
Pipeline construction for the automated text retrieval, editing, and
deletion in comic illustrations

Jordi van Setten1

Supervisor(s): Lydia Chen, Zilong Zhao

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Jordi van Setten
Final project course: CSE3000 Research Project
Thesis committee: Lydia Chen, Zilong Zhao, Anna Lukina

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
With the increasing demand for high-
quality data in the field of Machine
Learning and AI, the availability of such
data has become a major bottleneck for
further advancements. This paper proposes
a novel approach to extract valuable data
from comic illustrations, aiming to address
the scarcity of labeled datasets. By
leveraging popular comic series such as
Dilbert, which contain thousands of comic
strips with multiple panels, text boxes,
characters, and settings, we aim to create a
pipeline for data labeling and manipulation.
This pipeline will enable experiments in
various areas, including generative comics,
humor detection, translation, and more.
The paper focuses on two key research
questions: 1) How accurately can we get
current OCR models to extract text from
the comics, and 2) How can we create the
ability to edit and delete existing text boxes.
By accurately segmenting the panels and
text boxes within the comics, we expect
to improve OCR performance by reducing
noise and addressing unique text formats.
Object detection models will be employed
to zoom into text boxes, further enhancing
OCR text extraction accuracy. Evaluation
metrics such as Latent Dirichlet allocation
(LDA), Character Error Rate (CER), and
Word Error Rate (WER) will be used to
measure the effectiveness of the proposed
techniques.
In the end, utilizing a dataset of 500
labelled comic panels, we achieve
accuracies of 94.07% for CER (up
9.86% from 84.21% baseline), 88.35% for
WER (up 8.35% from 80.0% baseline), and
98.0% for LDA (up 3.77% from 94.23%
baseline). Similarly, editing and deleting
of text boxes inside the comic panels
prove to be successful in a vast majority
of instances. We believe these results are
more than adequate for select use cases.

1 Introduction
With the rapid acceleration of Machine Learning and
AI in today’s world, the demand for high quality data
is increasing significantly [1][7]. Machine Learning
models are often dictated by the quality of the data
that they are provided with, and as such the quote of
"garbage in garbage out" has been coined. [20][18].
Currently, there is a severe lack of high quality data to
train on, often due to the need to manually label large

parts of the data. This results in major bottlenecks for
the further improvement of models [10].

The effectiveness of data construction pipelines has
been shown previously in works such as "A data-
driven approach to cleaning large face datasets"[11].
Utilizing the created data allowed for the further
advancement of face recognition research.

In this paper we look towards a novel area of
comic illustrations to extract valuable sources of
data. Comic series such as Dilbert, PHD Comics,
and Garfield, contain thousands of comic strips,
each with multiple panels, text boxes, characters,
and settings. Extracting the high quality data will
allow for experiments to be conducted in areas
such as facial recognition, generative comics, humor
detection, translation, and more.

• How accurately can we get current OCR models
to extract text from the comics

• How can we create the ability to edit and delete
existing text boxes

The end result will be the creation of a pipeline
that is able to label comics with the text associated to
each panel, and also allow for the editing and deletion
of the text in the comic. The end result will give
access to much larger data sets and allow for rapid
improvements in computer vision.

• Segment the panels of the comic

• Segment the text boxes from the panels

• Extract the text from the text boxes

The reason why we believe that this method
improves the overall pipeline is due to the significant
reduction in noise. Noise in the form of background
colors, unique text format, etc, is the biggest
hindrance towards OCR accuracy[3]. Segmenting the
panels is an effective step, used by Maciej Styczen,
which eliminates the panel barriers. We propose
taking this even further by zooming into the text
boxes using object detection models. We hypothesize
that this will improve the results even further during
the OCR text extraction phase of the pipeline.

We will measure the accuracy of this technique
using Latent Dirichlet allocation (LDA), Character
Error Rate (CER), and Word Error Rate (WER).
LDA aims to measure the semantic meaning behind
a sentence and compare how much the two relate
to each other. CER and WER both aim to measure
how many insertions, deletions, and substitutions of
characters/words are minimally necessary in order to
achieve the ground truth result.

This research builds upon the prior work done
by Maciej Styczen who has already been able to
successfully build a pipeline to extract the data. Our
goal is to significantly improve the accuracy of the

Figure 1:
Old method: "isaidi you mean you
guessed?"
New method: "I said I winged it. You
mean you guessed?"

Figure 2:
Old method: "thats because you are
already a genius that but dont sounds
know wir right."
New method: "thats because you are
already a genius but dont know it. that
sounds right."

Figure 3:
Old method: "well, its not as if anybody
else would date you. v tin den this i ..
united feature syndicate, inc. s. adams"
New method: "well, its not as if
anybody else would date you."

output. Some examples where the old method fails
and the new one succeeds are shown in figures 1 2 3.

Each example highlights an issue the old method
faced that the new method resolves. In figure 1 we
can see the old method incorrectly concatenates "I
said I" into "isaidi", on top of also completely missing
"winged it." Figure 2 shows an issue where it cannot
differentiate the two different text boxes and reads it
as one, hence the ending result of "a genius that but
dont sounds know wir right." where a mistake is also
made with "it", being seen as "wir". Lastly, the old
method in figure 3 correctly detects the text, however
also detects text where there is none or is unintended,
such as the publication and author at the bottom, but
also "text" in the grass (which the model believes is
"v tin den this i". Our new proposed method will be
able to fix all of these mistakes and produce a much
stronger output.

2 Related Work
For the related work we look towards the many topics
we are tackling and evaluate them thoroughly in order
to achieve a successful pipeline. The topics are all the
ones related to the pipeline: panel segmentation, text
boxes location, and text extraction.

Panel Segmentation. When tackling panel
segmentation, the subjective nature of comics and
the artistic design choices of the artists creates
a difficult challenge to achieve accurate results.
Despite this, there are studies that have tackled
this exact problem with various techniques such as
Convolutional Neural Networks (CNN) [12], and
contour detection algorithms [5][14]. CNN’s have
promising results, with estimates of 97% accuracy

[12]. However, the issue it faces is that it
requires a large amount of labelled data in order
to fine tune effectively. When we look at the
research done by Maciej Styczen, his method of
utilizing the contour detection algorithm together
with binarization and adaptive thresholding proved to
be extremely effective with a 100% accuracy, when
tested on 1118 panels. This is even better than the
97% achieved by the "Kumiko, the Comics Cutter"
repository [8] which also uses the contour detection
algorithm.

Text Segmentation. Segmenting text boxes is
something that has been researched to some extent
before, however not thoroughly. The most promising
method appears to be the use of object detection
models. One paper combined this with OCR, with
the goal of identifying Pakistan vehicle number plates
[19]. However, in our use case, problems may
arise due to the varying nature of text boxes. Some
appear within little "clouds", clearly indicating they
are text boxes (An example could be the comic
in Figure 1), and some which have them blended
into the background (e.g. Figure 2). To address
this, fine tuning has been proven to be an effective
method of capturing objects which most standard
object detection models are not trained on. [13]. The
potential downside of this strategy is that it may not
generalize to other comics well due to the various
art styles different comics have. Another research
paper proposes to take this even further by adding
a novel scene text detection method that combines
the localization of corner points of text bounding
boxes with the segmentation of text regions [9]. The
ultimate purpose of this is to allow for text that is
curved or slanted to be interpreted correctly.

Text Extraction. Current models work very
accurately when taking in some standardized
text. However, dealing with colorful backgrounds,
handwritten texts, and small fonts is something
that proves to be difficult [3]. To overcome this,
current studies suggest fine tuning the OCR models
to the specific context you want to apply them to
[17]. Furthermore, using error correction and text
validation [16] is an effective strategy, since minor
mistakes such as "i" and "l" can be misinterpreted by
OCR. However, with the words "laugh" and "iaugh"
it becomes apparent that "laugh" was intended.
Lastly, preprocessing techniques such as upscaling
and binarizing the image are also effective strategies
[2]. This is due to the optimal character height for
OCR being 20-40 pixels[21], which in a comic is not
always the case. Moreover, binarization removes a
lot of excessive noise created by background colors,
which is known to be a hindrance for OCR [3].

This research is built upon the work of Maciej
Styczen [21] with the research titled "Automated
Text-Image Comic Dataset Construction". There
are a number of techniques that are directly taken
from the prior work done. These include the panel
segmentation, pre-processing of images, and OCR
models used. The current state of the research leaves
a lot of inaccuracies on the table, and also does not
provide an effective way to edit and delete text boxes.
As such, in this research project we are expanding
upon this work by adopting the use of object detection
models for the purpose of improving OCR accuracy
and adding the ability to edit and delete text.

3 Methodology
In this section we will explain how we create
our pipeline that can take in an arbitrary amount
of Dilbert comic strips and return a CSV output
containing the panels inside the comic, and the
associated text. We will look into panel segmentation,
text extraction, OCR models, evaluation metrics, and
editing/deletion of text boxes.

3.1 Extracting Text from Comics
Our research question aims to find the most accurate
method of retrieving text from a comic strip.
To achieve this, we will experiment with various
techniques and combinations. We will compare these
combinations to determine the most accurate result.

For panel segmentation, we will use the contour
detection algorithm as used by Maciej Styczen, as
it is reliable and generalizable to various comics as
seen in the abstract of Figure 8 [21]. Effectively, it
is a process that involves first binarizing the image,
as seen in Figure 8b. Using this we can find the
outermost contours, as shown in Figure 8d. The next
step is to have the inside of the region marked by

the contours, colored white. Finally, the remaining
text is removed by utilizing morphological opening
operations. This combines both dilation and erosion
in order to remove the unwanted text, and preserve
the shape.

When considering text box detection, we will use
an object detection model as this is supported by
numerous studies. We can then consider using an
out of the box, fine tuned, or utilize localization of
corner points. In our use case, the last one will have
no benefit, and could only serve to reduce accuracy.
This is because its intended purpose is to concatenate
non-linear text together, however the vast majority of
text we are dealing with is linear.

Choosing between fine tuning or not is a difficult
choice to make, since it is hard to judge whether the
increase in accuracy with finetuning will outweigh the
potential reduction in generalizability. As such, both
will be tested and compared in order to scientifically
evaluate the results and draw conclusions based
upon it. Vision API provides an out of the box
"ImageAnnotatorClient" which we will use. For the
finetuning, approximately 500 comic panels (with 1
comic strip having on average 3-4 panels) are taken
and manually labelled using Google Cloud’s Vertex
AI. Using this same platform we are able to fine
tune its existing object detection model with our
data. After approximately 2 hours of training, and
deploying the model, we will be able to utilize the
fine tuned model. It will take as input a comic
panel, and output the resulting bounding boxes (can
be multiple).

OCR With the text boxes located, the next step
is to take the text boxes and conduct OCR on them
directly. For this we will test the effectiveness of
both Google Tesseract and Google Vision API and
compare the results. These two are arguably the most
popular models at the moment, with Tesseract being
completely open source, and Vision API being the
state-of-the-art commercial model. We expect Vision
API to perform better, however there are also costs
associated with this, through general pricing for the
usage, but also run time. This is due to Tesseract
being installed locally on your device, whereas Vision
API is used through API calls, which is inherently
slower and more expensive.

Finally, we will need to stitch the text back together
in the correct order. This can be quite the challenge
due to comics sometimes having an ambiguous
ordering of text boxes (see Figure 4). However, we
can assume that the text will most reasonably read
from top left to bottom right. As such, we can
use heuristics to help us find the most likely correct
order. This starts by looking at the top-most text and
selecting that as the first text box. If there are multiple
text boxes at the top, we will prioritize the leftmost

one. However, due to text-boxes being imperfectly
placed and located, this could result in a top left text
box (which is intended to be read first), be surpassed
by another text box at the top right, due to it being
placed just a few pixels above (see Figure 5). To
combat this, we will create a "window" within which
the highest "y" coordinate must fall. In other words,
we will find the highest "y" coordinate, then look
10-100 pixels below it, and put any other text boxes
found into the same "bucket". These will then be
sorted on the "x" coordinate, with the smallest x value
(left most box in image) taking the priority.

Evalution metrics Having all this in place, there
will be six combinations we will evaluate. They will
be evaluated in order to establish the effectiveness
of utilizing object detection for textboxes, finetuning
this object detection model, and also evaluating the
impact that using Tesseract has over Vision API.

To measure this accuracy we have 500 unseen
labelled data to test our results on. We will be
using various accuracy metrics such as Character
Error Rate, Word Error Rate, and Latent Dirichlet
allocation. Character Error Rate (or Levenshtein
distance) and Word Error Rate measures the
minimum number of substitutions, deletions, and
insertions of characters/words necessary for two
strings to become identical, and divides that by the
total number of characters/words in the ground truth.
For consistency of results, we subtract the result from
100 in order to make it clear that the higher the result,
the better the outcome.

Latent Dirichlet allocation takes a different
approach. It aims to infer the topic distributions for
each text provided and compare the two. This process
is performed using probabilistic inference techniques,
such as variational inference or Markov chain Monte
Carlo sampling.

When considering the implication of the accuracy
metrics, the first two techniques highlight the overall
raw accuracy of the extraction. There are many
scenarios where you would want this metric to be
high, for example training another OCR model.
Having incorrect output in this scenario, would cause
a new OCR model to be incorrectly trained. For the
LDA metric, the semantic meaning behind the text is
measured. Take for example an application that aims
to translate comics into another language. Having a
very high score on LDA would imply that most, if
not all, of the semantic meaning will be captured,
allowing for effective translation to take place. These
are just a few examples, and the importance placed on
each metric will have to be evaluated per individual
use case.

3.2 Replacing existing text
The aim is to build the functionality to edit and
remove text from comics. In order to achieve this we

will need to first detect the location of the text boxes,
and then insert a new text box on top of it with the
desired text. Finding the location of the text boxes
will utilize the same object detection models as in the
previous part, since they are designed to do exactly
that. Depending on the results of the previous part we
will choose whether or not to use a fine tuned model
for this.

In order to determine which color the new text box
will be, opencv will be used to count the number
of occurrences of every color in every pixel inside
the bounding box. Then using opencv again, we
insert this box over the original image, resulting in
us effectively "deleting" the previous text as seen in
Figure 6

In order to "edit" new text, instead of inserting
a new box directly over the bounding box, we first
insert the new text into the new box. This is not
entirely trivial, due to varying lengths of text, and
varying shapes and sizes of text boxes. As such, we
need to correctly wrap the text to fit any arbitrarily
sized text box provided. To do this we make use of
the text wrap library, which allows us to input our
desired text and the width of the text box, and give
us an output of a list of strings. We then iterate
over this list and insert every string line by line
using opencv.putText(), with the "y" position being
incremented by a variable lineheight. Once this is
complete, we have our new text box and all that is
left is to insert it over the original bounding box. The
user will be able to input whatever text they would
like, and as such, give us the ability to "edit" comic
images as seen in Figure 9.

The proposed methods do come with some
limitations. The biggest one being that text boxes
are not always fully rectangular, whereas the object
detection model’s bounding boxes are. This will often
result in areas getting overwritten that are not fully
intended as can later be seen in Figure 10. Moreover,
text boxes with backgrounds being in different colors
(as is frequently seen in the newer comics), will result
in odd looking outputs as seen in Figure 11.

4 Evaluation
In order to evaluate our results, we will be using 500
unseen, but labeled, Dilbert comic panels. These
500 panels will be run through the created pipeline
with various parameters, and the output text will
be compared with the ground truth. These two
resulting text strings will first be cleaned from all non-
alphanumeric values (such as "," "." "?" "!" etc.) This
is due to them having a minor impact in determining
semantic meaning behind the sentence, but attribute
to a significant amount of mistakes. The parameters
that we will test include the OCR Model (Tesseract or
Vision API), and the Object Detection model (None,

Figure 4: Ambiguous text box
ordering Figure 5: Incorrect ordering based on height

General, or Fine tuned). As such, our combinations
are:

• No Object Detection + Tesseract

• No Object Detection + Vision-api

• Object Detection + Tesseract

• Object Detection + Vision-api

• Fine tuned Object Detection + Tesseract

• Fine tuned Object Detection + Vision-api

Each combination will be evaluated on all three
metrics, Character Error Rate (CER), Word Error
Rate (WER), and Latent Dirichlet allocation (LDA).

4.1 Results
Text retrieval results
We have run a total of 6 experiments with every single
combination possible, as seen in Table 1. Table 2
highlights which experiment yielded the best results.

Looking at LDA, we can see that the first three
experiments, which used Tesseract, all performed
worse than the latter three, which used Vision API.
On top of this, using a fine tuned model proved to give
the most accurate results in all instances. A fine tuned
model together with Tesseract gave an accuracy of
92.8%, and with Vision API gave 98.0%. Meanwhile,
not using any object detection gave the worst results
for their respective OCR model, with Tesseract and
Vision API getting 89.06% and 94.23% respectively.
When it comes to LDA it becomes apparent that the
proposed fine tuned object detection model hits the
mark, and is a clear favorite.

Looking towards CER we can see very similar
outcomes. Using a fine tuned object detection model
always performed better than using a general one
or none at all. In this case we can even observe
that when the fine tuned model is combined with
Tesseract, it will outperform Vision API when it is not
using any object detection model (86.38% vs 84.21%

respectively). We can also observe very similar trends
when looking at WER

Overall, we can clearly observe that in all areas,
using a fine-tuned model together with Vision API
yields the best results.

Editing and Deletion results
We can see some examples of outputs in figures 6, 9,
10, 11. Figure 6, shows the process of removing the
text with the use of text box location and then text
insertion into the text box. Figure 9 shows another
example where there are no text boxes present, just
"floating" text in order to display the successful use
in this situation as well. However, figure 10 shows
complications which arise when the text box does not
have a rectangular shape. Finally figure 11 displays
the issues with the modern comic panels which have
a sort background "fade" to them and how it makes
the next text box stand out.

To evaluate the accuracy of these results, the most
practical thing to do is look at the accuracy of the
object detection model. This is because for our
editing we are inserting and deleting boxes directly
over the indicated text box location, which is retrieved
by the object detection model. With a labeled data set
of 360 comic panels, there are approximately 560 text
boxes. Having a 10% validation set gives us 56 comic
panels to test our accuracy on.

Given this information, we have a recall precision
of 92.5%, meaning that in 92.5% of the cases,
the model correctly identified the presence of a
text box in a comic panel. Interestingly, all the
errors came from instances where the text was much
different looking than normal. Take for example
the comic panel in Figure 12, eventhough the model
managed to capture "THE EXERCIST!", it missed
the "AAAGH!", which is much larger than the
expected text and is also slanted. Another example
is in Figure 13, where both the "UH OH" and the
"DING DONG" were not identified correctly. The
"UH OH" is clearly much smaller in size, which may

Table 1: Model and Object Detection Comparison

Exp. no. OCR Model Object Detection Model
Tesseract Vision API None General Fine tuned

Exp. #1 ✓ ✓
Exp. #2 ✓ ✓
Exp. #3 ✓ ✓
Exp. #4 ✓ ✓
Exp. #5 ✓ ✓
Exp. #6 ✓ ✓

Table 2: Performance Metrics Comparison

Exp. no. CER WER LDA

Exp. #1 81.97% 69.26% 89.06%
Exp. #2 84.2% 64.11% 90.29%
Exp. #3 86.38% 71.02% 92.8%
Exp. #4 84.21% 80.0% 94.23%
Exp. #5 87.51% 81.47% 95.77%
Exp. #6 94.07% 88.35% 98.0%

Figure 6: Editing and Deleting a comic panel

be the reason why it was missed. The "DING DONG"
likely suffers the same problem as "AAAGH!", with
it being slanted and not entirely resembling a text box.

We can also further analyze the confidence
associated with various results as seen in Figure 14.
As we can see, the lowest score is associated with the
"WUMP" with a score of 0.718. It follows similar
issues as described above, with it being slanted and
not being in the common text box type. In the
same Figure we can see other slightly odd text boxes,
such as the yellow bar at the top in the second
panel which has a confidence of 0.889. It is again
not directly a text box, but just text giving some
additional information, and could be the reason for its
poorer confidence. The next few lowest ones are from
the panels which have relatively small text boxes.
This highlights again that the smaller text boxes are
much more difficult to identify, with a confidence of
0.925.

Lastly, looking at the other end of that spectrum
in Figure 15, we can observe that all of these have a
confidence of 0.994 or higher, and they are all clear
cut text boxes as you would expect. They are also
large, and don’t have any odd backgrounds to obscure
any details.

4.2 Discussion
Text retrieval
From the observed results we can clearly see that
fine tuned text box detection together with Vision
API have the strongest accuracy in every category of
measurement on LDA. Analyzing the results, we can
see some indications as to why this may be the case.
When not using any object detection model or a non-
fine tuned one, the OCR model will frequently find
unintended text areas, for example author signatures,
page numbers, and even grass, as seen in Figure 3.

Figure 7: Example of bounding-box clustering [21]

This will have a huge impact on the accuracy of all
metrics, due to there being extra words and characters
that will directly impact WER and CER results, but
almost certainly also impact the overall semantics of
the sentence, and as such impact LDA results. The
fine tuned model aims to tackle exactly this problem,
and has clearly proven to be effective as it improves
every accuracy metric in all instances.

Another observation is that when not using an
object detection model, the ordering of the text is
much more frequently observed to be in the incorrect
order, as seen in Figure 2. When not using text boxes,
clustering is used to identify which text boxes belong
together as seen in Figure 7 [21]. Although effective
in its use case, this does not solve the problem of one
text box being slightly below another, despite being
intended to be read first, as we observe in Figure
5. We solve this problem by identifying the text
boxes and applying our heuristics text box ordering
algorithm, as described in the methodology, in order
to maximize this accuracy.

When looking at Tesseract vs Vision API it is
clear that Vision API performs better. Even when

comparing the seemingly best option of fine tuned
text box, using this together with Tesseract will have
it perform worse than using no text box with Vision
API in almost every accuracy metric.

However, when using Vision API, we do need
to consider the drawbacks of pricing and run time.
First, running Vision API costs $1.50 per 1,000
images [4]. This may seem relatively cheap, however,
considering that Dilbert alone has approximately
12,384 comics, with every comic having roughly 3
panels, equating to approximately 37,000 panels, of
which again there exist nearly 2 text boxes per panel,
bringing the total images to be read up to 74,000. This
will ultimately cost $111.00 to run a single time on
all the data and should be factored in in any decision
making.

Moreover, when comparing running times, we
observed Tesseract having an approximate run time
of 0.3 seconds per image, whereas Vision API took
approximately 3 seconds per image, a 10x slowdown.
This is due to Tesseract running locally on a machine,
whereas Vision API needs to go through the network.
However, there are factors to consider, such as the
machine you are running it on, the internet connection
speeds, etc. which may affect these speeds. There
are also options to parallelize both Tesseract and the
API calls, together with doing some batch processing,
which may also impact speeds.

Ultimately, depending on your needs, if the
cost is not an issue, and accuracy is of extreme
importance (as we suspect it will be), further
exploring parallelization techniques, and employing
batch processing should significantly reduce the time
taken per image for both OCR models. If you are
limited by costs and speed, with accuracy not being
as critical, using a powerful machine with Tesseract
would be the most viable option. Otherwise Vision
API is the clear favorite.

Image text editing and deletion
To look at the successes and failures of this section,
we can look at some figures. In Figure 6 we can see
the process of removing the text from the text boxes,
and inserting new text into the text box. The text
boxes are neatly preserved in order for new text to be
flawlessly added in and the text wraps in accordance
to the width of the text box. If we look at figure 9
we can see that even when there are no text bubbles
"clouds" and varying text widths, the image can still
be well preserved and have new text inserted.

However, when we look at figure 10 we can see
some issues begin to arise. Although relatively
rare, there are comics where the text boxes have a
non-rectangular shape. Since the object detection
model is purposed towards rectangles it will result in
unintended areas to be overwritten and as such, create
basically unusable panels.

Another issue, which unfortunately appears more
frequently, is seen in Figure 11. The more modern
comics have a sort of "fade" going on in the
background. Again, working with the opencv library
we are only able to insert full rectangles into these
text boxes and as such, get odd looking rectangles
that clearly stand out. Luckily, the majority of comic
panels do not use this "fade", with the first year this
style appearing being in 2008. This means that there
is still almost 20 years worth of comics (starting from
1989) that will work as intended.

There are two ideas to overcome this that will
also be discussed further in the future work section.
The first idea is to utilize Maciej Styczen contour
detection algorithm, specifically the part where
mathematical morphology is used to scrub away the
text, but now specifically inside a text box. The
second is to use generative AI editing, by removing
the detected text boxes and letting the AI replace them
with empty text boxes that will fit the surrounding
background and shape.

Lastly, looking at the results of the object detection
model in Figures 12, 13, 14, and 15, it is clear
that the issues arise with "unique" looking text,
such as seen in Figure 12 with "AAAGH!" being
larger and slanted, and smaller text as seen in
Figure 13 and some of Figure 14. All these
issues should be resolvable by further fine tuning
the model, and providing it with more labelled
data that has instances similar to the one it fails
or performs poorly on. Doing this would improve
the editing/deleting functionality, but also further
improve the text retrieval and as such is an important
step to take in the future.

5 Conclusion
In conclusion, throughout our research we had the
goal of answering our two research questions:

• How accurately can we get current OCR models
to extract text from the comics

• How can we create the ability to edit and delete
existing text boxes

In the end, we believe we managed to answer them
both effectively, while simultaneously providing
context to certain limitations of the research.

5.1 How accurately can we get current OCR
models to extract text from the comics

For this research question we will first acknowledge
that we are able to successfully extract the text from
numerous Dilbert comic strips. In terms of accuracy,
our answer would be that with using Vision API,
together with a fine tuned object detection model
for text box location, we achieve significantly better
results than the base case of Vision API and no text

boxes. For comparison, we achieved an accuracy of
94.07% for CER (up 9.86% from 84.21%), 88.35%
for WER (up 8.35% from 80.0%), and 98.0% for
LDA (up 3.77% from 94.23%).

With LDA being significantly high, we can
confidently recommend using the outputs of these
results towards tasks that require accurate semantic
meaning of the comics, for example translation tasks.
For CER, with an accuracy of 94.07%, according
to benchmarks set by Holley, Rose [6], we would
be considered "average", and as such should be
used in practice with caution. We would still
encourage further development and research in order
to achieve higher accuracy results before using it
on a large scale. Similarly for WER, we see a
massive improvement from the baseline, but still
advise against the usage on a large scale.

5.2 How can we create the ability to edit
and delete existing text boxes

For this research question we can evaluate the outputs
seen in several figures such as 6, 9, 10, and 11. We
can also evaluate the accuracy of the object detection
model as it is the primary indication of whether the
text boxes will be accurately overwritten or not.

The object detection model achieves an accuracy
of 92.5% when evaluated on the validation set of
56. The mistakes primarily arise under circumstances
where the text is either very small in terms of font
size (Figure 13), small in terms of text box size
(Figure 13), or being a uniquely formatted piece of
text (Figure 12). Although 92.5% is definitely high,
with further fine tuning on these specific edge cases,
we believe we can get very close to 100% accuracy.

In terms of actual output, there are issues that arise
when the text box is not rectangular, as seen in Figure
10, or when the background has a "fade" to it, as
seen in Figure 11. These issues cannot currently be
overcome, but there are some promising ideas that
would allow for these to be processed effectively as
well. Nonetheless, with the current implementation,
with all the Dilbert comics before the year 2008,
the "fade" issue does not exist. As for the non-
rectangular issue, these occur very rarely, and as such
the functionality will still be useful in many use cases.

With all this in mind, we believe that we have
been able to successfully add in the functionality of
editing and deleting text from existing comic strips,
and make it usable for any intended purpose, one such
being providing data for fine tuning generative AI on
Dilbert comics.

5.3 Future work
Text Retrieval
To further improve upon text retrieval, there are
several ideas to explore. Despite the effectiveness

of Vision API, sometimes it still misreads certain
characters. As such, fine tuning an OCR model could
prove to completely eliminate any errors that may
occur as a result of this.

Further, fine tuning the object detection model even
deeper, in order to capture every single intended text
box, including the smaller sized, smaller fonted, and
"unique" looking ones, would push the accuracy of
the text retrieval even further.

We believe that improving upon all these elements
should see a near perfect text retrieval process occur.

Image text editing and deletion

There are several ideas to consider here as mentioned
before, such as further fine tuning the object detection
model, using generative AI to edit, and using
mathematical morphology on text boxes.

Further fine tuning the object detection model will
serve to improve both text retrieval and image text
editing/deletion. It is essential in the process of
locating where the text boxes are in order to remove
them or edit them.

Once we find the text boxes, one idea is to
use generative AI editing in order to overcome the
shortcomings of non-rectangular text boxes. Using
DALL-E 2, we can see some preliminary results of
what this could look like. Take for example the
issue in Figure 10, using DALL-E 2, we can create
something that looks like what we see in Figure 16.
There are of course many issues, such as Dilbert not
quite looking like Dilbert, and some variations have
text filled in, however, it does manage to correctly
create the empty text box in other instances, and
preserve the background with the door and wall color.
Another example is from Figure 11, which has the
issue of a "fade" in the background. Running DALL-
E 2 on this yields the results seen in Figure 17.
Again, we can see some very strange images with
Dilbert having 2 heads, strange artifacts that don’t
really make sense, but we can importantly observe
that the background preserves the "fade" which we
originally lost. With some significant work, this could
be an effective way to edit and delete text boxes whilst
preserving almost every detail.

Lastly, In Maciej Styczen work on the contour
detection algorithm for panel segmentation,
mathematical morphology was used in order to
remove some unwanted text in the panels. We believe
the same philosophy could be applied to the case
of removing text from a text box whilst preserving
backgrounds. There are some concerns however that
it will also destroy some of the backgrounds through
the "erosion" process. However, it is hard to predict
how much the erosion process will affect it, and thus
needs to be studied further.

6 Responsible Research
6.1 Reproducibility
To ensure the reproducibility of this research, all
the code will be pushed onto Github, and extensive
instructions left in the readme. Moreover, due to the
large volume of the data, it cannot be pushed onto
Github, but will be available upon request, in order
to ensure that everything can be reproduced by other
users. The code will also be forkable to allow future
users to continue developing on the research.

6.2 Integrity
To ensure the integrity of the results, every test was
run multiple times, with careful inspection and upon
the results to ensure their validity. The labeled data
set has also been verified for its integrity multiple
times and by multiple people to ensure no mistakes
were made in the evaluation of the accuracy. All the
information provided in this research has been based
on cited sources and verified information.

References
[1] Karan Aggarwal andothers. ?Has the future

started? The current growth of artificial
intelligence, machine learning, and deep
learning? inIraqi Journal for Computer
Science and Mathematics: 3.1 (2022),
pages 115–123.

[2] Wojciech Bieniecki, Szymon Grabowski and
Wojciech Rozenberg. ?Image preprocessing
for improving ocr accuracy? in2007
international conference on perspective
technologies and methods in MEMS design:
IEEE. 2007, pages 75–80.

[3] Cem Dilmegani. Current state of OCR in 2023:
Is it dead or a solved problem? may 2020.
URL: https : / / research . aimultiple . com / ocr -
technology / # : ~ : text = of % 5C % 20OCR %
5C % 20tools? - ,OCR % 5C % 20is % 5C %
20not % 5C % 20a % 5C % 20stand - alone %
5C%20solution%5C%20in%5C%20human-
machine , structured % 5C % 20data % 5C %
20from%5C%20their%5C%20documents..

[4] Google Cloud, Vision API Pricing. https : / /
cloud.google.com/vision/pricing.

[5] Anh Khoi Ngo Ho, Jean-Christophe Burie and
Jean-Marc Ogier. ?Panel and speech balloon
extraction from comic books? in2012 10th
IAPR international workshop on document
analysis systems: IEEE. 2012, pages 424–428.

[6] Rose Holley. ?How good can it get? Analysing
and improving OCR accuracy in large scale
historic newspaper digitisation programs?
inD-Lib Magazine: 15.3/4 (2009).

[7] Abhinav Jain andothers. ?Overview and
importance of data quality for machine
learning tasks? inProceedings of the 26th
ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining: 2020,
pages 3561–3562.

[8] Kumiko, the Comics Cutter. https : / / github .
com/njean42/kumiko/.

[9] Pengyuan Lyu andothers. ?Multi-oriented
scene text detection via corner localization
and region segmentation? inProceedings of
the IEEE conference on computer vision and
pattern recognition: 2018, pages 7553–7563.

[10] Maryam M Najafabadi andothers. ?Deep
learning applications and challenges in big
data analytics? inJournal of big data: 2.1
(2015), pages 1–21.

[11] Hong-Wei Ng and Stefan Winkler. ?A
data-driven approach to cleaning large
face datasets? in2014 IEEE international
conference on image processing (ICIP): IEEE.
2014, pages 343–347.

[12] Toru Ogawa andothers. ?Object detection for
comics using manga109 annotations? inarXiv
preprint arXiv:1803.08670: (2018).

[13] Wanli Ouyang andothers. ?Factors in
finetuning deep model for object detection
with long-tail distribution? inProceedings of
the IEEE conference on computer vision and
pattern recognition: 2016, pages 864–873.

[14] Xufang Pang andothers. ?A robust panel
extraction method for manga? inProceedings
of the 22nd ACM international conference on
Multimedia: 2014, pages 1125–1128.

[15] PHD Comics. http://phdcomics.com/..
[16] Christophe Ponsard, Ravi Ramdoyal and

Daniel Dziamski. ?An ocr-enabled digital
comic books viewer? inComputers Helping
People with Special Needs: 13th International
Conference, ICCHP 2012, Linz, Austria, July
11-13, 2012, Proceedings, Part I 13: Springer.
2012, pages 471–478.

[17] Christophe Rigaud andothers. ?Toward
speech text recognition for comic books?
inProceedings of the 1st International
Workshop on coMics ANalysis, Processing
and Understanding: 2016, pages 1–6.

[18] Yuji Roh, Geon Heo and Steven Euijong
Whang. ?A survey on data collection for
machine learning: a big data-ai integration
perspective? inIEEE Transactions on
Knowledge and Data Engineering: 33.4
(2019), pages 1328–1347.

https://research.aimultiple.com/ocr-technology/#:~:text=of%5C%20OCR%5C%20tools?-,OCR%5C%20is%5C%20not%5C%20a%5C%20stand-alone%5C%20solution%5C%20in%5C%20human-machine,structured%5C%20data%5C%20from%5C%20their%5C%20documents.
https://research.aimultiple.com/ocr-technology/#:~:text=of%5C%20OCR%5C%20tools?-,OCR%5C%20is%5C%20not%5C%20a%5C%20stand-alone%5C%20solution%5C%20in%5C%20human-machine,structured%5C%20data%5C%20from%5C%20their%5C%20documents.
https://research.aimultiple.com/ocr-technology/#:~:text=of%5C%20OCR%5C%20tools?-,OCR%5C%20is%5C%20not%5C%20a%5C%20stand-alone%5C%20solution%5C%20in%5C%20human-machine,structured%5C%20data%5C%20from%5C%20their%5C%20documents.
https://research.aimultiple.com/ocr-technology/#:~:text=of%5C%20OCR%5C%20tools?-,OCR%5C%20is%5C%20not%5C%20a%5C%20stand-alone%5C%20solution%5C%20in%5C%20human-machine,structured%5C%20data%5C%20from%5C%20their%5C%20documents.
https://research.aimultiple.com/ocr-technology/#:~:text=of%5C%20OCR%5C%20tools?-,OCR%5C%20is%5C%20not%5C%20a%5C%20stand-alone%5C%20solution%5C%20in%5C%20human-machine,structured%5C%20data%5C%20from%5C%20their%5C%20documents.
https://research.aimultiple.com/ocr-technology/#:~:text=of%5C%20OCR%5C%20tools?-,OCR%5C%20is%5C%20not%5C%20a%5C%20stand-alone%5C%20solution%5C%20in%5C%20human-machine,structured%5C%20data%5C%20from%5C%20their%5C%20documents.
https://research.aimultiple.com/ocr-technology/#:~:text=of%5C%20OCR%5C%20tools?-,OCR%5C%20is%5C%20not%5C%20a%5C%20stand-alone%5C%20solution%5C%20in%5C%20human-machine,structured%5C%20data%5C%20from%5C%20their%5C%20documents.
https://cloud.google.com/vision/pricing
https://cloud.google.com/vision/pricing
https://github.com/njean42/kumiko/
https://github.com/njean42/kumiko/
http://phdcomics.com/.

[19] Salma andothers. ?Development of ANPR
framework for Pakistani vehicle number
plates using object detection and OCR?
inComplexity: 2021 (2021), pages 1–14.

[20] Hillary Sanders and Joshua Saxe. ?Garbage in,
garbage out: how purportedly great ML models
can be screwed up by bad data? inProceedings
of Blackhat: 2017 (2017).

[21] Maciej Styczen. ?Automated Text-Image
Comic Dataset Construction? inDelft, the
Netherlands: Delft University of Technology:
(2021).

7 Abstract

Figure 8: A visualization of the steps of the panel extraction procedure, for simplicity, presented on a single panel example.
The same steps apply to a strip with multiple panels. From the left: a): the original image in grayscale, b): binarized image
c): all the contours identified in the image, d): the outermost contours, e): the outermost contours filled with white color,
f): noise removal using morphological opening g): proposed panel bounding box. (Comic strips from ”Piled Higher and
Deeper” by Jorge Cham www.phdcomics.com [15])

Figure 9: Editing panel with non-text bubble
Figure 10: Editing panel with
non-text bubble

Figure 11: Editing panel with
non-text bubble

Figure 12: Object detection model
not finding "AAAGH!"

Figure 13: Object detection model not finding "UH OH" and "DING
DONG"

Figure 14: Low confidence results of object detection (Green box highlights which text box is associated with the score)

Figure 15: High confidence results of object detection (Green box highlights which text box is associated with the score)

Figure 16: Editing and Deleting a comic panel

Figure 17: Editing and Deleting a comic panel

	Introduction
	Related Work
	Methodology
	Extracting Text from Comics
	Replacing existing text

	Evaluation
	Results
	Text retrieval results
	Editing and Deletion results

	Discussion
	Text retrieval
	Image text editing and deletion

	Conclusion
	How accurately can we get current OCR models to extract text from the comics
	How can we create the ability to edit and delete existing text boxes
	Future work
	Text Retrieval
	Image text editing and deletion

	Responsible Research
	Reproducibility
	Integrity

	Abstract

