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Online Data-Driven Optimization of Aerodynamic Performance
for an Unconventional Morphing Aircraft

Thymen Woldhuis∗, Salvatore Asaro†, and Xuerui Wang‡

Delft University of Technology, Delft, 2629 HS, The Netherlands

In nature, birds can intelligently adapt their wing shapes to their environment. This paper
aims to replicate this capability by designing an online data-driven aerodynamic performance
optimization framework for an unconventional morphing aircraft. Compared to state-of-the-art
methods, the proposed framework efficiently finds global optima with reduced computational
load when addressing time-varying, nonlinear, and non-convex problems. It also demonstrates
enhanced adaptability to unforeseen scenarios. In the event of a sudden actuator fault, the
algorithm can automatically detect the fault, adapt the onboard data-driven model, and
continue performing optimization and trimming tasks using the remaining healthy actuators.
Additionally, the paper addresses the optimal number of actuators within a morphing surface,
considering the tradeoff between optimization performance and the weight penalty. High-fidelity
simulations demonstrate that through active morphing, the proposed framework achieves drag
reductions of 1.9–4.9 % during cruise and up to 12.6 % at higher operational lift coefficients
(due to heavier weight and lower speed), resulting in an overall drag reduction of 2.97 % over a
typical flight cycle, which corresponds to fuel savings of approximately 150 kg/h. This research
represents a significant advancement in sustainable aviation, contributing to reduced fuel
consumption, lower emissions, and improved fault tolerance for next-generation aircraft.

Nomenclature

BOBYQA Bound Optimization by Quadratic Approximation
CMA-ES Covariance Matrix Adaptation Evolution Strategy
DIRECT Dividing Rectangles
FTO Fault Tolerant Optimization
MTOW Maximum Takeoff Weight
PYSWARM Particle Swarm Pattern Search Method
RANS Reynolds-Averaged Navier–Stokes
VCCTEF Variable Camber Continuous Trailing Edge Flap
VLM Vortex Lattice Method

𝛼 Angle of attack
𝐶𝐷 Coefficient of drag
𝐶𝐿 Coefficient of lift
𝐶𝐿target Target lift coefficient
𝐶𝑀 Pitching moment coefficient
𝜹 Flap deflections
𝐹weight Flap weight
𝛾 Flight path angle
ℎ Altitude

𝑖 Iteration
𝐽 Cost
𝑘1 Coefficient of lift deviation penalty
𝑘2 Moment coefficient deviation penalty
𝑚 Number of actuators
Mach Mach number
opt Optimal
𝜓 Engine installation angle
𝑅𝑒 Reynolds number
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𝜌 Density
𝒔 Spline control parameters
𝑇 Thrust

𝑈 Airspeed

I. Introduction
In modern aircraft design, offline optimization is typically performed to achieve optimal aerodynamic performance at

a specific point within the flight envelope, known as the “design point”. Extensive offline optimization using analytical
models is then employed to determine the optimal aircraft configurations at various points in the flight envelope.
These offline solutions are stored in predefined lookup tables [1]. However, when the aircraft operates under different
flight conditions, the aerodynamic efficiency tends to degrade. Moreover, deviations from the nominal configuration,
such as those arising from manufacturing variability, icing, and structural damage, can alter the actual aerodynamic
characteristics from the ideal digital models, leading to suboptimal performance, increased fuel consumption, and
emissions.

Online optimization enables in-flight adjustments using actual aerodynamic data, rather than relying on static offline
models. This concept is inspired by nature, where birds continuously adjust their wing shapes to optimize performance
in response to changing conditions. Applying this adaptive approach to aviation allows for significant performance
improvements during flight, enhancing aerodynamic efficiency across a wider range of conditions. By dynamically
responding to environmental changes, online optimization offers potential benefits such as improved fuel efficiency,
reduced emissions, and overall enhanced aircraft performance, providing a more effective alternative to traditional
optimization methods based on idealized, pre-defined models.

With this motivation, a series of studies conducted by NASA Ames Research Center explored the online optimization
of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system [2]. A real-time least-squares drag minimization
method was developed, which proposed using a recursive least-squares algorithm to estimate the aircraft’s aerodynamic
coefficients and fit them to a polynomial model [3]. The optimal wing shape was then determined using a gradient-based
optimization method, specifically Newton-Raphson. This approach resulted in 8.4 % drag reduction as compared to a
clean wing for cruise [4]. Later wind tunnel experiments resulted in drag reductions of up to 9.4 % for off-design lift
coefficients [1].

While promising, these studies have several limitations. First, the use of a polynomial-based aircraft model imposes
a fixed structure that is valid only near the trimming points, limiting its adaptability. Achieving detailed accuracy in local
regions while preserving global validity would necessitate a substantial increase in the polynomial’s degree. Second, the
optimization problem for aircraft performance can be nonlinear and non-convex. Gradient-based optimization strategies
may converge to local minima or saddle points, exhibit sensitivity to initialization, and progress slowly in flat regions
or near ill-conditioned points. Moreover, these methods struggle with non-smooth functions and can involve costly
gradient or Hessian calculations, particularly in large-scale problems.

To address these limitations, an alternative approach was proposed for the Smart-X morphing wing [5] and tested
in a wind tunnel experiment [6], achieving up to 19.8 % drag reduction. This study introduced the use of radial
basis function neural networks to model the aircraft’s aerodynamics in real time, followed by optimization using the
covariance matrix adaptation evolution strategy (CMA-ES) [7]. While this approach improved the transition from local
to global optimization, further enhancements in computational efficiency are necessary. Genetic optimization methods
often require a large number of function evaluations and are typically beneficial only when the number of variables
exceeds ten or when the search space is poorly defined. Furthermore, although neural networks have proven effective in
capturing aircraft dynamics, they operate as black-box models and impose significant computational demands.

Up to this point, we have identified several research gaps from an algorithm development perspective. It has become
evident that an online, global, and computationally efficient aerodynamic performance optimization framework is
required. In addition to these algorithmic challenges, challenges also arise from a practical point of view.

The first challenge pertains to the hardware configuration on which the optimization is applied. The research
conducted in [5, 6] focused solely on wing optimization, neglecting challenges posed by free-flight conditions, such as
maintaining trim and reserving control authority for stability and maneuverability. In contrast, the studies in [8, 9]
applied optimization to free-flying aircraft, but the configurations were conventional, i.e., tube-and-wing designs.
Consequently, optimizing the wing’s control surface settings in these studies had limited impact on mitigating the drag
penalties caused by the large fuselage.

This research aims to develop an optimization framework for the Flying-V [10], an innovative wing-body aircraft
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developed by TU Delft. The Flying-V has the potential to achieve a 25 % increase in efficiency compared to conventional
tube-and-wing aircraft of similar size [10]. However, its implementation poses significant challenges. Due to the absence
of conventional elevators and rudders, the control surfaces on the wing must perform multiple functions simultaneously,
including three-axis trim, maneuverability, and performance optimization. Furthermore, Flying-V presents strong
nonlinearity and non-convexity at high angles of attack, requiring an optimization strategy capable of addressing such
complexity.

The second practical challenge lies in the control surfaces used to implement the optimization algorithm. In recent
years, there has been an increasing trend toward expanding the number of trailing-edge control surfaces. From a
theoretical perspective, as the number of control surfaces increases, the degrees of freedom for precisely manipulating
aerodynamic behavior also increase. This is why a distributed mini-flap configuration was proposed in [11]. However,
this configuration does not ensure smooth transitions between adjacent flaps. In contrast, a seamless active morphing
wing concept was introduced in [5]. Nevertheless, this research does not address the optimal number of actuators within
the morphing surface area, considering the tradeoff between performance and the weight penalty of additional actuators.

Although increasing the number of actuators provides more control degrees of freedom, it also raises the likelihood
of actuator faults in practice, as verified in the wind tunnel experiment in [1]. However, when an actuator fault occurred
in that study, it was manually excluded from the control space. The algorithm lacked capabilities for automatic fault
detection, fault tolerance, and onboard model adaptation, while still achieving optimal performance in post-fault
scenarios. These aspects are particularly crucial during real-world operations and will be addressed in this paper.

In addition, the performance of the optimization algorithm is highly dependent on the operational point and the
aircraft’s mass. While performance improvements of up to 9.4 % and 19.8 % were achieved in [1] and [6], respectively,
these numbers may be overly optimistic when considering a typical flight cycle. This is because commercial aircraft
spend the majority of their time in cruise conditions, where their shape is likely to be already near optimal. A more
realistic assessment of optimization performance over a typical flight cycle will be evaluated in this paper.

In light of the gaps in the literature, this paper proposes a fault-tolerant, global, online, and computationally efficient
aerodynamic performance optimization framework and applies it to a nonlinear, free-flying, flying-wing morphing
aircraft. The framework can automatically identify faulty actuators, adapt the onboard model, and achieve both trimming
and performance optimization simultaneously using the remaining healthy actuators. It offers improved computational
efficiency, enhanced performance, and better adaptability in handling time-varying, nonlinear, and non-convex problems
compared to state-of-the-art methods, as demonstrated by a quantitative comparative study in this paper. Moreover,
the paper addresses the optimal number of actuators for a morphing control surface, considering the tradeoff between
performance and weight penalty. Finally, high-fidelity simulations demonstrate the effectiveness of the proposed
framework throughout the entire flight envelope and provide a more realistic estimation of drag reduction during a
typical commercial aircraft flight cycle.

The paper is structured as follows: The detailed algorithm design, on-board model, and optimizer are explained in
Sec. II. The simulation results are then presented in Sec. III, followed by conclusions in Sec. IV.

II. Methodology
This section presents the methodology used to model, simulate and optimize the system. First, subsection II.A

outlines the overall optimization architecture. Subsection II.B delves into the development of the aerodynamic model,
detailing how it is constructed and what flight conditions are considered. A data-driven on-board surrogate model is
created in subsection II.C. The on-board model will then be used to optimize the angle of attack and actuator inputs.
Subsection II.D presents the optimizer design. Finally, subsection II.E explores strategies for managing actuator faults,
ensuring system robustness and continued operation under faulty conditions.

A. Optimization architecture
The objective of the optimization is to find the best combination of the angle of attack (𝛼) and actuation inputs (𝜹)

that maximize aerodynamic efficiency while satisfying the longitudinal trimming requirement. This should be achieved
throughout the entire flight envelope, bridging the simulation-to-reality gap, adapting to new conditions, and tolerating
unforeseen scenarios including icing, actuator faults, and structural damages.

3

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Ja
nu

ar
y 

6,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

5-
28

04
 



The optimization problem is formulated as follows:

minimize
𝛼, 𝜹

𝐽 (𝛼, 𝜹) = 𝐶𝐷 (𝛼, 𝜹) + 𝑘1 (𝐶𝐿,target (𝛼, 𝜹) − 𝐶𝐿 (𝛼, 𝜹))2 + 𝑘2 (𝐶𝑀 (𝛼, 𝜹))2

subject to 𝛼 ∈ [𝛼min, 𝛼max],
𝜹 ∈ [𝜹min, 𝜹max],
¤𝜹 ∈ [ ¤𝜹min, ¤𝜹max],

𝜹 ∈
{
𝜹 : [𝑯,−𝑯]T𝜹 ≤ [𝜹T

adj, 𝜹
T
adj]

T
}

(1)

where 𝐶𝐿 is the lift coefficient; 𝐶𝑀 is the pitching moment coefficient that should be zero at trim; 𝐶𝐷 is the drag
coefficient to be minimized for reducing fuel consumption and emissions. 𝑘1 and 𝑘2 are user-defined weights. This
optimization problem is nonlinear and non-convex, as will be shown in subsection II.C, the aerodynamic coefficients are
nonlinear and non-convex functions of the optimization variables.

The morphing surface is subject to position and velocity constraints of ± 20 deg and 45 deg/s, respectively [12]. The
position constraint is further tightened to ± 16 deg in optimization to reserve margins for maneuvers. This constraint
can also be set asymmetrically to account for pitch moment trimming. The number of actuators in 𝜹 is treated as a
variable to be optimised, intending to answer the research question of what is best number of actuators within the
morphing surface. The morphing surface is composed of composite and polymeric elastic materials, which impose
physical constraints on the relative positional differences between adjacent actuators [13]. Without loss of generality, let
the number of actuators within the morphing surface be denoted as 𝑚, resulting in relative position constraints given by
|𝛿𝑖+1 − 𝛿𝑖 | ≤ 𝛿adj,𝑖 , for 𝑖 = 1, 2, . . . , 𝑚 − 1. This can be expressed in vector form as [𝑯,−𝑯]T𝜹 ≤ [𝜹T

adj, 𝜹
T
adj]

T, where
𝑯 ∈ R(𝑚−1)×𝑚 with 𝐻𝑖,𝑖 = 1 and 𝐻𝑖,𝑖+1 = −1 for 𝑖 = 1, 2, . . . , 𝑚 − 1, and all other elements of 𝑯 equal to zero [13].
Finally, The angle of attack 𝛼 is constrained to 𝛼 ∈ [0, 10] deg for stall and pitch break protection.

The optimization is performed under steady, trimmed flight conditions over a longer time scale. The dynamic
effects of gusts and maneuvers are considered shorter-term and can be decoupled from this optimization problem using
low-pass filtering on the sensor measurements, based on the time-scale separation principle. In addition, outliers in the
sensor measurements should be detected and removed from the optimization loop.

Perpendicular to the flight path, the trimming condition can be expressed as follows:

−𝑇 sin(𝛼 + 𝜓) − 𝐿 +𝑊 cos 𝛾 = 0 (2)

where 𝑇 , 𝐿, and 𝑊 represent thrust, lift, and weight, respectively; 𝜓 denotes the engine installation angle, and 𝛾 is the
flight path angle. Assume that 𝑇 sin(𝛼 +𝜓) is small compared to 𝐿, which is generally valid for commercial aircraft. For
aircraft with a higher thrust-to-weight ratio, this assumption can be removed by incorporating 𝑇 into the optimization
problem. Based on this assumption, the target lift coefficient, 𝐶𝐿target , required to satisfy the trim condition, is calculated
as follows:

𝐶𝐿target =
2𝑊 cos 𝛾
𝜌𝑈2𝑆

(3)

where 𝜌𝑈2/2 is the dynamic pressure and 𝑆 is the wing surface area.
Figure 1 presents the optimization architecture in a schematic view. This paper considers the weight (𝑊), Mach

number (Mach), altitude (ℎ), and flight path angle (𝛾) as flight condition definition variables. From this, the corresponding
𝐶𝐿target is calculated using Eq. (3). The computed 𝐶𝐿target acts as an input of the optimization loop, in which an optimizer
minimizes the cost function based on a surrogate onboard model. The choice of the optimizer will be detailed in
subsection II.D. To reduce computational loads of the optimizer and to ensure spanwise smoothness of the morphing
surface, a spline function is created to map the real actuator motions to a virtual spline-curve. Once an optimal
combination of 𝛼𝑖 and spline coefficient vector 𝒔𝑖 are found, they are then converted back to the physical actuation
angles 𝜹𝑖 to be used by the on-board surrogate model. In this paper, the on-board surrogate model is trained by datasets
generated by real-world wind tunnel experiments and simulations based on Reynolds-Averaged Navier–Stokes (RANS)
equations and Vortex Lattice Method (VLM). The aerodynamic coefficient estimated by the on-board model are then
used by the cost function.

The optimization loop is run until the optimizer converges to an optimal 𝛼opt and 𝜹opt, then the suggested morphing
configuration is tested on the real aircraft and the on-board model is updated online.

In practical applications, the variables ℎ, 𝑈, Mach number, 𝜌, and 𝛾 can be determined from measurements provided
by the Pitot tube, air data computer, inertial navigation system, pressure altimeter, and Global Positioning System. The
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On-board model

Optimizer

Cost function

Aircraft
Aerodynamics

Lift equation

Spline
conversion

Optimization Loop

Outlier correction,
Low-pass filtering

Fig. 1 Online shape optimization architecture.

wing surface area 𝑆 is typically a known constant. The gross aircraft weight 𝑊 can be estimated onboard based on
fuel consumption and the known gross take-off weight, commonly recorded on commercial airliners. Additionally, 𝑊
can be identified online by incrementally adjusting thrust and measuring the resultant accelerations. The aerodynamic
coefficients 𝐶𝐿 , 𝐶𝐷 , and 𝐶𝑀 can be estimated onboard using the three-axis force and moment dynamic equations, with
linear and angular accelerations and rates obtained from the Inertial Measurement Unit; gross weight is estimated or
identified as previously discussed; thrust can be inferred from engine parameters, including measurements of fuel flow
rate, rotational speeds, and inlet and exhaust pressures and temperatures. The variables 𝛼 and 𝜹 are directly measurable.

B. Aerodynamic model of the Flying-V
The Flying-V aircraft has an unconventional configuration as presented in Fig. 2 with the morphing surface

area, considered in this study, highlighted in yellow. Because of its tailless configuration, the morphing surfaces are
responsible for multiple objectives including trimming, maneuver control, and online aerodynamic shape optimization.
The morphing concept adopts the seamless Translation Induced Camber (TRIC) Smart-X Alpha in [5].

The Flying-V presents nonlinear behavior at high angles of attack and has transonic cruise speeds, leading to
nonlinear, non-convex, and viscous behaviors. Therefore, high-fidelity simulations based on RANS and VLM are
performed.

The RANS simulations are conducted with Ansys Fluent and the grid is created with Integrated Computer
Engineering and Manufacturing for Computational Fluid Dynamics (ICEM CFD). After a mesh independence study,
the number of elements used to discretize the domain is 12.1×106 which leads to maximum differences with respect to
the Richardson extrapolated value of less than 10 % for 𝐶𝐷 , 𝐶𝐿 and 𝐶𝑀 . The mesh independence study is conducted at
different 𝛼 and Mach numbers. Further details on the meshing and simulation strategies are described in [15]. The
simulations are performed in the range of Mach = 0.2 to Mach = 0.7. This data is used as a basis for the zero-degree
angle of attack coefficients and the coefficients with respect to 𝛼.

To capture the aerodynamic mapping from actuation inputs to the coefficients, RANS simulations can also be
performed. However, this would be computational inefficient because we treat the number of actuators as a variable in
this paper, leading to a large number of possible compositions. To enhance computational efficiency, the contribution
of the morphing surface is captured by VLM simulations. Low fidelity tools as the VLM cannot predict this type of
behavior. However, if properly calibrated, VLM can predict the change in forces and moment induced by the morphing
surface for longitudinal trimming purposes, for limited deflections as considered in this study. The VLM simulations
are conducted with OpenVSP [16]. A total of 24 elements are used to discretize the aircraft along the chord and 72
elements along the span. The winglets of the Flying-V are not included in this study. A Python script was used to run
the OpenVSP simulations for any actuator configuration at any flight condition.

The VLM simulations are calibrated with wind tunnel experiments on a half model of the Flying-V at freestream
velocity of 25 m/s. Further details on the experiments can be found in [15]. The wind tunnel model is equipped with
3 control surfaces which span in the same area as the morphing surface. Each control surface is tested individually
allowing to determine the impact of each of them on 𝐶𝐷 , 𝐶𝐿 and 𝐶𝑀 . The simulation data is then calibrated by
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Fig. 2 The Flying-V aircraft with morphing surface area indicated in yellow (modified from [14]).

multiplying the 𝐶𝐿𝛿
, 𝐶𝐷

𝛿2 , and 𝐶𝑀𝛿
coefficients by the corrections factors 𝑎, 𝑏, and 𝑐, as shown in the Appendix. The

construction of the aerodynamic model is summarized in Fig. 3.

RANS Simulation

Wind Tunnel
Data 

VLM Simulation Correction
factors

Aircraft
Aerodynamics

Fig. 3 The construction of the aerodynamic model of the Flying-V.

As mentioned before, the ideal number of actuators on the wing is set as a variable to be optimized and will be
explored in subsection III.A. To ensure that morphing along the span is smooth and to reduce the number of input
variables for the optimizer, the virtual shape function can be used to map the real actuator deflections to the coefficients
of virtual shape functions. The state-of-the-art practice is to adopt Chebyshev polynomials [17] as virtual shape
functions [3, 18]. However, the parameters used to tune the Chebyshev polynomial are coupled and changing one
parameter has a global influence on the shape of the polynomial. This hinders the state-of-the-art approach from
precisely manipulating the aerodynamic properties at specific local locations. In view of this gap, this research adopts
the univariate spline function as the base of virtual shape functions, which allows precise local manipulation and also
ensures smooth transient in between adjacent actuators. Figure 4 shows an example of actuator deflections governed by
the univariate spline curve. A tradeoff was made regarding the number of spline control coordinates by increasing the
number of control points and calculating the mean squared error (MSE) between 1000 random functions and their spline
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approximations. It was observed that after five control points, the improvement in approximation accuracy became
negligible. Therefore, the number of spline parameters was set to five.

Fig. 4 Example of an univariate spline curve smoothly connects 12 morphing actuators.

The flight conditions considered are given in Table 2 and are based on the available data from Ref. [15]. The flight
path angle is estimated using an earlier study on the Flying-V [19]. The fuel weight is assumed to decrease linearly over
the course of the flight. Consequently, the weight for each flight phase is calculated by subtracting the estimated fuel
consumption from the MTOW. The 𝐶𝐿target is calculated using Eq. (3) and the Flying-V parameters in Table 1.

Table 1 Aircraft modelling parameters of the Flying-V.

Variable Value Unit
Wing surface 898 m2

Mean aerodynamic chord 18 m
Center of gravity 28.1 m
Maximum Takeoff Weight (MTOW) 278000 kg
Fuel weight 109000 kg

Table 2 Flight conditions considered for a typical Flying-V flight profile.

ℎ (m) 𝜌 (kg/m) 𝑈 (m/s) Mach 𝑅𝑒 (10e6) 𝛾 (deg) mass (kg) 𝐶𝐿target

Take-off 0 1.225 68.06 0.2 83.9 15.00 278000 1.03
Initial Climb 3250 0.886 131.03 0.4 124 4.50 277539 0.40
Climb to cruise 6500 0.624 172.90 0.55 123 2.50 275816 0.32
Cruise ∗ 9750 0.426 210.39 0.7 110 0.00 223500 0.26
Descent 6500 0.624 172.90 0.55 123 -2.50 172508 0.20
Approach 3250 0.886 131.03 0.4 124 -4.50 171357 0.25
Landing 0 1.225 68.06 0.2 83.9 -3.00 169000 0.65

C. On-board data-driven model
To accelerate online computation, a data-driven global on-board surrogate model is learned from the aerodynamic

datasets. Various approaches are available, including polynomial-based, spline-based, and neural network models
[20], each offering distinct advantages. To determine the most suitable system identification model for this study, a
thorough analysis of the requirements is essential. First, the model must be global in scope, capable of capturing
nonlinear behavior. Second, it must be adaptive, allowing for updates as new data becomes available. Finally, it must be
computationally efficient, with minimal evaluation costs.

∗This Flying-V can cruise at the higher Mach number. In this research, Mach number of 0.7 is obtained because this is the highest Mach number
at which accurate data is still available.
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Polynomial models are frequently employed for system identification due to their simplicity. However, their accuracy
declines when applied to nonlinear systems. Additionally, polynomial models require data collected across a wide range
of global variations to accurately represent the system. In contrast, neural networks are capable of modeling both global
and complex behavior. Several studies have utilized neural networks to develop on-board models [21, 22]. Despite
this, neural networks are computationally demanding and often rely on global basis functions. Moreover, they lack
transparency and are prone to numerical instabilities [23].

Multivariate splines, by contrast, have been shown to effectively generate a global aircraft model [20, 24], and
in the case of the Flying-V, under specific test conditions, they have even outperformed other identification methods
[25]. Spline-based models are composed of piecewise functions, allowing different sections of the model to be fitted
independently without interference. This characteristic is particularly advantageous for global models that require high
accuracy in local regions, especially around trimming points.

The independent input parameters for the on-board model are angle of attack (𝛼), control surface deflections (𝜹),
and Mach number (Ma). Altitude is coupled with the Mach number, such that the appropriate altitude is selected based
on Table 2 for a given Mach number. If all 𝜹 values were used as variables in the multivariate spline, the model’s
complexity would increase rapidly. Therefore, the on-board model employs two separate methods. First, for each Mach
number (Mach = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7), a cubic univariate spline is fitted for 𝐶𝐿 − 𝛼, 𝐶𝐷 − 𝛼, and 𝐶𝑀 − 𝛼. Linear
interpolation is then used to estimate the splines for intermediate Mach numbers. To account for the influence of the
actuators, estimates for 𝐶𝐿𝛿

, 𝐶𝐷𝛿
, 𝐶𝐷

𝛿2 , and 𝐶𝑀𝛿
are generated based on the aerodynamic data. This strategy mirrors

the approach used to generate the aerodynamic data of the onboard model; nevertheless, in a real-world scenario, the
aerodynamic data can be directly obtained during flight.

A cubic spline is defined by a cubic polynomial on each interval [𝑥𝑖 , 𝑥𝑖+1], such that:

𝑆(𝑥) = 𝑎𝑖 (𝑥 − 𝑥𝑖)3 + 𝑏𝑖 (𝑥 − 𝑥𝑖)2 + 𝑐𝑖 (𝑥 − 𝑥𝑖) + 𝑑𝑖 , for 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1 (4)

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 are the coefficients of the cubic polynomial on the 𝑖-th interval. For the spline to be smooth, it must
be continuous on three conditions. Firstly, the spline function must be continuous at each knot to ensure the function
remains gap-free: 𝑆(𝑥−

𝑖
) = 𝑆(𝑥+

𝑖
), ∀𝑖. Secondly, the first derivative of the spline must be continuous at each knot to

ensure no abrupt changes of the slope: 𝑆′ (𝑥−
𝑖
) = 𝑆′ (𝑥+

𝑖
), ∀𝑖. Lastly, the second derivative must be continuous at each

knot to ensure smooth curve transitions: 𝑆′′ (𝑥−
𝑖
) = 𝑆′′ (𝑥+

𝑖
), ∀𝑖.

To fit the on-board model, the system must be excited, for which several methods are discussed in the literature. Ref.
[3] proposed applying bounded randomized inputs to the model, after which the on-board model is trained. Ref. [1]
introduced the sweep excitation method, which deflects all control surfaces in an ordered sweeping motion, offering
greater computational efficiency and time savings compared to the random excitation method. Additionally, Ref. [18]
proposed a wandering phase method, which employs pseudo-random sample points using a Sobol sequence [26]. The
principle behind all excitation methods is that they are performed once during a test flight, after which the model is
fine-tuned and adapted during real flights. If the model remains accurate following the previous flight, further excitations
may not be necessary. This study adopts the sweep method due to its computational efficiency, while acknowledging that
any of the aforementioned methods could be suitable for the proposed optimization framework. Assuming a maximum
actuator velocity of 45 deg/s [12], with the actuators starting and ending at the zero position, it would take 1.42 seconds
per actuator to perform the sweep excitation method. This assumes that the sampling rate of the aerodynamic coefficients
is significantly higher than the excitation frequency of the actuators.

Using the sweep method, a dataset was generated from the aerodynamic model, to which the on-board model was
fitted. Figure 5 illustrates the influence of Mach number and angle of attack on the aerodynamic coefficients. Markers
in the figure indicate points from the dataset to which a spline is fitted. The moment coefficient has been calculated
using the center of gravity from Table 1. The nonlinear and non-convex behavior is clearly visible in the 𝐶𝑀 -𝛼 graph,
where the unstable pitch break phenomenon appears at high angle of attack. In addition, the pitch break margin also
decreases as Mach number increases. Nonlinearities also emerge in the lift and drag coefficients. Figure 6 depicts the
influence of actuator deflections on the aircraft when Mach number is 0.7. Upward deflection of the actuators decreases
the lift coefficient but increases the moment coefficient, while downward deflection has the opposite effect. The drag
coefficient increases symmetrically with both upward and downward deflection, as 𝐶𝐷𝛿

≈ 0. It is noteworthy that, for
clarity of presentation, only a subset of the data is shown in figures 5 and 6. The actual dataset used is considerably
more extensive than what is displayed.

A crucial requirement for an online optimizer is that the on-board model must be capable of adapting during flight.
This implies that trustworthy fresh data points should update the model, even if they sometimes contradict the existing
model. To facilitate this, a forgetting mechanism is incorporated into the on-board model. If a new data point is within a
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Fig. 5 Impacts of Mach number on lift, drag, and pitching moment coefficients.

Fig. 6 Influence of actuator deflections on aerodynamic coefficients at 𝜹 = −16 deg, 𝜹 = 0 deg, and 𝜹 = 16 deg.

small distance of an existing one, the older point is discarded, and the spline is refitted. This adaptation is instantaneous
for each available, reliable data point. It does not need to wait for the collection of a data batch, as is typically required
by neural networks or polynomial models. Figure 7 illustrates the effectiveness of updating the model from an initial
configuration. The aerodynamic coefficients, 𝐶𝐿 , 𝐶𝐷 , and 𝐶𝑀 , are plotted against the angle of attack. The model is then
updated using new, randomly generated data points, which consist of vectors of actuator deflections and angle of attack.
These figures demonstrate that the model can effectively adjust its structure based on the incorporation of new data.

D. Optimizer
To solve the problem formulated in subsection II.A, an optimizer is designed. Optimizers can generally be classified

as either local or global. From a theoretical point of view, the Flying-V aerodynamic model is nonlinear and non-convex.
To confirm this, we first applied a local gradient-based optimization algorithm with random initial conditions, which
indeed reveals various local optima. As a result, local optimization is not suitable, and a global optimizer is required.
The nonlinear and non-convex property of the optimization problem is further revealed in Fig. 8a. When there is only
one optimization variable, namely the angle of attack, the cost function already shows two local minima. Moreover,
the cost function becomes more complicated when the uniformed morphing along the span is added as an additional
optimization variable. Furthermore, when distributed morphing present, the cost function is expected of becoming
more complicated, preserving the nonlinear and non-convex properties, motivating the choice of gradient-free global
optimization.

Numerous global optimization strategies exist, each with distinct strengths and weaknesses. Selecting the most
appropriate depends on the specific characteristics and behavior of the cost function. As previously mentioned, the
on-board model is non-convex and, being spline-based, is a smooth function. Reference [27] studied various optimization
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Fig. 7 On-board model adaptation to 40 new datapoints at Mach = 0.7.

(a) Cost function against the angle of attack. (b) Cost function against the angle of attack and uniformed morphing.

Fig. 8 Cost function behavior when one or two independent optimization variables present.

algorithms for non-convex and smooth cost functions. Based on this study, the tradeoff will consider on Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [7], Bound Optimization by Quadratic Approximation (BOBYQA)
[28], Dividing RECTangles (DIRECT) [29], and the particle swarm pattern search method (PYSWARM) [30] as viable
optimization methods.

The optimizers are compared based on performance, the number of required evaluations, and sensitivity. The results
of this comparison are shown in Fig. 9a. CMA-ES and BOBYQA converge to the same optimum; however, BOBYQA
achieves this with fewer required function evaluations. In contrast, DIRECT and PYSWARM, which also show highly
variable results, both converge to a lower optimal value.

When updating the on-board model, more complex behavior emerges due to the potential for nonlinear and
non-convex behavior in local regions. To prevent significant deviations from the optimum, the optimizers must return
results with low variability. By using an initial coarse on-board model and introducing random data points, the variability
of the solutions can be analyzed. As illustrated in Fig. 9b, CMA-ES and BOBYQA performed similarly. Despite that,
BOBYQA converges with much fewer function evaluations. Therefore, this study considers BOBYQA the most suitable
optimizer for this application.

BOBYQA is a derivative-free optimization algorithm designed for solving smooth, bound-constrained, nonlinear
optimization problems. It belongs to the class of trust-region algorithms, meaning it iteratively constructs local quadratic
approximations of the objective function within a defined “trust region” around the current solution. The BOBYQA
algorithm initializes using samples of the cost function, usually 𝑛 + 2 (where 𝑛 is the number of function variables) and
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then approximates the objective function ( 𝑓 (𝑥)) using a quadratic model (𝑄(𝑥)), which can be written as:

𝑄(𝑥) = 𝑐 + 𝑔⊤ (𝑥 − 𝑥0) +
1
2
(𝑥 − 𝑥0)⊤𝐻 (𝑥 − 𝑥0) (5)

where: 𝑥0 is the current point (the center of the trust region); 𝑔 is the gradient approximation; 𝐻 is the Hessian
approximation; 𝑐 is a constant term. The algorithm minimizes the quadratic model within a trust region defined by the
radius Δ𝑘 . The sub-problem to solve is:

min𝑄(𝑥) subject to ∥𝑥 − 𝑥𝑘 ∥ ≤ Δ𝑘 (6)

where Δ𝑘 is the radius of the trust region, and 𝑥𝑘 is the current best estimate. If the solution to the sub-problem improves
the objective function sufficiently, the trust region is expanded; otherwise, it is shrunk. After each iteration, the algorithm
uses new function evaluations to update the quadratic model 𝑄(𝑥) around the new current best estimate.

BOBYQA is particularly well-suited for problems involving noisy data, nonlinear smooth functions, bound constraints,
and low to medium dimensionality. While heuristic methods perform well in cases with a large number of optimization
variables and a broad search space, this specific use case involves only six optimization variables and a well-defined
search space. Moreover, because BOBYQA employs a systematic optimization approach, it typically achieves faster
convergence compared to heuristic methods. Using the numerical results from [28], it can be estimated that BOBYQA
requires 𝑂 (𝑛 · log(𝑛)) function evaluations, where 𝑛 is the number of optimization variable. Regarding computational
efficiency, the paper reported computation times scaling as 𝑂 (𝑛2). Since the optimization problem in this study involves
less than 10 independent variables, the time constraints imposed by this scaling are not expected to significantly impact
performance.

(a) Optimizer performance against the number of function
evaluations.

(b) Variability in optimal cost for different optimizers when
adapting the on-board model with new datapoints.

Fig. 9 Comparison of various global optimizers in terms of performance, efficiency and sensitivity.

E. Fault tolerance of actuator faults
The aim of fault tolerance is to detect any possible actuator failure based on fresh data and adjust the remaining

actuators so that the system remains trimmed and optimized for minimal drag.
Figure 10 shows how the system identifies and optimizes in presence of an actuator failure. A checking function is

designed to judge if the aircraft is actually trimmed. If an unforeseen actuator failure presence, a mismatch between the
onboard model and reality would appear, leading to a derivation from the real optimum.

If the aircraft is not trimmed correctly, despite the optimizer still thinking the aircraft is in an optimum based on
existing knowledge, the proposed algorithm would first identify the faulty actuator through a new model excitation
sequence. If the actuator is stuck, then the identified 𝐶𝐿𝛿

would be approximately zero. Once the system has identified
the faulty actuator, the splines will be adjusted to incorporate this fixed point, ensuring that the faulty actuator remains
in the same position in the model while ensuring spanwise smoothness. The algorithm will then determine the optimal
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positions for the remaining actuators, taking into account the position of the faulty actuator. Figure 11 illustrates how the
splines are modified to accommodate the faulty actuator. The dashed line represents the faulty actuator location, and it is
evident how the splines consistently pass through this fixed point while allowing the other actuators to remain variable.

No
On-board model

Optimizer

Cost function

Aircraft
Aerodynamics

Aircraft correctly
trimmed?

Yes

New model excitations
Identify failed actuator
Remove failed actuator from
on-board model
Adapt on-board model

Lift equation

Spline
conversion

Optimization Loop

Outlier correction,
Low-pass filtering

Fig. 10 The optimization architecture that can identify and tolerate actuator faults.

Fig. 11 Illustration of actuator deflections based on the spline curve accounting for a faulty actuator.

III. Results
In this section, the effectiveness of the proposed optimization architecture is presented. Subsection III.A determines

the optimal number of actuators considering the tradeoff between performance and weight penalty. Subsection III.B
presents the optimization effectiveness on various flight conditions. Subsection III.C presents the fault tolerance results.
Subsection III.D evaluates the overall performance improvement in one typical flight profile.

A. Ideal number of morphing actuators
In conventional aircraft design, each wing typically has only one control surface, namely the aileron, responsible for

roll control. However, as aircraft design evolves, we are seeing an increasing number of control surfaces on aircraft
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wings. The more control surfaces available, the greater the degrees of freedom for control, which allows for more precise
manipulation of local aerodynamic properties and potential improvements in aerodynamic performance. Recently,
Boeing has expressed interest in distributed trailing-edge control surfaces [11]. However, adding more control surfaces
also results in a weight penalty. This subsection aims to quantify this tradeoff.

A previous study on continuous trailing-edge actuators estimated the actuator weight to be approximately 20 kg,
based on calculations for both the servo-actuator weight and the structural weight [31]. However, since the tradeoff is
highly dependent on the actuator weight, the efficiency benefits provided by the actuators relative to the added weight
are shown in Fig. 12 for three different actuator weight scenarios.

It can be seen from Fig. 12 that as the number of actuators increases, the drag coefficient initially decreases
significantly, before exhibiting a moderate upward trend. The optimal number of actuators is 9 when the single actuator
weight is 𝐹weight = 10 kg and changed to 6 for 𝐹weight = 20 kg and 𝐹weight = 40 kg. Considering the slopes in Fig. 12,
the optimal number of actuators can be relaxed to 8 when 𝐹weight = 10 kg and to 5 when 𝐹weight = 40 kg without
experiencing significant performance loss. In general, as the weight of each individual actuator increases, the optimal
number of actuators decreases, while the drag coefficient increases. This is explained by the dependency of 𝐶𝐿target on
aircraft weight (Eq. (3)). Namely, when the aircraft becomes heavier, higher angle of attack is required to trim the
aircraft, which results in increased lift-induced drag.

Fig. 12 Drag reduction effectiveness against the number of actuators (diamonds marks the minima).

B. Optimization performance and computational efficiency
This subsection presents the performance and computational efficiency of the proposed optimization architecture.

First, at one specific cruise condition, three approaches are compared: 1) the baseline, which is the practical state-
of-the-art that only uses one single flap/actuator on each wing for trim; 2) the gradient-based optimizer based on the
Nelder-Mead method; 3) the proposed global optimization method BOBYQA. The latter two approaches both use a
wing with 9 actuators, and a actuator weight of 10 kg. For a fair comparison, the flight condition and control surface
area for the three methods are identical.

The on-board model is initially configured with a sweeping model excitation to get the aerodynamic coefficients at
Mach = 0.7 and ℎ = 9750 m. Then, the optimization is run on the on-board surrogate model. The number of iterations
is limited to 1300 or until the minimal tolerance is met. Since the minimum tolerance is met in both cases, running the
same experiment for more iterations will not change the final values. As seen from Fig. 13, both Nelder-Mead and
BOBYQA present an improvement as compared to the baseline. However, the gradient-based Nelder-Mead optimization
method is not capable of converging to the global optimal solution and is prone to be trapped in local optima. The
spikes in the BOBYQA method are the exploration phases of the approximation regions.

The comparison with the baseline is further detailed in Fig. 14. Since this baseline approach only has two inputs (𝛼,
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Fig. 13 Optimization performance comparisons at a cruise condition.

and one single actuators) to satisfy both lift and moment trim, there is only one feasible solution. It can be seen that the
optimized solution has a higher 𝐿/𝐷 than the simple trim solution, while keeping both the moment and lift coefficient
at the intended value. At the flight condition of 𝐶𝐿target = 0.26 and Mach = 0.7, the proposed approach can increase the
aerodynamic efficiency (𝐿/𝐷) by 2.98 %. This is by virtue of the distributed actuators configuration that can modify the
aerodynamic profile regionally. Specifically, the outboard actuators have a larger moment arm to the center of gravity,
while having a smaller influence on lift and drag. The optimizer can therefore use more of the outboard actuators to trim
without over-deflecting the inner actuators, which minimizes the drag. In addition, having the inner actuators be able
to deflect downwards increases the lift and therefore lowers the angle of attack, which is also beneficial for reducing
lift-induced drag.

After achieving a 2.98 % of aerodynamic efficiency enhancement at 𝐶𝐿target = 0.26 and Mach = 0.7, the effectiveness
of the proposed approach on various flight conditions is then evaluated in Fig. 15. The target lift coefficient is an
indication of flight conditions and is related to aircraft weight, fuel burn, and flight phases. It can be seen from Fig. 15a
that the optimized solution outperforms the baseline at all the tested conditions. Moreover, the optimizer gains more as
the target lift coefficient increases, reaching an increase 8.19% at 𝐶𝐿target = 0.4. When going to even higher target lift
coefficients, the L/D ratio increase even reaches 12.6%. The main reason for this is that at lower target lift coefficients
the system is easier to be trim with just one actuator because the ideal shape, as can be seen in Fig. 15b, is more similar
to a horizontal straight line. Conversely, at higher target lift coefficients, a single-flap system loses excessive lift in its
attempt to maintain a zero 𝐶𝑀 , necessitating a higher angle of attack, which in turn increases drag.

Figure 16 illustrates the increase in 𝐿/𝐷 ratio and the corresponding actuator configurations for different Mach
numbers. The 𝐿/𝐷 ratio increases at higher Mach numbers, even in the baseline case. The optimization benefits remain
relatively consistent across the range of Mach numbers. It is important to note that under identical flight conditions, the
𝐶𝐿target increases at lower Mach numbers due to the reduction in speed. As shown in Fig. 15, a higher 𝐶𝐿target would lead
to greater increases in the L/D ratio. However, to ensure a meaningful comparison across different Mach numbers, the
𝐶𝐿target is maintained at a constant value. Figure 16b indicates that the actuators require less upward morphing at higher
Mach numbers because of the increase in control effectiveness.

The optimization computations were performed on a laptop equipped with an Intel Core i7-8750H processor (6
cores, 12 logical processors, base clock 2.20 GHz), 16 GB DDR4 RAM, and a 512 GB NVMe SSD. The system ran
Microsoft Windows 11 with Python 3.9.18. Using this setup, the BOBYQA optimization converged in an average CPU
time of 11.63 seconds and an average wall clock time of 11.79 seconds, as measured across multiple runs for different
Mach numbers and lift coefficients as found in the typical flight profile.
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(a) CL vs Angle of Attack (b) CD vs Angle of Attack (c) Cm vs Angle of Attack

(d) L/D vs Angle of Attack (e) Deflections (f) Morphing actuator locations

Fig. 14 Optimization results compared to the baseline for 𝑪𝑳target = 0.26, Mach = 0.7

(a) Optimization for various 𝑪𝑳target during cruise. (b) Optimal shape for different 𝑪𝑳target during cruise.

Fig. 15 Optimization performed for various target lift coefficients.

C. Fault tolerant optimization
In the presence of an unforeseen actuator fault, the system should still be able to optimize and trim the aircraft. This

subsection presents the results of a case study where the system is optimized on the original on-board model while there
is actually an unforeseen actuator fault present. The faulty actuator is simulated by setting the 𝐶𝐿𝛿

, 𝐶𝑀𝛿
, and 𝐶𝐷

𝛿2 in
the original dataset to zero.

Figure 17 compares the results with and without fault-tolerant optimization. It shows that because of the lack of
knowledge of the fault, the spline curve for the system without fault tolerance does not go through the failed actuator’s
actual position, leading to an untrimmed and non-optimal solution as highlighted in Fig. 17c. By contrast, the algorithm
proposed in subsection III.C is able to automatically identify which actuator is stuck as well as the jammed position,
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(a) Optimization for different Mach numbers. (b) Optimal shape for different Mach numbers.

Fig. 16 Optimization performed for various Mach numbers when 𝑪𝑳target = 0.26.

thus still fulfills the optimization and trim requirements effectively.

(a) CL vs Angle of Attack (b) CD vs Angle of Attack (c) CM vs Angle of Attack

(d) L/D vs Angle of Attack (e) Deflections (f) Morphing actuator locations

Fig. 17 Optimized results for fault tolerant optimization (FTO) when 𝑪𝑳target = 0.26, Mach = 0.7

D. Effectiveness on a typical flight cycle
In subsection III.B, the effectiveness of the proposed method on various flight conditions has been demonstrated.

Depending on the flight condition, the algorithm can achieve up to 12.6% of increase in aerodynamic efficiency (𝐿/𝐷)
and up to 12.6% of drag reduction (𝐶𝐷). Nevertheless, during one typical flight cycle, an aircraft experiences different
durations in different flight conditions. For example, for most of the time, the aircraft is cruising. This subsection aims
to evaluate the effectiveness of the proposed method during one typical flight cycle.

A typical flight profile is considered based on data provided in Ref. [32] for the Airbus A350-9000. The results are
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presented in Table 3. The time per flight phase has been calculated using rate of climb/descent data from Ref. [32].
Without loss of generality, this research considers a ten-hour flight. The drag reductions is calculated for every flight
phase, and a time-weighted average is calculated, resulting in a drag reduction of 2.97% in one typical flight cycle.

For jet aircraft, fuel consumption is proportional to the thrust required, so if drag decreases, thrust and fuel
consumption decrease proportionally. An estimation on the fuel savings can be made using the data from Table 3.
Assuming the Airbus A350-9000 consumes around 5000 kg/h of fuel, this would result in 150 kg/h of fuel saving in one
typical flight cycle. For the typical flight mentioned in Table 3, this leads to a total of 1500 kg fuel savings during cruise,
and 72.5 kg in other flight phases.

Table 3 Full flight savings for a typical flight profile with 10 hour cruise. Flight profile is based on [32].

Time [min] Mach 𝐶𝐿target estimate 𝐶𝐷 baseline 𝐶𝐷 optimized Δ𝐶𝐷 %
Take-off 1.00 0.2 1.03 0.1658 0.1654 0.24
Initial Climb 1.67 0.4 0.40 0.0225 0.0217 3.61
Climb to cruise 9.97 0.55 0.32 0.0161 0.0155 3.35
Cruise 600.00 0.7 0.26 0.0124 0.0120 2.98
Descent 10.57 0.55 0.20 0.0096 0.0094 2.13
Approach 6.67 0.4 0.25 0.0121 0.0118 2.49
Landing 1.00 0.2 0.65 0.0722 0.0675 6.44
Total 630.88 - - - - 2.97

IV. Conclusions
This paper proposes a global online data-driven aerodynamic performance optimization framework, which can

efficiently and smoothly model nonlinearities, adapt to changes on-board, and automatically detect and adapt to actuator
faults.

Quantitive comparison results based on a free-flying Flying-V aircraft model confirm that the adopted data-
driven Bound Optimization by Quadratic Approximation algorithm outperforms gradient-based local as well as other
considered global optimization methods. Moreover, a multivariable spline-based on-board model effectively captures
the nonlinearities of the Flying-V model and adapts to new data. Furthermore, the framework shows effectiveness in
determining the optimal number of flaps considering the tradeoff between aerodynamic performance and weight penalty.

By optimizing the angle of attack and actuator positions, the proposed online optimization framework can achieve a
drag reduction of 1.9 % to 4.9 % during cruise. At higher target lift coefficients (caused by heavier weight and lower
speed), the drag reduction can reach up to 12.6 %. This framework has shown effectiveness throughout the entire flight
envelope. For a typical flight cycle of ten hours, it can achieve a 2.97 % of drag reduction and which is approximately
150 kg/h of fuel. Last but not least, in the presence of unforeseen actuator faults, the proposed algorithm is able to
automatically identify, adapt, trim, and optimize.

One limitation of this research is that high-lift devices used during takeoff and landing are not modeled. In future
work, these can be incorporated into the framework either as unknown optimization variables or as known inputs.

In conclusion, the proposed online aerodynamic performance optimization framework demonstrates significant drag
reduction and fault-tolerance capabilities. This advancement represents a crucial step towards more sustainable aviation,
contributing to reduced fuel consumption and lower emissions in future aircraft designs.

Appendix
Table 4 presents the coefficients in relation to the actuator deflection from the wind tunnel data and VLM data and

presents the correction factors for each section. Wind tunnel data was gathered for a three-actuator layout [15], where
the controllable surface is divided into three individual sections. Any actuator of the VLM simulations that fall within
the geometric bounds of a wind tunnel actuator configuration will be corrected in the same manner.
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Table 4 Correction factors for control effectiveness.

Coefficient Wind tunnel VLM Correction Factors
𝐶𝐿𝛿1

2.59e-3 5.02e-3 0.52
𝐶𝐿𝛿2

1.88e-3 2.13e-3 0.88
𝐶𝐿𝛿3

1.18e-3 1.22e-3 0.97
𝐶𝐷

𝛿2
1

1.32e-5 1.05e-5 1.25

𝐶𝐷
𝛿2

2
6.75e-6 3.99e-6 1.69

𝐶𝐷
𝛿2

3
4.89e-6 2.70e-6 1.81

𝐶𝑀𝛿1
-2.80e-3 -6.21e-3 0.45

𝐶𝑀𝛿2
-2.41e-3 -3.73e-3 0.65

𝐶𝑀𝛿3
-1.63e-3 -2.65e-3 0.62
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