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1
Introduction

As global demand for electricity continues to rise, the expansion of energy supply is imperative [1].
Moreover, the greenhouse gas emissions associated with fossil fuel combustion have intensified interest in
sustainable alternatives such as wind energy. The ongoing electrification of numerous industries is also
accelerating the transition from fossil fuels to green electricity generation.

The shift towards offshore wind turbine deployment has been gathering pace [2], as the potential for
harnessing stronger, more consistent winds becomes increasingly attractive. However, the harsh offshore
environment imposes significant challenges, with fatigue emerging as a critical design parameter [3].
Notably, research indicates that extreme wind is the most common factor leading to wind turbine tower
failure [4], further emphasising the need for robust design and maintenance strategies. Fatigue-induced
failures necessitate the replacement of turbine components—a process that is particularly expensive in
offshore settings [5]. For instance, severe storms present extreme fatigue conditions that can lead to
substantial damage.

One promising control strategy during storms involves reorienting the turbine so that the blades are
positioned behind the tower. This is achieved by rotating the blades through 90° and turning the
turbine head by 180°, thereby reducing the risk of blade–tower collisions as the blades flex away from
the structure. To mitigate damage to the blade bearings, the blades turn gradually, although this
occasionally results in the blades operating within the tower’s wake. This configuration is referred to as
the down-wind idling situation.

The interaction between the blades and the tower wake introduces oscillations in the structure and may
induce dynamic modes, complicating the assessment of fatigue loading. Accurately quantifying these
effects necessitates precise wake models that capture the intricate flow dynamics around the tower.

Although advanced high-fidelity simulations—such as Large Eddy Simulations (LES) and Reynolds-
Averaged Navier–Stokes (RANS) models—can resolve detailed flow features, their computational expense
limits their application across a broad parameter range. Likewise, data-driven models that merely
replicate high-fidelity simulations offer limited additional insight. Consequently, there is a growing
demand for stochastic realisations of the wake flow field that both preserve the statistical characteristics
of high-fidelity models and generate unique flow instances at a significantly reduced computational cost.

In light of these challenges, this project seeks to investigate data-based stochastic reduced order models
(SROMs) capable of generating stochastic realisations of the wake flow field. The aim of the project
is to develop robust tools for generating stochastic tower wake realisations, ultimately enhancing load
estimation accuracy.

1.1. Research Questions
The goal of this research is to develop stochastic realisations of cylinder wake flow for turbine load
simulations. The research questions must align with this project goal. Derived from this objective the
research questions are focussed on the suitability and effectiveness of reduced order models for wind
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turbine tower wake modelling. Furthermore, it is desirable to know what insights can be drawn from the
reduced order modes. In line with this, the following research questions are formulated:

1. What insights into wake dynamics can be obtained from low-order reconstructions of
the quasi-2D flow field?

2. How do the energy distribution and dominant flow modes in 3D compare with those
in quasi-2D simulations?

3. Can reconstruction of tower wake flow through wake modes be considered a suitable
approach to generate stochastic tower wake realisations?

(a) How does the accuracy of stochastic realisations change with changing Reynolds numbers?
(b) What are the specific challenges and limitations of a ROM for wind turbine tower wakes at

high Reynolds numbers?

1.2. Thesis Outline
This thesis is structured as follows. Chapter 2 provides an extensive review of the literature in cylindrical
vortex shedding and the methods of reduced order models. Chapter 3 outlines the data used throughout
the thesis and provides the numerical methods that are employed for the building of the wake models.
Chapter 4 presents the results of the implementation of the wake models alongside modifications made
to the models based on the intermediary results. Chapter 5 presents divergence-free fitting of stream
functions to spatial modes. Lastly, chapter 6 present the conclusions and recommendations from the
study.



2
Literature Review

This chapter provides an overview of the dynamics of cylindrical wake shedding and Reduced Order
Models (ROMs). For cylindrical wake shedding the focus is on high Reynolds number flows that are
relevant for wind turbines. The chapter starts with a review of key literature on vortex shedding from
cylindrical structures, with a focus on high Reynolds numbers relevant for wind turbine towers. Next the
chapter introduces Reduced Order Models (ROMs), beginning with Proper Orthogonal Decomposition
(POD), followed by Spectral Proper Orthogonal Decomposition (SPOD), and concluding with Dynamical
Mode Decomposition (DMD). Finally the literature of this chapter is synthesized considering the goals
of obtaining a low computational cost cylindrical wake model.

2.1. Cylinder Wakes
The canonical laminar wake behind a circular cylinder was first formalised through the von Kármán
vortex street [6]. The fluid pressure on the surface of the cylinder fluctuates as vortices are shed
alternately from either side of the cylinder. This repeated pattern of shed vortices are illustrated in
figure 2.1. The alternating shedding causes oscillating lift and drag forces on the circular cylinder surface.

The mechanism which creates the shedding vortices can be explained by observing the boundary layer
of the cylinder. The region around the cylinder contains two distinct regions, (i) in which the flow is
attached and (ii) in which the flow is separated from the cylinder. Such separated flow is illustrated
in figure 2.2. At the cylinder surface the flow velocity is zero and increases to the flow velocity at the
outside of the boundary layer. Due to the friction in the boundary a ’roll-over’ effect is seen and a vortex
is shed from the cylinder. The phenomenon is illustrated in figure 2.3.

Figure 2.1: Von Kármán vortex street. Reproduced from [7]

3
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Figure 2.2: Boundary layer and wake around cylinder.
Reproduced from [8] p. 3

Figure 2.3: Velocity and vorticity distribution in
boundary layer. Reproduced from [8] p. 7

This effect was first described by Strouhal in 1878 [9] while investigating sound generated by wires
experiencing vortex shedding. The non-dimensional Strouhal number 𝑆𝑡 is named after him and is
defined as in equation (2.1). Here 𝑓 is the shedding frequency, 𝐷 is the diameter of the cylinder and 𝑈

is the free stream velocity.

𝑆𝑡 =
𝑓 𝐷

𝑈
(2.1)

[10] summarizes the major regimes for flow across cylinders as a function of Reynolds number 𝑅𝑒. These
regimes range from fully attached flow at 𝑅𝑒 < 5 to a fully turbulent vortex street at 𝑅𝑒 > 3.5 × 106.
The Strouhal number can be seen as a function of Reynolds number in figure 2.4. In the subcritical
range from 𝑅𝑒 = 500 − 105 the Strouhal number is approximately constant at 𝑆𝑡 ≈ 0.2. In the range
from 𝑅𝑒 = 1.1 × 105 − 6.0 × 106 its value is heavily dependent on surface roughness.

Figure 2.4: Strouhal number variation with Reynolds number for smooth and rough cylinder surfaces. Reproduced from
[11].

At lower wind speeds the surface roughness can have a significant influence on the Strouhal numbers
that occur on wind turbines. During a storm wind turbines will be in the transcritical vortex shedding
regime.

2.1.1. Transcritical Vortex Shedding
The transcritical regime is typically experienced by large wind turbine towers during storm conditions.
Transcritical vortex shedding begins to occur at Reynolds numbers above 5.9 × 106 [8]. At these high
Reynolds numbers the Strouhal number no longer follows the predictable value of 0.2 seen in the
subcritical regime. Wind tunnel experiments have measured vortex shedding characteristics up to
18.7 × 106, although these studies often involve compressible flow effects [12]. Notably, changes in Mach
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Figure 2.5: Effect of turbulence on the Strouhal number [14] p. 409

number at Reynolds numbers around 2 × 106 can significantly impact the Strouhal number [12], below
these Reynolds numbers the Mach number seems to have little effect. Different authors classify these
high Reynolds number regimes differently; for example, [8] define upper transition at 𝑅𝑒 = 3.7 × 106,
transcritical onset at 𝑅𝑒 = 5.9× 106, and fully developed transcritical flow at 𝑅𝑒 = 7.1× 106. By contrast,
[12] define three key regimes: wide-band random (1.1 × 106 < 𝑅𝑒 < 3.5 × 106), narrow-band random
(3.5×106 < 𝑅𝑒 < 6.0×106), and quasi-periodic shedding (𝑅𝑒 > 6.0×106). Despite differing nomenclature,
these classifications describe the same fundamental flow phenomena. The main point of relevance for
wind turbines is the broadening of the Strouhal peaks and the notable divergence from the predictable
value of 𝑆𝑡 ≈ 0.2.

2.1.2. Surface Roughness and Turbulence Intensity
Surface roughness is an important factor that contributes to vortex shedding in high Reynolds number
regimes. It is well established that varying surface roughness significantly influences aerodynamic
coefficients. [13] investigated the effect of surface roughness on the mean drag coefficient and Strouhal
number. The Strouhal number at Reynolds numbers between 1.1 × 106 and 6.0 × 106 does not have a
constant value and is strongly dependent on surface roughness.

The approaching wind flow also is an important factor influencing the flow around a cylinder. Namely
the turbulence intensity and the shear in the spanwise direction of the cylinder. Turbulence intensity is
defined as in equation (2.2). Here

√
𝑢2 is the root-mean-square of the wind fluctuations and 𝑢 the mean

wind velocity.

𝐼𝑣 =

√
𝑢2

𝑢
(2.2)

The effect of turbulence intensity is illustrated in figure 2.5. An increase of the turbulence intensity
between 105 < 𝑅𝑒 < 106 increases the Strouhal number significantly compared to lower turbulence
intensities.

Incoming shear flow on a cylinder is illustrated in figure 2.6. When shear is present in the spanwise
direction of the cylinder vortex shedding takes place in spanwise cells [16]. In each cell the frequency
is constant. In figure 2.7 it is seen that the shedding occurs in four cells, each with its own distinct
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Figure 2.6: Spanwise shear on a cylinder [15] p. 19

Figure 2.7: Effect of shear in the approach flow on vortex-shedding frequency. Circles: Strouhal number based on the
centre-line velocity 𝑈𝑐. Dashed lines: Strouhal number based on the local velocity, 𝑈local. 𝑅𝑒 = 2.8 × 104. Shear steepness

𝑠 = 0.025. Reproduced from [15] p. 20

frequency. When the Strouhal number is based on the local velocity (dashed lines in the figure), the
data are grouped around the Strouhal number around 0.25.

The length of the cellular structures is correlated to the degree of the shear [15]. The trend is that the
cell length decreases with increasing shear [16]. The parameter that defines this correlation is the shear
steepness 𝑠 which is defined in equation (2.3). Here 𝐷 is the diameter of the cylinder, 𝑈𝑐 the centre-line
velocity and 𝑑𝑢

𝑑𝑧
the change of local velocity over the height.

𝑠 =
𝐷

𝑈𝑐

𝑑𝑢

𝑑𝑧
(2.3)

The spanwise cells structures are illustrated in figure 2.8. From the pictures it can be seen that the cells
along the length span are out of phase. Consequently, spanwise variations in vortex phases reduce the
overall aerodynamic forces compared to a scenario with fully coherent vortex shedding along the span.
The average length of cells is referred to as the correlation length. The span-wise correlation coefficient
𝑅(𝑧) is defined as in equation (2.4). Here 𝜁 is the span-wise reference position, 𝑧 is the separation
between two measurement points, 𝑝′ is the fluctuating component of the relevant unsteady quantity
(typically the surface pressure) and the over-bar denotes time-averaging.
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Figure 2.8: Photographs illustrating the time evolution of spanwise cell structure. 𝑅𝑒 = 6 × 106 = 3. Reproduced from
[15] p. 29

𝑅(𝑧) =
𝑝′ (𝜁) 𝑝′ (𝜁 + 𝑧)√︃
𝑝′2 (𝜁) 𝑝′2 (𝜁 + 𝑧)

(2.4)

The correlation length 𝐿 that characterises the average cell size is then obtained by integrating the
correlation coefficient along the span as per equation (2.5).

𝐿 =

∫ ∞

0
𝑅(𝑧) d𝑧 (2.5)

The correlation of the aerodynamic forces has been demonstrated to follow an exponential decay for
stationary cylinders [17], oscillating cylinders [18, 19] and oscillating cylinders near walls [20]. The
correlation length increases with vibration amplitude and is further influenced by turbulence intensity.
For smooth cylinders, the span-wise correlation length decreases with increasing Reynolds number [21].
Although the absolute Reynolds numbers in wind-tunnel tests are much lower than those of full-scale
structures this trend is believed to continue for higher Reynolds numbers. To the author’s knowledge the
largest value for the correlation length reported in literature comes from a numerical study: a large-eddy
simulation by [22], which estimated 𝐿/𝐷 ≈ 1.1–1.3 in the super-critical regime (𝑅𝑒 = 4.1× 105–7.6× 105).

Improved Delayed Detached Eddy Simulations (IDDES) have been performed at Reynolds numbers in
the transcritical regime with 𝑅𝑒 = 8 × 106 [23, 24]. These simulations are however not performed for
cylinders with sufficiently high aspect ratios to determine a correlation length. Neither paper quantifies
the correlation and the Strouhal numbers in these simulations are not in line with measured Strouhal
numbers at similar Reynold numbers.
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Figure 2.9: Lock in phenomena of spring mounted cylinder oscillating in air. Reproduced from [36] p. 13

2.1.3. Influence of Cylinder Motion
Vortex shedding described by the relationship of equation (2.1) refers to stationary cylinders. Flexible
structures such as turbine towers may vibrate continually altering the flow conditions. Consequently,
the flow becomes more complex and the wake structure is modified.

According to [25], when the vibration frequency of the cylinder is close to or equal to the natural vortex
shedding frequency, the interaction can have several significant effects on the wake structure:

(i) Increase the strength of the vortices [26, 27],
(ii) Increase the spanwise correlation of the wake [28, 18, 29],
(iii) Dictate the vortex shedding frequency, leading to synchronisation with the vibration frequency of

the cylinder (commonly referred to as “lock-in” or the “synchronisation effect”) [30],
(iv) Increase the mean drag force on the cylinder [30, 31],
(v) Alter the phase, pattern, and sequence of vortices in the wake [32, 33, 34].

When the non-dimensional vibration frequency approaches the natural Strouhal shedding frequency,
the wake may enter a narrow lock-in band. In this regime the shedding frequency no longer follows
equation (2.1) but is dictated by the structural motion itself: vortex formation phases synchronise
with the cylinder’s oscillation, producing a single, coherent frequency in both the lift force and the
displacement signal [35]. The lock in regime is usually defined as 𝑓vib/ 𝑓𝑠 ≈ 1, where 𝑓vib is the oscillation
frequency and 𝑓0 the vortex shedding frequency. In air the resulting vibrations occur very close to the
natural frequency of the structure. This lock-in occurs over a range of velocities and this is referred to
as the lock-in regime. An illustration of this is shown in figure 2.9. It may be seen that for 𝑈

𝑓𝐷
≈ 5 to

𝑈
𝑓𝐷

≈ 6.5 the ratio 𝑓0/ 𝑓 = 1. Hence the vibration frequency matches shedding frequency in this velocity
range.

Cylinders may further be oscillated in more than one direction. Dye-visualisation experiments by [34]
show that the shape of the near wake depends strongly on how the cylinder is forced to move. Two
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control parameters govern the outcome:

(i) the forcing frequency, expressed as the ratio 𝑓𝑒/ 𝑓0 to the natural shedding frequency, and
(ii) the forcing direction, given by the angle 𝛼 between the motion vector and the free stream.

Depending on these two parameters the wake switches between one symmetric pattern (labelled 𝑆)
and four anti-symmetric patterns (labelled 𝐴-I to 𝐴-IV). Pure cross-flow motion (𝛼 = 90◦) locks the
wake into the anti-symmetric 𝐴-I mode, while pure stream-wise motion (𝛼 = 0◦) promotes competition
between symmetric and anti-symmetric shedding until higher forcing frequencies ( 𝑓𝑒/ 𝑓0 ≳ 3) stabilise the
symmetric mode. Mixed-direction forcing (0◦ < 𝛼 < 90◦) can cause rapid mode switching near 𝑓𝑒/ 𝑓0 ≈ 1.
Illustrations of these wake modes are shown in figure 2.10. Altering the oscillation direction or frequency
can therefore change the wake pattern quite dramatically.

Figure 2.10: Visualisation of the preferred wake mode at five forcing frequencies ( 𝑓𝑒/ 𝑓0 = 0.5, 1, 2, 3, 4) and four
oscillation angles (𝛼 = 0◦, 45◦, 60◦, 90◦). Reproduced from [34] p. 234.

2.1.4. Full Turbine Towers and Diameter Scaling
To the author’s knowledge, full-scale studies on towers are limited and all full-scale wind pressure
measurement studies to determine coefficients have mostly been performed on rough surfaces. Real wind
turbine towers are constructed from sections with decreasing diameter along their height, meaning local
Reynolds numbers and Strouhal numbers vary significantly with elevation. These variations impact
the vortex shedding dynamics and structural responses. [37] measured the effects of this on a full-scale
wind turbine tower. For complete towers they distinguish between sectional (local) and global (whole
structure) Strouhal numbers. The local spectral density of vortex shedding varies along the height due
to changes in diameter and wind profiles.

Full-scale measurements have demonstrated that variations in atmospheric stability can cause significant
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fluctuations in vortex shedding frequencies, with multiple Strouhal number peaks appearing in spectral
analyses of lift coefficient data [38]. In stable atmospheric conditions, reduced turbulence leads to a more
coherent vortex shedding pattern, resulting in a narrower frequency distribution. Conversely, unstable
atmospheric conditions introduce higher turbulence intensities and increased wind shear, causing wider
distributions in Strouhal numbers and amplifying vortex shedding variability along the structure’s height.
Additionally, wind shear modifies local Reynolds numbers along the tower, affecting synchronization of
vortex shedding across different tower sections.

The correlation length increases with higher vibration amplitudes, meaning that sections of the cylinder
experience vortex-induced forces more coherently when displacements are large [36]. In wind turbine
towers, local variations in wind speed due to wind shear alter the synchronization of vortex shedding
frequencies at different heights. Furthermore, the correlation length is highly dependent on atmospheric
conditions, with stable conditions promoting more organized vortex shedding, whereas unstable conditions
lead to a more stochastic shedding pattern.

Full-scale measurements have further shown that vortex shedding frequencies vary over short timescales,
with multiple Strouhal peaks identified in lift coefficient spectra. These fluctuations are likely due to
turbulence intensity, non-uniform atmospheric conditions, and structural response [37]. The presence
of the rotor-nacelle assembly further alters vortex shedding characteristics, particularly when turbine
blades are stationary versus rotating, highlighting the need to account for aerodynamic interactions with
the blades in modelling vortex-induced vibrations in operational wind turbines.

Full scale turbine tower measurements are supported by wake-oscillator models, albeit at lower Reynolds
numbers. [39] showed that even gentle tapering introduces a gradual shift in the local shedding frequency
along the span, which fragments the Kármán street into shorter, mutually out-of-phase cells. The
resulting loss of coherence in the fluctuating lift prevents the feedback mechanism required for classical
lock-in, leading to markedly smaller vibration amplitudes compared with a uniform cylinder.

2.2. Reduced Order Models
In this section, the focus is placed on Reduced Order Models (ROMs), a class of methods designed to
simplify complex, high-dimensional systems. The section begins with a discussion of Proper Orthogonal
Decomposition (POD), explaining how a flow field can be decomposed into a set of energetic modes that
capture its dominant spatial structures. Building on this, Spectral Orthogonal Decomposition (SPOD)
is introduced, which extends POD by incorporating time-dependent variations to separate different
frequency components of the flow. Finally, Dynamical Mode Decomposition (DMD) is presented as
a complementary technique that not only identifies coherent spatial patterns but also models their
temporal evolution.

2.2.1. Proper Orthogonal Decomposition
The large structures in a turbine simulated with advanced numerical methods can be reduced from
time-resolved data. Proper orthogonal decomposition tries to find a set of modes or structures that
capture the energy of the flow data. [40] mention the different formulations of POD including spectral
proper orthogonal decomposition (SPOD) and space-only POD. Both methods have been applied for a
variety of wake flows including turbulent jets [40], vertical axis wind turbines [41], cylinders [42] and
wind farms [43].

The formulation transcribed and modified here is by [44]. They illustrate the POD method for an
extrapolation finite difference scheme for the 2D parabolic equation.

In POD data at points in space at a specific moment in time are mapped and turned into a column
vector. This data is typically referred to as realisations of a random process, q [40, 45]. For applications
in flow representation, this data is typically flow velocity or vorticity at points in space [46]. The column
vectors are subsequently added next to each other to generate a matrix A as in equation (2.6). In
equation (2.6), the snapshot matrix 𝐴 is defined such that each column corresponds to a time snapshot
and each row represents a spatial point. Each vector 𝑞 = (𝑢 𝑗

0, 𝑢
𝑗

1, · · · , 𝑢
𝑗
𝑚)𝑇 contains all the realisations of

the random process at a specific time snapshot 𝑗 . For the application of wake flow, there are 𝐿 snapshots
or time steps taken and 𝑚 data points in a 2D or 3D grid. Here 𝐿 ≪ 𝑚. This results in A being a tall,
slender matrix.
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𝐴 =


𝑢1

1 𝑢2
1 · · · 𝑢𝐿1

𝑢1
2 𝑢2

2 · · · 𝑢𝐿2
...

...
. . .

...

𝑢1
𝑚 𝑢2

𝑚 · · · 𝑢𝐿𝑚


(2.6)

Using singular value decomposition the matrix A can be represented as 3 matrices 𝑈, Σ, and 𝑉𝑇 as in
Equation 2.7. Here Σ𝑙×𝑙 = diag{𝜎1, 𝜎2, · · · , 𝜎𝑙} is a diagonal matrix consisting singular values. The values
of 𝜎𝑘 are ordered in decreasing order as 𝜎1 ≥ 𝜎2 ≥ · · ·𝜎𝑙 ≥ 0. The matrix 𝑈 = (𝜑1, 𝜑2, · · · , 𝜑𝑚) is an 𝑚×𝑚
orthogonal matrix that consists of the eigenvectors of the 𝐴𝐴𝑇 , whereas the matrix 𝑉 = (𝜙1, 𝜙2, · · · , 𝜙𝐿)
is an 𝐿 × 𝐿 orthogonal matrix consisting of the orthogonal eigenvectors of 𝐴𝑇 𝐴. The matrix 𝑂 is a zero
matrix.

In an SVD formulation, the matrices 𝑈 and 𝑉 are unitary. This means that 𝑈𝑇𝑈 = 𝐼, 𝑈𝑈𝑇 = 𝐼 and
𝑉𝑇𝑉 = 𝐼, 𝑉𝑉𝑇 = 𝐼.

𝐴 = 𝑈Σ𝑉𝑇 = 𝑈

[
Σ𝑙×𝑙

𝑂𝑙×(𝑚−𝑙)

]
𝑉𝑇 = 𝑈Σ𝑙×𝑙𝑉

𝑇 (2.7)

[47] describe the formulation of the economy SVD which is the right-hand side of Equation 2.7. This
is the method of representing the matrix 𝐴 with a smaller basis set 𝑈. The matrix 𝐴 is often too
large to compute the SVD from directly. Therefore, the autocovariance matrix is calculated first as in
Equation 2.8.

𝐶 = 𝐴𝑇 𝐴

=

(
𝑈

[
Σ𝑙×𝑙

𝑂 (𝑚−𝑙)×𝑙

]
𝑉𝑇

)𝑇 (
𝑈

[
Σ𝑙×𝑙

𝑂 (𝑚−𝑙)×𝑙

]
𝑉𝑇

)
=

(
𝑈Σ𝑙×𝑙𝑉

𝑇
)𝑇 (

𝑈Σ𝑙×𝑙𝑉
𝑇
)

= 𝑉𝑆𝑉𝑇 ,

(2.8)

Note that 𝐶 ∈ R(𝐿×𝐿) and 𝑆 = Σ𝑇
𝑙×𝑙𝑈

𝑇𝑈Σ𝑙×𝑙 = Σ2
𝑙×𝑙. Taking the SVD of the matrix 𝐶 is much cheaper to

compute as the matrix is much smaller than the 𝐴 matrix when 𝐿 ≪ 𝑚 [45].

The matrix 𝑈 may be computed when 𝑉𝑇 is known as in Equation 2.9. This is practical as Σ𝑙×𝑙 is square
and invertible when 𝜎𝑙 > 0.

𝑈 = 𝐴𝑉Σ𝑙×𝑙 (2.9)

The SVD formulation of Equation 2.7 has a physical interpretation. The matrix 𝑈 represents the
modes inside the data. Although POD modes are mathematically optimal in terms of energy capture
and orthogonal structure, their physical interpretation must be treated with care. The modes reflect
dominant spatial variance but do not necessarily correspond to physically separable phenomena unless
validated against flow features or symmetries. Typically, lower-order modes often represent large-scale,
energy-dominant structures, while higher-order modes capture finer details or turbulent fluctuations.

The matrix Σ represents the variance or the energy of each of the modes. The singular values inside the
diagonal of Σ represent the energy contribution of each of the modes. The singular values are sorted by
size inside the matrix. This means that the first few singular in Σ correspond to the dominant modes.
A low-rank reconstruction of the flow field involves taking only the most energy containing modes to
reconstruct the data.

𝑉𝑇 represents the time development of the modes. The rows of 𝑉𝑇 contain the time series coefficients of
each of the modes. For each given mode there is a corresponding row of 𝑉𝑇 that contains the unique
time signal of that mode.
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It is often seen that only the first few modes contain most of the energy. The modal eigenvectors in 𝑈

can be reconstructed and plotted to display the spatial modes. This is possible because each element of
the 𝑚 × 1 vector 𝜑𝑘 in 𝑈 corresponds to a point in the 2D or 3D grid of 𝑚 points.

Low-rank approximations are also possible for single images. Rather than flattening the image, the
pixel data is retained in its original two-dimensional form. For example, an image with a resolution
of 100 × 200 is represented as a data matrix of the same shape, where each entry corresponds to a
pixel intensity. By applying singular value decomposition (SVD) to this matrix and retaining only the
dominant singular values and corresponding singular vectors, one can perform a low-rank reconstruction
of the image. This process effectively compresses the original image by capturing its most significant
features, as illustrated in figure 2.11.

The eigenvectors in 𝑈 are orthogonal, 𝜑𝑖 · 𝜑𝑘 = 𝛿 𝑗𝑘 . Let 𝑞(𝑥, 𝑡) be the flow field. Then the flow field may
be approximated with the k most energetic modes as in equation (2.10). Here 𝑎 𝑗 (𝑡) are the temporal
coefficients of the modes.

𝑞(𝑥, 𝑡) ≈
𝑘∑︁
𝑗=1

𝑎 𝑗 (𝑡)𝜑 𝑗 (𝑥) (2.10)

This is called a low-rank reconstruction of the flow field. It means that the majority of the variance
of the flow field is captured by just the first 𝑘 modes. Often the mean is subtracted. [48] give their
approximation as in equation (2.11). In this equation 𝑢(𝑥) is the temporal mean of the flow field, 𝑢′ (𝑥, 𝑡)
the fluctuations around the mean and the values of 𝑎 𝑗 (𝑡) describe the time evolution of the modes. 𝑎 𝑗 (𝑡)
represents the rows of Σ𝑉𝑇 . The value of 𝑎 𝑗 (𝑡) = 𝜑𝑇

𝑗
𝑞(𝑥, 𝑡).

𝑢(𝑥, 𝑡) = 𝑢(𝑥) + 𝑢′ (𝑥, 𝑡) = 𝑢(𝑥) +
𝑁∑︁
𝑖= 𝑗

𝑎 𝑗 (𝑡)𝜑 𝑗 (𝑥) (2.11)

The subtraction of the mean is often not a neutral operation. Often the first mode of a signal corresponds
to its mean. Furthermore, the POD modes must be orthogonal to this mean mode. In complex and
transitional flows, the mean might not correspond to a natural mode of the system. In these cases,
subtracting the mean can alter the energy distribution among the modes [49].

Another operation that is often applied in POD or other forms of ROM is the inclusion of a weighting
scheme. This is especially the case for non-Cartesian coordinate systems. The inherent geometry of such
coordinate systems may result in non-uniform contributions from different spatial regions, which can
bias the energy content captured by the POD modes . This weighting is introduced by formulating a
different covariance matrix as in equation (2.12). Here 𝐶𝑊 is the weighted covariance matrix and A the
data matrix.

𝐶𝑊 = 𝐴𝑇𝑊𝐴 (2.12)

The coefficients within the 𝑊 matrix typically represent the area or volume associated with each
spatial discretisation point [50]. Consequently, points corresponding to larger regions contribute more
significantly, ensuring that each spatial point is fairly weighted in the decomposition.

[45] describe necessary choices that need to be made concerning data that is used to apply POD to
flowfields. Mainly the random variables, q, independent variables 𝑥, the domain Ω, and the means to
obtain sufficient realisations of the process. Numerical simulation data may be too voluminous for a
three-dimensional flow field. This can make the calculation impractical.

2.2.2. Spectral Proper Orthogonal Decomposition
Spectral Proper Orthogonal Decomposition (SPOD) is a subset of POD. [45] describe that in SPOD,
unlike standard POD, described in the previous section, the modes vary in both space and time.
Standard POD, by its very construction, is independent of the order of different instances in time. The
time-dependency of the flow has no impact on the definition of the POD modes [45].
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Figure 2.11: Image compression of a dog using truncated SVD at various ranks 𝑟 . Reproduced from [47] p.10 .

The method for calculating SPOD modes differs from standard POD. The procedure for computing
SPOD here is transcribed from [40].

Similar to standard POD a snapshot matrix is generated for the mapped points into a column vector.
One snapshot vector is generated for each time step. The snapshot matrix 𝑄 is then given according to
equation (2.13). Where each vector 𝑞𝑘 corresponds to the snapshot of the flow at a time step 𝑡𝑘 .

𝑄 = [𝑞1, 𝑞2, · · · , 𝑞𝑀 ] (2.13)

The unique step in SPOD is to partition the snapshot data matrix into smaller, possibly overlapping
blocks and then take each block’s discrete Fourier transform (DFT).

Each block may be written as in equation (5.16).

𝑄𝑛 = [𝑞 (𝑛)
1 , 𝑞

(𝑛)
2 , · · · , 𝑞 (𝑛)

𝑁𝐹
] (2.14)

In equation (5.16) the 𝑘-th entry in the 𝑛-th block is 𝑞
(𝑛)
𝑘

= 𝑞𝑘+(𝑛−1) (𝑁 𝑓 −𝑁0 ) , where 𝑁 𝑓 is the number
of snapshots in each block, 𝑁0 is the number of snapshots in each block, 𝑁𝑜 amount of snapshots by
which blocks overlap, note that this may be 0, and 𝑁𝑏 is the number of blocks. The procedure of
splitting the data matrix into blocks like this is Welch’s method [51]. This is done because the spectral
estimates obtained this way do not converge as the number of snapshots increases. The number of blocks
determines the amount of resolved frequencies. Less blocks mean more frequencies can be resolved,
but the uncertainty at each frequency increases [52]. A schematic of Welch’s method may be seen in
figure 2.12.
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Figure 2.12: Schematic of Welch’s method with blocks for estimating SPOD modes. Reproduced from [40] p. 831.

The DFT of each block is taken and the resulting matrix may be written as in equation (2.15).

𝑄𝑛 = [𝑞 (𝑛)
1 , 𝑞

(𝑛)
2 , · · · , 𝑞 (𝑛)

𝑁𝐹
] (2.15)

In equation (2.15) each vector 𝑞
(𝑛)
𝑘

is defined as in equation (2.16). Here the 𝑤 𝑗 is term added. This
is a scalar weight that can be added to reduce spectral leakage. This is because the data block may
be non-periodic and the DFT algorithm assumes implicitly that the time series repeats itself [53]. [53]
recommend a Kaiser-Bessel window as a first choice, but the choice depends on a compromise between
the width of the resulting peak in the frequency domain and the spectral leakage into other frequencies.
Note that the factor 1/

√︁
𝑁 𝑓 is added to make the transform unitary when 𝑤 𝑗 = 1 for all 𝑗 .

𝑞
(𝑛)
𝑘

=
1√︁
𝑁 𝑓

𝑁 𝑓∑︁
𝑗=1

𝑤 𝑗𝑞
(𝑛)
𝑗

𝑒
−𝑖2𝜋 (𝑘−1) 𝑗−1

𝑁𝑓 (2.16)

[40] provide an algorithm for calculating the modes from the matrix 𝑄𝑛. The algorithm is not transcribed
here for the sake of brevity. The main takeaway is that to find the modes in the data an eigenvalue
problem must be solved for each frequency or frequency of interest. A similar matrix as the 𝑈 matrix
from section 2.2.1 is found called Ψ 𝑓𝑘 . This is the eigenvector matrix that corresponds to the frequency
𝑓𝑘 . The columns of this matrix are the eigenvectors that correspond to the modes inside the data. It
should be noted that at most 𝑁𝑏 non-zero eigenvalues can be obtained. Since an eigenvalue problem
must be solved at many frequencies the SPOD algorithm is more expensive to run than traditional POD.
Implementations of the algorithm mention the high memory usage [54].

[40] demonstrate mathematically that each POD mode can be made up of many SPOD modes. This
highlights that POD modes represent flow phenomena at many different time scales while SPOD modes
decouple the time scales from the phenomena.

2.2.3. Dynamical Mode Decomposition
Dynamical mode decomposition (DMD) is based on POD. It is another method to dimensionally reduce
a complex system. In contrast to POD, DMD provides decomposition that results in a set of modes and
also a model of these modes evolve in time [47].

DMD is a best-fit linear algorithm that advances high-dimensional measurements forward in time [55].
DMD works well for experimental and measurement data similar to the applications for POD.

There are several DMD algorithms, this report focuses on the exact DMD algorithm by [55]. DMD
consists of generating two snapshot matrices. Similar to POD these are long tall matrices where each
column consists of a snapshot of the data of a particular system or random process in time. The
snapshot pair matrices are usually denoted as 𝑋 and 𝑋 ′. The data matrix 𝑋 ′ is the data matrix 𝑋 with
a shift in one column such that 𝑡′

𝑘
= 𝑡𝑘 + Δ𝑡. The respective matrices are shown in equation (2.17) and

equation (2.18).
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𝑋 =


| | | |

𝑋 (𝑡1) 𝑋 (𝑡2) · · · 𝑋 (𝑡𝑚)
| | | |

 (2.17)

𝑋 ′ =


| | | |

𝑋 (𝑡′1) 𝑋 (𝑡′2) · · · 𝑋 (𝑡′𝑚)
| | | |

 (2.18)

The DMD algorithm seeks to find the linear operator 𝐵 that relates the matrices to each other as shown
in equation (2.19).

𝑋 ′ ≈ 𝐵𝑋 (2.19)

The dynamical system resulting from this is then given according to equation (2.20).

𝑥𝑘+1 ≈ 𝐵𝑥𝑘 (2.20)

Mathematically, 𝐵 is defined as in equation (2.21). Here | | · | |𝐹 is the Frobenius norm and 𝑋† is the
pseudo inverse of 𝑋.

𝐵 = argmin
𝑥

| |𝑋 ′ − 𝐵𝑋 | |𝐹 = 𝑋 ′𝑋† (2.21)

Computing 𝐵 is impractical as it is very expensive to compute the inverse. [47] describe the DMD
algorithm to find the DMD modes through a singular values decomposition of X. This algorithm is not
shown in this report for brevity.

DMD enables the reconstruction of system dynamics using data-driven spectral decomposition. The
DMD modes 𝜙 𝑗 are the eigenvectors of 𝐵, and the system’s time evolution can be described by the
formulation in equation (2.22). Here 𝜆 𝑗 are the DMD eigenvalues of the matrix 𝐵 and 𝚽 the matrix of
DMD modes.

𝑥𝑘 =

𝑟∑︁
𝑗=1

𝜙 𝑗𝜆
𝑘−1
𝑗 𝑏 𝑗 = 𝚽𝚲𝒌−1𝒃 (2.22)

The vector 𝒃, which represents the initial conditions of the system. It is computed as in equation (2.23)

𝒃 = 𝚽†𝑥1 (2.23)

𝑥(𝑡) =
𝑟∑︁
𝑗=1

𝜙 𝑗𝑒
𝜔 𝑗 𝑡𝑏 𝑗 (2.24)

One noteworthy property of DMD is that it is formally equivalent to discrete Fourier transform (DFT) for
zero-mean data that is uniformly sampled in time [40]. The equivalence can be seen from equation (2.24).
Here the data is expressed as a sum of complex exponentials and this is precisely what the DFT does.
Each spatial mode 𝜙 𝑗 fluctuates at a single frequency 𝜔 𝑗 with a magnitude of 𝑏 𝑗 .
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2.3. Synthesis
Considering the aim outlined in the introduction—developing a computationally efficient wake model
for wind turbine tower wakes at high Reynolds numbers—Proper Orthogonal Decomposition (POD)
emerges as the most suitable choice among the reviewed Reduced Order Models (ROMs). At these high
Reynolds numbers, the von Kármán vortex shedding frequency broadens considerably, resulting in a
wide spectral peak. This broader frequency spectrum significantly reduces the applicability of Dynamical
Mode Decomposition (DMD), which inherently relies on the identification and isolation of clear, distinct
frequencies. Consequently, DMD is unsuitable in these contexts, given its limited capacity to handle
flow structures characterised by frequency variability.

Spectral Proper Orthogonal Decomposition (SPOD), while beneficial for the clear interpretation of
time-frequency-specific modes, introduces substantial computational challenges, particularly in memory
usage. Given the project’s emphasis on reducing computational cost while still capturing essential flow
characteristics, these practical limitations notably hinder SPOD’s application. Thus, POD remains the
most effective ROM approach, offering a balance between capturing the dominant flow features and
maintaining manageable computational demands.

A rigorously detailed wake model would, in theory, need to account for every mechanism identified
in the literature review-including variations in Reynolds number, surface roughness, spanwise lock-in
phenomena, and the influence of cylinder motion on the wake structures. The present study will restrict
its scope to a height-dependent correlation model, which is intended to capture the primary spanwise
coherence of the tower wake. Limitations arising from the exclusion of other mechanisms are discussed
later in the thesis.



3
Methodology

In this chapter, a methodology is presented for building a stochastic reduced-order model (SROM)
of a tower wake flow. First, data acquisition of an Stress-Blended Eddy Simulation SBES simulation
is described, capturing the turbulent flow data around the tower. Next, the Proper Orthogonal
Decomposition (POD) is applied to extract the dominant wake modes. The selected modes are then
combined with cross-spectral methods to generate stochastic time-series realisations, ensuring realistic
phase relationships and spectral characteristics. Finally, a method is proposed for extending the two-
dimensional representation into a fully three-dimensional flow field by introducing vertical coherence
between multiple horizontal planes. Vertical correlation length and its dependence on turbulence intensity
or structural vibration amplitude are discussed.

3.1. SBES simulation and data acquisition
This study uses data that is acquired through a CFD simulation. This section explains the setup of
this CFD simulation that is used for study. It explains the setup of the quasi-2D and 3D flow cases.
Furthermore it explains the data that is stored from the simulations.

3.1.1. Quasi-2D Mesh and Simulations
The CFD setup employs a Scale-Adaptive Simulation based on the Stress-Blended Eddy Simulation
(SBES) approach to capture the turbulent flow around a tower structure. SBES utilises a hybrid
formulation that combines the Reynolds-Averaged Navier–Stokes (RANS) method, specifically the 𝑘-𝜔
SST model, with Large Eddy Simulation (LES). In this configuration the near-wall region is treated
with the RANS model to avoid the high grid resolution requirements of classical wall-resolved LES.

The computational mesh is designed with distinct zones of refinement. On the 2D surface, the mesh
consists of 600 points in the radial direction and features a cell size of 0.1 m in the spanwise direction.
This surface is illustrated in figure 3.1. In the refined wake region, a first cell height of 1 × 10−5 m is
specified, with a growth rate of 1.07 and a maximum cell height of 0.5 m, covering a region with a
diameter of 70 m. The outer domain is constructed with a growth rate of 1.5, an overall diameter of
305 m, and a maximum cell size of 10 m, ensuring that the far-field flow is adequately captured. These
meshes can be seen in figure 3.2 and figure 3.3 respectively.

17
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Figure 3.1: 2D surface cylinder surface

Figure 3.2: Refined wake mesh Figure 3.3: Outer domain mesh

The geometry of the simulation is based on an extruded cylinder representing the tower, with a diameter
of 5 m. The height of the domain for the quasi-2D flow is half a diameter or 2.5 m. This simulation is
referred to as a quasi-2D case because the height of the domain is significantly smaller than its other
dimensions, meaning that variations in the vertical direction are minimal and the flow behaves almost
two-dimensionally. Inflow conditions are defined by a uniform flow at three different wind speed of 11, 15
and 19 ms−1, with no shear imposed. The turbulence is modelled exclusively using the SBES approach
implemented in CFX, and a fully turbulent flow is assumed throughout, given the transcritical nature of
the regime. At the top and bottom boundaries of the cylinder, periodic conditions without penetration
are applied, while a wall boundary condition is prescribed on the cylinder surface. The no-penetration
boundary constraint sets the 𝑤-component of the velocity to zero at the top and bottom boundaries.
All remaining boundaries are assigned an inlet condition.

The velocity components 𝑢, 𝑣, 𝑤 are acquired in a uniform mesh with a time step of 0.05 s. The mesh is
a 2D slice in the middle of the cylinder height. The mesh that is used to save the points is illustrated in
figure 3.4. The mesh consists of 200 points in the x-direction and 80 in the y-direction. This means that
the resolution of each of the mesh points is 0.25 m by 0.25 m. Data is saved for 2000 time steps. This is
equivalent to 100 seconds of simulated time.
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Figure 3.4: Quasi-2D simulation mesh points used for data acquisition

3.1.2. Three–dimensional (3-D) Mesh and Simulations
To assess the influence of spanwise development, the quasi-2-D grid is extruded to a total height of four
diameters (𝑍 = 20 m). The resulting mesh therefore contains eight times as many control volumes as the
quasi-2D case.

At a wind speed of 19 ms−1 three 3-D simulations are performed:

1. Fixed cylinder — the cylinder remains stationary.
2. Oscillating cylinder, low amplitude — harmonic motion with amplitude 𝐴 = 0.25 m at a

frequency 𝑓 = 1 Hz.
3. Oscillating cylinder, high amplitude — identical frequency, 𝐴 = 0.50 m.
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Figure 3.5: 3D simulation mesh points used for data acquisition

For the wake analysis, the velocity components (𝑢, 𝑣, 𝑤) are stored on a polar grid as shown in figure 3.5.
The grid spans to the right hand side of cylinder. The points are spaced from the surface of the cylinder
to a radial distance of four diameters, using
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• 𝑁𝑟 = 35 radial nodes, uniformly spaced at Δ𝑟 = 0.5 m;
• 𝑁𝜃 = 50 angular nodes, covering 𝜃 = (− 𝜋

2 , 𝜋2 ).

Five horizontal slices are extracted at the non-dimensional heights 𝑧/𝐷 = 0.0, 0.1, 0.2, 0.8, and 1.6.

Temporal sampling differs between cases:

Case Sampling rate Time steps Physical time
Fixed cylinder 100 Hz 9 000 90 s
Oscillating (0.25 m) 100 Hz 3 000 30 s
Oscillating (0.50 m) 100 Hz 3 000 30 s

All other boundary-condition settings match those described for the quasi-2-D simulation, therefore
differences in the results arise solely from three-dimensional flow development.

3.2. Quasi-2D Stochastic Reduced Order Modelling
This section describes the quasi-2D stochastic reduced order modelling (SROM) approach for tower
wake flows. It begins with an explanation of the application of Proper Orthogonal Decomposition
(POD) to isolate the dominant modes from the fluctuating velocity field. The method then uses spectral
techniques to generate stochastic time series from these modal time series. In this process, the modal
signals are transformed into the frequency domain, and spectral colouring is applied to impose the
correct cross-spectral properties, ensuring that the reconstructed time series retain the essential dynamic
characteristics of the flow.

Furthermore, the section outlines how the two-dimensional flow fields are extended to a full three-
dimensional representation. This is achieved by introducing vertical correlations between multiple
horizontal planes. The vertical correlation is modelled using cross-spectral block matrices and exponential
decay functions.

3.2.1. Proper Orthogonal Decomposition
This section focuses on the implementation of proper orthogonal decomposition (POD) for identifying
the dominant modes in the flow. The method decomposes the flow into modes characterised by spatial
variability, with the dominant modes representing the most energetic spatial structures.

The velocity field is expressed as the sum of the mean flow, 𝑽, and the fluctuating flow,𝑽′.

𝑽 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑽 (𝒙, 𝒚, 𝒛) + 𝑽′ (𝑥, 𝑦, 𝑧, 𝑡) (3.1)

POD is applied on the three fluctuating velocity components of 𝑽 (𝑥, 𝑦, 𝑧, 𝑡) namely 𝑢′, 𝑣′ and 𝑤′. The
data matrix 𝐴 as shown in equation (3.2) is constructed after the domain is chosen for the analysis.

𝐴 =
[
𝑢′1 𝑢′2 · · · 𝑢′𝑁

]
=



𝑢′11 𝑢′21 · · · 𝑢′𝑁1
𝑢′12 𝑢′22 · · · 𝑢′𝑁2
...

...
. . .

...

𝑢′1
𝑀

𝑢′2
𝑀

· · · 𝑢′𝑁
𝑀

𝑣′11 𝑣′21 · · · 𝑣′𝑁1
𝑣′12 𝑣′22 · · · 𝑣′𝑁2
...

...
. . .

...

𝑣′1
𝑀

𝑣′2
𝑀

· · · 𝑣′𝑁
𝑀

𝑤′1
1 𝑤′2

1 · · · 𝑤′𝑁
1

𝑤′1
2 𝑤′2

2 · · · 𝑤′𝑁
2

...
...

. . .
...

𝑤′1
𝑀

𝑤′2
𝑀

· · · 𝑤′𝑁
𝑀



∈ R3𝑀×𝑁 (3.2)
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A data matrix 𝐴 of the flow is constructed from the fluctuating velocity components 𝑽′. This means
that the mean is subtracted from the flow. The points chosen lie in the domain described in ??. A
singular value decomposition (SVD) is taken on the fluctuating velocity components as in equation (2.7).
The resulting matrices 𝑈, Σ and 𝑉T are used further in the model.

Due to memory limitations, it is often advantageous to reduce the computational cost of the model.
Consequently, the reconstructed flow is usually defined to contain 95 % of the kinetic energy of the
original flow. The energy content is computed from the singular values in the Σ matrix. The mode
cut-off, 𝑘, is determined according to equation (3.3), where Σ𝑖𝑖 denotes the 𝑖-th singular value of Σ.∑𝑘

𝑖=1 Σ𝑖𝑖∑𝑛
𝑖=1 Σ𝑖𝑖

≈ 0.95 (3.3)

The dominant modes in the flow contain the majority of the energy. This cut-off significantly reduces
the number of modes used in the flow reconstruction. Higher-order modes represent higher fluctuations
in the data and these are excluded.

As an alternative cut-off strategy, this work will also present the optimal truncation method, specifically
the optimal singular value hard threshold (optimal SVHT) [56]. Rather than prescribing a fixed energy
percentage, optimal SVHT determines a data-dependent threshold derived from random-matrix theory.
Modes whose singular values lie below this threshold are, with high probability, dominated by numerical
noise and contribute negligibly to the physical signal. Hence, they are excluded, yielding a more compact
reduced-order model.

3.2.2. Stochastic Time Series Generation
In this section, the method for generating stochastic time series from modal time series is described.
The method is based on classic Gaussian process spectral theory [57, 58]. These methods are applied to
generate stochastic time series. This method has previously been implemented to generate stochastic
time series for wind turbine wakes [43, 59].

The method involves the cross-spectral density (CSD) representation, which describes the frequency-
dependent relationships between different time series components. For each frequency bin 𝑓 , the CSD
is given by a Hermitian matrix 𝑆( 𝑓 ), which captures the spectral energy distribution and coherence
structure of the data. The matrix 𝑆( 𝑓 ) consists of power spectral densities along its diagonal and cross-
power spectral densities in its off-diagonal elements. These cross-power terms encode phase relationships
and statistical dependencies between different components of the time series at a given frequency.

Since the spectral properties vary across frequencies, the full representation of the CSD spans multiple
frequency bins, effectively forming a three-dimensional array or a frequency-dependent set of matrices.
This structure allows for frequency-specific processing, where the CSD is decomposed at each frequency
independently. The decomposition follows according to equation (3.4).

𝑆( 𝑓 ) = 𝐻 ( 𝑓 )𝐻𝐻 ( 𝑓 ) (3.4)

In equation (3.4) 𝐻 ( 𝑓 ) is a matrix whose columns represent correlated spectral modes, and 𝐻𝐻 ( 𝑓 ) is its
Hermitian transpose (complex conjugate transpose). Several decomposition methods can be used to
compute 𝐻 ( 𝑓 ), including Cholesky decomposition and Jacobi methods, which are well suited for positive
definite matrices. Previous implementations of this method have used the LDL decomposition [59] as it
is more numerically stable due to rounding errors. This report utilizes the Cholesky decomposition.

To generate a stochastic time series, the method begins with the matrix 𝑉T, whose rows represent the
different modal time series sorted by descending eigenvalues. The Fourier transform is applied along the
time axis for each row, yielding a transformed matrix 𝑉T. The top 𝑚 dominant modes are selected, and
their Fourier-transformed components are used to construct the CSD matrix across different frequencies.
Since the CSD matrix is computed at each frequency separately, the full spectral representation consists
of a collection of such matrices across all frequency bins. The CSD matrix is constructed from a given
set of Fourier-transformed modal time series 𝑋𝑖 ( 𝑓 ) and 𝑋 𝑗 ( 𝑓 ). The elements of the CSD matrix are
defined in equation (3.5).
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𝑆𝑖 𝑗 ( 𝑓 ) = 𝑋𝑖 ( 𝑓 )𝑋∗
𝑗 ( 𝑓 ) (3.5)

In equation (3.5) 𝑋∗
𝑗
( 𝑓 ) is the complex conjugate of 𝑋 𝑗 ( 𝑓 ). The diagonal elements, 𝑆𝑖𝑖 ( 𝑓 ), represent the

power spectral densities of each individual component, while the off-diagonal elements encode the phase
relationships and coherence between different components of the system.

At each frequency, the CSD matrix is decomposed using the Cholesky decomposition. A realisation
of white noise, 𝑁 ( 𝑓 ), is generated by sampling independent, uniformly distributed phases, Φ, while
preserving Gaussian amplitude distributions. The 𝐻 ( 𝑓 ) matrix acts as a spectral shaping operator,
effectively imposing the correct cross-spectral properties onto the stochastic process. This ensures that
the generated time series maintains the desired correlation structure. The first 𝑚 dominant modes are
then ’coloured’ by applying a spectral transformation derived from the decomposed cross-spectral density
(CSD) matrix. Note that these 𝑚 dominant modes form only a subset of the 𝑘 modes retained according
to either the 95 % energy criterion or the optimal SVHT cut-off, as discussed in section 3.2.1. Here, 𝑘
denotes the total number of retained modes, while 𝑚 (with 𝑚 < 𝑘) represents the most energetically
significant modes selected for spectral colouring.

For modes beyond the dominant modes 𝑚, their phase information is randomized while maintaining
their amplitude spectrum. This step ensures that the spectral energy distribution remains consistent
while removing structured phase relationships for higher-order modes. The final realisation of the modal
time series, 𝜙(𝑡), is obtained by applying the inverse fast Fourier transform (IFFT) as in equation (3.6).

𝜙(𝑡) = F −1 {H( 𝑓 )N( 𝑓 )} = F −1 {
H( 𝑓 )𝑒𝑖Φ

}
(3.6)

This transformed time series 𝜙(𝑡) represents the new modal time series with the desired statistical and
spectral properties.

The remaining temporal modes without the spectral colouring, but with randomized phases are combined
with temporal coloured modes to obtain a new 𝑉T

new,𝑘
matrix as in equation (3.7).

𝑉T
new,𝑘 = Normalize

(
F −1

{
𝑉𝑚 ( 𝑓 )

}
⊕ F −1

{
𝑉𝑘−𝑚 ( 𝑓 )

})
. (3.7)

In equation (3.7) 𝑉𝑚 ( 𝑓 ) is the matrix containing the dominant spectrally, coloured, temporal modes up to
𝑚 and 𝑉𝑘−𝑚 ( 𝑓 ) the remaining Fourier transformed temporal modes up to the cut-off 𝑘 with randomized
phases. The operator ⊕ denotes the vertical concatenation of the dominant 𝑚 and the remaining 𝑘 − 𝑚

modal components. The temporal modes obtained through POD are by construction orthonormal. The
spectral method breaks the orthogonality and the normalization is broken slightly. In order to maintain
the same energy in the reconstructed flow the time series are again normalized to have a norm of 1.

Reconstruction of the generated flow is then done according to equation (3.8). Here 𝑽 (𝒙, 𝒚, 𝒛) the mean
of the original flow, Σ𝑖𝑖 the singular values of the Σ matrix from the SVD and 𝜙i (𝑡) the time series.

𝑽 (𝑥, 𝑦, 𝑧, 𝑡) ≈ 𝑽 (𝒙, 𝒚, 𝒛) +
𝑘∑︁

𝑖=1
Σ𝑖𝑖𝜙i (𝑡) (3.8)

In equation (3.9) the formulation of the reconstruction is again given, but in matrix notation. The
subscripts k indicate the mode cut-off. The matrices have the shapes 𝑈𝑘 ∈ R3𝑀×𝑘 Σ𝑘 ∈ R𝑘×𝑘 and
𝑉T

new,𝑘
∈ R𝑘×𝑇 . Here 𝑀 is the total amount of points used in the analysis and 𝑇 the total amount of

time steps.

𝐴reconstruction = 𝑈𝑘Σ𝑘𝑉
T
new,𝑘 ∈ R3𝑀×𝑇 (3.9)

The reconstruction matrix 𝐴reconstruction contains in each column the velocity components at each point.
The columns of the reconstruction matrix describe the reconstructed flow time evolution at each point.
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3.3. Extending 2D Flow Fields to 3D Using Correlated Fields
In this section, the methodology for extending a set of 2D stochastic flow fields, each defined on a
horizontal plane at different heights, into a fully 3D representation is described. Vertical correlations
between these layers are introduced to ensure that velocity components 𝑢, 𝑣, and 𝑤 remain physically
consistent across different heights while maintaining realistic spatial coherence and phase relationships.

3.3.1. Multi-Layer Flow Representation
For a multi-layer flow representation flows are desired at multiple height locations of the tower. Each
height has a local wind speed 𝑈𝑛, diameter 𝐷𝑛, and spatial coordinate 𝑧𝑛. A previous implementation of
the SROM model has implemented the interpolation of the cross spectral densities (CSD) of modes [59].
It is proposed that this may be possible for the modes of tower wakes. The premise relies on the spatial
patterns remaining similar. The method is implemented by applying a frequency shift to the modes of
the 𝑉T

new,𝑘
matrix.

3.3.1.1. Frequency Shift
Let there be 𝑁 flows, each described by a modal time series as shown in equation (3.10). These time
series are obtained from the POD of the simulation data and are initially identical.

𝑉 (𝑛) (𝑡) ∈ R3𝑀×𝑇 , 𝑛 = 1, . . . , 𝑁, (3.10)

The shedding frequency 𝑓𝑛 for a flow 𝑛 is given by equation (3.11). Here St is the Strouhal number.

𝑓𝑛 = St · 𝑈𝑛

𝐷𝑛

(3.11)

A reference flow (with 𝑈ref and 𝐷ref) is chosen. This is the reference wind speed of the simulated flow
case. A scaling factor for flow 𝑛 as is defined as in equation (3.12).

𝛽𝑛 =
𝑈ref/𝐷ref
𝑈𝑛/𝐷𝑛

(3.12)

To obtain a lower effective frequency for a slower flow the time axis is stretched by this factor 𝛽𝑛
Thus, if a spectral peak originally occurs at frequency 𝑓0, after time stretching it appears at 𝑓new as in
equation (3.13).

𝑓new =
𝑓0
𝛽𝑛

= 𝑓0 · 𝑈𝑛/𝐷𝑛

𝑈ref/𝐷ref
(3.13)

For a given modal time series 𝑥(𝑡) with Fourier transform 𝑋 ( 𝑓 ), the time-stretched signal is defined as
in equation (3.14).

𝑥𝛽𝑛 (𝑡) = 𝑥

(
𝑡

𝛽𝑛

)
, (3.14)

The Fourier transform of this signal is then given according to equation (3.15).

𝑋𝛽𝑛 ( 𝑓 ) = 𝛽𝑛 𝑋
(
𝛽𝑛 𝑓

)
(3.15)

In this manner a spectral component at 𝑓0 is shifted as in equation (3.16).

𝑓new =
𝑓0
𝛽𝑛

(3.16)
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3.3.1.2. Block Cross-Spectral Matrix Construction
A cross-spectral block matrix is constructed for each flow. This matrix captures the correlations between
modes inside each individual flow at each height and the correlations between flows at different heights.

For each flow 𝑛, the FFT of the dominant 𝑚 modes is taken. This yields for a flow 𝑛 the Fourier
transformed matrix 𝑉𝑛 ( 𝑓 ) as in equation (3.17).

𝑉𝑛 ( 𝑓 ) ∈ C𝑚. (3.17)

Considering 𝑁 flows, where each flow 𝑛 is represented by its vector of Fourier coefficients for the 𝑚

dominant modes the vector of coefficients is given as in equation (3.18) at each frequency.

X(𝑛) ( 𝑓 ) =


𝑋

(𝑛)
1 ( 𝑓 )

𝑋
(𝑛)
2 ( 𝑓 )
...

𝑋
(𝑛)
𝑚 ( 𝑓 )


∈ C𝑚 (3.18)

For a single flow, let X(𝑛) ( 𝑓 ) ∈ C𝑚 denote the vector of Fourier coefficients corresponding to the 𝑚

dominant modes of flow 𝑛 at frequency 𝑓 . The auto-spectral density matrix of flow 𝑛 is then defined as
in equation (3.19)

S𝑛𝑛 ( 𝑓 ) = X(𝑛) ( 𝑓 )X(𝑛)∗ ( 𝑓 ) (3.19)

Here the (𝑖, 𝑗)th entry of S𝑛𝑛 ( 𝑓 ) is given by equation (3.20).

𝑆
(𝑛)
𝑖 𝑗

( 𝑓 ) = 𝑋
(𝑛)
𝑖

( 𝑓 )𝑋 (𝑛)∗
𝑗

( 𝑓 ), 𝑖, 𝑗 = 1, . . . , 𝑚 (3.20)

In the formulation of equation (3.20), the diagonal elements 𝑆
(𝑛)
𝑖𝑖

( 𝑓 ) represent the power spectral
density (PSD) of the 𝑖th mode, while the off-diagonal elements capture the cross-spectral densities
which is consistent with equation (3.5). The formulation of this matrix expands to the matrix shown in
equation (3.21).

S𝑛𝑛 ( 𝑓 ) =
©­­­­­«
𝑋

(𝑛)
1 ( 𝑓 )𝑋 (𝑛)∗

1 ( 𝑓 ) 𝑋
(𝑛)
1 ( 𝑓 )𝑋 (𝑛)∗

2 ( 𝑓 ) · · · 𝑋
(𝑛)
1 ( 𝑓 )𝑋 (𝑛)∗

𝑚 ( 𝑓 )
𝑋

(𝑛)
2 ( 𝑓 )𝑋 (𝑛)∗

1 ( 𝑓 ) 𝑋
(𝑛)
2 ( 𝑓 )𝑋 (𝑛)∗

2 ( 𝑓 ) · · · 𝑋
(𝑛)
2 ( 𝑓 )𝑋 (𝑛)∗

𝑚 ( 𝑓 )
...

...
. . .

...

𝑋
(𝑛)
𝑚 ( 𝑓 )𝑋 (𝑛)∗

1 ( 𝑓 ) 𝑋
(𝑛)
𝑚 ( 𝑓 )𝑋 (𝑛)∗

2 ( 𝑓 ) · · · 𝑋
(𝑛)
𝑚 ( 𝑓 )𝑋 (𝑛)∗

𝑚 ( 𝑓 )

ª®®®®®¬
(3.21)

Correlation is also defined between different flows. For two distinct flows 𝑖 and 𝑗 (with 𝑖 ≠ 𝑗), the
cross-spectral block is defined as in equation (3.22). Here X(𝑖) is the vector of the coefficients of the
dominant modes of flow 𝑖 at frequency 𝑓 and 𝐶𝑖 𝑗 is a correlation coefficient between the flows 𝑖 and 𝑗 .
The value of this coefficient is elaborated on in section 3.3.1.3.

S𝑖 𝑗 ( 𝑓 ) = 𝐶𝑖 𝑗

(
X(𝑖) ( 𝑓 )X( 𝑗 )∗ ( 𝑓 )

)
(3.22)

These blocks are assembled into the full block matrix as in equation (3.23). Here 𝑆( 𝑓 ) is the CSD
representation that relates the frequency-dependent relationships of each of the flows at different heights,
diameters and wind speeds.

S( 𝑓 ) =
©­­­­«

S11 ( 𝑓 ) S12 ( 𝑓 ) · · · S1𝑁 ( 𝑓 )
S21 ( 𝑓 ) S22 ( 𝑓 ) · · · S2𝑁 ( 𝑓 )

...
...

. . .
...

S𝑁1 ( 𝑓 ) S𝑁2 ( 𝑓 ) · · · S𝑁𝑁 ( 𝑓 )

ª®®®®¬
∈ C𝑁𝑚×𝑁𝑚 (3.23)
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Again as in section 3.2.2 the S( 𝑓 ) matrix is decomposed as in equation (3.4) into a lower triangular
matrix H( 𝑓 ). The lower triangular matrix is multiplied by a realisation of white noise N( 𝑓 ). This is the
spectral colouring step. After the spectral colouring step, a coloured Fourier coefficient vector Z( 𝑓 ) is
obtained as in equation (3.24).

Z( 𝑓 ) = H( 𝑓 )N( 𝑓 ) ∈ C𝑁𝑚 (3.24)

This vector is structured as shown in equation (3.25).

Z( 𝑓 ) =
©­­­­«

Z1 ( 𝑓 )
Z2 ( 𝑓 )

...

Z𝑁 ( 𝑓 )

ª®®®®¬
, with Z𝑛 ( 𝑓 ) ∈ C𝑚 (3.25)

New modal time series are generated by applying the inverse fast Fourier transform IFFT as in
equation (3.6) on each entry Zn ( 𝑓 ). This imposes the correct cross-spectral properties onto the stochastic
processes for the dominant 𝑚 modes. For the remaining modes their frequency spectra are multiplied by
a random phase. These remaining modes are therefore assumed to not only be independent in their own
height, but also between heights.

The proposed method here applies the shifting of the time series at different layers of the flow based
on different flow velocities and diameters. The data of this study are limited to a uniform inflow and
a uniform diameter tower. Therefore, the application of this method is not compared with flows with
incoming shear or changing tower diameters.

3.3.1.3. Derivation of the Correlation Coefficient
To enforce spatial coherence in the vertical direction, a correlation coefficient is introduced to describe
the correlation of the entire 3D velocity field across different heights. The correlation function that is
commonly used in turbulence studies is modeled using an exponential decay [60, 61, 62]. Correlation of
forcing on cylinders is similarly fit using a exponential decay as in equation (3.26). [17] demonstrated
this for drag and lift relationships on a stationary cylinder. In this equation 𝐶𝑚𝑛 is the correlation
coefficient between velocity fields at heights 𝑧𝑚 and 𝑧𝑛, 𝐿𝑐 is the vertical correlation length and |𝑧𝑛 − 𝑧𝑚 |
the absolute distance between the two layers.

𝐶𝑚𝑛 = exp
(
− |𝑧𝑚 − 𝑧𝑛 |

𝐿𝑐

)
(3.26)

Studies on vortex-induced vibrations (VIV) have shown that the effective correlation length in flow
forcing models is dependent on turbulence intensity and oscillation amplitude [36]. [18] performed
experiments on moving cylinders to measure the correlation length along the cylinder at different
oscillation amplitudes and turbulence intensities. Increased turbulence intensity decreases the correlation
length while increased oscillation amplitude increases the correlation length. This is illustrated in
figure 3.6 and figure 3.7. In the figures 2𝑎 is twice the vibration amplitude, 𝐷 the cylinder diameter and
𝑟 the distance along the cylinder.

Figure 3.6: Smooth flow. Reynolds number: 2 ×104.
Reproduced from [63] p. 289

Figure 3.7: Flow with 11% turbulence intensity.
Reynolds number: 2 ×104. Reproduced from [63] p. 289
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A more general model considers the correlation length as a function of turbulence intensity 𝐼𝑣 and
vibration amplitude of the cylinder. As in equation (3.27) where 𝐼𝑣 is the turbulence intensity and 𝐴/𝐷
the vibration amplitude. Here 𝑓 ( |𝑧𝑚 − 𝑧𝑛 |, 𝐼𝑣 , 𝐴/𝐷) represents an empirical fit, typically taking the form
of an exponential decay similar to equation (3.26). This model captures how both increased turbulence
intensity and vibration amplitude influence the spatial coherence of the forcing. The correlation curves
presented in figure 3.6 and figure 3.7 are consistent with this formulation and are well-approximated by
such exponential decay. An extension of correlation coefficient is given in section 3.3.1.3.

𝐶𝑚𝑛 = 𝑓 ( |𝑧𝑚 − 𝑧𝑛 |, 𝐼𝑣 , 𝐴/𝐷) (3.27)



4
Results

This chapter presents the results from the application of the SROM model on a variety of the datasets.
The application of Proper Orthogonal Decomposition (POD) is present in section 4.1. Subsequently,
section 4.2 presents the results of the stochastic reduced order model (SROM) on the datasets. Section 4.3
discusses the application of the frequency-shift hypothesis and the application of the Grassmann-manifold.
Lastly, section 4.4 present empirical fitting of empirically observed correlations of global bases.

4.1. Proper Orthogonal Decomposition
This section serves to illustrate the spatial and temporal modes that are obtained through proper
orthogonal decomposition (POD). In this section the POD modes for the cylinder wake of quasi-2D flow
case are illustrated for a wind speed 19 m s−1. In section 4.1.1 the 3D simulated case for a stationary
cylinder is illustrated. The POD modes for the 11 ms−1 dataset are presented in appendix A.

The data consists of 2000 time steps of the flow field taken at 20 Hz. In order to remove transience from
the modes the first 300 time steps of the flow are excluded. This allows for the translation of the first
vortices through the entire domain. The mean of the data is subtracted and a direct singular value
decomposition (SVD) is taken.

Figure 4.1 presents the first five spatial modes extracted from the quasi-two-dimensional wake. Modes
1–2 constitute the canonical antisymmetric sine/cosine pair that reconstructs the von Kármán vortex
street and account for the bulk of the fluctuation energy. Modes 3–4—and likewise modes 6-7 shown
in figure 4.2—still exhibit the staggered vortex pattern, albeit with markedly reduced amplitude in
certain regions of the flow. Their eigenvalues differ by less than 3 % and modes 6–7 further form a pair
of comparable energy.

Further observations of the modes can be made, namely that the 𝑤-component of the velocity is not
captured with much structure. This is expected as in a quasi-2D simulation the 𝑤-component compared
with the 𝑢 and 𝑣-components has a much lower amplitude. The 𝑤-component of the modes capture the
expanding wake pattern, but do not contain a distinguishable von Kármán patterns that are present in
the 𝑢 and 𝑣-components.

Figure 4.3 displays the power-spectral density (PSD) of the modal time series. The simulated wake has a
Reynolds number of 𝑅𝑒 ≈ 6.3 × 106. At this high Reynolds number, the peak Strouhal number obtained
from the simulation is appreciably higher than the value of St ≃ 0.24 reported in the literature for
circular cylinders [13, 37]. Consequently, the dominant flow structures identified by the modal analysis
occur at frequencies that do not coincide with those observed experimentally, and the remaining POD
modes are likewise shifted in frequency.

27
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Figure 4.1: First five POD modes of the velocity components 𝑢, 𝑣, and 𝑤 for the quasi-2D simulation.
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Figure 4.2: POD modes 6-10 of the velocity components 𝑢, 𝑣, and 𝑤 for the quasi-2D simulation.
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Figure 4.3: Power spectral density (PSD) of the quasi-2D modal time series at 19 m s−1

This discrepancy limits the quantitative accuracy of the present study in the spectral sense: while the
spatial organisation of the von Kármán street is captured, its temporal signature is offset. Because
the Detached-Eddy Simulation (DES) setup itself is not the focus of this thesis, a re-tuning of the
numerical parameters lies outside the present scope. The modal decomposition nonetheless illustrates
the structures. The frequency shift should be borne in mind during interpretation. Elevated Strouhal
numbers are not unique to the current simulation; high-Reynolds-number DES studies of cylinders wakes
report similar deviations [23, 24].

Mode 5 is similar in appearance to a slow-drift mode observed in [64, 65]. This mode encompasses the
low-frequency perturbations in the near wake and reflects the slight, gradual changes in the shedding
frequency. This is supported by the low frequency seen in the PSD at 𝑓 𝐷/𝑈inf = 0.04. Modes 8, 9
and 10 also exhibit predominantly low-frequency content. Multiple slow-drift modes have been noted
previously [64]. Since these modes have a resemblance to the main slow-drift mode 5 these modes are
also believed to be drift modes.

The duplication of the von Kármán street seen in the modes is not a higher harmonic: the power-spectral
densities of the modal time series 𝜙3,4,6,7 (𝑡) are very similar to the time series of the main mode pair
𝜙1,2 (𝑡). Instead, it is likely attributable to translation-induced rank inflation— an artefact that arises
when space-only POD attempts to describe advecting structures [66]. Because each snapshot is analysed
in a fixed spatial frame, even a slight downstream shift of a vortex core reduces snapshot-to-snapshot
correlation; variance that would reside in a single mode pair is redistributed across several mode pairs.

[66] illustrate the mechanism with a synthetic wake comprising square vortices that translate along the
streamwise axis. When the sampling interval is such that every vortex passes through many distinct
𝑥-locations, the POD rank inflates from two modes (perfectly periodic case) to a dozen or more; the
variance lost from the leading pair re-appears in successive orthogonal pairs whose singular values differ
by only a few per cent.

In a high-Reynolds-number cylinder wake the vortex street is only quasi-periodic: subtle cycle-to-cycle
variations broaden the Strouhal peak. Consequently, a cluster of nearly equal singular values emerges,
and the SVD spreads the vortex-street energy across several mode pairs, most prominently modes 3–4
and 6–7.

To remedy this duplication, [66] propose a co-moving decomposition known as permuted POD (PPOD).
By permuting the data so that snapshots are indexed in the transverse direction while retaining the
space–time coordinates along the advection path (𝑠, 𝑡), PPOD aligns each vortex with itself; under this
formulation the von Kármán street should condense into a single dominant mode—or, at most, one
complex pair—thereby reducing the required number of modes of the reduced-order basis. Although
PPOD is not explored in the present study, it offers a promising avenue for future work, particularly
because it may reduce the amount of data required for converged modal reconstructions.
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Figure 4.4: Power spectral density (PSD) of the 3D stationary cylinder modal time series at 19 m s−1

4.1.1. 3D Stationary Cylinder
The 3D simulations contain data at multiple 2D slices at different heights along the cylinder inside a
polar coordinate system. For a single slice, a weighted singular value decomposition is performed. The
spacing in the radial direction and the angular direction are even. Therefore the weighted matrix 𝐴 is
defined element-wise as in equation (4.1). Here 𝑟𝑖 is the radial coordinate corresponding to the 𝑖-th row
of the matrix 𝐴.

𝐴𝑖 𝑗 =
√
𝑟𝑖 · 𝐴𝑖 𝑗 (4.1)

This may equivalently be written in matrix notation as in equation (4.2). Here 𝐷𝑟 is a diagonal matrix
with entries (𝐷𝑟 )𝑖𝑖 = 𝑟𝑖.

𝐴 = 𝐷
1/2
𝑟 · 𝐴 (4.2)

A direct SVD of the 𝐴 is performed. The unweighted mode vectors 𝑈 corresponding to the original
(unweighted) matrix 𝐴 are recovered through equation (4.3). Where 𝑈 is mode vectors from the direct
SVD of the 𝐴 matrix.

𝑈 = 𝐷
−1/2
𝑟 ·𝑈 (4.3)

A slice at height of 𝑍/𝐷 = 1.6 is chosen to be analysed as this is the slice that is nearest to the centre
of the simulated domain. For best comparison with the quasi 2D simulation the stationary cylinder is
chosen as it is not moving and has the most converged statistics due to the higher number of time steps.
Every 5th time step is taken from the simulation. This means that the data entries in the data matrix
are taken at 20 Hz. This results in the 3D case having an identical sampling frequency as the quasi-2D
case. Again the mean of the data is subtracted. The first 1000 time steps, constituting the first 10
seconds of the data are excluded to remove the transience period of the simulation. The data matrix for
the 3D case contains 1600 time snapshots while the quasi-2D data matrix contains 1700 time snapshots.

The 3D POD modes are illustrated in figure 4.5 and figure 4.6. The von Kármán street appears again
clearly in the first mode pair. The PSD of the modes shown in figure 4.4 clarifies some of the differences
seen between the quasi-2D modes and the 3D modes. The first difference is that the von Kármán street
has a different peak at 𝑆𝑡 = 0.37 instead of 𝑆𝑡 = 0.35 seen in the quasi-2D case. This Strouhal number is
again higher than reported in literature. The data covers 80 seconds of simulated time. At this Strouhal
number that results in approximately 112 cycles. The likelyhood that the difference in 𝑆𝑡 is attributable
to the broadness of the Strouhal peak is therefore small. The Strouhal numbers are however similar and
the difference is not significant.
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The main drift mode for the 3D case appears as the third mode where it is seen as the fifth mode for the
quasi-2D case. Furthermore, the first few modes for the 3D case appear to resemble more drift modes
due to the low frequency content of their PSDs.

Mode 6 has a resemblance to the von Kármán street again. This is again likely attributable to the
redistribution of variance across multiple modes as is proposed to be the reason for the resemblance seen
in the quasi-2D case. In the quasi-2D case, the far field is included up to ten diameters downstream,
while in the 3D case, only four diameters are considered. This reduced domain in the 3D setup is
believed to delay the emergence of von Kármán-like structures to higher modes, whereas drift modes
dominate earlier due to their association with the near wake region.

The 𝑤-component seen in the 3D modes has a greater relative magnitude as compared to the quasi-2D
modes, although the difference remains modest. In the first mode pair the 𝑤-component is more
discernable as an oscillatory von Kármán pattern than the quasi-2D case. The pattern is however still
difficult to discern. Given that approximately 112 oscillatory cycles are captured, the dataset is assumed
to be statistically converged. More data is not likely to improve the pattern. The 𝑤-component is
difficult to capture and its presence is therefore concluded to not be significant despite the larger domain
size of the 3D simulation.
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Figure 4.5: First three POD modes of the velocity components 𝑢, 𝑣, and 𝑤 for the stationary cylinder at 19 ms−1
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Figure 4.6: POD modes 4-6 of the velocity components 𝑢, 𝑣, and 𝑤 for the stationary cylinder at 19 ms−1
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4.2. Stochastic Reduced Order Model Results
This section presents the results of applying the stochastic reduced order model (SROM) to the quasi-2D
cylinder simulation at 19 m s−1 and the 3D stationary cylinder. The focus is on comparing the stochastic
realisations with the original simulation and assessing the effectiveness of the dimensionality reduction.

4.2.1. Implementation of Stochastic Time Series Generation
The quasi-two-dimensional dataset at 19 ms−1 is subjected to a direct singular value decomposition
(SVD) to obtain the spatial modes in the matrix 𝑈, the singular values in Σ, and the temporal coefficients
in 𝑉T. The spatial modes are shown in figure 4.1 and figure 4.2.

Figure 4.7 plots the singular values against the mode index, alongside markers for the 95 % energy cut-off
and the optimal singular value hard threshold (SVHT). Both criteria reveal that a substantial number of
modes must be retained to meet their respective thresholds. The 95 % energy criterion reduces the data
volume by approximately 88 %, while the SVHT cut-off retains only around 45 % of the modes. Beyond
the SVHT threshold, the remaining modes predominantly capture numerical noise and contribute little
to the physical fidelity of the reconstruction. At lower Reynolds numbers far fewer modes are required
to capture a significant amount of energy [64, 67, 68].
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Figure 4.7: Singular values and cumulative energy of quasi-2D POD modes at 19 m s−1.

A cross-spectral block matrix is constructed as per equation (3.5) from the temporal matrix. New time
series for the temporal modes are generated and spectral colouring is applied. The new temporal modes
are given as per equation (3.7). A stochastic realisation of the flow is made is through the matrix
multiplication as per equation (4.4).

Section 4.1 illustrates that the von Kármán street is spread out across many modes. A substantial
number of dominant modes is therefore required to effectively capture this pattern. It is furthermore
desirable to lower the likelihood that extreme values appear in the flow. Extreme values may occur
when individual modes constructively combine and result in extreme flow velocities. The dominant 𝑚

modes cut-off is chosen to be a total of 30 modes. This corresponds to approximately 80% of the energy
in the flow. This is believed to be a fair trade-off between capturing the street effectively and keeping a
reasonable amount of energy for stochastic realisations.

𝐴realisation = 𝑈𝑘Σ𝑘𝑉
T
new,𝑘 (4.4)

Individual realisations of the flow may differ from the original due to the randomised phases of the modes.
This renders direct comparison between single realisations impractical. A previous implementation of the
SROM [69] introduced the spectral error, defined in equation (4.5), to compare stochastic realisations.
In this approach, the power spectrum of a velocity component at a fixed spatial point is compared to
that of other realisations and to the original flow. This metric is, owing to Parseval’s theorem [70],
formally equivalent to comparing signal variances. A proof of this is given in appendix B.
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𝐸𝑆−𝑖, 𝑗 ≡

∫ (
𝑆𝑖 − 𝑆 𝑗

)
𝑑𝑓∫

𝑆 𝑗 𝑑𝑓
(4.5)

Since the focus here lies on ensemble statistics rather than pointwise variance, an alternative metric
based on turbulent kinetic energy (TKE), averaged over multiple realisations, is adopted. The error
metric that is adopted is shown in equation (4.7). Here TKEerror (𝑥) is the error at a position 𝑥 in
the flow, TKEgenerated (𝑥) is the TKE of the generated flow field and TKEoriginal (𝑥) is the TKE of the
original flow. The flow field is inhomogeneous in nature. Therefore the TKE is calculated for each
individual point. TKE is calculated as per equation (4.6).

TKE =
𝑢′2 + 𝑣′2 + 𝑤′2

2 (4.6)

TKEerror (𝑥) =
|TKEoriginal (𝑥) − TKEgenerated (𝑥) |

TKEoriginal (𝑥)
(4.7)

In figure 4.8a and figure 4.8b the TKEerror for the 95% energy cut-off and TKEerror for the SVHT
cut-off can be seen. The energy cut-off criterion illustrates that the region near the cylinder is difficult to
capture with the POD modes. This is a region of separated flow with strong turbulence due to the vortex
shedding from the shear layers bounding the wake. The turbulent structures are badly captured by the
low grid resolution and the low sampling frequency. Many modes are required to capture this region.
For the purposes of a downwind idling situation this region is likely not important. Small turbulent
structures do not have a significant influence on the blade motion and the blade will likely not be in this
region when the blades are bent away from the structure.
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Figure 4.8: Turbulent kinetic over an average of 30 stochastic realisations.

Despite the SVHT cut-off capturing 99.9% of the energy in the flow in terms of the singular values the
error metric in the remains in the order of a few percent. Despite the graph illustrating an averaging
over 30 realisations the distribution of the error is noticeably less smooth than the 95 % energy cut-off.
This illustrates that error metric fluctuates noticeably between realisations.

4.2.2. 3D Simulation
As described in section 4.1.1 a weighted SVD is taken for the stationary cylinder at a slice height of
𝑍/𝐷 = 1.6. In figure 4.9 the singular values of the Σ matrix are plotted against the mode index. Notably
the 95 % energy cut-off is significantly higher than the quasi-2D case at 383 modes. The optimal SVHT
cut-off is also significantly closer to the energy cut-off. The SVHT cut-off is at approximately 98 % of
the energy of the flow.

Stochastic realisations are generated with a dominant mode 𝑚 cut-off chosen at 42 modes. This
corresponds to approximately 60% of the energy in the flow. This cut-off contains more modes than the
cut-off for the quasi-2D case, but is taken at a lower cumulative energy. Despite the lower energy cut-off
less extreme values are observed. This is believed to be a result of the energy being more evenly spread
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Figure 4.9: Singular values and cumulative energy of 3D flow case at slice height 𝑍/𝐷 = 1.6 of stationary cylinder.

over the modes. The chance that many modes constructively combine and produce an extreme value is
then lower. Very high localized values are simply a feature of the model and not necessarily wrong so
long as their frequency matches real world events. Extreme events are seen in turbulence studies [71].
Quantifying the frequency of these events to better estimate a cut-off value is not further explored in
this thesis.

In section 4.2.2 the TKEerror from equation (4.7) is plotted for both the 95 % energy and the SVHT
cut-off. The errors are similar to the errors from the quasi-2D case in that the wake directly near the
cylinder is difficult to capture and more modes are required. The wake further behind the cylinder can
be captured with low errors. This is likely again due to low grid resolution and low sampling frequency.
The SVHT cut-off only modestly lowers the error near the cylinder from around 40% to 25%.

0 1 2 3 4
x/D [-]

4

3

2

1

0

1

2

3

4

y/
D

 [
-]

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a) TKE error 95 % energy cut-off

0 1 2 3 4
x/D [-]

4

3

2

1

0

1

2

3

4

y/
D

 [
-]

0.05

0.10

0.15

0.20

0.25

(b) TKE error SVHT cut-off

Figure 4.10: Stationary 3D simulation turbulent kinetic over an average of 30 stochastic realisations.
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4.3. Verification of the frequency–shift hypothesis
The frequency–shift procedure described in section 3.3.1.1 assumes that the POD spatial modes are
independent of Reynolds number, because only the temporal coefficients are rescaled. If the spatial
structures change notably with 𝑅𝑒, the entire premise is undermined.

4.3.1. Direct Comparison of the Leading Modes
Figure 4.11 juxtaposes the first spatial mode computed from the 19 m s−1 (𝑅𝑒19 ≈ 6.3 · 106) dataset
with its counterpart from the 11 m s−1 case (𝑅𝑒11 ≈ 3.7 · 106). Both datasets share an identical grid and
number of time steps.

(a) First mode, 11 m s−1.
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Figure 4.11: Leading u-component POD spatial mode at two wind speeds.

Even a cursory inspection reveals that the spatial patterns are not identical: eight shed vortices are
visible at the higher velocity, but only seven at the lower one. The wavelengths of the vortices therefore
appear to change between the Reynolds numbers. This discrepancy directly violates the requirement
that the POD spatial modes can be applied as a global basis across multiple Reynolds numbers within
these high Reynolds number regimes.

This difference in POD mode shape at these wind speeds likely stems from the difference in measured
Strouhal number. The PSDs of the modes from both datasets may be seen in figure 4.12. It may be
seen that the Strouhal number for the 19 m s−1 case is approximately 𝑆𝑡 ,19 = 0.35 while the 11 m s−1 it
is approximately 𝑆𝑡 ,11 = 0.32. The fraction of the Strouhal numbers is similar to the observed difference
in visible vortexes with 𝑆𝑡,11

𝑆𝑡,19
≈ 7/8.

(a) PSD temporal modes 11 m s−1. (b) PSD temporal modes 19 m s−1.

Figure 4.12: PSDs of the temporal modes of the 11 and 19 m s−1 datasets.

Another observed difference in the mode shapes is the broadening of the pattern in the y-direction from
the 19 m s−1 case to the 11 m s−1 case. These differences illustrate that the frequency-shift procedure
cannot be applied, because both the Strouhal number and the spatial POD basis vary with Reynolds
number. An alternative method to find the spatial modes alongside a modification of the frequency shift
are required.
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4.3.2. Remedy via Grassmann–manifold Basis Interpolation
A more promising strategy is to adapt the spatial basis along with the Reynolds number. The subspace
at an intermediate velocity 15 m s−1 may be obtained from two known bases at wind speeds 11 m s−1

and 19 m s−1 through the Grassmann-geodesic interpolation of [72]. This section serves to describe this
method.

The Grassmann manifold G(𝑟, 𝑛) is the set of all 𝑟-dimensional linear subspaces of R𝑛. Every orthonormal
matrix 𝑈 ∈ R𝑛×𝑟 whose columns span such a subspace represents a point on G(𝑟, 𝑛). Because different
matrices may span the same subspace (they differ by a right-hand rotation), the Grassmann manifold is
curved: moving from one subspace to another cannot, in general, be described by simple vector addition.

Given two POD bases 𝑈 (𝑘 )
11 and 𝑈

(𝑘 )
19 , truncated to their first 𝑘 energy-dominant modes, are interpreted as

points on G(𝑘, 𝑛). The shortest path between two points on a manifold is a geodesic. By travelling half-
way along the geodesic that connects 𝑈 (𝑘 )

11 to 𝑈
(𝑘 )
19 a third point whose span is expected to approximate

the flow at the mid-range speed of 15 m s−1 is obtained.

Let 𝑈
(𝑘 )
11 ,𝑈

(𝑘 )
19 ∈ R𝑛×𝑘 be the truncated mode matrices at 11 and 19 m s−1, respectively. Denote the

target velocity by 𝑠∗ = 15 m s−1 and define the normalised parameter 𝑤 as in equation (4.8).

𝑤 =
𝑠∗ − 11
19 − 11 = 0.5 (4.8)

The algorithm for obtaining the basis 𝑈15 at a wind speed of 15 m s−1 consists of two steps:

1. Log map. Compute the projection of 𝑈 (𝑘 )
19 onto the tangent space at 𝑈 (𝑘 )

11 as in equation (4.9).

𝑀 =
(
𝑈

(𝑘 )
11

)T
𝑈

(𝑘 )
19 , 𝐵 =

(
𝑈

(𝑘 )
19 −𝑈

(𝑘 )
11 𝑀

)
𝑀−1 (4.9)

The thin SVD 𝐵 = 𝑈Σ𝑉T yields the principal angles Θ = arctanΣ.

2. Geodesic step. Move the fraction 𝑤 along the geodesic per equation (4.10)

𝑈
(𝑘 )
∗ = 𝑈

(𝑘 )
11 𝑉 cos

(
𝑤Θ

)
+𝑈 sin

(
𝑤Θ

)
𝑉T (4.10)

[72] do not specify a specific amount of modes to utilize. It is however seen that including the weakly
converged higher order modes can worsen the geodesic fit. This is illustrated in the subsequent section.

4.3.3. Application of Grassmann-Manifold Basis
The 𝑢-component modes from the quasi-two-dimensional simulation at 15 m s−1 are compared with
modes obtained by Grassmann-manifold interpolation. A cut-off of 𝑘 = 20 is adopted throughout. The
reference POD modes and their Grassmann counterparts are shown side-by-side in figures 4.13 and 4.14.

The Grassmann-interpolated basis reproduces the first POD pair well. The amount of vortices matches
and the interpolated basis captures the expanding wake pattern. Those two features are the main
differences observed in the comparison of the 19 m s−1 and 11 m s−1 cases.

Disparities do arise at the higher orders. Modes 3 and 4 exhibit a noticeable phase shift in the near
wake, while modes 7 and 8 appear closer to the negative counterpart of the POD mode. This behaviour
is not an error but a consequence of the interpolation acting on the span of each basis: the resulting set
remains orthonormal, yet individual modes are free to rotate within that subspace and need not share
the phase of the reference POD modes.
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Figure 4.13: Modes 1-4 of POD basis from 15 m s−1 case alongside Grassmann-interpolated basis
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Figure 4.14: Modes 5-8 of POD basis from 15 m s−1 dataset alongside Grassmann-interpolated basis.
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Figure 4.15: 𝑢-component of the first mode of the full Grassmann interpolated space.
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The geodesic step may be applied for the complete bases. 𝑈 (𝑘 )
11 and 𝑈

(𝑘 )
19 are then taken with 𝑘 being

the rank of the bases matrices. When 𝑘 is taken to be the rank of the bases matrices, the interpolated
first 𝑢-mode is less smooth, as shown in figure 4.15, whereas the truncated choice shown in figures 4.13
and 4.14 this first mode is more smooth. An investigation to determine where the quality of the modes
deteriorates is not further explored in this thesis.

In order to assess how representative the interpolated modes are of the POD basis of the 15 m s−1

dataset the Modal-Assurance Criterion (MAC) [73] is adopted. The formulation of the MAC is shown in
equation (4.11).

MAC𝑖𝑖 =
�� (𝑈T

15 𝑈15,Grassmann
)
𝑖𝑖

�� (4.11)

Here 𝑈15 is the spatial mode matrix of the 15 m s−1 dataset, 𝑈15,Grassmann the mode matrix obtained
through the Grassmann-interpolation method. A MAC value of 1 indicates identical modes; values below
about 0.8 mark noticeable deviations.

The modes that are found by applying the geodesic step are not necessarily in phase with the POD
modes. This is because the Grassmann interpolation preserves the span and mode pairs may be
rotated. Considering the first two orthonormal spatial modes of the Grassmann interpolated method in
figure 4.13 𝑢grass,1 and 𝑢grass,2. A phase advance of 𝜑 radians is realised by the planar rotation as per
equation (4.12).

(
𝑢grass,1 𝑢grass,2

)
=

(
𝑢grass,1 𝑢grass,2

)
R⊤ (𝜑), R(𝜑) =

(
cos 𝜑 − sin 𝜑

sin 𝜑 cos 𝜑

)
. (4.12)

Because R(𝜑) is orthogonal, the rotated pair 𝑢grass,1, 𝑢
′
grass,2 remains orthonormal and spans the same

two-dimensional subspace as the original modes; only the phase reference has changed. Such a rotation
is an equally valid solution on the Grassmann manifold. An illustration of this is given in figure 4.16.
Here the first grassmann mode 𝑢grass,1 is rotated 45 degrees.
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Figure 4.16: Effect of a 45◦ phase rotation on the first member of an oscillatory mode pair. The vortex pattern is shifted
in phase by a quarter cycle.

In figure 4.17 the first three mode pairs are rotated in each of the planes that they span. The MAC is
calculated for each angle. It may be seen that their exists an optimal angle that maximizes the MAC for
these modes that is not necessarily at 0 degrees.
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Figure 4.17: Modal assurance criterion (MAC) as function of planar rotation angle.

The geodesic step is performed at a range of wind speeds between 11 and 19 m s−1. The mode pairs are
rotated to their respective optimum angles to maximize the MAC of each mode pair. This calculation
is performed for only the first mode pair, the first two mode pairs and the first three mode pairs. In
figure 4.18 the average value of the MAC is illustrated for the range of wind speeds. It may be seen that
the first mode pair can attain 99 % alignment with the first POD mode pair. The optimum is better
than that of either side of the geodesic, but not in the centre at 15 m s−1. The unrotated mode pairs
perform worse and their curves have the same shape as the optimum curves.

The third mode pair, despite being optimally rotated, performs noticeably worse than the first and
second mode pairs. The average value of the MAC drops and the optimum wind speed lies at around 12
m s−1 instead of residing around 14 m s−1. The performance of the Grassmann-manifold interpolation
diminishes for higher order modes quickly. The alignment of the first mode pair is significantly higher
than that of the POD modes from the 11 m s−1 and 19 m s−1 datasets. Therefore the method effectively
works to predict the first mode pair.
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Figure 4.18: Average modal assurance criterion MAC of different mode pairs.
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4.3.4. Strouhal–Consistent Temporal Stretching
The vortex–shedding frequency of a circular cylinder is governed by the Strouhal relation of equa-
tion (4.13), where 𝑈inf is the free stream velocity and 𝐷 is the cylinder diameter.

𝑓 = 𝑆𝑡
𝑈inf
𝐷

(4.13)

Section 4.3.1 illustrates that the wake topology changes because St(𝑅𝑒) rises from St11 ≈ 0.32 at 11 m s−1

to St19 ≈ 0.35 at 19 m s−1. The correct frequency shift must therefore match the actual shedding
frequencies, not merely the ratio 𝑈/𝐷 as is proposed in section 3.3.1.1.

Let a reference temporal mode 𝜙ref (𝑡) possess a spectral peak at 𝑓ref = Stref𝑈ref/𝐷ref . To transplant that
mode to a target operating point (𝑈★, 𝐷★, St★) the time axis is stretched by the factor of equation (4.14).

𝛽 =
𝑓ref
𝑓★

=
Stref 𝑈ref 𝐷★

St★𝑈★ 𝐷ref
(4.14)

The factor 𝛽 is applied to every time series obtained from the 19 m s−1 dataset. Since time series are
stretched uniformly the phase relationships between the modes remain. The observed Strouhal number
at 15 m s−1 is 𝑆𝑡 = 0.34; all time series are therefore stretched to match this frequency.

In figure 4.19a the PSD of the temporally stretched time series may be seen. Time stretching behaves as
a low-pass filter, hence the drop in PSD at high frequencies. The temporal components of the first few
modes relate to the lower frequency component of the flow and are therefore not significantly influenced
by the application of this method. In figure 4.19b the PSD of the modes from 15 m s−1 may be seen. The
PSDs of the first few modes align well with the modes of temporally stretched dataset. The remaining
modes do not have matching PSDs, but are relatively close with peaks at approximately the same values.
Modes are also observed to be reordered for the 11 m s−1 and 19 m s−1 datasets. Namely that POD
mode 5 aligns with Grassmann mode 7 in spectral content.

(a) PSD of the stretched time series. (b) PSD of temporal modes.

Figure 4.19: PSDs of the stretched 19 m s−1 dataset and the temporal modes from the 15 m s−1 dataset.

New realisations of the flow are made with stochastic realisations of the new time series by applying
equation (3.7). The geodesic step is applied at a wind speed 𝑈inf = 15 m s−1 for the first 𝑘 = 20 modes.
The resulting basis 𝑈 (20)

15,Grassmann is tested with the new temporal modes.

A realisation of the flow is made as per equation (4.15). Here 𝐴realisation,Grassmann is the data matrix of
the flow realisation, Σ15,𝑘 the first 𝑘 singular values from the SVD of the 15 m s−1 dataset and 𝑉T

stretch,𝑘
the first 𝑘 temporally stretched modes from the 19 m s−1 flow case.

𝐴realisation,Grassmann = 𝑈
(20)
15,GrassmannΣ15,𝑘𝑉

T
stretch,𝑘 (4.15)

The singular values Σ15,𝑘 cannot be known without the 15 m s−1 flow. The singular values should lie
somewhere between the singular values of Σ11,𝑘 and Σ19,𝑘 corresponding to 11 m s−1 and 19 m s−1 cases
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respectively. By utilizing the singular values of the 15 m s−1 dataset the comparison to the flow generated
with the Grassmann modes is easier. The uncertainty from introducing this additional parameter is
then reduced.

In order to assess how well 𝐴realisation,Grassmann compares with the flow from the 15 m s−1 dataset the
first flows consisting of the first 𝑘 = 20 modes from both flows are compared. The TKEerror (𝑥) of
equation (4.7) is calculated for the 15 m s−1 dataset using the first 𝑘 = 20 modes. This error is then the
error that is obtained from performing a cut-off at 20 modes.

In figure 4.20a the error metric is illustrated. Similarly to the 11 m s−1 and 19 m s−1 flow cases the main
error of the flow realisation comes from the near wake behind the cylinder.
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(a) TKE error of 20 modes cut-off 15 m s−1 flow.
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Figure 4.20: TKE error of 20 modes cut-off original 15 m s−1 flow and Grassmann mode interpolated flow.

A total of 30 realisations of 𝐴realisation,Grassmann are made. The average TKEerror (𝑥) of these realisations
are shown in figure 4.20b. The errors are higher than the errors seen in figure 4.20a. Again the near wake
region is difficult to capture. The difference to the rest of the domain is less significant and the errors
are overall higher, but similar in location. Some errors are seen near the border at (𝑋/𝐷,𝑌/𝐷) = (0, 2.0),
likely introduced by numerical noise in the interpolation.

In figure 4.21 the absolute of TKE between figure 4.20a and figure 4.20b is shown. Differences of around
30 % are seen at significant locations inside the flow.
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Figure 4.21: Absolute TKE error difference of POD flow and Grassmann flow.

The discrepancies are believed to originate from the ordering of the modes, although this is not tested.
The PSD assigned to a mode need not match its expected spatial pattern. This means that the associated
singular value and time series of the modes are not assigned correctly. Hence, the modes at these different
Reynolds numbers are reordered differently with respect to their singular values. The corresponding
energy contribution is different and the assignment of time series from one simulation cannot be applied
without manually verifying that the modes and time series are correctly matched.

The modes may also simply not be similar enough. The MAC values indicate that the modes are similar
for the first few modes, but the resemblance quickly diminishes for later modes. The PSDs of figure 4.19
show that the main peak for the first mode pair can be matched by applying the frequency shift. The
frequency shift seems to be applicable for higher modes likewise, but small differences do emerge in the
location of the peaks and the shape of the PSDs. Figure 4.18 indicates that the interpolated modes
perform better when the geodesic step is taken at a slightly lower wind speed. The order of PSDs of the
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modes from the 11 m s−1 dataset are more in line with the PSDs of the temporal modes of the 15 m s−1

dataset. By applying the frequency shift from the modes of 11 m s−1 dataset the method may perform
better.

The modes that are found by applying the geodesic step are not necessarily in phase with the POD
modes. This is because the Grassmann interpolation preserves the span only and mode pairs may be
rotated. The time series of the SROM model requires that spatial modes are in a certain phase with
respect to each other to be applicable. Despite the PSDs looking similar through the stretching of
the time series the phase alignment of the dominant spatial modes with the time series is not clearly
enforced.

This becomes evident when comparing the cross-spectral density (CSD) of the velocity signals from a
stochastic realisation and comparing them to the velocity signals from the dataset. One realisation of
the flow is made from the first six POD modes and the original time series that correspond to these six
modes as per equation (4.16). Here 𝐴

(6)
original is the realisation of the flow with only 6 modes. 𝑈 (6)

15 the
first six columns of the 𝑈15 matrix, Σ15 the singular values of the 15 m s−1 dataset and 𝑉T

15 the time
series of the modes from the 15 m s−1 dataset.

𝐴
(6)
original = 𝑈

(6)
15 Σ15𝑉

T
15 (4.16)

A stochastic realisation is made utilizing the first six Grassmann modes alongside the stretched time
series from the 19 m s−1 dataset. For this realisation the CSD of the time series of the modes are
calculated as per equation (3.7). All six modes are then correlated and therefore no random phase is
introduced.

For both the Grassmann-based and POD-based realisations, the CSD of the 𝑢-velocity component
is computed at two locations, (𝑥, 𝑦) = (12, 1) and (𝑥, 𝑦) = (20, 1), and the results are compared. In
figure 4.22a the PSD at the locations in the flow is illustrated. The PSDs agree reasonably well. In
figure 4.22b the phases at each frequency are seen and the deviations are significant. The high-frequency
deviations are not relevant as the first few modes used in these realisations do not carry much energy
in these frequencies. The lower-frequencies deviate in phase and this illustrates the phase differences
that the Grassmann modes and stretched time series have with respect to the POD modes from the 15
m s−1 dataset. The phase difference between the original and the generated flow at the spectral peak
of 𝑆𝑡 = 0.34 is around 18 degrees. When the generated flow is representative of the original flow this
difference should be close to zero.

(a) PSD of the velocity signals. (b) Phase spectra.

Figure 4.22: CSD comparison of six-mode POD and Grassmann mode realisations.

In figure 4.23 the CSD is again calculated for the first 6 modes. In this realisation the modes are rotated
in phase such that MAC alignment is highest. The PSD of the modes are better aligned. The phase
differences also improve slightly, but the misalignment remains. The phase difference at the spectral of
0.34 at peak occurs at 14 degrees.
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(a) PSD of the velocity signals. (b) Phase spectra.

Figure 4.23: Improved CSD agreement after phase-optimised rotation of the Grassmann basis.

The calculation is again performed for only the first mode pair, the phase offset at the principal peak
is around 1 degree. For a POD mode pair the phase difference should be near zero. The difference is
acceptable and is believed to be a result of the time stretching adding numerical noise.

Despite optimally rotating the Grassmann modes, phase differences remain in the reconstructed flow.
This is demonstrated with only the first three mode pairs. Additional modes are expected to worsen the
misalignment. For a single mode pair the mode shape, PSD and phases of at the spectral peak can be
matched with the Grassmann interpolation method and time stretching.

The first mode pair is seen to match up to 99% with the POD modes after phase alignment at the
optimal geodesic step. The first mode pair is demonstrated to contain relatively little energy at these
high Reynolds numbers. A reconstruction of the flow with only this mode pair will then result in
relatively low velocity magnitudes. The singular values of this first mode pair may be increased to attain
sufficiently high velocity magnitudes. Such a pared-down model may suffice for engineering purposes,
but it remains deterministic and therefore cannot capture stochastic variability.
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4.4. Verification and Fit of Correlation Coefficient
The correlation coefficient as defined in section 3.3.1.3 defines the correlation of modes across different
heights in the 3D correlated flow model. This section serves to find whether the curves shown in figure 3.6
and figure 3.7 are applicable as values for the correlation coefficient for the 3D model.

A global basis is formed from the two-dimensional flow slices along the heights of the cylinder. The
basis is constructed by first concatenating the data series of the slices as by equation (4.17). Here 𝐴(𝑧𝑖 )

are the data matrices at heights 𝑧1, 𝑧2 · · · 𝑧5, 𝑀 is the number of points in each slice and 𝑇 the number
of time steps.

𝐴combined =
(
𝐴(𝑧1 ) , . . . , 𝐴(𝑧5 ) ) ∈ R𝑀×5𝑇 (4.17)

The SVD of the combined matrix 𝐴combined is taken as by equation (4.18). This gives the orthonormal
spatial modes 𝑈combined =

[
u1, u2, . . .

]
.

𝐴combined = 𝑈combined Σcombined 𝑉
T
combined (4.18)

The choice to use a global basis is made to have an identical mode shape for each slice height. Using a
global basis furthermore allows for the concatenation of more data that should allow for slightly more
converged statistics. The first two global modes, u1 and u2, can be seen in figure 4.24. These first modes
correspond to the von Kármán street. This is the structure in the fluid that is associated with the
oscillatory forcing on the cylinders.

The singular values global modes are plotted in figure 4.25. The energy thresholds illustrate that more
modes are required to cover the data compared with the number of modes for an individual slice. Global
modes are less efficient than individual slices [69] and therefore this is expected. The fraction of modes
needed to attain the thresholds are at approximately 10% for the energy cut-off and 42% for the optimal
SVHT cut-off while these are at 24% and 36% for the single slice.
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Figure 4.25: Singular values of global stationary cylinder basis.

4.4.1. Verification of the Global POD Basis
In order to verify that the global modes extracted from the concatenated snapshot matrix are repre-
sentative of the modes obtained from independent spanwise locations the Modal-Assurance Criterion
(MAC) [73] in equation (4.19) is applied. Here 𝑈combined is the global spatial mode matrix, 𝑈slice,𝑧 the
spatial mode matrix of a slice at height 𝑧 and 𝑃𝑧 is a permutation matrix. The permutation matrix is
chosen such that the sum of the diagonal entries of 𝑈T

combined 𝑈slice,𝑧 is maximized. This is done because
some of the modes in the slices are observed to have been reordered compared to the global modes. A
value of 1 indicates identical modes; values below about 0.8 mark noticeable deviations.

MAC𝑖𝑖 (𝑧) =
�� (𝑈T

combined 𝑈slice,𝑧 𝑃𝑧

)
𝑖𝑖

�� (4.19)

The permutation matrix is chosen such that the sum of the diagonal entries of 𝑈T
combined 𝑈slice,𝑧 are

maximized. It is formulated in equation (4.20). Here P𝑘 is the set of all 𝑘 × 𝑘 permutation matrices.
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Figure 4.24: First two global POD modes of stationary cylinder. Illustrating the velocity components 𝑢, 𝑣, and 𝑤
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𝑃𝑧 = arg max
𝑃∈P𝑘

𝑘∑︁
𝑖=1

�� (𝑈T
combined 𝑈slice,z 𝑃

)
𝑖𝑖

�� (4.20)

This is done because the order of the modes of 𝑈combined are not necessarily in the same order as the
𝑈slice,𝑧 modes. By applying the permutation matrix the modes are better matched.

Note that the MAC values quoted below are computed from the modes without performing the 2 × 2
in-plane rotation that maximises pairwise overlap as is performed in section 4.3.4. Consequently, they
represent a lower bound on the true similarity of the modes; a rotation could raise them. Because the
spanwise-correlation analysis in section 4.4.2 depends on the leading mode pair, which already exceeds
0.9 across most slices, this is accepted as a conservative estimate here. A method for finding the highest
MAC pairings that considers both rotation and the permutation matrix is illustrated in appendix C.
Rotation-invariant sub-space metrics, such as the Grassmann geodesic distance [74] or the Asimov
distance based on principal angles [75] exist. These metrics are however not further explored in this
work.

Tables 4.1–4.3 list the diagonal MAC values for the three datasets considered: (a) a stationary cylinder,
(b) an oscillating cylinder with 2𝑎/𝐷 = 0.1, and (c) 2𝑎/𝐷 = 0.2. All datasets are at a wind speed of 19
m s−1. The first two modes are well captured in every case, while the agreement deteriorates for higher
modes, especially close to the no-penetration boundary at 𝑧/𝐷 ≤ 0.2. Figure 4.26 illustrates the first
two modes at 𝑧 = 0. Compared with the global modes shown earlier in figure 4.24 the difference becomes
evident as the slice does not exhibit the von Kármán street in the first two modes.

Table 4.1: Diagonal entries of the MAC𝑖𝑖 for different slice heights, stationary cylinder.

Diagonal entry \ Slice 𝑧/𝐷 = 0 𝑧/𝐷 = 0.1 𝑧/𝐷 = 0.2 𝑧/𝐷 = 0.8 𝑧/𝐷 = 1.6
𝐼11 0.70 0.77 0.97 0.91 0.96
𝐼22 0.68 0.83 0.95 0.91 0.96
𝐼33 0.94 0.68 0.96 0.72 0.81
𝐼44 0.68 0.90 0.91 0.70 0.81
𝐼55 0.54 0.70 0.83 0.61 0.33

Table 4.2: Diagonal entries of the MAC𝑖𝑖 for different slice heights, oscillating cylinder with 2𝑎/𝐷 = 0.1

Diagonal entry \ Slice 𝑧/𝐷 = 0 𝑧/𝐷 = 0.1 𝑧/𝐷 = 0.2 𝑧/𝐷 = 0.8 𝑧/𝐷 = 1.6
𝐼11 0.94 0.97 0.98 0.96 0.95
𝐼22 0.88 0.96 0.97 0.94 0.92
𝐼33 0.39 0.91 0.90 0.89 0.88
𝐼44 0.85 0.85 0.83 0.89 0.63
𝐼55 0.53 0.87 0.89 0.79 0.75

Table 4.3: Diagonal entries of the MAC𝑖𝑖 for different slice heights, oscillating cylinder with 2𝑎/𝐷 = 0.2

Diagonal entry \ Slice 𝑧/𝐷 = 0 𝑧/𝐷 = 0.1 𝑧/𝐷 = 0.2 𝑧/𝐷 = 0.8 𝑧/𝐷 = 1.6
𝐼11 0.96 0.99 0.98 0.98 0.99
𝐼22 0.91 0.98 0.97 0.96 0.97
𝐼33 0.44 0.92 0.75 0.66 0.77
𝐼44 0.45 0.86 0.69 0.70 0.88
𝐼55 0.71 0.75 0.64 0.51 0.74
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The CFD simulation imposes a no penetration boundary condition with a 𝑤 ≡ 0 at the cylinder base
(𝑧/𝐷 = 0). This results in purely two dimensional flow in this slice of the flow. Consequently, the lowest
slices exhibit essentially two-dimensional flow and possess little energy in the 𝑤-component, which in
turn reduces their overlap with the globally dominant, three-dimensional von Kármán street. This is
illustrated in figure 4.26, where the first two slice modes clearly differ from the global counterparts
shown in figure 4.24. Therefore the global basis performs worse at these slice heights.

Oscillating-cylinder cases show systematically larger MAC values for the primary modes. Here the
imposed motion increases the standard deviation of the 𝑢- and 𝑣-fluctuations, strengthening the von
Kármán street and thus enhancing the correlation with the global basis. The MAC may also be higher
due to the imposed motion enforcing the phase of the mode pairs.

A global basis may be constructed solely from the upper slices (𝑧/𝐷 = 0.8 and 1.6) to remove the
wall-induced mismatch. However, such a basis produces noticeably poorer reconstructions for the lower
slices, which would compromise the spanwise correlation analysis presented in the next section. The
trade-off is therefore accepted and revisited.
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Figure 4.26: First two POD modes for slice at height 𝑧 = 0, stationary cylinder.
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4.4.2. Correlation of Modal Time Series
The global modes are projected onto the individual slices as in equation (4.21). Here the time series for
mode 𝑖 at a height 𝑧 are denoted as 𝜙𝑖,𝑧 (𝑡) and a (𝑧) (𝑡) is the 𝑡-th column of 𝐴(𝑧) . This results in time
series for the global modes.

𝜙𝑖,𝑧 (𝑡) = uT
𝑖 a (𝑧) (𝑡), 𝑡 = 1, . . . , 𝑇 (4.21)

Given two heights 𝑧1 and 𝑧2, the Pearson correlation of mode 𝑖 is calculated as by equation (4.22). Here
𝜙𝑖,𝑧 = 𝑇−1 ∑𝑇

𝑡=1 𝜙𝑖,𝑧 (𝑡) denotes the time-average of the modal coefficient 𝜙𝑖,𝑧 (𝑡).

𝑟𝑖
(
𝑧1, 𝑧2

)
=

𝑇∑︁
𝑡=1

(
𝜙𝑖,𝑧1 (𝑡) − 𝜙𝑖,𝑧1

) (
𝜙𝑖,𝑧2 (𝑡) − 𝜙𝑖,𝑧2

)
√√

𝑇∑︁
𝑡=1

(
𝜙𝑖,𝑧1 (𝑡) − 𝜙𝑖,𝑧1

)2

√√
𝑇∑︁
𝑡=1

(
𝜙𝑖,𝑧2 (𝑡) − 𝜙𝑖,𝑧2

)2

(4.22)

The curve 𝑟𝑖 (𝑧1, 𝑧2) as a function of mode number 𝑖 quantifies how rapidly spatial coherence decays
with modal rank and height separation Δ𝑧 = |𝑧2 − 𝑧1 |. The resulting curves are illustrated in figure 4.27
for three different values of Δ𝑧/𝐷. Inside figure 4.27a the correlations for the stationary cylinder are
illustrated while figure 4.27b and figure 4.27c illustrate the correlations coefficients of the oscillating
cylinders. All graphs are at a wind speed of 19 m s−1. The 3D cylinder simulations consist of a stationary
cylinder and two cylinders that oscillate with an amplitude 2𝑎/𝐷 = 0.1 and 2𝑎/𝐷 = 0.2 where 𝑎 = 0.25
m and 𝑎 = 0.50 m respectively.
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(b) Oscillating cylinder with 2𝑎/𝐷 = 0.1
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(c) Oscillating cylinder with 2𝑎/𝐷 = 0.2

Figure 4.27: Correlation coefficient of global POD modes for stationary and oscillating cylinders at 19 m s−1.

From figure 4.27 it becomes evident that the first few modes carry the largest correlation across heights
while the remaining modes rapidly become decorrelated. Furthermore the oscillating cylinder has a
higher correlation coefficient for the first few modes across heights. This is in line with the literature on
correlation of forcing on cylinders [17]. High correlations on the forcing on cylinders are similarly seen
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in DES literature at a slightly higher Reynolds number of 8 × 106 for a cylinder with an aspect ratio of 2
[23].

The graphs also illustrate that the statistics of the flow is not fully converged. This is clear from the
distributions not decaying smoothly and the often negative values for the correlation that have no
physical meaning as it would suggest that structures at a different heights have anti-phase behaviour.
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(c) Oscillating cylinder with 2𝑎/𝐷 = 0.2

Figure 4.28: Correlation coefficient of first mode alongside exponential fit of forcing correlation curve of stationary and
oscillating cylinders at 19 m s−1.

In figure 4.28a, the correlation coefficient of the first mode—calculated from equation (4.22)—is shown
alongside an exponential decay with a correlation length of 𝐿/𝐷 = 1.2. For the oscillating cylinders,
shown in figure 4.28b and figure 4.28c, the correlation coefficients are plotted alongside fitted curves
derived from the forcing correlations in figure 3.6. The first mode corresponds to the von Kármán street
and is therefore the spatial structure that is associated with the oscillatory forcing on the cylinder.

It is observed that the correlation coefficients for the oscillating cases align reasonably well with the
exponential fits, whereas the stationary case shows a lower correlation. This discrepancy is attributed
to two main factors. First, it is possible that the general trend of decreasing correlation length with
increasing Reynolds number persists, and that the CFD simulation accurately captures this behaviour.
Second, the reduced correlation may result from the global basis performing worse on the dataset.

This second point is well illustrated by the two points at Δ𝑧/𝐷 = 0.8. These points correspond to the
correlation of the slice pair at heights 𝑧 = 0, 𝑧 = 0.8 and the slice pair 𝑧 = 0.8 and 𝑧 = 1.6. The correlation
between slice 𝑧 = 0 and 𝑧 = 0.8 is lower than that of the other pair. The no-penetration boundary
constraint at 𝑧 = 0 makes the flow in this slice less similar to the flow of 𝑧 = 0.8 than the flow at 𝑧 = 1.6,
thereby the correlation of the modal time series is reduced.

The data range is also limited due to the limitations of the 3D cylinder CFD simulations. Simulations
of longer cylinders are desired to confirm if the correlation follows along longer length scales as is
suggested from experiments. Longer cylinder simulation with slices taken further away from the
boundary constraints will result in a global basis that aligns better with individual slices. The subsequent
correlations of the time series can then be investigated better.
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4.4.3. Fitting of Modal Correlation Coefficient
The correlation coefficients of the cylinders illustrated in figure 4.27 are fitted as a function of length
scale and mode index.

Given the Pearson correlation coefficient 𝐶 (𝑘,Δ𝑧) between the temporal coefficients of mode 𝑘 at two
vertical positions whose separation is Δ𝑧, two functional forms that satisfy the normalisation condition
of equation (4.23) are investigated. Namely, the multiplicative stretched exponential (MSE) as per
equation (4.24) and stretched power law (SPL) as per equation (4.25). Here 𝑥 = Δ𝑧/𝐷 is the dimensionless
separation, with 𝐷 = 5 m the reference diameter of the cylinder.

𝐶 (𝑘, 0) = 1 ∀ 𝑘 ∈ N (4.23)

𝐶MSE (𝑘, 𝑥) = exp
[
− 𝑎 𝑘𝛽 𝑥𝛼

]
(4.24)

𝐶SPL (𝑘, 𝑥) =
(
1 + 𝑎 𝑘𝛽 𝑥𝛼

)−𝑝 (4.25)

The parameters 𝑎 > 0, 𝛼 > 0, 𝛽 > 0, 𝑝 > 0 (SPL only) control, respectively, the overall decay
amplitude, the spatial–decay exponent, the mode-number exponent, and—only for the SPL model—the
tail heaviness.

4.4.4. Fitting Procedure
For every admissible pair of mode number 𝑘 and dimensionless separation 𝑥 = Δ𝑧/𝐷 the Pearson
correlation 𝐶 (𝑘, 𝑥) is calculated. Non–positive values are discarded before the regression.

The model parameters 𝜽 = (𝑎, 𝛼, 𝛽) for the MSE equation (4.24) and 𝜽 = (𝑎, 𝛼, 𝛽, 𝑝) for the SPL
equation (4.25) are obtained with the scipy.optimize.curve_fit [76] routine, which performs a non-
linear least-squares minimisation of the residual sum as in equation (4.26). Here 𝐶𝑖 are the Pearson
correlation coefficients that are being fit. The fit is subject to the positivity constraints 𝑎, 𝛼, 𝛽, 𝑝 > 0.

𝑆(𝜽) =

𝑀∑︁
𝑖=1

[
𝐶𝑖 − 𝐶model

(
𝑘𝑖 , 𝑥𝑖; 𝜽

) ]2
(4.26)

The results of the fitting for the oscillating cylinder with 2𝑎/𝐷 = 0.2 can be seen in figure 4.29. It
may be seen that the fits perform increasingly well with increasing of the Δ𝑧, as both models tend to
underestimate the correlations at smaller separations, particularly for the majority of modes shown in
figure 4.29a. Overall, the SPL model provides a marginally better fit at low mode numbers. This is
especially desirable, as the lower modes contain the majority of the flow energy and should therefore be
prioritised in the fitting. The corresponding model parameters are listed in table 4.4

The fittings of the oscillating cylinder with 2𝑎/𝐷 = 0.1 and the stationary cylinder alongside their fitting
parameters may be seen in appendix E.

Table 4.4: Optimised parameters for the two-variable decay models.

Model 𝑎 𝛼 𝛽 𝑝

MSE 0.461 0.507 0.494 -
SPL 0.536 1.58 2.28 0.366

Mode-dependent coherence. The proposed 3D model as proposed in section 3.3 through the analysis
in this section warrants the modification that the correlation coefficient is not simply a single coefficient
dependent on vertical distance, but also on the mode number 𝑘. The correlation between two distinct
slices of the flow 𝑖 and 𝑗 (with 𝑖 ≠ 𝑗) is expanded from the definition earlier shown in equation (3.22).
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(a) Δ𝑧/𝐷 = 0.1
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(b) Δ𝑧/𝐷 = 0.2
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(c) Δ𝑧/𝐷 = 0.8
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(d) Δ𝑧/𝐷 = 1.5
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Figure 4.29: Correlation coefficient fitting using MSE and SPL curves of oscillating cylinder with 2𝑎/𝐷 = 0.2.
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The modified cross spectral block is formulated in equation (4.27). This modification simply lowers the
coherence to the empirically observed value.

𝑆
(𝑘 )
𝑖 𝑗

( 𝑓 ) = 𝐶 (𝑘,Δ𝑧𝑖 𝑗 )𝑋 (𝑖)
𝑘

( 𝑓 )𝑋 ( 𝑗 )∗
𝑘

( 𝑓 ), 𝑖 ≠ 𝑗 (4.27)

In equation (4.27) 𝐶 (𝑘,Δ𝑧) ∈ [0, 1] is the empirical coherence surface fitted using an SPL or MSE curve
with the SPL being the preferred fit for its better performance for low order modes.

The fittings presented here in this section are empirical fits of the observed data from the CFD simulations.
In principle any modal correlation can be enforced by chosen functions for 𝐶 (𝑘,Δ𝑧). These correlations
may then be chosen from measured data, or tuned depending on the conditions. Expansions may include
more than just oscillation amplitude. Considerations can be made for turbulence intensity and wind
shear. Their influence has been illustrated to reduce correlation along span [16, 18].



5
Stream Function and Toroidal-poloidal

Decomposition Modal Fitting

This chapter describes a method to fit POD spatial modes with a divergence-free, no-slip stream-function
basis. First, in section 5.1, the von Kármán vortex street is shown to be essentially two-dimensional,
so only the toroidal (in-plane) potential is retained. Next, in section 5.2, a Joukowski transform maps
the exterior of the cylinder to a simple plane where the cylinder wall becomes a straight line. In that
transformed domain, integrated Laguerre functions (downstream) and Gaussian–Hermite functions
(cross-stream) are chosen in section 5.2.1 so that 𝜓 = 0 and 𝜕𝜉𝜓 = 0 on the wall, enforcing no-slip
automatically. A weighted constraint is introduced in section 5.2.1.1 to remove one coefficient per Hermite
column and eliminate normal velocity. Finally, the fitted coefficients are mapped back to physical space
via the Jacobian, producing divergence-free, no-slip modes for use in a stochastic reduced-order model.
The resulting fitting errors are then analyzed in section 5.3.

5.1. Quasi-2D Modal Fitting Using Toroidal Stream Function
Basis

Any solenoidal vector field V(𝑥, 𝑦, 𝑧) =
(
𝑢, 𝑣, 𝑤

)⊤ can be decomposed uniquely into a toroidal part
and a poloidal part [77]. The decomposition can be seen in equation (5.1). Here 𝑇 and 𝑃 are scalar
potentials and ê𝑧 is a chosen symmetry axis. Both components are divergence-free by construction:
∇· ∇ × (·) = 0 = ∇· ∇ × ∇(·).

𝑽 (𝑥, 𝑦, 𝑧) = ∇×
(
𝑇 (𝒙) ê𝑧

)︸          ︷︷          ︸
toroidal=𝒖𝑡

+ ∇× ∇
(
𝑃(𝒙) ê𝑧

)︸             ︷︷             ︸
poloidal=𝒖𝑃

(5.1)

In this study, flow data are confined to two-dimensional measurement planes around cylinders at high
Reynolds number. Such flows are dominated by the von Kármán vortex street, a coherent, periodic
array of spanwise vortices shed alternately from either side of the cylinder. Experimental and numerical
investigations [78, 79] have shown that these structures are predominantly planar, with in-plane velocities
(𝑢, 𝑣) carrying the bulk of the kinetic energy and possessing high spatial coherence. In comparison, the
vertical velocity 𝑤 and the associated streamwise vortices carry a far smaller energy fraction [80].

Proper orthogonal decomposition (POD) of the measured velocity snapshots as shown in section 4.1
confirms that the dominant energetic structures correspond to the classical von Kármán vortex street.
The first few modes exhibit the familiar alternating circulation cells and capture the vast majority
of the kinetic energy contained in the horizontal velocity components. By contrast, the associated
𝑤-components contribute only a small fraction of the total energy and display markedly weaker spatial
coherence. Their amplitudes are an order of magnitude lower and their patterns lack the well-organised
vortical cores visible in the leading in-plane modes.
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This strong scale separation between the large, energetic in-plane vortices and the smaller, less organised
out-of-plane structures motivates a simplification: in the measurement plane only the toroidal scalar
potential 𝑇 is approximated, thereby neglecting the vertical velocity component 𝑤 altogether. The
vertical coherence of the von Kármán street is sufficiently long that this quasi-2D model remains accurate
for reconstructing the dominant dynamics [78, 80]. This can also be concluded from the correlation of
the forcing on the cylinder as is illustrated in section 3.3.1.3.

The velocity field is then given by the planar curl as per equation (5.2).

𝑽 (𝑥, 𝑦, 𝑧) = ∇ ×
(
𝑇 (𝑥, 𝑦) 𝒆̂𝑧

)
=

(
𝜕𝑇

𝜕𝑦
, −𝜕𝑇

𝜕𝑥
, 0

)⊤
(5.2)

The vertical component 𝑤 in equation (5.2) vanishes, ensuring that the model captures purely in-plane,
divergence-free motion. This toroidal formulation is equivalent to a stream function. Any remaining
energy is formally contained in the poloidal field 𝒖𝑃. Consequently, the following work will focus on
recovering the dominant von Kármán street and other large-energy in-plane features by performing a
fitting to the earlier found POD modes. This proposed model can later be augmented with 𝑃 once
volumetric data become available.

5.2. Basis Choices and the Joukowski Transform
Proper orthogonal decomposition (POD) is purely a data-based method. The resulting spatial modes
and the reduced order model obtained from the method do not necessarily fulfil physical constraints
such as mass-conservation and the no-slip condition on the cylinder wall. Choosing physically informed
basis can reintroduce some of the desired physics.

The POD analysis from section 4.1 demonstrates that the coherent structures decay smoothly in the
downstream far field. The rectangular domain contains the cylinder. Representing such a domain
directly in Cartesian coordinates is inconvenient: the presence of the solid body leaves an annular hole
that must be excluded from every quadrature rule and from every global basis expansion. A classical
remedy is to map the punctured plane onto a simply-connected domain with a conformal transformation.
For a circular cylinder the canonical choice is the Joukowski map [81]. The formulation may be seen in
equation (5.3) where the scaling 𝑅 = 2.5 m matches the cylinder radius in the simulation.

𝑤 = 𝑓 (𝜁) = 𝜁 − 1
𝜁
, 𝜁 =

𝑥 + 𝑖𝑦

𝑅
(5.3)

Under 𝑓 the whole exterior of the cylinder (|𝜁 | > 1) is sent to the full (𝜉, 𝜂) =
(
ℜ𝑤,ℑ𝑤

)
plane. The unit

circle |𝜁 | = 1 collapses to the vertical slit 𝑤 = 𝑒𝑖 𝜃 − 𝑒−𝑖 𝜃 = 2𝑖 sin 𝜃 =⇒ 𝜉 = 0, 𝜂 ∈ [−2, 2], this way the
cylinder wall becomes the straight segment 𝜉 = 0 from 𝜂 = −2 to 𝜂 = 2 [81]. Approaching that segment
from the right half-plane (𝜉 → 0+) or the left half-plane (𝜉 → 0−) corresponds, respectively, to coming
from the exterior or the interior of the circle; the mapping is therefore one-to-one everywhere except
on the slit, where it is two-to-one. The original and transformed coordinates may be seen in figure 5.1
and figure 5.2 respectively. The far field deforms little while the points near the cylinder experience the
largest deformations.
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Figure 5.1: Cartesian coordinates (physical plane).
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Figure 5.2: After Joukowski mapping (𝜉 , 𝜂 plane).

The Joukowski map is analytic except at the isolated point 𝜁 = 0 (where 1/𝜁 has a pole) and at 𝜁 = ±𝑖
(where 𝑓 ′ (𝜁) = 1 + 𝜁−2 vanishes). Away from those singularities it is conformal, preserving angles and
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local orientation and, crucially, leaving harmonic functions harmonic. Consequently, an expansion that
is incompressible in the Joukowski domain remains incompressible after mapping back to Cartesian
coordinates.

In figure 5.3, the first mode is shown after applying the Joukowski transform. The cylinder gap disappears
in the transformed plane. The resulting deformation of the transformation is also most clearly seen in
this region of the cylinder. In the far field the deformation is minimal.
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Figure 5.3: Joukowski transformation of first spatial mode

5.2.1. Choice of Modal Basis in the 𝜁–plane
The POD spatial modes are represented using a toroidal stream function basis. The POD basis are
fitted after a Joukowski map is applied. The coordinates and the respective velocity components 𝑢 and
𝑣 are converted to the velocity components 𝑢𝜁 and 𝑣𝜁 in the 𝜁-plane respectively. The points on the
cylinder edge are mapped to the straight line segment from 𝜂 = −2 to 𝜂 = 2 at 𝜉 = 0 in the 𝜁 plane. A
basis expansion where the function value is 0 at 𝜉 = 0 enforces the no-slip condition by construction.
The kinematic no–slip condition therefore requires that both velocity components satisfy 𝑢𝜁 (𝜉=0, 𝜂) = 0
and 𝑣𝜁 (𝜉=0, 𝜂) = 0,∀𝜂 ∈ (−2, 2). Writing the flow in terms of a stream function 𝑢𝜁 = 𝜕𝜂𝜓, 𝑣𝜁 = −𝜕𝜉𝜓,
the two constraints are as implemented through the boundary condition in equation (B.C.𝜓). Note that
the boundary condition 𝜓(0, 𝜂) = 0 is stronger than necessary as it enforces the 𝑢𝜁 component to be
zero on the entire axis 𝜂 = 0, rather than just on the segment 𝜂 ∈ (−2, 2). However, since the mean flow
is subtracted and only small fluctuations occur near this boundary, few modes carry significant energy
in this region. The stricter condition is therefore not expected to substantially degrade the quality of
the fits compared to a constraint applied solely on the line segment 𝜂 ∈ (−2, 2).

𝜓(0, 𝜂) = 0, 𝜕𝜉𝜓(0, 𝜂) = 0 (B.C.𝜓)

The POD spatial modes are expressed in the 𝜁–plane using tensor–product basis functions of the form
of equation (5.4). Here 𝐵𝑛 (𝜉) and 𝐵𝑚 (𝜂) are arbitrary basis functions depending only on the 𝜉 and
𝜂 coordinates respectively. Note that the mean is subtracted from the flow. Therefore the far field
constraint that the flow should equal the free stream velocity is automatically fulfilled.

𝑇𝑁𝑥 ,𝑁𝑦
(𝜉, 𝜂) =

𝑁𝑥∑︁
𝑛=0

𝑁𝑦∑︁
𝑚=0

𝑎𝑘𝑛 𝐵𝑛 (𝜉)︸︷︷︸
streamwise

𝐵𝑚 (𝜂)︸ ︷︷ ︸
cross-stream

(5.4)

The coefficients 𝑎𝑛𝑚 are obtained by solving the least-squares problem in equation (5.5). All fitting is
therefore carried out in the 𝜁 -plane and the true Cartesian velocity components are only recovered after
the fitting.

min
𝑎𝑛𝑚



(𝑢𝜁 , 𝑣𝜁 ) − ∇ ×
[
𝑇𝑁𝑥 ,𝑁𝑦

𝒆̂𝑧
]
( 𝜉 ,𝜂)



2
2 (5.5)
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The functions 𝐵𝑛 (𝜉) are responsible for the streamwise representation while 𝐵𝑚 (𝜂) resolve the cross–stream
structure. The two families of functions are chosen so that (i) the no–slip boundary condition at the
cylinder surface is satisfied, (ii) truncations remain divergence–free, and (iii) only a modest number of
modes is required to approximate the velocity field in both the near and the far wake. The third point
here also has the benefit of reducing the data requirements for representing the field.

The basis functions tested are:

• Λ𝑘 (𝜉) =
1√︁

Γ(𝑘 + 1)

∫ 𝜉

0
𝐿𝑘 (𝑠) 𝑒−𝑠/2d𝑠 the integrated Laguerre functions.

• 𝜒𝑛 (𝜂) the Gaussian–Hermite functions.

The integrated Laguerre function are defined in equation (5.6) while the Hermite basis functions are
shown as in equation (5.7). Here 𝐿𝑘 is the probabilists’ Laguerre polynomial [82] and Γ is the gamma
function. The choice for a Hermite basis ensures mass conservation through each vertical slice. A proof
of this is provided in appendix D. The choice of Hermite basis function is furthermore a logical choice as
these functions generally provide accurate fits for diffusion problems [83] and should therefore provide
an accurate fit for the far field. Because every 𝐿𝑘 (0) = 1 the family obeys Λ𝑘 (0) = 0, Λ′

𝑘
(0) = 1√

Γ (𝑘+1)
,

the stream function therefore itself vanishes on the cylinder wall. Furthermore, the velocities decay
exponentially downstream, just like the true wake behind a cylinder.

Λ𝑘 (𝜉) =
1√︁

Γ(𝑘 + 1)

∫ 𝜉

0
𝐿𝑘 (𝑠) 𝑒−𝑠/2 d𝑠, 𝑘 = 0, 1, . . . (5.6a)

𝐿𝑘 (𝜉) =
𝑘∑︁

𝑚=0

(
𝑘

𝑚

)
(−𝜉)𝑚
𝑚! , 𝑘 = 0, 1, . . . (5.6b)

𝜒𝑛 (𝜂) =
𝐻𝑛

(
𝜂/𝜂0

)
𝜋1/4

√︁
2 𝑛𝑛! 𝜂0

𝑒−𝜂2/(2𝜂2
0 ) (𝑛 = 0, 1, . . . ) (5.7)

The corresponding velocity components that are fitted follow from the planar curl, 𝑢𝜁 = 𝜕𝜂𝑇, 𝑣𝜁 = −𝜕𝜉𝑇 .
The relation between the fitted pair

(
𝑢𝜁 , 𝑣𝜁

)
and the physical velocity components (𝑢, 𝑣) is obtained

from the Jacobian of the Joukowski map as per equation (5.8).

J(𝑥, 𝑦) = 1
𝑅

(
ℜ

(
1 + 𝜁−2) −ℑ

(
1 + 𝜁−2)

ℑ
(
1 + 𝜁−2) ℜ

(
1 + 𝜁−2)) , 𝜁 =

𝑥 + 𝑖𝑦

𝑅
(5.8)

The Jacobian of equation (5.8) provides (𝑢, 𝑣)⊤ = J−1 (𝑥, 𝑦) (𝑢𝜁 , 𝑣𝜁 )⊤. The velocity components 𝑢𝜁 and 𝑣𝜁
are therefore first fit in the Joukowski plane and subsequently converted back to the Cartesian velocity
components 𝑢 and 𝑣.

5.2.1.1. Enforcing the No-slip Condition
Each integrated Laguerre function satisfies Λ𝑘 (0) = 0, therefore the tensor product in equation (5.4)
automatically gives 𝜓(0, 𝜂) = 0 for every 𝜂, which in turn forces the tangential velocity component
𝑢𝜁 = 𝜕𝜂𝜓 to vanish on the cylinder wall. The wall–normal component involves the derivative 𝜕𝜉𝜓.
Evaluating the expansion at 𝜉 = 0 yields equation (5.9). Here 𝑊𝑛 is the linear relation that is required
to equal 0 as per equation (5.10). The normal velocity disappears provided equation (5.10) is met.

𝑣𝜁 (0, 𝜂) = −
𝑁𝑦∑︁
𝑛=0

( 𝑁𝑥∑︁
𝑘=0

𝑎𝑘𝑛√
Γ (𝑘+1)

)
︸            ︷︷            ︸

=:𝑊𝑛

𝜒𝑛 (𝜂) (5.9)
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𝑊𝑛 =

𝑁𝑥∑︁
𝑘=0

𝑎𝑘𝑛√︁
Γ(𝑘 + 1)

= 0, 𝑛 = 0, . . . , 𝑁𝑦 (5.10)

In order to meet the constraint one coefficient per Hermite column is eliminated. This is chosen to be the
highest-order Laguerre coefficient. Because each mode enters 𝑣𝜁 (0, 𝜂) multiplied by Λ′

𝑘
(0) = 1/

√︁
Γ(𝑘 + 1),

the cancellation must act on the weighted coefficients 𝑎𝑘𝑛/
√︁
Γ(𝑘 + 1). Setting the weighted sum to zero

and solving for 𝑎𝑁𝑥 ,𝑛 gives equation (5.11).

𝑎𝑁𝑥 ,𝑛 = −
𝑁𝑥−1∑︁
𝑘=0

√︁
Γ(𝑁𝑥 + 1)√︁
Γ(𝑘 + 1)

𝑎𝑘𝑛, 𝑛 = 0, . . . , 𝑁𝑦 (5.11)

Substituting equation (5.11) into the design matrix removes one column per column-block and therefore
reduces the number of unknowns from (𝑁𝑥+1) (𝑁𝑦+1) to 𝑁𝑥 (𝑁𝑦+1).

5.2.1.2. Design Matrix with and without Constraint
For each pair of polynomial indices (𝑘, 𝑛) the discrete velocity samples of an integrated Laguerre–Hermite
basis populate two columns, as shown in equation (5.12), for each 𝑘 = 0, . . . , 𝑁𝑥 and 𝑛 = 0, . . . , 𝑁𝑦 . These
columns are valid for 𝑘 = 0, . . . , 𝑁𝑥 .

d(𝑢𝜁 )
𝑘,𝑛

= Λ𝑘 𝜒
′
𝑛 (5.12a)

d(𝑣𝜁 )
𝑘,𝑛

= − Λ′
𝑘 𝜒𝑛 (5.12b)

In equation (5.12) Λ𝑘 = Λ𝑘 (𝜉) and 𝜒𝑛 = 𝜒𝑛 (𝜂) are evaluated at the 𝑁𝑠 measurement points. Equa-
tion (5.12) therefore lists the full set of columns before the weighted column-sum constraint of equa-
tion (5.11) is enforced.

Embedding the constraint proceeds by eliminating the highest–order Laguerre coefficient in each Hermite
column and rewriting it with the lower–order ones through (5.11). Substituting this relation gives the
shifted columns as in equation (5.14). Here 𝑘 = 0, . . . , 𝑁𝑥 − 1.

d̃(𝑢𝜁 )
𝑘,𝑛

=
(
Λ𝑘 − 𝑟𝑘Λ𝑁𝑥

)
𝜒′
𝑛, (5.13)

d̃(𝑣𝜁 )
𝑘,𝑛

= −
(
Λ′

𝑘 − 𝑟𝑘Λ
′
𝑁𝑥

)
𝜒𝑛 (5.14)

The weight 𝑟𝑘 defined in equation (5.15) originates from the derivative Λ′
𝑁𝑥

(0).

𝑟𝑘 =

√︄
Γ(𝑁𝑥 + 1)
Γ(𝑘 + 1) (5.15)

Collecting all Hermite indices 𝑛 = 0 . . . 𝑁𝑦 yields the block matrices of for the 𝑢𝜁 - and 𝑣𝜁 -components in
equation (5.16).

D̃(𝑢𝜁 )
𝑘

=
[
d̃(𝑢𝜁 )
𝑘,0 | . . . |d̃(𝑢𝜁 )

𝑘,𝑁𝑦

]
, (5.16a)

D̃(𝑣𝜁 )
𝑘

=
[
d̃(𝑣𝜁 )
𝑘,0 | . . . |d̃(𝑣𝜁 )

𝑘,𝑁𝑦

]
(5.16b)

Stacking first all 𝑢𝜁 –components and then all 𝑣𝜁 –components constructs the reduced design matrix of
equation (5.17).
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M̃ =

[
D̃(𝑢𝜁 )

0 | . . . |D̃(𝑢𝜁 )
𝑁𝑥−1︸                 ︷︷                 ︸

𝑢𝜁 –rows

| D̃(𝑣𝜁 )
0 | . . . |D̃(𝑣𝜁 )

𝑁𝑥−1︸                ︷︷                ︸
𝑣𝜁 –rows

]
∈ R2𝑁𝑠×𝑁𝑥 (𝑁𝑦+1) (5.17)

Given the 𝑀 the least-squares system may be defined as in equation (5.18). Here ã ∈ R𝑁𝑥 (𝑁𝑦+1) are the
desired coefficients to be solved and 𝑢data

𝜁
are the stacked 𝑢𝜁 and 𝑣𝜁 velocity components in the 𝜁 -plane

coordinates.
min

ã




 M̃ ã − udata
𝜁




2

2
(5.18)

The system is solved via a QR factorisation using the python scipy.linalg.lstsq library [76]. This
enforces the no-slip condition by construction.

5.3. Error Quantification of Fits
In order to assess how well the Integrated Laguerre–Hermite basis captures the true spatial modes,
a local pointwise error and a global root-mean-square error (RMSE) for each fit are defined. These
error measures serve two purposes: (i) to evaluate how closely each fitted mode reproduces the original
velocity field in Cartesian coordinates, and (ii) to gauge how fit inaccuracies might propagate through
the stochastic reduced-order model (SROM) described in section 3.2.2.

5.3.1. Local Percentage Speed Error
In figure 5.4, an example of the second spatial mode alongside its fitting can be seen. This fit is a fitting
with 𝑁𝑥 = 20, 𝑁𝑦 = 20 and 𝜂0 = 4. From visual inspection slight differences can be seen in the near field
of the cylinder. The observed differences are quantified with a local percentage speed error.
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Figure 5.4: Spatial mode 2 from POD (a,b) and its Integrated Laguerre–Hermite fit (c,d), using 𝑁𝑥 = 20, 𝑁𝑦 = 20,
𝜂0 = 4.

For a given spatial mode, let (𝑢𝑖 , 𝑣𝑖) denote the original Cartesian velocity components at point 𝑖, and
(𝑢 𝑓

𝑖
, 𝑣

𝑓

𝑖
) the corresponding fitted values obtained after mapping back from the Joukowski plane. A local
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percentage speed error at point 𝑖 is defined as in equation (5.19).

𝑒𝑖 = 100


u 𝑓

𝑖
− u𝑖





u𝑖



 ,


u

 =

√︁
𝑢2 + 𝑣2 (5.19)

In figure 5.5, the field of 𝑒𝑖 is shown for the second spatial mode fitted with parameters 𝜂0 = 4, 𝑁𝑥 = 20,
and 𝑁𝑦 = 20. It is evident that the largest pointwise errors occur in the near-wake region, where velocity
gradients are strongest and the toroidal basis struggles to resolve the field. The centres of points along
the 𝑦-axis are also not well captured.
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Figure 5.5: Local percentage speed error 𝑒𝑖 (cf. (5.19)) for mode 2, with 𝜂0 = 4, 𝑁𝑥 = 20, 𝑁𝑦 = 20.

5.3.2. Global Root-Mean-Square Error (RMSE)
While the local error 𝑒𝑖 highlights spatial regions of poor fit, a single scalar measure is desired to compare
different truncations (𝑁𝑥 , 𝑁𝑦). Accordingly, the global RMSE for mode 𝑚 is defined as in equation (5.20).

𝜀
(𝑚)
rms =

√√√√√√√√√√√√√√√
𝑁𝑠∑︁
𝑖=1

[
(𝑢𝑖 − 𝑢

𝑓

𝑖
)2 + (𝑣𝑖 − 𝑣

𝑓

𝑖
)2

]
𝑁𝑠∑︁
𝑖=1

(
𝑢2
𝑖 + 𝑣2

𝑖

) (5.20)

In equation (5.20) 𝑁𝑠 is the total number of spatial sample points. The 𝜀
(𝑚)
rms measures the 𝐿2-norm

of the velocity-difference field, normalized by the 𝐿2-norm of the original velocity field for that mode.
Values of 𝜀rms close to zero indicate excellent overall agreement.

5.3.3. Dependence on (𝑁𝑥 , 𝑁𝑦)
To explore how the fit accuracy depends on the tensor-product truncation orders 𝑁𝑥 and 𝑁𝑦, a grid
search is performed over 𝑁𝑥 ∈ {6, 8, 10, 12, 14, 16, 18, 20}, 𝑁𝑦 ∈ {6, 8, 10, 12, 14, 16, 18, 20}.
For each pair (𝑁𝑥 , 𝑁𝑦), 𝜀 (𝑚)

rms is computed for modes 𝑚 = 1, 2, 3, 4. The results for the first four modes
are displayed in figure 5.6. In all cases, 𝜀rms remains above approximately 20%, even at the highest
truncations. The performance does not improve for higher order modes and the error will likely only
increase as the spatial modes cover smaller spatial patterns that are more difficult to capture. The
remaining global error plots can be seen in appendix F.
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(c) Mode 3

6 8 10 12 14 16 18
Ny

6

8

10

12

14

16

18

N
x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

re
l

(d) Mode 4

Figure 5.6: Global RMSE 𝜀
(𝑚)
rms (cf. (5.20)) as a function of (𝑁𝑥 , 𝑁𝑦 ). Each contour plot corresponds to one of the first

four spatial modes.

5.3.4. Impact of Stream Function Fits on the SROM Reconstruction
The root mean square errors (RMSE) reported in the previous section indicate that the Integrated
Laguerre–Hermite basis fits introduce non-negligible errors, typically around 20%. These individual
fitting errors may accumulate when the fitted modes serve as the spatial basis within the stochastic
reduced-order model (SROM) described in section 3.2.2. This section illustrates how these spatial mode
fitting errors propagate into the SROM reconstruction performance.

Due to computational constraints, performing optimal fits for all spatial modes (over 200 modes up to
the energy cut-off) is not feasible. Therefore, this analysis is limited to the first ten spatial modes, which
capture approximately 64% of the total flow energy and significantly influence the turbulent kinetic
energy (TKE) reconstruction.

For comparison, 20 stochastic realisations of the SROM are generated according to the methodology
described in Section 3.2.2, employing spectral colouring to enforce consistent phases for the first ten
dominant modes. Two distinct sets of realisations are generated: one using the original POD spatial
modes (POD basis) and another using spatial modes fitted with the Integrated Laguerre–Hermite basis.
For each mode the truncation orders that minimizes the global RMSE error are chosen from the tested
values of 𝑁𝑥 ∈ {6, 8, 10, 12, 14, 16, 18, 20} and 𝑁𝑦 ∈ {6, 8, 10, 12, 14, 16, 18, 20}.

Each set is compared with the original flow data, and ensemble averages are calculated over the 20
realisations to mitigate statistical variability inherent to the stochastic approach.

The comparison metric chosen is the turbulent kinetic energy (TKE), defined solely in terms of streamwise
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(𝑢′) and cross-stream (𝑣′) velocity fluctuations as per equation (5.21).

TKEuv (𝑥, 𝑦) =
𝑢′2 (𝑥, 𝑦) + 𝑣′2 (𝑥, 𝑦)

2 (5.21)

The reconstruction error at each spatial location (𝑥, 𝑦) is quantified as in equation (5.22).

TKEerror,uv (𝑥, 𝑦) =
|TKEoriginal,uv (𝑥, 𝑦) − TKEgenerated,uv (𝑥, 𝑦) |

TKEoriginal,uv (𝑥, 𝑦)
(5.22)

Figure 5.7 presents the spatial distribution of TKE reconstruction errors. Figure 5.7(a) illustrates
the error distribution for the original POD basis. Errors approaching 80% are observed across a
significant portion of the domain, primarily due to the limited energy captured by the first ten modes.
However, regions along the centerline (𝑦 = 0) downstream of the cylinder exhibit relatively lower errors,
approximately 20%.

Figure 5.7(b) shows the corresponding errors when using the Integrated Laguerre–Hermite basis. This
basis yields notably higher errors compared to the POD basis, particularly near the cylinder and outside
the conical shape of the wake. Errors exceeding 80% dominate these regions. This occurs because the
fitted spatial modes slightly overestimate velocity fluctuations in regions where the actual fluctuations
are minimal, thereby causing large relative errors.

The difference between the two methods, depicted in figure 5.7(c), highlights explicitly where the
Integrated Laguerre–Hermite basis performs poorly relative to the POD basis. The most pronounced
differences occur immediately downstream of the cylinder outside of the conically shaped wake where
the Integrated Laguerre-Hermite basis overestimates the velocity greatly.

Overall, the spatial distribution plots clearly indicate that the Integrated Laguerre–Hermite basis, despite
its mathematical convenience, introduces substantial reconstruction inaccuracies when used in the SROM
frameworks. These inaccuracies are attributable to the low variability in large sections of the flow. A
relatively high basis order is also required to reproduce these modes as is evident from the contour plots
in figure 5.6. Excluding the low variance points from the analysis is expected to improve the fittings.
This can also be done by reducing the weighting of points in this region and performing a weighted-least
squares (WLSQ) fitting.

Because only the first ten spatial modes are retained, the local TKEerror,uv is evaluated against a
truncated reconstruction. Overestimating the amplitude of one fitted mode can therefore reduce the
TKE error at a given point if the overshoot accidentally compensates for fluctuating energy that would
otherwise be carried by the discarded higher-order modes. This apparent improvement is an artefact
of the truncation: were all POD modes included, the same overshoot would instead manifest as an
increased error at that location. Hence a low local TKE error does not, by itself, guarantee that the
underlying velocity field has been captured faithfully; it can also indicate a cancellation between fitting
errors and modal truncation.
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(a) POD modes
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(b) Integrated Laguerre–Hermite basis
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(c) Difference in errors

Figure 5.7: Spatial distribution of relative TKE reconstruction errors (TKEerror,uv) for (a) original POD basis, (b)
Integrated Laguerre–Hermite basis, and (c) the difference between the two methods.

5.3.5. Projection and Subspace Errors
The snapshot matrix 𝐴 is factored by the singular–value decomposition 𝐴 = 𝑈 Σ𝑉⊤ with singular
values 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑇 . According to the Eckart–Young–Mirsky theorem [84], the best rank-10
approximation in the Frobenius norm is the truncated SVD as per equation (5.23).

𝐴10 = 𝑈(:,1:10) Σ(1:10,1:10) 𝑉
⊤
(:,1:10) (5.23)

The relative RMS error of the truncated SVD is defined as in equation (5.24). Here | | · | |F denotes the
Frobenius norm of the matrix.

𝜀opt =
∥𝐴 − 𝐴10∥F

∥𝐴∥F
=

√√√√√√√√√√
∑︁
𝑘>10

𝜎2
𝑘∑︁

𝑘≥1
𝜎2
𝑘

(5.24)

For the present data set 𝜀opt = 0.60103; hence, at most 1 − 𝜀 2
opt ≈ 64% of the kinetic energy can be

recovered by any ten–dimensional subspace. As figure 4.7 confirms, the cumulative energy of the first
ten singular values is indeed 64 %.

Let the fitting of the modes 𝑈 be 𝐹 as described by equation (5.25). The fitted-mode matrix 𝐹 has exactly
the same dimensions as the leading POD matrix 𝑈(:,1:10) . The zeros in matrix are the 𝑤-component
values that are not fit and are set to zero.

𝐹 =


𝑢1 𝑢2 · · · 𝑢10
𝑣1 𝑣2 · · · 𝑣10
0 0 · · · 0

 ∈ R3𝑀×10 (5.25)

Projecting the snapshots onto 𝐹 and reconstructing gives equation (5.26).

𝜀fit =
∥𝐴 − 𝐹𝐹⊤𝐴∥F

∥𝐴∥F
= 0.66881. (5.26)

Relative to the optimal error, the additional penalty introduced by enforcing divergence-free, no-slip
and zero-𝑤 constraints is then Δ𝜀 = 𝜀fit − 𝜀opt = 0.06678
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Each column a 𝑗 ( 𝑗 = 1, . . . , 𝑇) of the snapshot matrix 𝐴 ∈ R3𝑀×𝑇 contains all three velocity components
at the 𝑀 spatial points for a single instant in time, that is, a 𝑗 is one complete flow snapshot. Its squared
Euclidean norm ∥a 𝑗 ∥2

2 =
∑3𝑀

𝑝=1 𝑢
2
𝑝, 𝑗

equals the instantaneous kinetic energy of that snapshot. Summing
over all time steps yields the Frobenius norm of equation (5.27).

∥𝐴∥2
F =

𝑇∑︁
𝑗=1

∥a 𝑗 ∥2
2 =

3𝑀∑︁
𝑝=1

𝑇∑︁
𝑗=1

𝑢2
𝑝, 𝑗 (5.27)

Equation (5.27) represents the total space–time kinetic energy contained in the data set. A spatial
location 𝑝 contributes in proportion to the variance of its velocity signal, var(𝑢𝑝 (𝑡)) = 1

𝑇

∑𝑇
𝑗=1 𝑢

2
𝑝, 𝑗

.
Regions with strong fluctuations—such as the core of the von Kármán street—therefore carry a larger
weight in the global RMS errors 𝜀opt and 𝜀fit than regions near or just outside the conical wake.

The pointwise TKE error used earlier is valuable because it highlights where the SROM reconstruction
over- or under-predicts local fluctuation energy. The global Frobenius-norm measure 𝜀fit plays a
complementary role: it reports the total net kinetic-energy mismatch. Hence it reflects the combined
impact of energy that is lost by truncating the expansion to ten modes similar to the energy cut-off.
Furthermore the Δ𝜀 highlights how much the energy in the flow is lost or misplaced. This illustrates
how much the physical constraints hinder the representation of the modes. Where local over- and under-
predictions balance each other, the TKE map still shows large errors, whereas the global norm reveals
that the overall energetic discrepancy is smaller. In this sense the two metrics should be interpreted
together: the TKE map diagnoses where the model is deficient, while 𝜀fit indicates how severely those
deficiencies affect the flows total energy as a whole.



6
Conclusions and Recommendations

The objective of this thesis was to investigate methods for the establishment of a model for the wake
behind wind turbine towers. The ultimate goal was then to use the outputs of a proposed model to
conduct wind turbine load calculations, specifically for the downwind idling situation.

This chapter addresses the research questions as were outlined in chapter 1. The chapter serves to draw
the general conclusions and recommendations from this research. It is structured into two sections. Firstly,
section 6.1 addresses the research questions and the overall conclusion. Subsequently, in section 6.2,
suggestions for future work are presented.

6.1. Conclusions
The primary objective of this research was to develop a stochastic reduced-order model (SROM) capable
of providing stochastic realisations of tower wake flow, suitable for use in wind turbine load simulations,
particularly in the downwind idling scenario.

At the Reynolds numbers considered, capturing a significant share of the flow energy demands many
modes; far more than what is typically observed at lower Reynolds numbers [64, 67, 68]. Because the
spectrum is broad, the von Kármán street spans several modes. Even within the same transcritical
vortex-shedding regime, vortex wavelength and wake width vary appreciably.

The primary observation made between the quasi-2D POD modes and the 3D modes is that the 𝑤-
component of the velocity is captured with slightly more structure. The von Kármán street that is
present in the first few modes in the 3D modes has a higher absolute value and is noticeably larger
than the 𝑤-component seen in the quasi-2D simulated case. The same spatial patterns appear, but
ordered differently by singular values. Likely this is attributable to the different coordinate system as
the polar coordinate system captures more of the near wake where the majority of the energy of the
shifting modes appear, whereas the quasi-2D field captures more of the far wake.

A notable limitation lies in the accurate representation of the near-wake region, directly downstream of
the cylinder. This region is particularly challenging due to the prevalence of high-frequency, small-scale
structures, which are not well resolved by the model. For the remainder of the domain the mode
truncation of either the 95% energy or SVHT criterion demonstrated to result in reasonable TKE errors.
These small, high-frequency fluctuations are effectively filtered out by the blade’s large chord and span,
so their contribution to the loads are negligible.

A single spatial basis cannot span the transcritical Reynolds range, because the modes themselves evolve
with Reynolds number. The Grassmann manifold basis interpolation was tested as a method to perform
an interpolation of the spatial basis. The basis performs better than the bases that lie on either end of
the geodesic, but the improved performance is not large and the optimum does not necessarily reside in
between the two bases. The primary modes are captured well with the method, but noticeable deviations
quickly emerge for higher order modes.

69
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The Grassmann interpolation method interpolates on the subspace of the bases. Therefore, mode pairs
may be phase shifted as a rotation of the pairs is an equally valid solution in the subspace. The frequency
shift that is applied requires the mode pairs to reside in a specific phase with respect to other modes.
The applicability of the Grassmann manifold interpolation in combination with the frequency shift is
therefore more limited.

As wind speed rises, so do the flow energy and the corresponding singular values. A suitable singular
should be assigned to each mode. Such a singular value should reside somewhere between the singular
values from the datasets on either side of the geodesic, but the exact placement is not immediately
evident.

Overall the Grassmann manifold interpolation requires the manual tuning of many parameters and
assignment of time series for a large amount of modes. The primary modes do not carry the relatively
large amounts of energy as is seen in lower Reynolds studies. To then capture a significant fraction of
the energy in the flow many more modes are needed. For a smaller amount of modes the interpolation
method seems more suitable as the tuning is easier and the modes carry the most resemblance. High
alignment is seen for the first mode pair and the Grassmann manifold can effectively predict this mode
pair. The pair was not found to reside exactly halfway along the geodesic and phase alignment is
necessary to attain the highest MAC value.

The mode correlation decays exponentially, a trend that fits simple decaying functions. The modal
correlation of the first mode was found to match the correlation of forcing seen on cylinders at lower
Reynolds numbers for the 3D simulations of the oscillating cylinders, but not for the stationary cylinder.
The differences may be attributable to the no-penetration boundary and the limited height of the
simulated cylinders.

The modes from the 3D simulations are similar in appearance to the quasi-2D modes with a small
difference seen in the Strouhal number. The 𝑤-component of the velocity was illustrated to be small.
The correlation coefficient may be fitted to any desired observed correlation. A three dimensional flow
can therefore be constructed using modes obtained through a quasi-2D simulation as such a simulation
effectively captures the same flow patterns.

Stream function fitting was performed on the 𝑢 and 𝑣-components of the flow. The fitting was
demonstrated to require many basis functions to attain fits. The quality of the fits quickly deteriorates
for higher order spatial modes. Many points were included that carry little variance and this makes the
fittings more difficult with large errors seen in these regions. The far wake is captured with far greater
accuracy. By imposing the physical restraints through the stream function fitting the kinetic energy in
the flow does not deviate largely.

The proposed model in this thesis is restricted to movements of the tower in the side-side direction.
As illustrated in the literature review, movements in different directions and frequencies influence the
structures behind the cylinder. The current model does not consider how these different flow structures
translate into different spatial mode patterns. Smoothly transitioning between these mode patterns is
not possible within the framework of the model. When large fore-aft movements occur for an undamped
turbine, this model is not applicable.

Through this research 3D SROM models were found to be effective at capturing the turbulent kinetic
energy of the flow and the correlation along the height of a tower can be effectively enforced. The
proposed model is limited to single wind speed from which the flow modes are derived as the interpolation
of modes between wind speeds was not found to be effective enough at these high Reynolds numbers.
The model therefore suits tower sections with nearly uniform diameter, low wind shear and minimal
fore-aft motion. Wind shear and turbulence intensity decorrelate the flow. Hence, the von Kármán street
is seen over a smaller section of the tower. A more correlated flow is believed to be a more conservative
estimate for load simulations of the down wind idling situation.

6.2. Recommendations
Recent literature suggests that Permuted POD (PPOD) may offer improved performance in capturing
translating flow structures [66]. Testing this method may result in modes that capture a significant
amount of energy inside a single pair mode. This may make the Grassmann manifold interpolation more
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effective as fewer modes would have to be interpolated, although its applicability with PPOD is yet
unexplored.

The applicability of the model with imposed shear and changing diameter along the tower may be
tested. Current studies suggest that these effects decorrelate the flow [16, 18]. Studying whether this
may be resolved through imposing changes to the correlation coefficient or whether the modes shapes
change significantly may be explored further. Testing this initially for lower Reynolds numbers and only
subsequently for these high Reynolds number cases is preferred as the computational cost of the CFD
simulations are significant.

Another important constraint is that the developed ROM does not advance for each time step. Rather
it generates a complete time series for a specified length of time. This renders it incompatible with
simulation environments such as BHAWC and HAWC2 [85], which rely on time-stepped inputs. Tower
motions are simulated in these software. As outlined in the literature overview, an ideal model would
consider the movements of the tower when determining the shape of the wake. The model in this thesis
only considers the modes of an anti-symmetric von Kármán street, rather than a broader range of modes
that may occur depending on the motion of the cylinder. Making a reduced order flow model where flow
modes transition smoothly depending on the oscillatory motion remains an unclear unexplored challenge.

For larger side-to-side motion of the tower, the wake becomes more coherent and the correlation coefficient
in the SROM ought to increase with motion amplitude. A proposed procedure for implementation
in turbine-simulation environments is therefore to generate the flow in short blocks and update the
correlation coefficient at the end of each block using the current tower motion. To prevent artificial
discontinuities at block boundaries, a brief transition window between successive blocks—during which
flow statistics blend smoothly—would also be required. The idea has not yet been validated in practice
and therefore remains a proposal for future implementation.

The thesis evaluated the generated flows mainly through turbulent kinetic energy (TKE). More error
metrics are desired in order to confirm the efficacy of the model. Other metrics may include enstrophy
or helicity. Subspace error metrics such as the Grassmann geodesic distance [74]or the Asimov distance
[75] should also be employed to better compare the effectiveness of the Grassmann interpolation method.

The flow proved to be largely two-dimensional. A POD may be performed on the 𝑤-component of
vorticity of the flow. This effectively makes it two dimensional. The 𝑤-component may further be
investigated by performing a POD solely on this component. More spatial patterns are then likely to be
found. This can then serve as a verification step to assert that the assumption of two-dimensional flow
for the three-dimensional model remains valid.
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A
Spatial Modes

In this appendix the spatial POD modes for the 11 ms−1 dataset are presented.

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

0.01

0.00

0.01

u mode 1

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

0.02

0.00

0.02

v mode 1

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

1

0

1

×10 3

w mode 1

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

0.01

0.00

0.01

u mode 2

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

0.02

0.00

0.02

v mode 2

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

1

0

1

×10 3

w mode 2

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

0.02

0.01

0.00

0.01

u mode 3

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

0.02

0.00

0.02

v mode 3

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

4

2

0

2

4
×10 3

w mode 3

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

0.01

0.00

0.01

u mode 4

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

0.02

0.00

0.02

v mode 4

0 2 4 6 8 10
X/D [-]

2

1

0

1

2

Y/
D

 [
-]

2

0

2

4
×10 3

w mode 4

Figure A.1: First four 11 ms−1 dataset POD modes of the velocity components 𝑢, 𝑣, and 𝑤.
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Figure A.2: 11 ms−1 dataset POD modes 5-10 of the velocity components 𝑢, 𝑣, and 𝑤.



B
Proof that the Spectral Error Is Equivalent to

a Variance Ratio

The spectral error, was introduced by [69] and is reproduced here in equation (B.1).

𝐸𝑆−𝑖, 𝑗 =

∫ ∞

0

(
𝑆𝑖 ( 𝑓 ) − 𝑆 𝑗 ( 𝑓 )

)
𝑑𝑓∫ ∞

0
𝑆 𝑗 ( 𝑓 ) 𝑑𝑓

(B.1)

Here 𝑆𝑖 ( 𝑓 ) and 𝑆 𝑗 ( 𝑓 ) are the one-sided power spectral densities (PSDs) of the velocity component at a
fixed spatial point, obtained from two separate realisations 𝑖 and 𝑗 .

Equivalence to a variance ratio
Let 𝑢𝑖 (𝑡) and 𝑢 𝑗 (𝑡) denote the zero-mean velocity time series of the two realisations, sampled over a
sufficiently long interval 𝑇 . Parseval’s theorem [70] states that∫ ∞

0
𝑆𝑖 ( 𝑓 ) 𝑑𝑓 =

1
𝑇

∫ 𝑇/2

−𝑇/2
𝑢2
𝑖 (𝑡) 𝑑𝑡 = 𝜎2

𝑖 (B.2)

with 𝜎2
𝑖

the variance of 𝑢𝑖 (𝑡), and analogously for 𝜎2
𝑗
. Substituting this result in equation (B.1) gives

𝐸𝑆−𝑖, 𝑗 =
𝜎2
𝑖
− 𝜎2

𝑗

𝜎2
𝑗

=
𝜎2
𝑖

𝜎2
𝑗

− 1.

Hence the spectral error is exactly the fractional difference between the variances of the two signals,
establishing its equivalence to a variance comparison.
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C
Rotational Extension of the MAC Criterion

The main text evaluates the Modal–Assurance Criterion (MAC) after re-ordering the slice modes with a
permutation matrix 𝑃𝑧 ∈ P𝑘 ,

P𝑘 =
{
𝑃 ∈ {0, 1}𝑘×𝑘 : 𝑃T𝑃 = 𝐼, det 𝑃 = 1

}
.

Such a matrix merely exchanges column indices; it cannot perform the 2 × 2 rotations that would bring
a sine–cosine pair into perfect phase. The resulting MAC values therefore form a lower bound on the
true sub-space similarity.

This simplification is acceptable when the leading pair already shows MAC ≳ 0.9; however, it can
mis-assign higher modes. A mode whose unrotated MAC is 0.5 might rotate by 90◦ to achieve MAC = 1,
yet the permutation step would have paired it elsewhere.

Joint permutation–rotation problem
To avoid such mis-assignment, the permutation and the in-plane rotations must be selected simultaneously.
With 𝐶 := 𝑈T

combined𝑈slice,𝑧, consider the block–diagonal special-orthogonal set

B𝑘 =

{
𝑄 = diag

(
𝑅1 (𝜃1), 𝑅2 (𝜃2), . . . , 𝑅𝑚 (𝜃𝑚), 1, . . . , 1

)}
, 𝑅 𝑗 (𝜃) =

(
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

)
Each block 𝑅 𝑗 supplies the single degree of freedom required to align one sine–cosine pair, while the
unity entries leave any unpaired modes, such as slow drift modes seen in section 4.1, untouched.

The ideal alignment is obtained from equation (C.1).

max
𝑃∈P𝑘

𝑄∈B𝑘

𝑘∑︁
𝑖=1

��� (𝐶 𝑃𝑄
)
𝑖𝑖

��� (C.1)

In this study the first few global modes are compared. When insights are desired into the similarity
of many modes, and the modes are observed to be reordered, equation (C.1) should be utilized. This
optimization uses a discrete search over 𝑘! permutations with a continuous search over 𝑚 rotation angles;
even for moderate 𝑘 the factorial growth makes brute-force methods infeasible. The mode pairs must
furthermore be clearly identified for this method to be applicable.
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D
Derivation of mass conservation for Hermite

stream function basis

Define the Hermite basis with fixed width 𝑦0 as in equation (D.1). Where 𝐻𝑛 are the physicists Hermite
polynomials [82].

𝜒𝑛 (𝑦) =
𝐻𝑛

(
𝑦/𝑦0

)
𝜋1/4

√︁
2 𝑛𝑛! 𝑦0

𝑒−𝑦
2/(2𝑦2

0 ) (𝑛 = 0, 1, . . . ) (D.1)

orthonormal under
∫ ∞

−∞
𝜒𝑚𝜒𝑛 𝑑𝑦 = 𝛿𝑚𝑛.

On a single 𝑥–slice position 𝑥0 the stream function is defined as in equation (D.2). Here 𝐵𝑘 (𝑥) are
arbitrary basis functions that only depend on 𝑥.

𝜓(𝑥0, 𝑦) =
𝑁𝑥∑︁
𝑘=0

𝑁𝑦∑︁
𝑛=0

𝑎𝑘𝑛 𝐵𝑘 (𝑥0) 𝜒𝑛 (𝑦), 𝑢 = 𝜕𝑦𝜓, 𝑣 = −𝜕𝑥𝜓 (D.2)

The mass flux 𝑄 though each vertical slice at a position 𝑥0 is given by equation (D.3).

𝑄 :=
∫ ∞

−∞
𝑢 𝑑𝑦 =

𝑁𝑥∑︁
𝑘=0

𝑁𝑦∑︁
𝑛=0

𝑎𝑘𝑛𝐵𝑘 (𝑥0)
∫ ∞

−∞
𝜕𝑦𝜒𝑛 𝑑𝑦︸          ︷︷          ︸
𝐼𝑛

(D.3)

The integrals 𝐼𝑛 are the physicists Hermite functions that tend to zero because 𝜒𝑛 (𝑦) → 0 as |𝑦 | → ∞.

𝐼𝑛 = 𝜒𝑛 (𝑦) |𝑦=∞𝑦=−∞ = 0 (D.4)

𝐼𝑛 =

∫ ∞

−∞
𝜕𝑦𝜒𝑛 𝑑𝑦 = 0 ∀ 𝑛 ≥ 0. (D.5)

Hence mass is conserved:

𝑄 = 0 for any coefficients {𝑎𝑛} and any 𝑁.
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E
Correlation Coefficient Fits

In this appendix, the correlation coefficient fits are presented alongside tables of the respective parameters
for their curves.
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(a) Δ𝑧/𝐷 = 0.1
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(b) Δ𝑧/𝐷 = 0.2
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(c) Δ𝑧/𝐷 = 0.8
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(d) Δ𝑧/𝐷 = 1.5
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Figure E.1: Correlation coefficient fitting use MSE and SPL curves of oscillating cylinder with 2𝑎/𝐷 = 0.1.
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Table E.1: Optimised parameters for the two-variable decay models of oscillating cylinder with 2𝑎/𝐷 = 0.1.

Model 𝑎 𝛼 𝛽 𝑝

MSE 0.934 0.496 0.340 -
SPL 8.92 1.76 1.48 0.394
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(a) Δ𝑧/𝐷 = 0.1
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(b) Δ𝑧/𝐷 = 0.2
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(c) Δ𝑧/𝐷 = 0.8
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(d) Δ𝑧/𝐷 = 1.5
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Figure E.2: Correlation coefficient fitting use MSE and SPL curves of stationary cylinder.

Table E.2: Optimised parameters for the two-variable decay models of stationary cylinder.

Model 𝑎 𝛼 𝛽 𝑝

MSE 0.70 0.69 0.64 -
SPL 0.67 1.0 0.90 1.40



F
Spatial Modes RMSE Plots

This appendix illustrates the RMSE plots for modes 5 to 15.
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(b) Mode 6
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(c) Mode 7
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(d) Mode 8
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(e) Mode 9
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(f) Mode 10

Figure F.1: RMSE for remaining spatial modes 5-10.
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(a) Mode 11
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(b) Mode 12
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(c) Mode 13
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(d) Mode 14
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(e) Mode 15

Figure F.2: RMSE for remaining spatial modes 11-15


