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TREE QUASI-SEPARABLE MATRICES: A SIMULTANEOUS
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Abstract. We present a unification and generalization of what is known in the literature as
sequentially and hierarchically semiseparable (SSS and HSS) representations for matrices. These so-
called tree quasi-separable (TQS) matrices contain sparse matrices with tree-structured adjacency
graphs as an important subcase. TQS matrices inherit all the favorable algebraic properties of SSS
and HSS under addition, products, and inversion. To arrive at these properties, we prove a key
result that characterizes the conversion of any dense matrix into a TQS representation. Here, we
specifically show through an explicit construction that the size of the representation is dictated by
the ranks of certain Hankel blocks of the matrix. Analogous to SSS and HSS, TQS matrices admit
fast matrix-vector products and direct solvers. A sketch of the associated algorithms is provided.
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1. Introduction. Matrices in applied problems of interest often exhibit a struc-
ture of low rank in their off-diagonal blocks. These structures have, for instance,
been observed in the discretization of integral equations [21], Schur complements of
discretizations of PDEs [9, 9, 26], certain Cauchy-like matrices [14, 28], evaluations
of potentials [18], and companion matrices [3], among others. Many frameworks have
been proposed to efficiently represent these low-rank structures so that efficient lin-
ear algebra operations can be performed with such matrices. This includes the fast
multiple method [18], semiseparable and quasi-separable matrices [4, 17, 22], sequen-
tially semiseparable (SSS) matrices [8, 7], hierarchically semiseparable (HSS) matrices
[13, 27], \scrH - and \scrH 2-matrices [5, 19, 20], and hierarchically off-diagonal low-rank ma-
trices [1, 2]. These frameworks are related and have their specific benefits, pitfalls,
and special use cases. A complete review of the subject goes beyond the scope of this
paper.

This paper examines the low-rank structures that are preserved during the in-
version of a (block-)sparse matrix with a tree-structured adjacency graph. These
structures induce a family of typically dense matrices that possess certain low-rank
properties on their submatrices. Although sparse matrices whose adjacency graphs
are trees form, along with their inverses, a special subcategory of this family, the
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TREE QUASI-SEPARABLE MATRICES 1563

family contains dense matrices that are not necessarily the inverse of a sparse matrix.
In this paper, we present a new class of representations for rank-structured matrices
that can capture these structures exactly. In fact, we show that these representations
satisfy a graph-induced rank structure (GIRS) property if the corresponding graph of
the associated graph-partitioned matrix is a tree (see [10]). The representations are
referred to as tree quasi-separable (TQS) matrices.

Interestingly, TQS matrices simultaneously unify and generalize SSS and HSS
matrices. Apart from introducing a new family of rank-structured matrices, an im-
portant technical contribution of our paper is an algorithm that realizes a minimal
TQS representation for any dense matrix. This algorithm is, in effect, a unification
and generalization of the algorithms for doing the same with SSS and HSS matri-
ces. The algorithm allows us to prove a result (Theorem 4.4) that fully characterizes
the properties of a TQS representation of any matrix. Specifically, for a given tree
structure and block partitioning of the matrix, the dimensions of the TQS generators
are dictated by the ranks of certain matrix subblocks referred to as Hankel blocks.
Through this fact, we show that TQS inherits the favorable algebraic properties of
SSS and HSS matrices under addition, products, and inversion. Importantly, the in-
verse of a TQS matrix is again a TQS matrix of exactly the same rank-profile if the
input and output dimensions of the partitions are chosen equally. TQS matrices allow
for fast inversion algorithms and matrix-vector products. We present one such fast
direct solver using a sparse embedding technique introduced in [6] for HSS matrices.

It is well-known that SSS and HSS matrices are used extensively in practice.
TQS matrices are a more flexible drop-in replacement for HSS and SSS matrices.
We anticipate that this flexibility can lead to even further improvements in many
applications, particularly for networked dynamical systems on graphs [23]. Although
applications are the subject of future work, we present some illustrative examples of
sparse matrices where the choice of a TQS representation is both natural and efficient.

The remainder of this paper is outlined as follows. In section 2, we give a quick
review of SSS and HSS matrices. Section 3 introduces TQS matrices in detail. The
algebraic properties of TQS matrices are discussed in section 4. In section 5, we discuss
the construction algorithm, and along with it the proof of Theorem 4.4. Section 6
covers the fast matrix-vector multiplication algorithm and the procedure for efficiently
solving a linear system involving TQS matrices.

2. A brief recap on SSS and HSS matrices. This section briefly reviews
the definitions of SSS and HSS matrices. We emphasize that we use a rather un-
conventional, and admittedly redundant, notation in the definitions of both SSS and
HSS matrices. However, this is done intentionally to establish a direct link with TQS
matrices that will require more detailed notation. Subsection 2.1 covers SSS matrices
and subsection 2.2 covers HSS matrices. Subsection 2.3 briefly summarizes performing
algebra with SSS and HSS matrices. For more details on the algorithms themselves,
we recommend [7, 8] for SSS and [13, 24, 25, 27] for HSS. A more tutorial-styled
introduction to the subject is given in [12].

2.1. SSS matrices. SSS matrices were first introduced in [15] in a study to
generalize systems theory to the time-varying case. To define SSS matrices, letmi, ni \in 
\BbbN \cup \{ 0\} for i \in \{ 1, . . . ,K\} and \rho (i,i+1) \in \BbbN \{ 0\} for i \in \{ 1, . . . ,K  - 1\} and introduce
the matrices Di \in \BbbF mi\times ni for i \in \{ 1, . . . ,K\} , Bi

i+1 \in \BbbF \rho (i,i+1)\times ni for i \in \{ 1, . . . ,K  - 1\} ,
Ui

i+1,i - 1 \in \BbbF \rho (i,i+1)\times \rho (i - 1,i) for i\in \{ 2, . . . ,K  - 1\} , Ci
i - 1 \in \BbbF mi\times \rho (i - 1,i) for i\in \{ 2, . . . ,K\} ,

Pi
i - 1 \in \BbbF \rho (i,i - 1)\times ni for i\in \{ 2, . . . ,K\} , Wi

i - 1,i+1 \in \BbbF \rho (i,i - 1)\times \rho (i+1,i) for i\in \{ 2, . . . ,K  - 1\} ,
and Qi

i+1 \in \BbbF mi\times \rho (i+1,i) for i\in \{ 1, . . . ,K\} . Next, define

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1564 N. GOVINDARAJAN, S. CHANDRASEKARAN, AND P. DEWILDE

Aij :=

\left\{ 
  
  

Di, i= j,

Ci
i - 1U

i - 1
i,i - 2 \cdot \cdot \cdot Uj+1

j+2,jB
j
j+1, i > j,

Qi
i+1W

i+1
i,i+2 \cdot \cdot \cdot Wj - 1

j - 2,jP
j
j - 1, i < j.

(2.1)

An SSS matrix A \in \BbbF M\times N , with M =
\sum K

i=1mi and N =
\sum K

i=1 ni, is the block-
partitioned matrix with block entries specified by (2.1). For example, in the case of
K = 4, an SSS matrix takes on the form

A=

\left[ 
   

D1 Q1
2P

2
1 Q1

2W
2
1,3P

3
2 Q1

2W
2
1,3W

3
2,4P

4
3

C2
1B

1
2 D2 Q2

3P
3
2 Q2

3W
3
2,4P

4
3

C3
2U

2
3,1B

1
2 C3

2B
2
3 D3 Q3

4P
4
3

C4
2U

3
4,2U

2
3,1B

1
2 C4

2U
3
4,2B

2
3 C4

3B
3
2 D4

\right] 
   .(2.2)

The entries of the SSS representation (2.1) can be seen as the result of decomposing
A as the sum of a causal and anticausal linear-time-variant (LTV) system on a line
graph. At this point of our discussion, it may be important to remark that the phrase
``sequentially semiseparable"" has been chosen rather inconveniently in the literature
since SSS matrices are effectively a representation for the much richer class of quasi-
separable matrices [4, 17]. The prefix ``sequentially quasi-separable"" would have been
more appropriate.

2.2. HSS matrices. While SSS matrices have their origins in systems theory,
HSS matrices arose independently to simplify the algebra of the fast multipole method
so that it has favorable properties under inversion. To define HSS matrices, we re-
cursively partition a matrix A \in \BbbF M\times N in a hierarchic manner. This process is best
described through a binary tree.

Assume that the nodes of the binary tree are indexed by a postordered traversal
of the tree and let r denote its root node. Furthermore, let L(l) (respectively, R(l))
denote the left (respectively, right) child of node l in the binary tree. If l is a termi-
nating point of the recursion, or equivalently, a leaf node of the binary tree, we set
Al =Dl \in \BbbF ml\times nl . On the other hand, if l is a nonterminating point of the recursion,
we set

Al =

\Biggl[ 
AL(l) \scrQ L(l)

l Vl
L(l),R(l)\scrB 

R(l)
l

\scrQ R(l)
l Vl

R(l),L(l)\scrB 
L(l)
l AR(l)

\Biggr] 
,(2.3)

where AL(l) \in \BbbF m\mathrm{L}(l)\times n\mathrm{L}(l) , AR(l) \in \BbbF m\mathrm{R}(l)\times n\mathrm{R}(l) , ml =mL(l) +mR(l), and nl = nL(l) +

nR(l). Furthermore, \scrQ L(l)
l = Q

L(l)
l \in \BbbF m\mathrm{L}(l)\times \rho (l,\mathrm{L}(l)) (respectively, \scrQ R(l)

l = Q
R(l)
l \in 

\BbbF m\mathrm{R}(l)\times \rho (l,\mathrm{R}(l))) if L(l) (respectively, R(l)) is a leaf node of the binary tree. Otherwise,

\scrQ L(l)
l =

\Biggl[ 
\scrQ L(L(l))

L(l) W
L(l)
L(L(l)),l

\scrQ R(L(l))
L(l) W

L(l)
R(L(l)),l

\Biggr] 
, \scrQ R(l)

l =

\Biggl[ 
\scrQ L(R(l))

R(l) W
R(l)
L(R(l)),l

\scrQ R(R(l))
R(l) W

R(l)
R(R(l)),l

\Biggr] 

with W
L(l)
L(L(l)),l \in \BbbF \rho (\mathrm{L}(l),\mathrm{L}(\mathrm{L}(l)))\times \rho (l,\mathrm{L}(l)) , W

L(l)
R(L(l)),l \in \BbbF \rho (\mathrm{L}(l),\mathrm{R}(\mathrm{L}(l)))\times \rho (l,\mathrm{L}(l)) ,

W
R(l)
R(L(l)),l \in \BbbF \rho (\mathrm{R}(l),\mathrm{R}(\mathrm{L}(l)))\times \rho (l,\mathrm{R}(l)) , W

R(l)
R(R(l)),l \in \BbbF \rho (\mathrm{R}(l),\mathrm{R}(\mathrm{R}(l)))\times \rho (l,\mathrm{R}(l)) . Similarly, \scrB L(l)l =

B
L(l)
l \in \BbbF \rho (\mathrm{L}(l),l)\times n\mathrm{L}(l) (respectively, \scrB R(l)

l =B
R(l)
l \in \BbbF \rho (\mathrm{R}(l),l)\times n\mathrm{R}(l)) if L(l) (respectively,

R(l)) is a leaf node of the binary tree. Otherwise,

\scrB L(l)l =
\Bigl[ 
U

L(l)
l,L(L(l))\scrB 

L(L(l))
L(l) U

L(l)
l,R(L(l))\scrB 

R(L(l))
L(l)

\Bigr] 
,

\scrB R(l)
l =

\Bigl[ 
U

R(l)
l,L(R(l))\scrB 

L(R(l))
R(l) U

R(l)
l,R(R(l))\scrB 

R(R(l))
R(l)

\Bigr] 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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TREE QUASI-SEPARABLE MATRICES 1565

with U
L(l)
l,L(L(l)) \in \BbbF \rho (\mathrm{L}(l),l)\times \rho (\mathrm{L}(\mathrm{L}(l)),\mathrm{L}(l)) , U

L(l)
R(L(l)),l \in \BbbF \rho (\mathrm{L}(l),l)\times \rho (\mathrm{R}(\mathrm{L}(l)),\mathrm{L}(l)) ,

U
R(l)
L(R(l)),l \in \BbbF \rho (\mathrm{R}(l),l)\times \rho (\mathrm{L}(\mathrm{R}(l)),\mathrm{R}(l)) , U

R(l)
l,R(R(l)) \in \BbbF \rho (\mathrm{R}(l),l)\times \rho (\mathrm{R}(\mathrm{R}(l)),\mathrm{R}(l)) . At the root level,

we set A=Ar \in \BbbF mr\times nr with mr =:M and nr =:N . For example, the matrix

A=

\left[ 
 

D1 Q1
3V

3
1,2B

2
3 Q1

5W
3
1,5V

5
3,4B

4
5

Q1
3V

3
2,1B

1
3 D2 Q2

5W
3
1,5V

5
3,4B

4
5

Q4
5V

5
4,3U

3
5,1B

1
3 Q4

5V
5
4,3U

3
5,2B

2
3 D4

\right] 
 (2.4)

=

\biggl[ 
A3 \scrQ 3

5V
5
3,4\scrB 45

\scrQ 4
5V

5
4,3\scrB 35 A4

\biggr] 

=A5

is an HSS matrix.

2.3. Algebra with SSS and HSS matrices. SSS and HSS matrices share
common algebraic properties. Any dense matrix can be converted into an SSS or HSS
matrix. The dimensions of the generators, and thus the efficiency of the representa-
tion, are specified by the ranks of the off-diagonal (i.e., so-called Hankel) blocks. Sums
and products of SSS (respectively, HSS) matrices are again SSS (respectively, HSS)
but with a doubling in the size of the generators. The inverse of an SSS (respectively,
HSS) is an SSS (respectively, HSS) matrix of the same generator dimensions. SSS (re-
spectively, HSS) representations of matrices that have small Hankel block ranks can
be multiplied with vectors in linear time. The same holds for the solve operation. For
the latter, one common approach to both representations is a lifting technique that
solves the linear system as a larger block-sparse system [6]. All these commonalities
do not come from nowhere, since SSS and HSS belong to the same family of a more
general class of matrices.

3. Tree quasi-separable matrices. This section formally introduces TQS ma-
trices. To do so, we first introduce some terminology in subsections 3.1 and 3.2. The
actual definition of TQS matrices is given in subsection 3.3. Finally, subsection 3.4
describes SSS and HSS as special cases of TQS matrices.

3.1. Tree graphs. Let \BbbG = (\BbbV ,\BbbE ), with node set \BbbV = \{ 1,2, . . . ,K\} , be a con-
nected acyclic undirected graph. Here, for reasons that will be clear later, the edge set
\BbbE is unconventionally interpreted as a collection of ordered pairs of nodes (instead of
unordered pairs!), but with the property that (i, j) \in \BbbE if and only if (j, i) \in \BbbE , i.e.,
the edges in both directions are included. The number of edges incident to a node
i \in \BbbV , i.e., its degree, is denoted by deg(i). Since \BbbG is acyclic, every pair of nodes
i, j \in \BbbG is connected by one, and only one, path1

\BbbP (i, j) = i - w2  - \cdot \cdot \cdot  - wp - 1  - j

of specific length p.
The graph \BbbG may be interpreted as a rooted tree.2 Indeed, if \scrN (i;k) denotes the

set of k-neighbors of node i\in \BbbV , i.e., the set of nodes that can be reached by i through

1Here we do not allow for self-intersecting paths. A ``path"" passing from node i to node j by
passing through i and going to k, to subsequently come back to node j, is not considered a valid
path!

2Although one may work without such an interpretation, this viewpoint shall be useful for de-
riving some of the results in the paper. Specifically, it allows the labeling of the generating matrices,
which in turn simplifies validating the correctness of Algorithm 1.
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1566 N. GOVINDARAJAN, S. CHANDRASEKARAN, AND P. DEWILDE

traversing a path of length k, then a tree \BbbG (r) is induced by picking any r \in \BbbV and
setting

\BbbV 0 = \{ r\} , \BbbV 1 =\scrN (r; 1), \BbbV 2 =\scrN (r; 2), . . . , \BbbV L =\scrN (r;L).

The depth of the tree specified by the partition \BbbV = \BbbV 0 \cup \BbbV 1 \cup \cdot \cdot \cdot \cup \BbbV L equals L
and is defined as the smallest number with the property \scrN (r;L+ 1) = \emptyset . The level
l at which a node i \in \BbbV l resides within the tree is denoted by \scrL (i) (note that this
depends implicitly on the choice of root node made earlier!). An edge (i, j) \in \BbbE with
\scrL (i) =\scrL (j) - 1 is called an up-edge since it is directed toward the root node. Likewise,
if \scrL (i) =\scrL (j)+1 it is called a down-edge since it is directed away from the root node.

Within the setting of the tree \BbbG (r), a node j \in \BbbV is considered to be a child of
i \in \scrN (j) =\scrN (j; 1) if i \in \BbbV l and j \in \BbbV l+1. Vice versa, i is the parent of node j. The
notion of children and parents may be further generalized: j \in \BbbV is a k-child (with
k > 0) of i\in \scrN (j;k) (and vice versa i is the k-parent of node j) if i\in \BbbV l and j \in \BbbV l+k.
Two nodes i, j \in \BbbV l are siblings (k-siblings) if they both share the same parent node
w \in \BbbV l - 1 (w \in \BbbV l - k). Naturally, a node will have at most one k-parent, but it may
have many k-children or k-siblings. The parent (k-parent) of a node i\in \BbbV is denoted
by \scrP (i) (\scrP (i;k)) and this set may be empty (e.g., for the root node). The set of
children (k-children) of node i \in \BbbV is denoted by \scrC (i) (\scrC (i;k)). The set of siblings
(k-siblings) of node i\in \BbbV is denoted by \scrS (i) (\scrS (i;k)). The set of descendants of node
i\in \BbbV and including i itself is denoted by

\scrD (i) := i\cup \scrC (i; 1)\cup \scrC (i; 2)\cup \cdot \cdot \cdot \cup \scrC (i;L - \scrL (i)).
and we set \=\scrD (i) :=\BbbV \setminus \scrD (i). A node i\in \BbbV is called a leaf node if its set of descendants
is empty. Note that leaf nodes may reside at any level of the tree. The set of leaf
nodes of an acyclic fully connected graph is denoted by L (\BbbG ).

3.2. Graph-partitioned matrices. We can associate the graph \BbbG = (\BbbV ,\BbbE )
with a block-partitioned matrix. To do this, associate each node with an input of size
ni \in \BbbN \cup \{ 0\} and an output of size mi \in \BbbN \cup \{ 0\} . Note that we allow the sizes of the
inputs and outputs to be empty! Now, let

M =
\sum 

i\in \BbbV 
mi, N =

\sum 

i\in \BbbV 
ni.

We may then introduce a matrix T \in \BbbF M\times N that is assembled from the system of
linear equations

\bfitb i =
\sum 

j\in \BbbV 
T\{ i, j\} \bfitx j , i\in \BbbV .(3.1)

That is,

(3.2) T :=

1 2 · · · K⎡
⎢⎢⎣

⎤
⎥⎥⎦

1 T{1, 1} T{1, 2} · · · T{1,K}
2 T{2, 1} T{2, 2} · · · T{2,K}
...

...
...

...
K T{K, 1} T{K, 2} · · · T{K,K}

,

where T\{ i, j\} \in \BbbF mi\times nj is the matrix associated with the contribution of the input at
node i \in \BbbV to the output at node j \in \BbbV . Given two subsets \BbbA = \{ i1, . . . , iA\} \subset \BbbV and
\BbbB = \{ j1, . . . , jB\} \subset \BbbV we have submatrices of T with the notation
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TREE QUASI-SEPARABLE MATRICES 1567

A B

Actual entries of the matrix T or its block-components T\{ i, j\} are accessed using a
square-bracket notation, i.e., T[k, l] and T\{ i, j\} [k, l] refer to the (k, l)th entry of T
and T\{ i, j\} , respectively.

The matrix T alongside with \BbbG is referred to as a graph-partitioned matrix. Note
that this definition is agnostic to whether \BbbG is a tree or not. Nonetheless, in this
paper, we will limit ourselves to only acyclic undirected graphs that may also be
viewed as trees.

3.3. Definition of TQS matrices. A TQS matrix is a specific construction
of a graph-partitioned matrix T associated with a fully connected and acyclic graph
\BbbG = (\BbbV ,\BbbE ). To form a TQS matrix from \BbbG , we equip the graph with weights on the
edges of the graph: every edge (i, j) \in \BbbE is associated with a weight \rho (i,j) \in \BbbN \cup \{ 0\} .
Furthermore, every edge (i, j) \in \BbbE is associated with a state vector \bfith (i,j) \in \BbbF \rho (i,j) .
Specifically, \bfith (i,j) describes a state computed in node i and transmitted to node
j. The set \{ \rho e\} e\in \BbbE is referred to as the rank-profile on \BbbG . It collectively describes
the state dimensions of all the edges. The TQS matrix is formed by running an
input-driven LTV dynamical system on the graph. To describe this LTV system, the
following matrices are introduced (see also Figure 1):

\bullet an input-to-output operator Dk \in \BbbF mk\times nk for every node k \in \BbbV describing a
mapping from input \bfitx k to output \bfitb k,

\bullet an input-to-edge operator Inpkj \in \BbbF \rho (k,j)\times nk for every node k \in \scrN (j) and
adjoining edge (k, j)\in \BbbE describing a mapping from input \bfitx k to state \bfith (k,j),

\bullet an edge-to-edge operator Transki,j \in \BbbF \rho (j,k)\times \rho (j,k) for every pair of adjoining
edges (j, k) \in \BbbE and (k, i) \in \BbbE (with i, j \in \scrN (k)) describing a mapping from
state \bfith (j,k) to state \bfith (k,i),

\bullet and an edge-to-output operator Outki \in \BbbF mk\times \rho (i,k) for every edge (i, k)\in \BbbE and
adjoining node i\in \scrN (k) describing a mapping from state \bfith (j,k) to output \bfitb k.

Notice that matrices (operators) belong to a node indicated by the superscript, while
the subscripts implicitly refer to edges attached to the respective node, indicating the
destination of the data being computed in that node. A TQS matrix is then defined
as follows.

V E E
E

E

Fig. 1. TQS operators associated with elements of the graph \BbbG .
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1568 N. GOVINDARAJAN, S. CHANDRASEKARAN, AND P. DEWILDE

Definition 3.1 (TQS matrices). Let \BbbG = (\BbbV ,\BbbE ) be a connected acyclic undirected
graph. A TQS matrix with input dimensions \{ ni\} i\in \BbbV , output dimensions \{ mi\} i\in \BbbV , and
rank-profile \{ \rho e\} e\in \BbbE is a graph-partitioned matrix T\in \BbbF M\times N of size M =

\sum 
i\in \BbbV mi by

N =
\sum 

i\in \BbbV ni whose block entries are specified by

T\{ i, j\} =
\Biggl\{ 
Di, i= j,

Outip\nu  - 1
Trans

p\nu  - 1

i,p\nu  - 2
\cdot \cdot \cdot Transp2

p3,p1
Transp1

p2,j
Inpjp1

, i \not = j,
(3.3)

with j = p0  - p1  - \cdot \cdot \cdot  - p\nu = i being the unique path from node j \in \BbbV to node i\in \BbbV .
The notation of the generating matrices of the TQS representation in Defini-

tion 3.1 is agnostic to a tree order. Later on, in section 5, we shall address the re-
alization problem or the problem of constructing a TQS representation from a dense
graph-partitioned matrix. To aid this construction, it shall be useful to ``color"" the
generating matrices with respect to their orientation in the graph. Particularly, once
a root node r \in \BbbV is chosen for the graph, we introduce additional nomenclature to
distinguish between different input-to-edge, edge-to-edge, and edge-to-output opera-
tors:3

\bullet An input-to-edge operator Inpkj is denoted by Bk
j if j \in \BbbV is a parent of k \in \BbbV 

(i.e., j =\scrP (k)) and by Pk
j if j \in \BbbV is a child of k \in \BbbV (i.e., j \in \scrC (k)).

\bullet An edge-to-edge operator Transki,j is denoted by Uk
i,j if j \in \BbbV and i \in \BbbV are

respectively a child and a parent of k \in \BbbV (i.e., j \in \scrC (k) and i = \scrP (k)), by
Vk

i,j if i, j \in \BbbV are siblings of k \in \BbbV (i.e. i, j \in \scrS (k)), and by Wk
i,j if j \in \BbbV 

and i \in \BbbV are respectively a parent and a child of k \in \BbbV (i.e., j = \scrP (k) and
i\in \scrC (k)).

\bullet An edge-to-output operator Outki is denoted by Ck
i if i\in \BbbV is a child of k \in \BbbV 

(i.e., i\in \scrC (k)) and by Qk
i if i\in \BbbV is a parent of k \in \BbbV (i.e., i=\scrP (k)).

The input-to-output, input-to-edge, edge-to-edge, and edge-to-output operators can
systematically be organized in so-called spinner matrices or transition maps at every
node k \in \BbbV . Let i1, i2, . . . , ip \in \scrC (k) be an enumeration of the set of children and
j =\scrP (k) the parent node (see Figure 2). At every node k \in \BbbV , the following relations
must be satisfied:

Fig. 2. Node k \in \BbbV with its children i1, i2, . . . , ip \in \scrC (k) and parent j =\scrP (k).

3Note that these operators are well-defined irrespective of the choice of the root.
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TREE QUASI-SEPARABLE MATRICES 1569

\left[ 
        

\bfith (k,i1)

\bfith (k,i2)

...
\bfith (k,ip)

\bfith (k,j)

\bfitb k

\right] 
        
=

\left[ 
         

0 Vk
i1,i2

\cdot \cdot \cdot Vk
i1,ip

Wk
i1,j

Pk
i1

Vk
i2,i1

0 Vk
i2,ip

Wk
i2,i1

Pk
i2

...
...

. . .
...

...
Vk

ip,i1
Vk

ip,i2
\cdot \cdot \cdot 0 Wk

ip,j
Pk
ip

Uk
j,ii

Uk
j,i2

\cdot \cdot \cdot Uk
j,ip

0 Bk
j

Ck
i1

Ck
i2

\cdot \cdot \cdot Ck
ip

Qk
j Dk

\right] 
         

\left[ 
        

\bfith (i1,k)

\bfith (i2,k)

...
\bfith (ip,k)

\bfith (j,k)

\bfitx k

\right] 
        
.(3.4)

The spinner matrices of the TQS representation are

V

The spinner matrices reveal how many numerical entries are involved in a TQS matrix.
Specifically, this number equals

\sum 

i\in \BbbV 

\left( 
 mi +

\sum 

j\in \scrN (i)

r(i,j)

\right) 
 

\left( 
 ni +

\sum 

j\in \scrN (i)

r(j,i)

\right) 
  - 

\sum 

j\in \scrN (i)

r(i,j)r(j,i).(3.6)

To illustrate our definition with an example, consider the following tree:

G

with node 4 (highlighted in bold) designated to be the root node. The TQS matrix
for the corresponding tree \BbbG a(4) has the structure

The spinner matrices take on the form

where the parent nodes of each spinner matrix are highlighted in bold.
In general, one can expect a TQS representation to be efficient if the state dimen-

sions are small and the degrees of the nodes are not large. For example, ifM =N =K,
and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

0/
25

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1570 N. GOVINDARAJAN, S. CHANDRASEKARAN, AND P. DEWILDE

\rho max :=max
e\in \BbbE 

\rho e\ll N, degmax :=max
i\in \BbbV 

deg(i)\ll N,(3.7)

consideration of (3.6) reveals that the number of parameters in the representation is of
the order \Theta ((1+d\rho )2N). Later on, in subsection 4.1, we shall see that the set of state
dimensions \{ \rho e\} e\in \BbbE will allow us to put bounds on the ranks of certain submatrices
of a TQS matrix.

3.4. HSS and SSS matrices as special subcases. While SSS and HSS ma-
trices have their origins in disparately different fields, TQS matrices bring them under
one roof as it includes SSS matrices and HSS matrices as special subcases. To further
elaborate on this, consider line graph

with node 4 chosen as the root node. The spinner matrices associated with \BbbG b(4) are
of the form

and generate the SSS matrix shown in (2.2). In general, all linearly ordered line
graphs produce a TQS matrix of the type described in subsection 2.1 if the final node
is chosen as the root node.

HSS matrices, on the other hand, are TQS matrices associated with binary trees.
For example, consider the postordered binary tree

with node 5 as the root node. Furthermore, suppose that n3 = m3 = n5 = m5 = 0,
i.e., all the nonleaf nodes are ``empty nodes"" with zero input and output dimensions.
The spinner matrices of \BbbG c(5) are of the form

and generate the HSS matrix in (2.4). In general, all postordered binary tree graphs
produce a TQS matrix of the type described in subsection 2.2, provided that all
nonleaf nodes are empty nodes of zero dimensions.

In all other cases, the TQS matrices are neither SSS nor HSS. The example of the
previous section and the upcoming example in subsection 5.1 belong to this category.
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TREE QUASI-SEPARABLE MATRICES 1571

3.5. TQS representations of sparse matrices. The construction (or realiza-
tion) of a TQS representation will be treated in section 5; however, for sparse matrices
whose adjacency graph is a tree, the TQS representation can be written down directly
from inspection. For example, consider the family of sparse matrices whose adjacency
graph corresponds to a regular k-level binary tree (see Figure 3). Using a ``nested
dissection""-styled ordering of the entries, we obtain the sequence of matrices

151515

7

3

1 2

6

4 5

14

10

8 9

13

11 12

Fig. 3. A level k= 4 binary tree with a ``nested dissection""-styled ordering of the nodes.
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1572 N. GOVINDARAJAN, S. CHANDRASEKARAN, AND P. DEWILDE

. . ., etc. For the specified ordering of the entries,4 the memory complexity of stor-
ing the matrices \{ Tk\} \infty k=1 with a TQS representation depends on the choice of the
partition and the graph. For standard HSS constructions, the matrices \{ Tk\} \infty k=1 are
compressed using the hierarchical partitioning delineated above. These constructions
lead to an O(k) growth in the HSS Hankel block ranks and the representation will
require \Theta (K logK) parameters, where K \sim 2k denotes the number of nodes in tree.
The same asymptotic storage complexity is also attained with an SSS representation.
Alternatively, one can use the adjacency graphs of Tk as the corresponding graph for
the TQS representation. Doing so, the root node and leaf nodes will have the spinner
matrices5

respectively, while the interior nodes (i.e., nonleaf and nonroot nodes) take on the
form

(3.9)

Notice that all the edge-to-edge operators are zero while the edge-to-output operators
are equal to one. As we shall see in Proposition 4.8 in subsection 4.3, the inverse of Tk

will also have a TQS representation of exactly the same dimensions. The edge-to-edge
operators will no longer be zero.

The resulting TQS representations from the spinner matrices (3.8) and (3.9) are
neither SSS nor HSS. With this representation, the complexity of storing Tk has
become linear (i.e., \Theta (K)), which is a logarithmic improvement over SSS and HSS.
It should be noted that picking the adjacency graph as the corresponding graph for
the TQS representation is not always a sensible choice. A canonical example is the
K-by-K arrowhead matrix

\left[ 
      

d1 pK1
d2 pK2

. . .
...

dK - 1 pKK - 1

b1K b2K \cdot \cdot \cdot bK - 1
K dK

\right] 
      
.

The complexity for the TQS representation would be comparable to the dense matrix
itself. This is because the adjacency graph contains a node for which the degree grows
with K  - 1. The line graph is a far better choice, resulting in a linear complexity.

4Note that the recovery of the optimal ordering which enables the most efficient TQS represen-
tations involves combinatorial search!

5Recall that L(l) (respectively, R(l)) denotes the left (respectively, right) child of node l a binary
tree.
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TREE QUASI-SEPARABLE MATRICES 1573

4. Algebraic properties of TQS matrices. This section discusses important
algebraic properties of TQS matrices. Subsection 4.1 describes the GIRS property of
TQS matrices. Subsection 4.2 introduces the theorem that characterizes the minimal
TQS representation for any graph-partitioned matrix whose graph is a tree. Sub-
section 4.3 discusses the properties of TQS matrices under addition, products, and
inversion.

4.1. Graph-induced rank structure of TQS matrices. Inverses of tridiag-
onal matrices are examples of dense matrices whose off-diagonal blocks possess low-
rank qualities. For graph-partitioned matrices (T,\BbbG ), this property of off-diagonal
low rank can be expressed in a more general framework through the notion of GIRS.
To describe GIRS, we first introduce the concept of a Hankel block. Let \BbbA \subset \BbbV and
let \=\BbbA =\BbbV \setminus \BbbA denote its complement. We may (block-)permute T such that

\Pi 1T\Pi 2 =

\biggl[ 
T\{ \BbbA ,\BbbA \} T\{ \BbbA , \=\BbbA \} 
T\{ \=\BbbA ,\BbbA \} T\{ \=\BbbA , \=\BbbA \} 

\biggr] 
.

We call T\{ \=\BbbA ,\BbbA \} the Hankel block induced by \BbbA . An edge (i, j) \in \BbbE is called a border
edge with respect to \BbbA if i \in \BbbA and j \in \=\BbbA . The number of border edges, or the edge
count, induced by \BbbA is denoted \scrE (\BbbA ). The GIRS property is defined as follows.

Definition 4.1 (GIRS property). The pair (T,\BbbG ) is said to satisfy the graph-
induced (low-)rank structure for a constant c\geq 0 if \forall \BbbA \subset \BbbV , we have

rankT\{ \=\BbbA ,\BbbA \} \leq c\scrE (\BbbA ).

TQS matrices turn out to satisfy a GIRS property. To see this, one must exploit
the direct correspondence between the path followed from node j \in \BbbV to i \in \BbbV in
\BbbG and the associated matrix expression at block-entry T\{ i, j\} . We may prove the
following result.

Proposition 4.2. A TQS matrix T \in \BbbF M\times N with rank-profile \{ \rho e\} e\in \BbbE satisfies
the GIRS property for c=maxe\in \BbbE \rho e.

Proof. Let \BbbA \subset \BbbV and \=\BbbA = \BbbV \setminus \BbbA . We must show that the rank of T\{ \=\BbbA ,\BbbA \} is
bounded by \scrE (\BbbA ) \cdot maxe\in \BbbE \rho e. Suppose i \in \BbbA and j \in \=\BbbA . Since \BbbG is acyclic, there
exists a unique path \BbbP (i, j) connecting i to j. By construction, \BbbP (i, j) first starts at
a node in \BbbA to eventually transition into a node in \=\BbbA . It may be possible that \BbbP (i, j)
leaves and enters \BbbA multiple times before it finally enters back into \=\BbbA one last time
to reach node j. Write

\BbbP (i, j) = i - \cdot \cdot \cdot  - s - t - \cdot \cdot \cdot  - v - w - \cdot \cdot \cdot  - j,

where (s, t) \in \BbbE (with s \in \BbbA , t \in \=\BbbA ) marks the first time \BbbP (i, j) entering \=\BbbA and
(v,w)\in \BbbE (with s\in \BbbA , t\in \=\BbbA ) marks the last time \BbbP (i, j) leaving \BbbA . We may factor

T\{ j, i\} =\Gamma j
(v,w)\Phi (v,w),(s,t)\Psi 

i
(s,t),(4.1)

where
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1574 N. GOVINDARAJAN, S. CHANDRASEKARAN, AND P. DEWILDE

\Psi i
(s,t) :=

\Biggl\{ 
Inpst , i= s,

Transst,\ast \cdot \cdot \cdot Trans\ast \ast ,jInpi\ast , i \not = s,

\Phi (v,w),(s,t) :=

\Biggl\{ 
Id, (s, t) = (v,w),

Transvw,\ast \cdot \cdot \cdot Transt\ast ,s, (s, t) \not = (v,w),

\Gamma j
(v,w) :=

\Biggl\{ 
Outwv , j =w,

Outj\ast Trans
\ast 
j,\ast \cdot \cdot \cdot Transv\ast ,w, j \not = t.

Let \{ ei\} \scrE (A)
i=1 \subset \BbbE denote the set of border edges, and

\Phi :=

\left[ 
  

\Phi e1,e1 \cdot \cdot \cdot \Phi e1,e\scrE (A)

...
...

\Phi e\scrE (A),e1 \cdot \cdot \cdot \Phi e\scrE (A),e\scrE (A)

\right] 
  .

Given (4.1), it becomes evident that we may factor T\{ \=\BbbA ,\BbbA \} =\Gamma \Phi \Psi . Thus,

rankT\{ \=\BbbA ,\BbbA \} =
\scrE (\BbbA )\sum 

i=1

\rho ei \leq \scrE (\BbbA ) \cdot max
e\in \BbbE 

\rho e.

4.2. Minimal TQS representations. Proposition 4.2 shows that TQS matri-
ces satisfy the GIRS property for c=maxe\in \BbbE \rho e. A question arises as to whether the
converse also holds. If a tree-graph-partitioned matrix satisfies the GIRS property for
c > 0, does this then imply the existence of a TQS representation whose rank-profile is
bounded by the GIRS constant? For SSS and HSS matrices both these questions can
be answered in the affirmative. Interestingly, the same holds also for the more general
TQS matrices. To answer this question, one must study the problem of constructing
a minimal TQS representation.

Definition 4.3 (minimal TQS representation). Let (T,\BbbG ) be a graph-partitioned
matrix with \BbbG acyclic and connected. A TQS representation for T with rank-profile
\{ \rho e\} e\in \BbbE is called minimal if any other TQS representation for T with rank-profile
\{ \rho \prime e\} e\in \BbbE satisfies \rho \prime e \geq \rho e \forall e\in \BbbE .

Given a graph-partitioned matrix (T,\BbbG ) with G acyclic and connected, the rank-
profile of the corresponding TQS representation can be derived from the ranks of
Hankel blocks whose edge count is unity. For a tree, these so-called unit Hankel
blocks are quite straightforward to enlist as every edge (i, j) \in \BbbE can be uniquely
paired with one such unit Hankel block. Indeed, once a root node r \in \BbbV for the graph
has been picked, it must hold that either j = \scrP (i) or i = \scrP (j) for the corresponding
tree \BbbG (r). Let

\BbbH (i,j) =

\Biggl\{ 
\scrD (i), j =\scrP (i),
\BbbV \setminus \scrD (j), i=\scrP (j),

and let H(i,j) denote the Hankel block corresponding with subset \BbbH (i,j), i.e., H(i,j) =
T\{ \BbbH (i,j), \=\BbbH \} (i,j) with \=\BbbH (i,j) =\BbbV \setminus \BbbH (i,j). We have the following result.
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TREE QUASI-SEPARABLE MATRICES 1575

Theorem 4.4. Let (T,\BbbG ) be a graph-partitioned matrix with \BbbG acyclic and con-
nected. Then T\in \BbbF M\times N admits a TQS representation with rank-profile

\rho e = rankHe, e\in \BbbE .

Furthermore, such a TQS representation is minimal.

The proof of Theorem 4.4 is postponed to subsection 5.4, where we shall introduce
an explicit algorithm to convert a dense matrix into a TQS representation. Proposition
4.2 and Theorem 4.4 yield the following corollary.

Corollary 4.5. Let (T,\BbbG ) be a graph-partitioned matrix with \BbbG acyclic and
connected. Then T \in \BbbF M\times N satisfies the GIRS property for c > 0 if and only if
T\in \BbbF M\times N admits a TQS representation with a rank-profile \{ \rho e\} e\in \BbbE satisfying \rho e \leq c \forall 
e\in \BbbE .

4.3. Sums, products, and inverses of TQS matrices. The algebraic proper-
ties of SSS and HSS matrices under addition, multiplication, and inversion generalize
to TQS matrices. The following three propositions may be established from Theorem
4.4.

Proposition 4.6 (TQS addition). Let T1,T2 \in \BbbF M\times N , with M =
\sum 

i\in \BbbV mi and
N =

\sum 
i\in \BbbV ni, be TQS matrices of rank-profiles \{ \rho 1,e\} e\in \BbbE and \{ \rho 2,e\} e\in \BbbE associated

with the acyclic connected graph \BbbG = (\BbbV ,\BbbE ). Then, T3 =T1 +T2 is a TQS matrix of
rank-profile \{ \rho 1,e + \rho 2,e\} e\in \BbbE .

Proof. Since rankT3\{ \=\BbbA ,\BbbA \} \leq rankT1\{ \=\BbbA ,\BbbA \} +rankT2\{ \=\BbbA ,\BbbA \} for any Hankel block
induced by \BbbA , the result directly follows from Theorem 4.4.

Proposition 4.7 (TQS product). Let T1 \in \BbbF M\times N and T2 \in \BbbF N\times P , with M =\sum 
i\in \BbbV mi, N =

\sum 
i\in \BbbV ni, and P =

\sum 
i\in \BbbV pi, be TQS matrices of rank-profiles \{ \rho 1,e\} e\in \BbbE 

and \{ \rho 2,e\} e\in \BbbE associated with the acyclic connected graph \BbbG = (\BbbV ,\BbbE ). Then, T3 =
T1T2 is a TQS matrix of rank-profile \{ \rho 1,e + \rho 2,e\} e\in \BbbE .

Proof. Since

rankT3\{ \=\BbbA ,\BbbA \} = rank
\bigl( 
T1\{ \=\BbbA ,\BbbA \} T2\{ \BbbA ,\BbbA \} +T1\{ \=\BbbA , \=\BbbA \} T2\{ \=\BbbA ,\BbbA \} 

\bigr) 

\leq rankT1\{ \=\BbbA ,\BbbA \} + rankT2\{ \=\BbbA ,\BbbA \} 

for any Hankel block induced by \BbbA , the result directly follows from Theorem 4.4.

Proposition 4.8 (TQS inverse). Let T\in \BbbF N\times N , with N =
\sum 

i\in \BbbV ni, be a nonsin-
gular TQS matrix of rank-profile \{ \rho e\} e\in \BbbE associated with the acyclic connected graph
\BbbG = (\BbbV ,\BbbE ). Then, T - 1 is also a TQS matrix of rank-profile \{ \rho e\} e\in \BbbE .

Proof. Consider the Hankel block T\{ \BbbA ,\BbbA \} and note that, under the hypothesis
of Proposition 4.8, T\{ \BbbA ,\BbbA \} is a square matrix. Observe that under the hypothesis,
let T\{ \BbbA ,\BbbA \} =U\Sigma V denote singular value decomposition and B(\epsilon ) = U(\Sigma + \epsilon Id)V for
\epsilon > 0. By construction the inverse of B(\epsilon ) exists, and

\biggl[ 
B(\epsilon ) T\{ \BbbA , \=\BbbA \} 

T\{ \=\BbbA ,\BbbA \} T\{ \=\BbbA , \=\BbbA \} 

\biggr]  - 1

=

\biggl[ \ast \ast 
 - 
\bigl( 
T\{ \=\BbbA , \=\BbbA \}  - T\{ \=\BbbA ,\BbbA \} B - 1(\epsilon )T\{ \BbbA , \=\BbbA \} 

\bigr)  - 1
T\{ \=\BbbA ,\BbbA \} B - 1(\epsilon ) \ast 

\biggr]  - 1

.
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1576 N. GOVINDARAJAN, S. CHANDRASEKARAN, AND P. DEWILDE

By taking limits for \epsilon \rightarrow 0, it becomes straightforward to show that rankT - 1\{ \=\BbbA ,\BbbA \} =
rankT\{ \=\BbbA ,\BbbA \} for any Hankel block induced by \BbbA . The proposition then follows from
Theorem 4.4 and a limiting argument on the rank of determinants and minors.

5. TQS matrix construction. This section discusses the construction (or re-
alization in the language of systems theory) of a TQS representation from a dense
matrix provided a tree \BbbG (r) and an accompanying partitioning of the matrix. In
subsection 5.1 we describe the construction on an illustrative example. The general
algorithm is described in subsection 5.2. The construction or realization algorithm
is naturally a generalization of the SSS and HSS realization algorithms. The pre-
sented algorithm will allow us to prove Theorem 4.4 in subsection 4.2. This is done
in subsection 5.4.

5.1. An illustrative example. Before describing the general algorithm, we
first illustrate the construction of a TQS representation on an illustrative example.
Consider the tree

with node 7 picked as the root node. \BbbG b(7) is a tree of depth 2 and comprises the
levels \BbbV 0 = \{ 7\} , \BbbV 1 = \{ 5,6\} , and \BbbV 2 = \{ 1,2,3,4\} . The corresponding spinner matrices
and TQS form are shown in Figure 4. It turns out that the generating matrices of
the TQS representation can be retrieved from computing low-rank factorizations of
the unit Hankel blocks H(i,j) in a particular sequence.

To start, we begin with the unit Hankel blocks associated with the edges at the
deepest level of the tree. Specifically, from the low-rank factorizations of the unit
Hankel blocks H(i,j) = X(i,j)Y(i,j) with i \in \BbbV 2 and j = \scrP (i) \in \BbbV 1, we shall be able to
obtain the B's of the spinner matrices corresponding to the nodes in \BbbV 2 and the C's
of the spinner matrices corresponding to the nodes in \BbbV 1. For example, for i= 1\in \BbbV 2

and j =\scrP (1) = 5\in \BbbV 1, we may write

since we know that H(1,5) should factor into
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1578 N. GOVINDARAJAN, S. CHANDRASEKARAN, AND P. DEWILDE

and we may set C5
1 = X(1,5)\{ 5\} \in \BbbF m5\times \rho (1,5) and B5

1 = Y(1,5)\{ 1\} \in \BbbF \rho (1,5)\times n1 with
\rho (1,5) = rankH(1,5). With similar reasoning, we may set C5

2 = X(2,5)\{ 5\} \in \BbbF m5\times \rho (2,5) ,
B2

5 = Y(2,5)\{ 2\} \in \BbbF \rho (2,5)\times n2 , C6
3 = X(3,6)\{ 6\} \in \BbbF m6\times \rho (3,6) , B3

6 = Y(3,6)\{ 3\} \in \BbbF \rho (3,6)\times n3 ,
C6

4 = X(4,6)\{ 6\} \in \BbbF m6\times \rho (4,6) , B4
6 = Y(4,6)\{ 4\} \in \BbbF \rho (4,6)\times n4 with \rho (2,5) = rankH(2,5),

\rho (3,6) = rankH(3,6), and \rho (4,6) = rankH(4,6).
Next, moving one level up the tree by computing low-rank factorizations H(i,j) =

X(i,j)Y(i,j) with i \in \BbbV 1 and j = \scrP (i) \in \BbbV 0, we can obtain the U's and B's of the
spinner matrices corresponding to the nodes in \BbbV 1 and the C's of the spinner matrices
corresponding to the nodes in \BbbV 0. For example, for i= 5\in \BbbV 1 and j =\scrP (5) = 7\in \BbbV 0,
we may write

with the help of previously computed factorizations. The low-rank factorization
H(5,7) =X(5,7)Y(5,7) can be obtained by compressing the matrix

which sets

Since Y(1,5) =B1
5, Y(2,5) =B2

5, and H(5,7) should factor into

we see that C7
5 = X(5,7)\{ 7\} \in \BbbF m7\times \rho (5,7) , U5

7,1 = Z
\scrD (1)
(5,7) \in \BbbF \rho (5,7)\times \rho (1,5) , U5

7,2 = Z
\scrD (2)
(5,7) \in 

\BbbF \rho (5,7)\times \rho (2,5) , B5
7 =Z5

(5,7) \in \BbbF \rho (5,7)\times n5 with \rho (5,7) = rankH(5,7). With similar reasoning,

we may set C7
6 = X(6,7)\{ 7\} \in \BbbF m7\times \rho (6,7) , U6

7,3 = Z
\scrD (3)
(6,7) \in \BbbF \rho (6,7)\times \rho (3,6) , U6

7,4 = Z
\scrD (4)
(6,7) \in 

\BbbF \rho (6,7)\times \rho (4,6) , B6
7 =Z6

(6,7) \in \BbbF \rho (6,7)\times n6 with \rho (6,7) = rankH(6,7).
By now, we have fully climbed up the tree and arrived at the root node. In this

process, we have computed all the B's, U's, and C's of the TQS representation. This
was done by peeling off the terms from the low-rank factorizations of the unit Hankel
blocks. To compute the remaining P's, V's, W's, and Q's, we proceed in the same way.
However, the main difference is that we start at the root and work ourselves down
the tree toward the leaves. To start, through computing the low-rank factorizations
H(j,i) =X(j,i)Y(j,i) with i \in \BbbV 1 and j = \scrP (i) \in \BbbV 0, we will be able to retrieve the P's
and V's of the spinner matrices corresponding to the nodes in \BbbV 0 and the Q's of the
spinner matrices corresponding to the nodes in \BbbV 1. For example, for i = 5 \in \BbbV 1 and
j =\scrP (5) = 7\in \BbbV 0, we may write
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TREE QUASI-SEPARABLE MATRICES 1579

Compressing the matrix

allows us to produce the low-rank factorization H(7,5) =X(7,5)Y(7,5) with

Since Y(6,7) =
3 4 6

[U6
7,3B

3
6 U6

7,4B
4
6 B6

7]
and H(7,5) should factor into

we may set Q5
7 = X(7,5)\{ 5\} \in \BbbF m5\times \rho (7,5) , V7

5,6 = Z
\scrD (6)
(7,5) \in \BbbF \rho (7,5)\times \rho (6,7) , P7

5 = Z7
(7,5) \in 

\BbbF \rho (7,5)\times n7 with \rho (7,5) = rankH(7,5). With similar reasoning, we may set Q6
7 = X(7,6)

\{ 6\} \in \BbbF m6\times \rho (7,5) , V7
5,6 = Z

\scrD (5)
(7,6) \in \BbbF \rho (7,6)\times \rho (5,7) , P7

6 = Z7
(7,6) \in \BbbF \rho (7,6)\times n7 with \rho (7,6) =

rankH(7,6).
At last, moving one level down, we reach the bottom of the tree. By computing

the low-rank factorizations H(j,i) =X(j,i)Y(j,i) with i \in \BbbV 2 and j =\scrP (i) \in \BbbV 1, we will
be able to compute all the remaining terms of TQS representation. Specifically, we
will be able to retrieve all the P's, W's, and V's of the spinner matrices corresponding
to the nodes in \BbbV 1 and the Q's of the spinner matrices corresponding to the nodes in
\BbbV 2. For example, for i= 1\in \BbbV 2 and j =\scrP (1) = 5\in \BbbV 1, we may write

Compressing the matrix

allows us to produce the low-rank factorization H(7,5) =X(7,5)Y(7,5) with

Since Y(7,5) =
\bigl[ 
V7

5,6U
6
7,3B

3
6 V7

6,5U
6
7,4B

4
6 V7

5,6B
6
7 P7

5

\bigr] 
, Y(2,5) =B2

5, and H(5,1) should
factor into
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we see that Q1
5 = X(5,1)\{ 1\} \in \BbbF m1\times \rho (5,1) , W5

1,7 = Z
\=\scrD (5)
(5,1) \in \BbbF \rho (5,1)\times \rho (7,5) , V5

1,2 = Z
\scrD (2)
(5,1) \in 

\BbbF \rho (5,1)\times \rho (2,5) , P5
1 =Z5

(7,5) \in \BbbF \rho (5,1)\times n5 with \rho (5,1) = rankH(5,1). The remaining terms of
the TQS representation are obtained in the same way.

5.2. The general construction algorithm. The approach taken for the exam-
ple of the previous section generalizes for a generic TQS representation. This process
is described in Algorithm 1. The process of converting a dense matrix into TQS form
consists of two phases: an upsweep and a downsweep phase. In the upsweep phase,
one starts at the leaves of the tree and works up toward the root. In this process, all
the B's, C's, and U's are computed. In the downsweep phase that follows, one starts
at the root of the tree and then works down toward the leaves. In this second leg,
the P's, Q's, W's, and V's are computed. The additional nomenclature introduced
in subsection 3.3 reveals that all of the generators are computed exactly once, thus
alluding to any inconsistencies that may occur.

Algorithm 1 (TQS construction algorithm). Let \BbbG (r) be a tree with root node
r \in \BbbV and let T\in \BbbF M\times N be the associated graph-partitioned matrix with M =

\sum 
i\in \BbbV mi

and N =
\sum 

i\in \BbbV ni. A set of generators for the TQS representation of T is obtained by
following the steps outlined below.

1. Diagonal stage. Set Di =T\{ i, i\} for i\in \BbbV .
2. Upsweep stage. For l=L,L - 1, . . . ,1 do the following:

(a) For every i\in \BbbV l with parent node j =\scrP (i)\in \BbbV l - 1 and children \scrC (i) =
\{ w1,w2, . . . ,w\alpha \} \subset \BbbV , write H(i,j) =F(i,j)G(i,j), where

(b) Let \rho (i,j) = rankF(i,j) = rankH(i,j) and compute the low-rank
compression F(i,j) =X(i,j)Z(i,j).

(c) Set

Bi
j := Zi

(i,j), Cj
i := X(i,j)\{ j\} , Ui

j,wt
:= Z

\scrD (wt)
(i,j)

for t= 1,2, . . . , \alpha .
(d) Define Y(i,j) = Z(i,j)G(i,j) so that X(i,j)Y(i,j) is a low-rank

factorization for H(i,j).
3. Downsweep stage. For l= 1,2, . . . ,L do the following:

(a) For every i \in \BbbV l with parent node j = \scrP (i) \in \BbbV l - 1, grandparent
node6 k = \scrP (i; 2) \in \BbbV l - 2, and siblings \scrS (i) = \{ v1, v2, . . . , v\beta \} \subset \BbbV ,
write H(j,i) =F(j,i)G(j,i), where

6For l= 1 there will be no grandparent node, in which case the corresponding terms associated
with it can be ignored.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

0/
25

 to
 1

54
.5

9.
12

4.
11

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



TREE QUASI-SEPARABLE MATRICES 1581

(b) Let \rho (j,i) = rankF(j,i) = rankH(j,i) and compute the low-rank
compression F(j,i) =X(j,i)Z(j,i).

(c) Set

Pj
i =Zj

(j,i), Wi
(j,k) =Z

\=\scrD (j)
(j,i) , Qi

j =X(j,i)\{ i\} , Vi
j,vt

=Z
\scrD (vt)
(j,i)

for t= 1,2, . . . , \beta .
(d) Set Y(j,i) = Z(j,i)G(j,i) so that X(j,i)Y(j,i) is a low-rank factorization

for H(j,i).

We remark that Algorithm 1 is not the only approach for constructing a TQS
matrix. There exists some flexibility in algorithmic design choices that could be
optimized for parallelism and memory consumption. A more detailed analysis goes
outside the scope of this paper. For now, we stay contented that Algorithm 1 presents
a valid construction/realization algorithm.

5.3. Numerical tests. To further validate the construction algorithm for cor-
rectness, we have implemented Algorithm 1 in the Julia language.7 Table 1 showcases
the numerical results obtained with the implemented algorithm for two experiments.
In the first experiment, Algorithm 1 is applied to reconstruct minimal TQS repre-
sentations of randomly generated TQS matrices for the tree graphs \BbbG a(4), \BbbG b(4),
\BbbG c(5), and \BbbG d(7). The TQS matrices are first converted into dense matrices, after
which Algorithm 1 is applied to reconstruct the TQS matrix. In the second exper-
iment, Algorithm 1 is used to construct TQS representations for the inverse of the
matrices Tk, k= 1,2,3, . . ., from subsection 3.5. The parameters used to generate Tk

are again chosen randomly. Using the adjacency graph as the corresponding tree, it
follows from Proposition 4.8 that T - 1

k admit a scalar TQS representation, i.e., \rho e = 1
\forall e \in \BbbE . Our numerical experiment also confirmed this property. Tables 1(a) and
1(b) show the relative 2-norm error of the constructed TQS matrices (with respect
to the original dense matrix) for experiments 1 and 2, respectively. The results sug-
gest that Algorithm 1 can generate TQS approximations up to machine precision
accuracy.

5.4. Proof of Theorem 4.4. We are now ready to prove Theorem 4.4.

Proof of Theorem 4.4. Algorithm 1 presents a constructive proof for the existence
of a TQS representation with rank-profile \{ \rho e := rankHe\} e\in \BbbE . The only thing left is

7This code is made available at https://github.com/nithingovindarajan/TQSmatrices.
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Table 1
Numerical results obtained with Algorithm 1. The mean and standard deviation of the relative

2-norm error of the constructed TQS matrix (w.r.t. the original dense matrix) is computed. The
statistics are computed from 10 random trials.

(a) Computed error statistics for the
TQS reconstruction of randomly gener-
ated TQS matrices for the tree graphs

a(4), b(4), c(5), and d(7).

rel. error
mean std

a(4) 2.2431e-15 2.0166e-15

b(4) 7.6436e-16 1.4924e-16

c(5) 6.5400e-16 2.4239e-16

d(7) 4.0584e-15 2.8004e-15

(b) Computed error statistics for the TQS
construction of the inverse of the matrices
Tk, k = 1, 2, 3, . . . from subsection 3.5.

k
rel. error

mean std
1 0.0 0.0
2 1.41199e-16 4.87742e-17
3 2.78289e-16 8.81678e-17
4 3.6505e-16 1.66578e-16
5 4.71926e-16 2.48319e-16
6 6.95086e-16 2.30473e-16
7 5.68185e-16 1.56358e-16
8 1.03728e-15 3.58987e-16
9 1.1168e-15 4.68181e-16

G G G G

to show that the TQS representation produced by Algorithm 1 is minimal. This can
be verified by setting up a contradiction. Suppose there exists a TQS representation
with rank-profile \{ \rho \prime e\} e\in \BbbE and \rho \prime e < \rho e for some edge e \in \BbbE ; then the unit Hankel He

admits a low-rank factorization of rank \rho \prime e <\rho e, which is not possible.

6. TQS linear systems. In this section, we examine linear systems T\bfitx = \bfitb ,
where T \in \BbbF M\times N is a TQS matrix on \BbbG = (\BbbV ,\BbbE ) of dimensions M =

\sum 
i\in \BbbV mi

by N =
\sum 

i\in \BbbV ni. By conformally partitioning \bfitb \in \BbbF M and \bfitx \in \BbbF N into subvectors
\bfitb i \in \BbbF mi and \bfitx i \in \BbbF ni , respectively, we first describe in subsection 6.1 how the matrix-
vector product \bfitb = T\bfitx is evaluated efficiently. Then, in subsection 6.2, we proceed
and use the relations derived for the matrix-vector product to formulate an efficient
method to solve T\bfitx = \bfitb for \bfitx given \bfitb .

6.1. Evaluation of matrix-vector product. The block entries of a TQS ma-
trix originate from evolving a dynamical system over a graph. In the special case
of an SSS matrix, the lower and upper triangular parts of the matrix are the result
of running a causal and anticausal LTV dynamical system. This is exploited in the
matrix-vector product. For the general case, the dynamics evolve over a tree, and it
becomes much harder to provide a simple characterization. Nonetheless, formulating
the ``state-space"" equations shall produce a fast matrix-vector product algorithm for
the general case as well. Recall that each edge (i, j) \in \BbbE of the acyclic connected
graph \BbbG a state vector \bfith (i,j) \in \BbbF \rho (i,j) . The transition maps (3.4) yield the state
equations

\bfith (i,j) =
\sum 

w\in \scrN (i)\setminus \{ j\} 

Transij,w\bfith (w,i) + Inpij\bfitx i, (i, j)\in \BbbE ,(6.1)

along with the output equations

\bfitb j =
\sum 

i\in \scrN (j)

Outji\bfith (i,j) +Dj\bfitx i, j \in \BbbV .(6.2)
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TREE QUASI-SEPARABLE MATRICES 1583

By picking a root node r \in \BbbV , the state and output equations for the corresponding
tree \BbbG (r) may be further refined to

\bfith (i,j) =

\left\{ 
   
   

\sum 

w\in \scrC (i)

Ui
j,w\bfith (w,i) +Bi

j\bfitx i, j =\scrP (i),

Wi
j,\scrP (i)\bfith (\scrP (i),i) +

\sum 

w\in \scrS (j)

Vi
j,w\bfith (w,i) +Pi

j\bfitx i, i=\scrP (j),
(6.3)

and

\bfitb j =Qj
\scrP (j)\bfith (\scrP (j),j) +

\sum 

i\in \scrC (j)

Bj
i\bfith (i,j) +Dj\bfitx i.(6.4)

A careful examination of (6.3) reveals a natural causal ordering on the state variables.
Specifically, for a leaf i\in L (\BbbG ), the state equations are simply \bfith (i,j) =Bi

j\bfitx i. One may
thus start with computing the state vectors at the leaves and then work up toward
the interiors of the graph. Once the root node is reached, the reverse process can be
initiated by flowing outward toward the leaves. Algorithm 2 exactly describes this
process. The TQS matrix-vector product involves

\scrO 

\left( 
 \sum 

i\in \BbbV 

\left( 
 mi +

\sum 

j\in \scrN (i)

r(i,j)

\right) 
 

\left( 
 ni +

\sum 

j\in \scrN (i)

r(j,i)

\right) 
 
\right) 
 

floating point operations (flops). In particular, the complexity becomes a linear time
w.r.t. the matrix dimensions if, for instance, the properties in (3.7) are applicable.

Algorithm 2 (TQS matrix-vector product). Given a TQS matrix T \in \BbbF M\times N

on \BbbG (r) of dimensions M =
\sum 

i\in \BbbV mi by N =
\sum 

i\in \BbbV ni, the matrix-vector product
\bfitb i =

\sum 
j\in \BbbV T\{ i, j\} \bfitx j for i\in \BbbV is obtained by following the steps outlined below.
1. Diagonal stage. Initialize \bfitb i =Di\bfitx i for i\in \BbbV .
2. Upsweep stage. For l=L,L - 1, . . . ,1 do the following:

(a) For every i\in \BbbV l with parent node j =\scrP (i)\in \BbbV l - 1 and children \scrC (i) =
\{ w1,w2, . . . ,w\alpha \} \subset \BbbV , evaluate

\bfith (i,j) =

\alpha \sum 

p=1

Ui
j,wp

\bfith (wp,i) +Bi
j\bfitx i.

(b) Update

\bfitb j\leftarrow \bfitb j +Cj
i\bfith (i,j).

3. Downsweep stage. For l= 1,2, . . . ,L do the following:
(a) For every i \in \BbbV l with parent node j = \scrP (i) \in \BbbV l - 1, grandparent node

k=\scrP (i; 2)\in \BbbV l - 2, and siblings \scrS (i) = \{ v1, v2, . . . , v\beta \} \subset \BbbV , evaluate

\bfith (j,i) =Wj
i,k\bfith (k,j) +

\beta \sum 

p=1

Vj
i,wp

\bfith (wp,i) +Bj
i\bfitx j .

(b) Update

\bfitb i\leftarrow \bfitb i +Qi
j\bfith (j,i).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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6.2. Solving linear systems. The (possibly dense) linear system T\bfitx = \bfitb is
efficiently solved for \bfitx given \bfitb by using the same reasoning introduced in [6]. By
treating \{ \bfith e\} e\in \BbbE and \{ \bfitx i\} i\in \BbbV as unknowns, and \{ \bfitb i\} i\in \BbbV as knowns, (6.1) and (6.2)
collectively yield the sparse linear system

\bfith (i,j)  - 
\sum 

w\in \scrN (i)\setminus \{ j\} 

Transij,w\bfith (w,i)  - Inpij\bfitx i = 0, (i, j)\in \BbbE ,(6.5a)

\sum 

i\in \scrN (j)

Outji\bfith (i,j) +Dj\bfitx i = \bfitb j , j \in \BbbV .(6.5b)

Particularly, if we let \scrN (j) = \{ i1, i2, . . . , ip\} and define

\bfittheta j :=

\left[ 
      

\bfitx j

\bfith (i1,j)

\bfith (i2,j)

...
\bfith (ip,j)

\right] 
      
, \bfitbeta j =

\left[ 
      

\bfitb j
0
0
...
0

\right] 
      

the adjacency graph of the matrix expression \Xi \bfittheta = \bfitbeta that describes (6.5) coincides
with \BbbG . That is, \Xi \{ i, j\} \not = 0 if and only if (i, j)\in \BbbE . Acyclic graphs are chordal graphs
and have a perfect elimination order without any fill-in (see [16]). Thus, (6.5) may
be efficiently solved with any standard (block-)sparse solver. Solving (6.5) involves
roughly

\scrO 

\left( 
  
\sum 

i\in \BbbV 

\left( 
 ni +

\sum 

j\in \scrN (i)

r(i,j)

\right) 
 

3
\right) 
  

flops. In particular, the complexity becomes linear w.r.t. the matrix dimensions if,
for instance, the properties in (3.7) are applicable.

7. Conclusions and future work. We introduced a new class of represen-
tations for rank-structured matrices called tree quasi-separable (TQS) matrices. It
was shown that TQS matrices unify and generalize SSS and HSS matrices. Further-
more, by deriving an explicit construction algorithm, we characterized the properties
of a minimal TQS representation for a given tree graph-partitioned matrix. Subse-
quently, we showed that TQS inherits many of the well-known properties of SSS and
HSS matrices concerning matrix-vector multiplication, matrix-matrix multiplication,
matrix-matrix addition, and inversion.

Future work will be geared toward the efficient implementation and generalization
of many algorithms associated with SSS and HSS matrices. Specifically, in a future
paper, we shall derive expressions for the LU factorization and (pseudo-)inverse of
TQS matrices. The potential applications of TQS (and the greater flexibility that is
offered by them) will also be explored. Finally, we note that the results associated with
TQS may form an essential building block for constructing representations associated
with more general GIRS matrices (see [11]).

Reproducibility of computational results. This paper has been awarded the
``SIAM Reproducibility Badge: Code and data available"" as a recognition that the
authors have followed reproducibility principles valued by SIMAX and the scientific
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computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/nithingovindarajan/TQSmatrices and
in the supplementary materials (Supp Materials.zip [local/web 16.4KB]).
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