also providing improved packability and ease of operation.

48

6.3. Guidance and Control Scheme of the VSQP 49

6.2.1. Model Configuration
In this section, configuration of the VSQP with different skew angles are given along with the actuator

placements on the body. Figure 6.1 shows the VSQP in hover mode on the left with a skew angle equal to

0 degrees. In this mode, wings align with the body making it more stable in case of external disturbances

and allowing it to accomplish a safer landing. Two of the motors are mounted longitudinally on

the fuselage, and two are on the arms extending outwards, placed perpendicular to the wing. The

configuration for the skew angle set to 90 degrees is shown on the right in Figure 6.1, corresponding

to forward flight mode. In opposite to the hover mode, the motors that were previously extending

outwards are folded into the fuselage. This is done for the purposes of reducing aerodynamic drag,

making the flight in forward mode more efficient.

20
23

 I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 U

nm
an

ne
d

A
ir

cr
af

t S
ys

te
m

s
(I

C
U

A
S

)
| 9

79
-8

-3
50

3-
10

37
-5

/2
3/

$3
1.

00
 ©

20
23

 I
E

E
E

 |
D

O
I:

 1
0.

11
09

/I
C

U
A

S5
79

06
.2

02
3.

10
15

62
89

20
23

 I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 U

nm
an

ne
d

A
ir

cr
af

t S
ys

te
m

s
(I

C
U

A
S

)
| 9

79
-8

-3
50

3-
10

37
-5

/2
3/

$3
1.

00
 ©

20
23

 I
E

E
E

 |
D

O
I:

 1
0.

11
09

/I
C

U
A

S5
79

06
.2

02
3.

10
15

62
89

Figure 6.1: Configuration of the VSQP with different skew angles

For the guidance and stabilization of the VSQP, a total of 10 actuators are employed in the model.

The placement of these actuators is shown in Figure 6.2 and the table 6.1 accompanying this figure listed

the actuators with indications for the ones capable of rotations.

Figure 6.2: Actuators of the VSQP

Table 6.1: Actuators and Their Functions

Actuator number Actuator name Rotating

1 Front Motor

2 Right Motor ✓
3 Back Motor

4 Left Motor ✓
5 Left Aileron ✓
6 Right Aileron ✓
7 Elevator

8 Rudder

9 Push Motor

10 Wing Rotation Servo

6.3. Guidance and Control Scheme of the VSQP
This section describes the guidance and control architecture of the VSQP by providing the formulation

of the ANDI controller with the details of the control allocation algorithm for the Variable Skew Quad

Plane.

6.3.1. INDI
The control scheme of the VSQP applies the main principles of Incremental Nonlinear Dynamic Inversion

(INDI) for its stabilization and guidance due to the robustness and low model dependency of INDI

compared to other conventional control methods. INDI is an incremental control approach that is

derived from Nonlinear Dynamic Inversion (NDI) which inverts the nonlinear dynamics to obtain

a linear representation of the system. However, NDI highly relies on the model, and its accuracy is

affected by how well in detail the model is designed. Hence, to compensate for the inaccuracies in the

model and consider the unmodeled disturbances, INDI as a sensor-based approach is commonly used

for controlling UAVs.

6.3. Guidance and Control Scheme of the VSQP 50

Formulation of INDI
Consider the following general nonlinear system:

¤𝑥 = 𝑓 (𝑥, 𝑢) (6.1)

Using Taylor’s expansion, the system can be linearized at the current time step indicated by the

subscript ’0’ as it is shown in Eq. 6.2 and Eq. 6.3.

¤𝑥 ≃ 𝑓 (𝑥0 , 𝑢0) +
𝜕 𝑓 (𝑥, 𝑢)

𝜕𝑥

����
𝑥=𝑥0 ,𝑢=𝑢0

(𝑥 − 𝑥0) +
𝜕 𝑓 (𝑥, 𝑢)

𝜕𝑢

����
𝑥=𝑥0 ,𝑢=𝑢0

(𝑢 − 𝑢0) (6.2)

¤𝑥 ≃ ¤𝑥0 + 𝐹 (𝑥0 , 𝑢0) (𝑥 − 𝑥0) + 𝐺 (𝑥0 , 𝑢0) (𝑢 − 𝑢0) (6.3)

where the variables 𝑥0 , ¤𝑥0 and 𝑢0 are obtained by the available measurements coming from the

sensors, the parameter 𝐹 represents the dynamics of the system and the parameter 𝐺 is defined as the

control effectiveness matrix.

Assuming that the time separation principle holds for the system indicating that the actuators

are fast enough such that the system dynamics 𝐹 (𝑥0 , 𝑢0) (𝑥 − 𝑥0) can easily be ignored, the following

relationship in Eq. 6.4 could be written:

¤𝑥 ≃ ¤𝑥0 + 𝐺 (𝑥0 , 𝑢0) (𝑢 − 𝑢0) (6.4)

To calculate the control inputs, a virtual control input 𝑣 should be defined and information regarding

the control effectiveness matrix should be available. Replacing the virtual control input with the

derivative of the state ¤𝑥 and inverting the control effectiveness matrix 𝐺, the following incremental

control input is found.

𝑢 = 𝐺−1 (𝑣 − ¤𝑥0) + 𝑢0 (6.5)

6.3.2. Adaptive INDI (ANDI)
Although INDI is highly efficient, it has certain limitations especially in dealing with delays within

the system that are often caused by measurements and actuators and adapting to varying control

effectieveness matrix, especially changes in parameters such as moment of inertia of the vehicle, the type

of motors and propellers etc. To account for these parameters and overcome the issues associated with

INDI, adaptive scheme for estimating the control effectiveness online based on a Least Mean Squares

(LMS) is proposed by Ewoud et all. [55].

In the LMS formulation, the difference between the expected acceleration and measured acceleration

is first calculated and based on the calculated error the control effectiveness is incremented accordingly.

An example implementation of the LMS is shown in Eq. 6.6 and Eq. 6.7.

𝑮(𝑘) = 𝐺(𝑘 − 1) − 𝝁
2

(
𝑮(𝑘 − 1)

[
Δ𝜔 𝑓

Δ ¤𝜔 𝑓

]
− Δ ¤Ω 𝑓

) [
Δ𝜔 𝑓

Δ ¤𝜔 𝑓

]𝑇
𝜇1 (6.6)

𝐺 =
[
𝐺1 𝐺2

]
(6.7)

Here, 𝝁1 and 𝝁2 are the adaptation constants that determine the stability and the rate of adaptation

of the system. Faster convergence could be obtained by making these parameters larger until the

theoretical limit [25].

As it is clear from the implementation of the LMS, control effectiveness will not change if the inputs

are constant and in case there is more excitation of the system, faster adaptation will be achieved.

Results in [55] showed that adaptive INDI performs better by reacting faster to the uncertainties in

the model and having a high disturbance rejection performance.

6.4. One-loop ANDI for the VSQP 51

Control Allocation
Control allocation is defined as the distribution of the control effort over actuators which are higher in

number that than the number of controlled variable. This is a critical problem for the VSQP since it is

an overactuated system that necessitates the use of control allocation for optimal use of its resources

(control surfaces). Smeur and Höppener [54] underlines the importance of control allocation for systems

that are under the restriction of control saturation as these saturations may often lead to undesired

behaviour.

Previously, INDI control law is given as follows:

𝑢 = 𝐺−1 (𝑣 − ¤𝑥0) + 𝑢0 (6.8)

.

While this control law is highly effective, it does not guarentee the desired behaviour in case there

is saturation exists on the control inputs. This may lead to situations such as insufficient moment

generation which is of a high importance. To overcome this and similar issues that arise within simple

INDI control, a control allocation based on Weighted Least Squares formulation from Harkegard [24] is

adapted by Ewoud et all. Two separate cost functions for the purpose of solving two separate objectives

which are minimizing the error in the control objective and penalizing the inputs of the actuators are

given in Eq. 6.9.

𝐶(𝑢) = ∥𝑊𝑢 (𝑢 − 𝑢𝑑)∥2 + 𝛾 ∥𝑊𝑣(𝐺𝑢 − 𝑣)∥2

=

(𝛾
1

2𝑊𝑣𝐺
𝑊𝑢

)
𝑢 −

(
𝛾

1

2𝑊𝑣𝑣
𝑊𝑢𝑢𝑑

)

2

,
(6.9)

where𝑊𝑣 is the diagonal weighting matrix for the control objective, and𝑊𝑢 is the diagonal weighting

matrix for the inputs. The distinction between these two objective functions is made via the scale

factor 𝛾 >> 1. For conveience, the given objective objective function is reformulated as a quadratic

programming problem as follows:

𝐴 =

[
𝛾

1

2𝑊𝑣 (𝐺1 + 𝐺2)
𝑊𝑢

]
and 𝑏 =

[
𝛾

1

2𝑊𝑣𝑣
𝑊𝑢𝑢𝑑

]
. (6.10)

Now that the problem is formulated in the form of a quadratic function the solution could be

obtained through the active set method for which the detailed explanation could be found in [24].

6.4. One-loop ANDI for the VSQP
Previously, INDI-based approach has been proposed for controlling the VSQP [12]. Models for the

actuator effectiveness and lift are developed as a function of the skew angle. An automatic controller

that can adjust the skew angle is derived and the whole system was tested and verified through wind

tunnel tests completed at the Open Jet Facility (OJF) at TU Delft.

The current model of the VSQP incorporates a structure that is one step advanced than the INDI

based system. The model combines the adaptive INDI 6.3.2 with the WLS based control allocation 6.3.2

and apply them as a one-loop structure instead of repeating the inner optimization routing in the outer

loop as previously done in [31]. By doing so, it is expected to have a robust controller that can distribute

the control load optimally throughout the control surfaces of the VSQP. The diagram showing the main

elements of the guidance and control loop is given in Figure 6.3 below.

The WLS block takes the virtual control parameters of which values are calculated in the error

controllers for the position and attitude with the gains set according to the desired response of the

drone. Error controllers ensure that the reference models are being tracked well. In addition to the

error controllers, reference models are used to shape the given desired set point into reference signals

that are compatible with the characteristics of the controller.

6.5. Conclusion and Discussion 52

Error Controller
Attitude

Error Controller
Position

Reference Model
Position

WLS

Desired
Waypoint
Position

Reference Model
Attitude

Actuators Plant

Figure 6.3: Guidance and Control Scheme of the VSQP

+ | - + | - + | - + + +

Figure 6.4: Reference model for position

6.5. Conclusion and Discussion
In this chapter, the details regarding the Variable Skew Quad Plane including the model configuration,

guidance and control scheme, and the one loop ANDI structure has been given. Understanding the

model configuration is crucial for identifying the geometry changes during flight. The VSQP lands with

its skew angle set to zero, operating in a complete hover mode. This is important for identifying the

active actuators during flight, which in turn affects the modeling procedure.

The VSQP incorporates a one-loop ANDI controller, which consists of several sub-elements such

as reference models, error controllers, an optimization routine block and the drone itself. The main

motivation for ANDI is to address system delays and adapt to varying effectiveness matrix parameters.

With ANDI, a more compact and robust controller is achieved for the VSQP. While the controller is

highly effective in control allocation and robust to external disturbances, the guidance part is open

to further advancements since it heavily relies on the existing fixed-structure of the reference models

and error controllers. Moreover, the input to the controller is entirely determined based on the given

position waypoint. In the context of landing on moving platforms, this would push the drone to

follow a pattern similar to that of the platform, which may not always be the most desirable approach.

Understanding the existing guidance and control scheme of the VSQP is important to identify areas for

further improvement.

Based on given the information provided in the previous chapters, the dynamic nature of landing on

a moving platform requires flexibility in the action space and the ability to make smarter decisions. As

discussed in Chapter 5, this can be achieved through the use of learning based approaches. Reinforcement

learning, in this context, becomes an effective alternative due to its ability to changing environmental

6.5. Conclusion and Discussion 53

conditions and make real-time adjustments to improve landing accuracy and safety.

For the given model, reinforcement learning based guidance system could offer the followings:

• Adaptability: Unlike the fixed gain structure of reference models and error controllers, reinforce-

ment learning learns from the response of the whole system, thus dynamically adjusting itself to

environmental changes.

• Smartness: During the training process, neural networks are exposed to thousands of scenarios

with varying parameters. The reinforcement learning algorithm can optimize the entire landing

process, leading to more efficient landings.

• Robustness: A combined approach utilizing the reinforcement learning framework with the inner

controller still makes use of the controller’s capabilities while reinforcement learning in guidance

also adapts based on how the controller reacts to given inputs. Although the system’s optimality

level is currently restricted by the controller, the robustness property is preserved.

7
Preliminary Analysis

The preceding Chapters 4 and 5 have discussed the autonomous landing problem for UAVs in the context

of its sub-phases and introduced the applications of machine learning for optimal control problems,

with a focus on reinforcement learning. The literature review has shown that reinforcement learning has

a great potential to replace the existing guidance model of the VSQP with a more advanced architecture

that is capable of providing further flexibility and robustness.

The current guidance and control structure of the VSQP, while fully implemented in Simulink, is

not feasible to use for training purposes. As given in Chapter 6, the control structure incorporates a

Weighted Least Squares Algorithm within the ANDI controller. This optimally distributes the control

load among the actuators of the VSQP and stabilize the drone in all flight conditions. While the model

is already highly detailed, this separate optimization routine running inside the loop adds another layer

of complexity, necessitating a simpler model.

To incorporate the reinforcement learning framework in the loop, we must first identify the system’s

inputs and outputs. Given the general guidance and control scheme of the VSQP and specifics of the

reference model in the previous section, both the response of the VSQP and the ANDI controller will be

simplified as a first step in the preliminary analysis. Consequently, the states of the VSQP will be fed

back to the reinforcement learning framework and the computed optimal control inputs are going to

be the corresponding acceleration inputs. The overall diagram for the black box model incorporated

system is shown in Figure 7.1.

Having obtained the associated models for the drone and the controller, the next step is fully

implement these models in Python and compare the response of the system with the output from the

Simulink. This step is important since there is possibility of encountering numerical issues while solving

the related differential equations.

The modelling of the VSQP only makes up to half of the framework since the landing platform should

also be represented with its corresponding dynamics. While the literature offers various approaches for

ship modelling, ranging from high-fidelity models to simple sinusoidal signals, and this study opts for

the latter. Sinusoidal signals, while not an exact representation, capture the general characteristics of real

ship motion, making the problem applicable to a wide variety of cases that may involve different models

for the ship. This approach also enhances the flexibility and adaptability of the proposed reinforcement

learning framework, which is crucial for its generalizability.

Note that, as part of the preliminary analysis, the reinforcement learning-based framework was

initially conducted for the Parrot Bebop 1 with a stationary platform consideration. However, these

details are not included in this chapter. For a better flow in the report, the details and results of the

simulations are provided in Appendix A.

7.1. Drone Model
The model details of the VSQP with its guidance and control structure is given in Chapter 6. As is

mentioned in the section introduction, certain level of simplification is required to model the input-

output relationships of the black box model and ANDI controller. The next section will describe the

main steps into incorporating the black box model in the loop.

54

7.1. Drone Model 55

7.1.1. Incorporating the black box model in the loop
The simplified diagram for the reinforcement learning framework is shown in Figure 7.1. Here box

number 1 denotes the black box model and contains the deep neural network structure whereas box

number 2 illustrates the response of the vehicle to given control inputs by the controller. The black box

model takes the states of the VSQP as inputs and generates the corresponding optimal acceleration

inputs which are denoted as 𝑎𝑑𝑒𝑠 . The response of the vehicle, symbolized as 𝑎𝑟𝑒𝑎𝑙 corresponds to the

actual accelerations resulting from the applied control inputs. To effectively map the given commands

to the actual accelerations for the training, a simplified model is obtained. Midterm ReviewGuidance and Control Scheme of the VSQP

Error Controllers

Reference Model
Attitude

Reference Model
Position

WLS Actuators Plant

Desired
Waypoint
Position

1 2

ANDI + PlantBlack Box Model

1

2

Figure 7.1: Incorporating the black box model in the loop

7.1.2. Transfer function for the acceleration response
To obtain the transfer function from 𝑎𝑑𝑒𝑠 to 𝑎𝑟𝑒𝑎𝑙 , a representation of the reference model along with the

controller input-output relationship is required. In a previous study [15] where reinforcement learning

is used in combination with an Incremental Nonlinear Dynamic Inversion (INDI) based controller,

a first-order transfer function was used to model the controller’s response to given attitude control

signals. However, this approach is not directly applicable to the VSQP as it is an overactuated system

that incorporates a separate optimization routine for control allocation. This routine complicates the

overall framework as all actuators have an effect on the acceleration response of the VSQP.

The Weighted Least Squares algorithm based control allocation is explained in detailed in Chapter 6.

The main purpose of the WLS is to distribute the overall control load among the actuators while being

objective to the equations Eq.6.9.

In contrast to the conventional approach, the WLS also uses the Euler angles 𝜙 and 𝜃 as its virtual

actuators. This approach allows a greater control over the response of the drone as the "optimal"

reference values continuously fed back to the attitude reference model at each time step. However,

while these angles within the loop get rid of the necessity to use a cascaded structure but instead an one

loop one, they are also the slowest actuators among the others. This implies that the response of the

controller is inherently limited by the dynamics of these angles. Therefore, only attitude dynamics are

gonna be used in the simplification of the controller’s response.

7.1. Drone Model 56

Actuators

Reference
Model

Attitude

WLS

m
F

m
R

m
B

m
L

m
P

de dr da df ph
i

th
et
a

Figure 7.2: Actuators used in the controller

The actuators of the VSQP including the angles 𝜙 and 𝜃 are shown in Figure 7.2 and the description

of the actuators are indicated in Table 7.1.

Table 7.1: The VSQP Actuator Descriptions

Actuator Description

mF Front Motor

mR Right Motor

mB Back Motor

mL Left Motor

mP Pusher

de Elevator Deflection

dr Rudder Deflection

da Aileron Deflection

df Flap Deflection

phi Roll Angle

theta Pitch Angle

Table 7.2: Coefficients of the reference models and the error controllers

Actuator Description Value

𝑘𝑝𝑜𝑠𝑒𝑐 Position Error Controller Gain 2.8

𝑘𝑣𝑒𝑙𝑒𝑐 Velocity Error Controller Gain 5.9

𝑘𝑎𝑐𝑐𝑒𝑐 Acceleration Error Controller Gain 4.23

𝑘𝑝𝑜𝑠𝑟𝑚 Position Reference Model Gain 0.2

𝑘𝑣𝑒𝑙𝑟𝑚 Velocity Reference Model Gain 0.6

𝑘𝑣𝑒𝑙𝑟𝑚 Acceleration Reference Model Gain 1.8

𝑘𝑎𝑟𝑚 Attitude Reference Model Gain 2.0

𝑘𝑟𝑟𝑚 Angular Rates Reference Model Gain 6.1

𝑘𝑟𝑑𝑜𝑡𝑟𝑚 Angular Accelerations Reference Model Gain 18.4

𝑘𝑎𝑒𝑐 Attitude Error Controller Gain 2.0

𝑘𝑟𝑒𝑐 Angular Rates Error Controller Gain 6.1

𝑘𝑟𝑑𝑜𝑡𝑒𝑐 Angular Accelerations Error Controller Gain 18.4

With the attitude reference model, transfer function from desired to real dynamics are represented

in Eq. 7.3, where parameters 𝑝1, 𝑝2 and 𝑝3 are all determined as 6.14. This reference model is obtained

7.1. Drone Model 57

under the assumption of first order dynamics actuators, correct modelling of actuator dynamics and

effectiveness, non-saturated actuators and adaptive INDI controller.

𝐻3𝑟𝑑(𝑠) =
𝑎𝑡𝑡(𝑠)
𝑎𝑡𝑡𝑑𝑒𝑠(𝑠)

=
𝑝1

𝑠 + 𝑝1

𝑝2

𝑠 + 𝑝2

𝑝3

𝑠 + 𝑝3

=
𝑝1𝑝2𝑝3

𝑠3 +
(
𝑝1 + 𝑝2 + 𝑝3

)
𝑠2 +

(
𝑝1𝑝2 + 𝑝1𝑝3 + 𝑝2𝑝3

)
𝑠 + 𝑝1𝑝2𝑝3

(7.1)

The simplified control diagram that includes the attitude dynamics for the actuators is provided

in Figure 7.3. Here 𝑝𝑜𝑠𝑟𝑒 𝑓 , 𝑝𝑜𝑠𝑑𝑟𝑒 𝑓 , 𝑝𝑜𝑠2𝑑𝑟𝑒 𝑓 , 𝑝𝑜𝑠3𝑑𝑟𝑒 𝑓 represent the position, velocity, acceleration and

jerk reference signals, 𝑘𝑝𝑜𝑠𝑒𝑐 is the corresponding error controller gain, respectively. In order to use the

attitude dynamics in the control law, the corresponding angular frequency 𝜔𝑇 is calculated as follows.

𝒑𝒐𝒔𝒓𝒆𝒇
𝒌𝒑𝒐𝒔𝒆𝒄

𝒑𝒐𝒔𝒅𝒓𝒆𝒇
𝒌𝒑𝒐𝒔𝒆𝒄

𝒑𝒐𝒔𝟐𝒅𝒓𝒆𝒇
𝒌𝒑𝒐𝒔𝒆𝒄

𝒑𝒐𝒔𝒅

𝒑𝒐𝒔𝟐𝒅

𝒑𝒐𝒔𝟑𝒅𝒓𝒆𝒇

𝟏/(𝑩𝒘𝑻) Attitude Dynamics

𝒑𝒐𝒔

Figure 7.3: Simplified control diagram with attitude dynamics

Using Taylor’s series approximation for small s:

𝑒−𝜏𝑠 ≈ 1 − 𝜏𝑠 =
1

𝑒𝜏𝑠
=

1

1 + 𝑒𝜏𝑠 (7.2)

The attitude transfer function could be written as in Eq. 7.3 with the information that all coefficients

are equal to each other.

𝐻3𝑟𝑑(𝑠) = 𝑒
−1

𝑝
1

𝑠
𝑒

−1

𝑝
1

𝑠
𝑒

−1

𝑝
1

𝑠
= 𝑒

−3

𝑝
1

𝑠
=

1

1 + 3

𝑝1

𝑠
(7.3)

Considering the general form of a first order system in Eq. 7.4

𝐺(𝑠) = 𝑏

𝑠 + 𝑎 → 𝐾

𝜏𝑠 + 1

(7.4)

where the coefficients a and b are given as

𝑎 =
1

𝜏
𝑏 =

𝐾

𝜏
. (7.5)

Replacing 𝑝1 with 𝑝, The cut-off frequency for the third order system is found as:

𝜔𝑇 =
𝑝1

3

=
6.14

3

= 2.14𝐻𝑧 (7.6)

This value corresponds to the in the given simplified control diagram Figure 7.3 and allows attitude

dynamics to be used in the control law.

With coefficients of the error controllers and the reference models given in Table 7.2, the transfer

function for the VSQP is written in Eq. 7.7.

7.1. Drone Model 58

This transfer function maps the desired acceleration to the actual values and provide a way to

represent the response of the controller and the drone altogether. The intermediate steps for obtaining

the given transfer function is given in Appendix B.

𝑎𝑐𝑐𝑡 𝑓 =
206𝑠3 + 861.1𝑠2 + 287𝑠 + 95.68

𝑠6 + 20.22𝑠5 + 143.3𝑠4 + 682𝑠3 + 1021𝑠2 + 340.2𝑠 + 95.68

(7.7)

The step response and bode diagram of the transfer function are given in Figure 7.4.

Figure 7.4: Step Response and Bode diagrams for the acceleration transfer function

Upon applying a step input, the system reacts quickly in the beginning of the step response graph.

This is due to the higher-order terms in the numerator of the transfer function. The response then

continuous to rise to the final value of 1 without having any overshoot but a slight change in the response

characteristics. Overall, this indicates that the system is well-damped, meaning that is does not oscillate

or have an exceeding over the top before settling down.

The initial set of simulations completed with the sixth-order transfer function led to some numerical

issues in the beginning of the training which lead to a certain level simplification in the transfer function.

Through pole-zero simplification method which is shown in Figure 7.5 , an equivalent fourth-order transfer

function obtained as given in Eq 7.8.

𝑎𝑐𝑐4𝑡 𝑓 =
−9.477𝑒 − 07𝑠3 + 0.0008596𝑠2 + 203.6𝑠 + 793

𝑠4 + 19.89𝑠3 + 139.5𝑠2 + 633𝑠 + 793.2
(7.8)

7.2. Ship Model 59

Figure 7.5: Step Response and Bode diagrams for the acceleration transfer function

The comparison between the fourth and sixth order transfer functions in step response is provided

in Figure 7.6.

Figure 7.6: Step Response comparison of the 4th order with the 6th order transfer function

7.2. Ship Model
A ship model is required to represent the characteristics of a moving platform. To have a better flexibility

and adaptability in the representation of the platform motion, sinusoidal signals that are governed by

specific frequencies, amplitudes, and initial conditions are used to in the simulations.

The following state elements in Eq. 7.9 are modelled with the corresponding sinusoidal signals.

p𝑖(𝑡) = sin (𝜔𝑖𝑡) · 𝐴pos ,𝑖 + 𝑃start ,𝑖

v𝑖(𝑡) = cos (𝜔𝑖𝑡) · 𝐴pos ,𝑖 · 𝜔𝑖

𝜙(𝑡) = sin (𝜔roll 𝑡) · 𝜋/𝐴roll

𝜃(𝑡) = sin

(
𝜔pitch 𝑡

)
· 𝜋/𝐴pitch

𝜓(𝑡) = sin

(
𝜔yaw 𝑡

)
· 𝜋/𝐴yaw

(7.9)

7.3. Conclusion and Discussion 60

The given equations describe the dynamic behaviour of an object’s position, velocity and orientation

in terms of time. Here, 𝜔𝑖 is the angular frequency of oscillation, 𝐴𝑝𝑜𝑠,𝑖 is the amplitude of this oscillation,

and 𝑃𝑠𝑡𝑎𝑟𝑡,𝑖 represents the initial position. This equation indicates that the position oscillates sinusoidally

over time around an initial starting point.

For the velocity, the equation cos (𝜔𝑖𝑡) · 𝐴pos ,𝑖 · 𝜔𝑖 indicates the velocity oscillates over time in a

cosine pattern with its phase shifted by 𝜋/2 from the wave of the position. And the amplitude of the

velocity is further scaled by the term 𝜔𝑖 .

The attitude of the ship is characterized by its roll, pitch and yaw angles which are also represented

with a set of sinusoidal signals. For the Euler angles, 𝐴 and 𝜔 represents the angular frequencies

and amplitude factors, respectively. These equations also indicate that the attitude of the drone may

also oscillate sinusoidally over time, each with its respective frequency and amplitude to describe the

rotational motion of the platform.

These parameters allow to select a range of frequencies and amplitudes to obtain a wide motion

range for the platform. While this is extremely beneficial during training which is exposing the network

to different kind of signals, the real ship motion incorporates characteristics that are more complex

than the regular sinusoidal signals. Therefore, a further modelling on the noise characteristics of the

platform is required.

Noise Characteristics
To resemble the real-ship motion, Gaussian noise and random walk were added to the modelled signals

with the addition of mixed frequency component 𝑓𝑚𝑖𝑥 and low pass filter coefficients 𝛼. While the 𝑓𝑚𝑖𝑥
adds a variation over the base sinusoidal that breaks the predictable pattern of a signal, the random

components introduced band limited noise to the data. A sample for the gaussian noise and the random

walk variation is given in Figure 7.7.

Figure 7.7: Gaussian Noise and Random Walk

7.3. Conclusion and Discussion
In this chapter, we provided a preliminary analysis for integrating a reinforcement learning framework

into the Variable Skew Quad Plane (VSQP) control system. The current guidance and control structure

of the VSQP, implemented in Simulink, incorporates a Weighted Least Squares (WLS) algorithm within

an Adaptive Nonlinear Dynamic Inversion (ANDI) controller. While this structure optimally distributes

control loads among the VSQP’s actuators, it introduces complexity that makes it impractical for training

reinforcement learning models. Therefore, a simplified model of the VSQP and its controller was

developed for preliminary analysis.

To incorporate reinforcement learning, we identified the system’s inputs and outputs, simplifying

the ANDI controller and the VSQP model. This simplification involved representing the complex

control dynamics with a transfer function, making the system feasible for training reinforcement

learning models in Python. Initial comparisons between the simplified model and the detailed Simulink

implementation were conducted to ensure accuracy and stability.

The ship model, representing the landing platform’s dynamics, was also simplified using sinusoidal

signals. While these signals do not fully capture the complexity of real ship motion, they provide a

flexible and adaptable representation suitable for training the reinforcement learning framework. The

7.3. Conclusion and Discussion 61

introduction of noise characteristics, including Gaussian noise and random walk variations, further

enhanced the model’s realism.

Overall, this preliminary analysis lays the foundation for integrating reinforcement learning into the

VSQP control system. The next steps involve fully implementing these models in Python, conducting

detailed simulations, and refining the reinforcement learning framework to achieve optimal performance

in dynamic and uncertain environments. Through this approach, we aim to develop a robust and

adaptable control system for the VSQP, capable of autonomous landing on moving platforms.

8
Conclusion

In this work, the main objective was to develop an optimal guidance policy for landing the Variable

Skew Quad Plane by exploring learning-based approaches. Research questions were formulated to

shape the structure of the thesis, including the literature review, methodology and analysis.

Research Questions (RQ-AL) - Autonomous landing for UAVs

RQ-AL 1. How is the autonomous landing procedure is defined in the literature?

RQ-AL 2. What are biggest challenges associated with autonomous landing?

RQ-AL 3. What type of methods are used for the landing problem and what conventional

methods lack so that it creates a specific need for the learning based approaches?

The first set of questions were addressed in Chapter 4, focusing on understanding the autonomous

landing problem through its sub-phases and specific challenges, particularly in ship landings. The

literature review revealed that autonomous landing is significantly more complex than other flight

phases, involving several sub-phases, each with specific requirements.The landing operation typically

begins with a target detection algorithm to identify the platform and extract useful information for the

guidance and control architecture. Common studies in the literature included vision-based systems

incorporating cooperative, feature-based, and machine learning-based solutions. In some cases, vision-

based systems were combined with GPS/INS systems for higher accuracy in state estimation. Although

target detection and relative state estimation were not covered in this thesis, understanding these phases

provided insights into the essential state information needed for a fully defined landing problem.

The challenges of autonomous landing were particularly highlighted in the context of maritime

operations. Generally, these challenges arise from real-time massive information processing, limited

onboard resources, and the need for higher maneuverability in the air. While ship landings share similar

characteristics with other landing problems, the dynamic operational environment plays a critical role

in distinguishing them. As discussed in the subsequent chapters, this specificity has strongly influenced

the solution methods proposed for landing on moving platforms.

Studies have shown that classical guidance and control algorithms for tracking and landing tasks

primarily include PID controllers, model predictive control, and robust flight techniques. While each

method effectively handles the landing task in specific ways, they also have several drawbacks, making

them challenging to apply to dynamic landing problems. These drawbacks include the fixed gain

structure of PID controllers, modeling challenges, and the computational expense of more advanced

approaches.

With these research questions, an introduction to the problem has been provided, and a motivation

for more advanced learning-based approaches has been established.

62

63

Research Questions (RQ-ML) - Machine Learning for Optimal Control

RQ-ML 1. Which machine learning technique suits better for landing the VSQP on a moving

platform?

RQ-ML 2. How is an objective function is structured for the landing problem?

RQ-ML 3 What metrics are used to asses the performance of the landing?

The second set of questions was addressed in Chapter 5, which thoroughly explained the machine

learning techniques and their relation to optimal control and autonomous landing problems. These

questions aimed to determine the best machine learning technique for this type of landing problem,

focusing on the methodology part of the thesis. The methods investigated were primarily supervised

and reinforcement learning, as these were the most commonly used in the literature. The progression

moved from a general description of optimal control theory to supervised learning and finally to

reinforcement learning.

It was observed that supervised learning approaches heavily depended on numerical methods,

requiring a complete formulation of the optimal control problem. This reliance sometimes led to

issues with instability and initial conditions. Additionally, the dynamic nature of the problem made it

extremely challenging to develop a model that accurately represents the complex mixed dynamics in the

final phase of landing. Consequently, studies have leaned towards using reinforcement learning due to

its ability to adapt to varying and unknown dynamics and disturbances. Although there were not many

studies available for this specific combination, they were helpful in understanding the design process of

an objective function for the landing problem. Each study proposed a unique objective function, and it

was observed that they followed a certain pattern where the specification of different elements within

the reward was highly dependent on the height element. While this approach yielded successful results,

it also restricted the problem and conflicted with the main idea of defining the reward function for what

to solve not how to solve it. In this study, reward combinations contained similar parameters to those in

the literature but did not strictly limit the drone’s behaviour based on its altitude.

For the assessment of the landing performance, different performance metrics were used. The

first metric checked was the success rate of the landing, essentially to see if the drone landed or not.

Then, trajectory comparisons were made with a benchmark controller to indicate that the errors for the

reinforcement learning-based framework were smaller in variations and eventually stabilized around

zero. Some studies further classified the error element and analysed the performance in the horizontal

and vertical planes separately. This classification was crucial to our study as it shaped the way we

designed the reward function in terms of how we weighted different motion elements.

Research Questions - Learning based Problem Formulation for the VSQP

RQ-PF 1. How the black box model should be integrated into the loop?

RQ-PF 1.1. Considering the existing control architecture and characteristics of the given

landing problem, what should be the inputs and outputs to the system?

RQ-PF 1.2. How the response of the controller will be modelled for an overactuated

system such as the VSQP, especially for training purposes?

RQ-PF 2. How the landing platform will be modelled for the simulations?

RQ-PF 2.1. What states will be considered for the platform?

RQ-PF 2.2. How is the model for the target platform will be integrated with the rest of the

system (drone)?

With the research questions RQ-PF, the purpose was to define the methodology and its specifications.

The first question aimed to identify the inputs and outputs of the system and integrate this relationship

with the rest of the control loop. At the beginning of the study, one of the main objectives was to ensure

that the outputs from the black box model were the optimal acceleration inputs. This required obtaining

the actual response of the vehicle along with the response of the controller. This was a highly challenging

task due to the overactuated nature of the VSQP and the existing control allocation algorithm. It

was essential to have the state parameters, particularly position, velocity, and acceleration, which all

depended on the internal structure of the ANDI controller. The model of the VSQP was simplified

64

under the assumption that attitude dynamics act as the only actuators since they are the slowest among

all, limiting the overall response of the vehicle. The obtained model was further simplified to avoid

numerical instabilities during the training process.

The motion of the ship is characterized by sinusoidal signals governed by specific frequencies,

amplitudes, and initial conditions. Using sinusoidal signals instead of one specific dynamic model

helped to generalize the problem and added more value to the results in terms of generalizability..

Research Questions - Evaluation of the proposed framework

RQ-EV 1. How could the proposed solution (ex.reinforcement learning) be verified and

validated?

RQ-EV 2. What type of performance metrics would be applicable to the designed framework?

RQ-EV 3. Can the proposed solution be compared to a benchmark controller and if so, what

would be the choice for it?

The last set of questions addressed the verification and validation of the proposed approach. The

verification of the reinforcement learning framework was conducted through statistical analysis of the

training data set, while validation was completed using real ship data. These analyses demonstrated that

the proposed approach could still achieve successful landings, even though the real data incorporated

dynamics not present in the training set. To assess performance, three metrics were designed and used:

touchdown velocity, deviation from the center, and flight duration. These parameters highlighted how

different reward functions relate to each other and shaped the final, most effective version among them.

Finally, the performance of the reinforcement learning framework was compared with PID controllers

for further validation. While PID controllers are simple and highly effective in a variety of scenarios,

they often resulted in crashes rather than successful landings due to their direct approach. In contrast,

the reinforcement learning-based framework was able to learn the pattern of the problem and act

effectively by incorporating the nonlinear relationship between the drone and the platform. Landings

with reinforcement learning showed lower touchdown velocities, often leaving a margin for error. In

almost all cases, landings were completed within the desired duration, with the agent waiting for

optimal conditions to perform the landing.

Future work for this topic may involve several prospects. Firstly, this thesis only addresses the

tracking and landing part of the entire autonomous landing process. This means that target detection or

obtaining relative state estimation are not considered. Integrating vision-based systems with GPS/INS,

as suggested in the literature, would add complexity to the problem and may require a different

approach to input modeling and training.

Furthermore, complete simulation and real data integration into the system would allow for real-life

experiments and provide an opportunity to test the system’s robustness under external disturbances

such as wind gusts

While reinforcement learning was proposed as a solution to the problem, the focus of the thesis

was not solely on this. It first addressed questions regarding incorporating a complex model into

the structure, modeling ship wave motions with generalizable sinusoidal signals for different motion

considerations using only one specific type of reinforcement learning algorithm. As the technique was

effective from the beginning for both stationary and moving platforms, there was no need to test and

compare state-of-the-art deep reinforcement learning algorithms, as this was not one of the study’s

initial objectives.

Modifications to the framework would not only involve changing the main algorithm but also the

structure of the neural network. Real ship motion incorporates dynamics that could be mimicked with

mixed frequency sinusoidal signals. Therefore, a recurrent neural network structure could identify the

motion pattern and make predictions from that point. Predicting the states of the ship would allow

future states to be incorporated into the model, giving reinforcement learning a chance to develop a

smarter policy. Lastly, the proposed structure was validated with PID controllers due to their simple yet

efficient structure. By setting aside complexity and computational expense considerations, the proposed

approach could be further tested against more advanced controllers such as model predictive control.

This thesis approached the autonomous landing problem from a learning-based perspective and

addressed the challenges associated with the dynamic nature of landing using reinforcement learning.

With this work, reinforcement learning showed great promise as an optimal guidance strategy, achieving

65

safe and precise landings of the VSQP and contributing to extending the operational capability of UAVs

for autonomous landing.

References

[1] David Abel. “A theory of abstraction in reinforcement learning”. In: arXiv preprint arXiv:2203.00397
(2022).

[2] Shadi Abujoub, Johanna McPhee, and Rishad A Irani. “Methodologies for landing autonomous

aerial vehicles on maritime vessels”. In: Aerospace Science and Technology 106 (2020), p. 106169.

[3] Kai Arulkumaran et al. “Deep reinforcement learning: A brief survey”. In: IEEE Signal Processing
Magazine 34.6 (2017), pp. 26–38.

[4] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. “Learning to act using real-time dynamic

programming”. In: Artificial intelligence 72.1-2 (1995), pp. 81–138.

[5] Andrew G Barto, Richard S Sutton, and Charles W Anderson. “Neuronlike adaptive elements that

can solve difficult learning control problems”. In: IEEE transactions on systems, man, and cybernetics
5 (1983), pp. 834–846.

[6] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I. Vol. 4. Athena scientific,

2012.

[7] John T Betts. “Survey of numerical methods for trajectory optimization”. In: Journal of guidance,
control, and dynamics 21.2 (1998), pp. 193–207.

[8] Hans Georg Bock and Karl-Josef Plitt. “A multiple shooting algorithm for direct solution of

optimal control problems”. In: IFAC Proceedings Volumes 17.2 (1984), pp. 1603–1608.

[9] Paul T Boggs and Jon W Tolle. “Sequential quadratic programming”. In: Acta numerica 4 (1995),

pp. 1–51.

[10] Pádraig Cunningham, Matthieu Cord, and Sarah Jane Delany. “Supervised learning”. In: Machine
learning techniques for multimedia: case studies on organization and retrieval. Springer, 2008, pp. 21–49.

[11] Will Dabney et al. “Distributional reinforcement learning with quantile regression”. In: Proceedings
of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[12] T.M.L. De Ponti, E.J.J. Smeur, and B.W.D. Remes. “Incremental Nonlinear Dynamic Inversion

controller for a Variable Skew Quad Plane”. In: 2023 International Conference on Unmanned Aircraft
Systems (ICUAS). 2023, pp. 241–248. doi: 10.1109/ICUAS57906.2023.10156289.

[13] Sohrab Effati and Morteza Pakdaman. “Optimal control problem via neural networks”. In: Neural
Computing and Applications 23 (2013), pp. 2093–2100.

[14] Yi Feng et al. “Autonomous landing of a UAV on a moving platform using model predictive

control”. In: Drones 2.4 (2018), p. 34.

[15] Robin Ferede et al. “End-to-end neural network based optimal quadcopter control”. In: Robotics
and Autonomous Systems 172 (2024), p. 104588.

[16] Robin Ferede et al. “End-to-end Reinforcement Learning for Time-Optimal Quadcopter Flight”.

In: arXiv preprint arXiv:2311.16948 (2023).

[17] Clara Lucía Galimberti et al. “Hamiltonian deep neural networks guaranteeing nonvanishing

gradients by design”. In: IEEE Transactions on Automatic Control 68.5 (2023), pp. 3155–3162.

[18] Alvika Gautam, PB Sujit, and Srikanth Saripalli. “A survey of autonomous landing techniques

for UAVs”. In: 2014 international conference on unmanned aircraft systems (ICUAS). IEEE. 2014,

pp. 1210–1218.

[19] Zĳian Ge et al. “Vision-based UAV landing with guaranteed reliability in adverse environment”.

In: Electronics 12.4 (2023), p. 967.

[20] Philip E Gill, Walter Murray, and Michael A Saunders. “SNOPT: An SQP algorithm for large-scale

constrained optimization”. In: SIAM review 47.1 (2005), pp. 99–131.

66

https://doi.org/10.1109/ICUAS57906.2023.10156289

References 67

[21] Derek Greene, Pádraig Cunningham, and Rudolf Mayer. “Unsupervised learning and clustering”.

In: Machine learning techniques for multimedia: Case studies on organization and retrieval (2008), pp. 51–

90.

[22] Philipp Grohs and Lukas Herrmann. “Deep neural network approximation for high-dimensional

parabolic Hamilton-Jacobi-Bellman equations”. In: arXiv preprint arXiv:2103.05744 (2021).

[23] Kaiyang Guo et al. “Autonomous landing of a quadrotor on a moving platform via model

predictive control”. In: Aerospace 9.1 (2022), p. 34.

[24] Ola Harkegard. “Efficient active set algorithms for solving constrained least squares problems in

aircraft control allocation”. In: Proceedings of the 41st IEEE Conference on Decision and Control, 2002.
Vol. 2. IEEE. 2002, pp. 1295–1300.

[25] S Haykin and B Widrow. “Least-Mean-Square Adaptive Filters”. In: (2003).

[26] Pingan He and Sarangapani Jagannathan. “Reinforcement learning neural-network-based con-

troller for nonlinear discrete-time systems with input constraints”. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics) 37.2 (2007), pp. 425–436.

[27] Michael Hirschberg, David Hart, and Thomas Beutner. “A summary of a half-century of oblique

wing research”. In: 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007, p. 150.

[28] Yanhua Huang. “Deep Q-Networks”. In: Deep Reinforcement Learning: Fundamentals, Research
and Applications. Ed. by Hao Dong, Zihan Ding, and Shanghang Zhang. Singapore: Springer

Singapore, 2020, pp. 135–160. isbn: 978-981-15-4095-0. doi: 10.1007/978-981-15-4095-0_4. url:

https://doi.org/10.1007/978-981-15-4095-0_4.

[29] Jemin Hwangbo et al. “Control of a quadrotor with reinforcement learning”. In: IEEE Robotics and
Automation Letters 2.4 (2017), pp. 2096–2103.

[30] Alexey Grigorevich Ivakhnenko. “Polynomial theory of complex systems”. In: IEEE transactions
on Systems, Man, and Cybernetics 4 (1971), pp. 364–378.

[31] HJ Karssies and C De Wagter. “Extended incremental non-linear control allocation (XINCA) for

quadplanes”. In: International Journal of Micro Air Vehicles 14 (2022), p. 17568293211070825.

[32] Elia Kaufmann, Leonard Bauersfeld, and Davide Scaramuzza. “A benchmark comparison of

learned control policies for agile quadrotor flight”. In: 2022 International Conference on Robotics and
Automation (ICRA). IEEE. 2022, pp. 10504–10510.

[33] Nikolay V Kim et al. “Selecting a Flight Path of an UAV to the Ship in Preparation of Deck

Landing”. In: Indian Journal of Science and Technology (2016).

[34] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2004.

[35] Johannes Lederer. “Activation functions in artificial neural networks: A systematic overview”. In:

arXiv preprint arXiv:2101.09957 (2021).

[36] Seongheon Lee et al. “Vision-based autonomous landing of a multi-copter unmanned aerial

vehicle using reinforcement learning”. In: 2018 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE. 2018, pp. 108–114.

[37] Sergey Levine. “Exploring deep and recurrent architectures for optimal control”. In: arXiv preprint
arXiv:1311.1761 (2013).

[38] Haochen Li et al. “Fast Trajectory Generation with a Deep Neural Network for Hypersonic Entry

Flight”. In: Aerospace 10.11 (2023), p. 931.

[39] Marlos C Machado et al. “Temporal abstraction in reinforcement learning with the successor

representation”. In: Journal of Machine Learning Research 24.80 (2023), pp. 1–69.

[40] Priya R Maidamwar, Mahip M Bartere, and Prasad P Lokulwar. “A survey on machine learning

approaches for developing intrusion detection system”. In: Proceedings of the international conference
on innovative computing & communication (ICICC). 2021.

[41] Siri Mathisen et al. “Precision deep-stall landing of fixed-wing UAVs using nonlinear model

predictive control”. In: Journal of Intelligent & Robotic Systems 101 (2021), pp. 1–15.

https://doi.org/10.1007/978-981-15-4095-0_4
https://doi.org/10.1007/978-981-15-4095-0_4

References 68

[42] Deepanshu Mehta. “State-of-the-Art Reinforcement Learning Algorithms”. In: International
Journal of Engineering Research and (2020). url: https://api.semanticscholar.org/CorpusID:
212589933.

[43] Xue Bin Peng et al. “Sim-to-real transfer of robotic control with dynamics randomization”. In:

2018 IEEE international conference on robotics and automation (ICRA). IEEE. 2018, pp. 3803–3810.

[44] Robert Penicka et al. “Learning minimum-time flight in cluttered environments”. In: IEEE Robotics
and Automation Letters 7.3 (2022), pp. 7209–7216.

[45] Riccardo Polvara et al. “Toward end-to-end control for UAV autonomous landing via deep

reinforcement learning”. In: 2018 International conference on unmanned aircraft systems (ICUAS).
IEEE. 2018, pp. 115–123.

[46] Alejandro Rodriguez-Ramos et al. “A deep reinforcement learning strategy for UAV autonomous

landing on a moving platform”. In: Journal of Intelligent & Robotic Systems 93 (2019), pp. 351–366.

[47] Fereshteh Sadeghi and Sergey Levine. “Cad2rl: Real single-image flight without a single real

image”. In: arXiv preprint arXiv:1611.04201 (2016).

[48] Adnan S Saeed et al. “A survey of hybrid unmanned aerial vehicles”. In: Progress in Aerospace
Sciences 98 (2018), pp. 91–105.

[49] Vishnu Saj et al. “Robust Reinforcement Learning Algorithm for Vision-based Ship Landing of

UAVs”. In: arXiv preprint arXiv:2209.08381 (2022).

[50] Erica Salvato et al. “Crossing the reality gap: A survey on sim-to-real transferability of robot

controllers in reinforcement learning”. In: IEEE Access 9 (2021), pp. 153171–153187.

[51] Carlos Sánchez-Sánchez and Dario Izzo. “Real-time optimal control via deep neural networks:

study on landing problems”. In: Journal of Guidance, Control, and Dynamics 41.5 (2018), pp. 1122–

1135.

[52] Carlos Sánchez-Sánchez, Dario Izzo, and Daniel Hennes. “Optimal real-time landing using deep

networks”. In: Proceedings of the Sixth International Conference on Astrodynamics Tools and Techniques,
ICATT. Vol. 12. 2016, pp. 2493–2537.

[53] Joao Leonardo Silva Cotta et al. “High-Altitude Precision Landing by Smartphone Video Guidance

Sensor and Sensor Fusion”. In: Drones 8.2 (2024), p. 37.

[54] Ewoud Smeur, Daan Höppener, and Christophe De Wagter. “Prioritized control allocation for

quadrotors subject to saturation”. In: International Micro Air Vehicle Conference and Flight Competition.

September. 2017, pp. 37–43.

[55] Ewoud JJ Smeur, Qiping Chu, and Guido CHE De Croon. “Adaptive incremental nonlinear

dynamic inversion for attitude control of micro air vehicles”. In: Journal of Guidance, Control, and
Dynamics 39.3 (2016), pp. 450–461.

[56] Edward J Sondik. “The optimal control of partially observable Markov processes over the infinite

horizon: Discounted costs”. In: Operations research 26.2 (1978), pp. 282–304.

[57] O. Frank Spurlock and Craig H. Williams. DUKSUP: A Computer Program for High Thrust Launch
Vehicle Trajectory Design and Optimization. NASA Technical Memorandum. Available at NASA STI

Repository. 2015.

[58] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[59] Richard S Sutton, Andrew G Barto, and Ronald J Williams. “Reinforcement learning is direct

adaptive optimal control”. In: IEEE control systems magazine 12.2 (1992), pp. 19–22.

[60] Liguo Tan et al. “Research on optimal landing trajectory planning method between an UAV and a

moving vessel”. In: Applied Sciences 9.18 (2019), p. 3708.

[61] Josh Tobin et al. “Domain randomization for transferring deep neural networks from simulation

to the real world”. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS).
IEEE. 2017, pp. 23–30.

[62] Masatoshi Uehara, Chengchun Shi, and Nathan Kallus. “A review of off-policy evaluation in

reinforcement learning”. In: arXiv preprint arXiv:2212.06355 (2022).

https://api.semanticscholar.org/CorpusID:212589933
https://api.semanticscholar.org/CorpusID:212589933

References 69

[63] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with double

q-learning”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 30. 1. 2016.

[64] Bingkun Wang et al. “An Autonomous Tracking and Landing Method for Unmanned Aerial

Vehicles Based on Visual Navigation”. In: Drones 7.12 (2023), p. 703.

[65] Jingyi Xie et al. “UAV autonomous tracking and landing based on deep reinforcement learning

strategy”. In: Sensors 20.19 (2020), p. 5630.

[66] Long Xin et al. “Vision-based autonomous landing for the UAV: A review”. In: Aerospace 9.11

(2022), p. 634.

[67] Tao Yang et al. “A ground-based near infrared camera array system for UAV auto-landing in

GPS-denied environment”. In: Sensors 16.9 (2016), p. 1393.

[68] Man Yuan et al. “PID with deep reinforcement learning and heuristic rules for autonomous

UAV landing”. In: International Conference on Autonomous Unmanned Systems. Springer. 2022,

pp. 1876–1884.

A
Simulations for Landing the Parrot

Bebop 1 on a stationary platform

As a part of the preliminary analysis, the simulations are first conducted for the Parrot Bebop 1 drone

for a landing on a stationary platform task. In this chapter, the process of designing an effective reward

function for this type of a landing problem is explained and the contribution of each element is examined.

Parrot Bebop 1 Equations of Motions
The equations of motions for the Parrot Bebop 1 are given in the following equations A.1, A.2, A.3

and A.4. Since the problem considering a stationary platform not a moving one, these were the only

dynamics included in the vectorized environment.

¤x = v (A.1)

¤v = g + 1

𝑚
𝑅(𝝀)


−𝑘𝑥𝑢

∑
4

𝑖=0
𝜔𝑖

−𝑘𝑦𝑣
∑

4

𝑖=0
𝜔𝑖

𝑘𝑤
∑

4

𝑖=0
𝜔2

𝑖
+ 𝑘𝑧𝑤

∑
4

𝑖=0
𝜔𝑖 + 𝑘ℎ(𝑢2 + 𝑣2)

 where


𝑢
𝑣
𝑤

 = 𝑅(𝝀)𝑇v (A.2)

¤𝝀 = 𝑄(𝝀)𝛀 (A.3)

𝐼 ¤𝛀 = −𝛀 × 𝐼𝛀 +


𝑘𝑝(𝜔2

1
− 𝜔2

2
− 𝜔2

3
+ 𝜔2

4
)

𝑘𝑞(𝜔2

1
+ 𝜔2

2
− 𝜔2

3
− 𝜔2

4
)

𝑘𝑟(𝜏1(𝜔1 + 𝜔2 + 𝜔3 + 𝜔4) + 𝑘𝑟2(¤𝜔1 + ¤𝜔2 + ¤𝜔3 + ¤𝜔4) − 𝑘𝑟𝜏𝑇)

 (A.4)

¤𝜔𝑖 =
(𝑢𝑖 − 𝜔𝑖)

𝜏
(A.5)

The parameters included in the code are given in Table A.1, A.3, and A.2. Reader can check the

reference paper https://arxiv.org/pdf/2304.13460.pdf for further information on the model.

70

https://arxiv.org/pdf/2304.13460.pdf

71

Table A.1: Model parameters

Parameter Value
𝑘𝑥 1.07933887 × 10

−5

𝑘𝑦 9.65250793 × 10
−6

𝑘𝑧 2.7862899 × 10
−5

𝑘𝑤 4.36301076 × 10
−8

𝑘ℎ 0.0625501332

𝑘𝑝 1.4119331 × 10
−9

𝑘𝑝𝑣 −0.00797101848

𝑘𝑞 1.21601884 × 10
−9

𝑘𝑞𝑣 0.0129263739

𝑘𝑟1 2.57035545 × 10
−6

𝑘𝑟2 4.10923364 × 10
−7

𝑘𝑟𝑟 0.000812932607

Parameter Value
𝑔 9.81

𝐼𝑥𝑥 0.000906

𝐼𝑦𝑦 0.001242

𝐼𝑧𝑧 0.002054

Table A.2: Inertia and Gravity Parameters

Parameter Value
𝜏 0.06

𝑤𝑚𝑖𝑛 3000

𝑤𝑚𝑎𝑥 11000

Table A.3: Motor parameters

Reward Function Design
Reward design process has completed with consideration of different tasks that were part of the whole

landing process. In the following subsections, the elements included in the reward/objective function

are explained individually.

Distance to goal
The primary objective was to reach the target platform while ignoring variations in other state elements

such as velocity and acceleration of the drone. Consequently, the simulations were labelled as successful

in cases where the drone tracked and landed on the platform. The corresponding reward element is

provided in Eq. A.6.

𝑅𝑝 = 10(
��𝑝𝑟

old
| − |𝑝𝑟new

��) (A.6)

The parameters 𝑝𝑟
old

and 𝑝𝑟new
represent the relative old and new distances between the drone and

the platform, respectively. These terms reward the agent based on the decrease in the relative distance

and motivates if further to reach the target.

While the landings were completely successful within the trained set and even with deviations up to

4 meters, the landings concluded with extremely high velocities. This necessitated an element to adjust

the drone’s velocity during landing.

Velocity reward
For successful landings, the touchdown velocity must be below a certain threshold. Therefore, the

drone’s velocity was penalized using two types of reward functions, as shown in Eq. A.7 and Eq. A.8.

Here the parameters 𝑣𝑑
old

and 𝑣𝑑new
represent the old and new velocities of the drone. The latter function

imposed stricter penalties on the drone, resulting in lower accelerations compared to the former.

𝑅𝑣1 = (
��𝑣𝑑

old
| − |𝑣𝑑new

��) (A.7)

𝑅𝑣2 = −0.01 × |vnew| (A.8)

72

Landing classification
The provided landing classification equation A.9 contributes significantly to the autonomous landing

problem by focusing on vertical velocity considerations. It assigns a positive reward (+10) if the UAV’s

vertical velocity (𝑣2𝑔new
) is less than 0.5 m/s, promoting gentle and safe landings, while penalizing

higher velocities to discourage hard landings. This reward system is integral to a reinforcement learning

(RL) framework, guiding the UAV to learn optimal landing maneuvers through trial and error. By

incorporating vertical velocity into the reward function, the UAV is encouraged to minimize its descent

speed, ensuring smoother touchdowns and reducing the risk of damage.

𝑅 =

{
+10, 𝑣2𝑔new

< 0.5

−10, 𝑣2𝑔new
< 0.5

(A.9)

Penalty for rotation
Rotation penalty given in Eq. A.11 is designed to discourage excessive angular velocity during the

landing phase of the UAV. By assigning a negative value proportional to the absolute angular velocity,

the system incourages the dron to maintain a stable and controlled orientation. This is curucial for

ensuring smooth landing, as high rotational speeds can lead to instability and increased risk of damage.

𝑝𝑒𝑛𝑎𝑙𝑡𝑦rotation = −0.01 × |Ωnew| (A.10)

Penalty for ground collision/ out of bounds
Penalties for collisions and out-of-bounds conditions are part of the end conditions that terminate the

simulations when met. In this work, a penalty is applied if the UAV either collides with the ground or

lands outside the designated area. This function ensures that both the state space and action space are

bounded.

𝑅𝑟𝑝 =

{
+10, 𝑣2𝑔new

< 0.5

−10, 𝑣2𝑔new
< 0.5

(A.11)

Table A.4: Reward combinations used for the Parrot Bebop 1

Reward Number Combination
R1 R𝑝

R2 R𝑝 + R𝑣1 + R𝑟𝑝

R3 R𝑝 + R𝑣1 + R𝑟𝑝+ R𝑐

R4 R𝑝 + R𝑣2 + R𝑟𝑝+ R𝑐

Results
The reward combinations used in the study are presented in Table A.4. The performance of each reward

function was tested under nominal conditions, with deviations of 2 meters and 4 meters. While nominal

conditions served to verify the occurrence of landings, the deviation tests assessed the robustness of the

reinforcement learning. For the given reward combinations, the variations in state parameters 𝑝𝑛 , 𝑝𝑒 , 𝑝𝑑
(position), 𝑣𝑛 , 𝑣𝑒 , 𝑣𝑑 (velocity) and 𝜙, 𝜃,𝜓 (Euler angles) are illustrated in the following figures: nominal

conditions in Figures A.1,A.7,A.13; deviation of 2 meters in Figures A.3,A.9,A.15, A.21; and deviation of

4 meters in A.5,A.11,A.17. These figures demonstrate how the UAV reaches and lands (if applicable) on

the platform with varying reward functions, highlighting the effectiveness of each reward in guiding

the UAV’s behavior during the landing phase.

As a result of this progressive analysis, the reward combination R4 successfully satisfied the safe,

precise, and smooth landing conditions, as represented in the final figures.

73

R1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

2

1

0

1

2

3

4

5

p n
 (m

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

4

2

0

2

4

6

p e
 (m

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

2

4

6

8

10

12

14

16

p d
 (m

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

2

4

6

8

10

v n
 (m

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

1

2

3

4

5

6

7
v e

 (m
/s

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

1

2

3

4

5

6

7

8

v d
 (m

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

 (r
ad

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0.2

0.0

0.2

0.4

0.6

 (r
ad

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

3.00

2.75

2.50

2.25

2.00

1.75

1.50

 (r
ad

)

h:5 m h:10 m h:15 m

Figure A.1: State parameters for reward R1 under nominal conditions

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time (s)

0

1

u 4
 (r

pm
)

Figure A.2: Generated control inputs for reward R1 under nominal conditions

74

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

2

0

2

4

6

8

p n
 (m

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

4

2

0

2

4

6

p e
 (m

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

2

4

6

8

10

12

14

p d
 (m

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

2

4

6

8

10

v n
 (m

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

2

4

6

8

v e
 (m

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

1

2

3

4

5

6

7

8

v d
 (m

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

 (r
ad

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

1.0

0.5

0.0

0.5

 (r
ad

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

2

1

0

1

2

3

 (r
ad

)

deviation = 2m

h:5 m h:10 m h:15 m

Figure A.3: State parameters for reward R3 with a deviation of 2m

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

0

1

u 4
 (r

pm
)

Figure A.4: Generated control inputs for reward R1 with a deviation of 2m

75

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

2

0

2

4

6

8

10

p n
 (m

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

2

0

2

4

6

p e
 (m

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

2

4

6

8

10

12

14

16

p d
 (m

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

2

4

6

8

10

v n
 (m

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

2

4

6

8

10

12

v e
 (m

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

1

0

1

2

3

4

5

6

7

v d
 (m

/s
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

 (r
ad

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

 (r
ad

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

 (r
ad

)

deviation = 4m

h:5 m h:10 m h:15 m

Figure A.5: State parameters for reward R3 with a deviation of 4m

0.5

1.0

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time (s)

0.5

1.0

u 4
 (r

pm
)

Figure A.6: Generated control inputs for reward R1 with a deviation of 4m

76

R2

0 10 20 30
Time (s)

4

2

0

2

4

6

p n
 (m

)

0 10 20 30
Time (s)

4

2

0

2

4

6

p e
 (m

)

0 10 20 30
Time (s)

0

2

4

6

8

10

12

14

p d
 (m

)

0 10 20 30
Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

v n
 (m

/s
)

0 10 20 30
Time (s)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0
v e

 (m
/s

)

0 10 20 30
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

v d
 (m

/s
)

0 10 20 30
Time (s)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

 (r
ad

)

0 10 20 30
Time (s)

0.4

0.2

0.0

0.2

0.4

 (r
ad

)

0 10 20 30
Time (s)

2

1

0

1

2

3

4

 (r
ad

)

h:5 m h:10 m h:15 m

Figure A.7: State parameters for reward R2 under nominal conditions

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time (s)

0

1

u 4
 (r

pm
)

Figure A.8: Generated control inputs for reward R2 under nominal conditions

77

0 10 20 30 40 50 60 70
Time (s)

6

4

2

0

2

4

6

8

p n
 (m

)

0 10 20 30 40 50 60 70
Time (s)

2

1

0

1

2

3

4

5

p e
 (m

)

0 10 20 30 40 50 60 70
Time (s)

0

2

4

6

8

10

12

14

p d
 (m

)

0 10 20 30 40 50 60 70
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

v n
 (m

/s
)

0 10 20 30 40 50 60 70
Time (s)

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

v e
 (m

/s
)

0 10 20 30 40 50 60 70
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

v d
 (m

/s
)

0 10 20 30 40 50 60 70
Time (s)

0.6

0.4

0.2

0.0

0.2

0.4

 (r
ad

)

0 10 20 30 40 50 60 70
Time (s)

0.4

0.2

0.0

0.2

0.4

 (r
ad

)

0 10 20 30 40 50 60 70
Time (s)

2

1

0

1

2

3

4

5

 (r
ad

)

deviation = 2m

h:5 m h:10 m h:15 m

Figure A.9: State parameters for reward R2 with a deviation of 2m

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0 10 20 30 40 50
Time (s)

0

1

u 4
 (r

pm
)

Figure A.10: Generated control inputs for reward R2 with a deviation of 2m

78

0 20 40 60 80
Time (s)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

p n
 (m

)

0 20 40 60 80
Time (s)

2

0

2

4

6

p e
 (m

)

0 20 40 60 80
Time (s)

0

2

4

6

8

10

12

14

p d
 (m

)

0 20 40 60 80
Time (s)

2

1

0

1

2

3

v n
 (m

/s
)

0 20 40 60 80
Time (s)

3

2

1

0

1

2

v e
 (m

/s
)

0 20 40 60 80
Time (s)

0.5

0.0

0.5

1.0

1.5

v d
 (m

/s
)

0 20 40 60 80
Time (s)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

 (r
ad

)

0 20 40 60 80
Time (s)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

 (r
ad

)

0 20 40 60 80
Time (s)

0

2

4

6

8

 (r
ad

)

deviation = 4m

h:5 m h:10 m h:15 m

Figure A.11: State parameters for reward R2 with a deviation of 4m

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0 5 10 15 20 25 30 35 40
Time (s)

0

1

u 4
 (r

pm
)

Figure A.12: Generated control inputs for reward R2 with a deviation of 4m

79

R3

0 20 40 60 80 100
Time (s)

4

2

0

2

4

6

p n
 (m

)

0 20 40 60 80 100
Time (s)

0

2

4

6

8

10

p e
 (m

)

0 20 40 60 80 100
Time (s)

0

2

4

6

8

10

12

14

p d
 (m

)

0 20 40 60 80 100
Time (s)

5

4

3

2

1

0

1

2

v n
 (m

/s
)

0 20 40 60 80 100
Time (s)

8

6

4

2

0

2
v e

 (m
/s

)

0 20 40 60 80 100
Time (s)

2

1

0

1

2

3

4

5

v d
 (m

/s
)

0 20 40 60 80 100
Time (s)

2.0

1.5

1.0

0.5

0.0

0.5

 (r
ad

)

0 20 40 60 80 100
Time (s)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

 (r
ad

)

0 20 40 60 80 100
Time (s)

2

1

0

1

2

3

 (r
ad

)

h:5 m h:10 m h:15 m

Figure A.13: State parameters for reward R3 under nominal conditions

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0 2 4 6 8
Time (s)

0

1

u 4
 (r

pm
)

Figure A.14: Generated control inputs for reward R3 under nominal conditions

80

0 20 40 60 80
Time (s)

6

4

2

0

2

4

6

8

p n
 (m

)

0 20 40 60 80
Time (s)

0

2

4

6

8

10

12

p e
 (m

)

0 20 40 60 80
Time (s)

0

2

4

6

8

10

12

14

p d
 (m

)

0 20 40 60 80
Time (s)

6

4

2

0

2

4

v n
 (m

/s
)

0 20 40 60 80
Time (s)

10

8

6

4

2

0

2

v e
 (m

/s
)

0 20 40 60 80
Time (s)

2

0

2

4

6

8

v d
 (m

/s
)

0 20 40 60 80
Time (s)

4

3

2

1

0

1

 (r
ad

)

0 20 40 60 80
Time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

 (r
ad

)

0 20 40 60 80
Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

 (r
ad

)

deviation = 2m

h:5 m h:10 m h:15 m

Figure A.15: State parameters for reward R3 with a deviation of 2m

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0 20 40 60 80
Time (s)

0

1

u 4
 (r

pm
)

Figure A.16: Generated control inputs for reward R3 with a deviation of 2m

81

0 20 40 60 80 100
Time (s)

4

2

0

2

4

6

8

10

p n
 (m

)

0 20 40 60 80 100
Time (s)

0

2

4

6

8

10

12

p e
 (m

)

0 20 40 60 80 100
Time (s)

2

4

6

8

10

12

14

p d
 (m

)

0 20 40 60 80 100
Time (s)

6

4

2

0

2

v n
 (m

/s
)

0 20 40 60 80 100
Time (s)

8

6

4

2

0

2

v e
 (m

/s
)

0 20 40 60 80 100
Time (s)

2

1

0

1

2

3

4

5

v d
 (m

/s
)

0 20 40 60 80 100
Time (s)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

 (r
ad

)

0 20 40 60 80 100
Time (s)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

 (r
ad

)

0 20 40 60 80 100
Time (s)

3

2

1

0

1

2

 (r
ad

)

deviation = 4m

h:5 m h:10 m h:15 m

Figure A.17: State parameters for reward R3 with a deviation of 4m

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0 10 20 30 40 50 60 70
Time (s)

0

1

u 4
 (r

pm
)

Figure A.18: Generated control inputs for reward R3 with a deviation of 4m

82

R4

0 1 2 3 4
Time (s)

0

1

2

3

4

5

6

p n
 (m

)

0 1 2 3 4
Time (s)

0

1

2

3

4

5

p e
 (m

)

0 1 2 3 4
Time (s)

2

4

6

8

10

12

14

p d
 (m

)

0 1 2 3 4
Time (s)

2

1

0

1

2

3

4

5

6

v n
 (m

/s
)

0 1 2 3 4
Time (s)

0

1

2

3

4
v e

 (m
/s

)

0 1 2 3 4
Time (s)

0

1

2

3

4

5

6

7

8

v d
 (m

/s
)

0 1 2 3 4
Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

 (r
ad

)

0 1 2 3 4
Time (s)

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

 (r
ad

)

0 1 2 3 4
Time (s)

4

3

2

1

0

1

2

 (r
ad

)

h:5 m h:10 m h:15 m

Figure A.19: State parameters for reward R4 under nominal conditions

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

1

u 4
 (r

pm
)

Figure A.20: Generated control inputs for reward R4 under nominal conditions

83

0 1 2 3 4
Time (s)

0

1

2

3

4

5

6

7

p n
 (m

)

0 1 2 3 4
Time (s)

0

1

2

3

4

5

6

p e
 (m

)

0 1 2 3 4
Time (s)

2

4

6

8

10

12

14

p d
 (m

)

0 1 2 3 4
Time (s)

0

1

2

3

4

5

6

v n
 (m

/s
)

0 1 2 3 4
Time (s)

0

1

2

3

4

5

6

v e
 (m

/s
)

0 1 2 3 4
Time (s)

0

1

2

3

4

5

6

v d
 (m

/s
)

0 1 2 3 4
Time (s)

0.5

0.0

0.5

1.0

1.5

 (r
ad

)

0 1 2 3 4
Time (s)

1.0

0.5

0.0

0.5

1.0

 (r
ad

)

0 1 2 3 4
Time (s)

1

0

1

2

3

 (r
ad

)

deviation = 2m

h:5 m h:10 m h:15 m

Figure A.21: State parameters for reward R4 with a deviation of 2m

0

1

u 1
 (r

pm
)

0

1

u 2
 (r

pm
)

0

1

u 3
 (r

pm
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

1

u 4
 (r

pm
)

Figure A.22: Generated control inputs for reward R4 with a deviation of 2m

B
ANDI Input-Output Representation

In this chapter, all modifications made in reference models and error controller blocks to obtain the final

transfer function for the simplified model are provided.

Reference Model

Figure B.1: Reference Model Step-1

Figure B.2: Reference Model Step-2

84

85

Figure B.3: Reference Model Step-3

Figure B.4: Reference Model Step-4

Figure B.5: Reference Model Step-5

86

Error Controllers and ANDI with attitude dynamics

Figure B.6: ANDI with attitude dynamics Step - 1

Figure B.7: ANDI with attitude dynamics Step - 2

Figure B.8: ANDI with attitude dynamics Step - 3

Figure B.9: ANDI with attitude dynamics Step - 4

87

Figure B.10: ANDI with attitude dynamics Step - 5

Figure B.11: ANDI with attitude dynamics Step - 6

Figure B.12: ANDI with attitude dynamics Step - 7

Figure B.13: ANDI with attitude dynamics Step - 8

88

Figure B.14: ANDI with attitude dynamics Step - 9

89

Matlab Code

% define the symbolic variables
syms p1 p2 p3 p_att s k1_rm k2_rm k3_rm k1_e k2_e k3_e k1_att_rm k2_att_rm
k3_att_rm B omega_att omega_n zeta p_1 p_d omega_J_num omega_J_den

att_rm = (p1*p2*p3)/(s^3 + (p1+p2+p3)*s^2 + (p1*p2 + p1*p3 + p2*p3)*s + p1*p2*p3)

att_rm =

tao = (p1*p2+p1*p3+p2*p3)/(p1*p2*p3)

tao =

omega_att = 1/tao

omega_att =

inv_andi = 1/(B*omega_att)

inv_andi =

datt2att = collect(simplify(att_rm/(1-att_rm)),s)

datt2att =

pos_controller = collect(simplify(inv_andi * datt2att * B),s)

pos_controller =

pos_ec_forward = collect(simplify(pos_controller / s^2),s)

pos_ec_forward =

1

90

G1 = collect(simplify(k1_e * pos_ec_forward),s)

G1 =

G2 = collect(simplify(k2_e * s * pos_ec_forward),s)

G2 =

G3 = collect(simplify(k3_e * s^2 * pos_ec_forward),s)

G3 =

G4 = collect(simplify(s^3 * pos_ec_forward),s)

G4 =

G_forward = collect(simplify(G1+G2+G3),s)

G_forward =

G5 = collect(simplify((1+G4/G_forward)),s)

G5 =

G6 = collect(simplify(G_forward/(1+G_forward)),s)

G6 =

2

91

pos_ec_andi = collect(simplify(G5*G6),s)

pos_ec_andi =

% aref to pos actual
a_ec_andi = collect(simplify(pos_ec_andi/s^2),s)

a_ec_andi =

% ades to aref
a__rm = k3_rm/(s+k3_rm)

a__rm =

3

92

% ades to p actual
last_tf = collect(simplify(a_ec_andi*a__rm),s)

% aref to a actual
a_ec_andi = collect(simplify(pos_ec_andi),s)

a_ec_andi =

4

C
Evaluation of the reward

combinations for the VSQP

The evaluation of reward functions for the VSQP is given in Chapter 3 in terms of performance metrics.

The analysis has showed that the form given in Eq. C.1 provides the most effective results for smooth

landings. Reward combinations used in the study are labelled and given in Table C.1.

𝑅 𝑓 𝑖𝑛𝑎𝑙 =
��𝑝𝑟

old𝑣

�� − ��𝑝𝑟new𝑣

�� + 2

p𝑟
oldℎ

 − 2

p𝑟newℎ

+
(
𝑣𝑟

oldv

− 𝑣𝑟newv

) (ℎ𝑡 + ℎ
ℎ𝑡

)
+ 2

(
𝑣𝑟

old
h

− 𝑣𝑟new
h

) (
ℎ𝑡 + ℎ
ℎ𝑡

)
+ 𝑘

��𝑣𝑑new𝑧

��2 + 𝑘 ��𝑣𝑝new𝑧

��2
(C.1)

Table C.1: Reward Coefficients

k:10 k:25 k:50 k:75 k:100
R1 R2 R3 R4 R5

Later on, a further analysis was conducted to identify a set of suitable coefficients for the considered

landing problem. The analysis has showed that coefficients in the range of 10 to 100 are able to led to

successful landings in terms of performance metrics. In this chapter, these reward combinations are

tested for three different ship motion characteristics for which the corresponding parameters are given

in Table C.2. The purpose is to visualize how the drone responds to varying sets of motion. Additionally,

the final form incorporates the collision penalty that penalizes the absolute velocities, meaning that

landings are expected to occur when both the drone and the platform exhibit near-zero velocities.

Table C.2: Ship Motion Characteristics for the evaluation

Ship motion Mixed frequency (f𝑚𝑖𝑥 , Hz) Nominal frequency (f𝑚𝑖𝑥 , Hz) Amplitude (m)

S1 0 0.05 1

S2 0.2 0 0.5

S3 0 0.2 2

93

94

For the given ship characteristics, the landing scenarios are illustrated in Figures C.1, C.3, C.6, C.7,

and C.9.

The most significant result obtained from the figures is that the drone, when exposed to sufficient

sinusoidal wave-like motions during flight, waits for the next wave to arrive as it happened for the

second and third type of ship motions instead of landing at random points with a small velocity. This is

significantly important as this behaviour is not fully driven by the reward function. Results also showed

that the agent is controlled by the tracking elements of the reward, in cases where the ship motion has

less variation. Therefore, for the first type of ship motion, the drone chooses to land with contributions

from the position and velocity rewards. It should be noted that even though the agent does not exactly

end up at the top, which was never a necessity for the landing, for all the scenarios, the touchdown

velocities are lower than the critical value, ensuring a safe landing in the end.

95

R1

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 2 4 6 8 10
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

Figure C.1: Reward R1 Evaluation Scenarios

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

Figure C.2: Reward R1 Evaluation Scenarios - zoom in

96

R2

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

Figure C.3: Reward R2 Evaluation Scenarios

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

Figure C.4: Reward R2 Evaluation Scenarios - zoom in

97

R3

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

Figure C.5: Reward R3 Evaluation Scenarios

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

Figure C.6: Reward R3 Evaluation Scenarios - zoom in

98

R4

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 2 4 6 8 10 12 14 16
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

Figure C.7: Reward R4 Evaluation Scenarios

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

Figure C.8: Reward R4 Evaluation Scenarios - zoom in

99

R5

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 3 6 9 12 15 18 21
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [0m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 3 6 9 12 15 18 21
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [2m]

0 2 4 6 8 10 12
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 3 6 9 12 15 18 21
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

0 2 4 6 8 10
Time (s)

0

5

10

15

20

H
ei

gh
t (

m
)

deviation [4m]

Figure C.9: Reward R5 Evaluation Scenarios

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [0m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [2m]

5 6 7 8 9 10 11 12
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

6 8 10 12 14 16
Time (s)

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

3 4 5 6 7 8 9 10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

H
ei

gh
t (

m
)

deviation [4m]

Figure C.10: Reward R5 Evaluation Scenarios - zoom in

D
Validation of the reward combinations

for the VSQP

In this chapter, we follow the same validation process outlined in the Scientific Article for the reward

combinations presented in the previous section. The trajectories are visualized in Figures D.1, D.3, D.5,

D.7, D.9 and the corresponding error plots are provided in Figures D.2, D.4, D.6, D.8, D.10.

In the final reward, the varying coefficients significantly impacted the smoothness and duration of

the landing. The higher the collision penalty, the longer the drone took to land, with a slight decrease in

touchdown velocity. Results indicated that excessively penalizing the drone (beyond k:100 in this case)

prevented landing altogether, scaring away the agent.

Overall, the validation study demonstrated that the given interval of coefficients resulted in different

but successful landings. This not only showcased the efficiency of the reinforcement algorithm but also

identified a stable region for autonomous landing, which is extremely valuable.

All the code can be accessed through the link https://github.com/cansuyklmz/thesis_RL_cansu.

100

https://github.com/cansuyklmz/thesis_RL_cansu

101

R1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.47 m/s RL0.12 m/s PID

Scenario 1

0 2 4 6 8 10 12 14 16
Time (s)

H
ei

gh
t (

m
)

0.23 m/s RL0.20 m/s PID

Scenario 2

0 2 4 6 8 10 12 14
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.25 m/s RL

0.68 m/s PID

Scenario 3

0 2 4 6 8 10 12 14
Time (s)

H
ei

gh
t (

m
)

0.03 m/s RL
0.55 m/s PID

Scenario 4

0 2 4 6 8 10 12 14
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.11 m/s RL
0.20 m/s PID

Scenario 5

0 2 4 6 8 10 12 14
Time (s)

H
ei

gh
t (

m
)

0.15 m/s RL0.08 m/s PID

Scenario 6

0.0

0.2

0.4

0.6

0.8

1.0

D
ow

nw
ar

d
V

el
oc

ity
 v

z (
m

/s
)

Figure D.1: Reward R1 Ship Validation Scenarios

102

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10
Po

si
tio

n
Er

ro
r (

m
)

Scenario 1

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 1

evn

eve

evd

0 2 4 6 8 10
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 2

epn

epe

epd

0 2 4 6 8 10
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 2

evn

eve

evd

0 2 4 6 8 10 12
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 3

epn

epe

epd

0 2 4 6 8 10 12
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 3

evn

eve

evd

0 2 4 6 8 10
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 4

epn

epe

epd

0 2 4 6 8 10
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 4

evn

eve

evd

0 2 4 6 8 10
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 5

epn

epe

epd

0 2 4 6 8 10
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 5

evn

eve

evd

0 2 4 6 8 10 12 14
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 6

epn

epe

epd

0 2 4 6 8 10 12 14
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 6

evn

eve

evd

Figure D.2: Error Plots for Reward R1

103

R2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.15 m/s RL
0.39 m/s PID

Scenario 1

0 2 4 6 8 10 12 14 16
Time (s)

H
ei

gh
t (

m
)

0.01 m/s RL0.07 m/s PID

Scenario 2

0 2 4 6 8 10 12 14
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.20 m/s RL
0.15 m/s PID

Scenario 3

0 2 4 6 8 10 12 14 16
Time (s)

H
ei

gh
t (

m
)

0.26 m/s RL
0.64 m/s PID

Scenario 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.18 m/s RL
0.56 m/s PID

Scenario 5

0 2 4 6 8 10 12
Time (s)

H
ei

gh
t (

m
)

-0.13 m/s RL0.61 m/s PID

Scenario 6

0.0

0.2

0.4

0.6

0.8

1.0

D
ow

nw
ar

d
V

el
oc

ity
 v

z (
m

/s
)

Figure D.3: Reward R2 Ship Validation Scenarios

104

0 2 4 6 8 10 12 14 16 18
Time (s)

0

2

4

6

8

10
Po

si
tio

n
Er

ro
r (

m
)

Scenario 1

epn

epe

epd

0 2 4 6 8 10 12 14 16 18
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 1

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 2

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 2

evn

eve

evd

0 2 4 6 8 10 12 14
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 3

epn

epe

epd

0 2 4 6 8 10 12 14
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 3

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 4

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 4

evn

eve

evd

0 3 6 9 12 15 18
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 5

epn

epe

epd

0 3 6 9 12 15 18
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 5

evn

eve

evd

0 2 4 6 8 10 12
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 6

epn

epe

epd

0 2 4 6 8 10 12
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 6

evn

eve

evd

Figure D.4: Error Plots for Reward R2

105

R3

0 2 4 6 8 10 12
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

-0.15 m/s RL

0.15 m/s PID

Scenario 1

0 2 4 6 8 10 12
Time (s)

H
ei

gh
t (

m
)

-0.29 m/s RL

0.55 m/s PID

Scenario 2

0 2 4 6 8 10 12
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

-0.27 m/s RL
0.40 m/s PID

Scenario 3

0 2 4 6 8 10 12
Time (s)

H
ei

gh
t (

m
)

-0.14 m/s RL0.38 m/s PID

Scenario 4

0 2 4 6 8 10 12 14 16
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.23 m/s RL0.19 m/s PID

Scenario 5

0 2 4 6 8 10 12 14
Time (s)

H
ei

gh
t (

m
)

0.10 m/s RL
0.45 m/s PID

Scenario 6

0.0

0.2

0.4

0.6

0.8

1.0

D
ow

nw
ar

d
V

el
oc

ity
 v

z (
m

/s
)

Figure D.5: Reward R3 Ship Validation Scenarios

106

0 2 4 6 8 10 12
Time (s)

0

2

4

6

8

10
Po

si
tio

n
Er

ro
r (

m
)

Scenario 1

epn

epe

epd

0 2 4 6 8 10 12
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 1

evn

eve

evd

0 2 4 6 8 10 12
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 2

epn

epe

epd

0 2 4 6 8 10 12
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 2

evn

eve

evd

0 2 4 6 8 10 12
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 3

epn

epe

epd

0 2 4 6 8 10 12
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 3

evn

eve

evd

0 2 4 6 8 10 12
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 4

epn

epe

epd

0 2 4 6 8 10 12
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 4

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 5

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 5

evn

eve

evd

0 2 4 6 8 10 12 14
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 6

epn

epe

epd

0 2 4 6 8 10 12 14
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 6

evn

eve

evd

Figure D.6: Error Plots for Reward R3

107

R4

0 2 4 6 8 10 12 14 16
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.06 m/s RL-0.04 m/s PID

Scenario 1

0 2 4 6 8 10 12
Time (s)

H
ei

gh
t (

m
)

-0.15 m/s RL
-0.10 m/s PID

Scenario 2

0 3 6 9 12 15 18
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.39 m/s RL0.40 m/s PID

Scenario 3

0 2 4 6 8 10 12 14 16
Time (s)

H
ei

gh
t (

m
)

-0.01 m/s RL
0.44 m/s PID

Scenario 4

0 2 4 6 8 10 12 14 16
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.15 m/s RL

0.61 m/s PID

Scenario 5

0 2 4 6 8 10 12 14 16
Time (s)

H
ei

gh
t (

m
)

-0.05 m/s RL0.19 m/s PID

Scenario 6

0.0

0.2

0.4

0.6

0.8

1.0

D
ow

nw
ar

d
V

el
oc

ity
 v

z (
m

/s
)

Figure D.7: Reward R4 Ship Validation Scenarios

108

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10
Po

si
tio

n
Er

ro
r (

m
)

Scenario 1

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 1

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 2

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 2

evn

eve

evd

0 3 6 9 12 15 18
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 3

epn

epe

epd

0 3 6 9 12 15 18
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 3

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 4

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 4

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 5

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 5

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 6

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 6

evn

eve

evd

Figure D.8: Error Plots for Reward R4

109

R5

0 3 6 9 12 15 18 21
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

0.10 m/s RL
0.43 m/s PID

Scenario 1

0 2 4 6 8 10 12 14 16
Time (s)

H
ei

gh
t (

m
)

-0.33 m/s RL
0.44 m/s PID

Scenario 2

0 8 16 24 32 40 48 56
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

-0.06 m/s RL0.61 m/s PID

Scenario 3

0 2 4 6 8 10 12 14 16
Time (s)

H
ei

gh
t (

m
)

-0.16 m/s RL
0.66 m/s PID

Scenario 4

0 4 8 12 16 20 24 28 32
Time (s)

2

0

2

4

6

8

10

12

H
ei

gh
t (

m
)

-0.01 m/s RL
0.18 m/s PID

Scenario 5

0 3 6 9 12 15 18 21
Time (s)

H
ei

gh
t (

m
)

-0.02 m/s RL
0.61 m/s PID

Scenario 6

0.0

0.2

0.4

0.6

0.8

1.0

D
ow

nw
ar

d
V

el
oc

ity
 v

z (
m

/s
)

Figure D.9: Reward R5 Ship Validation Scenarios

110

0 3 6 9 12 15 18 21
Time (s)

0

2

4

6

8

10
Po

si
tio

n
Er

ro
r (

m
)

Scenario 1

epn

epe

epd

0 3 6 9 12 15 18 21
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 1

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 2

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 2

evn

eve

evd

0 8 16 24 32 40 48 56
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 3

epn

epe

epd

0 8 16 24 32 40 48 56
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 3

evn

eve

evd

0 2 4 6 8 10 12 14 16
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 4

epn

epe

epd

0 2 4 6 8 10 12 14 16
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 4

evn

eve

evd

0 2 4 6 8 10 12
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 5

epn

epe

epd

0 2 4 6 8 10 12
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 5

evn

eve

evd

0 3 6 9 12 15 18 21
Time (s)

0

2

4

6

8

10

Po
si

tio
n

Er
ro

r (
m

)

Scenario 6

epn

epe

epd

0 3 6 9 12 15 18 21
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

ci
ty

 E
rr

or
 (m

)

Scenario 6

evn

eve

evd

Figure D.10: Error Plots for Reward R5

	Introduction
	Research Plan
	Scientific Article
	Autonomous Landing Problem for UAVs
	The landing problem
	Landing on a ship

	Challenges in Autonomous Landing
	Challenges specific to ship landing problems

	Key phases in autonomous landing
	Target Detection
	Relative state estimation
	Tracking and Landing

	Conclusion and Discussion

	Machine Learning for Optimal Guidance
	Optimal Control Theory
	Formulation of the optimal control problem

	Solving Continuous Optimal Control Problems
	Numerical Methods for Optimal Control Problems
	Optimal control applied to landing problems

	Machine Learning
	Neural Networks
	Supervised Learning
	Unsupervised Learning
	Deep Neural Networks for Optimal Control

	Reinforcement Learning
	Elements of Reinforcement Learning

	State of the Art Deep Reinforcement Learning Techniques
	Model-Free RL
	Reinforcement Learning for optimal control
	Applications of Reinforcement Learning for autonomous landing

	Conclusion and Discussion

	Variable Skew Quad Plane
	Background on hybrid UAVs
	Variable Skew Quad Plane (VSQP)
	Model Configuration

	Guidance and Control Scheme of the VSQP
	INDI
	Adaptive INDI (ANDI)

	One-loop ANDI for the VSQP
	Conclusion and Discussion

	Preliminary Analysis
	Drone Model
	Incorporating the black box model in the loop
	Transfer function for the acceleration response

	Ship Model
	Conclusion and Discussion

	Conclusion
	References
	Simulations for Landing the Parrot Bebop 1 on a stationary platform
	ANDI Input-Output Representation
	Evaluation of the reward combinations for the VSQP
	Validation of the reward combinations for the VSQP

