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Abstract

The challenging task of designing biopharmaceutical downstream processes is initially

to select the type of unit operations, followed by optimizing their operating condi-

tions. For complex flowsheet optimizations, the strategy becomes crucial in terms of

duration and outcome. In this study, we compared three optimization strategies,

namely, simultaneous, top-to-bottom, and superstructure decomposition. Moreover,

all strategies were evaluated by either using chromatographic Mechanistic Models

(MMs) or Artificial Neural Networks (ANNs). An overall evaluation of 39 flowsheets

was performed, including a buffer-exchange step between the chromatography oper-

ations. All strategies identified orthogonal structures to be optimal, and the weighted

overall performance values were generally consistent between the MMs and ANNs.

In terms of time-efficiency, the decomposition method with MMs stands out when

utilizing multiple cores on a multiprocessing system for simulations. This study

analyses the influence of different optimization strategies on flowsheet optimization

and advices on suitable strategies and modeling techniques for specific scenarios.

K E YWORD S

artificial neural networks, chromatography, filtration, mechanistic modeling, superstructure-
based optimization

1 | INTRODUCTION

Downstream processing is of major importance for delivering the

required quality and quantity of a biopharmaceutical product, which

has to meet the strict standards by regulatory authorities.1 The down-

stream process is a substantial expense of the overall manufacturing

costs, therefore, an efficient and cost-effective process is crucial. One

of the major, most costly, and essential purification techniques is

chromatography, which is capable to achieve very high product

purities.2 Eventually, the combination of purification steps will

determine the overall process performance. Therefore, developing a

purification process is a challenging task, involving many variables,

such as type and sequential order of purification techniques, operating

conditions, and costs.3,4 A comprehensive overview of the different

strategies in downstream process development together with the lat-

est breakthroughs was given recently by Keulen, et al.5 Finding an

optimal purification process at an early stage of the process design

are desirable in terms of costs, quality, and development time. Flow-

sheet optimization evaluates all process possibilities in silico, which

can support the decision-making for an early process design. For many

Received: 20 May 2024 Revised: 25 August 2024 Accepted: 2 October 2024

DOI: 10.1002/btpr.3514

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Author(s). Biotechnology Progress published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.

1 of 16 Biotechnol. Prog. 2025;41:e3514.wileyonlinelibrary.com/journal/btpr

https://doi.org/10.1002/btpr.3514

https://orcid.org/0000-0001-8086-333X
mailto:m.ottens@tudelft.nl
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/btpr
https://doi.org/10.1002/btpr.3514
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fbtpr.3514&domain=pdf&date_stamp=2024-10-18


years, flowsheet optimization has been applied to design chemical

processes, therefore, it is well-known in the field of process systems

engineering.6,7

Around the 1970s, the first articles were published about process

design synthesis.8,9 Siirola, et al.8 developed a general computer-aided

process synthesizer that was able to select process equipment and the

system configurations. Umeda, et al.9 presented an integrated optimiza-

tion approach to optimize two alternative routes for a distillation system.

Over the past five decades, the field of superstructure-based optimiza-

tions has evolved greatly, along with the intensified computing

possibilities.10 Mencarelli, et al.6 provides an adequate overview of

superstructure-based optimization history, superstructure representation

types, and modeling strategies. Most superstructure-based optimizations

applied in chemical engineering are related to reactor networks,11 distilla-

tion processes,12 and heat exchangers.13 Several programs are available

to perform a chemical superstructure-based optimization, for example,

P-graph,14 Pyosyn,15 and Super-O.16 As most of these chemical process

simulations are based on first-principle models this can be computation-

ally time-consuming, therefore the interest in employing surrogate

models for optimization purposes increased. In 1998, Altissimi, et al.17

already showed the value of replacing a first-principle model with a sur-

rogate model for optimization purposes. Afterwards, more research fol-

lowed on using surrogate or meta-models for superstructure or complex

optimization purposes.18–22

Despite the biopharmaceutical industry only emerged about

40 years ago, this industry is advancing rapidly and shifting toward

Industry 4.0.23–25 Industry 4.0 desires to entirely digitalize the

manufacturing process, aiming to implement and combine model-

based process development techniques with efficiently stored moni-

tored data. Hence, realizing the utilization of Digital Twins, which are

digital models of the real process and enable to directly control the

real process.26,27 In this way, more knowledge can be acquired about

the processes, which is in compliance with the Quality by Design

guidelines.28,29 A general biopharmaceutical process consists of an

upstream and downstream part, in which the downstream part

focuses on the purification of the biopharmaceutical. The purification

steps can be subdivided into capture, intermediate, and polishing

steps as shown in Figure 1. The main purpose of the capture and

intermediate steps is to concentrate, isolate, and stabilize the product,

and remove the majority of the impurities. While the subsequent pol-

ishing steps target high purity values.2

Chromatographic MMs have been around for several years, and

industry is gradually adopting these methods.30,31 Lately, advances

have been made to faster and more efficiently determine the adsorp-

tion isotherms, which are needed as input parameters for the mecha-

nistic model.32–34 Likewise, several research has been published to

determine adsorption isotherms for complex mixtures.35–37 And more

recently, Disela, et al.38 characterized the host cell proteome of two

universal E. coli strains based on mass spectrometry data, which

approach can be used for initial decision-making on process develop-

ment. Not only the techniques and methods to determine the adsorp-

tion isotherm are making progress, also the MMs are advancing in

terms of speed and accuracy. Meyer, et al.39 applied a computational

more efficient method for the spatial discretization and obtained a

speed-improvement of at least 20 times, for higher precision it even

improves over 100 times compared to the open-software CADET.40

Their chromatography model was recently extended by Breuer,

et al.,41 which applied a similar method to the particle mass balance.

Rao, et al.42 developed a 3-D model to simulate the chromatography

process with very high precision to acquire knowledge about the com-

plex transport mechanism. Moreover, hybrid modeling, using artificial

intelligence (AI) in combination with mechanistic modeling, can over-

come certain limitations of both modeling techniques.43,44 Narayanan,

et al.45 employed artificial neural networks (ANNs) for fitting the

solid-phase mass balance, which reduced the model complexity, and

an improved accuracy compared to the conventional mechanistic

model was observed. Accordingly, this progress in experimentally

determining model-parameters, improving the MMs, and making use

of hybrid modeling, is advantageous for digitalization of the down-

stream process and likewise for optimization purposes.

As described previously, flowsheet optimization enables to screen

the overall design space and finding the optimal purification process at

an early development stage. Process systems engineering recognized

the added value of superstructure-based optimization for chemical pro-

cesses. Also for biochemical processes, it is essential to optimize the

integrated processing steps to discover the most optimal process glob-

ally.46 Liu and Papageorgiou47 developed a data-driven optimization

framework to find the best process according to economical and certain

performance objectives. However, the data for each optional proces-

sing steps is already provided and not generated internally. This type

of optimization is known as biopharmaceutical manufacturing

process optimization, usually based on mixed integer programming

techniques.48–51 Though, these optimizations do not use detailed

mechanistic modeling techniques, they are either data-driven or using

surrogate models to represent the unit operations. In the work of Nfor,

et al.,3 a top-to-bottom optimization approach is performed that evalu-

ates the performance of each unit operation at each level and disre-

gards the least promising options. As the influence of sequential steps

is not incorporated in this approach, it might overlook the most

F IGURE 1 Simplified schematic overview of the chromatography
steps in a biopharmaceutical downstream process, the sequence can
also have less or more chromatography operations depending on the
process. The capture step aims to concentrate, isolate, and stabilize
the product, together with the intermediate step, their target is to
remove the bulk impurities. The main purpose of the polishing step is
to attain high product purities.
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promising sequence(s). Therefore, Huuk, et al.4 performed an integrated

two-step ion-exchange chromatography optimization. Subsequently,

Pirrung, et al.52 performed a flowsheet optimization having a maximum

of three chromatography steps (e.g., cation exchange, hydrophobic

interaction, and mixed-mode) including a buffer exchange if needed,

and simultaneously optimizing each flowsheet. In their work, ANNs

functioned as surrogate model for the MMs during the global optimiza-

tion to find starting conditions for the local optimization, and so reduc-

ing the overall optimization time. However, the ANNs were

infrequently able to find realistic results and for the subsequent local

optimization the MMs were used, which was the most time-consuming

part of the overall optimization.52,53 In our previous work, we extended

this method by including the mass of each component as a variable and

using more data to increase the ANN accuracy.54 Subsequently, we

compared ANNs, functioning as surrogate models, versus MMs for

flowsheet optimization to select the ‘most promising sequences’ during
the global optimization. Only the ‘most promising sequences’ were fur-

ther optimized through local optimization using MMs. The ANNs

selected three out of four best flowsheets and reduced the overall

computational time by 50%. However, for more complex flowsheet

optimizations (e.g., including more unit operations and/or larger

sequences) or when considering more components, not only the model-

ing technique (e.g., MMs or surrogate models) matters, but also the

optimization strategy might play a significant role in the overall flow-

sheet optimization. Hence, what optimization strategy is most useful in

terms of outcome, complexity, and time-efficiency?

In this article, we compared three different optimization strategies:

simultaneous optimization, top-to-bottom approach, and superstructure

decomposition, to evaluate which strategy would be most beneficial in

terms of outcome, complexity, and time-efficiency when performing a

complex flowsheet optimization. Simultaneous optimization involves opti-

mizing all parameters simultaneously, top-to-bottom approach optimizes

parameters sequentially from the initial to the final unit operation, and

decomposition of the superstructure involves breaking down the process

into smaller parts and optimizing each part separately. These strategies

were chosen based on the difference in number of unit operations being

optimized simultaneously and so the overall considered possibilities

within the design space as indicated in Figure 2. For example, the top-

to-bottom approach might overlook promising sequences, as it lacks a

focus on optimizing the connections between chromatography steps.

Additionally, for each optimization strategy the MMs and the ANNs are

employed to evaluate their performance on a more complex optimization.

In this complex flowsheet optimization, we included an optional buffer

exchange between the chromatography steps, described by a filtration

MM. This gives a total combination of 39 flowsheets to be evaluated.

2 | MATERIALS AND METHODS

2.1 | Flowsheet optimization workflow

First, the superstructure was generated considering a maximum of

three chromatography steps and a dilution or buffer exchange by Tan-

gential Flow Filtration (TFF) between the chromatography operations.

This gives a maximum sequence of five unit operations, and at least

one unit operation is needed for the purification. To generate this

superstructure, confirming the defined conditions, the mathematical

problem is formulated as.

y¼ y1,y2,…,yn½ � ð1Þ

s:t:
X

y ≥1 ð2Þ

For i is odd :

yi ¼1,2,3

yi ≠ yiþ2 for all yi >0

ð3Þ

For i is even :

yi ¼4,5
ð4Þ

For i¼2,3,…,n :

if yi >0, then yi�1 > 0,
ð5Þ

where y is the process configuration, in which n, in this case n¼5, is

the length of the vector. The variable yi � 0,1,2,3,4,5f g represents

the value of the ith element of vector y. The first statement, Equa-

tion 1, defines the set of all possible vectors y, where each element is

an integer number between 0 and 5, which in this study represents

the considered unit operations: none, CEX, AEX, HIC, dilution, and fil-

tration, respectively. The second statement, Equation 2, guarantees

that the sequence includes at least one unit operation. The third and

fourth statements, Equation 3 and 4, specify that only at odd positions

in the sequence, a chromatography step is present, while for even

F IGURE 2 Visualization of the difference between the chosen
optimization strategies; top-to-bottom, superstructure decomposition,

and the simultaneous strategy. The x-axis shows the number of unit
operations being optimized simultaneously during flowsheet
optimization. While, the y-axis correspondingly shows that more
options in the design space are explored when the connection
between chromatography steps is also considered, which is not taken
into account for the top-to-bottom approach as it individually
optimizes each chromatography step.
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number positions, either a dilution or a filtration step is employed.

Furthermore, statement three ensures that each chromatography

mode appears only once in the sequence. The conditional constraint

in Equation 4 is applicable to all positions in the sequence, except the

first position. It enforces that any occupied position in the sequence

must be preceded by another occupied position. This guarantees that

there are no isolated modes in the sequence and requires all modes to

be connected.

The flowsheets consisting of a filtration operation to perform the

buffer exchange step are modeled as a nested optimization,55 which

means that the outer optimization involves matching the chromatog-

raphy steps with their respective variables, while the inner optimiza-

tion focuses on optimizing the filtration step. So, for each evaluation

of the outer optimization, the filtration step is always optimized inter-

nally. As the filtration model is less complex and described by ordinary

differential equations (ODEs) with respect to time, it has a signifi-

cantly shorter solving time compared to the chromatography model.

The same flowsheet optimization workflow, as presented in our previ-

ous article,54 was applied as shown in Figure 3. First, a global and

minor local optimization was performed according to certain

objective(s) and constraint(s), these are described in 2.5. Case study.

For this part, either MMs or ANNs were used for the chromatography

steps. After this global and minor local optimization, the most

promising sequences were selected based on the weighted overall

performance (WOP), which is described as follows:

WOP¼0:5�purityþ0:3�yieldþ0:2� 100�buffer consumptionð Þ,
ð6Þ

where the calculation of purity (%) involves dividing the product

amount by the total amount of proteins present in the product-pool.

The yield (%) is determined by the total amount of product recovered

divided by the loaded amount of product. The buffer consumption

typically ranges from 1 to 50 (L/gproduct). Subtracting this buffer con-

sumption from 100 aligns it with the purity and yield ranges, and

ensures that higher WOP values indicate less buffer consumption.

The selected processes were further locally optimized using the

simultaneous strategy with MMs, the outcome of preceding minor

local optimization was used as initial guess for the final local optimiza-

tion. This flowsheet optimization workflow was applied to all three

optimization strategies, the difference is the manner of solving the

superstructure. Each strategy was evaluated for using either the MMs

or ANNs for the global and minor local optimization. The strategies

(e.g., simultaneous optimization, top-to-bottom approach, and decom-

position of the superstructure) are separately described in the follow-

ing sections.

2.1.1 | Strategy I: Simultaneous flowsheet
optimization

The simultaneous flowsheet optimization is the same as applied in

Keulen, et al.54 In this strategy, all parameters are optimized simulta-

neously, which means that the total number of variables linearly

increases with the number of chromatography steps present in the

sequence, as shown in Figure 4. For example, if five optimization vari-

ables are considered and the sequence consists of two

F IGURE 3 Within the superstructure, as depicted in the upper right figure, each flowsheet is initially optimized globally to identify the most
optimal processes. F/D indicates the option to have either a filtration (F) or dilution step (D). Subsequently, these selected processes are
finetuned using a final local optimization step. For the global optimization, Framework A uses MMs and Framework B uses ANNs.
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chromatography steps, 10 variables have to be optimized in total.

For three unit operations, this will lead to 15 variables to be optimized.

2.1.2 | Strategy II: Top-to-bottom approach

The top-to-bottom approach, based on the work of Nfor, et al.,3 eval-

uates the superstructure by each level, see Figure 4. The first level

optimizes the first unit operation individually. After optimizing the

first level, the initial constraint assesses whether the optimal process

has been achieved (e.g., purity >99% and yield >95%). The second

constraint assesses if the optimized unit operation satisfies the mini-

mal requirements (e.g., purity >20% and yield >40%) to continue to

the next level, otherwise the flowsheets, starting with this type of unit

operation, will be disregarded. All options present in the second level

are also optimized individually. Subsequently, the overall sequence of

two chromatography steps, including the dilution or the filtration

operation, are simulated. The outcome of these flowsheets is evalu-

ated by the previously described constraints, however, the second

constraint is only satisfied if the purity and yield are higher than 40%.

If the optimal process has not been identified yet, the optimization

will continue to the third level, which operates in the same manner as

the second level. If the optimal performance is not achieved after

three levels, the best out of all these evaluated flowsheets can still be

chosen, as all outcomes are stored. The constraints between the levels

can be easily adapted to a different number and/or different perfor-

mance measurements to be assessed.

2.1.3 | Strategy III: Superstructure decomposition

In the previous study, we observed that approximately 60% of the

total optimization time, whether employing MMs or ANNs, was dedi-

cated to optimizing sequences of three unit operations.54 This aligns

with the fact that the maximum number of function evaluations

increases with the number of variables to be optimized.56 Accordingly,

the question raised; does the third unit operation have a significant

impact on the previous unit operations? Followed by, is it really neces-

sary to optimize the whole process simultaneously or can we decom-

pose the superstructure when optimizing larger sequences? In

chemical engineering, different formats of decomposing the super-

structure have been applied.6,57–59 In this study, this strategy is a

combination of the simultaneous and top-to-bottom approach as

shown in Figure 4. The superstructure is ordered in such a way that

the sequences consisting of the same first three unit operations are

sequential in order of length. The sequence consisting of three unit

operations is optimized first, subsequently, the outcome of the third

unit operation (e.g., second chromatography step) is used as input for

the last chromatography step, which is optimized individually. After

individually optimizing the third chromatography step, the overall

sequence of five unit operations is simulated, similar to the workflow

of top-to-bottom approach. In this way, only a maximum of two

chromatography steps is optimized simultaneously, making the

overall optimization more time-efficient compared to simultaneous

optimization.

2.2 | Chromatography

2.2.1 | Mechanistic model

The same chromatographic MM from previous work was used in

Ref. [54]. The equilibrium transport dispersive model in combination

with the linear driving force described the dynamic adsorption behav-

ior during the chromatographic separation process as.

∂Ci

∂t
þF

∂qi
∂t

¼�u
∂Ci

∂x
þDL,i

∂2Ci

∂x2
, ð7Þ

∂qi
∂t

¼ kov,i Ci�C�
eq,i

� �
, ð8Þ

kov,i ¼ dp
6kf,i

þ d2p
60εpDp,i

" #�1

, ð9Þ

F IGURE 4 Schematic representation of each optimization strategy indicating with gray planes which unit operations are optimized
simultaneously during the optimization. F/D indicates the option to have either a filtration (F) or dilution step (D).
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where Ci is the concentration in the liquid phase, qi the concentration

in the solid phase, and C�
eq,i is the liquid phase concentration in equilib-

rium with the solid phase. The phase ratio, F, is defined as

F¼ 1�εbð Þ=εb, where εb is the bed porosity. u represents the intersti-

tial velocity of the mobile phase and DL is the axial dispersion coeffi-

cient. Time and space are indicated by t and x respectively. kov,i is the

overall mass transfer coefficient defined as a summation of the

separate film mass transfer resistance and the mass transfer resistance

within the pores.60 Here, dp is the particle diameter, εp is the intrapar-

ticle porosity, and Dp is the effective pore diffusivity coefficient. The

first term represents the film mass transfer resistance, kf ¼DfSh=dp, in

which Df is the free diffusivity and Sh is the Sherwood number. More

information on the MM can be found in a previous study.61 Moreover,

we used the linear multicomponent mixed-mode isotherm, as formu-

lated by Nfor, et al.62 and described in Appendix A.

2.2.2 | Artificial neural networks

The ANNs were created as described previously.54 In this work, we

applied the same input variables (e.g., mass of each component,

amount of loading in column volume (CV), gradient length, initial and

final salt concentrations, and the lower and upper cut points in per-

centage of the peak maximum) and output variables (e.g., mass of each

component, volume, salt concentration and each cut point in CV, salt

concentration). The parameter space was based on prior-knowledge

of biopharmaceutical downstream processes.63 The data consisted of

10.000 sample points divided into 70% for training, 15% for valida-

tion, and 15% for testing. Based on previous work, the same hyper-

parameters were used as starting point for developing the ANNs. Out

of 10 trained, validated, and tested ANNs, the best one was chosen

based on R2 and root mean squared error (RMSE) values. An overview

of the final used hyperparameters and applied parameter space is

given in Table 1.

2.3 | Filtration mathematical model

An ultrafiltration/diafiltration (UF/DF) mathematical model was devel-

oped to describe the buffer exchange if a filtration step was used

between the chromatography steps. This model consists of first-order

differential equations involving the feed solution volume Vð Þ and

added diluent volume Vwð Þ over time, and the solute concentrations

Cið Þ and the salt concentration Csð Þ over time.64 The system of mass

balances for which the proteins are completely retained by the mem-

brane is written as follows:

dV
dt

¼ α�1ð ÞJA, ð10Þ

dVw

dt
¼ αJA, ð11Þ

dCi

dt
¼Ci

V
σi�αð ÞJA, ð12Þ

dCs

dt
¼Cs

V
σs�αð ÞJA, ð13Þ

where J is the permeate flux and A is the membrane area. σi and σs

are the rejection coefficients, in this work all proteins were signifi-

cantly larger than the membrane pores, hence σi was equal to one.

While the salts could flow through and therefore σs was equal to zero.

α is the ratio between the diluent flowrate uð Þ and the permeate flow-

rate and given as

TABLE 1 Overview of hyperparameters for each chromatography mode and the applied parameter space.

CEX AEX HIC

Hyperparameters

Batch size 512 512 512

Epochs 200 500 500

Number of hidden layers 2 2 2

Number of neurons 50 50 50

Learning rate 0.01 0.01 0.01

Parameter space

Gradient length (CV) 1–10 1–10 1–10

Loading factor (CV) 0.05–5 0.05–5 0.05–5

Mass (g) 2e-5–0.39 2e-5–0.39 2e-5–0.39

Loading (g/L CV) 4e-6–7.8 4e-6–7.8 4e-6–7.8

Initial salt concentration (mM) 1–200 1–200 350–500

Final salt concentration (mM) 100–1200 100–1200 5–200

Lower cut point (%) 1–80 1–80 1–80

Upper cut point (%) 20–99 20–99 20–99
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α¼ u
JA

: ð14Þ

The operation was performed in an ultrafiltration with variable

volume diafiltration (UFVVD), therefore α can range between 0 and

1. A value close to zero indicates to operate in an UF mode, while

close to one DF occurs. The flux was defined by the osmotic pressure

model as.

J¼ΔPTM�Δπ
μ�Rm

, ð15Þ

where Δπ denotes the osmotic pressure difference and μ is the solu-

tion viscosity. ΔPTM is the transmembrane pressure, which denotes

the pressure difference between both sides of the membranes and

acts as the driving force for the flux through the membrane. In the

osmotic pressure model, the solute wall concentration is considered

as a variable and increases usually over time, therefore the osmotic

pressure changes, which directly impacts the flux negatively over

time. The initial solute wall concentration, Ci,w,0, is predicted by solv-

ing the following equation:

k0 ln
Ci,w,0

Ci,0
¼ΔPTM�Δπ

μRm
, ð16Þ

where Ci,0 represent the initial concentrations in solution and k0 is the

initial mass transfer coefficient. The change of the wall concentration

over time was included in the mass balance systems as.64

dCi,w

dt
¼

k0
Ci
� lnCi,w

Ci

dk
dCi

k0
Ci,w

þ 1
μ Rm

Δπ
dCi,w

dCi

dt
, ð17Þ

where the change of osmotic pressure is found by differentiating

Equation 17 with respect to Ci,w . Similarly, differentiating the mass

transfer to Ci gives dk=dci. The mass transfer coefficient is viscosity

dependent and given as follows:64

k¼ k0
μ

μ0

� ��1
6

, ð18Þ

where μ is the solution viscosity and μ0 is the viscosity of the pure

solvent. In Appendix B, additional information is provided on the

transmembrane pressure, osmotic pressure, second virial coefficient

(B22), the mass transfer correlations, and determination of the initial

membrane resistance through a water flux wet experiment. Moreover,

the filtration model was validated for an UF/DF wet experiment using

a Bovine Serum Albumin (BSA) solution, more information can also be

found in Appendix B.

2.4 | Numerical methods

The same numerical methods as applied in previous work were used,

only minor adjustments were made.54 All codes are written in Python

(version 3.8.5). An overview of the Python libraries used is provided in

Appendix C. The computations were performed on a Dell Precision

5820 Tower XCTO having a 3.7G Intel Xeon processor of 3.7 GHz,

10C, and a 8GB Nvidia Quadro. Multiple cores were used to execute

the simulations most efficiently; however, the number of cores varied

depending on the simulation.

Dynamic chromatography column model.

The Method of Lines is applied for the spatial discretization, using

a fourth-order central difference scheme for both first and second-

order derivatives with respect to space, to transfer partial differential

equations into ODEs with respect to time. The LSODA (Livermore

Solver for Ordinary Differential Equations) algorithm from the scipy.

integrate package is used to solve the ODEs, this method automati-

cally switches between the nonstiff Adams method and the stiff BDF

method.65

Optimization.

The scipy.optimize package was employed for the optimization,

whereas the differential_evolution algorithm was used for the global

optimization and Nelder–Mead algorithm for the local optimization.

For global optimization, the maximum number of iterations was 6 and

a population size of 5 for MMs, while for ANNs, the maximum number

of iterations was 8 with a population size of 8. Latin hypercube sam-

pling was used to initialize the population. The initial local optimiza-

tion had a maximum of 5 iterations. The relative and function

tolerances for both global and local optimizations were set to 1e-2.

The final local optimization allowed a maximum of 50 iterations. Lim-

ited ANN accuracy can lead to varied mass predictions and affect the

performance measurements. Over predicted masses were set to

the injected mass. The lower cut point ranged from 1% to 80% of the

peak maximum, while the upper cut point ranged from 20% to 99% of

the peak maximum. Initial salt concentrations were between 1 and

150 mM for CEX and AEX, 100–500 mM for HIC using MM, and

350–500 mM for HIC using ANN. Final salt concentrations were

between 160 and 1200 mM for CEX and AEX, 5–300 mM for HIC

using MM, and 5–200 mM for ANN. The gradient length varied from

1 to 10 CV. For optimizing the filtration operation, the Nelder–Mead

algorithm with standard settings was employed.

Artificial neural networks.

The Keras Module (version 2.10.0) of TensorFlow (version 2.10.1)

were used to create the ANNs, these are open-source libraries com-

patible with the Python programming language. The ANN structure,

optimized with a learning rate of 0.01 using keras.optimizers.Adam and

defined using keras.models.Model, employed data scaling via the

sklearn.preprocessing.MinMaxScaler module. The optimizer loss func-

tion used the ‘mean_squared_error’ metric. Randomized data was

generated by applying the Latin hypercube sampling method from the

pyDOE package.

2.5 | Case study

The case study focused on a monoclonal antibody product of interest

and referred to as protein 1, and eight impurities (referred to as

7 of 16 KEULEN ET AL.
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proteins 2 to 9), using data from a prior study35 and additional artifi-

cial data as shown in Table 2. No data was available for BSA on HIC-

resin, based on performed column gradient experiments, we estimated

the isotherm parameters to be equal to protein 3 (Chitotriosidase), as

both proteins elute at the end of the gradient. More details can be

found in Appendix A, as well as details about the resin parameters.

The artificial data ensured at least three chromatography modes were

required to purify the product of interest. Accordingly, a comprehen-

sive comparison between the different optimization strategies could

be accomplished. The chromatography column size (20.1 mL) was set

in compliance to the size of the filtration unit operation. The linear

flowrate of the chromatography process was 150 cm/h and the load-

ing factor was 2.0 CV.

The validated filtration model for BSA was used to make valid

assumptions for the simulation of other proteins during the overall

flowsheet optimization. All proteins had similar or higher molecular

weights compared to BSA, therefore full retention by the membrane

was assumed for all proteins. The yield of the filtration operation was

set to 95% for compensation of the lost material by adding an addi-

tional unit operation. The same constants for determining the B22

value, as given in Appendix B, were assumed for the other proteins.

However, due to the low protein concentrations evaluated in this

case-study, the B22 has no significant influence on the DF operation.

Here, a DF mode (α = 0.99) was employed to exchange buffers, for

example, adapt salt conditions, between the chromatography steps.

Therefore, only the time is a variable and the optimization problem

was formulated as.

minf tð Þ¼ Cs,model tð Þ�Cs,desiredj j ð19Þ

s:t:V t0ð Þ¼V0;Ci t0ð Þ¼Ci,0;Cs t0ð Þ¼Cs,0, ð20Þ

where t is the time variable to be optimized. Cs,model is the model-

predicted final salt concentration to be equalized to the desired final

salt concentration, Cs,desired. The desired final salt concentration is in

this case the initial salt concentration of the next chromatography

operation.

For the flowsheet optimization, the global and local objective

were formulated as.

minf xð Þ¼ 100�yield xð Þð Þþ2� 100�purity xð Þð Þþeluent consumption xð Þ
ð21Þ

s:t: h xð Þ¼0 only applies toMMð Þ ð22Þ

0≤ x≤1, ð23Þ

where f xð Þ is the objective function to be minimized, all variables xð Þ
were normalized between 0 and 1 for enhanced optimization pur-

poses (Equation 23). Additionally applicable when using MMs is to

satisfy the equality equations h xð Þ, such as the mass balances and

equilibrium relations (Equation 22). The optimizing variables xð Þ for

the chromatography steps were: the gradient elution length, initial

and final salt concentrations, and the lower and upper cut points. The

performance measurements (e.g., yield, purity, buffer consumption)

were evaluated across the entire purification process, with purity

being assigned twice the weight due to its critical importance in bio-

pharmaceutical purifications. Minimizing buffer consumption indi-

rectly addresses the costs, batch throughput, and productivity

concerns. The cost of lost feed is related to yield. Finally, the selected

optimal flowsheets and their conditions from the global and minor

local optimization were used as input for the final local optimization.

For both the global and local optimizers the following require-

ments were applied:

• Evaluation of the subsequent unit operation is only performed if

the prior unit operation exceeds a yield of 5%, preventing solver

failure due to excessively low concentration values.

• If the product pool's salt concentration is larger than the initial salt

concentration of the next unit operation, either a dilution or filtra-

tion step is performed, depending on the flowsheet being evaluated.

• If the product pool's salt concentration is smaller than the initial

salt concentration of the next unit operation, a spiking dilution step

using a salt stock concentration of 5 M is performed.

TABLE 2 Input parameters of each protein used for the flowsheet optimization, in which Keq is the equilibrium constant, v is the
stoichiometric coefficient of salt counter ions (characteristic charge), and n is the hydrophobic interaction stoichiometric coefficient. Protein
1=monoclonal antibody, protein 2=Moesin, protein 3=Chitotriosidase, protein 4= Legumain, protein 5=Thioredoxin reductase, protein
6=Bovine Serum Albumin, protein 7–9= artificial proteins.

Protein 1 2 3 4 5 6 7 8 9

Initial concentration g=L 1.5 0.9 0.8 1.2 1.2 0.8 0.3 0.9 1.4

Molecular weight kDa 145.6 68 51.5 56.2 54.5 56.2 70 60 90

CEX Keq �ð Þ 8.5 500.8 604.2 0 8.5 8.5 8.5 15 8.5

v �ð Þ 2.6 2.5 2.6 0 2.6 2.6 3.0 2.5 3.0

AEX Keq �ð Þ 0.5 0.5 0.9 3.9 3.9 3.9 0.5 0.5 2.5

v �ð Þ 4.0 4.0 1.7 2.9 2.9 2.9 4.0 4.0 3.0

HIC Keq �ð Þ 9.3 1.6 10.4 9.3 1.6 10.4 3.0 9.3 9.3

n �ð Þ 9.3 1.6 10.4 9.3 1.6 10.4 3.0 9.3 9.3
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• When using ANNs, the loading factor should be within the range

of 0.05 and 5 CV to ensure compatibility with the data range for

which the ANNs were developed. Otherwise, this option is indi-

cated with not-a-number (Nan).

3 | RESULTS & DISCUSSION

3.1 | Filtration model validation

The filtration model was validated for the UF/DF experiment of BSA

as shown in Figure 5. A good agreement between the experimental

protein concentration and the model was found, R2 = 0.99 and a low

standard deviation of 0.03. Also the salt reduction over time is accu-

rately predicted, R2 = 0.97 and a standard deviation of 6.25. The

alpha parameter was fitted to be 0.405, instead of the initial deter-

mined 0.7, as the permeate flowrate appeared to be not entirely con-

stant throughout the process.

3.2 | Artificial neural networks

The quantitative evaluations showed that the desired values of

R2 >0.90 and RMSE <0.04, based on previous research,54 were

reached for almost all ANNs (Table 3). Converting the normalized

RMSE values into absolute RMSE values gives an error value

between 9.3% and 14.1% for protein 1, and for the volume

between 3.6% and 11%. As justified in previous research, we

considered an error rate of 15% to be acceptable, and to confidently

identify the most optimal flowsheets while disregarding the

less promising ones during flowsheet optimization. The generated

data is focused around the product peak, resulting in some proteins

that never elute or appear in the product pool. Therefore, training

accurate ANNs is challenging due to their consistently low output

values, inducing low R2 values. Nevertheless, the absolute RMSE

values also remain low (<8�10�5). Given our understanding that

these proteins will never be present in the product pool, we can

assume they would always be removed. The most challenging

proteins to remove are the ones eluting around the product peak,

and therefore these are considered as the critical proteins for that

chromatography mode. For AEX these are the proteins: 2, 3, 7, and

8, while for CEX these are the proteins: 5, 6, 7, 8, and 9, and for HIC

the proteins: 4, 8, and 9.

F IGURE 5 Left: Model prediction of the protein concentration, containing BSA, over time compared to the experimental values. Right: Model
prediction of the salt concentration over time compared to the experimental values. The initial protein concentration was 0.3 kg/m3, the initial
salt concentration contained 175 mM NaCl. The initial volume was 100 mL, the flowrate was 20 mL/min. The transmembrane pressure was
0.142 MPa.

TABLE 3 Quantitative evaluation for all proteins and volume on
each chromatography mode. The RMSE is given as a normalized
number. The product pool volume and salt concentration are included
as these are needed for connecting the unit operations and calculating
certain performance measurements.

AEX CEX HIC

R2 RMSE R2 RMSE R2 RMSE

Protein 1 0.99 0.016 0.99 0.020 0.98 0.022

Protein 2 0.99 0.020 �0.10 0.028 0.00 0.005

Protein 3 0.94 0.028 0.00 0.052 �0.14 0.328

Protein 4 �0.41 0.018 0.61 0.021 0.98 0.024

Protein 5 �1.08 0.014 0.99 0.021 0.00 0.010

Protein 6 �1.11 0.006 0.99 0.023 0.03 0.327

Protein 7 0.99 0.020 0.98 0.026 0.03 0.019

Protein 8 0.99 0.017 0.93 0.021 0.98 0.025

Protein 9 0.55 0.006 0.98 0.024 0.97 0.029

Volume 0.93 0.052 0.94 0.042 0.89 0.035

Salt 0.98 0.018 0.98 0.02 0.97 0.022
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3.3 | Flowsheet optimization

The flowsheet optimization workflow is designed to initially identify

the global optima for each flowsheet. Subsequently, the most promis-

ing candidates can be further optimized locally, while the less

promising ones may be disregarded. In this way, the number of flow-

sheets to be evaluated locally can be drastically reduced and corre-

spondingly decreasing the overall optimization time. Optimizing a

complex flowsheet involves finding global optima, therefore, a

stochastic and heuristic algorithm was employed to increase the

chance of finding most of the global optima.66

We compared three optimization strategies, namely, simulta-

neous, top-to-bottom, and decomposition, in terms of time-efficiency,

complexity, and final results. Each optimization strategy was executed

following the optimization workflow, as described in 2.1. Flowsheet

optimization workflow, by either using MMs or ANNs. The

flowsheet optimization was performed for a superstructure of three

chromatography modes with a dilution or a filtration operation

between the chromatography steps to function as a buffer exchange.

In total, 39 flowsheets were evaluated. The maximum number of iter-

ations using MMs was reduced compared to previous work to per-

form the flowsheet optimization within a reasonable amount of time,

details can be found in 2.4. Numerical methods.54 Similarly for ANNs,

the number of iterations was adapted to guarantee a fair comparison

between both workflows. The overall performance of each flowsheet

is evaluated using the WOP value as described in 2.1. Flowsheet opti-

mization workflow. In this work, the WOP is determined by the purity,

yield, and buffer consumption. Based on the highest WOP value for

all strategies using MMs, two best flowsheets were selected for which

both MM and ANN results are shown in Table 4. All results of the

global optimized flowsheet for all strategies, using MMs or ANNs, can

be found in Appendix D. Note, when the salt concentration in the

pool is lower than the initial salt concentration of the subsequent

chromatography step, a dilution with a stock salt solution is

performed, as described in 2.5. Case study. This also applies to flow-

sheets positioned with a filtration step, and can be confirmed by eval-

uating the optimized variables for the salt conditions. Moreover,

in the top-to-bottom strategy using ANNs, Nan occurred when the

loading factor of a second or third chromatography step was

out-of-range for the ANNs, as stated in the requirements in 2.5.

Case study.

The strategies top-to-bottom and decomposition found the same

best flowsheet (AEX – D – HIC – D – CEX), while the simultaneous

strategy found a different one (CEX – D – HIC – D – AEX), as

highlighted in Table 4. The flowsheet (AEX – D – HIC – D – CEX) was

selected as an optimal candidate in all strategies when using ANNs. In

overall, the ANNs found more optimal flowsheets (WOP > 96) com-

pared to MM results. This is mainly attributed to an overestimation of

the yield, which depends on the ANN accuracies for each protein

(Appendix D). The Swarmplot, in Figure 6, shows the WOP values for

the structures of one, two, or three chromatography steps in a

sequence by either using MMs or ANNs. The different strategy out-

comes are merged into the number of chromatography steps. More-

over, we clearly observe the same increasing trend when considering

more chromatography steps for both ANNs and MMs. For one and

two chromatography steps, the WOP value is a bit overestimated by

the ANNs, mainly due to the overestimation of the yield as pointed

out previously. The range for WOP values of three chromatography

steps is about equal, only more flowsheets were estimated with a

higher WOP value when using ANNs.

The selected best flowsheets, for each optimization strategy with

MMs, were further locally optimized using the simultaneous strategy

with MMs, as shown in Figure 7. Noticeably, the solver objective is to

discover the ideal salt conditions within sequential chromatography

steps, thereby eliminating the need for filtration and so obtaining

enhanced yields and reducing buffer consumptions. Often, an orthog-

onal structure is applied in industrial processes, meaning that ion

exchange and hydrophobic interaction chromatography are alter-

nated.2 Here, the two selected best flowsheets also have an orthogo-

nal structure. However, from the global optimization results, other

promising sequences, with a WOP > 96, are not necessarily orthogo-

nal. For the final local optimization, a maximum number of 50 itera-

tions was set to minimize the computational time, which took about

8 h. From the final results in Figure 7, it can be observed that there is

a clear trade-off between purity and yield, for example the purity

result of the simultaneous strategy is reduced, while the yield

TABLE 4 Performance measurement results of the global and minor local optimization results for the selected two best flowsheets from the
MM modeling workflow, the ANN results are also provided. The selected best flowsheets for each strategy are highlighted.

Structure Strategy
Purity (%) Yield (%) Buffer consumption (L/g) WOP

MM ANN MM ANN MM ANN MM ANN

CEX – D – HIC – D – AEX Simultaneous 99.7 98.9 96.0 98.1 8.59 7.29 97* 97

Top-to-bottom 92.7 89.6 92.3 100.0 7.63 4.20 93 94

Decomposition 99.2 90.2 81.4 95.4 5.02 6.70 93* 92*

AEX – D – HIC – D – CEX Simultaneous 99.9 99.6 89.3 100.0 6.48 7.23 95** 98

Top-to-bottom 99.3 98.3 95.7 100.0 5.77 8.70 97 97

Decomposition 99.1 97.3 96.2 100.0 6.04 10.76 97 97

Note: The filtration is a spiking dilution step as explained in 2.5. Case study for *Flowsheet [1-5-3-4-2] in table D.1, D.3, and D.6 and for **Flowsheet

[2-5-3-4-1] in table D.1.
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F IGURE 6 The WOP value of each
flowsheet determined by each
optimization strategy is compared for
one, two, and three chromatography
steps, and between using either MMs or
ANNs as modeling workflow.

F IGURE 7 Final local optimization results using the simultaneous strategy with MMs. The global results of the best flowsheets for each
strategy using MMs are used as input for the final local optimization. The maximum number of iterations was 50.
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increases, when comparing to the global optimized results. The buffer

consumption was reduced in all strategies, but the overall WOP value

was not improved for all strategies. So, to really improve the outcome,

more iterations are needed. Or if a certain performance measurement,

such as the purity, is a severe constraint (>99%), this can be applied to

only local or both global and local optimization.

For comparing the overall computational effort, the total amount

of hours for each strategy and workflow (MMs or ANNs) are

evaluated and shown in Figure 8. However, the overall flowsheet

optimization workflow applied parallelization whenever possible. The

ANN-time involves the data-generation (using MMs), ANN develop-

ment, and running the optimization, though, 99% of the time is

devoted to the data-generation. The MM only includes the optimiza-

tion time. The simultaneous strategy with MMs is obviously the most

computationally intensive, whereas the top-to-bottom with MMs

requires the least amount of computational effort.

Nowadays, more advanced computers consist of at least 10 or

even 20 cores, and as a consequence the simultaneous and decompo-

sition strategy can be executed way more time-efficiently. The

decomposition can be parallelized maximally 15 times, as sequences

of three chromatography steps depend on the two-chromatography

step sequences. Whereas, the simultaneous strategy can be split into

the number of flowsheets to be evaluated, in this case 39. Similarly

for the ANN workflow, where, in principle, infinite codes can run

simultaneously to generate data. Only the top-to-bottom strategy

with MMs cannot be parallelized, as decisions are made sequentially

between the various levels of chromatography steps. Figure 9 shows

the effect of using 10 or 20 cores on each strategy and workflow. The

decomposition strategy with MMs is the most time-efficient when

making optimal use of the cores. In this case study, ANNs are signifi-

cantly more time-efficient for the simultaneous strategy and for the

top-to-bottom strategy when using 20 cores.

F IGURE 8 Comparison of the overall
computational effort between the
optimization strategies and modeling
workflows. The computational hours
represent the total (sequential) amount of
hours needed for each strategy.

F IGURE 9 Comparing the
computational hours for each
optimization strategy and modeling
workflow when using 10 or 20 cores.
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Evidentially, the optimization strategy plays a significant role in

the overall computational effort. But, if the optimization strategy

and workflow are parallelized most efficiently, the difference in

computational time between the strategies decreases, ranging from

about 1 to 7 days. In this case-study, all strategies found multiple and

similar optimal flowsheets. However, to obtain the most optimal con-

ditions when connecting several unit operations, the simultaneous

strategy is still recommended. In this flowsheet optimization evalua-

tion, ANNs did not appear to be more time-efficient. Presumably, if

more resins and/or larger sequences are considered and at least

20 cores can be used, it is expected that the ANNs exceeds the time-

efficiency compared to MMs. This would be an interesting evaluation

for a follow-up. Moreover, ANNs are very fast in executing the flow-

sheet optimization, which can be advantageous when evaluating dif-

ferent scenarios for the optimization problem. In general, multiple

factors determine which optimization strategy and workflow (MMs or

ANNs) might be optimal for a specific case-study, such as, the

objective(s) and constraint(s), the size of the superstructure, and/or

the computer power. The overview in Table 5 can help to make deci-

sions for a flowsheet optimization approach. In future work, exploring

different optimization algorithms, such as Bayesian optimization and

genetic algorithms, could improve both efficiency and robustness.

These methods can complement Differential Evolution by offering

alternative approaches for navigating complex search landscapes.

4 | CONCLUSIONS

In this study, we compared three optimization strategies to determine

the most effective approach for complex flowsheet optimization

based on their outcomes, time-efficiency, and complexity. Each

strategy, for example, simultaneous, top-to-bottom, and decomposi-

tion of the superstructure, was evaluated by either using MMs or

ANNs for the global optimization. This complex flowsheet optimiza-

tion consisted of 39 flowsheets, including an optional buffer exchange

between the chromatography steps. The filtration mathematical

model was validated for an UF/DF step using BSA. The protein con-

centration achieved an R2 of 0.99 and a standard deviation of 0.03,

and the salt concentration achieved an R2 of 0.97 and a standard

deviation of 6.25. Therefore, this model was assumed to be valid and

applicable to the other proteins during flowsheet optimization, which

had a similar or higher molecular weight than BSA. For the ANNs, all

critical proteins, which are present around the product peak, reached

an R2 >0.93, and the product of interest achieved an R2 >0.98 and

RMSE <0.022.

Subsequently, flowsheet optimization using MMs identified the

same optimal flowsheet (AEX – D – HIC – D – CEX) for both top-

to-bottom and decomposition strategies, the ANNs predicted the

same WOP for this sequence. The simultaneous strategy with MMs

identified a different sequence (CEX – D – HIC – D – AEX), which

was not selected as one of the best by the other two strategies, giving

a WOP threshold of at least 96. In general, the WOP values were

predicted within a similar range when using either ANNs or MMs. In

the case of orthogonal sequences, the solver often determined the

optimal salt conditions to exclude the filtration step and instead

employed a dilution/spiking step, and so reducing buffer

TABLE 5 Suggestions for deciding the type of optimization
strategy and/or modeling workflow (ANNs or MMs) for certain
scenarios/case studies.

Optimization problem Time

Optimization objectives and constraints

• Objective(s) and constraint(s) are clear:

MMs, however, depending on

superstructure size

• Different objective(s) and constraint(s)

to be evaluated: ANNs

Depending on available

number of cores.

If multiple cores can be

used:

• Limited time:

Decomposition

strategy

• Extended time:

Simultaneous

strategy

Superstructure size

Number of chromatography modes (type

of resins) to be considered:

• 3 chromatography modes: MMs

• 4 chromatography modes: ANNs

+ MMs

• 5 chromatography modes: ANNs

+ MMs

Flexibility of method Complexity

Optimizing variables

• Decided variables:

MMs and/or ANNs

• Undecided variables:

MMs easier to use,

or make more general ANNs

with various input variables,

or generate multiple ANNs

In terms of coding and knowledge

• All optimization strategies are

about equal in development

complexity, as the general

optimization workflow is

similar to all of them for both

ANNs and MMs

• Developing the ANNs adds

more complexity to the overall

approach

• Advanced knowledge is

required on the various MMs

employed, the overall

optimization workflow,

developing the ANNs, all the

algorithms/solvers used for

the optimization and ANNs

Apply different objectives for

different steps

Decomposition strategy, this

strategy can apply different

objectives for the first step

(capture step) and second

and/or third steps (polishing

steps).

In terms of solving

• Least complex:

Top-to-bottom, as it

individually solves each unit

operation

• Most complex:

Simultaneous, challenging to

find the optimal solution for a

sequence of more than 3 unit

operations having at least 5

variables per unit operation.

Increasing the number of unit

operations in the sequence or

the number of variables will

significantly increase the

complexity to solve the

problem
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consumptions and enhancing yields. Leveraging the multi-core proces-

sing capabilities, commonly available in contemporary computers, min-

imizes the duration of the flowsheet optimization between the

strategies. When using multiple cores, the superstructure decomposi-

tion method employed with MMs is the most time-efficient approach.

Utilizing ANNs is only significantly more time-efficient when employ-

ing the simultaneous strategy, and top-to-bottom approach when uti-

lizing 20 cores. Furthermore, if various optimization problems should

be evaluated, ANNs are valuable for their fast flowsheet optimization,

taking under an hour with multiple cores. All strategies are about

equal in terms of complexity to develop the software. However, the

combination with ANNs adds a layer of complexity because more

knowledge is required on different aspects.

This study points out the importance of different optimization

strategies and modeling techniques for complex flowsheet optimiza-

tions. Since numerous factors play a role, the decision-making table

can support to find the most suitable type of strategy and modeling

technique for a certain case study. Flowsheet optimization is crucial

during the early conceptual process design to decrease costs and

development time. Moreover, at the initial stage of a development

process, limited sample material is available and knowledge about the

sample purification has yet to be acquired. All strategies, whether

employing MMs and ANNs, successfully identified multiple optimal

flowsheets. Moreover, due to efficient parallelization, the difference

in computational time between the strategies was minimized. Though,

the decomposition of the superstructure strategy with MMs proved

to be most time-efficient. Furthermore, it has the advantage to apply

different objectives for specific steps during the purification process,

enhancing its versatility and utility in biopharmaceutical process

development. In this article, we have demonstrated the broad applica-

tion and capability of this approach. This method is flexible and can be

easily adapted to specific case study requirements and process limita-

tions. It serves as an initial screening tool to guide further optimization

and refinement.

AUTHOR CONTRIBUTIONS

Daphne Keulen: Conceptualization; methodology; software; data

curation; investigation; formal analysis; visualization; writing – original

draft; writing – review and editing; validation; project administration.

Myrto Apostolidi: Software; data curation; validation; writing –

review and editing. Geoffroy Geldhof: Supervision; writing – review

and editing. Olivier Le Bussy: Supervision; writing – review and

editing. Martin Pabst: Conceptualization; supervision; writing –

review and editing. Marcel Ottens: Conceptualization; super-

vision; funding acquisition; writing – review and editing; project

administration.

ACKNOWLEDGMENTS

This study was funded by GlaxoSmithKline Biologicals S.A. under

cooperative research and development agreement between GlaxoS-

mithKline Biologicals S.A. (Belgium) and the Technical University of

Delft (The Netherlands). The authors thank the colleagues from GSK

and Technical University of Delft for their valuable input. Moreover,

the authors want to thank Dr. Ir. Tim Nijssen for the fruitful discus-

sions on the optimization strategies and specifically on the decompo-

sition strategy. The authors also want to thank Roxana Disela for

performing the additional HIC chromatography experiments.

CONFLICT OF INTEREST STATEMENT

All authors have declared the following interests: Geoffroy Geldhof

and Olivier Le Bussy are employees of the GSK group of companies.

The other authors declare no conflict of interests.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

ORCID

Daphne Keulen https://orcid.org/0000-0001-8086-333X

REFERENCES

1. Jagschies G, Łącki KM. Chapter 4 – process capability requirements.

In: Jagschies G, Lindskog E, Łącki K, Galliher P, eds. Biopharmaceutical

Processing. Elsevier; 2018:73-94.

2. Łącki KM. Chapter 16 – introduction to preparative protein chroma-

tography. In: Jagschies G, Lindskog E, Łącki K, Galliher P, eds. Biophar-
maceutical Processing. Elsevier; 2018:319-366.

3. Nfor BK, Ahamed T, van Dedem GWK, et al. Model-based rational

methodology for protein purification process synthesis. Chem Eng Sci.

2013;89:185-195. doi:10.1016/j.ces.2012.11.034

4. Huuk TC, Hahn T, Osberghaus A, Hubbuch J. Model-based integrated

optimization and evaluation of a multi-step ion exchange chromatog-

raphy. Sep Purif Technol. 2014;136:207-222. doi:10.1016/j.seppur.

2014.09.012

5. Keulen D, Geldhof G, Bussy OL, Pabst M, Ottens M. Recent advances

to accelerate purification process development: a review with a focus

on vaccines. J Chromatogr A. 2022;1676:463195. doi:10.1016/j.

chroma.2022.463195

6. Mencarelli L, Chen Q, Pagot A, Grossmann IE. A review on super-

structure optimization approaches in process system engineering.

Comput Chem Eng. 2020;136:106808. doi:10.1016/j.compchemeng.

2020.106808

7. Chen Q, Grossmann IE. Recent developments and challenges in

optimization-based process synthesis. Ann Rev Chem Biomol Eng. 2017;

8(1):249-283. doi:10.1146/annurev-chembioeng-080615-033546

8. Siirola JJ, Powers GJ, Rudd DF. Synthesis of system designs: III.

Toward a process concept generator. AIChE J. 1971;17(3):677-682.

doi:10.1002/aic.690170334

9. Umeda T, Hirai A, Ichikawa A. Synthesis of optimal processing system

by an integrated approach. Chem Eng Sci. 1972;27(4):795-804. doi:10.

1016/0009-2509(72)85013-9

10. Westerberg AW. A retrospective on design and process synthesis.

Comput Chem Eng. 2004;28(4):447-458. doi:10.1016/j.compchemeng.

2003.09.029

11. Achenie LKE, Biegler LT. A superstructure based approach to chemi-

cal reactor network synthesis. Comput Chem Eng. 1990;14(1):23-40.

doi:10.1016/0098-1354(90)87003-8

12. Bauer MH, Stichlmair J. Superstructures for the mixed integer optimi-

zation of nonideal and azeotropic distillation processes. Comput Chem

Eng. 1996;20:S25-S30. doi:10.1016/0098-1354(96)00015-4

13. Short M, Isafiade AJ, Fraser DM, Kravanja Z. Synthesis of heat

exchanger networks using mathematical programming and heuristics

in a two-step optimisation procedure with detailed exchanger design.

Chem Eng Sci. 2016;144:372-385. doi:10.1016/j.ces.2016.01.045

KEULEN ET AL. 14 of 16

 15206033, 2025, 2, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/btpr.3514 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-8086-333X
https://orcid.org/0000-0001-8086-333X
info:doi/10.1016/j.ces.2012.11.034
info:doi/10.1016/j.seppur.2014.09.012
info:doi/10.1016/j.seppur.2014.09.012
info:doi/10.1016/j.chroma.2022.463195
info:doi/10.1016/j.chroma.2022.463195
info:doi/10.1016/j.compchemeng.2020.106808
info:doi/10.1016/j.compchemeng.2020.106808
info:doi/10.1146/annurev-chembioeng-080615-033546
info:doi/10.1002/aic.690170334
info:doi/10.1016/0009-2509(72)85013-9
info:doi/10.1016/0009-2509(72)85013-9
info:doi/10.1016/j.compchemeng.2003.09.029
info:doi/10.1016/j.compchemeng.2003.09.029
info:doi/10.1016/0098-1354(90)87003-8
info:doi/10.1016/0098-1354(96)00015-4
info:doi/10.1016/j.ces.2016.01.045


14. Friedler F, Aviso KB, Bertok B, Foo DCY, Tan RR. Prospects and chal-

lenges for chemical process synthesis with P-graph. Curr Opin Chem

Eng. 2019;26:58-64. doi:10.1016/j.coche.2019.08.007

15. Chen Q, Liu Y, Seastream G, Siirola JD, Grossmann IE. Pyosyn: a new

framework for conceptual design modeling and optimization. Comput

Chem Eng. 2021;153:107414. doi:10.1016/j.compchemeng.2021.

107414

16. Bertran M-O, Frauzem R, Zhang L, Gani R. A generic methodology for

superstructure optimization of different processing networks. In:

Kravanja Z, Bogataj M, eds. Computer Aided Chemical Engineering.

Elsevier; 2016:685-690.

17. Altissimi R, Brambilla A, Deidda A, Semino D. Optimal operation of a

separation plant using artificial neural networks. Comput Chem Eng.

1998;22:S939-S942. doi:10.1016/S0098-1354(98)00185-9

18. Chambers M, Mount-Campbell CA. Process optimization via neural

network metamodeling. Int J Prod Econ. 2002;79(2):93-100. doi:10.

1016/S0925-5273(00)00188-2

19. Henao CA, Maravelias CT. Surrogate-based superstructure optimization

framework. AIChE J. 2011;57(5):1216-1232. doi:10.1002/aic.12341

20. Fernandes FAN. Optimization of Fischer-Tropsch synthesis using

neural networks. Chem Eng Technol. 2006;29(4):449-453. doi:10.

1002/ceat.200500310

21. Schweidtmann AM, Mitsos A. Deterministic global optimization with

artificial neural networks embedded. J Optim Theory Appl. 2019;

180(3):925-948. doi:10.1007/s10957-018-1396-0

22. Nascimento CAO, Giudici R, Guardani R. Neural network based approach

for optimization of industrial chemical processes. Comput Chem Eng.

2000;24(9):2303-2314. doi:10.1016/S0098-1354(00)00587-1

23. Reinhardt IC, Oliveira DJC, Ring DDT. Current perspectives on the

development of industry 4.0 in the pharmaceutical sector. J Ind Inf

Integr. 2020;18:100131. doi:10.1016/j.jii.2020.100131

24. Silva F, Resende D, Amorim M, Borges M. A field study on the

impacts of implementing concepts and elements of industry 4.0 in

the biopharmaceutical sector. J Open Innov: Technol, Mark, Complex.

2020;6(4):175. doi:10.3390/joitmc6040175

25. Bisschops M, Cameron L. Process intensification and industry 4.0:

mutually enabling trends. Process Control, Intensification, and Digitali-

sation in Continuous Biomanufacturing. Wiley; 2022:209-229.

26. Chen Y, Yang O, Sampat C, Bhalode P, Ramachandran R,

Ierapetritou M. Digital twins in pharmaceutical and biopharmaceutical

manufacturing: a literature review. Processes. 2020;8(9):1088. doi:10.

3390/pr8091088

27. Portela RMC, Varsakelis C, Richelle A, et al. When is an in silico repre-

sentation a digital twin? A biopharmaceutical industry approach to

the digital twin concept. Digital Twins. Springer; 2020:35-55.

28. FDA. PAT Guidance for Industry – A Framework for innovative Phar-

maceutical Development, Manufacturing and Quality Assurance.

www.fda.gov/regulatory-information/search-fda-guidance-documents/

pat-framework-innovative-pharmaceutical-development-manufacturing-

and-quality-assurance

29. Yu LX. Pharmaceutical quality by design: product and process devel-

opment, understanding, and control. Pharm Res. 2008;25(4):781-791.

doi:10.1007/s11095-007-9511-1

30. Felinger A, Guiochon G. Comparison of the kinetic models of linear

chromatography. Chromatographia. 2004;60(1):S175-S180. doi:10.

1365/s10337-004-0288-7

31. Kumar V, Lenhoff AM. Mechanistic modeling of preparative column

chromatography for biotherapeutics. Ann Rev Chem Biomol Eng. 2020;

11(1):235-255. doi:10.1146/annurev-chembioeng-102419-125430

32. Shekhawat LK, Tiwari A, Yamamoto S, Rathore AS. An accelerated

approach for mechanistic model based prediction of linear gradient

elution ion-exchange chromatography of proteins. J Chromatogr A.

2022;1680:463423. doi:10.1016/j.chroma.2022.463423

33. Saleh D, Wang G, Müller B, et al. Straightforward method for calibra-

tion of mechanistic cation exchange chromatography models for

industrial applications. Biotechnol Prog. 2020;36(4):e2984. doi:10.

1002/btpr.2984

34. Hess R, Yun D, Saleh D, et al. Standardized method for mechanistic

modeling of multimodal anion exchange chromatography in flow

through operation. J Chromatogr A. 2023;1690:463789. doi:10.1016/

j.chroma.2023.463789

35. Nfor BK, Ahamed T, Pinkse MWH, et al. Multi-dimensional fraction-

ation and characterization of crude protein mixtures: toward estab-

lishment of a database of protein purification process development

parameters. Biotechnol Bioeng. 2012;109(12):3070-3083. doi:10.

1002/bit.24576

36. Close EJ, Salm JR, Bracewell DG, Sorensen E. A model based

approach for identifying robust operating conditions for industrial

chromatography with process variability. Chem Eng Sci. 2014;116:

284-295. doi:10.1016/j.ces.2014.03.010

37. Gétaz D, Stroehlein G, Butté A, Morbidelli M. Model-based design of

peptide chromatographic purification processes. J Chromatogr A.

2013;1284:69-79. doi:10.1016/j.chroma.2013.01.118

38. Disela R, Bussy OL, Geldhof G, Pabst M, Ottens M. Characterisation

of the E. Coli HMS174 and BLR host cell proteome to guide purifica-

tion process development. Biotechnol J. 2023;18(9):2300068. doi:10.

1002/biot.202300068

39. Meyer K, Leweke S, von Lieres E, Huusom JK, Abildskov J. Chroma-

Tech: a discontinuous Galerkin spectral element simulator for prepar-

ative liquid chromatography. Comput Chem Eng. 2020;141:107012.

doi:10.1016/j.compchemeng.2020.107012

40. Leweke S, von Lieres E. Chromatography analysis and design toolkit

(CADET). Comput Chem Eng. 2018;113:274-294. doi:10.1016/j.

compchemeng.2018.02.025

41. Breuer JM, Leweke S, Schmölder J, Gassner G, von Lieres E. Spatial

discontinuous Galerkin spectral element method for a family of chro-

matography models in CADET. Comput Chem Eng. 2023;177:108340.

doi:10.1016/j.compchemeng.2023.108340

42. Rao JS, Püttmann A, Khirevich S, et al. High-definition simulation of

packed-bed liquid chromatography. Comput Chem Eng. 2023;178:

108355. doi:10.1016/j.compchemeng.2023.108355

43. Narayanan H, von Stosch M, Feidl F, Sokolov M, Morbidelli M,

Butté A. Hybrid modeling for biopharmaceutical processes: advan-

tages, opportunities, and implementation. Review. Front Chem Eng.

2023;5:1-10. doi:10.3389/fceng.2023.1157889

44. von Stosch M, Oliveira R, Peres J, de Azevedo SF. Hybrid semi-

parametric modeling in process systems engineering: past, present

and future. Comput Chem Eng. 2014;60:86-101. doi:10.1016/j.

compchemeng.2013.08.008

45. Narayanan H, Seidler T, Luna MF, Sokolov M, Morbidelli M, Butté A.

Hybrid models for the simulation and prediction of chromatographic

processes for protein capture. J Chromatogr A. 2021;1650:462248.

doi:10.1016/j.chroma.2021.462248

46. Kiss AA, Grievink J. Process systems engineering developments in

Europe from an industrial and academic perspective. Comput Chem

Eng. 2020;138:106823. doi:10.1016/j.compchemeng.2020.106823

47. Liu S, Papageorgiou LG. Optimal antibody purification strategies using

data-driven models. Engineering. 2019;5(6):1077-1092. doi:10.1016/j.

eng.2019.10.011

48. Natali JM, Pinto JM, Papageorgiou LG. Efficient MILP formulations for

the simultaneous optimal peptide tag design and downstream processing

synthesis. AIChE J. 2009;55(9):2303-2317. doi:10.1002/aic.11913

49. Polykarpou EM, Dalby PA, Papageorgiou LG. Optimal synthesis of

chromatographic trains for downstream protein processing. Biotech-

nol Prog. 2011;27(6):1653-1660. doi:10.1002/btpr.670

50. Liu S, Papageorgiou LG. Multi-objective optimisation for biopharma-

ceutical manufacturing under uncertainty. Comput Chem Eng. 2018;

119:383-393. doi:10.1016/j.compchemeng.2018.09.015

51. Simeonidis E, Pinto JM, Lienqueo ME, Tsoka S, Papageorgiou LG.

MINLP models for the synthesis of optimal peptide tags and

15 of 16 KEULEN ET AL.

 15206033, 2025, 2, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/btpr.3514 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1016/j.coche.2019.08.007
info:doi/10.1016/j.compchemeng.2021.107414
info:doi/10.1016/j.compchemeng.2021.107414
info:doi/10.1016/S0098-1354(98)00185-9
info:doi/10.1016/S0925-5273(00)00188-2
info:doi/10.1016/S0925-5273(00)00188-2
info:doi/10.1002/aic.12341
info:doi/10.1002/ceat.200500310
info:doi/10.1002/ceat.200500310
info:doi/10.1007/s10957-018-1396-0
info:doi/10.1016/S0098-1354(00)00587-1
info:doi/10.1016/j.jii.2020.100131
info:doi/10.3390/joitmc6040175
info:doi/10.3390/pr8091088
info:doi/10.3390/pr8091088
http://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance
http://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance
http://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance
info:doi/10.1007/s11095-007-9511-1
info:doi/10.1365/s10337-004-0288-7
info:doi/10.1365/s10337-004-0288-7
info:doi/10.1146/annurev-chembioeng-102419-125430
info:doi/10.1016/j.chroma.2022.463423
info:doi/10.1002/btpr.2984
info:doi/10.1002/btpr.2984
info:doi/10.1016/j.chroma.2023.463789
info:doi/10.1016/j.chroma.2023.463789
info:doi/10.1002/bit.24576
info:doi/10.1002/bit.24576
info:doi/10.1016/j.ces.2014.03.010
info:doi/10.1016/j.chroma.2013.01.118
info:doi/10.1002/biot.202300068
info:doi/10.1002/biot.202300068
info:doi/10.1016/j.compchemeng.2020.107012
info:doi/10.1016/j.compchemeng.2018.02.025
info:doi/10.1016/j.compchemeng.2018.02.025
info:doi/10.1016/j.compchemeng.2023.108340
info:doi/10.1016/j.compchemeng.2023.108355
info:doi/10.3389/fceng.2023.1157889
info:doi/10.1016/j.compchemeng.2013.08.008
info:doi/10.1016/j.compchemeng.2013.08.008
info:doi/10.1016/j.chroma.2021.462248
info:doi/10.1016/j.compchemeng.2020.106823
info:doi/10.1016/j.eng.2019.10.011
info:doi/10.1016/j.eng.2019.10.011
info:doi/10.1002/aic.11913
info:doi/10.1002/btpr.670
info:doi/10.1016/j.compchemeng.2018.09.015


downstream protein processing. Biotechnol Prog. 2005;21(3):875-

884. doi:10.1021/bp049650n

52. Pirrung SM, Berends C, Backx AH, van Beckhoven RFWC,

Eppink MHM, Ottens M. Model-based optimization of integrated

purification sequences for biopharmaceuticals. Chem Eng Sci X. 2019;

3:100025. doi:10.1016/j.cesx.2019.100025

53. Pirrung SM, van der Wielen LAM, van Beckhoven RFWC, van de

Sandt EJAX, Eppink MHM, Ottens M. Optimization of biopharmaceu-

tical downstream processes supported by mechanistic models and

artificial neural networks. Biotechnol Prog. 2017;33(3):696-707. doi:

10.1002/btpr.2435

54. Keulen D, van der Hagen E, Geldhof G, Le Bussy O, Pabst M,

Ottens M. Using artificial neural networks to accelerate flowsheet

optimization for downstream process development. Biotechnol Bioeng.

2023;121:2318-2331. doi:10.1002/bit.28454

55. Tanartkit P, Biegler LT. A nested, simultaneous approach for dynamic

optimization problems—I. Comput Chem Eng. 1996;20(6):735-741.

doi:10.1016/0098-1354(95)00206-5

56. SciPy. scipy.optimize.differential_evolution – SciPy v1.11.2 Reference

Guide. https://docs.scipy.org/doc/scipy/reference/generated/scipy.

optimize.differential_evolution.html

57. Kocis GR, Grossmann IE. A modelling and decomposition strategy for

the minlp optimization of process flowsheets. Comput Chem Eng.

1989;13(7):797-819. doi:10.1016/0098-1354(89)85053-7

58. Daichendt MM, Grossmann IE. Integration of hierarchical decomposi-

tion and mathematical programming for the synthesis of process

flowsheets. Comput Chem Eng. 1998;22(1):147-175. doi:10.1016/

S0098-1354(97)88451-7

59. Liñán DA, Bernal DE, Ricardez-Sandoval LA, Gómez JM. Optimal

design of superstructures for placing units and streams with multiple

and ordered available locations. Part I: a new mathematical framework.

Comput Chem Eng. 2020;137:106794. doi:10.1016/j.compchemeng.

2020.106794

60. Ruthven DM. Principles of Adsorption and Adsorption Processes. John

Wiley & Sons; 1984.

61. Nfor BK, Zuluaga DS, Verheijen PJT, Verhaert PDEM, van der

Wielen LAM, Ottens M. Model-based rational strategy for chromato-

graphic resin selection. Biotechnol Prog. 2011;27(6):1629-1643. doi:

10.1002/btpr.691

62. Nfor BK, Noverraz M, Chilamkurthi S, Verhaert PDEM, van der

Wielen LAM, Ottens M. High-throughput isotherm determination

and thermodynamic modeling of protein adsorption on mixed mode

adsorbents. J Chromatogr A. 2010;1217(44):6829-6850. https://10.

1016/j.chroma.2010.07.069

63. Fellner M, Delgado A, Becker T. Functional nodes in dynamic neural

networks for bioprocess modelling. Bioproc Biosyst Eng. 2003;25(5):

263-270. doi:10.1007/s00449-002-0297-6

64. Foley GA. Membrane Filtration: A Problem Solving Approach with

MATLAB. Cambridge University Press; 2013.

65. Petzold L. Automatic selection of methods for solving stiff and non-

stiff Systems of Ordinary Differential Equations. SIAM J Sci Statist

Comput. 1983;4(1):136-148. doi:10.1137/0904010

66. Dominico G, Parpinelli RS. Multiple global optima location using dif-

ferential evolution, clustering, and local search. Appl Soft Comput.

2021;108:107448. doi:10.1016/j.asoc.2021.107448

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Keulen D, Apostolidi M, Geldhof G, Le

Bussy O, Pabst M, Ottens M. Comparing in silico flowsheet

optimization strategies in biopharmaceutical downstream

processes. Biotechnol. Prog. 2025;41(2):e3514. doi:10.1002/

btpr.3514

KEULEN ET AL. 16 of 16

 15206033, 2025, 2, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/btpr.3514 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [23/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1021/bp049650n
info:doi/10.1016/j.cesx.2019.100025
info:doi/10.1002/btpr.2435
info:doi/10.1002/bit.28454
info:doi/10.1016/0098-1354(95)00206-5
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
info:doi/10.1016/0098-1354(89)85053-7
info:doi/10.1016/S0098-1354(97)88451-7
info:doi/10.1016/S0098-1354(97)88451-7
info:doi/10.1016/j.compchemeng.2020.106794
info:doi/10.1016/j.compchemeng.2020.106794
info:doi/10.1002/btpr.691
https://doi.org/10.1016/j.chroma.2010.07.069
https://doi.org/10.1016/j.chroma.2010.07.069
info:doi/10.1007/s00449-002-0297-6
info:doi/10.1137/0904010
info:doi/10.1016/j.asoc.2021.107448
info:doi/10.1002/btpr.3514
info:doi/10.1002/btpr.3514

	Comparing in silico flowsheet optimization strategies in biopharmaceutical downstream processes
	Abstract
	1  |  INTRODUCTION
	2  |  MATERIALS AND METHODS
	2.1  |  Flowsheet optimization workflow
	2.1.1  |  Strategy I: Simultaneous flowsheet optimization
	2.1.2  |  Strategy II: Top‐to‐bottom approach
	2.1.3  |  Strategy III: Superstructure decomposition

	2.2  |  Chromatography
	2.2.1  |  Mechanistic model
	2.2.2  |  Artificial neural networks

	2.3  |  Filtration mathematical model
	2.4  |  Numerical methods
	2.5  |  Case study

	3  |  RESULTS & DISCUSSION
	3.1  |  Filtration model validation
	3.2  |  Artificial neural networks
	3.3  |  Flowsheet optimization

	4  |  CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


