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TREE QUASI-SEPARABLE MATRICES: A SIMULTANEOUS
GENERALIZATION OF SEQUENTIALLY AND HIERARCHICALLY
SEMISEPARABLE REPRESENTATIONS*

NITHIN GOVINDARAJANT, SHIVKUMAR CHANDRASEKARAN?,
AND PATRICK DEWILDE$

Abstract. We present a unification and generalization of what is known in the literature as
sequentially and hierarchically semiseparable (SSS and HSS) representations for matrices. These so-
called tree quasi-separable (T'QS) matrices contain sparse matrices with tree-structured adjacency
graphs as an important subcase. TQS matrices inherit all the favorable algebraic properties of SSS
and HSS under addition, products, and inversion. To arrive at these properties, we prove a key
result that characterizes the conversion of any dense matrix into a TQS representation. Here, we
specifically show through an explicit construction that the size of the representation is dictated by
the ranks of certain Hankel blocks of the matrix. Analogous to SSS and HSS, TQS matrices admit
fast matrix-vector products and direct solvers. A sketch of the associated algorithms is provided.
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1. Introduction. Matrices in applied problems of interest often exhibit a struc-
ture of low rank in their off-diagonal blocks. These structures have, for instance,
been observed in the discretization of integral equations [21], Schur complements of
discretizations of PDEs [9, 9, 26|, certain Cauchy-like matrices [14, 28], evaluations
of potentials [18], and companion matrices [3], among others. Many frameworks have
been proposed to efficiently represent these low-rank structures so that efficient lin-
ear algebra operations can be performed with such matrices. This includes the fast
multiple method [18], semiseparable and quasi-separable matrices [4, 17, 22], sequen-
tially semiseparable (SSS) matrices [8, 7], hierarchically semiseparable (HSS) matrices
[13, 27], H- and H>2-matrices [5, 19, 20], and hierarchically off-diagonal low-rank ma-
trices [1, 2]. These frameworks are related and have their specific benefits, pitfalls,
and special use cases. A complete review of the subject goes beyond the scope of this
paper.

This paper examines the low-rank structures that are preserved during the in-
version of a (block-)sparse matrix with a tree-structured adjacency graph. These
structures induce a family of typically dense matrices that possess certain low-rank
properties on their submatrices. Although sparse matrices whose adjacency graphs
are trees form, along with their inverses, a special subcategory of this family, the
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TREE QUASI-SEPARABLE MATRICES 1563

family contains dense matrices that are not necessarily the inverse of a sparse matrix.
In this paper, we present a new class of representations for rank-structured matrices
that can capture these structures exactly. In fact, we show that these representations
satisfy a graph-induced rank structure (GIRS) property if the corresponding graph of
the associated graph-partitioned matrix is a tree (see [10]). The representations are
referred to as tree quasi-separable (TQS) matrices.

Interestingly, TQS matrices simultaneously unify and generalize SSS and HSS
matrices. Apart from introducing a new family of rank-structured matrices, an im-
portant technical contribution of our paper is an algorithm that realizes a minimal
TQS representation for any dense matrix. This algorithm is, in effect, a unification
and generalization of the algorithms for doing the same with SSS and HSS matri-
ces. The algorithm allows us to prove a result (Theorem 4.4) that fully characterizes
the properties of a TQS representation of any matrix. Specifically, for a given tree
structure and block partitioning of the matrix, the dimensions of the TQS generators
are dictated by the ranks of certain matrix subblocks referred to as Hankel blocks.
Through this fact, we show that TQS inherits the favorable algebraic properties of
SSS and HSS matrices under addition, products, and inversion. Importantly, the in-
verse of a TQS matrix is again a TQS matrix of exactly the same rank-profile if the
input and output dimensions of the partitions are chosen equally. TQS matrices allow
for fast inversion algorithms and matrix-vector products. We present one such fast
direct solver using a sparse embedding technique introduced in [6] for HSS matrices.

It is well-known that SSS and HSS matrices are used extensively in practice.
TQS matrices are a more flexible drop-in replacement for HSS and SSS matrices.
We anticipate that this flexibility can lead to even further improvements in many
applications, particularly for networked dynamical systems on graphs [23]. Although
applications are the subject of future work, we present some illustrative examples of
sparse matrices where the choice of a TQS representation is both natural and efficient.

The remainder of this paper is outlined as follows. In section 2, we give a quick
review of SSS and HSS matrices. Section 3 introduces TQS matrices in detail. The
algebraic properties of TQS matrices are discussed in section 4. In section 5, we discuss
the construction algorithm, and along with it the proof of Theorem 4.4. Section 6
covers the fast matrix-vector multiplication algorithm and the procedure for efficiently
solving a linear system involving TQS matrices.

2. A brief recap on SSS and HSS matrices. This section briefly reviews
the definitions of SSS and HSS matrices. We emphasize that we use a rather un-
conventional, and admittedly redundant, notation in the definitions of both SSS and
HSS matrices. However, this is done intentionally to establish a direct link with TQS
matrices that will require more detailed notation. Subsection 2.1 covers SSS matrices
and subsection 2.2 covers HSS matrices. Subsection 2.3 briefly summarizes performing
algebra with SSS and HSS matrices. For more details on the algorithms themselves,
we recommend [7, 8] for SSS and [13, 24, 25, 27] for HSS. A more tutorial-styled
introduction to the subject is given in [12].

2.1. SSS matrices. SSS matrices were first introduced in [15] in a study to
generalize systems theory to the time-varying case. To define SSS matrices, let m;,n; €
NuU {0} for i € {1,...,K} and p(; 41y € N{O} for i € {1,..., K — 1} and introduce
the matrices D' € F™*™ for i € {1,..., K}, Bj,; € FPG.a+0>" for je {1,..., K — 1},
U, g €FPaisnXri-1i forie{2,...,K — 1}, Ci_; e F™*ra-1o forie{2,..., K},
P eFrai-n>" forie{2,...,K}, Wi_| ;. e FPai-0*rusid forie{2,..., K — 1},
and Qi € Fmi*PG+io for i€ {1,...,K}. Next, define

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/10/25 to 154.59.124.113 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1564 N. GOVINDARAJAN, S. CHANDRASEKARAN, AND P. DEWILDE

D’ i=7,

— ; i—1 j+1 L

(21) Aij = C,lL 1Uz 2 U;+QJB;+1, 1> 7,
i+1 j—1 pJ ; ;

1W21+2 Wi Py, i<y

An SSS matrix A € FMXN with M = Zi:l m; and N = Zf; n;, is the block-
partitioned matrix with block entries specified by (2.1). For example, in the case of
K =4, an SSS matrix takes on the form

D! 3Pt sWE,P3 QWi W3 ,P5
(2 2) A= C%B% D2 Q%Pg Q3W3,4P4
| ciiBl oD Qi)
CZUZ,2U3,1B2 CQU2,2B3 CBB% D

The entries of the SSS representation (2.1) can be seen as the result of decomposing
A as the sum of a causal and anticausal linear-time-variant (LTV) system on a line
graph. At this point of our discussion, it may be important to remark that the phrase
“sequentially semiseparable” has been chosen rather inconveniently in the literature
since SSS matrices are effectively a representation for the much richer class of quasi-
separable matrices [4, 17]. The prefix “sequentially quasi-separable” would have been
more appropriate.

2.2. HSS matrices. While SSS matrices have their origins in systems theory,
HSS matrices arose independently to simplify the algebra of the fast multipole method
so that it has favorable properties under inversion. To define HSS matrices, we re-
cursively partition a matrix A € FM*¥ in a hierarchic manner. This process is best
described through a binary tree.

Assume that the nodes of the binary tree are indexed by a postordered traversal
of the tree and let r denote its root node. Furthermore, let L(I) (respectively, R(l))
denote the left (respectively, right) child of node [ in the binary tree. If [ is a termi-
nating point of the recursion, or equivalently, a leaf node of the binary tree, we set
Al =D! e F™>™ On the other hand, if I is a nonterminating point of the recursion,
we set

Ll R(l
(2.3) Al = AMD Ql()VL(l BNOL! ()]

R(l L(l
Q ()Vl Lo, L(l)Bl() A R(1)

where AL(® € Frewxmiw ARD € FrroXmww | my = my,g) 4+ mp(), and ny = ngq) +
ng()- Furthermore, QL(Z) Q?(l) € Fmrm>XParm) (respectively, QR(Z) QlR(l) €
Fmra*Pa.rm) ) if L(1) (respectlvely, R(l)) is a leaf node of the binary tree. Otherwise,

QL(L(l))WL(l) QL(R(Z R(l)
O = | Gl | Q= | Shi LR
QL WR(L ), QR(Z R(R(1)),!

L(1) L)
with Wy o), R(L(1)).1

Wg(@(l))’l € FP®O) RLm) XPLRWD) | W?EQ ) € FPRORR@NXPERD) - Similarly, BlL(l) =
B{“(l € Framnxniw (respectively, BR(Z) BlR(l) e Frew.n*mr) if L(l) (respectively,
R(1)) is a leaf node of the binary tree. Otherwise,
L) _ @ L(L(1)) L(1) R(L(1))
B = [Ul,L(L(l))BL(l) U rwayBro } )

R() _ [fRU) LR (RO RR(R()
B, [Ule(l))BR(z) Ui r(r() Bra) }

e Fram. e XPa.Lw) W € FPam.Rwm) X L),
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L(1)
R(L(1)),
ULra) _ LR(R(1)) € FPEODZPEREOIRO), At the rc')ot level,
we set A =A" € F™r*" with m, =: M and n, =: N. For example, the matrix

. L(l)
with ULL(L(I)

, € FP(RU)J)XP(L(R(Z)),R(W’ U

X X
) e FP@,n p(L(L(l)%L(l))’ U . € FPw.n p(R(L(l))YL(l)%

D! QI QW VB
(2.4) A=| Qivi,B} D QWY V3B
Q5VisUs By Q3Vi5Us oB3 D*
AB Q3v5 B4
= Q4V5 B3 5A344 °
57Y4,3~5

is an HSS matrix.

2.3. Algebra with SSS and HSS matrices. SSS and HSS matrices share
common algebraic properties. Any dense matrix can be converted into an SSS or HSS
matrix. The dimensions of the generators, and thus the efficiency of the representa-
tion, are specified by the ranks of the off-diagonal (i.e., so-called Hankel) blocks. Sums
and products of SSS (respectively, HSS) matrices are again SSS (respectively, HSS)
but with a doubling in the size of the generators. The inverse of an SSS (respectively,
HSS) is an SSS (respectively, HSS) matrix of the same generator dimensions. SSS (re-
spectively, HSS) representations of matrices that have small Hankel block ranks can
be multiplied with vectors in linear time. The same holds for the solve operation. For
the latter, one common approach to both representations is a lifting technique that
solves the linear system as a larger block-sparse system [6]. All these commonalities
do not come from nowhere, since SSS and HSS belong to the same family of a more
general class of matrices.

3. Tree quasi-separable matrices. This section formally introduces TQS ma-
trices. To do so, we first introduce some terminology in subsections 3.1 and 3.2. The
actual definition of TQS matrices is given in subsection 3.3. Finally, subsection 3.4
describes SSS and HSS as special cases of TQS matrices.

3.1. Tree graphs. Let G = (V,E), with node set V= {1,2,..., K}, be a con-
nected acyclic undirected graph. Here, for reasons that will be clear later, the edge set
E is unconventionally interpreted as a collection of ordered pairs of nodes (instead of
unordered pairs!), but with the property that (¢,j) € E if and only if (j,7) € E, i.e.,
the edges in both directions are included. The number of edges incident to a node
i €V, ie., its degree, is denoted by deg(i). Since G is acyclic, every pair of nodes
i,j € G is connected by one, and only one, path!

P(i,j)=i—wg—-+ —wp—1—j

of specific length p.
The graph G may be interpreted as a rooted tree.? Indeed, if A'(i; k) denotes the
set of k-neighbors of node i € V, i.e., the set of nodes that can be reached by 4 through

1Here we do not allow for self-intersecting paths. A “path” passing from node i to node j by
passing through ¢ and going to k, to subsequently come back to node j, is not considered a valid
path!

2 Although one may work without such an interpretation, this viewpoint shall be useful for de-
riving some of the results in the paper. Specifically, it allows the labeling of the generating matrices,
which in turn simplifies validating the correctness of Algorithm 1.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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traversing a path of length k, then a tree G(r) is induced by picking any r € V and
setting

Vo={r}, Vi=N(r;1l), Vo=N(r;2), ..., Vp=N(r;L).

The depth of the tree specified by the partition V= VqUV; U--- UV equals L
and is defined as the smallest number with the property N (r; L + 1) = . The level
l at which a node ¢ € V; resides within the tree is denoted by L(i) (note that this
depends implicitly on the choice of root node made earlier!). An edge (i,7) € E with
L(i) = L(j)—1 is called an up-edge since it is directed toward the root node. Likewise,
if £(i)=L(j)+1 it is called a down-edge since it is directed away from the root node.

Within the setting of the tree G(r), a node j € V is considered to be a child of
i €N(G)=N(;1) ifi eV, and j € V1. Vice versa, i is the parent of node j. The
notion of children and parents may be further generalized: j € V is a k-child (with
k>0)of i € N(j; k) (and vice versa i is the k-parent of node j) if i € V; and j € Vi .
Two nodes 4,j € V; are siblings (k-siblings) if they both share the same parent node
w e V1 (weV,_g). Naturally, a node will have at most one k-parent, but it may
have many k-children or k-siblings. The parent (k-parent) of a node ¢ € V is denoted
by P(i) (P(i;k)) and this set may be empty (e.g., for the root node). The set of
children (k-children) of node i € V is denoted by C(¢) (C(i;k)). The set of siblings
(k-siblings) of node i € V is denoted by S(i) (S(i;k)). The set of descendants of node
i € V and including 4 itself is denoted by

D(i):=1UC(5;1)UC(;2)U---UC(5; L — L(i)).

and we set D(i) :=V\D(i). A node i€V is called a leaf node if its set of descendants
is empty. Note that leaf nodes may reside at any level of the tree. The set of leaf
nodes of an acyclic fully connected graph is denoted by Z(G).

3.2. Graph-partitioned matrices. We can associate the graph G = (V,E)
with a block-partitioned matrix. To do this, associate each node with an input of size
n; € NU {0} and an output of size m; € NU {0}. Note that we allow the sizes of the
inputs and outputs to be empty! Now, let

M = Zmi, N = Z?’Ll‘.
i€V i€V
We may then introduce a matrix T € FM*V that is assembled from the system of
linear equations

(3.1) bi=>» T{i,j}z;, icV.

jev
That is,
1 P K
1 rT{1,1}y  T{,2} - T{LK)
(32) p 2Ty T2} - TRK)
K LT{K,1} T{K,2} - T{K K}

where T{i,j} € F™*™ is the matrix associated with the contribution of the input at
node ¢ € V to the output at node j € V. Given two subsets A = {i1,...,ia} CV and
B={j1,...,58} CV we have submatrices of T with the notation

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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J1 JB
iv [T{i, 51} -+ T{i1,jB}
T{A,B} = : :
ia LT{ia,j1} - T{ia, jB}

Actual entries of the matrix T or its block-components T{i,j} are accessed using a
square-bracket notation, i.e., T[k,l] and T{i,j}[k,I] refer to the (k,l)th entry of T
and T{i,j}, respectively.

The matrix T alongside with G is referred to as a graph-partitioned matriz. Note
that this definition is agnostic to whether G is a tree or not. Nonetheless, in this
paper, we will limit ourselves to only acyclic undirected graphs that may also be
viewed as trees.

3.3. Definition of TQS matrices. A TQS matrix is a specific construction
of a graph-partitioned matrix T associated with a fully connected and acyclic graph
G = (V,E). To form a TQS matrix from G, we equip the graph with weights on the
edges of the graph: every edge (i,7) € E is associated with a weight p(; ;) € NU {0}.
Furthermore, every edge (i,7) € E is associated with a state vector h(; ;) € FPe.4).
Specifically, h(; ;) describes a state computed in node i and transmitted to node
j. The set {pe}eecr is referred to as the rank-profile on G. It collectively describes
the state dimensions of all the edges. The TQS matrix is formed by running an
input-driven LTV dynamical system on the graph. To describe this LTV system, the
following matrices are introduced (see also Figure 1):

e an input-to-output operator DF € F+*" for every node k € V describing a
mapping from input x; to output by,
e an input-to-edge operator Inp;‘? € Frein >t for every node k € N(j) and
adjoining edge (k,j) € E describing a mapping from input xj, to state h ),
e an edge-to-edge operator Transﬁ- € Fru.x*PG.r for every pair of adjoining
edges (j,k) € E and (k,i) € E (with i,j € N(k)) describing a mapping from
state h; i) to state h ),
e and an edge-to-output operator Outf € Fmexra.r for every edge (i,k) € E and
adjoining node i € N'(k) describing a mapping from state h; ) to output by.
Notice that matrices (operators) belong to a node indicated by the superscript, while
the subscripts implicitly refer to edges attached to the respective node, indicating the
destination of the data being computed in that node. A TQS matrix is then defined
as follows.

k
‘k\ / '
(k,7) (J, k) (k,7) (i, k)
k (b) Every node k € (c) Every pair of (d) Every edge
* N (j) with adjoining adjoining edges (i,k) € E with
(a) Everynode k €V edge (k,5) € E (5,k) € E and adjoining node

is equipped with an is equipped with an (k,i) € E is equipped i € N(k)is equipped
input-to-output oper- input-to-edge opera- with an edge-to-edge with an  edge-to-
ator. tor. operator. output operator.

Fia. 1. TQS operators associated with elements of the graph G.
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DEFINITION 3.1 (TQS matrices). Let G = (V,E) be a connected acyclic undirected
graph. A TQS matriz with input dimensions {n; };ev, output dimensions {m;};cv, and
rank-profile {pe}eck is a graph-partitioned matriz T € FM*N of size M = > iev™mi by
N =3, cyni whose block entries are specified by

%

(33)  T{ij}= {D ’ =

@ D2 Pl Tnp) A
Out,,, ,Trans; " ---Trans): , Trans ) .Inpj , i# 7,

with j =pg — p1 — -+ — Py =1 being the unique path from node j €V to node i € V.

The notation of the generating matrices of the TQS representation in Defini-
tion 3.1 is agnostic to a tree order. Later on, in section 5, we shall address the re-
alization problem or the problem of constructing a TQS representation from a dense
graph-partitioned matrix. To aid this construction, it shall be useful to “color” the
generating matrices with respect to their orientation in the graph. Particularly, once
a root node r € V is chosen for the graph, we introduce additional nomenclature to
distinguish between different input-to-edge, edge-to-edge, and edge-to-output opera-
tors:3

e An input-to-edge operator Inp? is denoted by Bf if j €V is a parent of k €V
(i.e., 7="P(k)) and by Pé’? if jeVisachildof keV (ie., j€C(k)).
e An edge-to-edge operator Transﬁj is denoted by Uf,j if j€eV and i€V are
respectively a child and a parent of k € V (i.e., j € C(k) and i = P(k)), by
Vﬁj if 4,5 € V are siblings of k € V (i.e. i,j € S(k)), and by ij ifjeVv
and i € V are respectively a parent and a child of k € V (i.e., j = P(k) and
1e€C(k)).
e An edge-to-output operator Outf is denoted by C¥ if i € V is a child of k € V
(i.e., i€C(k)) and by QF if i € V is a parent of k €V (i.e., i = P(k)).
The input-to-output, input-to-edge, edge-to-edge, and edge-to-output operators can
systematically be organized in so-called spinner matrices or transition maps at every
node k € V. Let i1,i2,...,ip € C(k) be an enumeration of the set of children and
Jj ="P(k) the parent node (see Figure 2). At every node k € V, the following relations
must be satisfied:

(k,7)

(ki1) (ki) (. ip)

F1a. 2. Node k € V with its children i1,12,...,ip € C(k) and parent j =P (k).

3Note that these operators are well-defined irrespective of the choice of the root.
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0 vk A% Wk

_ - k1 - _
h(k,il) A 11,12 2171'? ]zl’j Pi.l h(il,k)
hs,iz) Vigin 0 Vinin, Wizir Pi| |y
(3.4) : _ : : : : :
how : vE . ovE L 0 Wk . Pk s
(kvlp) 742711 'LEJQ & 1p,] Zﬁ (lpvk)
bk Ui, Ui, - Uj’,i,, 0 BY hj k)
by ] i Cfl Cifz Ci?p Qjﬂ Dk_ | Tk
The spinner matrices of the TQS representation are
7:1 7:2 e ip j Inp
i [0 Vi, o Vi WES PR
: k k k k
o |Vigq 0 Visi, Wi Pi
(35  shi= 5 e : . kew
ip V%;’“ V% PR 0 Wi Pj%
. k
G R |
Out - Cil Ciz e Cip QJ D .

The spinner matrices reveal how many numerical entries are involved in a TQS matrix.
Specifically, this number equals

(3-6) Dolmi+ Do ran | [+ D o | = Do ranraa

icV JEN () JEN () JEN(2)

To illustrate our definition with an example, consider the following tree:

with node 4 (highlighted in bold) designated to be the root node. The TQS matrix

for the corresponding tree G,(4) has the structure

=W N =

1

Dl
Q3V3 B3
s
C3U4,1B3

2
Q3Vi,B3
D?
C5B3
C3U7 B3

The spinner matrices take on the form

3 Inp
Out |Qi D'}’
1
S3 _ 2
4
Out

3

3 0
Out {Q%

1 2
0 Vi,

Vi, 0
Ui, Uis
GG

3 4
QiP}  QiWY Py
Q3P5  Q3W3 ,P3
SO
3D3
Inp 3 Inp
Bg] gt_ 3 {0 Pg]
D? |’ Out |Ci D*|’
4 Inp
Wi, Pi
Wi, Pj
0 B}
Qi D!

where the parent nodes of each spinner matrix are highlighted in bold.
In general, one can expect a TQS representation to be efficient if the state dimen-
sions are small and the degrees of the nodes are not large. For example, if M = N = K,

and
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(3.7) Prmax 1= TAX Pe < N, deg o i= %%}ideg(i) < N,

consideration of (3.6) reveals that the number of parameters in the representation is of
the order ©((1+dp)2N). Later on, in subsection 4.1, we shall see that the set of state
dimensions {p. }cer will allow us to put bounds on the ranks of certain submatrices
of a TQS matrix.

3.4. HSS and SSS matrices as special subcases. While SSS and HSS ma-
trices have their origins in disparately different fields, TQS matrices bring them under
one roof as it includes SSS matrices and HSS matrices as special subcases. To further
elaborate on this, consider line graph

2 3
Gy(4): 1e—e—o—o4
with node 4 chosen as the root node. The spinner matrices associated with G(4) are
of the form

1 3 In

2 lop L ro0 wr, P

Slf 2 0 B% 827 2 1.3 %
L2 Out L C% Q3 D2 |

2 4 Inp

2 10 Wi, P S

3 _ 3 ’ 2 4 3 0 P3
S5°= 4 Uz, 0 Bi|: 4 110
Out | Cé Q@ D’ Out |C3 D%

and generate the SSS matrix shown in (2.2). In general, all linearly ordered line
graphs produce a TQS matrix of the type described in subsection 2.1 if the final node
is chosen as the root node.

HSS matrices, on the other hand, are TQS matrices associated with binary trees.
For example, consider the postordered binary tree

1 3 5
Ge(5) :
2 4

with node 5 as the root node. Furthermore, suppose that ng = ms = ns = ms =0,
i.e., all the nonleaf nodes are “empty nodes” with zero input and output dimensions.
The spinner matrices of G.(5) are of the form

3 Inp 3 Inp 5 Inp
Sl — 3 0 Bé ) S2 — 3 0 B% , S4 — 5 0 Bg ,
Out |Qf D! Out Q3 D? Out |Q: D*
L %, 53 Tnp 3 4 Inp
1 0 V1,2 W1,5 | 3 0 V5 |
¢_ 2 |Vii 0 W35 | g 5 34

- 3’ 3 ’ ) - 4 V4 3 0 | )

5 U5 Us, 0 | Out | — _ .

Out - - — :

and generate the HSS matrix in (2.4). In general, all postordered binary tree graphs
produce a TQS matrix of the type described in subsection 2.2, provided that all
nonleaf nodes are empty nodes of zero dimensions.

In all other cases, the TQS matrices are neither SSS nor HSS. The example of the
previous section and the upcoming example in subsection 5.1 belong to this category.
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3.5. TQS representations of sparse matrices. The construction (or realiza-
tion) of a TQS representation will be treated in section 5; however, for sparse matrices
whose adjacency graph is a tree, the TQS representation can be written down directly
from inspection. For example, consider the family of sparse matrices whose adjacency
graph corresponds to a regular k-level binary tree (see Figure 3). Using a “nested
dissection”-styled ordering of the entries, we obtain the sequence of matrices

- p? }
& | p3
1 o o [T ¥
le[d], Ty = d> p% , Tg= d? pg ,
bé b§ dd 1 d;) p(gi 7
| RLETH
i by b> | d |
- " i
d* | p}
by | b3 | & 3
d o
d® | p8
e g [ d° ] pg
; AR b
T4: dg péO 3
d9 pgl)O
bzlso b?o dr p%é
drt pii
= 1 pis
vl
7 o [ T
L b15 b15 d5 i
15
7 14
3 6 10 13

1 2 4 ) 8 9 11 12

Fia. 3. A level k=4 binary tree with a “nested dissection”-styled ordering of the nodes.
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.., etc. For the specified ordering of the entries,* the memory complexity of stor-
ing the matrices {Tj}32; with a TQS representation depends on the choice of the
partition and the graph. For standard HSS constructions, the matrices {Tx}52, are
compressed using the hierarchical partitioning delineated above. These constructions
lead to an O(k) growth in the HSS Hankel block ranks and the representation will
require O(K log K') parameters, where K ~ 2* denotes the number of nodes in tree.
The same asymptotic storage complexity is also attained with an SSS representation.
Alternatively, one can use the adjacency graphs of T} as the corresponding graph for
the TQS representation. Doing so, the root node and leaf nodes will have the spinner
matrices®

L(r) R(r) I:lp PG)  Tnp
(38) = wm(r) [0 0 g, amd st= N [ 1 Zgw}
Out | 1 1 dr h

respectively, while the interior nodes (i.e., nonleaf and nonroot nodes) take on the
form

L() 0 0 0 pi(z)
(3.9) S; = R(i) 0 0 0 p;{(i)

P(i) 0 0 0 bfp(i)

Out 1 1 1 d’

Notice that all the edge-to-edge operators are zero while the edge-to-output operators
are equal to one. As we shall see in Proposition 4.8 in subsection 4.3, the inverse of T},
will also have a TQS representation of exactly the same dimensions. The edge-to-edge
operators will no longer be zero.

The resulting TQS representations from the spinner matrices (3.8) and (3.9) are
neither SSS nor HSS. With this representation, the complexity of storing Tj has
become linear (i.e., O(K)), which is a logarithmic improvement over SSS and HSS.
It should be noted that picking the adjacency graph as the corresponding graph for
the TQS representation is not always a sensible choice. A canonical example is the
K-by-K arrowhead matrix

dl K
d? Py

bl bk oo bt dE

The complexity for the TQS representation would be comparable to the dense matrix
itself. This is because the adjacency graph contains a node for which the degree grows
with K — 1. The line graph is a far better choice, resulting in a linear complexity.

4Note that the recovery of the optimal ordering which enables the most efficient TQS represen-
tations involves combinatorial search!

5Recall that L(I) (respectively, R(l)) denotes the left (respectively, right) child of node I a binary
tree.
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4. Algebraic properties of TQS matrices. This section discusses important
algebraic properties of TQS matrices. Subsection 4.1 describes the GIRS property of
TQS matrices. Subsection 4.2 introduces the theorem that characterizes the minimal
TQS representation for any graph-partitioned matrix whose graph is a tree. Sub-
section 4.3 discusses the properties of TQS matrices under addition, products, and
inversion.

4.1. Graph-induced rank structure of TQS matrices. Inverses of tridiag-
onal matrices are examples of dense matrices whose off-diagonal blocks possess low-
rank qualities. For graph-partitioned matrices (T,G), this property of off-diagonal
low rank can be expressed in a more general framework through the notion of GIRS.
To describe GIRS, we first introduce the concept of a Hankel block. Let A C V and
let A=V \ A denote its complement. We may (block-)permute T such that

_ [T{AA} T{A,A}
T = 1pe g Ay T{A,A}|"
We call T{A, A} the Hankel block induced by A. An edge (i,j) € E is called a border

edge with respect to A if i € A and j € A. The number of border edges, or the edge
count, induced by A is denoted £(A). The GIRS property is defined as follows.

DEFINITION 4.1 (GIRS property). The pair (T,G) is said to satisfy the graph-
induced (low-)rank structure for a constant ¢ >0 if VA CV, we have

rank T{A, A} <cE(A).

TQS matrices turn out to satisfy a GIRS property. To see this, one must exploit
the direct correspondence between the path followed from node j € V to ¢ € V in
G and the associated matrix expression at block-entry T{i,j}. We may prove the
following result.

PROPOSITION 4.2. A TQS matriz T € FM*N with rank-profile {p.}ecr satisfies
the GIRS property for ¢ = maxqcg pe-

Proof. Let A C V and A = V\ A. We must show that the rank of T{A, A} is
bounded by & (A) - max.cg po. Suppose i € A and j € A. Since G is acyclic, there
exists a unique path P(4,j) connecting ¢ to j. By construction, P(i, ) first starts at
a node in A to eventually transition into a node in A. It may be possible that P(i, 5)
leaves and enters A multiple times before it finally enters back into A one last time
to reach node j. Write

P(i,f) =i = —s—t— e —v—w— e

where (s,t) € E (with s € A, t € A) marks the first time P(i,j) entering A and
(v,w) €E (with s € A, t € A) marks the last time P(7, j) leaving A. We may factor

(4.1) T3} =T ) Po,w), (56 Yo

where
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S
i Inpy, 1=s,
t) = i
(s:8) Trans; , - - Trans} ;Inp,, i#s,

o o Id, (s,t) = (v,w),
(v,w),(s,t) ~— TI‘&HSZ;,* N TI‘&HS;S, (57 t) 7é (’U, ’LU)7
r =)ot I
(v,w) Out!Transj, ---Trans} ,,, j#t.

Let {ei}f:(?) C E denote the set of border edges, and

q)€1,€1 e [0

€1,€£(A)
d .=

d o

€g(A):€1 €g(A):€E(A)

Given (4.1), it becomes evident that we may factor T{A, A} =T'®W. Thus,

£(A)
rank T{A,A} = ; Pe; <E(A)- Max P 0

4.2. Minimal TQS representations. Proposition 4.2 shows that TQS matri-
ces satisfy the GIRS property for ¢ = max.cg pe. A question arises as to whether the
converse also holds. If a tree-graph-partitioned matrix satisfies the GIRS property for
¢ > 0, does this then imply the existence of a TQS representation whose rank-profile is
bounded by the GIRS constant? For SSS and HSS matrices both these questions can
be answered in the affirmative. Interestingly, the same holds also for the more general
TQS matrices. To answer this question, one must study the problem of constructing
a minimal TQS representation.

DEFINITION 4.3 (minimal TQS representation). Let (T,G) be a graph-partitioned
matriz with G acyclic and connected. A TQS representation for T with rank-profile
{pe}tecr is called minimal if any other TQS representation for T with rank-profile
{pL}eecr satisfies pl, > p. ¥ e € E.

Given a graph-partitioned matrix (T, G) with G acyclic and connected, the rank-
profile of the corresponding TQS representation can be derived from the ranks of
Hankel blocks whose edge count is unity. For a tree, these so-called unit Hankel
blocks are quite straightforward to enlist as every edge (i,j) € E can be uniquely
paired with one such unit Hankel block. Indeed, once a root node r € V for the graph
has been picked, it must hold that either j = P(i) or i = P(j) for the corresponding
tree G(r). Let

- _[pG), =P,
CDT\VADG), i=PG),

and let H; ;) denote the Hankel block corresponding with subset Hy; ;), i.e., H(; ;) =
T{H; ;), H} ;) with Hg ;) =V \ H ;. We have the following result.
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THEOREM 4.4. Let (T,G) be a graph-partitioned matriz with G acyclic and con-
nected. Then T € FM*N qdmits a TQS representation with rank-profile

pe =rank Hg, eckE.

Furthermore, such a TQS representation is minimal.

The proof of Theorem 4.4 is postponed to subsection 5.4, where we shall introduce
an explicit algorithm to convert a dense matrix into a TQS representation. Proposition
4.2 and Theorem 4.4 yield the following corollary.

COROLLARY 4.5. Let (T,G) be a graph-partitioned matriz with G acyclic and
connected. Then T € FMXN sqatisfies the GIRS property for ¢ > 0 if and only if
T e FMXN admits a TQS representation with a rank-profile {pe}ecr satisfying p. < cV
ecE.

4.3. Sums, products, and inverses of TQS matrices. The algebraic proper-
ties of SSS and HSS matrices under addition, multiplication, and inversion generalize
to TQS matrices. The following three propositions may be established from Theorem
4.4.

PROPOSITION 4.6 (TQS addition). Let Ty, Ty € FM*N with M =3,y m; and
N =3 ,cyni, be TQS matrices of rank-profiles {p1,c}tece and {pz.}ecr associated
with the acyclic connected graph G = (V,E). Then, T3 =T + Ty is a TQS matriz of
rank-profile {p1.c + p2.c}eck-

Proof. Since rank T3{A, A} <rank T{{A, A} +rankT2{A, A} for any Hankel block
induced by A, the result directly follows from Theorem 4.4. |

PROPOSITION 4.7 (TQS product). Let Ty € FMXN and Ty € FNXP | with M =

Yoievmi, N=3 . cyni, and P=3%", ypi, be TQS matrices of rank-profiles {p1.c}eck
and {p2.e}ecr associated with the acyclic connected graph G = (V,E). Then, T3 =
T1 Ty is a TQS matriz of rank-profile {p1,e + p2,e feck-

Proof. Since

rank T3{A, A} =rank (T1{A,A}To{A A} + T1{A, A}To{A,A})
<rank T1{A A} +rank To{A, A}

for any Hankel block induced by A, the result directly follows from Theorem 4.4. O

PROPOSITION 4.8 (TQS inverse). Let T € FN*N with N =3, n;, be a nonsin-
gular TQS matriz of rank-profile {pe}eecr associated with the acyclic connected graph
G=(V,E). Then, T~ is also a TQS matriz of rank-profile {pe }eck-

Proof. Consider the Hankel block T{A,A} and note that, under the hypothesis
of Proposition 4.8, T{A,A} is a square matrix. Observe that under the hypothesis,
let T{A,A} =UXV denote singular value decomposition and B(e) = U(X + eId)V for
€ > 0. By construction the inverse of B(e) exists, and

[Bw T{A,A}}‘l
T{A,A} T{A A}

—1
* *

:[—(T{A,A}—T{A,A}B—l(e)T{A,A})_lT{A,A}B—l(e) »
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By taking limits for € — 0, it becomes straightforward to show that rank T A A} =
rank T{A, A} for any Hankel block induced by A. The proposition then follows from
Theorem 4.4 and a limiting argument on the rank of determinants and minors. O

5. TQS matrix construction. This section discusses the construction (or re-
alization in the language of systems theory) of a TQS representation from a dense
matrix provided a tree G(r) and an accompanying partitioning of the matrix. In
subsection 5.1 we describe the construction on an illustrative example. The general
algorithm is described in subsection 5.2. The construction or realization algorithm
is naturally a generalization of the SSS and HSS realization algorithms. The pre-
sented algorithm will allow us to prove Theorem 4.4 in subsection 4.2. This is done
in subsection 5.4.

5.1. An illustrative example. Before describing the general algorithm, we
first illustrate the construction of a TQS representation on an illustrative example.

Consider the tree
1 v—T—o7
Gq(7) : 2 ce—e4

3

with node 7 picked as the root node. G(7) is a tree of depth 2 and comprises the
levels Vo = {7}, V1 ={5,6}, and Vo ={1,2,3,4}. The corresponding spinner matrices
and TQS form are shown in Figure 4. It turns out that the generating matrices of
the TQS representation can be retrieved from computing low-rank factorizations of
the unit Hankel blocks H; ;) in a particular sequence.

To start, we begin with the unit Hankel blocks associated with the edges at the
deepest level of the tree. Specifically, from the low-rank factorizations of the unit
Hankel blocks Hy; ;) = X(; ;Y (i,j) With i € Vo and j = P(i) € Vy, we shall be able to
obtain the B’s of the spinner matrices corresponding to the nodes in V5 and the C’s
of the spinner matrices corresponding to the nodes in V;. For example, for i =1€ Vs,
and j =P(1) =5 €V, we may write

X(1,512}

X1,51{3}

X5 {4} 1
XasidH| Yas{l}]
X(1,5){6}

X1,517}

Has) =

N O Uk W N

since we know that H; 5) should factor into

Q3v3,
SR
6YY4,7v6,5¥7,1
o s
Q7V6,5U?,1
cius,

N OO W N
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and we may set C} = X(15{5} € F™*P05 and B} = Y4 5 {1} € Fra.s>™ with
p(1,5) = rank H(; 5. With similar reasoning, we may set C§ = X(95){5} € F™s*P@s),
Bg — Y(275){2} € Fresxnz Cg _ X(376){6} € Fmexpre.o) B% — Y(3,6){3} € Fre.oxns,
Cg = X(4,6){6} € FmeXpre) Bé = Y(4,6){4} € Frae)*m4 ith P2,5) = rankH(275),
p(3,6) =rankHs gy, and p(4 ) =rank Hy ).

Next, moving one level up the tree by computing low-rank factorizations H; ;) =
XY (i) with @ € Vi and j = P(i) € Vo, we can obtain the U’s and B’s of the
spinner matrices corresponding to the nodes in V; and the C’s of the spinner matrices
corresponding to the nodes in V. For example, for i =5€V; and j=P(5) =7€ V,,
we may write

X(175){3} X(2,5){3} T{375} D(l) 'D(Q) 5
Xasid) Xes{4) T{4,5} )
Y(2,5)
Id

X516} Xes{6} T{6,5}
X5l Xesni7t T{7,5}

with the help of previously computed factorizations. The low-rank factorization

H(s,7) = X(5,7 Y (5,7) can be obtained by compressing the matrix

Hir =

~N O W

3 Xasid) Xes{3} T{3,5} 3 Xi,ni3})
4 | Xa5{4) Xesi{4) T{4,5} 4 | Xi57{4} D) D@ s
6 |X15{6} Xes5{6} T{6,5}| = 6 |Xi7{6} [Z(s,n Zs7) Z(5,7)}a
7T Xas{7} X7t T{7,5} 7 X0 {7}
which sets

D(1) D(2) 5 D(1) D(2) 5
_ [,p0
Y {D(D)} YeniD(2)} Yenisi = Z(5E7§Y(1,5) Z, 7;Y2 5) Z?5,7)} .

Since Y (1 5) = B, Y25 = B2, and H(s,7) should factor into

3 1QEWS Vi s
4 1QWi,Vis| D(1) D) 5
6 | QVis |[U2.Bs Ug,Bf B,
7 Ct
we see that CI = X(57){7} € F"7PGn US| = =2 (1§ e Fremnxpas, Us, = g(ig €

Fren*res B2 = Z55 7y EFPEXM with p(s 7) =rankHs 7). With smnlar reasoning,

we may set CF = X(G {7} € Frrxeen S, =703 € Fromxees, US =700 €

Fren>rae  BS = (6 7 € FPEnxne Wlth pee,7y =rank Hg 7).

By now, we have fully climbed up the tree and arrived at the root node. In this
process, we have computed all the B’s, U’s, and C’s of the TQS representation. This
was done by peeling off the terms from the low-rank factorizations of the unit Hankel
blocks. To compute the remaining P’s; V’s; W’s, and Q’s, we proceed in the same way.
However, the main difference is that we start at the root and work ourselves down
the tree toward the leaves. To start, through computing the low-rank factorizations
Hi) = X)) Y5, with i € Vi and j =P(i) € Vg, we will be able to retrieve the P’s
and V’s of the spinner matrices corresponding to the nodes in Vy and the Q’s of the
spinner matrices corresponding to the nodes in V;. For example, for : =5 € V; and
Jj="P(5)=T¢€Vy, we may write

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/10/25 to 154.59.124.113 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

TREE QUASI-SEPARABLE MATRICES 1579

1 Xenfl} T{1,71 D6) 7
His = 2 Xeni2y T{2,7} [Y(w) ]
5 Xen{st T{57} Id

Compressing the matrix

L Xen{l} T{L7} 1 Xes{l}
2 |Xenf2 T{27}H _ 2 |X@s{2} [Z’D“” 7. ]
5 Xen{sr T{H,7H 5 X {sp 70 709

allows us to produce the low-rank factorization H7 5) = X7 5)Y (7,5) with

D(6) 7 D(6) 7
_ D
YesdPO) Yas T = [258Y6n Zhhy)

3 4 6
Since Y = . and H should factor into
©7) [Ug,SBg U$,4B% B?] (7.8)
15
> [Swh” D(6) 7
5 5Q§277 [Vg.ﬁ [U(;,?,Bg U$,4Bé B?] Pg} )

we may set Q2 = X(7)5){5} € Fmsxp(rs) V;g = ?7(2; € Fre.s) XPe.n) Pg = Z(7775) €

FPe.5>n7 with p(75) = rankH7 5). With similar reasoning, we may set QS = X(7,6)
{6} € Frexeas), VI =700 € Fraoxeen, Ph =177 o € FAao X with pgrg) =
rank H7 g)- 7 ’

At last, moving one level down, we reach the bottom of the tree. By computing
the low-rank factorizations H; ;) = X(;,i) Y (5,i) with i € V3 and j ="P(i) € V1, we will
be able to compute all the remaining terms of TQS representation. Specifically, we
will be able to retrieve all the P’s, W’s, and V’s of the spinner matrices corresponding
to the nodes in V; and the QQ’s of the spinner matrices corresponding to the nodes in
V. For example, for i =1€ Vs and j =P(1) =5 € Vy, we may write

D(B) D(2) 5

Y
1 [Xgs{l} X 1} T{1,5 (7.5)
s = Xas{l} Xesil} T{L,5}] Yo, _
Id
Compressing the matrix
1 X5l X511 T{1,5}] _ 1 [Xi.{l D(5) D(2)
Xas{l} Xegsftlh T{L,5} _ X {11 [Z(s,l) z5?) 2?571)}

allows us to produce the low-rank factorization H7 5) = X7 5)Y (7,5) with

D(5) D(2) 5 D(5) D(2) 5
S _ [,D D(2
Y20D0)} YeiD(2)} Yioldl = {Z(5€1;Y(7,5) Z(5(,1§Y(2,5) Z?7,5)} ‘
Since Y7 5 = [VI sUS sBE  V§ ;US B VgﬁB? PI], Y(2,5) =B2, and H(s ;) should
factor into

D(5) D2) 5

1 [Qf
Q5] (ws, [VIgue,Bg VILUSBE VIGBS PI] VI,BZ P
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we see that Qf = X(51){1} e F"*Pen, Wi, = Zg(?; e FPen*ems) V3, = Zg(f; €
FPeDxees P8 = Z?7 5) € FPG:0X75 with p(s 1) =rank Hs 1). The remaining terms of
the TQS representation are obtained in the same way.

5.2. The general construction algorithm. The approach taken for the exam-
ple of the previous section generalizes for a generic TQS representation. This process
is described in Algorithm 1. The process of converting a dense matrix into TQS form
consists of two phases: an upsweep and a downsweep phase. In the upsweep phase,
one starts at the leaves of the tree and works up toward the root. In this process, all
the B’s, C’s, and U’s are computed. In the downsweep phase that follows, one starts
at the root of the tree and then works down toward the leaves. In this second leg,
the P’s, Q’s, W’s, and V’s are computed. The additional nomenclature introduced
in subsection 3.3 reveals that all of the generators are computed exactly once, thus
alluding to any inconsistencies that may occur.

ALGORITHM 1 (TQS construction algorithm). Let G(r) be a tree with root node
r eV and let T € FM*N be the associated graph-partitioned matriz with M = D ey Mi
and N =3, cyn;. A set of generators for the TQS representation of T is obtained by
following the steps outlined below.
1. Diagonal stage. Set D' =T{i,i} for i€ V.
2. Upsweep stage. Forl=L,L—1,...,1 do the following:
(a) For every i €V, with parent node j ="P(i) € Vi_1 and children C(i) =
{wi,wa,...,wa} CV, write Hy; jy = F(; ;G ), where

Fli) = D) Xw.pfP@} -+ Xw.n{PO} T{DG),i}]
D(wi) -+ Dlwg) i
Y (w, i)
Giyg) =
Y(w57i)
Id

(b) Let pg;) = rankF(; ;) = rankH ;) and compute the low-rank
compression F; iy = X 5)Z,5)-

(c) Set

i._r7i . ; i . yD(w)
fort=1,2,... «a.
(d) Define Y5 = Z¢,jGa,jy so that XYy is a low-rank

factorization for H 5)-
3. Downsweep stage. Forl=1,2,...,L do the following:
(a) For every i € V; with parent node j = P(i) € V,_1, grandparent
node® k = P(i;2) € V,_a, and siblings S(i) = {v1,vs,...,05} C V,
write He; 5y = F ;) Gji), where

6For I = 1 there will be no grandparent node, in which case the corresponding terms associated
with it can be ignored.
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Fli) = D(i) X )iP@)} X pI{P@)} - X, p{P(@)}  T{D(i),5}]
D(j) D) --- Dlvg) j
Y (k.5)
Y (01.9)
Gy =
Y (v5.,9)

Id

(b) Let pgs = rankF(;;y = rankH; ;) and compute the low-rank
compression ¥ ; oy = X021
(c) Set

i _ i i _D3) i_ ; i _ 7D(v)
Pz - sz,i)’ W(j,k) - Z(j,i]) ) Qj - X(jvi){z}’ Vj,w - Z(j,i)

fort=1,2,... 6.
(d) Set Y54y = Zj,)G(j.6) 50 that X; Y (54 is a low-rank factorization
fOT’ H(],Z)

We remark that Algorithm 1 is not the only approach for constructing a TQS
matrix. There exists some flexibility in algorithmic design choices that could be
optimized for parallelism and memory consumption. A more detailed analysis goes
outside the scope of this paper. For now, we stay contented that Algorithm 1 presents
a valid construction/realization algorithm.

5.3. Numerical tests. To further validate the construction algorithm for cor-
rectness, we have implemented Algorithm 1 in the Julia language.” Table 1 showcases
the numerical results obtained with the implemented algorithm for two experiments.
In the first experiment, Algorithm 1 is applied to reconstruct minimal TQS repre-
sentations of randomly generated TQS matrices for the tree graphs G,(4), Gy(4),
G.(5), and G4(7). The TQS matrices are first converted into dense matrices, after
which Algorithm 1 is applied to reconstruct the TQS matrix. In the second exper-
iment, Algorithm 1 is used to construct TQS representations for the inverse of the
matrices Tk, k=1,2,3,..., from subsection 3.5. The parameters used to generate T}
are again chosen randomly. Using the adjacency graph as the corresponding tree, it
follows from Proposition 4.8 that T,;l admit a scalar TQS representation, i.e., p. =1
Ve € E. Our numerical experiment also confirmed this property. Tables 1(a) and
1(b) show the relative 2-norm error of the constructed TQS matrices (with respect
to the original dense matrix) for experiments 1 and 2, respectively. The results sug-
gest that Algorithm 1 can generate TQS approximations up to machine precision
accuracy.

5.4. Proof of Theorem 4.4. We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. Algorithm 1 presents a constructive proof for the existence
of a TQS representation with rank-profile {p, :=rankH,}.cg. The only thing left is

"This code is made available at https://github.com/nithingovindarajan/TQSmatrices.
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TABLE 1
Numerical results obtained with Algorithm 1. The mean and standard deviation of the relative
2-norm error of the constructed TQS matriz (w.r.t. the original dense matriz) is computed. The
statistics are computed from 10 random trials.

(a) Computed error statistics for the (b) Computed error statistics for the TQS
TQS reconstruction of randomly gener- construction of the inverse of the matrices
ated TQS matrices for the tree graphs Tk, k=1,2,3,... from subsection 3.5.

Gu(4), Gy(4), Ge(5), and Ga(7).

rel. error

rel. error mean std
mean std 0.0 0.0
G,(4) 2.2431e-15  2.0166e-15 1.41199¢-16  4.87742e-17
Gp(4) 7.6436e-16 1.4924e-16 2.78289%-16 8.81678e-17
Ge(5
Gq(7) 4.0584e-15  2.8004e-15 4.71926e-16  2.48319¢-16

6.95086e-16  2.30473e-16
5.68185¢e-16  1.56358e-16
1.03728e-15  3.58987e-16

k
1
) 2
) 3
) 6.5400e-16  2.4239e-16 4 3.6505e-16  1.6657%¢-16
) 5
6
7
8
9  1.1168-15 4.68181e-16

to show that the TQS representation produced by Algorithm 1 is minimal. This can
be verified by setting up a contradiction. Suppose there exists a TQS representation
with rank-profile {p.}ecr and p!, < p. for some edge e € E; then the unit Hankel H,
admits a low-rank factorization of rank p, < p., which is not possible. O

6. TQS linear systems. In this section, we examine linear systems Tx = b,
where T € FM*N is a TQS matrix on G = (V,E) of dimensions M = ., m;
by N =3 ,cyni. By conformally partitioning b € FM and « € FV into subvectors
b, € ™ and x; € F™, respectively, we first describe in subsection 6.1 how the matrix-
vector product b = Tx is evaluated efficiently. Then, in subsection 6.2, we proceed
and use the relations derived for the matrix-vector product to formulate an efficient
method to solve Tx = b for x given b.

6.1. Evaluation of matrix-vector product. The block entries of a TQS ma-
trix originate from evolving a dynamical system over a graph. In the special case
of an SSS matrix, the lower and upper triangular parts of the matrix are the result
of running a causal and anticausal LTV dynamical system. This is exploited in the
matrix-vector product. For the general case, the dynamics evolve over a tree, and it
becomes much harder to provide a simple characterization. Nonetheless, formulating
the “state-space” equations shall produce a fast matrix-vector product algorithm for
the general case as well. Recall that each edge (i,5) € E of the acyclic connected
graph G a state vector h(; ;) € FPG¢.». The transition maps (3.4) yield the state
equations

(6.1) hgjy = Z Trans;»,wh(w,i) + Inpéwi, (i,7) €E,
weN (I)\{7}
along with the output equations
(6.2) bj= Y Outlhg;+D/z;, jeV.
i€EN(5)
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By picking a root node r € V, the state and output equations for the corresponding
tree G(r) may be further refined to

Z U;’,wh(w,i) + B;mla ]:P(Z)7
(6.3) hiigy =14 500 . , , ,
W pa hpiya + Z Vi whw,iy +Pimi, i=P(j),
weS(5)
and
(6.4) b; = Qphri)g) + D Bihy+ D
i€C(j)

A careful examination of (6.3) reveals a natural causal ordering on the state variables.
Specifically, for a leaf i € £ (G), the state equations are simply h; ;) = B;-mi. One may
thus start with computing the state vectors at the leaves and then work up toward
the interiors of the graph. Once the root node is reached, the reverse process can be
initiated by flowing outward toward the leaves. Algorithm 2 exactly describes this
process. The TQS matrix-vector product involves

O (mit 2 raa | | mt 2 m6a
eV JEN () JEN(3)
floating point operations (flops). In particular, the complexity becomes a linear time
w.r.t. the matrix dimensions if, for instance, the properties in (3.7) are applicable.

ALGORITHM 2 (TQS matrix-vector product). Given a TQS matriz T € FM*N
on G(r) of dimensions M = ) ,.ym; by N = ), yn;, the matriz-vector product
bi=> ey T{i,j}tz; for i €V is obtained by following the steps outlined below.

1. Diagonal stage. Initialize b; =D'x; fori€V.
2. Upsweep stage. Forl=L,L—1,...,1 do the following:
(a) For every i €V, with parent node j ="P(i) € Vi_1 and children C(i) =
{wy,wa,...,ws} CV, evaluate

h(ivj) = Z Uév“’ph(wpai) + B.’;mz
p=1
(b) Update
b < b; + Clh( ;.
3. Downsweep stage. Forl=1,2,..., L do the following:
(a) For every i € Vi with parent node j = P(i) € Vi_1, grandparent node
k="P(i;2) € V,_g, and siblings S(i) = {v1,va,...,v8} CV, evaluate
B
g =W hoes + Vi, R0 + Bl
p=1

(b) Update
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6.2. Solving linear systems. The (possibly dense) linear system Ta = b is
efficiently solved for & given b by using the same reasoning introduced in [6]. By
treating {h.}ecr and {x;};cv as unknowns, and {b;};cv as knowns, (6.1) and (6.2)
collectively yield the sparse linear system

(65&) h(iyj) - Z Transj"wh(w,i) - Inp;"wi =0, (17]) € E7
weN (i)\{j}
(6.5b) > Outlhj)+Diai=b;,  jeV.
iEN(5)

Particularly, if we let N'(j) = {i1,12,...,ip} and define

x; b,
hi, 0
0= |Pen|, B;=|0
h,.5) 0

the adjacency graph of the matrix expression Z0 = 3 that describes (6.5) coincides
with G. That is, ={¢,7} # 0 if and only if (i,5) € E. Acyclic graphs are chordal graphs
and have a perfect elimination order without any fill-in (see [16]). Thus, (6.5) may
be efficiently solved with any standard (block-)sparse solver. Solving (6.5) involves
roughly

O Z ’I’LZ‘—F Z T(i,j)

eV JEN(7)

flops. In particular, the complexity becomes linear w.r.t. the matrix dimensions if,
for instance, the properties in (3.7) are applicable.

7. Conclusions and future work. We introduced a new class of represen-
tations for rank-structured matrices called tree quasi-separable (TQS) matrices. It
was shown that TQS matrices unify and generalize SSS and HSS matrices. Further-
more, by deriving an explicit construction algorithm, we characterized the properties
of a minimal TQS representation for a given tree graph-partitioned matrix. Subse-
quently, we showed that TQS inherits many of the well-known properties of SSS and
HSS matrices concerning matrix-vector multiplication, matrix-matrix multiplication,
matrix-matrix addition, and inversion.

Future work will be geared toward the efficient implementation and generalization
of many algorithms associated with SSS and HSS matrices. Specifically, in a future
paper, we shall derive expressions for the LU factorization and (pseudo-)inverse of
TQS matrices. The potential applications of TQS (and the greater flexibility that is
offered by them) will also be explored. Finally, we note that the results associated with
TQS may form an essential building block for constructing representations associated
with more general GIRS matrices (see [11]).

Reproducibility of computational results. This paper has been awarded the
“SIAM Reproducibility Badge: Code and data available” as a recognition that the
authors have followed reproducibility principles valued by SIMAX and the scientific
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computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/nithingovindarajan/TQSmatrices and
in the supplementary materials (Supp_Materials.zip [local/web 16.4KB]).
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