TUDelft

Evaluating STOKE

PRZEMYSLAW KOWALEWSKI
Supervisor(s): SOHAM CHAKRABORTY, DENNIS SPROKHOLT
EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

Abstract

STOKE is one of the Superoptimizers which are programs that given a function and
a set of instructions of a processor, traverse through a space of programs that compute
a given function and try to find the optimal usually in terms of execution speed or size
of the binary. Authors of STOKE make some extraordinary claims. They suggest that it
is able to produce programs that are multiple times faster than programs without any
optimization, and programs which are at least as efficient as programs produced by gcc
-03 and sometimes expert handwritten assembly. The goal of this paper is to check
these claims. In this paper classes of programs that STOKE may handle particularly well
and any class of programs that stochastic optimization might not be able to handle will
be identified. We conclude from the experiments described in this paper that STOKE
is able to fulfill that statement in some cases. The searching algorithm of STOKE is
not always able to find programs that are at least as efficient as programs optimized
by gcc -03. STOKE works particularly well in programs where a lot consecutive logical
and mathematical operations are calculating (e.g. counting bits). It is often not that
successful with programs containing loops where it sometimes can’t find a solution at
all.

1 Introduction

Superoptimizer is a program that given a function and a set of instructions of a processor,
traverses through a space of programs that compute a given function and tries to find the
shortest one[3]. One of the Superoptimizers - STOKE[5] introduces a cost functions and then
it uses Markov Chain Monte Carldﬂ sampler (specifically Metropolis-Hastings algorithm) to
try to find the solution with the lowest cost value.

MCMC is a sampling algorithm which "draws elements from a probability density func-
tion in direct proportion to its value: regions of higher probability are sampled from more
often than regions of low probability."[5]. In context of cost function it means that the most
frequent samples will be taken from from the areas with lowest value which allows for find-
ing the most optimal solution. When STOKE finds a successful rewrite it tries to find a new
one based on a function based on the most optimal solution at that time. STOKE efficiently
traverses the search space thanks to first identifying different regions in it with equivalent
programs and then trying to optimize programs within these regions.

This approach is not limited to a single class of programs which is innovation in that field
as previous work in that field was usually limited to a performing a search of all programs
within some singular class of programs whereas STOKE’s authors claim that its approach is
universal and can traverse the search space of all possible programs[5]. It saves a significant
amount of time on not searching the regions which would not contain correct solutions to
the program and thanks to optimizing solutions in different areas of the search space it can
find a novel solution to a given problem[5]. Other important constraint of STOKE is that the
correctness preservation while performance improvement is desired but not required.

In this paper, I will be focusing on evaluating the STOKE Superoptimizer. Authors in
the original paper claim that it can generate programs a few times faster than the compiler
without any optimizations would. They also state that the new program will be at least as
efficient as programs produced by gcc -03 and in some cases faster than expert handwritten
assembly.

IMCMC

The goal of this research is to check these claims or have they changed over the years of
STOKE development and identify classes of programs that it may handle particularly well and
any class of programs that stochastic optimization might not be able to handle competently.

This will be done through repeating experiments carried out in the original paper and
creating new test cases and testing them to identify the pros and cons of this particular
Superoptimizer in context of different program types.

The structure of this paper is as follows, firstly methodology of the experiments will be
discussed, then the experimental setup and results will be described. Following that, all the
validated experiments from the original paper will be discussed in detail and after that, all
the classes of programs that were evaluated will be discussed. In the end, the conclusions
of the research will be laid out and potential future work will be discussed.

2 Methodology

There are many factors that make this particular Superoptimizer challenging to properly
evaluate. One of them is randomness in traversing the search space, we can make the
seed constant for all experiments, which would make them easily reproducible but it could
potentially prevent us from finding a more optimal solution. Therefore I have used three
different seeds to check for the most optimal solution, that being said it does not fully solve
the problem but allows to see if the seed is a big factor in the experiment’s result and might
require more investigation.

The other factor that influences is the cost function that navigates the search through the
search space. STOKE’s authors implemented quite a few of them and also allowed combining
and assigning weights to them. This means that using one particular cost function may
lead to no search results at all, while some other cost functions may lead to finding some
attractive results. The most relevant cost functions are:

e correctness - number of bits that differ in the outputs of the target versus the rewrite
summed across all test cases,

e latency - an educated guess of the run time of given instruction based on number of
processor cycles required to execute given instruction,

e measured - same as latency but measured on given processor,
e size - number of instructions in a rewrite.

The default cost function is defined as "correctness+latency", it was tested in all of
the experiments as well as its different permutations such as "correctness+latency-+size",
"correctness+measured", etc.

There are a plethora of other important factors of which different permutations were
tested, such as penalties for wrong results, proposed changes to the program, starting point
in the search space (which for all experiments in this paper is a non-optimized program
generated by 1lvm -00), etc. This problem does not affect the evaluation of programs
shown in the original publication [5] as the authors provide STOKE’s configuration on the
project’s Github page. However, it does affect the evaluation of different program classes as
we never have certainty that the found solution is the pinnacle of the STOKE’s possibilities
which is an important limitation of this research.

When measuring the performance of both optimized and non-optimized versions of a
function, they were ran millions of times such that the execution time of the whole program

is measured in several seconds, then that program is run 10 times and the average of these
measurements is calculated to account for any background activity of the operating system
that might have slowed down the execution of the program. Following that we calculated 95%
confidence interval for these results to account for the measurement inaccuracy (excluding
the programs with high computational complexity as they have much higher run-time, in
that case duration of one function call was measured).

3 Experimental Setup and Results

All experiments were executed on MSI GS65 Stealth Thin 8RE laptop equipped with Intel
Core i7-8750H processor, DDR4 8GB Ram, GTX 1060 with Ubuntu 14.04 with GCC version
4.9 installed. STOKE’s source code was retrieved and compiled from the latest commit on
June 20, 2022,

To compare the results of the optimization of the functions performed in the original
paper [5] configuration files and source code on the previously mentioned GitHub repository
was used and then the experiments were ran 10 times each on the computer and measured
with time command. Average of these measurements was taken and speed-up was computed
based on these averages.

To benchmark the functions written to test the STOKE’s efficiency with different program
classes all functions were ran in a program run which called these functions 10™ times
where n is adjusted to make execution time of the program in range from 0.5 second to 10
seconds to mitigate the overhead caused by program loading and starting and all the memory
operations. Then that program was run 10 times to account for background activity of the
computer which could lead to slow down the execution of the program and the average
was taken from these measurements. All the STOKE configuration files used to perform the
optimizations are published on the TU Delft’s GitLab.

’ Function name \ gee -03 \ STOKE \ Speed-up ‘

p21 2.52 1.23 51%
p23 0.62 0.54 | 10%-14%
SAXPY 1.30 1.28 | —1%-3%
Linked List 3.8 3.79 0%-1%

Figure 1: Program execution time in seconds and speed-up after applying STOKE’s optimiza-
tion when repeating the experiments from the original paper

4 Verification of original experiments

There are multiple experiments carried out in the original STOKE paper [5]. In this section
results of trying to reproduce them will be presented as well as the authors claim that STOKE
should produce programs at least as fast gcc -03 will be verified. For some experiments
the source code and/or assembly code will be provided when those are helpful for explaining
the experiments results. If one of the code results is omitted but the reader wants to take
a look at them anyway, it can be done by reproducing the experiments which can be done
by using the configuration files and code which are hosted on STOKE’s GitHub page.

https://github.com/StanfordPL/stoke/tree/98d8a0f028f2daf2052bfe607dbc32ec8d55ba9e
https://github.com/StanfordPL/stoke/tree/98d8a0f028f2daf2052bfe607dbc32ec8d55ba9e

’ Experiment name \ gee -03 \ STOKE \ Speed-up ‘

HCdY 0.74 0.67 —8%-—13%
HCCD({'| 5.39 6.13 —13%-—-15%
RMA| 2.16 2.39 6%-13%
RMA SMALIJ 1.78 1.86 —3%-—5%
TS 4.98 | SEGFAULT -

“High Cyclomatic Complexity

bHigh Cyclomatic Complexity with Dead Code
¢Random Memory Access

dRandom Memory Access to a small array
¢Travelling Salesman Problem

Figure 2: Program execution time in seconds and speed-up after aplying STOKE’s optimiza-
tion when testing different classes

4.1 p21 function

int p2l(int x, int a, int b, int c){
return

Figure 3: p21 function

p21 function takes four integer values, performs different logical operations on them and
then returns one integer value.

gcc —03 # STOKE

xorl eax eax Xorq rax rax
cmpl ecx edi xchgl ecx eax
movl ecx r8d xorq rdx rdx
sete al sarq Ox1 rdx
xorl esi r8d

negl eax

andl r8d eax
cmpl esi edi
movl edx esi
sete dil
xorl ecx esi
movzbl dil edi
negl edi
movl edi edx
andl esi edx
xorl eax edx
movl edx eax
xorl ecx eax

Figure 4: p21 function before and after STOKE’s optimization

As it can be seen in the figure above on the left we can see that program generated by gcc
-03 is a pretty naive rewrite of the original function. STOKE found a really efficient solution,
reducing the number of instructions by 15 and achieving a speed-up of 51% comparing to
the original version.

4.2 p23 function

p23 is a function that calculates number of 1 bits in a given number. It is implemented
using bit shifts, and operations, additions and subtractions. Assembly code generated by
gcc -03 will be omitted as it is a naive rewrite of the source code.

int p23(int x) {
int ol = x >> 1;
int 02 = ol & 0x55555555;
int 03 = x — 02;
int o4 = 03 & 0x33333333;
int o5 = 03 >> 2;
int 06 = 05 & 0x33333333;
int o7 = 04 + 06;
int 08 = o7 >> 4;
int 09 = 08 + 0o7;
int 010 = 09 & 0x0f0fOf0f;
int oll = 010 >> 8;
int 012 = 010 + oll;
int 013 = 012 >> 16;
int 014 = 012 + 0l13;
return ol4 & 0x0000003f;

Figure 5: p23 functions’s source code

STOKE
popcntq rdi rax

Figure 6: p23 function’s assembly after STOKE’s optimization

As it can be seen in the figure above STOKE manages the most optimal solution which is
reduction of all 49 instruction to one - popctn which counts number of 1s in the register.
Thanks to this a speed-up of at least 12% over gcc -03 is achieved which is significant but
quite smaller that claimed in the paper which is more than 50%.

4.3 SAXPY function

SAXPY is a linear algebra function which takes a constant a, two pointers to arrays y and
2 and an offset 7 and then calculates x; = x; * a + y; where 1 is an integer from a range of 4
to i+ 3.

void s(int a, intx x, intx y, int i) {
x[i+0] = x[140] = a + y[i+0];
x[i+1] = x[i+1] * a + y[i+1];
x[142] = x[i+42] * a + y[i+2];
x[14+3] = x[1+3] * a + y[i+3];

Figure 7: SAXPY function

This experiment gave the worst results in comparison to the results in the original paper.
The speed-up achieved thanks to STOKE’s optimizations was basically non-existent.

4.4 Linked List Traversal

This example in the original paper is meant to show limitations of STOKE. The code of that
function given a pointer to the first element, traverses whole linked list and doubles each
element in it.

while (head != 0) {
head—>val x= 2;
head = head—>next;

}
Figure 8: Linked List Traversal

The speed-up achieved from applying that optimization is negligible and in range of
statistical error however this was expected due to the nature of this Superoptimizer. STOKE
is not able to fully optimize this function but only the most inner fragment of the loop
therefore it misses some possible loop optimizations.

5 Evaluating Different Program Classes

The aim of this section is to test how STOKE handles different program classes by writing
different programs, optimizing them with STOKE and seeing if that was advantageous in
terms of number of the CPU operations and achieved speed-up.

5.1 High Cyclomatic Complexity

In this subsection programs with high cyclomatic complexity will be tested. It is defined as
a "metric measures the number of linearly independent paths through a piece of code"[I].

int fn(int x){
if (x> 3) {
if (x > 5) {
return x — 1;
}

)
return x — 3;

} else {
return x + 3
}

}
Figure 9: An example of a function with cyclomatic complexity of 3

Goal of these experiments is to check if STOKE is able to reduce number of conditional
jumps and perform deletion of unreachable instructions.

5.1.1 Nested if statements

This program contains a function that takes an integer and consists of 18 if statements. The
integer is changed inside the if statements and the different branches are chosen depending
on the input value. The integer goes through this if statements one billion times.

STOKE managed to find a solution that has around half of the operations however it did
not achieve a speed-up but the opposite. The time of program execution was longer from
8% to 13%.

5.1.2 Dead code

The function tested in this experiment looks very similar to the one tested previously.
However, in this case, regardless of the input to the function it will always behave in the
same way and return the same value. The aim of this experiment is to check if STOKE will
manage to get rid of the unused conditional jumps and reduce the function to the most
efficient form which is just returning zero.

gcc -03 managed to find such a solution, it computes XOR of the input register with
itself which is equivalent to setting it to zero, and returns it. Unfortunately, the solution
found by STOKE is not as straightforward. It also zeroes the return register with the first
instruction. However, optimized code contains several unnecessary conditional jumps before
finally returning the function. As could be expected those jumps make program execution
slower than the gcc -03 version by at least 13%.

5.2 Random Memory Accesses

In this subsections programs that access certain parts of memory multiple times in a random
order will be tested. Goal of these experiments is to check is how STOKE will handle frequent
memory accesses and if it this will improve programs’ performance over gcc -03.

5.2.1 An array of an arbitrary size

This particular function takes a pointer to an array and three indices and then uses these
indices to access an integer array pointed to by the first argument.

int f(int* arr, int i, int j, int k){
int a = arr[i];
a=a | arr[j];
return a "~ arr[k];

}

Figure 10: Function accessing three different indices of an array with arbitrary size

Point of this experiment is to check if STOKE’s optimizations can make the program
somehow access random memory addresses faster than program generated by gcc -03.

gcc —03

pushq rbp

movq rsp rbp

movq rdi —0x8(rbp)
movl esi —0xc(rbp)
movl edx —0x10(rbp)
movl ecx —0x14(rbp)
movslq —Oxc(rbp) rdi
movq —0x8(rbp) rax
movl (rax,rdi,4) ecx
movl ecx —0x18(rbp)
movl —0x18(rbp) ecx
movslqg —0x10(rbp) rax
movq —0x8(rbp) rdi
orl (rdi,rax,4) ecx
movl ecx —0x18(rbp)
movl —0x18(rbp) ecx
movslqg —0x14(rbp) rax
movq —0x8(rbp) rdi
xorl (rdi,rax,4) ecx
movl ecx eax

popq rbp

STOKE

movl edx eax

vmovd ecx xmm6
vmovdqu ymm6 ymmlb
movl (rdi,rax,4) ecx
xchgl eax esi

rorw $0xc0 cx

orl (rdi,rax,4) ecx
pextrq $0xfa xmmld rax
xorl (rdi,rax,4) ecx
xorw $0x0 di
Cmovpoq rcx rax

Figure 11: Function before and after STOKE’s optimization

STOKE managed to find a successful rewrite. Program with the optimized function
achieved speed-up of at least 6%.

5.2.2 Small array

This function is quite similar to the one in the previous function. It also takes a pointer to
an array and three indices and then uses these indices to access an integer array pointed to
by the first argument. However in this case an array is of a fixed size of 10. The point of
this experiment is to check if STOKE would behave differently with that small of a change
and this particular class of a program.

int f(int arr[10], int i, int j, int k){

int a = arr[i];
a=a | arr[]];
return a ~ arr[k];

Figure 12: Function accessing three different indices of an array with a size of 10

10

gcc —03 # STOKE

pushq rbp movq rdi rax

movq rsp rbp xchgl edi edx

movq rdi —0x8(rbp) vpbroadcastw (rax,rdi,4) ymm0
movl esi —0xc(rbp) bzhil edx ecx edx
movl edx —0x10(rbp) cmovbl (rax,rdi,4) ecx
movl ecx —0x14(rbp) xchgq rax rdi

movslqg —0xc(rbp) rdi xchgl eax esi

movq —0x8(rbp) rax orl (rdi,rax,4) ecx
movl (rax,rdi,4) ecx xchgb al dl

movl ecx —0x18(rbp) xorl (rdi,rax,4) ecx
movl —0x18(rbp) ecx xchgl eax ecx

movslqg —0x10(rbp) rax
movq —0x8(rbp) rdi
orl (rdi,rax,4) ecx
movl ecx —0x18(rbp)
movl —0x18(rbp) ecx
movslqg —0x14(rbp) rax
movq —0x8(rbp) rdi
xorl (rdi,rax,4) ecx
movl ecx eax

popq rbp

Figure 13: Function before and after STOKE’s optimization

STOKE managed to find a successful rewrite however the result of the run time mea-
surements turned out quite differently. Both run times were around 15% faster than the
programs from the previous experiments. However the program optimized by STOKE was
around 4% slower than the program produced by gcc -03. This shows that slight difference
in the program may cause STOKE find a completely different rewrite for them.

5.3 High Computational Complexity

In this subsection programs with a significant computational complexity will be tested to
check how STOKE handles functions containing multiple loops.

5.3.1 Travelling Salesman Problem

Traveling Salesman Problem is defined as follows "a permutation P = (1ligis...i,,) of the
integers from 1 through n that minimizes the quantity a,;, where the a,g are a given set
of real numbers. More accurately, since there are only (n — 1)! possibilities to consider, the
problem is to find an efficient method for choosing a minimizing permutation".|2]. This
particular problem has various real-life applications and yet there is no efficient solution to
it and the problem is considered NP-Hard. STOKE wasn’t expected to find a faster algorithm
but to optimize the existing naive one as any speedup of a program such inefficient would
be significant.

11

int fxn(int s, int path][],
int path size, int graph[][V]) {
int current pathweight = 0;
int k = s;

for (int i = 0; i < path_ size; i++) {
current pathweight += graph[k]|[path[i]];
k = path[i];

}

current pathweight += graph[k]|[s];

return current pathweight;

Figure 14: Function calculating distance of one of the possible paths

Program generated all possible permutations and then passes them to the function above
to calculate its weight.

This experiment showed that STOKE is not production-ready yet. It managed to find
potentially better solutions but some errors had to occur in the optimization process as the
program produced a Segmentation Error in the fxn function after the original fxn assembly
code was replaced by the one optimized by STOKE. Knowing STOKE’s limitations regarding
functions containing loops, none or a small speed-up was expected but the fact that the
program was not working at all was the only occurrence of that of all the experiments.

Different configurations were tried that produced different potential rewrites and the
non-optimized version of the program was tested thoroughly and concludes that even though
that these solutions passed all the test-cases generated by STOKE, they are not a guarantee
of program safety.

5.3.2 Sum of three integers and matching brackets problem

These two experiments were described in a single subsection as they gave identical results.

The sum of three integers function takes a pointer to an array and a target value.
Function consists of three for-loops which are trying to find three values with different
indices that sum up to the target value. There exist solutions with complexity O(n) but
this particular algorithm is of complexity O(n3) The aim of this experiment was to check
how STOKE would handle a solution to a problem which is not optimal.

Matching bracket problem is to given a string consisting of different types of brackets
(in this case (,{ and [) find number of pairs brackets that are matched properly which is
defined as that there is a opening and a closing bracket and between them there is either
no other brackets or only other properly matched brackets. Solution used in the experiment
used a stack data structure to efficiently calculate the solution as the algorithm has O(n)
complexity. The goal of this experiment was to check how STOKE would handle an efficient
solution to a problem.

The results of STOKE’s optimizations to these problem were extremely disappointing.
Despite trying multiple configurations of the search procedure it wasn’t able to find a so-
lution. Multiple cost functions, verification strategies, iteration timeouts, numbers of test
cases were tried and all the search for better solution took combined around 24 hours after
which it was decided that it would never be feasible to spend so much time on optimizing

12

such short functions. Hence, the experiment is considered as STOKE’s failure and it was
concluded that STOKE is not a always an appropriate Superoptimizer to deal with functions
containing loops.

6 Responsible Research

6.1 Trustworthy results

Important part of this research is making sure that the provided results of the experiments
are produced in a way that they will lead to correct conclusions. A lot of program time
measurements were done to support certain statements. Performing them without taking
measures against measurement bias could potentially make a lot of work worthless and
conclusions wrong. To prevent that I consulted some of the best practices [4].

e Experiments were conducted in a minimal environment (freshly installed operating
system).

e No 3rd-party applications were running in the background

e Stack starting address randomization was turned off on the machine.

6.2 Reproducibility

It was the goal from the beggining of this research for all the experiments could be reproduced
on different machines because it might be the case that the results could vary e.g. on different
processor micro architectures. To make that possible the code and STOKE’s configuration
files for all experiments written by me were put on the 4TU databas}ﬁ All the experiments
from the original paper were taken from the official STOKE repository’| that was most recent
on June 20, 2022.

7 Discussion

As it can be seen the results in different experiments vary. In the experiments taken from
the original paper we can see that STOKE can satisfy the thesis that can produce programs
at least as fast as the ones produced by gcc -03 (version 4.9) but the speed-up achieved on
this particular computer was always less significant than those shown in the paper.

The results generated when identifying STOKE’s ability to optimize different program
classes do not seem as positive as the previous ones. A speed-up was achieved in only
of these experiments, in the other ones slow-down was achieved ranging from 3% to 16%.
These results are very disappointing, however it is important to keep in mind the limitations
of this research. Even though quite a few configurations were tried for each experiment, a
more experienced STOKE user (or a lucky one) might have written a configuration file that
traversed the search space in a way that found a more efficient solution to the problem. It
is important to also know STOKE’s limitations in context of programs that contain loops, as
mentioned in the original paper and confirmed here, that STOKE can’t find the most optimal

2https://data.4tu.nl/articles /software/Programs_to_evaluate superoptimizer STOKE _/20099015/1
3https://github.com/StanfordPL /stoke

13

https://data.4tu.nl/articles/software/Programs_to_evaluate_superoptimizer_STOKE_/20099015/1
https://github.com/StanfordPL/stoke

solution in these programs as it can only optimize loop-free programs so it tries to optimize
the most inner part of the loops.

The most disappointing result was certainly one got when testing the problems with
High Computational Complexity as Travelling Salesman Problem program in which after
STOKE’s optimizations the program was caused a Segmentation Fault when executing the
optimized function or two other problems for which it could not find a proper rewrite at all.
There were also two experiments in high computational complexity for which STOKE did not
find any suitable rewrite, which is very like to come from STOKE’s limitations regarding the
code containing loops.

8 Conclusions and Future Work

The experiments confirmed that STOKE is able to produce programs at least as fast gcc -03
in some cases and the experiments from the original paper show that. However it is not true
in all cases, STOKE’s limitations when it comes to programs that contain loops may cause a
slow-down. STOKE is a tool that can generate programs which are significantly faster than
the original solution, however it sometimes can do the opposite of that. It is inconvenient as
creating a configuration file that makes STOKE generate efficient solutions is time consuming
and takes a lot trials and errors and might be troublesome in big projects. It also can
produce programs that crash as shown in the Travelling Salesman experiment.

Strong points

Weak points

It is able to propose novel solutions short-
ening the execution time and the binary
size of a program

It is able to reduce numbers of multiple
logical and mathematical operations to a
smaller amount decreasing number of pro-
cessor cycles (e.g. p23 experiment)

It is able to perform standard optimiza-
tions (e.g. removing dead code) with some
limitations

Struggles to find solutions or finds solu-
tions slower than gcc -03 in case of pro-
grams with loops

Does not guarantee producing a correct
solution

Standard optimizations are not always
performed in a perfect way (e.g. remov-
ing most of dead code but not all of it as
described in section 5.1)

Small changes to the configuration can
cause STOKE to find a less optimal solu-
tion

Figure 15: Summary of STOKE’s strong and weak points

Although some of the experiments conducted in this paper have not reduced positive
results the other ones show great potential that lies in Stochastic Optimization as some
issues with STOKE are only characteristic for its implementation (e.g. accepting programs
that SEGFAULT as a correct solution due to insufficient testing). STOKE is capable of finding
really smart optimization as shown e.g. in p21 function experiment, however finding optimal

14

configurations of STOKE is difficult and takes a lot of work. Research on them and some
general guidelines would be very useful for less experienced users. More investigation on
STOKE itself also would be beneficial. It is important to investigate how STOKE could prevent
producing programs that that crash and also in some cases produce programs slower than
gcc -03.

References

[1] Christof Ebert, James Cain, Giuliano Antoniol, Steve Counsell, and Phillip Laplante.
Cyclomatic complexity. IEEE Software, 33(6):27-29, 2016.

[2] Merrill M. Flood. The traveling-salesman problem. Operations Research, 4(1):61-75,
1956.

[3] Henry Massalin. Superoptimizer: A look at the smallest program. SIGARCH Comput.
Archit. News, 15(5):1224126, oct 1987.

[4] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. Producing
wrong data without doing anything obviously wrong! SIGPLAN Not., 44(3):2654276,
mar 2009.

[5] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. SIGPLAN
Not., 48(4):3052316, mar 2013.

15

	Introduction
	Methodology
	Experimental Setup and Results
	Verification of original experiments
	p21 function
	p23 function
	SAXPY function
	Linked List Traversal

	Evaluating Different Program Classes
	High Cyclomatic Complexity
	Nested if statements
	Dead code

	Random Memory Accesses
	An array of an arbitrary size
	Small array

	High Computational Complexity
	Travelling Salesman Problem
	Sum of three integers and matching brackets problem

	Responsible Research
	Trustworthy results
	Reproducibility

	Discussion
	Conclusions and Future Work

