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Abstract

According to the United Nations, the amount of money laundered worldwide
each year is an estimated 2 - 5% of global GDP (equivalent to $800 billion to $2
trillion in US dollars). This is money that criminal enterprises rely on to oper-
ate. For that reason, the European Union demands that gatekeepers (banks and
other obliged entities) apply measures to counteract money laundering. Current
industry state of the art anti-money laundering (AML) techniques ultimately
revolve around investigations by specialized financial investigators of suspicious
behaviour. Due to the human nature of this work, this process is relatively slow
and has limited capacity. Deciding in the most optimal way what financial en-
tities to investigate and when is not a trivial problem. However, optimizing this
sequential decision making problem could significantly decrease the time-scale in
which fraudulent actors are caught. This thesis will formulate the AML problem
as a Partially Observable Markov Decision Problem. It will design and imple-
ment an AML model and investigate the challenges associated with optimizing it.
In particular, several Partially Observable Monte-Carlo Planning based methods
are proposed that exploit the combinatorial structure of the actions to overcome
the challenges associated with a large action space. The methods are empirically
evaluated on the AML problem and compared to a baseline solution. The results
indicate that exploiting the combinatorial structure increases the performance
in this problem scenario. However, it seems that exploiting the structure to the
highest degree does not always lead to the best performance. Additionally, we
show that the proposed methods can match or even outperform the upper bound
set by the baseline solution.
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Chapter 1

Introduction

According to the United Nations, the amount of money laundered worldwide
each year is an estimated 2 - 5% of global GDP (equivalent to $800 billion to
$2 trillion in US dollars)[1]. This is money that criminal enterprises rely on to
operate. For that reason, the European Union demands that gatekeepers (banks
and other obliged entities) apply measures to counteract money laundering. In
recent history, failure to oblige to this standard has led to large fines for certain
financial institutions. In 2018 ING, a Dutch multinational banking and finan-
cial services corporation, settled with the Netherlands Public Prosecution Service
(Openbaar Ministerie) on a sum of 775 million euro for negligence in combating
money laundering. Money laundering is a global problem but the practice of
combating it, also called Anti-Money Laundering (AML), is far from trivial. In
order to properly perform AML practices, one has to detect fraudulent transac-
tion behaviour of individual accounts based on (most likely) partial knowledge
of a network of immense scale. The amount of data is so large that it would be
impossible to manually check every single suspicious transaction. The problem
amounts to finding a needle (fraudulent behaviour) in a haystack (transaction
graph) with only very limited resources.

1.1 Anti-Money Laundering

In the context of a financial institution, AML translates to detecting and report-
ing fraudulent behaviour. This is however easier said than done. In a financial
institution such as a bank, detecting fraudulent behaviour requires monitoring
immense transactional data flows for ’anomalous’ activity. For a moderately sized
bank in a country like the Netherlands, this can range up to millions of accounts
and even billions of transactions. However, this would only give a partial view
of the entire transactional network of the country. Money laundering typically
doesn’t restrict itself to a single financial institution. So, in order to properly
combat money laundering, transactional views of multiple different financial in-
stitutions would have to be combined, increasing the scale of the problem even
further.

1



1. Introduction 2

1.1.1 Rule-based Systems

At this point, it will be clear that AML cannot be a solely manual process. Up
to very recently, financial institutions would typically try to detect fraudulent
behaviour using a primitive rule-based system. There would be certain human-
crafted or curated rules that once broken would trigger a manual investigation.
An example of a rule could be a single transaction that exceeded a certain large
amount of money. One of the issues with this system is that if a criminal knows
the rules, it is very easy to avoid breaking them. Another is that these rules
typically are a very crude way of detecting fraudulent behaviour. In order to avoid
illicit activity going undetected, the thresholds for triggering an investigation
have to be set low. This results in a large amount of false positive triggers which
exceeds the (manual) investigation capacity.

1.1.2 Machine Learning

At the moment, many financial institutions are looking towards machine learning
for a solution. One example would be to use some form of supervised learning or
anomaly detection to derive a so called risk score for every entity in the financial
institution in question. This risk score would denote the likelihood of an entity
engaging in illicit behaviour: the higher the risk score, the higher the probability
of the entity being fraudulent. A small group of specialized investigators could
then perform in-depth investigations into the entities in descending order of risk
score. The key idea is that machine learning can hopefully provide a more sophis-
ticated method of detecting illicit behaviour compared to the primitive, heuristic
rule-based system.

Another way of viewing this approach is as a classifier that learns to classify
illicit behaviour. The confidence in the classification of an entity is then directly
proportional to the risk score of said entity.

1.1.3 Sequential Decision Making

The goal of the classifier approach described above is to detect suspicious be-
haviour of an entity. However, detecting suspicious behaviour is only the first
step of the AML process. If a financial institution suspects an entity of laun-
dering money, an investigation into this entity has to be launched. The goal of
this investigation is to confirm the suspicion and simultaneously collect evidence
against the illicit behaviour of this entity. Only if the suspicion is confirmed
beyond reasonable doubt and enough evidence has been collected, can the entity
be reported to the Public Prosecution Service. This is the final step of the AML
process within a financial institution.

This second part of the AML process (that involves the investigations) can be
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modelled as a sequential decision making problem. A sequential decision making
problem is a problem in which decisions (usually performing an action) have to
be made in a successive order (one after another). The ’sequential’ in sequential
decision making means that this framework explicitly considers the dynamics of
the problem and its dependency on the decisions being made throughout time.
Examples of sequential decision making applications are driving a car, managing
resources or playing a game.

1.2 Current AML Research

Current AML research is mostly focused on applying machine learning techniques
to detect fraudulent behaviour and structures in large datasets. In a review of
machine learning techniques for AML [2], the authors provide a classification of
algorithms that identifies several different approaches. This classification includes
approaches such as AML typologies (detecting behaviour similar to known money
laundering cases), link analysis (detecting links between entities), risk scoring
(rank entities by potential risk) and anomaly detection (identify deviation from
the normal transactional behaviour).

All of the identified approaches in [2] focus on classifying illicit behaviour
rather than optimizing the investigation process. One example of this is [3], in
which the authors show the importance of exploiting the graph structure of the
transactional network. They show that enhancing the local node features with
features aggregated from a neighbourhood around the node increases classifica-
tion performance in all of their tested methods. Additionally, they show that
adding node embeddings computed by a Graph Convolutional Network (GCN)
increases performance further. This strongly indicates the importance of the
graph structure in the classification of illicit behaviour. It is worth noting that
this paper also introduces the Elliptic Data Set, which is (to their knowledge)
the largest labelled transaction data set publicly available in any cryptocurrency.
This data set includes time slices of Bitcoin transactions in the order of a couple
of thousand nodes and edges (over 200k nodes and edges for the entire dataset).
This still is a relatively small network compared to the real transaction network
of a financial institution such as ING.

Most AML research is performed on synthetic data sets, such as the ones
generated from the AMLSim simulator [4]. In this paper, the authors compare
the scalability of different GCN methods on a large synthetic transaction graph.
They show that current GCN methods can struggle to scale up to large, real-sized
networks. In [5], they also propose a GCN method that handles the dynamics of
a changing transactional graph (as new transactions are being made every day).
These papers illustrate that a lot of the focus in AML research is on improving
the performance and scalability of the classification of fraudulent behaviour.
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Another interesting area of research is looking beyond just the transactional
data. In [6], the authors identified three major risk factors in order to create three
separate graphs: a Geographical Area Network, an Economic Sector Network
and a Transaction Network. They then apply social network analysis to these
networks and show some of these are very good predictors of a high-risk score.
This study shows that data other than the transactional network can be very
relevant for AML.

1.3 Problem Description

To our knowledge, none of the AML research considers the sequential decision
making aspect of the investigation process. However, this is a substantial part
of the AML process that could play a significant role in the overall objective of
combating money laundering. We will provide here an informal definition of the
AML process as a sequential decision making problem.

1.3.1 Informal Definition

The AML process can be framed as a sequential decision making process by
considering the investigations as the decisions that have to be made. We will
assume that the structure of this process is roughly equivalent to the following:

1. Detect Suspicious Behaviour - Derive a risk score for every entity in
your network.

2. Investigate Suspicious Behaviour - Choose a set of entities to investi-
gate.

3. Repeat With New Information - Repeat the process with new infor-
mation obtained from the investigations.

If we assume every investigator can investigate a single entity, the size of the set
of entities in step 2 is equal to the number of investigators. Due to the size of
the network, the number of investigators will typically be small compared to the
number of potentially suspicious entities in that network. Therefore, multiple
sequential repetitions of this process will be required.

If an investigation reveals the suspicious behaviour of an entity, this will result
in a case file containing evidence of this behaviour. If the case file is substantial
enough, it will be sent to the Public Prosecution Service and result in a so-called
Suspicious Activity Report (SAR). The goal of the decision making process is to
get a maximal amount of SARs in a minimal amount of time possible.
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1.3.2 Motivation

It is not necessarily trivial to find the most optimal sequence of investigations
that maximizes SARs in a minimal amount of time. In the presence of a risk
score provided by some classifier, an intuitive approach would be to sequentially
investigate the suspicious entities in descending order of the risk score. However,
this sequence might not always lead to an optimal order of investigations. We
will argue this with an example.

Figure 1.1 shows a scenario that might occur at a financial institution. In
it, we see a toy example of a transaction network where nodes are accounts and
edges financial transactions. In this example are three nodes (accounts) with
a particularly high-risk score. Node 1 having the highest risk, followed by 2
and 3 (in that order). This scenario involves two investigators that can perform
investigations into nodes in parallel.

1

2
3

High Risk

Low Risk

Figure 1.1: An example scenario indicating the importance of the investigation
dynamics. The investigations into node 2 and 1 are most likely related to each
other due to their proximity in the network.

The intuitive approach

The intuitive approach mentioned above would investigate nodes in order of de-
scending risk. This approach would therefore investigate nodes 1 & 2 first (and in
parallel). However, an in-depth investigation into an entity does not involve only
the entity under investigation. It typically also involves an analysis and investi-
gation into entities that it has business with (close proximity in the transaction
network). So, an investigation into node 1 most likely involves an analysis/partial
investigation into node 2 (and vice-versa).
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Why we need sequential decision making

What the optimal order of investigation is, depends on the dynamics of the inves-
tigation process. For instance, it might be that node 1 and 2 have a very high risk
due to some error in the classification process (they are not actually fraudulent).
Since they are in the same part of the transaction network, they might have erro-
neous scores due to a shared underlying cause. Instead of investigating nodes 1 &
2, it might be more efficient to investigate nodes 1 & 3 (or 2 & 3). Investigating
node 1 might unveil the underlying cause of its erroneous classification. Once
this underlying cause is fixed it can also fix the erroneous classification of node
2, removing the need for an investigation in node 2 altogether.

On the other hand, it might be the case that investigating nodes 1 & 2 in
parallel is actually more efficient. Perhaps the investigators can benefit from
cooperation in investigating the shared neighbourhood of nodes 1 & 2. Or in-
versely, investigating nodes 1 & 2 at the same time might cause duplicated work
in some way between the two investigators. Either way, it illustrates that the
characteristics and dynamics of the investigation process can play an important
role in optimising this part of the AML problem.

Moreover, the investigations in the AML process are performed by human
investigators specialized in financial crimes. They can take anywhere from days
up to multiple months to complete. Therefore, a small shift in the sequence of
investigations could potentially result in days or even months of delay. This is
why this thesis will focus on the sequential decision making aspect of the AML
process and will investigate the possibility of optimizing it.

1.3.3 Problem Frameworks

A similar problem domain to ours is that of active learning. Active learning
is a machine learning framework in which a learning algorithm is able to in-
teractively query some information source to obtain labels at new data points
[7]. The active learning framework and our problem share the principle research
question: "Which instances to query and when?". However, active learning algo-
rithms typically try to find those instances to query that will result in the largest
improvement in classification. Our objective is more akin to querying as many
instances of a particular class (the illicit class) as possible, regardless of whether
this query will improve classification or not.

Additionally, in active learning it is assumed that the queried labels are always
100% accurate. In our case, an AML investigation does not necessarily return
the correct label with certainty. In fact, the results of an investigation depend on
what instances were previously investigated. We require a framework that takes
into account that the outcome of an action might depend on previous actions
taken. This is what we refer to as the dynamics of the investigation process.
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A framework capable of modelling the dynamics of a system is the Markov
Decision Process (MDP) framework. The MDP framework assumes the user
knows the state of the system at all times. In the AML process, the state of the
system would include whether an account is illicit or not (since the result of an
investigation depends on this). However, it is exactly the objective of the AML
process to attain this knowledge and is therefore not "known to the user at all
times".

Therefore, the framework used in this thesis is the Partially Observable Markov
Decision Process (POMDP) framework. This is a generalization of the MDP
framework to problem domains for which users do not have to know the un-
derlying state of the system. Instead, the POMDP framework models problems
in which the user can only attain (partial) information on the state of the sys-
tem (whether an account is illicit) through observations (investigations) of said
system.

We refer to appendix B for a continued discussion on similar problem do-
mains/frameworks.

1.4 Challenges

In modelling the AML process in the POMDP framework, there are a number of
challenges one can encounter. Some of those challenges are related to the size of
the problem. Compared to typical POMDP problems, the AML problem has a
relatively large scale. The scale of a POMDP problem is typically measured in
three ways: the number of possible states the system can have, the number of
possible decisions the user can make and the number of possible observations the
user can receive. All of those provide their set of challenges. There is less focus
in the POMDP research on the issue of a large amount of possible decisions the
user can make, which will be a focus of this thesis.

Large amount of possible decisions

In a sequential decision making problem, at every time step we want to find what
decision is optimal to make at that moment. However, if there are a lot of deci-
sions to choose from, it might not be possible to consider all of them, increasing
the chances of missing the optimal decision. This problem only becomes worse
when optimizing over an entire sequence of future decisions to make. In fact it
increases exponentially with how far you want to look into the future [8]. This
is why a large amount of possible decisions to make can pose challenges in a
sequential decision making process and in particular in POMDPs.

In our case, a decision is a subset of the nodes in the transactional graph. The
size of this subset is equivalent to the number of specialized investigators there
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are available. The amount of possible decisions one can make is large due to its
combinatorial nature: the number of possible subsets of size K of an N node
network is

(
N
K

)
. In this thesis, we will try to exploit this combinatorial nature

to help us overcome the challenges associated with the large amount of possible
decisions.

Modelling

A completely different challenge is related to the modelling of the investigation
process. All solution approaches in the POMDP framework require some form of
a model of the process that it tries to optimize. That means we require some sort
of model of the investigation process in AML. Because there is no prior research
that considers AML as a sequential decision making process, there does not yet
exist a model we can use. So, part of this thesis is also about how we define our
model of the investigation process.

1.5 Objective

The objective of this thesis will be to frame the anti-money laundering process
as a sequential decision making process and optimize it. The starting point of
this thesis will be a classifier that can produce a risk score for all our entities. It
will assume the existence and availability of such a classifier and use it to develop
and evaluate sequential decision making algorithms.

In general, the main objective of this thesis can be summarized with the
following research question:

Main Research Question - Can Anti-Money Laundering practices be im-
proved by sequential decision making algorithms?

Given the challenges mentioned in the previous section, this research question
can be further specified. We identify three sub research questions:

Research Question 1 - Is it possible to model the AML decision making
process in the POMDP framework?

As was mentioned in the previous section, we will have to define a model for
the AML process ourselves. Defining a model in the POMDP framework requires
defining concepts (such as states, actions, observations, transition probabilities
and more) that have to adhere to certain restrictions. This thesis will investigate
the best possible way to define these concepts for the AML problem.
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The AML POMDP can have a relatively large scale in terms of possible
states, possible decisions and possible observations. We need to investigate which
POMDP solution approaches can overcome the challenges associated with these
properties and/or how they can be adjusted to do so. It is likely that the existing
methods are not specific to an action space structured in the way ours is. This
leads to the second question:

Research Question 2 - How can we exploit the combinatorial structure
of the possible decisions to improve the performance of POMDP solution ap-
proaches?

Our action space is highly structured in a predictable way. We need to in-
vestigate how and when to use this structure to guide our search for the optimal
solution. The structure is due to the combinatorial nature of the actions. This
combinatorial structure arises whenever a POMDP has an action that consists
of selecting a subset (of a particular size) out of a larger set. A POMDP solu-
tion approach exploiting this structure is hopefully applicable to any POMDP
characterized by this property of the action space. Our third research question
is:

Research Question 3 - How do sequential decision making approaches com-
pare to methods that ignore the investigation dynamics?

The ultimate goal of AML is to file a maximal amount of SARs in a minimal
amount of time. We need to investigate how framing it in a sequential decision
making context affects this goal compared to a method that ignores the investiga-
tion dynamics. This should give an indication whether framing the AML process
in this way is worth the effort.

1.6 Main Contributions

In answering the research questions defined above we identify the following main
contributions of this thesis. To our knowledge, no other research frames the AML
problem as a sequential decision making process. Our first contribution therefore
is to define the AML process as a Partially Observable Markov Decision Process
(POMDP). For the same reason we also have to define a POMDP transition and
observation model and create and implement a simulation for it. We identify
the challenges associated with this POMDP and perform a literature study on
POMDP solution approaches to overcome those challenges.

Additionally, we adjust the implementation of the Partially Observable Monte-
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Carlo Planning (POMCP) algorithm to deal with the memory bottleneck caused
by the large amount of possible decisions. This is then combined with the par-
titioning of the decisions into sub-decisions, inspired by literature from similar
problem domains. We exploit the symmetry of the problem by adding to this the
notion of transpositions, turning our search tree into a search Directed Acyclic
Graph (DAG). We then apply an existing search DAG framework to the sub-
decisions of our adapted POMCP algorithm and compare it with a different
approach that is designed to maximally exploit the transpositional information
available.

Finally, this thesis performs an empirical evaluation of the different methods
proposed and compares it with a baseline approach in AML practices.

1.7 Outline

Following this introduction chapter are two background chapters: chapter 2 and
chapter 3. Chapter 2 contains background information on the Partially Observ-
able Markov Decision Process (POMDP) and its solution approaches that will be
used in this thesis. Chapter 3 expands on this by considering some approaches
that can take into account the structure of the action space.

Chapters 4 and onward contain the contributions of this thesis. Chapter 4
defines the formal POMDP definitions of the AML process. It is followed by
chapter 5 that discusses all the solution approaches proposed in this thesis.

Chapters 6 through 9 detail the empirical evaluation of the methods proposed.
The methodology can be found in chapter 6, the experimental setup in chapter
7, results in chapter 8 and discussion in chapter 9. Finally, chapter 10 contains
the conclusion and discusses recommendations, limitations and areas of future
research.
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Chapter 2

Partially Observable Markov
Decision Process

This chapter contains the theoretical background on Partially Observable Markov
Decision Processes (POMDP) that will be used throughout the rest of this thesis.
A POMDP is a generalization of the Markov Decision Process (MDP) to partially
observable environments. This chapter will start with a brief description of a
Markov decision process in section 2.1. Following this will be a description of
a Partially Observable MDP (POMDP) together with a discussion of possible
POMDP solution approaches in section 2.2. Section 2.3 will detail the Partially
Observable Monte-Carlo Planning (POMCP) algorithm, which is the particular
POMDP solution approach used in this thesis.

2.1 Markov Decision Process

Formally, an MDP is a discrete-time stochastic control process. It is called a
Markov decision process because it is an extension of a so-called Markov chain.

2.1.1 Markov Chain

A Markov chain is a stochastic model that describes a sequence of events that
transition the system from one state to another. In a Markov chain, the tran-
sitions between states satisfy the Markov property. This property specifies that
the probability of transitioning to state st+1 at time t + 1 only depends on the
state st at time t, not any previous states. In other words

P (st+1|s1, s2, ..., st) = P (st+1|st) (2.1)

An example of a two-state Markov chain is given in figure 2.1. The arrows
between the states indicate the transition probabilities. For example, the proba-
bility to transition from state s to state s′ is 0.7, whilst the probability of staying
in state s is 0.3.

12
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0.4

0.7

0.3

0.6

s′

s

Figure 2.1: An example of a Markov chain

2.1.2 MDP

A Markov decision process is an extension of a Markov chain obtained by con-
trolling the transition probabilities through actions. An example of a two-state,
two action Markov decision process is given in figure 2.2. The dashed arrows and
nodes indicate actions (there are two: a0 and a1). These can be used to control
the transitioning of states. For example, when in state s, taking action a1 will
result in state s′ with 0.9 probability (and state s with 0.1 probability).

Terminology

Another extension from Markov chains to Markov decision processes is the addi-
tion of rewards R(st, at, st+1) (wavy lines in figure 2.2). The goal of controlling
the transitions in an MDP is to maximize the sum of (discounted) rewards ob-
tained, also called the (discounted) return G:

G =
∞∑
t=0

γtR(st, at, st+1) (2.2)

where the constant 0 ≤ γ ≤ 1 is the so-called discount factor. This constant
determines the importance of obtaining rewards sooner rather than later. For
example, a γ of 1 will be indifferent on when rewards are obtained, whereas a γ
close to 0 will only care about rewards obtained in the next step.

In optimizing an MDP the goal is to find a good policy π, which is a function
π(s) that specifies what action a to take when in state s. The optimal policy π∗
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s′

s

a0 a1

a1a0

0.7

0.3

0.4
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0.1
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0.5

0.5

+5

−1
Figure 2.2: An example of a Markov Decision Process. Dashed arrows and nodes
indicate actions, wavy lines indicate rewards.

is then the policy that maximizes the expected (discounted) return:

E[G] = E[
∞∑
t=0

γtR(st, π
∗(st), st+1)] (2.3)

where the expectation is taken over st+1 ∼ P (st+1|st).
An example of an MDP is a game like chess. One state description s of chess

is the positions of the pieces on the board (this description obeys the Markov
property). However, a game like chess does not continue forever: there are ter-
mination conditions. If one of the two players checkmates the other’s king, or if
both players agree to a draw, the game is over. An entire game can be uniquely
defined by a sequence of states, actions and rewards, this is called an episode. In
this case the goal of the MDP becomes:

E[
T∑
t=0

γtR(st, π
∗(st), st+1)] (2.4)

where t = T is the time at which the termination condition is met and the episode
is ended.

Generally speaking, an MDP can have a horizon h, which denotes the number
of time-steps into the future one should plan for. Equation (2.3) shows the
maximization goal of an infinite horizon MDP, whereas equation (2.4) is that
of a finite-horizon MDP. Intuitively, finite-horizon MDPs are typically easier to
solve than infinite horizon ones.
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Formal Definition

Formally, a Markov decision process is defined by the 5-tuple (S,A, T,R, γ),
where:

• S denotes a set of states called the state space

• A denotes a set of actions called the action space

• T denotes a set of conditional transition probabilities T (st+1|st, at).

• R denotes a reward function R(st, at, st+1).

• γ denotes a discount factor, which is a constant in the range [0, 1].

2.2 Partially Observable Markov Decision Process

In the previous section we learned that a Markov Decision Process (MDP) is
an extension of a Markov chain. In a similar way, a Partially Observed Markov
Decision Process (POMDP) is an extension of a hidden Markov model (HMM).

2.2.1 Hidden Markov Model

A hidden Markov model is a Markov chain for which the states S are hidden
(or unobservable). Rather than observing the states, an HMM assumes there is
another process that depends on the states S in such a way that observing this
other process will allow you to learn about the states S indirectly.

An example of a two-state HMM can be found in figure 2.3. The dotted
arrows and nodes indicate the observations one can receive. For instance, when
in state s one can obtain observation o0 with probability 0.1 and observation o1
with probability 0.9.
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Figure 2.3: An example of a Hidden Markov Model (HMM). Dotted arrows and
nodes indicate observations.

2.2.2 POMDP

A POMDP is an extension of an HMM in the exact same way an MDP is an ex-
tension of a Markov chain: with the addition of actions and rewards. A schematic
view of a POMDP can be found in figure 2.4. One way of thinking of a POMDP
is as an MDP for which the states are indirectly observed through some sort of
sensing apparatus. For example, a POMDP can describe a robot whose position
s = (x, y) is its state, but whose sensors can only measure the x coordinate. Or
a game of chess, for which one can only see the left half of the board. Based on
knowledge of the initial state (initial position of a robot or initial state of the
board in chess), the actions taken and observations received, it is possible to infer
some notion (or belief) of what state the system is likely to be in.

Figure 2.4: A schematic view of a POMDP.



2. Partially Observable Markov Decision Process 17

Belief

In an MDP, one searches for a policy which is a function mapping states to actions
π : S → A. In a POMDP, the state s one is currently in is hidden. Therefore, in
a POMDP, the policy is instead a function mapping a belief b(s) over states to
actions. Formally, the belief state b of a POMDP is defined as the posterior state
distribution given the observations. It is an |S| dimensional vector that lives in
the |S| − 1 dimensional unit simplex (the belief space) Π(S).

The belief b is a distribution over states indicating how likely it is to be
in a certain state at that moment, given the entire history H of actions and
observations up till now. Intuitively, an initial belief b0 and the history H =
{a0, o0, ..., at, ot} is all the information one has to optimally choose a next action.
However, storing the entire history is very inefficient as it is ever-growing. On
the other hand, the belief bt only requires to be maintained every time step based
on the previous belief bt−1, action taken at and observation received ot. Given
that the belief is a sufficient statistic for the history [9], it suffices to maintain
the belief bt rather than the entire history H.

One interesting thing to note is that a POMDP can be viewed as a continuous
state MDP where the MDP states are the POMDP belief states.

Formal Definition

A POMDP model can be described using the 7-tuple (S, A, T , R, Ω, O, γ) where:

• S denotes a set of states called the state space.

• A denotes a set of actions called the action space.

• T denotes a set of conditional transition probabilities T (st+1|st, at).

• R denotes a reward function R(st, at, st+1).

• Ω denotes a set of observations called the observation space.

• O denotes a set of conditional observation probabilities O(ot|st+1, at).

• γ denotes a discount factor, which is a constant in the range [0, 1].

This 7-tuple is the MDP 5-tuple with the addition of observations Ω and
observation probabilities O.

2.2.3 Solution Approaches

There are many possible approaches to solving a POMDP (finding the optimal
policy π∗). Different approaches are suited to overcoming different challenges
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one can encounter in POMDPs. We will discuss three different dichotomies of
POMDP solution approaches that will help us identify the strength and weak-
nesses of those approaches (more information on POMDP solution approaches
can be found in appendix C). We will start by discussing the differences between
exact and approximate algorithms.

Exact vs Approximate Approaches

As the name suggests, an exact approach is an approach that tries to solve the
POMDP exactly. This means it will try to find the exact optimal policy that
maximizes the discounted return. In an ideal scenario, we would always like to
have an exact solution. However, in practice finding the exact solution might just
be to difficult.

In fact, finite-horizon POMDPs are PSPACE-complete [10] and infinite hori-
zon POMDPs are even undecidable [11]. As a consequence, even small POMDPs
are often computationally intractable. The reason POMDPs are so difficult to
solve exactly is due to two problems: curse of dimensionality and curse of history
[8].

As mentioned before, in a POMDP we cannot observe the state directly.
Instead, we have to infer a belief over the state space based on the actions taken
and observations received. The space over which we need to solve the POMDP
exactly is the belief space, which is the |S| − 1 dimensional unit simplex Π(S).
This means that the dimensionality of the problem scales exponentially with the
number of states. This is referred to as the curse of dimensionality. The curse
of history refers to the fact that the number of belief-contingent plans increases
exponentially with the planning horizon.

This means for larger POMDPs we require approximate solution approaches.
These are solution approaches that don’t try to find an exact optimal policy.
Instead, they search for a policy that can approximate the optimal one in terms
of discounted return. Most approximate solutions overcome the curse of dimen-
sionality by maximizing over only a part of the belief space. Similarly, they try to
overcome the curse of history by considering only some belief-contingent plans.

Offline vs Online Approaches

Another dichotomy is that of offline vs online approaches. Offline and online
algorithms are typically used in different settings. The offline setting is one in
which all the planning/learning is done before any execution takes place. That
is to say, an offline algorithm has to derive the optimal policy for every possible
belief state before execution. The online setting is one in which planning/learning
and execution are interleaved. Typically, in the online setting the algorithm tries
to derive the optimal action to be taken in the current belief state. Once found,
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this action is executed and the new belief state is observed. The algorithm then
tries to find the optimal action in the new current state etc. Figure 2.5 shows
the difference between the two approaches schematically.

Policy Construction Policy Execution

Offline Approach

Online Approach

Small construction step between executions

Figure 2.5: A schematic view of offline and online approaches.

There are some typical advantages and disadvantages between offline and on-
line methods that are due to the difference in setting. As mentioned before, offline
methods need to derive the optimal policy for every possible belief state before
execution. For many problems, this takes too large a time to solve. Moreover,
they are typically not very robust against changes in the dynamics of the environ-
ment [12]. This is because if during execution the dynamics of the environment
change, the policy computed offline using the previous dynamics might not be
as relevant anymore. Similarly, going from a low fidelity simulation to the real
world could potentially also be thought of as a change in the dynamics of the
environment (from simulation to real).

As opposed to offline methods, online methods don’t have to find the optimal
policy for every possible belief. They just have to find the optimal action for
the current belief. This is very useful if the size of the belief space becomes
very large (curse of dimensionality). Only finding the optimal policy for the
current belief/state, and repeating this after every time step also makes online
approaches more robust against changes in the dynamics of the environment.
The same holds for uncertainty on the dynamics of the environment, a mistake
in this is not propagated through more than a single action into the future.

A limiting factor of online approaches is typically that it needs to run in real-
time. In other words, computation time is limited to the amount of time there is
between actions. To deal with the real-time constraint, many online approaches
continually keep track of the best-found solution so far. This means that they
can be terminated at any time and still supply the best solution so far.

A combination of both approaches is also possible. A lot of online approaches
can be used as a way to improve upon some baseline (offline) solution.
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Model-based vs Model-free Approaches

The last dichotomy discussed here is that of model-based vs model-free ap-
proaches. A model-based approach is an approach that requires explicit knowl-
edge of the POMDP model. Specifically, knowledge of the transition probabilities
T (s′|s, a), reward function R(s, a) and/or observation probabilities O(o|s′, a).
These functions are defined over S,A and Ω. However, these spaces can be
too large to store those functions explicitly. For instance, one way to store the
transition probabilities T (s′|s, a) would be to have a 3-dimensional matrix over
S×A×S. However, as soon as the state space gets to a certain size, storing this
matrix becomes impossible. This is an issue all model-based methods share.

For larger problems (in terms of state, action and/or observation space) we
require so-called model-free approaches. They are called model-free because they
do not require explicit knowledge of the POMDP model. They typically only
require implicit knowledge of the model through interaction with a generative
model G. A generative model G is a function which takes as input a state st
and action at and generates as output the next state st+1, observation ot+1 and
reward rt+1

(st+1, ot+1, rt+1) ∼ G(st, at) (2.5)

Generative models allow on-the-fly samples from the distributions T (s′|s, a),
R(s, a) and O(o|s′, a) at low computational cost. This is because the complex-
ity of sampling from a generative model is only determined by the underlying
difficulty of the POMDP, not the size of the state or observation space.

2.3 Partially Observable Monte-Carlo Planning

The AML POMDP in this thesis will be relatively large and will use a model that
is not 100% accurate to real life. For the reasons discussed in the previous section,
this means we will look for an approximate, online and model-free approach.

The Partially Observable Monte-Carlo Planning (POMCP) algorithm is such
an approximate, online, model-free approach based on the principles of Monte-
Carlo Tree Search (MCTS). Before we dive into the POMCP algorithm, it is
beneficial to understand the Monte-Carlo Tree Search approach for regular, fully-
observable, MDPs.

2.3.1 Monte-Carlo Tree Search

Monte-Carlo Tree Search is an online planning approach that has shown excellent
performance on challenging problems [13] [14]. It is a tree search approach that
evaluates states through the average outcome of simulations. It is a best-first
approach that focuses on expanding the search tree in the direction that shows
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the most promising results. It evaluates the leaf nodes of the tree through long-
horizon simulations and is often effective without heuristics or prior knowledge.
Given appropriate exploration of the search tree, it is guaranteed to converge to
the optimal solution, given enough search time.

Algorithm Structure

For regular MDPs, the search tree consists of nodes representing states, and
edges representing actions (see figure 2.6a). The tree is built from the root (the
current state), by successively choosing edges (actions) along which to expand
the tree. A Monte-Carlo Tree Search algorithm does this by iteratively applying
four different phases: Selection, Expansion, Simulation and Backpropagation [14]
(see figure 2.6b also from [14]). The phases consist of the following:

• Selection This phase consists of traversing the current search tree from
the root until a leaf node is reached. The leaf node that is reached is
the node that will be expanded during this iteration. The policy that is
used to descent the tree is called the tree policy. This policy determines
in what region of the search space the tree should be expanded and ex-
plored. This tree policy, therefore, has to balance between exploitation and
exploration. Exploitation means that the search should be focused on re-
gions that are the most promising, so as to not waste resources on regions
that are most likely sub-optimal. Exploration means that sometimes less
promising regions of the search space should be explored, to avoid over-
looking the optimal regions due to some bad draws in the stochastic part
of the evaluation.

• Expansion Once a leaf node is reached, this node is to be expanded. This
means a new child node should be added and evaluated. In this way, the
search tree grows by one node in every iteration.

• Simulation A new node (state) is evaluated by running a simulation from
this state until the end of the episode (either reaching the horizon or some
terminal state/condition). This simulation is generally performed using a
generative model. Actions in this simulation are selected according to the
so-called rollout policy. This policy can be completely random, or some
other baseline policy on which you wish to improve. The value of the new
node is equal to the return G of the simulation.

• Backpropagation Once the value of the new node is determined, it has
to be propagated up the search tree to the root. Every node in the search
tree usually keeps an average of the returns of the simulations that passed
through this node. Therefore, the average value of every node in the descent
path of the selection phase has to be adjusted based on the return of the
new simulation.
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s

a

(a) Example of a search tree in an MDP. The nodes are states and the edges
are actions.

(b) The four different phases of Monte-Carlo Tree Search.

Figure 2.6: Schematic overview of Monte-Carlo Tree Search.
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UCT

A crucial part of the MCTS algorithm is the tree policy. This policy determines
what part of the search space to explore and therefore has to balance exploration
and exploitation. Explore too much and it will take a long time to find a good
policy, exploit too much and you might get stuck in a sub-optimal policy that is
only optimal locally.

A widely used tree policy for MCTS is the UCT algorithm [15]. The UCT
algorithm uses the UCB1 algorithm [16] to assign to every action a value:

u(s, a) = µ(s, a) + c

√
log n(s)

n(s, a)
(2.6)

where µ(s, a) is the average value found so far for being in node s and taking
action a, n(s) is the number of simulations that passed through node s, n(s, a)
is the number of simulations that passed through node s and edge a and c is an
exploration constant. The UCT algorithm chooses the action with the highest
value u(s, a).

The balance between exploration and exploitation is determined through the
exploration constant c. An exploration constant of c = 0 means no exploration
takes place, a large exploration constant c means the exploration term

√
logn(s)
n(s,a)

dominates the value u(s, a) in equation (2.6). This exploration term favours
actions a that have been traversed the fewest times.

Typically, nodes are initialized with n(s) = ninit(s) = 0 and µ(s, a) =
µinit(s, a) = 0. However, prior domain knowledge, heuristics or the solutions
of an offline estimate can be used to improve the MCTS. This knowledge can be
embedded in the ninit and µinit. In this way µinit is the estimated value of the
prior knowledge and ninit is the confidence in this estimate.

2.3.2 POMCP

The POMCP algorithm is an MCTS algorithm applied to POMDPs [17]. A key
difference between POMDPs and MDPs is that in POMDPs the state is not
directly observed. So in a POMDP the search tree doesn’t just consist of states
(nodes) and actions (edges). Rather, in a POMDP we have to build a belief tree
(see figure 2.7), consisting of belief nodes and action nodes (note that actions are
now nodes rather than edges). Another way to view this tree is as a history-based
tree. Recall from section 2.2.2 that the belief is just a sufficient statistic for the
history H. Also recall that the history H consists of the initial belief, together
with all the actions and observations that got you up to the current point in time.
So, for any belief node in the belief tree, the history is given by the descent path
from the root (initial belief) to the current belief node.
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Figure 2.7: Example of a belief tree/history-based tree. The round nodes indicate
histories/beliefs and the square nodes denote actions.

PO-UCT

Every belief node in the search tree represents a history h. Every action node in
the tree represents a history h (of the parent belief node) followed by an action
a, which we denote as ha. Just like in regular MCTS, every node keeps track of
at least two variables: {n(h), µ(h)} (or {n(ha), µ(ha)}). These are respectively
the number of times h (or ha) was visited and the estimated value of h (or ha).
The estimated value is an average of the return of all simulations that passed
h (or ha). New nodes are initialized with {0, 0} or, if there is prior knowledge,
with {ninit, µinit}. Notation wise, a new belief h′ that follows from belief h after
taking action a and observing o, can be denoted with h′ = hao.

Let’s assume for now that the belief b(h) is known at every belief node. In
this case, to traverse the tree, starting from the root a state s is sampled from
the belief b(h). This state is used to sample observations, rewards and the next
state from the generative model

(st+1, ot+1, rt+1) ∼ G(st, at) (2.7)

In this way the tree is descended in the same way as in MCTS. What actions to
choose during the descent phase is determined by the tree policy.

The tree policy for POMCP is called Partially Observable UCT (PO-UCT).
As the name suggests, this is the partially observable counterpart to the tree
policy in regular UCT-MCTS. Actions are selected by evaluating for every action

u(ha) = µ(ha) + c

√
log n(h)

n(ha)
(2.8)

after which the action with maximal u(ha) is selected.
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Belief State Updates

In the above, we assumed the belief b(h) corresponding to every belief node h is
known. For small problems, the new belief hao after action a and observation o
can be derived using a belief update (calculating posterior state distribution given
action and observation). However, that is a model-based approach and therefore
requires explicit knowledge of the probability distributions. For problems with a
large state space storing these distributions is not possible. Furthermore, even if it
were possible, performing this belief update would be computationally infeasible.

So, in the POMCP algorithm, the beliefs are estimated using an unweighted
particle filter over states. The reason an unweighted particle filter is used rather
than a weighted one is because the former is very easy to implement using just a
black box generative model. In fact, the particles in the particle filter for a node
h are the states that were encountered during simulations that passed this node.
So, on top of storing n(h) and µ(h), belief nodes also store the states belonging
to the particle filters B(h) for the beliefs they represent.

Algorithm Structure

At the beginning of the POMCP algorithm, K states are sampled from the initial
belief bi. At the start of a simulation, a starting state s is sampled from these
K states. The PO-UCT algorithm is used to select an action a along which to
descend the tree T . The state s and action a are used to obtain a reward r,
observation o and new state s′ from the generative model (s′, o, r) ∼ G(s, a). The
new state s′ is added to the particle filter B(hao). This process is repeated until a
belief node is reached that wasn’t encountered before. This node is initialized and
the last obtained state from the generative model is added to its particle filter.
This state is also used to estimate the value of this node, using the generative
model and a rollout policy. Afterwards, this estimated value is propagated back
through the tree T up to the root node. Pseudo-code for the algorithm can be
found in algorithm 1.

This process is repeated until a termination condition is met. This concludes
the planning phase of the algorithm. In the execution phase, the best-found
action a is executed in the real-world, and a real observation o is obtained. The
belief update for hao is now performed by defining the node hao as the new root.
All other branches from h are pruned since they no longer contain reachable
histories. The particle filter B(hao) at hao now represents the new initial belief.
If this particle filter does not yet contain K particles, new particles are added
using rejection sampling. In practice, the belief update can also be combined
with particle re-invigoration to avoid particle deprivation.
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Algorithm 1 POMCP
1: procedure Search(h)
2: repeat
3: if h = empty then
4: s ∼ bi
5: else
6: s ∼ B(h)
7: end if
8: Simulate(s,h,0)
9: until Timeout

10: return arg maxa µ(ha)
11: end procedure

12: procedure Rollout(s, h, depth)
13: if γdepth < ε then
14: return 0
15: end if
16: a ∼ πrollout(h)
17: (s′, o, r) ∼ G(s, a)
18: return r + γ Rollout(s′, hao, depth+ 1)
19: end procedure

20: procedure Simulate(s, h, depth)
21: if γdepth < ε then
22: return 0
23: end if
24: if h /∈ T then
25: for all a ∈ A do
26: T (ha)← (ninit(ha), µinit(ha), ∅)
27: end for
28: return Rollout(s, h, depth)
29: end if
30: a← argmaxb µ(hb) + c

√
logn(h)
n(hb)

31: (s′, o, r) ∼ G(s, a)
32: R← r + γ Simulate(s′, hao, depth+ 1)
33: B(h)← B(h) ∪ {s}
34: n(h)← n(h) + 1
35: n(ha)← n(ha) + 1

36: µ(ha)← µ(ha) + R−µ(ha)
N(ha)

37: return R
38: end procedure



2. Partially Observable Markov Decision Process 27

2.3.3 Large Observation Space

The POMCP algorithm uses Monte-Carlo sampling of states for both the tree
search and belief state updates to deal with large state spaces. Consequently, it
outperformed all the previous POMDP solvers on large problems.

However, a large state space is not the only thing that complicates a POMDP
solution approach. Some real world problems have not just large state spaces,
but also large observation spaces. There are several extensions to the POMCP
algorithm that try to solve problems with large state and observation spaces.

POMCP builds the belief tree by sampling observations from a generative
model. When at belief node h and taking action a, every new observation o
received results in a new history, resulting in a new belief node hao. The issue
with large observation spaces is that the probability of obtaining the same ob-
servation in two separate simulations becomes smaller and smaller as the size of
the observation space grows. In other words, if we are in h and perform a, the
probability of sampling observation o in two separate simulation runs would be
negligible if the observation space is large enough.

So, because each simulation will most likely sample a new observation, it will
most likely create a new belief node. In this scenario our search tree would not
extend deeper than the first layer (see figure 2.8 from [18]). Remember that
after every creation of a new belief node, the rollout policy is applied to a state
sampled from the belief. Solutions of this algorithm will closely resemble QMDP
solutions. A QMDP solution assumes all partial observability disappears after
the next step and will therefore never consider repeated information gathering
steps.

Figure 2.8: Example showing that for large observation spaces the search tree
never extends beyond the first layer.

Furthermore, if we want the POMCP algorithm to improve upon some base-
line solution (perhaps found offline), this can be achieved by using this baseline
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as the rollout policy. The issue then becomes that, because the tree will never
extend deeper than the first action, this method will never discover improvements
on the baseline that differ from it in more than one action.

We refer to appendix D for a more in-depth summary of the POMCP exten-
sions that try to deal with large observation spaces.



Chapter 3

Combinatorial Action Spaces

In the previous chapter, we introduced the POMCP algorithm as an MCTS based
approach for partially observed environments that handles large (even continu-
ous) state spaces using Monte-Carlo sampling. We also briefly discussed some of
the challenges of dealing with large observation spaces. However, this chapter is
about the challenges of a large action space. In particular, it summarizes some
of the concepts used in this thesis to exploit the combinatorial structure of the
AML action space.

Large action spaces are an issue because the size of the action space determines
the branching factor of the search tree (the same as with a large observation
space). This means large action spaces will result in broad, shallow search trees.

There exists some research on POMCP-based methods that deal with con-
tinuous action spaces [18]. They use progressive widening of the search tree to
limit how broad it can be. However, this is a rather crude solution that ignores
parts of the action space if it gets too large, which severely limits the possibility
of exploration. In the continuous case, ignoring parts of your search space is
inevitable due to it being infinitely large.

In the discrete case, however, there can be more sophisticated solutions. Sec-
tions 3.1 and 3.2 respectively discuss the concepts of action chains and Directed
Acyclic Graphs (DAG) in the search tree. Some of the methods proposed in chap-
ter 5 build DAGs into their search trees. Section 3.2.1 therefore discusses the Up-
per Confidence bound for Directed acyclic graphs (UCD) framework, which is an
adaption of MCTS to search DAGs. Related to UCD is the update-all algorithm
which is discussed in section 3.2.2.

3.1 Action Chains

In some POMDP domains, it is possible to leverage the structure of the actions to
reduce the complexity of the action space. For instance, in multi-agent POMDPs
the joint action of multiple agents can be decomposed into sub-actions performed

29
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{a1, a2}{a′1, a2}

{a1, a′2}

(a) An example of a partial search
tree. The rightmost edge denotes
joint action a = {a1, a2}.

s

s′

a1

a2 → a = {a1, a2}a′2

a′1
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(b) An example of a partial search
tree with action chains. The right-
most path denotes selecting first
sub-action a1 and then a2, result-
ing in action a = {a1, a2}.

Figure 3.1: Example of a regular partial search tree and one with action chains
for N = 2 and K = 2.

by individual agents. In this way, the joint action can be decomposed into an
action chain [19] where each agent decides on its action sequentially (instead of
all of them at once).

The benefit of this approach is that value can be assigned to intermediate
steps in the action chain. For example, suppose we have a multi-agent problem
with K = 10 agents, each with an individual action space of size N = |Ai|.
An action chain would now consist of a tree with |Ai| actions on the i’th level
(representing the possible actions for agent i) (see figure 3.1). With an action
chain, it is possible to assign an intermediary value to agent 1 choosing action a1,
rather than only assign values to the joint actions of all the agents combined (the
leaf nodes in the action chain). If the actions chosen are sufficiently independent,
this could significantly help in guiding the search through the exponential joint
action space (consisting of the Cartesian product of Ai).

3.1.1 Selecting Nodes From a Graph

In [20], the authors present a software agent that recommends sequential inter-
vention plans to raise awareness about HIV among homeless youth. The fun-
damental goal of this paper is to choose individuals from a social network in
such a way to maximize influence spread across the network. The actions are
defined by sequentially selecting a fixed number of nodes (individuals) from a
graph (social network). Suppose K = 6 nodes could be picked every round (the
group size for an intervention) out of a N = 150 node graph, the action space
consists of every possible way to pick 6 nodes out of 150 (order independent):
|A| =

(
150
6

)
≈ 14×109. The main limitation of the POMCP method from section

2.3 is the memory needed to store this (very broad) search tree.
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Due to this limitation, the authors in [20] limit themselves to only performing
a search over the next action to take (so a search tree that only goes down 1 level).
However, in order to build a search tree that covers all possible next actions to
take, you would still need to store over 14 billion nodes in memory (for the
example above), this isn’t feasible. Instead, they build a K-level tree (where K
is the number of nodes picked per round), which is an action chain tree consisting
of only the first combinatorial action.

3.2 Directed Acyclic Graphs

In certain problem domains, it is possible to create a search Directed Acyclic
Graph (DAG), rather than a search tree, through the application of transpositions
[21]. For instance, in chess, a transposition occurs when a sequence of moves
results in a position that is also reached by another sequence of moves. The
position of the pieces of the chessboard describes a state space that has the
Markov property. In other words, what sequence of moves gets you to a certain
position has no influence on the future of the game, the only thing that matters
is the current position of the pieces.

The value function only depends on the current board position. If two se-
quences of moves lead to the same board position, they would have the same
value going forwards. In general, a transposition occurs in any MDP when a se-
quence of actions leads to the same state as another sequence of actions. Linking
the two action sequences of a transposition in the search tree means there is no
longer a single unique path from the root to any leaf node. Therefore, the search
tree is no longer a tree, but rather a search DAG (see figure 3.2).



3. Combinatorial Action Spaces 32

s

s′

a

Figure 3.2: An example of a search Directed Acyclic Graph (DAG). In this ex-
ample there are multiple sequences of actions that lead to state s′.

3.2.1 Upper Confidence Bound for Directed Acyclic Graphs

In [22] they propose a framework to deal with transpositions in MCTS called
Upper Confidence bound for Direct acyclic graph (UCD). In their framework,
descend through the game tree works as follows: At a node, an action is chosen
through some selection procedure. If the edge associated with this action already
exists, move along this edge to another node and repeat. If the edge does not exist,
consider the newly achieved state. This new state might already be associated
with a node in the tree. If so, connect it to this node and repeat. If not, create
a new node and apply the rollout policy.

Backpropagation

In terms of backpropagation, the UCD framework applies the same backpropaga-
tion strategy as regular MCTS as if there were no transpositions. This strategy
is to update only the descent path, i.e. the path through which the leaf node was
reached during the selection phase of the current MCTS iteration. The problem
is now that not all information useful in the selection phase is stored locally (see
figure 3.3 from [22]). In order to make optimal decisions, it could be necessary
to look ahead further down the DAG. If a transposition occurs further down the
search DAG, that information is only available at the location of the transposi-
tion. So in order to take into account information from transpositions, the tree
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policy will have to look further down the tree before it makes a decision.

Figure 3.3: An example showing that by updating only the descent path not all
relevant information is stored locally. At node a, choosing optimally between c
and b is not possible with only the local information.

Selection

The effects of a transposition can be found by moving sufficiently far down to the
tree until the transposition node is encountered. In order to use this for the tree
policy, the UCD algorithm adapts the regular UCT variables (value and count)
into versions that aggregate the values going down the DAG for a certain depth
d. The first variable they define is the adapted score µd:

µ0(e) = µ(e) (3.1)

µd(e) =
µ′(e)× n′(e) +

∑
f∈c(e) µd−1(f)× n(f)

n′(e) +
∑

f∈c(e) n(f)
(3.2)

where µ(e) is the UCT value function for edge e, c(e) are the children of edge e,
n(f) is the UCT count and µ′ and n′ are the initial values for µ and n respectively.
The other variable is the count variable n which only counts the actual amount
of times a node is passed during the selection procedure.
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They also define an adapted count nd:

n0(e) = n(e) (3.3)

nd(e) = n′(e) +
∑
f∈c(e)

nd−1(f) (3.4)

Note that in a way the larger the parameter d is, the more transpositional infor-
mation is taken into account. If d is very small for instance, only transpositions
that occur close to the current node are considered. Whereas if d were really
large (or infinite), all the transpositions that will ever occur in the future are
considered.

Both the adapted variables combine in the definition of the UCD tree policy:

ud1,d2,d3 = µd1(e) + c

√
log(

∑
f∈b(e) nd2(f))

nd3(e)
(3.5)

where b(e) are the sibling edges of e including e. Note that the UCD tree policy
has three depth parameters which allow for variability in how much different
parts of the tree policy take into account transpositional information.

Notes on implementation

Instead of descending the tree up to depth di for every node in the selection
procedure for all three parts of the tree policy, it is possible to define a proce-
dure to store the adapted variables on the edges and update them during the
backpropagation phase.

3.2.2 Update-All

In addition to introducing the UCD framework, the authors of [22] also briefly
mention the update-all algorithm. The update-all algorithm derives its name
from its backpropagation strategy. This strategy is as follows: rather than up-
dating only the descent path, update all ancestor paths as if they were the descent
path (taking care to update every ancestor only once). During the selection phase,
the update-all algorithm then applies the UCT algorithm for its tree policy. In
other words, the update-all algorithm is the same as plain MCTS, but with a
backpropagation phase adjusted to search DAGs that updates all paths from the
leaf node to the root.

The update-all algorithm is designed to maximally share the information ob-
tained from a playout. It does so by backpropagating this information equally
along every possible ancestor path. In this way, it shares this information with
every part of the search tree for which this information is thought to be relevant
(given the current known search DAG).
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It is desirable to maximally use the available information to be able to make
the best informed decisions. However, the authors of [22] opt for the UCD frame-
work rather than the update-all algorithm. They show that the update-all al-
gorithm can perform sub-optimally in a certain scenario. This is demonstrated
with a counter-example shown in figure 3.4 (from [22]). In this counter-example,
the optimal action on the lower right is masked by an unlucky sample rollout.
This poor estimate is never adjusted due to the update-all strategy always up-
dating the upper-right edge, even though the UCT algorithm always chooses the
left-most descent path.

Figure 3.4: A counter-example for the update-all backpropagation procedure.



Part III

Anti-Money Laundering
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Chapter 4

POMDP Specification

This chapter will specify the Anti-Money Laundering (AML) problem in terms
of the POMDP framework discussed in chapter 2. The formal definition of the
AML POMDP is specified in section 4.1. Afterwards, we specify the transition
and observational model further in section 4.2.

Informally, the AML process could be defined as follows:

• State s: The transactional graph and any other knowledge we might have
on the entities in it.

• Action a: A subset of the nodes in the transactional graph of a particular
size (equal to the number of investigators).

• Reward r: A positive value whenever a SAR is filed.

• Observation o: Any information we obtain from an investigation.

This informal definition helps in conceptualizing the more complicated parts
of the formal definition stated in the next section.

4.1 Formal Definition

Before we define the AML process, we should specify that AML investigations in
real life are a very complicated process. In order to gain some traction on solving
the decision making problem in this thesis, we will make a number of simplifying
assumptions.

Assumptions

The first simplification is that we assume the transactional graph to be static
(for instance a snapshot during a certain time window). This means we will not
consider new accounts or transactions.
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Another simplification is that we assume an immediate reward feedback. In
reality, there might be a delay between the finishing of an investigation and the
submission of a SAR to the public prosecution service. In our model, we assume
the filing of a SAR is immediate and therefore a positive reward can be given
immediately after an investigation has concluded.

Additionally, a POMDP assumes a discrete time-step process. This does not
necessarily apply to the AML process, however. In real life, investigations can
take a variable amount of time depending on several things, including external
resources and whether a node is actually fraudulent or not. This could potentially
be modelled using a fixed time-step denoting a fixed unit of investigation time,
together with a variable action budget (the number of nodes that can be selected
for an action). In this thesis, we simplify this process by assuming instead a fixed
size time-step as well as a fixed size action budget.

4.1.1 Definition

With the above assumptions and informal definition in mind, the formal POMDP
definition of the AML process used in this thesis will be the following:

• State space S: Our state is a transactional graph G = (V,E). The nodes
V denote the accounts and the edges E are the transactions. All nodes
v ∈ V have a set of binary labels L(v) = {lr(v), lo(v)} and a set of features
F (v) = {f r(v), fo(v), f c(v)}. The labels L(v) indicate whether the node v
is illicit or not: lr is the real status of the node and lo the observed one
(determined through investigation). The features are divided in a similar
way: f r is the set of features with their real values and fo is the same
set but with the values that are being observed (also determined through
investigation). The set f c is a set of binary labels indicating for every
feature whether we believe them to be correct or not. So, at time t the
state st consists of the tuple:

st = {G,Lt, Ft} = {G, lr, lot , f r, fot , f ct }

where we use notation: Ft = {Ft(v)}v∈V . Note that G, lr and f r are time
independent since we assume a static transactional graph.

• Action space A: The action space consists of all possible subsets of nodes
V of a fixed size K (the action budget):

A = {a ⊂ V | |a| = K}

The nodes in a are the ones to be investigated.
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• Transition probabilities T : The distribution that describes how our state
transitions from one time step to another. Since we assume a static transac-
tional graph, this only includes the dynamics of lot , fot and f ct . How the state
changes depends on the previous state and the action taken: T (st+1|st, at).

• Reward function R: The reward is a positive constant r = 1 every time
a node gets labeled as illicit.

• Observation space Ω: An observation ot+1 consists of the observed labels
lot+1(v) for every node v that is investigated (which includes at the very least
the nodes in the action a, but might include more).

ot+1 = lot+1(v) for v ∈ set of investigated nodes

• Observation probabilitiesO: The observation probabilities are the prob-
abilities of observing ot+1 given st+1 and at. Since ot+1 = lot+1 is also part
of the state space this can be defined in terms of the transition probability:

O(ot+1|st+1, at) = O(lot+1|st+1, at) = T (lot+1|st, at)

In a POMDP the observational probabilities depend only on the action taken
and the state transitioned to based on that action: O(ot+1|st+1, at). This is why,
besides the transactional graph and its features, we added to the state space all
the relevant information needed for modelling the investigations (things like lot , fot
and/or f ct ).

The observation space

There are some things to note about the observation space in the formal POMDP
definition above. In the informal definition, the observation space includes every
relevant piece of information obtained from the investigations. This should there-
fore probably include the observed feature values fo and whether those values
are believed to be correct f c (both potentially observed during an investigation).
However, this would increase the size of the observation space significantly. This
would be accompanied with all the challenges of large observation spaces de-
scribed in section 2.3.3.

However, during our experiments, we discovered that our generative model
does not heavily rely on the specifics of the information in fo and f c. Therefore,
when using that model, we can significantly reduce our observation space by
only including lo (which is very relevant for our model). In this way, we are
ignoring part of the information we could potentially use (by excluding fo and
f c from the observation space), in favour of reducing the search space complexity
(smaller observation space). If in the future the generative model changes, it
might become more relevant to include fo and f c in the observation space.
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4.1.2 Large Scale

The AML POMDP defined in this chapter has a relatively large scale two respects:
the state space and the action space.

The state space

The state of the AML POMDP defined above is the transactional graph together
with labels and numerical features. The state space is therefore the space of
all possible transactional graphs together with the spaces for all the possible
feature/label values. The space of all possible transactional graphs is unbounded
(you can always add another transaction to obtain a new valid transactional
graph). When combined with the continuous space of the numerical features it
becomes clear that this state space is relatively large.

The action space

The POMDP defined above also has a large (combinatorial) action space. This is
due to the fact that our action consists of selecting a subset of nodes a ⊂ V of size
K (our action budget) out of all the possible nodes V in the transaction graph.
In other words, our action is defined as selecting a subset of a particular size out
of a larger set of possibilities, resulting in an action space of size |A| =

(|V |
K

)
.

4.2 Model Specification

Because the state space of the AML problem is so large, it will be impossible to
explicitly model every single transition probability T (st+1|st, at) for every possible
pair of (st+1, st). Instead, we will define a generative model G that generates the
next state st+1, observation ot+1 and reward rt+1 given input st and at:

(st+1, ot+1, rt+1) ∼ G(st, at) (4.1)

This generative model is also what we will require in order to perform Monte-
Carlo sampling in our POMCP-based solution approaches.

There exists no precedent for research into AML investigations and therefore
we will have to define and implement this model ourselves. The real process is
of course very complicated, involving human judgement and external resources.
In this thesis, we will use a simplified model that hopefully captures the relevant
elements of the real-world process.
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4.2.1 Basic Structure

Before we discuss the specifics of our transition probabilities T , we will discuss
the basic structure of our model. Our model will take as input a current state
st and an action at. The action can consist of multiple nodes ai ∈ at that
need to be investigated. The idea behind this action space is that the number
of nodes to be investigated equals the number of human investigators available.
The investigation process roughly consists of the following steps:

1. Observe some information (fo, f c) on the features of the node ai and some
of its neighbours.

2. Repeat the above for all ai ∈ at
3. Based on the information gathered (fo, f c) during the investigations, label

all investigated nodes (lo) licit or illicit with a certain probability.

In the first step, we try to model real-life by investigating more than just the
node ai under formal investigation. Part of the investigation into ai is investiga-
tions into suspicious activity of ai’s network. In reality, the (partial) investigation
into a suspicious neighbour of ai could reduce the investigation time needed for
this neighbour when it is under formal investigation itself.

However, we assumed a fixed size time-step in our model. This behaviour is
a potentially a large component of the dynamics of the investigation process. So,
in an attempt to fit this behaviour in our simplified model, we will add the inves-
tigation into ai’s suspicious neighbour together with its labeling (and therefore
submission of a SAR) to the current time-step in which ai was investigated.

Parameters

How many neighbours and what degree of neighbours of ai are to be investigated
are problem-specific parameters of our model. These parameters are necessary to
be able to adapt the scope of the investigations based on the problem size. The
parameters will be referred to as the following: the investigation budget KI and
the investigation depth dI .

The investigation budget KI determines how many neighbours (besides ai)
will be considered for investigation. For instance, an investigation budget of 3
means ai and two of its neighbours will be investigated. The investigation depth
dI determines the degree of neighbours under consideration. An investigation
depth of 2 means all 1-hop and 2-hop neighbours of ai will be considered.
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4.2.2 Transition Probabilities

In our model, the only parts of the state space st = {G,Lt, Ft} that are dependent
on time are (lot , f

o
t , f

c
t ). The transition model T (st+1|st, at) therefore can be

thought of as
T (st+1|st, at) = T (lot+1, f

o
t+1, f

c
t+1|st, at) (4.2)

The features that are believed to be correct f ct+1 follow directly from the
previous f ct and the new feature values observed in the current iteration. This
is because when a new feature value is observed, they are also assumed to be
correct. So, f ct+1 is f ct plus all newly observed features. This set f ct+1(v) will be
used as a measure for how much knowledge is available on a particular node v at
time t+ 1.

Observing the values of features fot+1 is modelled through a sequence of n
independent Bernoulli trials. The outcome ’success’ is obtained with probability
p and denotes the case in which this value is observed. The ’failure’ outcome
denotes the case in which this value is not observed. The number of Bernoulli
trials n is equivalent to the total amount of features. In other words, during an
investigation process for a node v, a coin is flipped for every feature in F (v) to
determine whether this feature value is observed or not. Through observing new
feature values, we can increase the amount of features assumed to be correct (in
f ct+1), which increases our measure for how much knowledge is acquired for a
particular node.

A node v is labeled (lot+1(v)) licit or illicit based on three different metrics.
The first one is the amount of knowledge available on node v (for which we use
f ct+1(v) as a measure). The second one is the amount of knowledge available in
the local network around v (for which we use f ct+1 of the neighbours). Lastly is
the amount of neighbouring nodes that was already found to be fraudulent in
previous investigations (for which we use lot of the neighbours).

Note that one further simplification made here is that labeling multiple nodes
in a single time-step is done independently. In other words, labeling a node is
independent of the results for other nodes investigated in the current time-step.
If this were not the case the labeling of a node v would have to somehow depend
on the labels lo of its neighbours at time t+ 1.

4.2.3 Initial Conditions

Above, we described how we transition from a certain state to the next. We will
now describe how we generate an initial state s0. Just as stated above, the only
dynamic parts of our state space are (lot , f

o
t , f

c
t ). We will start by describing how

to generate the initial values for those variables.
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Dynamic Variables

The simplest variables to initialize are the labels lo0. We assume that at the start
of the episode we haven’t found any of the illicit nodes yet. So we initialize all
lo0s as licit.

The observed feature values fo0 will be initialized by taking the real values f r,
and adding noise to some of the values. We decide what value to add noise to
by a sequence of independent Bernoulli trials (in the same way as for observing
feature values described above). This is supposed to simulate that in real life
most of the features in the transactional network are generated through some
automatic or machine learning methods. These methods are never fully error
proof and therefore it wouldn’t be realistic for the observed values fo0 to be the
same as the real ones f r.

Lastly, the values f c0 denote what feature values fo0 we believe to be correct.
We can make an initial guess on what values we deem correct based on our prior
knowledge of the process that derives these values. In our model, this process
is a series of Bernoulli trials. Therefore, we will make an initial guess for what
values are correct f c0 through a series of Bernoulli trials in the same way as
described above for fo0 . If in the future the process for initializing fo0 becomes
more complicated, the process for initializing f c0 can change in the same way.

Static Variables

In the previous section, we described how we initialize the dynamic parts of
our state (lot , f

o
t , f

c
t ). The static parts of our state (G, lr, f r) are assumed to be

obtained directly from our transaction network. For the empirical evaluation,
we will need to acquire a real/generate a synthetic transaction network for this
purpose.

One candidate for a real transaction network could be the Elliptic Data Set
[3] for cryptocurrency. This dataset contains real Bitcoin transactions with real
labels obtained from uncovered scams, malware, etc. The issue with this dataset
is the potential mismatch between the graph structure of this cryptocurrency
and normal financial transactions. In the Elliptic Data Set the nodes represent
Bitcoin transactions and the edges represent the flow of Bitcoins. We found in
our experiments that the model we created for the investigations described in this
chapter did not properly match with the structure of these graphs. Therefore, for
the empirical evaluation in this thesis, we opt for using the AMLSim simulator.

AMLSim

The AMLSim simulator [4] is designed to generate a series of banking transac-
tion data together with a set of known money laundering patterns. The simulator
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works by first generating a transaction network structure that includes some sus-
picious transaction patterns such as cycle, fan-in/out and bipartite network with
non-obvious relationships (see figure 4.1). It then performs an actual transaction
simulation on top of this structure. A schematic for this procedure can be found
in figure 4.2.

The AMLSim simulator labels all accounts involved in the AML typologies
as illicit. In this way, the graph G and the true labels lr can be straightforwardly
obtained from the AMLSim transaction network. Unfortunately, unlike the El-
liptic Data Set, the AMLSim simulator does not generate node features f r that
can be useful predictors for fraud used in the risk scoring.

(a) Fan out. (b) Fan in.

(c) Cycle.
(d) Bipartite network.

Figure 4.1: Examples of the AML typologies used in AMLSim. Figure from [23].

However, we overcome this by creating a ’perfect’ risk score that is 1 if the
node’s true label lr is illicit, and 0 otherwise. Because the risk score is now
independent of the feature values f r and fot , we create dummy variables for these
features. Our investigations only directly depend on the variables f ct , which can
still be initialized and updated in the exact same way described above, regardless
of the variables f r and fot being real or dummies.
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Figure 4.2: Workflow of the AMLSim simulator. Figure from [23].



Chapter 5

Solution Approaches

This chapter will introduce the solution approaches proposed in this thesis to
optimize the AML POMDP defined in chapter 4. Several POMCP-based methods
are discussed together with their potential limitations and the motivation for
using them in this thesis. We will first propose the POMCP method with a
memory-efficient implementation in section 5.1. Afterwards, we introduce the
concept of action chains to the POMCP method and define the POMCP-AC
algorithm in section 5.2. Lastly, we introduce the concept of transpositions to
the action chains of the POMCP-AC method in section 5.3, creating directed
acyclic graphs in the belief tree. In that section, we discuss two POMCP-based
methods: POMCP-UCD and POMCP-UA, based on the UCD and update-all
algorithms respectively.

5.1 Memory-Efficient POMCP

As discussed in section 2.2.3, a large state space means it is infeasible to use a
model-based approach that requires explicit knowledge of the model’s probability
distributions. Additionally, the size of the state space determines the dimension-
ality of the belief space. Therefore, due to the curse of dimensionality, an offline
approach would not be tractable. Finally, for the same reason of scale, an ex-
act solution will be infeasible. As discussed in the previous chapter, the AML
POMDP has a relatively large state space. This means we require a model-free,
online and approximate solution approach. One such approach is the Partially
Observable Monte-Carlo Planning (POMCP) algorithm.

The POMCP algorithm does not use the structure of the action space in
guiding its search through the search tree. For example, in the POMCP algorithm
the joint action {a, b} and the joint action {a, c} are not related in any way.
Even though, with our knowledge of the action space structure, we know they
are related in that they both contain node a.

However, all the other methods in this thesis are extensions of the POMCP
algorithm designed to exploit the structure of the combinatorial action space.
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The POMCP method discussed in this section is, therefore, a useful baseline to
compare the other methods with. Comparing the other methods to the POMCP
method will serve as an ablation study to examine the benefits of exploiting this
action space structure.

Memory efficiency

The AML POMDP does not only have a large state space, but it also has a large
action space. The regular implementation of the POMCP algorithm from section
2.3 initializes every possible action node (of which there are |A|) whenever a new
observation node is created (and then performs a rollout). If the action space is
large, this will result in an incredibly large amount of nodes initialized in memory
that store no new information (just the initial values). This is not very memory-
efficient. In fact, this implementation of the algorithm cannot even solve small
combinatorial problems without running into significant memory issues due to
the large action space.

So, a memory-efficient implementation of the POMCP algorithm would be one
in which action nodes are only created once they are actually traversed during
the selection phase. These nodes will hold new information due to the backprop-
agation of the results obtained from the rollout. In order to perform the selection
phase just like the regular POMCP implementation, the memory-efficient one
will have to temporarily initialize the relevant and currently uninitialized action
nodes with the initial values. At most this implementation will have to tem-
porarily initialize |A| nodes at a time. This is potentially a lot less than the |A|
nodes the regular implementation initializes every time a new observation node
is created.

Time consumption

It is worth noting that the memory-efficient implementation has a much smaller
memory footprint, but will be more time-consuming. This is because it needs to
initialize actions not just once, but every time these actions are considered by
the tree policy during the selection phase. In this sense, this implementation is
a memory versus time trade-off.

If the initial values are constants (for instance ninit = 0 and vinit = 0) or
based on some simple heuristic, this trade-off will most likely be worth it. How-
ever, if the initial values contain prior knowledge obtained through some complex
offline solution, the added time complexity might make the memory-efficient im-
plementation unusable.
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5.2 Action Chains

In the paper on sequential intervention plans for homeless shelters [20], they deal
with the combinatorial action space by searching over a K-level tree instead of
a regular belief tree. This K-level tree can be viewed as an action chain for
the next possible joint action. However, performing a search in only the next
action is like building a search tree that is only a single layer deep. This has
all the limitations discussed in the sections on large observation spaces 2.3.3 (it
converges to the QMDP solution). Preferably, we would like to build a search
tree that goes beyond the single next action.

5.2.1 POMCP-AC

We propose to use the concept of action chains in the POMCP method in an
algorithm we call POMCP with Action Chains (POMCP-AC). Recall that the
POMCP algorithm builds a belief tree with action nodes and observation nodes
(see figure 5.1a). We can introduce the concept of action chains to belief trees
by building the action chains instead of action nodes in between the observation
nodes. Figure 5.1 shows the difference between the two types of belief trees.

h

{a, b} {a, c} {b, c}

o1 o2 o1 o2 o1 o2

(a) An example of a regular belief
tree.

h

a b c

{b, c} {a, c}{a, b} {b, c}{a, b} {a, c}

o1 o2 o1 o2 o1 o2 o1 o2 o1 o2 o1 o2

(b) An example of a belief tree with
action chain.

Figure 5.1: Examples of a regular belief tree and one with action chains for N = 3
and K = 2.

We include this method because the two methods proposed in the next sec-
tion extend the POMCP-AC method by adding the concept of transpositions.
Comparing those methods with the POMCP-AC method will therefore act as an
ablation study for the addition of transpositions.

Furthermore, the K-level tree used in [20] closely resembles the POMCP-
AC method. Comparing the other methods in this thesis with POMCP-AC can
therefore act as a justification to apply those methods to the problem domain in
[20].

The POMCP-AC algorithm can be applied to any domain with an action
space in which it would be meaningful to assign value to sub-actions. The key
idea is that this method can improve upon POMCP by exploiting the structure
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of the action space to guide the tree search in the direction of the most promising
regions.

Symmetries

In an action chain, there are N−m children for every node in the mth level of the
action chain (where N is the number of nodes in the graph). This means, for K
number of nodes picked per round, the action chain has

∏K−1
m=0(N −m) = N !

(N−K)!

possible leaf nodes (actions). This is more than the original
(
N
K

)
= N !

(N−K)!K! in
the combinatorial action space. This is because in the action chain, selecting a
node a first and then a node b, leads to a different part of the tree than selecting
node b first and then a, even though in the combinatorial action space the action
{a, b} is the same as {b, a}. In other words, the action chain ignores the symmetry
of actions in the combinatorial action spaces.

Because the POMCP-AC method ignores the symmetry of the combinatorial
action space, we do not necessarily expect it to always outperform the other
methods in this thesis. In fact, it might even be outperformed by the POMCP
method in some scenarios, since this method implicitly takes into account the
combinatorial symmetry in the definition of its joint action space.

5.3 Directed Acyclic Graphs

In problem domains where the order of (sub-)actions doesn’t matter (such as a
combinatorial action space), we would like to have the path a → b lead to the
same part of the search space as path b → a. One way to achieve this is to
connect the path a → b to the path b → a in the search tree (by letting them
point to the same node). In this case, the search tree is no longer a tree, but
rather a Directed Acyclic Graph (DAG).

We propose to extend the POMCP-AC method of the previous section by
adding transpositions to the action chains. A transposition in this context con-
nects two paths in the action chain of a belief tree that lead to equivalent joint
(sub-)actions. This adapts the POMCP-AC method into a method that can
exploit the symmetries of the combinatorial action space.

Due to the transpositions, the belief tree transforms into a belief DAG (see
figure 5.2). Note that the transpositions only occur within the action chains of
the belief tree. The belief DAG can therefore be viewed as a belief tree consisting
of smaller action-DAGs at the level of the action chains, rather than a single large
DAG.
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Figure 5.2: An example of a (partial) belief Directed Acyclic Graph (DAG) for
N = 3 and K = 2. The part in between any two observation nodes is referred to
as the action-DAG.

In this section, we will introduce two methods that are designed to deal with
a belief DAG rather than a belief tree: POMCP-UCD and POMCP-UA. The
POMCP-UCD algorithm applies the UCD framework for MCTS to the action-
DAGs of the belief DAG. The POMCP-UA algorithm is similar to POMCP-UCD
but applies the Update-All (UA) algorithm instead of UCD.

Exploiting prior knowledge

The UCD framework was designed with general problem domains in mind. In
general, one does not know about the existence of a transposition until it is en-
countered during the traversing of the search tree. In other words, transpositions
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are initialized in hindsight: we initialize a transposition after we realize the state
we just traversed to already exists in the search tree.

In the combinatorial action space, transpositions are due to the symmetries
of the combinatorial structure. These symmetries are known before encounter-
ing them in the search tree and are therefore a form of prior knowledge. This
prior knowledge can be exploited in various degrees by initializing transpositions
into the belief DAG before encountering them. On one hand, you could not
exploit it at all by ignoring the prior knowledge and initializing transpositions
only when encountering them (like the UCD framework). On the other hand,
you could exploit the prior knowledge fully by initializing the entire action-DAG
before traversing it (since we have prior knowledge of every possible transposi-
tion). There exists an inherent trade-off between the two as exploiting the prior
knowledge more will come at an increased cost in memory and time consumption.

The POMCP-UCD and POMCP-UA methods not only differ in how they
traverse and backpropagate through the action-DAG (UCD vs update-all). They
also differ in what degree they exploit the prior knowledge of the combinatorial
action space structure.

5.3.1 POMCP-UCD

We propose to apply the UCD framework from [22] to the action-DAGs of the
POMCP belief DAG in an algorithm we call POMCP-UCD. The original UCD
framework does not exploit the prior knowledge on the symmetries of the com-
binatorial action space. The POMCP-UCD algorithm we propose in this thesis
does exploit this knowledge to a small degree. It does so by, during the selection
phase, checking if any of the current possible sub-actions lead to parts of the
action-DAG already traversed. If so, it will initialize those transpositions into
the action-DAG and then select a sub-action using the UCD algorithm. In this
way, it initializes transpositions before selecting an action rather than after.

Although intuitively one would like to maximally exploit the available prior
and sampled knowledge, it might be that doing so can lead to sub-optimal be-
haviour. The authors of [22] show this to be the case in a particular example
scenario. It will be interesting to study this idea further when applied to the
action-DAGs of our combinatorial action space. In this thesis, we will compare
this method with the POMCP-UA method that exploits the prior and sampled
knowledge to a higher degree.

Sampled knowledge

The UCD framework exploits transpositional information by sharing the infor-
mation obtained from the rollouts with different parts of the search tree through
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transpositions. The transpositions/rollouts are found/performed through sam-
pling of the environment (the simulations). In a way, this can be viewed as
exploiting the sampled knowledge obtained in the simulations.

One important thing to note about the adapted score in the UCD framework
is that it will never maximally use the sampled knowledge available to it. This
is because the adapted score µd uses the (un-adapted) count n to recursively
weigh its children’s scores. This means the score of a transposition is weighed
by the number of times this transposition was traversed (n), rather than the
number of rollouts responsible for that average score. Therefore, the adapted
score potentially undervalues the values of its children if the information from
that value was obtained through transpositions.

Prior knowledge

Another thing to note about the POMCP-UCD algorithm is that it doesn’t max-
imally exploit the prior knowledge either. One reason for this is that the UCD
algorithm was designed with zero prior knowledge in mind. So we decided to ex-
ploit the prior knowledge only to a small degree to maintain the POMCP-UCD
method in a similar spirit as the original UCD framework.

5.3.2 POMCP-UA

We propose to apply the update-all strategy from section 3.2.2 to the action-
DAGs of the POMCP belief DAG in an algorithm we call POMCP with Update-
All (POMCP-UA). The update-all algorithm is designed to maximally use the
sampled knowledge obtained from the rollouts throughout the search tree.

Furthermore, the POMCP-UA method we propose exploits also the prior
knowledge by initializing in the action-DAG every possible ascent path for any
traversed leaf node. In other words, once it reaches an action-DAG leaf node, the
POMCP-UA algorithm will initialize every possible transposition that can lead
to that particular node.

Intuitively, we expect the POMCP-UA method to perform the best out of all
the methods in this thesis. This is because this method exploits the combinatorial
structure of our action space to higher degrees than any of the other methods
proposed. Intuitively, exploiting more information could lead to better informed
and therefore more optimal decisions.

The reason the authors of [22] don’t opt for this strategy is because they
show a counter-example scenario in which this strategy results in sub-optimal
behaviour. We theorize that this counter-example cannot occur in the action-
DAGs for combinatorial action spaces. It will therefore be interesting to see how
this algorithm performs in our problem domain compared to POMCP-UCD. This
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could give an indication of whether exploiting structure to a higher degree will
indeed lead to better solutions in problem domains with combinatorial action
spaces.



Part IV

Empirical Evaluation
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Chapter 6

Methodology

This chapter contains the implementation details of the methods and simulator
used for the empirical evaluation in this thesis. The solution methods and their
pseudo-code are detailed in section 6.1. The implementation details of the AML
investigation simulator are provided in section 6.2.

6.1 Solution Method Specification

This section contains all the implementation detail on the solution methods used
in this thesis. It contains pseudo-code for all the methods and notes on the
implementations. We start by describing the baseline policy to which the other
methods will be compared.

6.1.1 Baseline

The baseline policy in this thesis will be a policy that does not take into ac-
count the sequential decision making aspect of the problem. It will serve as a
comparison to which the POMCP-based methods can compare. On top of that,
the POMCP-based methods are online methods which can be used as a way to
improve upon a baseline policy (the rollout policy). So, the baseline policy of
this thesis also serves as the rollout policy for the POMCP-based methods in this
thesis.

The most straightforward baseline policy to use would be the greedy policy
that greedily selects nodes in descending order of risk score. This policy is also
the most likely one to use if one doesn’t take into account the sequential decision
making aspect. This is because the greedy policy will likely investigate the most
suspicious nodes first (if the risk score is indeed a metric for suspicion).

Note that there can be multiple equivalent greedy policies if there are du-
plicate risk scores. So, generally speaking, our baseline will a class of greedy
policies that consists of all the policies that choose nodes in descending order of

55
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risk score.

6.1.2 POMCP

The regular POMCP method is the method as explained in section 2.3. All the
other methods in this thesis are based on this POMCP method and share the
procedures in algorithm 2.

Algorithm 2 POMCP Procedures
procedure Search(h)

repeat
if h = empty then

s ∼ bi
else

s ∼ B(h)
end if
Simulate(s,h,0)

until Timeout
return FindOptimalAction(h) . argmax over (sub-)actions

end procedure

procedure Rollout(s, h, depth)
if thenγdepth < ε

return 0
end if
a ∼ πrollout(h)
(s′, o, r) ∼ G(s, a)
return r + γ Rollout(s′, hao, depth+ 1)

end procedure

The regular POMCP method as defined in [17] consists of the procedures in
algorithm 2 combined with the procedure in algorithm 3. This implementation
has issues with large action spaces as it cannot even solve small combinatorial
problems without running out of memory.
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Algorithm 3 POMCP Regular
1: procedure Simulate(s, h, depth)
2: if γdepth < ε then
3: return 0
4: end if
5: if h /∈ T then
6: for all a ∈ A do
7: T (ha)← (ninit(ha), µinit(ha), ∅)
8: end for
9: return Rollout(s, h, depth)

10: end if
11: a← argmaxb µ(hb) + c

√
logn(h)
n(hb)

12: (s′, o, r) ∼ G(s, a)
13: R← r + γ Simulate(s′, hao, depth+ 1)
14: B(h)← B(h) ∪ {s}
15: n(h)← n(h) + 1
16: n(ha)← n(ha) + 1

17: µ(ha)← µ(ha) + R−µ(ha)
N(ha)

18: return R
19: end procedure

In this thesis, we propose a memory-efficient implementation of the POMCP
algorithm in which action nodes are only created once they are actually traversed
during the selection phase. The pseudo-code for this memory-efficient implemen-
tation can be found in algorithm 4. The difference between these is that in the
regular POMCP algorithm (algorithm 3) all the action nodes are initialized (line
7). In the memory-efficient implementation (algorithm 4) however, a node is not
initialized until it is traversed (line 10). This does mean of course that the cur-
rent accessible action nodes have to be temporarily initialized (line 21) in order
to perform the UCT argmax (line 25). However, after the argmax the nodes can
be cleared (line 26) since they don’t store any new information (just the initial
values).
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Algorithm 4 POMCP memory-efficient
1: procedure Simulate(s, h, depth)
2: if γdepth < ε then
3: return 0
4: end if
5: if h /∈ T then
6: return Rollout(s, h, depth)
7: end if
8: a← TreePolicy(h)
9: if ha /∈ T then

10: T (ha)← (ninit(ha), µinit(ha), ∅) . only create nodes traversed
11: end if
12: (s′, o, r) ∼ G(s, a)
13: R← r + γ Simulate(s′, hao, depth+ 1)
14: B(h)← B(h) ∪ {s}
15: n(h)← n(h) + 1
16: n(ha)← n(ha) + 1

17: µ(ha)← µ(ha) + R−µ(ha)
N(ha)

18: return R
19: end procedure

20: procedure TreePolicy(h)
21: for all ha /∈ T do . create uninitialized action nodes
22: Ainit ← a
23: T (ha)← (ninit(ha), µinit(ha), ∅)
24: end for
25: action← argmaxb µ(hb) + c

√
logn(h)
n(hb)

26: for all a ∈ Ainit do . free uninitialized action nodes
27: T (ha)← None
28: end for
29: return action
30: end procedure

It is possible to view the memory-efficient POMCP algorithm as the regular
POMCP algorithm with sparse belief tree. In this sense, the two implementations
do not differ in their outcome, only in their memory footprint.

6.1.3 POMCP-AC

In this thesis, we also propose the POMCP with Action Chains (POMCP-AC)
algorithm. This algorithm is an extension of the POMCP algorithm with action
chains between each belief node. The algorithm shares the POMCP procedures
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in algorithm 2. The pseudo-code can be found in algorithm 5.

The differences between the POMCP-AC pseudo-code and the POMCP one
in algorithm 4 is that the former has to traverse the action chain in the back-
propagation, FindOptimalAction() and TreePolicy() procedures.

Algorithm 5 POMCP-AC
procedure FindOptimalAction(h)

action← ∅
n← h
while n is not an action leaf node do . traverse action chain

a← argmaxb V (hb)
action← action ∪ a
n← na

end while
return action

end procedure

procedure Simulate(s, h, depth)
if γdepth < ε then

return 0
end if
if h is a new node then

return Rollout(s, h, depth)
end if
a, n← TreePolicy(h)
(s′, o, r) ∼ G(s, a)
R← r + γ Simulate(s′, no, depth+ 1)
B(h)← B(h) ∪ {s}
N(h)← N(h) + 1
for n ∈ descent path do

N(n)← N(n) + 1

V (n)← V (n) + R−V (n)
N(n)

end for
return R

end procedure
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procedure TreePolicy(h)
action← ∅
n← h
while n is not an action leaf node do . traverse action chain

a← argmaxb uUCT (nb) . include uninitialized actions
if na not in tree then

na← (Ninit(na), Vinit(na))
end if
action← action ∪ a
n← na

end while
return action, n

end procedure

6.1.4 POMCP-UCD

The original UCD framework has three depth parameters that dictate how far
down the search DAG the adapted variables will ’look’ for relevant transpositions.
The first parameter is the depth parameter d1 for the adapted score µd1 . In our
action-DAGs, the intermediary nodes do not represent actual actions that can
be taken, only parts of actions. This means those nodes do not have any reward
associated with them and therefore also no mean value µ. Due to this, the only
sensible parametrization for µd1 is d1 = K, where K is the action budget. The
other two depth parameters cannot be fixed in this way. However, for the sake of
simplicity and because both parameters govern the exploration factor of UCD,
we will merge them into a single parameter: d2 = d3 = d.

The POMCP-UCD algorithm shares the POMCP procedures in algorithm 2
and the FindOptimalAction() procedure in algorithm 5. The pseudo-code for
POMCP-UCD can be found in algorithm 6. The TreePolicy() procedure differs
from the POMCP-AC one in that it uses the UCD policy rather than the UCT
one. Furthermore, after traversing a node it has to check if a transposition of
this node already exists in the tree. Moreover, the adapted factors off all the
ancestors of newly created nodes have to be properly updated according to the
equations of the adapted factors in section 3.2.1.

Also, the Simulate() procedure differs from the POMCP-AC one in that
the adapted factors of all the ancestors of the playout node need to be updated
according to the procedure described in [22].

Furthermore, this algorithm exploits the prior knowledge of the combinatorial
symmetries by adding transpositions before selecting an action rather than after.
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Algorithm 6 POMCP-UCD
1: procedure TreePolicy(h)
2: action← ∅
3: n← h
4: while n is not an action leaf node do
5: for all a ∈ A not in current descent path do . add transpositions
6: if there is a transposition n′ in the tree then
7: na← n′

8: end if
9: end for

10: a← argmaxb uUCD(nb) . Include uninitialized actions
11: if na not in tree then
12: if there is a transposition n′ in the tree then
13: na← n′

14: else
15: na← (Ninit(na), Vinit(na))
16: end if
17: UpdateAdaptedFactorsAncestorsAfterNewNode(na)
18: end if
19: action← action ∪ a
20: n← na
21: end while
22: return action, n
23: end procedure

Original UCD framework

In this thesis, we will compare the POMCP-UCD algorithm defined above with a
version of this algorithm that follows the original UCD framework more closely.
The original UCD framework does not exploit the prior knowledge of the sym-
metries and so the POMCP-UCD Original method defined in algorithm 7 adds
transpositions only after encountering them.

Implementation

Another important thing to note about the UCD framework is that the back-
propagation procedure as described in [22] is incomplete in certain scenarios. In
this paper, the authors show the UCD framework can be more efficiently imple-
mented if the adapted values are stored in the nodes and updated during the
backpropagation phase (rather than using the recursive definitions). They state
the adapted score µd can be updated by looking at the variation ∆µd(e) of µd(e)
induced by the playout (∆µd(e) = 0 if e is not an ancestor of the leaf node from
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Algorithm 7 POMCP-UCD Original
1: procedure Simulate(s, h, depth)
2: if γdepth < ε then
3: return 0
4: end if
5: if h is a new node then
6: return Rollout(s, h, depth)
7: end if
8: action, a← TreePolicy(h)
9: (s′, o, r) ∼ G(s, action)

10: R← r + γ Simulate(s′, hao, depth+ 1)
11: B(h)← B(h) ∪ {s}
12: N(h)← N(h) + 1
13: for n ∈ descent path do
14: N(n)← N(n) + 1
15: end for
16: UpdateAdaptedFactorsAncestorsAfterRollout(hao)
17: return R
18: end procedure

19: procedure TreePolicy(h)
20: action← ∅
21: n← h
22: while n is not an action leaf node do
23: a← argmaxb uUCD(nb) . Include uninitialized actions
24: if na not in tree then
25: if there is a transposition n′ in the tree then
26: na← n′

27: else
28: na← (Ninit(na), Vinit(na))
29: end if
30: UpdateAdaptedFactorsAncestorsAfterNewNode(na)
31: end if
32: action← action ∪ a
33: n← na
34: end while
35: return action, n
36: end procedure
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which playout was performed). They use the following formula for updating the
adapted score:

∆µ(e) =

∑
f∈c(e) ∆µ(f)× n(f)

n′(e) +
∑

f∈c(e) n(f)
(6.1)

where c(e) are the children of e and n′(e) is the initial count for e.

However, we noticed in some scenarios this formula is incomplete. Let’s derive
the equation:

µt(e) =

∑
f∈c(e) µt(f)× nt(f)

n′(e) +
∑

f∈c(e) nt(f)
(6.2)

µt(e) =

∑
f∈c(e)

(
µt−1(f) + ∆µ(f)

)
× nt(f)

n′(e) +
∑

f∈c(e) nt(f)
(6.3)

µt(e) =

∑
f∈c(e) µt−1(f)× nt(f)

n′(e) +
∑

f∈c(e) nt(f)
+

∑
f∈c(e) ∆µ(f)× nt(f)

n′(e) +
∑

f∈c(e) nt(f)
(6.4)

µt(e) 6= µt−1(e) +

∑
f∈c(e) ∆µ(f)× nt(f)

n′(e) +
∑

f∈c(e) nt(f)
(6.5)

The reason for the inequality in the last line is because nt(f) does not necessarily
equal nt+1(f). Those two are only equal if f is not part of the descent path. So,
the original formula stated in the paper [22] is incomplete if e has children that
are part of the descent path.

If the node e has a child i that is part of the descent path, we will use the
following formula:

µt(e) =

µt−1(e)×
(
n′(e) +

∑
f∈c(e) nt(f)− 1

)
+ µt−1(i)

n′(e) +
∑

f∈c(e) nt(f)
+

∑
f∈c(e) ∆µ(f)× nt(f)

n′(e) +
∑

f∈c(e) nt(f)

(6.6)
which is still defined in terms of values stored at the nodes (so no need for
the recursive definitions). The difference between the two update formulas is
small but stack up with repeated iterations. After a small amount of time the
differences can be significant.

Furthermore, they state that to update nd you have to add one to every edge
on the descent path and every edge in ad(l). Here ad(l) is the set of ancestors of
node l at a distance at most d from l and l is the leaf node from which playout
is performed. This would be complete if the leaf node l were the only one for
which the count n is incremented. However, the count n is incremented for every
edge in the descent path. So, the adapted count nd should also be incremented
for every edge in ad(e) where e is every edge in the descent path.
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6.1.5 POMCP-UA

In this thesis, we also propose the POMCP-UA method which consists of the
update-all strategy applied to the action-DAGs. This algorithm shares the POMCP
procedures in algorithm 2 and the FindOptimalAction() procedure in algorithm
5. The pseudo-code for POMCP-UA can be found in algorithm 8). This method is
similar to POMCP-UCD but it initializes all possible transpositions after encoun-
tering a leaf node and uses the update-all strategy for backpropagation (taking
care not to update a node more than once).

Algorithm 8 POMCP-UA
procedure Simulate(s, h, depth)

if γdepth < ε then
return 0

end if
if h is a new node then

return Rollout(s, h, depth)
end if
action, a← TreePolicy(h)
InitializeEveryPossiblePermutationOf(action)
(s′, o, r) ∼ G(s, action)
R← r + γ Simulate(s′, hao, depth+ 1)
B(h)← B(h) ∪ {s}
N(h)← N(h) + 1
UpdateAllAncestorsAfterPlayout(hao)
return R

end procedure
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procedure TreePolicy(h)
action← ∅
n← h
while n is not an action leaf node do

a← argmaxb uUCT (nb) . Include uninitialized actions
if na not in tree then

if there is a transposition n′ in the tree then
na← n′

else
na← (Ninit(na), Vinit(na))

end if
UpdateAllAncestorsAfterNewNode(n)

end if
action← action ∪ a
n← na

end while
return action, n

end procedure

6.2 Simulation Specification

This section will detail the specifics of the generative model used in this thesis.
The generative model has the form:

(st+1, ot+1, rt+1) ∼ G(st, at) (6.7)

where the state st = {G, lr, lot , f r, fot , f ct } has the form as described in chapter
4. It is worth noting that in the procedures outlined below the risk score of the
nodes is sometimes used. We assume the risk score will be a function of the
observed feature values fot and can therefore be derived from the state st. The
action at consists of a set of nodes with size equal to the action budget K. The
nodes in at are the ones under formal investigation and are the starting points of
the investigation procedure.

6.2.1 Investigation

We will describe the investigation procedure for a single node v under formal
investigation. If there are more then one node under investigation (budget K >
1), the procedure works in exactly the same way as the single node investigation
just applied to all the nodes v ∈ at.
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Determining neighbours to investigate

The first step of the investigation procedure is determining what neighbours of
v are to be investigated as well. Neighbours of a node v are only investigated
if node v has a true illicit label. This is supposed to simulate that investigation
into v triggered investigations into its neighbourhood, which we don’t necessarily
expect to happen if a node is not fraudulent. So, if a node v has a true licit
label, only an investigation into v occurs. Otherwise, the following procedure
will determine what neighbours to investigate.

We will perform a search through all the d-hop neighbours of node v where
d ≤ dI (dI being the investigation depth parameter of our model). Out of this
dI -hop neighbourhood, the KI − 1 nodes with the highest risk score are selected
for investigation (KI being the investigation budget parameter of our model).
The only exception to the above rule is that nodes that already have been fully
investigated (f ct is 1 for all features) are ignored.

Let’s denote the set of selected nodes for investigation VI(v). This set includes
the original node v, which means the size of this set is |VI(v)| ≤ KI , with the
lesser than only occurring if the dI -hop neighbourhood of v is smaller than KI .
Combining the sets VI(v) for all v ∈ at is done in a set like union:

VI = {VI(v) ∪ VI(u)|u, v ∈ at} (6.8)

This means there are no duplicate nodes in the set VI , meaning nodes are never
investigated twice in the same time step.

Note also that this procedure does not account for the fact that a node u
can be in the set VI(v) if both u, v ∈ at. This feature was retained as a way
to simulate the double work that potentially can happen when investigations
overlap.

Performing investigations

Once the set VI of nodes to be investigated is determined, the actual nodes
w ∈ VI are investigated. The actual investigation procedure consists of a series
of n independent Bernoulli trials (where n is the number of features per node).
A ’success’ outcome denotes the case in which the true value is observed. In this
case we set fot (x) = f r(x) and f ct (x) = correct for the particular feature x of
node w. In the case of ’failure’, we do not change anything.

The probability of a ’success’ p is dependent on the type of node w investi-
gated. If w is one of the nodes under formal investigation w ∈ at the probability of
’success’ could differ from nodes w /∈ at. However, in the experiments performed
in this thesis, both probabilities were set to 1 (investigations always reveal all the
possible information on a node).
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6.2.2 Labeling

Labeling nodes as illicit simulates the process of filing a Suspicious Activity Re-
port (SAR) to the public prosecution service. In real life, this typically will only
happen for the nodes v ∈ at under formal investigation. However, in our model,
we will label all nodes under investigation v ∈ VI . This is not necessarily a real-
istic assumption, since in real life typically only the node that is formally under
investigation can receive a SAR.

In real life suspicious activity from a node v might be encountered during an
investigation into node ai ∈ at. In this case, a new formal investigation would
probably be launched into node v. In real life, however, investigations don’t take
a fixed amount of time. The investigation into node v will probably proceed much
more swiftly than it would normally because part of the investigation was already
performed during the investigation into ai. In the fixed time-step investigations
we use, we will somewhat model this by including the SAR of the suspicious node
v in the investigation into ai.

The nodes v ∈ VI are labeled with a sequence of independent Bernoulli trials
where ’success’ indicates that the node is labeled as illicit. A ’success’ outcome
occurs with a probability p that is determined through a number of different
dependencies.

Determining label probability

For simplicity, we will assume our investigators don’t falsely label nodes as illicit.
In other words, if a node’s v true label is licit, we assume the probability of
labeling it illicit p(v) is 0. If the true label is illicit, the probability is determined
in the following manner.

The probability p(v) starts with a base labeling probability of p(v) = 0.3.
Based on the information known about this node f ct (v) the probability is increased
in the following way:

p(v) = p(v) + 0.3 ∗ |{f
c
t ∈ f ct (v)|f ct = 1}|
|f ct (v)| (6.9)

that is, the probability is increased by 0.3 times the fraction of (assumed to be)
correct features.

Next, we want to increase the probability of a lot of information is known
about the neighbours N(v) of v. Per (1-hop) neighbour u ∈ N(v) we increase the
probability with a certain amount based on the information known according to:

p(v) = p(v) +
∑

u∈N(v)

0.2

|N(v)| ∗
|{f ct ∈ f ct (u)|f ct = 1}|

|f ct (u)| (6.10)
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Lastly, if the node v has neighbours with a true illicit label, we want the
probability to increase if those neighbours are already found to be illicit (finding
a fraudulent node is easier if its fraudulent network is already discovered). We
do this by increasing the probability with 0.2 times the fraction of neighbours
found to be illicit over the amount of true illicit neighbours:

p(v) = p(v) + 0.2 ∗ |{w ∈ N(v)|lot (w) = illicit}|
|{w ∈ N(v)|lr(w) = illicit}| (6.11)

All in all, if the node v has illicit neighbours who have all been found already,
the probability of labeling v as illicit p(v) can be a maximum of 1. If the node has
no illicit neighbours, the probability can be a maximum of 0.8. This simulates
that illicit nodes that are not part of a fraudulent network are more difficult to
find.

6.2.3 Sampling Scenarios

During our experiment, we may wish to fix the stochasticity in the environment
(model). The main stochasticity in our environment manifests itself in the la-
beling of nodes as fraudulent or not. A node v is labeled fraudulent or not with
a probability p(v) described above. This is implemented by sampling a uniform
random number φ from the range [0, 1] and comparing it with p(v) (if φ ≤ p(v)
the node is labeled fraudulent). This is an implementation of a Bernoulli trial.

We can fix the stochasticity of the environment by sampling a scenario Φ.
A scenario Φ is obtained by sampling and initial state s0 and uniform random
numbers φvi for every node v before any simulation occurs. In other words, for a
node v we sample the numbers Φv = {φv1, φv2, ...} which determine the outcomes of
the stochastic labeling of this node (where Φ = {Φv|v ∈ V where lr(v) == illicit}.
So, a scenario determines the outcome of the first investigation into node v (with
φv1) and when the first investigation resulted in erroneous labeling, it determines
the outcome of the second investigation (with φv2), and so on.

This is implemented by fixing the seed of the Python random number gen-
erator before sampling a sequence of uniform random numbers Φv = {φv1, φv2, ...}
for every true illicit node in the network. The sequence Φv is terminated when a
draw φvi is smaller than the base labeling probability since in this case the node
v will always be labeled illicit, after which no more draws are necessary.

Note that all other stochasticity in the environment (observing features) draws
from the same random number generator whose seed was fixed in the procedure
above.
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6.2.4 Initialization

Initialization of the state and environment were already discussed in section 4.2.3.
We will briefly go over the specific parameters used in the initialization of fo0 and
f c0 .

For the observed feature values fo0 , we take the real values f r and add noise
to them. The noise we add is drawn from a random normal distribution with
mean 0 and standard deviation 1. This noise is not added to every single ob-
served feature value. Instead, we perform a sequence of independent Bernoulli
trials per feature per node that determine what values to add noise to. The ’suc-
cess’ outcome occurs with probability 0.5 and denotes that this feature is indeed
correct and is not noisy. The ’failure’ outcome denotes an error occurred in the
acquisition method of this feature and noise is added to this particular feature
for this particular node.

The features we assume are correct are also determined through a sequence of
independent Bernoulli trials (as this mirrors our prior knowledge of the observing
process above). In this thesis, we assume we know the probability with which
we add noise (0.5 in this case) and therefore the Bernoulli trials for f c0 also occur
with probability 0.5. The ’success’ outcome means we believe the feature to be
correct.

The initialization of the transaction network is viewed as part of the problem
instance rather than the environment in our thesis. The specifics of its initializa-
tion are therefore described in chapter 7.

6.2.5 Lookahead Model

In the above procedures, we sometimes rely on the true illicit label of a node v.
In real life, this knowledge is not known (this would defeat the purpose of our
investigations). Therefore, in the generative model used for the lookahead search
of the POMCP-based methods, the above model needs to be adjusted slightly.

For the lookahead model Glookahead(st, at), the true labels lr are derived from
the risk scores (which are assumed to be based on fot ). For our experiments, this is
done by applying a thresholding function to the risk score with a threshold of 0.5
(if the risk is above 0.5, assume the nodes true label is illicit). This means in the
lookahead model the simulation of the investigations depends on the knowledge
we have so far.

In conclusion, there are really two types of models used in this thesis: the
regular model G(st, at) and the lookahead one Glookahead(st, at). The regular
model is used as the environment in which we evaluate the performances of our
methods. Ideally, this would be performed in real life, but in our case this would
not be feasible. So, the regular model simulates evaluating our methods in real
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life and can therefore depend on things like the true labels.

The lookahead model rather simulates how we would model our environment
with the information we would have in real life. This can therefore not depend
on the true labels, as this is not information we would have in a real-life planning
scenario.



Chapter 7

Setup

This chapter will contain all the information on the experimental setup. Section
7.1 will go through the problem instance on which the methods will be evaluated.
This is followed by a description and motivation of the experiments that will
be performed in this thesis in section 7.2. Finally, section 7.3 will discuss the
methods of evaluation with which we will compare our solution approaches.

7.1 Problem Instance

The environment we are using is a highly stochastic environment where the dif-
ferences between optimal and sub-optimal policies can be easily overshadowed by
unlucky simulation runs. This means, in order to properly evaluate the perfor-
mances of the different algorithms, we have to take averages over many different
runs. In order to do this in a reasonable amount of time, we will use a relatively
small transactional graph.

7.1.1 Transactional Graph

The problem scenario in question consists of finding fraud in a transactional
network with 57 nodes and 68 edges. The transactional network is obtained
from the AMLSim (described in 4.2.3) sample dataset with 1000 accounts and
100.000 transactions. At first, a subnetwork was sampled from this 1000 node
network by inducing a subgraph of neighbours centered around a particular node
n within a given radius. Due to the high connectivity of the AMLSim graph, we
found we required very small values of the radius to induce a small enough graph.
However, a small diameter of the graph does not lead to interesting behaviour of
our investigation simulator. Therefore, we decided to remove high degree nodes
from the graph and sample again around a particular node. In this way, we
ended up with a 57 node graph by removing the top 82% high degree nodes and
sampling in a radius of 5 around node number 9.

71



7. Setup 72

Labels

As far as node labels go, the AMLSim dataset comes with illicit/licit labels. These
labels are obtained from several AML typologies that are purposefully inserted
into the graph. However, when subsampling a 57 node network from the 18%
lowest degree nodes from a 1000 node network, we found those typologies would
not stay intact. Therefore, the labels provided by the AMLSim dataset were
effectively random and did not lead to a very interesting search landscape. This
is because our investigation model was designed with the minimal assumption
that fraudulent behaviour would occur in clusters. Picking 7 illicit nodes at
random from a 57 node network would most often not result in clusters of more
than 2 nodes. According to our assumption in modelling the investigations, this
would not lead to a very realistic problem scenario.

Moreover, if most illicit nodes weren’t in clusters, most investigations would
behave independently. This would result in most actions involving illicit nodes to
perform equally. Suppose we have a search space where many different actions are
all equally optimal. All the POMCP-based methods will now have no problem
finding one of the optimal actions and will therefore perform exactly the same.
This would not lead to an interesting comparison of the methods proposed in this
thesis.

For those reasons, we decided to adapt the AMLSim labels by initializing
7 illicit nodes, that are divided into two groups of three and a single group of
one (see figure 7.1). This can be thought of as two occurrences of fan-in/fan-out
AML typologies of three nodes each, together with a single isolated node. The
AML typologies keep a sense of realism in the illicit nodes we picked and the
3-3-1 partition of the nodes would allow us to create a solution landscape that is
sufficiently complex to properly compare our methods.

Figure 7.1: The structure of illicit nodes in our scenario. Only the nodes and
edges that are on the shortest paths between any two illicit nodes are drawn here.
Illicit nodes are in red, whereas licit nodes are drawn blue.
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# of nodes 57
# of edges 68
# of illicit nodes 7
Action Budget K 3
Investigation Budget KI 3
Investigation Depth dI 1
Discount Factor γ 0.5

Table 7.1: Summary of the scenario parameters.

7.1.2 Problem Parameters

What the optimal policy is does not only depend on the topology of the illicit
nodes in the network. It also depends on the problem parameters, namely the in-
vestigation simulator parameters (introduced in chapter 4) and the action budget
size K.

The action budget (how many nodes can be investigated per time step) for
this scenario is set to K = 3. If the action budget were K = 2, we wouldn’t be
able to distinguish between the POMCP-UCD and POMCP-UA methods (since
these behave the same for action chains that are only of length 2). The same goes
trivially for an action budget of K = 1. So, we choose the next smallest action
budget (to limit computational resources) that allows us to properly compare all
our algorithms, which is K = 3

As for the other investigation simulator parameters, the investigation budget
is set to KI = 3. This means for every selected node two of its neighbours are
investigated as well. The investigation depth is set to dI = 1, which means only
first order neighbours are considered. By setting these parameters as such, there
is a single optimal first action to take in this problem instance. This action is the
one where both the middle nodes in the two clusters of illicit nodes are selected
(nodes 572 and 428 in figure 7.1), together with the isolated node 93. This way
it is possible to find all 7 illicit nodes in the first time-step. A summary of the
scenario’s characteristics can be found in table 7.1.

Finally, since the real life time between time-steps can be anything from days
to months, we opted for a discount factor of γ = 0.5. This makes sure there is
extra emphasis in the POMCP-based methods on finding good actions as fast as
possible. Intuitively, this discount factor means finding fraud in the next time
step, rather than in the current one, is valued half as much.

7.1.3 Risk Score

The greedy policy is defined as the policy that investigates nodes in descending
order of their risk score. This risk score will typically be obtained from some
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classification algorithm on the nodes in the transaction network. This will usually
be performed on the bases of some set of features and/or the graph structure
around these nodes. In reality, those features could be incomplete or incorrect,
resulting in erroneous risk scores. Part of a real life investigation could be to
observe new features or correct erroneous ones, which as a result might update
the risk score.

In our case, transactional graph is obtained from the AMLSim example data
set. This data set does not have extensive features that can be used to build a
realistic classifier for licit/illicit behaviour. Instead, we will greatly simplify this
part of the problem by assigning a risk score of 1 (the highest value) to illicit
nodes and a score of 0 (the lowest value) to licit ones. We do this based on the
true labels of the transactional network. This will result in a ’perfect’ risk score
that exactly describes the fraudulent nodes in the network. Note that this also
results in a risk score that is static (doesn’t change based on the investigations).

This is not necessarily a very realistic scenario. However, the ’perfect’ risk
score does allow us to evaluate whether decision making algorithms can increase
performance even if the classification of fraudulent nodes is 100% accurate. Our
intuition is that if the risk score is erroneous, sequential decision making can
potentially allow for even larger improvements. This was partly discussed in our
motivation in section 1.3.2, where we reasoned that if the incorrect risk scores of
two nodes were caused by the same underlying issue, it might be unfavorable to
investigate them at the same time.

Note on the baseline policy

The baseline in this thesis is the class of greedy policies. These policies choose
to investigate nodes in ’greedy’ order of descending risk score. However, in our
problem instance the risk scores are static. This means that the greedy policies
in this problem instance are also static.

Moreover, in our problem instance the risk scores for all illicit nodes is 1
(and 0 for licit ones). This means that a greedy policy would be any policy that
investigates the illicit nodes before the licit ones. Our problem instance does
not differentiate between illicit nodes however and therefore any ordering among
those can be considered greedy. This means in our problem instance the greedy
baseline turns into a class of possible greedy baseline policies. For 7 illicit nodes
there are exactly 7! = 5040 possible greedy policies (if we assume the order of
the licit nodes following the 7 illicit ones doesn’t matter).
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7.2 Experimental Setup

The goal of our experiments will be to try and answer some of the research
questions posed in chapter 1. In order to do so, we will structure our experiments
in the following three categories:

• Comparing POMCP Implementations This contains one experiment
which is designed to show the difference in memory footprint between the
regular and the memory efficient implementation of the POMCP algorithm.

• Exploiting Combinatorial Structure This category contains experi-
ments that are designed to compare the performance of methods that ex-
ploit the combinatorial structure of the action space in their architecture
and/or algorithms.

• Baseline Comparison Here we will take the best performing approach in
the previous category and scale up the computational resources for it. We
do this to show it can outperform even the highest performing baseline.

In particular for the second category, we will be comparing a range of different
methods as discussed in chapter 5. We will now go over the different experimental
categories in more detail.

7.2.1 Comparing POMCP Implementations

This category contains a single experiment that compares the performance of
the regular and the memory efficient implementation of the POMCP algorithm.
The original POMCP implementation as described in [17] scales very badly with
increasing action space size. For this reason we proposes a more memory efficient
implementation of the POMCP algorithm that only initializes action nodes when
it traverses them in the search tree. We will run an experiment designed to show
the difference in memory footprint between the two implementations.

7.2.2 Exploiting Combinatorial Structure

This category contains two experiments that are designed to investigate the ben-
efits of exploiting the combinatorial structure of the action space. This section
involves all the POMCP-based solution methods proposed in this thesis.

POMCP-UCD

The POMCP-UCD algorithm is based on the UCD algorithm described in chapter
3 and can be viewed as an application of UCD to the POMCP algorithm. In the
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regular UCD algorithm, transpositions are only discovered once an action is taken
and a state is reached that was encountered before. In this way it does not exploit
the prior knowledge of the symmetries in the combinatorial action space.

The POMCP-UCD algorithm we propose in this thesis does exploit this prior
knowledge to a small degree. In this experiment we will compare this POMCP-
UCD algorithm to one that follows the original UCD framework strategy of not
exploiting the prior knowledge. This will allow us to investigate the benefit of
this adaption in our POMCP-UCD algorithm.

All Methods

This experiment is designed to compare the performance off all the methods
proposed in this thesis. The methods proposed in this thesis are all algorithms
designed to exploit the combinatorial structure of the action space in various
degrees. We will compare all these methods and how their performance scales
when we increase the amount of simulations per time step (how fast it converges
to ’optimal’).

The main focus of this experiment is to compare the performance of the
different POMCP-based methods. However, we will also compare these methods
with the average performance of the greedy baseline class of policies. This will
give a sense of how the difference in performance of the POMCP-based methods
compares to the baseline greedy policies.

Scenarios

The experiments in this category have two sources of stochasticity: the methods
and the environment. In order to properly compare the performance of the meth-
ods we fix the stochasticity of the environment by sampling scenarios beforehand.

The methods in the experiments of this category are compared while keeping
the environment scenarios fixed. This fixes the variance of our environment and
allows us to focus on the variance of the algorithms. In order to avoid scenario
specific differences between the methods, we compare them on four different sce-
narios. This hopefully allows us to identify scenario independent trends between
the methods.

Research Questions

Both experiments in this category try to answer the second research question:
How can we exploit the combinatorial structure of the possible decisions to improve
the performance of POMDP solution approaches?. The first experiment evaluates
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how exploiting the prior knowledge affects the POMCP-UCD algorithms perfor-
mance. The second experiment evaluates algorithmic and architectural exploits
of the structure with varying degree by comparing the different methods proposed
in this thesis.

In the second experiment the performance of the methods are also compared
to the average performance of the baseline class of policies. In this way it also
tries to partially answer the third research question: How do sequential decision
making approaches compare to methods that ignore the investigation dynamics?

This third question is explored in more depth in the last experimental sce-
nario.

7.2.3 Baseline Comparison

This category is designed to investigate the limits of sequential decision making
approaches. It consists of a single experiment in which we compare the best
performing POMCP-based method in the previous experiment with the upper
bounds obtained from the greedy policies. We expect that, given enough search
time, the POMCP-based methods can reach the upper bounds of the greedy
policies.

When the search time for a POMCP-based method is increased, the policy
found will converge closer to the optimal one. Consequently, we also expect
the variance of the POMCP-based method to decrease as we increase the search
time significantly. Furthermore, there is a fundamental difference between the
baselines in this thesis and the POMCP-based methods: the baselines are static
policies. So, comparing the two on a single static environment scenario (which is
deterministic) would not be an interesting comparison.

For the reasons outlined above, the structure of this experiment differs from
the previous category in that it includes the variance of the environment. It
does so by running the best performing POMCP-based method for a single run
on 100 different scenarios and comparing its performance to the upper bound of
the greedy policies. This allows us to evaluate the two methods and how they
manage the stochasticity of the environment.

Note that comparing it to the upper bound of the greedy policies is not
necessarily a fair comparison. This would be equivalent to choosing the optimal
greedy policy for a particular scenario before running it, which is impossible. This
is potentially unfair because the optimal greedy policy for a particular scenario
might not be the optimal greedy policy for other scenarios. However, our aim
will be to show that the POMCP-based methods will perform really well even
against this slightly unfair baseline.
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Research Questions

This experiment aims to answer the third research question: How do sequen-
tial decision making approaches compare to methods that ignore the investigation
dynamics?

We can view the class of greedy policies as a policy that doesn’t take into
account the investigation dynamics of the AML process. We aim to show the
potential of the sequential decision making approaches by showing it can reach
the upper bound of the greedy policies.

7.2.4 Exploration Constant

The exploration constant is a hyper-parameter all POMCP-based methods share.
This constant determines the amount of exploration vs exploitation that should
occur during the selection phase of the algorithm (a high exploration constant
means more exploration and vice versa). The value of this hyper-parameter
has direct effect on the performance of the algorithm and therefore should be
optimized over. Unfortunately, the optimal value of this constant is dependent
on the relative differences of the value estimate and the exploration term. All
our algorithms either use different value estimate functions (regular vs adapted
score), or different exploration terms (regular vs adapted simulation count). This
means we cannot assume the optimal exploration constant for one algorithm will
also be optimal for another.

So, experiments described above that compare performance of algorithms will
be performed over a range of exploration constants. In [17] they performed all
the experiments with a constant:

c = Rhi −Rlo (7.1)

where Rhi was the highest return achieved during sample runs with c = 0 and Rlo
lowest return achieved during sample rollouts. In our case, the highest possible
return is 7 (which is equivalent to finding all fraud in the first time step) and the
lowest possible return is in theory 0. So in order to make sure we cover a broad
range of interesting exploration constants, we will compare performances for the
values: c = {1, 2, 3, 4, 5, 6, 7}.

7.3 Methods of Evaluation

In the experiments outlined above, we will evaluate the different algorithms in
their sample efficiency, reward obtained and time to finish. This section will
discuss these in more detail, starting with the sample efficiency.
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7.3.1 Sample Efficiency

POMCP-based methods typically have a termination condition that is dependent
on the search time per time step. The search time, or execution time, determines
the ’real-time constraint’ of the online algorithm. For POMCP-based methods,
execution time is determined by the execution time for a single iteration of the
tree search phases (selection, expansion, evaluation and backpropagation).

In our thesis, the POMCP-based algorithms all differ in execution times for
the selection, expansion and backpropagation phases. Moreover, the simulator
used is simplistic enough that a rollout in it is faster than the above mentioned
tree search phases for most of our algorithms. This means those phases (selection,
expansion and backpropagation) are the bottlenecks of those algorithms.

Comparing the performance of these algorithms with a fixed execution time
will result in different performances due to one algorithm being faster than an-
other. An algorithm being faster means it can perform more search tree itera-
tions, resulting in more rollout ’samples’ obtained from the environment. In this
thesis, we opt to compare our methods in terms of sample efficiency rather than
execution time. This is achieved by using as a termination condition the amount
of search tree iterations, or simulation runs, rather than execution time. This is
done for two reasons.

The first reason is that execution time is very heavily implementation de-
pendent. Rather than spending a lot of time separately optimizing every single
algorithm, we opt to compare them in terms of sample efficiency (which is not
dependent on how time-optimized an implementation is).

The second (and main) reason we opt for sample efficiency has to do with
real life applicability. We compare our algorithms on relatively small problem
instances with a relatively simple simulator. It is not unlikely that on real life
problem instances, with a high fidelity simulator, a single rollout in the environ-
ment could be the main bottleneck of the execution time. In this case sample
efficiency and execution time are interchangeable, since the selection, expansion
and backpropagation phases no longer dominate the execution time of an algo-
rithm.

7.3.2 Episodic Return

In this thesis we evaluate our methods according to the total discounted return
of an episode (total reward). This metric directly relates to how many and how
fast we detect illicit nodes. Due to the small discount factor (0.5), this metric is
highly dependent on how good the algorithm performs in the first steps of the
episode. This is therefore a good measure to compare how good algorithms are at
finding the best initial action to perform (which by construction of our scenario
described in 7.1 is unique).
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7.3.3 Episode Length

Due to this discount factor, the total discounted return is not a good measure of
how well the algorithm performs in the last few steps of an episode. For this we
use as a measure the time-step at which point all the illicit nodes (of which there
are 7) have been found. We call this metric the episode length (since there is no
point in continuing the episode when no more illicit nodes need to be uncovered).
This metric predominantly relates to how good an algorithm is at finding the last
couple of illicit nodes at the end of an episode.



Chapter 8

Results

This chapter will discuss the results of the experiments laid out in chapter 7. We
will follow the same structure as in that chapter. Section 8.1 will compare imple-
mentations of the POMCP algorithm. Section 8.2 will compare the performance
of methods that exploit the combinatorial structure of the action space. After
that, section 8.3 will compare the best performing POMCP-based method with
the baseline policies.

Section 8.1 compares different implementations of the POMCP algorithm:
POMCP-regular and POMCP-memory efficient. Throughout the rest of this
thesis, when we refer to the POMCP algorithm, we will refer to the memory-
efficient one.

Finally, some of the experiments in section 8.2 are performed on 4 different
scenarios of the environment. For the sake of brevity, we only show the results
of scenario 4 in this chapter. The other scenarios can be found in appendix E.
We will be discussing trends that occur across the scenarios and choose to show
scenario 4 as this scenario results in figures with the least amount of clutter.

8.1 Comparing POMCP Implementations

In this category we compare the memory footprint of the regular POMCP imple-
mentation versus the memory-efficient one. This is done by running both imple-
mentations for a single time step and recording the memory used during the tree
search. In figure 8.1 the results for four different budget values K = {1, 2, 3, 4}
are shown as a function of simulations per time step (search time). Shown are
averages and the 95% confidence interval over 10 runs.
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Figure 8.1: Memory consumption after the first time step for two different im-
plementations of the POMCP algorithm. Results are obtained with c = 2.

The figures show an apparent linear increase in memory with increasing sim-
ulations per time step. The slope of this linear increase seems to depend on the
budget size K (higher budget equals steeper slope). What is evident from the
figures is that the regular POMCP implementation quickly becomes unusable
for larger values of the budget K. Note that the regular POMCP exceeded 10
gigabytes of memory for K = 4 with only 100 simulations per time step. This is
on a relatively small (compared to real-life) network of 57 nodes as well.

In contrast, the memory-efficient implementation of POMCP seemed to hold
a steady memory footprint. The memory usage barely changed as a function
of simulations per time step. Moreover, the memory footprint only increased
slightly from somewhere around 0.26 gigabytes to 0.34 gigabytes as a function of
budget K.

It is also worth noting that in this particular case, the execution times for the
memory-efficient implementation was also orders of magnitude faster than the
regular implementation. This was due to a quick optimization that is possible
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if the initial values are the same for all nodes: µinit = 0, ninit = 0. In this
case, we don’t actually have to initialize new nodes during the selection of an
action. Instead, we can create a single ’dummy’ node with µ = µinit, n = ninit
that represents all uninitialized nodes collectively. If the uninitialized nodes can
number into the millions or more, this is not only more memory-efficient, but
also more time-efficient.

So, the memory-efficient implementation performs exactly the same as the
POMCP one but uses less memory and less time. This will therefore be the
implementation used for the rest of the experiments. Throughout the rest of this
thesis, we will be referring to the memory-efficient POMCP implementation as
POMCP.

8.2 Exploiting Combinatorial Structure

The results in this section are obtained on four different scenarios of the environ-
ment. The four different scenarios are obtained by seeding the Python random
number generator with the number of the scenario. For example, scenario 1 is
obtained by seeding the RNG with a seed of 1. Scenario 2 is obtained with
seed 2, etc. For detail on how the scenarios are drawn we refer to section 6.2.3.
For brevity, the results in this section are only shown for scenario 4. The other
scenarios can be found in appendix E.

In this section, we mainly compare the POMCP-based methods with each
other and the average greedy performance. For this reason, we use the median
greedy policy as the rollout policy for the POMCP-based methods.

8.2.1 POMCP-UCD Implementation

This section compares the POMCP-UCD method with the POMCP-UCD Orig-
inal method. The Original version does not exploit the prior knowledge of the
combinatorial structure of the action chains before choosing an action in the
selection phase of the tree search. Figure 8.2 shows the two POMCP-UCD ver-
sions with a depth parameter of d = 3 (referred to as POMCP-UCD3). Shown
are averages and 95% confidence intervals over 50 runs for exploration constants
c = {1, 2, 3, 4, 5, 6, 7}. The results are obtained with 1100 simulations per time
step. We chose to compare the two versions with a depth parameter of d = 3
because the absence or addition of transpositions will have the most effect when
the depth parameter is the highest. Furthermore, we chose 1100 simulations as
this is the highest value in the range of simulations per time step considered in
our experiments.
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Figure 8.2: Comparison between the two POMCP-UCD versions with depth
parameter d = 3. Shown are the averages and 95% confidence intervals over
50 runs for exploration constants in the range c = {1, 2, 3, 4, 5, 6, 7} and 1100
simulations per time step.

Out of the 7 exploration constants, only c = 5 results in a worse performance
of POMCP-UCD3 compared to the POMCP-UCD3 Original. For all other explo-
ration constants POMCP-UCD3 clearly outperforms the Original version. The
same holds true for the other scenarios in appendix E. Only for c = 7 on sce-
nario 2 and c = 4 on scenario 1 does the Original version slightly outperform the
POMCP-UCD3 algorithm.
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8.2.2 POMCP-UCD Parametrizations

We now compare the different UCD parametrizations possible for a budget ofK =
3. To do so we compare the different parametrizations on a fixed scenario and
run the methods with the following exploration constants: c = {1, 2, 3, 4, 5, 6, 7}.
Figure 8.3 shows the results of the maximal performing exploration constant c for
depth parametrizations d = {0, 1, 2, 3} as a function of simulations per time step.
Shown are 50 runs with the markers denoting the averages. The UCD results are
compared to the upper bound and average received from the 5040 greedy policies.

Recall that the depth parametrization determines the amount of transposi-
tional information used for the exploration phases of the tree search. A value of
d = 0 implies that no transpositional information is used and d = 3 implies that
transpositions occurring 3 levels down the search DAG are considered. ForK = 3
the action DAG is never deeper than 3 levels and therefore d = 3 is the largest
possible depth parametrization for POMCP-UCD in our problem instance.
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Figure 8.3: The max over exploration constants c = {1, 2, 3, 4, 5, 6, 7} for all
possible depth parametrizations d = {0, 1, 2, 3} of POMCP-UCD. Shown are 50
runs with simulations per time step in the range of {300, 500, 700, 900, 1100}.
The markers denote the averages over those 50 runs.

The figure seems to show that the parametrizations d = 2 and d = 3 perform
very similarly. This also seems to be somewhat consistent for the other scenarios
in appendix E. Overall, there seems to be a trend of higher parametrizations
performing better. Parametrizations d = 2 and d = 3 seem to outperform d = 1
and d = 1 seems to slightly outperform d = 0. The differences between d = 2 and
d = 3 are small. However, d = 3 seems to scale slightly better with increasing
simulations per time step (although the differences are likely too small to be
significant).
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8.2.3 All Methods

The next experiment compares the POMCP-UCD with d = 3 algorithm with the
other POMCP-based methods of this thesis. Figure 8.4 again shows the maxi-
mum performing exploration constant c for the different methods as a function
of simulations per time step. Shown are 50 runs with the markers denoting the
averages. The results are compared to the upper bound and average received
from the 5040 possible greedy policies.

Figure 8.4: The max over exploration constants c = {1, 2, 3, 4, 5, 6, 7} for all
POMCP-based methods. Shown are 50 runs with simulations per time step in
the range of {300, 500, 700, 900, 1100}. The markers denote the averages over
those 50 runs.

The figure shows the following trends that seem to be consistent across all
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the scenarios (for the other scenarios see appendix E). The POMCP-UA method
seems to perform the best if there are only a small amount of simulations avail-
able per time step. However, this method seems to under-perform when the
simulations per time step is increased.

On the other hand, the POMCP-UCD3 and POMCP-AC methods seem to
under-perform for small amount of simulations per time step. However, both
seem to scale the best when simulations per time step (search time) is increased.
This results in the POMCP-UCD3 method outperforming all other methods for
1100 simulations per time step.

The POMCP method seems to follow the characteristics of the POMCP-UA
method in terms of sample efficiency and scaling compared to the other two
methods. POMCP has an initial decent performance for 300 simulations per
time step (although outperformed by POMCP-UA) and seems to scale slower
than POMCP-UCD3 and POMCP-AC (and similar to POMCP-UA).

In terms of episodic return, all the POMCP-based methods eventually (sig-
nificantly) outperform the average greedy performance for 1100 simulations per
time step (for all scenarios). They are also reaching the greedy based upper
bound on some of the 50 runs. One more thing to note is that for every scenario,
the POMCP-UA and POMCP-UCD3 methods outperformed the average greedy
on all 50 of those runs (except for a single run of POMCP-UCD3 in scenario 3).

In terms of episode length, the POMCP-based methods only outperform the
average greedy performance at 1100 simulations per time step for scenario 4. For
all other scenarios, the POMCP-based methods under-perform compared to the
average greedy policy for this metric.

8.3 Baseline Comparison

The POMCP-UCD3 method seemed to perform the best of all the POMCP-based
methods when increasing the simulations per time step. In this experiment, we
will increase the simulations per time step significantly to investigate how well
the POMCP-based method can perform compared to the greedy policies. We
run the POMCP-UCD3 method with c = 7 and 30000 simulations per time
step a single time on 100 different scenarios. We compare this with the greedy
upper bound, obtained by running all 5040 greedy policies and taking the best
performing per scenario. So, the greedy upper bound is specific to the scenario.
Figure 8.5 shows the percentage of scenarios in which the POMCP-UCD3 method
under-performed/over-performed in terms of return and episode length.
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Figure 8.5: A single run of POMCP-UCD with depth parameter d = 3, c = 7
and 30000 simulations per time step compared to the greedy upper bound on
100 scenarios. The bars in blue denote the percentage of scenarios in which the
POMCP-UCD3 method outperformed the greedy upper bound. The bars in red
denote when it under-performed.

We see that the POMCP-UCD3 outperforms the greedy upper bound in terms
of return on 4 out of the 100 scenarios. It also under-performs on 3 out of 100
scenarios. In terms of episode length, POMCP-UCD3 both under-performs and
outperforms on 3 of 100 scenarios. On all other scenarios, the POMCP-UCD3
equalled the performance of the greedy upper bound.

In 3 of the 4 scenarios that outperformed in terms of return, POMCP-UCD3
also outperformed in terms of episode length. The other 1 scenario in which
POMCP-UCD3 outperformed in terms of return, actually under-performed in
terms of episode length. The other two scenarios in which POMCP-UCD3 under-
performed in terms of episode length, it also under-performed in terms of return.
Lastly, the other 1 scenario in which it under-performed in terms of return, it
performed equal in terms of episode length. A summary of this can be found in
table 8.1.
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Scenarios
Return & Length 5, 69, 100
Return & Length 10, 50
Return & Length 27
Return & Length 74

Table 8.1: Taxonomy of scenarios that under-performed/outperformed in at least
one of the metrics as shown in figure 8.5. The color blue (or underline) indicates
that POMCP-UCD3 outperformed the greedy upper bound, red (or italics) indi-
cates it under-performed and grey indicates it performed equally.

8.3.1 Policy Evaluation

It turns out that in 3 of the 100 scenarios in which POMCP-UCD3 outperformed
in terms of both metrics, it was due to the investigation of a particular licit node
together with an illicit one. Figure 8.6 shows scenario 5 in which this occurred.
Shown is a sub-graph of the full transactional network induced by the shortest
paths between any two illicit nodes.

Figure 8.6: Policy comparison between POMCP-UCD3 (with c = 7 and 30000
simulations per time step) and the greedy upper bound policy. Shown is a scenario
in which the POMCP-UCD3 policy outperforms the greedy one by selecting an
illicit adjacent licit node in step 2.

We can see here that both policies choose the optimal first action, resulting in
finding fraud in 6 out of the 7 illicit nodes in this network. However, in the second
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time step, the POMCP-UCD3 policy investigates a licit node that is neighbouring
the single illicit node left to find. Investigating this neighbouring licit node results
in observing the features of this node, which increase the probability of finding
fraud in the illicit node by a small amount (see section 6.2 for details on how this
works). The greedy policies investigate licit nodes randomly. In most scenarios,
the small increase in probability by investigating an illicit adjacent licit node will
not change the outcome of an investigation. However, in 3 out of 100 scenarios
this resulted in the POMCP-UCD3 policy outperforming the greedy upper bound.

Another interesting scenario is scenario 50 in which the POMCP-UCD3 un-
derperformed in terms of both metrics. In this case, it turned out there was a par-
ticular greedy policy that performed optimally in this scenario, but sub-optimally
on most other scenarios. Figure 8.7 shows both policies in this scenario.

Figure 8.7: Policy comparison between POMCP-UCD3 (with c = 7 and 30000
simulation per time-step) and the greedy upper bound policy. Shown is a scenario
in which the POMCP-UCD3 policy underperforms due to the specifics of this one
scenario.

In this scenario, the optimal greedy policy is one that does not investigate one
of the illicit nodes (the lowest one in the graph) in the first step. In this particular
scenario, the first draw of the southern-most illicit node is more favourable than
the second draw. Investigating this node for the first time once its neighbouring
illicit node has been found (step 2 of the greedy policy) will result in finding
fraud. Due to the specifics of our model and its parameters, investigating this
node when its neighbouring illicit node hasn’t been found yet (step 1 UCD3
policy) will not. Its neighbour being already found increases the probability of
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labeling by a small amount that’s large enough to flip the result from not found
to found for the first draw. Because the second draw in this scenario happens
to be unfavourable, this small amount is not enough to flip the results (step 2
UCD3 policy) for the second draw, requiring a third investigation into this node
before it is found (step 3 UCD3 policy).

So, the greedy policy performed better because its first action was a sub-
optimal one which happened to be optimal in this particular scenario. This shows
that the POMCP-UCD3 method underperformed the greedy upper bound even
though it found the ’correct’ optimal action (optimal in most other scenarios).
It is worth noting that in scenario 10 (the other scenario in which POMCP-
UCD3 underperformed in both metrics) the underperforming seemed to be due
to POMCP-UCD3 not finding the optimal sequence of actions it could have
potentially found (since these would be also optimal in most other scenarios).



Chapter 9

Discussion

This chapter will discuss the results from chapter 8. It will go through the results
section by section from beginning to end as presented in chapter 8.

9.1 Comparing POMCP Implementations

In the results from this section (figure 8.1) we found that the regular POMCP
implementation scaled rather poorly in terms of memory footprint, especially as
the budget K was increased. The memory-efficient implementation, on the other
hand, kept a steady memory footprint as both simulations per time step and
budget K were increased.

Barely increasing footprint for memory-efficient implementation

In the memory-efficient implementation, nodes are permanently stored in memory
when they are traversed and temporarily when selecting a new action to take.
We would expect the permanently stored memory to be mostly a function of
simulations per time step (as more simulations means more of the search tree
is traversed). Moreover, we would expect the temporarily stored nodes to be a
function of the budget K (as a larger budget means more uninitialized nodes
need to be temporarily initialized).

In our problem, the initial values are the same for all nodes: µinit = 0, ninit =
0. This means we don’t actually have to initialize new nodes during the selection
of an action, instead, we can treat all uninitialized nodes as the same and pick
one at random if uinit = µinit + c

√
logn(h)
ninit

is larger than all other u(ha). Our
implementation exploits this and does not temporarily initialize the uninitialized
nodes (other than a single dummy node, representing all uninitialized ones).

For this reason, we would expect the memory footprint of this implementation
to increase with simulations per time step and stay (relatively) unchanged with
increasing budget K. However, in our results we found the opposite to occur:
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the memory footprint remained relatively steady with simulations per time step
and increased slightly more with increasing budget K. These differences were
relatively small though. Perhaps the scale of the experiments (in terms of K and
simulations per time step) was too small to observe the trends we would expect
based on the above reasoning.

Memory usage/Execution time trade-off

It was mentioned in section 6.1.2 that the memory-efficient implementation per-
formed a trade-off between memory usage and execution time. This was because
it traded off storing all action nodes in memory (memory usage) for temporarily
initializing those nodes when selecting a next action (execution time).

In the case of a uniform initial value across all nodes (for instance µinit =
0, ninit = 0), it is not necessary to initialize the uninitialized nodes during action
selection (because they are all the same). In this case, there is no longer a trade-off
between memory and time. Instead, the memory-efficient implementation is both
quicker and more memory-efficient. If the initial values were unique for every (or
most) node(s), creating this single ’dummy’ node representing all uninitialized
ones is of course not possible.

So, if this uniform initial value is not exploited, there could be a significant
increase in execution time when using the memory-efficient implementation. This
is because initializing (for instance) a million nodes every time you select an action
could be very time-consuming. This only becomes worse if there is a complicated
heuristic/offline solution used for the initial values.

It is worth noting that the regular POMCP implementation isn’t especially
time-efficient either. Since looping through (for instance) millions of nodes every
action selection and initializing millions of nodes every expansion phase is time-
consuming as well. So it is not immediately clear that the regular POMCP
implementation would be much faster in those situations.

Other literature

We thought this implementation was worth noting since we did not find mention
of this in the literature. In fact, in [20] they state that in their initial experiments
the POMCP solver ran out of memory on a 30 node graph. However, their
experiments ran on a machine with 48 GB of memory, with a typical budget size
of K = {2, 3, 4, 5, 6}. In our experiments, we showed that the memory-efficient
POMCP implementation could handle 50 node networks up to K = 5 without
running out of memory.



9. Discussion 95

9.2 Exploiting Combinatorial Structure

This section was designed to compare the methods in this thesis that exploit the
combinatorial structure with various degrees.

9.2.1 POMCP-UCD Implementation

In this experiment, we compared the POMCP-UCD3 algorithm with one that
did not exploit prior knowledge (POMCP-UCD3 Original). The POMCP-UCD
version looks for and adds transpositions before choosing an action in the selection
phase. The Original version only adds transpositions it encounters as a result of
choosing an action.

POMCP-UCD exploits the fact that in our domain all possible transpositions
are known before encountering them. Therefore, intuitively we would expect this
version to perform better than the Original one. The results showed this to be
the case with the exceptions of exploration constants c = 5 in scenario 4, c = 7
in scenario 2 and c = 4 in scenario 1.

Repeated experiments did not show any consistency of these exceptions across
scenarios, exploration constants or simulations per time step. Therefore, it seems
the exceptions could be due to the variance inherent to the POMCP-based ap-
proach.

9.2.2 POMCP-UCD Parametrizations

This experiment compared the possible parametrizations of the POMCP-UCD
approach as a function of simulations per time step. We found there seemed to
be a trend that higher parametrizations performed better, with d = 2 and d = 3
performing very similarly across scenarios.

Understanding the exploration depth parameter d

The higher the exploration depth parameter d, the more transpositional infor-
mation is taken into account for the exploration of the search DAG. However,
this can have the opposite effect on the exploitation of the search DAG. This
is because the adapted score µd in the UCD framework uses the regular count
n rather than the adapted count nd, which is used for the exploration factor√√√√ log

(∑
f∈b(e) nd(f)

)
nd(e)

. An example showing this can be found in figure 9.1.



9. Discussion 96

 a b

{a,b}

E = .1
E = .8

E = .1

…








μ2 = .22
n = 5800
n2 = 5801

……

… }
x48

}
x48






μ = .1
n = 1






μ = .1
n = 100






μ1 = .8
n = 1000






μ1 = .8
n = 1






μ2 = .11
n = 49
n2 = 1049






μ = .8
n = 1001

Figure 9.1: A scenario that showcases the difference in exploration between a
small and large exploration depth in the UCD framework.

In this example, we see that even though the actions a and b are completely
symmetric, the adapted score µ2 values action b twice as much as action a. If
exploration depth d is 0, the exploration will be based on n0 = n. In this case,
the exploration term will force the algorithm to explore action a more than action
b, which might lead to equalization in adapted scores µ2(a) and µ2(b).

However, if exploration depth d equals 2 (the maximum in this search DAG),
exploration will be based on n2 rather than n. The adapted count n2(a) for
action a is about 20 times larger than the regular count n(a), even though the
same does not hold for action b: n2(b) = 5801 and n(b) = 5800. This means that
in order to achieve the same level of exploration as d = 0, in the d = 2 case the
exploration constant would have to be about 5 times larger.

So, with exploration constant kept (relatively) constant, a higher exploration
depth parameter d could potentially lead to less exploration and more exploita-
tion. This could be one of the causes for the higher depth parameters d = 2 and
d = 3 performing better than the lower ones d = 0 and d = 1.
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9.2.3 All Methods

This experiment compared all the different POMCP-based methods as a function
of simulations per time step. The first trend we found was that the POMCP-UA
method seemed to perform the best with low simulations per time step.

Update-all

The POMCP-UA method is the method that identically updates all possible as-
cent paths from a leaf node to the root of an action-DAG in the backpropagation
phase. Furthermore, this method initializes in the action-DAG all possible trans-
positions from the current leaf node back to the root. In this way, the method
exploits both the prior knowledge (what transpositions are possible) and sampled
knowledge (by updating every possible ascend path identically) to a higher de-
gree than the other methods in this thesis. Intuitively, it seems reasonable that
when sampled knowledge is sparse (low number of simulations per time step),
this method, therefore, performs the best. However, it is not necessarily clear
to us why it is outperformed by the POMCP-UCD3 method as simulations per
time step is increased.

Action chains and UCD3

One interesting thing we found in the results is that the POMCP-AC method
behaved similar to the POMCP-UCD3 method. Both performed poorly for low
simulations per time step, but rapidly increased in performance as the simulations
per time step increased.

As discussed in section 9.2.2, the high depth parameter d = 3 of the POMCP-
UCD approach can cause it to asymmetrically value one sub-action over another,
even if both sub-actions lead to completely symmetric parts of the search space.
This behaviour was observed during some of the experiments in our problem
scenario. Interestingly, the POMCP-AC method behaves similarly.

The POMCP-AC method ignores the symmetries of the combinatorial action
space. It, therefore, undervalues certain sub-actions compared to the value they
could have if these symmetries were taken into account. However, this under-
valuing of those sub-actions leads to more exploitation of areas of the search
tree/DAG that show promise early on.

Both the POMCP-AC and POMCP-UCD3 methods share this behaviour.
Intuitively, it also makes sense that this behaviour is not optimal if there is only
a small amount of simulations per time step. In this case, the methods can more
easily over-fit on a part of the search tree/DAG that was found to be locally
optimal. However, this balance of more exploitation versus exploration could
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be a more optimal balance for higher simulations per time step. This could
potentially explain the similar behaviour of POMCP-AC and POMCP-UCD3.

Note that it is not clear to us that this simply is a consequence of exploration
versus exploitation, as it is not clear to us whether the POMCP-UA method ex-
plores or exploits more compared to the POMCP-AC and POMCP-UCD3 meth-
ods. Nor is it clear why the POMCP method seems to behave similar in these
regards as the POMCP-UA method.

Average greedy performance

Another thing we found is that in terms of the episodic return the POMCP-
based methods consistently outperformed the average greedy performance for
1100 simulations per time step. The average greedy performance can be viewed
as the performance one can (on average) expect from a randomly picked greedy
policy (randomly picked with respect to the investigation dynamics). In a way
this can be interpreted as the average performance one can expect of a completely
investigation-dynamic agnostic greedy policy. Therefore, one could make the case
that a sequential decision making approach is already worth consideration if it
can outperform this average performance.

Episodic Return vs Episode Length

Another interesting thing to note about the results is that the POMCP-based
methods did not consistently outperform the average greedy performance in terms
of episode length. This could partially be due to the fact that the POMCP-based
methods value their sampled actions during the lookahead search based on the
return, not the episode length. In this way, it is the return that the POMCP-
based methods try to directly optimize, not the episode length. Perhaps similar
performance in terms of episode length could be achieved if sampled actions
during the POMCP-based methods were valued according to that metric.

9.3 Baseline Comparison

In this experiment, we increased the simulations per time step of the POMCP-
UCD3 method to 30000, in order to investigate how it compares to the greedy
upper bounds. Before running this experiment, we expected the greedy class of
policies to contain the most optimal policies possible. We expected this because
we assumed the licit nodes that are investigated after the illicit ones would have
no influence on rewards (since investigating a licit node will always give zero
reward).
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Furthermore, due to the problem parameters used in this thesis, the effect
an investigation of a licit node has on the labeling of a neighbouring illicit node
is relatively small. This means it will never be optimal to investigate a licit
node before an illicit one. This is why the greedy class of policies contains every
possible ordering of the 7 illicit nodes, together with randomly sampled licit nodes
after those. Note that including every possible ordering of licit nodes in the class
of greedy policies would not be possible from a practical standpoint, even if we
did assume the licit ordering would influence the rewards in any significant way.

The power of sequential decision making approaches

So, before running this experiment, we expected at best the POMCP-UCD3
method to reach the scenario-specific upper bounds. However, we found that in
4 out of 100 scenarios it actually outperformed those upper bounds. We found
that in 3 out of 100 scenarios the situation occurred in which investigating a
specific licit node together with the last illicit node changed the outcome of the
labeling in that time step.

This demonstrates the potential power of modelling your problem as a se-
quential decision making problem and optimizing it. The sequential decision
making approach will optimize the model as it is given. This can sometimes lead
to the discovery of unexpected behaviour of the model. If the behaviour is very
unrealistic, this could indicate an issue with the current description of the model.
However, if the behaviour is not necessarily unrealistic, interesting new heuristics
could be learned from this behaviour.

POMCP-based methods versus baseline

All in all the POMCP-based method outperformed the baseline in terms of
episodic return (better in 4% and worse in 3%) and equal in terms of episode
length. This is impressive given that the baseline is an upper bound on the
greedy policies. We demonstrated that a single POMCP-based method could
outperform/ perform equal to the scenario-specific best-performing policy out of
an entire class of greedy policies. So, even in the unrealistic situation in which
one could beforehand pick the best greedy policy specific to the scenario that was
about to occur, the POMCP-based method still performed equal or better.

Under-performance

In 3 out of 100 scenarios the POMCP-UCD3 method under-performed in terms
of return. We discovered that in 1 of those scenarios it under-performing was
due to it selecting the move that would be optimal in most other scenarios.
However, in the other 2 scenarios, this was not so clear. This could indicate
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that in those other scenarios the POMCP-UCD3 method could potentially still
reach the greedy upper bound (or surpass it) if the simulations per time step is
increased further.



Part V

Conclusion
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Chapter 10

Conclusion & Future Work

The main objective of this thesis is to frame the anti-money laundering process
as a sequential decision making process and optimize it. This chapter will list the
main contributions of this thesis in relation to the research questions stated in
the introduction. It will also contain a recommendation for ING and a discussion
on the limitations and interesting future research topics.

10.1 Conclusion

The main research question of this thesis is Can Anti-Money Laundering practices
be improved by sequential decision making algorithms? The first contribution of
this thesis to answering this question is the defining and designing of AML as a
Partially Observable Markov Decision Process.

Model

As far as we know, no prior research has tried to formalize the AML process
as a sequential decision making process. The first contribution of this thesis is
therefore to formally define the AML process as a POMDP. The challenge we en-
countered was that intuitively, in AML, the observations (investigations) depend
on the previously received observations (previous investigations). However, in a
POMDP, observations can only depend on the states and actions. We overcame
this by adding the observations to the definition of our state space. In this way,
we answered the first research question: Is it possible to model the AML decision
making process in the POMDP framework?

Moreover, to our knowledge, our thesis is the first to design and implement
a generative model of the AML investigation process. The aim was to design
a model simple enough to be implemented as part of this thesis, yet complex
enough to produce interesting results that are based in reality. For this purpose,
we designed a model that uses the fraction of accurate feature values as a measure
of knowledge on which the labeling of nodes as illicit/licit is based. This measure
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can be increased through investigations of a node and we use the risk score to
guide the investigations to a node’s surroundings.

POMDP solution approaches

One of the main challenges of this thesis was to overcome the challenges associated
with the scale of anti-money laundering POMDP. This thesis uses an approxi-
mate, online and model-free approach called the Partially Observable Monte-
Carlo Planning approach to overcome the challenges associated with the large
state space.

However, this approach suffers a major memory bottleneck for problems with
large action spaces such as ours. For this reason, we design a memory-efficient
implementation of the POMCP algorithm that does not suffer a large memory
footprint for large action spaces. We discuss that this implementation contains a
memory/time trade-off that should be favourable if the initial action values are
not too complex to derive. In fact, we show in this thesis that if the initial values
are the same for every action (we have zero prior knowledge on the values of ac-
tions), the implementation can be further optimized to achieve huge performance
gains in terms of both memory and execution time.

Exploiting the action space structure

Another challenge of the AML POMDP as defined in this thesis is the large action
space. The large size of the action space is due to the combinatorial nature of
the actions in the AML POMDP (selecting subsets of nodes of a particular size
out of a larger set). This challenge is reflected in the second research question
How can we exploit the combinatorial structure of the action space to improve the
performance of POMDP solution approaches? This thesis tries to answer this
research question by proposing a number of different POMCP-based solution
approaches that exploit this structure in various degrees.

The first method builds upon an idea from similar domains where the struc-
ture of the action space is exploited by partitioning a single action (selecting
nodes) into a chain of sub-actions (selecting a single node). We propose a method
called the POMCP with Action Chains (POMCP-AC) method that is an exten-
sion of the POMCP algorithm with the addition of action chains in the belief
tree.

The limitation of this method is that it ignores the symmetries of the combi-
natorial structure. To exploit this we propose to add transpositions to the action
chains turning them into what we call action-DAGs. This turns the belief tree
into a belief Directed Acyclic Graph (DAG). Furthermore, we propose to exploit
our prior knowledge of these symmetries by pro-actively adding transpositions to
the action-DAGs.
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Based on this, we propose the POMCP-UCD method that adapts the gen-
eral UCD framework of Monte-Carlo Tree Search (MCTS) for Directed Acyclic
Graphs to the action-DAGs of the belief DAG. This method exploits our prior
knowledge of the combinatorial symmetries by pro-actively adding transpositions
that directly inform the MCTS selection phase.

However, the UCD framework does not maximally exploit the transpositional
information obtained during the Monte-Carlo sampling of the search space. We
therefore also propose a method POMCP-UA that applies the update-all strategy
for general DAGs to the action-DAGs in our belief DAG. We also design the
POMCP-UA to exploit the prior knowledge of the combinatorial symmetries by
adding all possible descent paths leading to the leaf nodes we traverse. This
method exploits both the prior knowledge and sampled knowledge to a higher
degree than any of the other methods in this thesis.

Empirical evaluation

In order to answer research question three, How do sequential decision making
approaches compare to methods that ignore the investigation dynamics?, and part
of the second research question, we perform several experiments on a relatively
small transactional network.

In those experiments, we find that the method that exploits the combinatorial
structure the most (POMCP-UA) outperforms all others if only a small amount
of Monte-Carlo samples of the search space are drawn. This perhaps suggests
that maximally exploiting/sharing the sampled information is most important if
samples are rare.

However, we find that the POMCP-UCD method seems to scale better if we
increase the lookahead search time per time step. This results in the POMCP-
UCD method overtaking the performance of the POMCP-UA method for longer
search times. Interestingly, the same scalability seems to be observed in the
POMCP-AC method, which exploits the combinatorial structure relatively min-
imaly. This might suggest that maximally exploiting the known structure might
suffer from sub-optimal exploration/exploitation of the search space in this do-
main.

We show that the above methods outperform the average greedy performance
of the baseline for relatively small search times (in the order of up to 1000 simu-
lations per time step). This might suggest that the POMCP-based methods can
outperform the average performance of a method that is completely agnostic of
the investigation dynamics in reasonable computation times.

Moreover, we show that increasing the computation time significantly (to
the order of tens of thousands of simulations per time step) for the POMCP-
UCD method can lead it to even slightly outperform the unrealistic greedy upper
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bounds. This shows that this method converges to a policy that is better than
the best you can expect from the baseline.

10.2 Limitations & Future Work

It is worth adding some nuance here on the implications of the results of this
thesis on the real-life problem of anti-money laundering in financial institutions.

Model

The results of this thesis were obtained using the model described in chapter
4. The implications of the results and how they would translate to the real-life
problem is completely dependent on the quality of the model.

It is not necessarily the case that we need a very high fidelity, realistic model
before the results can be translated to the real-life problem. It could be for
instance that a simple model contains a ’realistic’ property or behaviour that
manifests in a certain behaviour in the policy. This behaviour in the policy can
then lead to new insights that can improve upon current methods or help design
new ones.

We are not experts in the area of anti-money laundering investigations or
even in the area of money laundering itself. We have designed the model to be
simple but realistic to the best of our ability. However, we refer to other experts
to conclude whether our model translates in any way to the real-world problem.

One interesting area for future work could therefore be to improve the model.
There are a number of different assumptions made to simplify the model for this
thesis. One could expand on the complexity of the model by discarding certain
assumptions such as a static graph, a graph only containing transactions, the
fixed-size time steps, the fixed budget size, using binary labels to denote fraud,
using only a single node type and/or the assumption that flagged nodes are always
investigated. Another approach could be to keep the simplicity of the model and
use expert knowledge gathered from the specialized investigators to fine-tune the
realism of the model.

Risk Score

Another simplification made in our model is that the risk score is 100% accu-
rate. Because the generative model depends on the risk score, this also means
we assume the model to be 100% accurate. Some preliminary testing showed
that if the risk score is erroneous (and therefore so is the model), the POMCP-
based methods would converge to policies that far underperformed the greedy
baselines. An interesting avenue of research could therefore be the incorporation
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of the uncertainty on the model parameters/structure into the belief state of our
POMDP. Bayesian reinforcement learning optimization methods would probably
be an interesting topic for this scenario.

Methods & Empirical Evaluation

Additionally, it would be very interesting to get a better understanding of what
causes the different behaviours of the POMCP-UA and POMCP-UCD approaches.
The POMCP-UA method seemed to perform the best for small simulations per
time step, but the POMCP-UCD method seemed to scale better when this was
increased. In the discussion, we proposed that it could have something to do with
the exploration/exploitation trade-off. It would be very interesting to investigate
this further and perhaps look for ways to combine the strengths of both methods.

Additionally, it would be very interesting to further verify some of the trends
that were observed during the empirical evaluation of the methods in this thesis.
For one, if the difference in behaviour of the POMCP-UA and POMCP-UCD
methods is indeed (partly) due to the exploration/exploitation trade-off, perhaps
it could be interesting to increase the range of exploration constants with which
the experiments were performed. Perhaps it could be possible to find a map-
ping from the behaviour of one method to another by increasing/decreasing the
exploration constant.

Also, the behaviour of the methods with respect to the simulations per time
step was only observed on a relatively small range of values. The behaviour with
respect to this variable could be further investigated by increasing the range of
simulations per time step for the experiments.

Dataset & Other Problem Domains

Our experiments relied on the AMLSim synthetic dataset to create a transaction
network. This synthetic transaction network is not necessarily realistic. Further-
more, the way we designed the investigation model to interact with the graph
is partly based on our knowledge of money laundering structures in the transac-
tion network. Our knowledge was probably indirectly dependent on/similar to
the knowledge used in the AMLSim simulator. In this way, there is always the
danger of ’finding what you put in’ when personally designing both the model
and the solution method. The emphasis of the contributions of this thesis should
therefore be focused on the proposed methods, that should be applicable to any
problem with a similar action space structure.

One area of future research could be to investigate if the same results are ob-
served on a different synthetic (or real) dataset. Moreover, the proposed methods
should be applicable to any problem domain that exhibits the same combinatorial
action space. It would be very interesting to verify that the trends and behaviours
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of the methods encountered in this thesis apply to those other problem domains
as well.

An example of such a domain could be a recommendation problem in which
the action consists of a set of entities to recommend. For instance the recommen-
dation of a set of advertisements or news feeds. Similarly, certain maintenance
domains could be applicable as well, such as selecting a set of wind turbines to
maintain in a wind farm. In addition, any problem in which the action consists
of choosing a set of nodes from a graph should be relevant. An example of this
is the problem of maximizing influence spread in social networks. Or more gen-
erally the framework of Combinatorial Multi-Armed Bandits (CMAB), in which
one selects as an action a super arm consisting of a set of base arms.

10.3 Recommendations

The contributions of this thesis were mainly focused on the development of al-
gorithms and architectures that deal with the challenges associated with the
anti-money laundering POMDP. However, the relevance of those approaches to
the real anti-money laundering process inside a financial institution such as ING,
is heavily dependent on the quality of the model. If a financial institution such
as ING decides to further invest in a sequential decision making approach, we
would advise to:

1. Improve the quality of the model. This could be by adding more complexity
or evaluating its realism. The latter one especially is highly tied to better
understanding the investigation process that is a major part of the anti-
money laundering process.

2. Study approaches to deal with an inaccurate risk score (such as Bayesian
RL). In reality, the risk-scoring algorithm will not be flawless. This results
in inaccuracies in the model which has to be taken into account to avoid the
sequential decision making approach converging to a solution worse than
the baseline.

3. Use the sequential decision making solutions to create a better understand-
ing of the process and how to optimize it. It is unlikely that in the near
future an anti-money laundering model will capture all the complexities of
the real problem. So, rather than looking for a black box solution that opti-
mizes the model, it would be more beneficial to use the sequential decision
making approaches to find/test heuristics and improve the understanding
of the investigation process.
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Appendix A

Assumptions

This appendix contains a summary off all the assumptions in our thesis.

Static Graph

We consider for now a static transactional graph consistent with taking a snapshot
of the transactional network during a certain time window. For the most part
the actions and observations received do not influence the dynamics/behaviour
of the transactions. Solving for a static graph therefore seems like a good first
step.

Binary labels

For now we will assume there are only binary labels that distinguish a licit from
an illicit node. In the future, we might wish to use something more sophisticated
like a continuous label ranging from 0 to 1 (describing how likely a node is to be
illicit).

Only transactions

For now we will assume the only type of edge that explicitely exists in our data
is a transactional edge.

Fixed size time-step

We assume the time it will take to investigate a node (and obtain an observation)
is fixed, independent of whether the true label of the node is licit or illicit. In
reality, this assumption does not hold. In real-life the investigations can take a
variable amount of time which depends on the true label of the node.

A-1
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Fixed size budget

In reality, the investigators might have to wait some time for some external
information to become available. This is one of the causes of the variable time-
step. However, this could also cause the investigator to start investigation on a
new node whilst waiting for the information on the other. This complex behaviour
could perhaps be modeled using a variable budget size together with variable
time-steps. However, for now we assume a fixed budget size.

Nodes flagged will always be evaluated

We assume for now that nodes flagged (by taking an action a) will actually be
investigated. In reality, the nodes we flag will only be suggestions to the team of
investigators. They themselves decide which nodes to investigate (which could
therefore differ from the ones flagged in a).

Immediate feedback

The end goal of our problem is to maximize the amount of Suspicious Activity
Reports (SARs) sent to the public prosecution service. Because we assume fixed
time steps we can model this by giving a reward everytime a node gets labeled
as illicit. In reality this reward could be delayed.

Investigations also label suspicious neighbors

We will assume that all suspicious nodes encountered in the investigation process
will receive SARs. This is not necessarily a realistic assumption, since in real life
typically only the node that is formally under investigation can receive a SAR.
In real life suspicious activity from a node v might be encountered during an
investigation into node ai ∈ at. In this case a new formal investigation would
probably be launched into node v. In real life however, investigations don’t take a
fixed amount of time. The investigation into node v will probably proceed much
more swiftly than it would normally because part of the investigation was already
performed during the investigation into ai. In the fixed time-step investigations
we use, we will somewhat model this by including the SAR of the suspicious node
v in the investigation into ai.

Single node type

We assume for now all nodes are of the same type. In reality, different nodes
correspond to different types of businesses which all have their own characteris-
tics. A more sophisticated approach could take into account the different type of
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businesses as the type of business most likely influences the probability of the it
being illicit.

Observing features and fraud are independent

Observing features of a node (or its neighbours) is independent of observing the
node as fraudulent or not. I am not sure how realistic this assumption is.

Observing a node is independent of the other nodes observed

Observing a node as fraudulent has no effect on observing other nodes as fraud-
ulent in that time step. It might affect it in the next time step however.

Investigators don’t falsely label licit nodes as illicit

We will assume that the probability of labeling a licit node as illicit is 0. In
reality this might not be entirely realistic. However, it is not unreasonable to
assume this probability is relatively low.

Our Risk Score is 100% accurate

Nodes that are actually fraudulent will always have higher risk scores than nodes
that aren’t. This isn’t a very realistic assumption in the real life.
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Similar Problem Domains

There are a number of existing problem domains/frameworks that are similar to
ours.

B.1 Controlled Sensing

Controlled sensing (or active perception) is a special case of a POMDP where
the decision-maker (controller) controls the sensing part (observations) of the
POMDP but not the underlying MDP [24]. In controlled sensing, the controller
controls the sensing by switching between sensors or sensing modes. Typically,
in these types of problems an accurate sensor yields less noisy observations but
is more expensive to use than an inaccurate one. Because the controller only
receives the (noisy) observations and not the states, optimizing this process re-
quires decision making under uncertainty and is nontrivial to solve. An example
of a controlled sensing problem is radar scheduling for tracking a maneuvering
target.

In [24], they define the controlled sensing problem as trying to minimize the
following finite horizon cumulative cost function (as opposed to maximizing a
reward function):

Jπ = Eπ
{N−1∑

t=0

[
c(st, at) + d(st, bt, at)

]
|b0
}

(B.1)

where the expectation is over a policy π. st ∈ S, at = πt(bt) ∈ A and bt ∈
Π(S) denote respectively the state, the sensor and the belief at time t. The
instantaneous costs are divided in two types:

• Sensor usage cost c(st, at): This denotes the instantaneous cost of using
sensor at when in state st at time t.

• Sensor performance loss d(st, bt, at): This cost models the performance loss
one has when using sensor at given the belief state bt and actual state st.
This cost will be larger the more uncertain you are about the state.

B-1
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Usually there is a trade off between the two costs for any particular sensor. For
instance, an accurate sensor will have high sensor usage cost but low sensor
performance loss.

Examples of Sensor performance loss

The sensor performance loss is an indication of the uncertainty of the observer.
As such, this cost should be zero at the vertices of the belief state simplex (where
we are certain about being in a particular state) and largest at the centroid
(where we are most uncertain). An example could be a piecewise linear cost:

d(s, b, a) =


0 if ||s− b||∞ ≤ ε
ε if ε ≤ ||s− b||∞ ≤ 1− ε
1 if ||s− b||∞ ≥ 1− ε

(B.2)

where ε ∈ [0, 0.5]. This cost divides the belief space into three regions: close,
medium and far.

Similarity to our problem

Our problem domain is similar to the problem domain of controlled sensing in
that our actions only control the sensing part of the POMDP. In the AML case
the state would be the graph G = (V,E) together with the labels/features and the
sensors would be the human investigators. The set of possible sensors (actions) A
would be every possible subset of the nodes V of our graph of a fixed size (where
the fixed size indicates the amount of human investigators available). Both the
set of possible states and sensors/actions would probably be huge.

There is a subtle difference between our problem domain and the domain of
controlled sensing. In the controlled sensing domain, it is assumed that there
are multiple types of sensors (of higher or lower fidelity). In the AML problem
this is not the case: there are a limited amount of sensors and they are all of
the same type. Because there is only a single type of sensor, the sensor usage
cost c(st, at) would just be a constant. However, as noted in the assumptions, in
the real situation we only supply suggestions to the human investigators. They
themselves decide what accounts they want to investigate. This decision making
by the human investigators could perhaps be viewed as a low level sensor: it
senses whether the humans find the node suspicious or not. If they do find it
suspicious, the high level sensor gets deployed automatically.

One more thing is that it is not immediately clear how the sensor performance
loss d(st, bt, at) would have to be defined in the AML case. In most other examples
of controlled sensing, the sensor performance loss models the fact that ideally we
would like to know exactly what state st we are in. In AML, this is not necessary.
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As mentioned before, the state st is the entire graph G together with all the
labels/features. This graph however, is huge and we are not interested in the
graph in its entirety. We are only interested in the parts of the graph that indicate
fraudulent nodes which, as mentioned before, can be considered anomalies and
are therefore relatively sparse. So, instead of optimizing for observing the entire
graph we would somehow like to optimize on observing only those parts of the
graph that are of interest to detecting fraudulent behaviour. In fact, observing the
graph is not the end goal of AML. The end goal is to find fraudulent behaviour.
Observing the graph is only a way of achieving this.

So, the problem domain of AML does not necessarily directly translate into
the problem domain of controlled sensing.

B.2 Optimal Search

The problem of optimal search is the problem of finding an object of interest,
the target, within a search space [25]. Typically, the search space is defined as
Euclidean n-space or a (possibly infinite) collection of cells. The target is than
located at a point in this Euclidean n-space or inside one of the cells. These two
types denote the continues and discrete search spaces.

It is assumed that the searcher has to its disposal a probability distribution for
the location of the target at time zero. Moreover, there is a detection function d
that models the probability of finding the target at a location given the time spent
searching there and whether or not the target is actually at that location. Finally,
there is some constraint on the effort the searcher is allowed to apply towards
finding the target. This can apply to both stationary and moving targets.

One objective could be to find the optimal allocation of effort across the search
space that maximizes the probability of finding the target. Another could be to
optimize detection probability at each time instant or to minimize the mean time
to find the target.

Example of an optimal search problem

One simple example of an optimal search problem would be the scenario of a
search space consisting of two cells. The prior belief is that the target has a
probability of 1

3 of being in cell 1 and a probability of 2
3 of being in cell 2. You

can think of this problem as the problem of finding a valuable item in one of two
drawers.

The detection function d could be of the form:

d(t) = 1− e−t (B.3)
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where t is the time spent searching in a drawer and d(t) is the probability of
finding the target in that drawer after searching for t hours given that it is in
that drawer. This detection function is of this form because there typically is a
non-zero probability of finding the target when first looking in the drawer (the
searcher might be staring at the valuable item without recognizing it). Moreover,
there is the effect of diminishing rate of returns: after hours spent searching for
the item in the drawer, searching for a little longer will not drastically change
the detection probability.

Suppose there is only a fixed amount of time T that the searcher can look for
the item. The question to answer would now be: How to divide the search efforts
between the two drawers to maximize the probability of detecting the item with
time T?

Similarity to our problem

In the case of AML, we could consider a discrete action space where every node of
our network is a cell. The target could be the fraudulent behaviour. Of course,
in our case this means that there isn’t a single target but rather an unknown
amount of targets.

The target in AML would be a stationary target and the whole process could
be modeled as a POMDP to incorporate the previous search history into a current
belief of where the target is.

The detection function d in the case of AML would model the process of inves-
tigation by our human investigators. However, this function would need to have
a non-trivial shape in order to model the complex human way of investigating.

One interesting difference between our AML model and the optimal search
model is that in the optimal search model there are fixed size time steps. After
every time step the decision has to be made to continue searching in the current
cell or to preemptively stop the search in favor of searching in a different cell. In
the AML problem the human investigators will decide when to stop ’searching’
themselves. They will stop whenever they have accumulated enough evidence for
or against fraud. The time it takes to reach this point will depend on whether
the ’target’ is at that ’cell’ or not. In other words, it takes more time to collect
evidence on a fraudulent node than it takes to determine whether a node is most
likely not fraudulent. Moreover, there is no option of preempting the investigators
since they decide what to do autonomously.

B.3 Active Learning

Active learning is a special case of machine learning in which a learning algorithm
is able to interactively query the user (or some other information source), often
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called the oracle, to obtain the desired outputs at new data points [7].

The problem of active learning can be formulated as follows. Suppose D
denotes the total set of data under consideration. In each iteration the total set
of data D can be divided into three categories:

• Dl: the labeled data points

• Du: the unlabeled data points

• Dc: the chosen data points for which labels are requested from the oracle

The active learning problem is the problem of deciding which (previously unla-
beled) set of points Dc to send to the oracle for labeling. Often, the problem
starts with very few or no labeled data points and the objective is to reach a high
classification accuracy with as few oracle queries as possible.

Sampling Scenarios

There are different scenarios in which active learning can be applied. The follow-
ing are the three main types of scenarios [7]:

• Pool-based sampling: In this scenario, there exists a large pool of unla-
beled data. Instances are drawn from that pool according to how informa-
tive these instances are expected to be.

• Stream-based sampling: In this scenario, instances are sampled in a
stream. For each instance, it has to be decided whether to query the label
or discard it.

• Membership Query Synthesis: In this scenario, the learner is allowed
to draw any instances from the input distribution, notably including (and
typically assumed to be) instances it generates itself.

The pool-based sampling scenario is most similar to the scenario of our prob-
lem. How to decide what samples to query is called the Query Strategy.

Query Strategies

There are a number of proposed query strategies in the literature that can be
considered heuristics for the informativeness of an instance [7]:

• Uncertainty Sampling: The most informative instance is the one the
learner is least certain about.
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• Query-By-Committee: A committee of learners is maintained. The most
informative instance is the one the committee disagrees on the most.

• Expected Model Change: The most informative instance is the one that
leads to the greatest expected change of the current model.

Other query strategies exist that directly or indirectly try to minimize classifi-
cation error such as Estimated Error Reduction, Variance Reduction or Fisher
Information Ratio [7] (not a direct reference yet).

Similarity to our problem

On first impression, the domain of active learning shares a lot of properties with
our problem domain. Firstly, the process of iteratively choosing a small subset
of the data points to be labeled by some oracle is the same in both domains.
Secondly, both domains share the principle research question: "Which instances
to query and when?".

However, there are some subtle differences between the objectives of the prob-
lem domains. In active learning, the objective is to end up with a model that min-
imizes the classification error on all the data. However, in our problem domain,
the objective function isn’t necessarily the same. In our domain, the objective
is to let the oracle label as many instances of a particular class (the fraudulent
class) as possible. This subtle difference becomes clear in the case the learner
has to decide between two instances to label:

1. An instance where the learner is very certain it is fraudulent, but this
instance is not very informative for the classification.

2. An instance that is highly informative and will most likely improve classi-
fication, but is most likely not fraudulent.

In the active learning case the second instance would always be preferred over
the first. But in our problem domain, the first instance might be more preferable.
This can be thought of as an exploration versus exploitation issue.

Another, perhaps related, difference is that in a typical active learning envi-
ronment, it is assumed the oracle always gives the true label with certainty and
independently of any other queries or their order. However, in our problem do-
main, this assumption doesn’t necessarily hold. In the case of AML, the human
investigators may not return the true label and the labeling could potentially
depend on the instances already labeled/available information. So, using a query
strategy that simply optimizes for classification would neglect the sequential de-
cision making aspect of our problem.
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POMDP Solution Approaches

C.1 Exact Solutions

Ideally, if the full POMDP model is known, one would like to optimally solve the
problem using an exact planning algorithm.

Most exact planning algorithms solve the POMDP by finding the optimal
value function for all possible belief states. One such exact algorithm is the
Value Iteration algorithm [26]. The value iteration algorithm makes clever use of
the Bellman optimality equation for POMDPs:

V ∗(b) = max
a∈A

[∑
s∈S

R(s, a)b(s) + γ
∑
o∈O

p(o|b, a)V ∗(bao)

]
(C.1)

where bao is defined as the updated belief after taking action a and observing o:

bao(s′) =
O(o|s′, a)

p(o|b, a)

∑
s∈S

T (s′|s, a)b(s) (C.2)

and p(o|b, a) is the probability of observing o given you have belief b and take
action a:

p(o|b, a) =
∑
s′∈S

O(o|s′, a)
∑
s∈S

T (s′|s, a)b(s) (C.3)

O and T denote the observation and transition probabilities respectively which
are part of the POMDP model definition. V ∗(b) denotes the optimal value func-
tion V for belief b. The Bellman equation C.1 can be compactly written as:

V ∗ = HPOMDPV
∗ (C.4)

where HPOMDP is called the Bellman backup operator.

For a POMDP with a state space of size n, the belief b is an n-dimensional
vector. The value function V is therefore defined over an n-dimensional space.
For the optimal value function V ∗, equation (C.1) is satisfied for every belief
point b. Computing the optimal value function V ∗ might seem intractable at

C-1
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first. However, V ∗ admits to a particular structure: it is convex and piece-wise
linear [27]. Its convexity can be intuitively understood by reasoning that at the
corners of the belief simplex ∆(S) the value function will be high. This is because
at the corners the state uncertainty is gone which allows for much better planning
into the future.

C.1.1 Value Iteration

Value iteration algorithms can find the optimal value function for finite horizon
POMDPs by successively applying the Bellman backup operator HPOMDP . The
idea behind these algorithms is that the Bellman equation (C.1) defines the op-
timal value function for the current belief in terms of the optimal value function
in terms of the belief in the next time step (after taking action a and observing
o). Now, if there is only a single time step left to act, (C.1) reduces to:

V ∗1 (b) = max
a

[∑
s

R(s, a)b(s)

]
(C.5)

which is just a maximization over the weighted sum of the immediate rewards
obtained in the next time step. In this case it is also easy to see that this value
function is piece-wise linear. This is because the reward function R(s, a) is only
a function of state s and action a. In other words, it can be viewed as a set
of |A| vectors that are all |S|-dimensional: {αa1(s)}a. Every vector is associated
with an action and defines a hyper-plane over the belief simplex. For every belief
point b there is a single hyper-plane that has the highest value and the action
associated with this hyper-plane is the optimal action to take in for that belief.
The optimal value function can simply be written as an inner product of these
vectors with the belief:

V ∗1 (b) = max
a

[∑
s

R(s, a)b(s)

]
= max
{αa

1}a
b · αa1 (C.6)

This structure of the optimal value function holds for any finite horizon h > 0 [28].
In other words, the optimal value function for any horizon h can be parameterized
by a finite set of vectors or hyper-planes:

V ∗h (b) = max
{αk

h}k
b · αkh (C.7)

where k = 1, . . . , |V ∗h |.
The trick behind value iteration lies in first defining the optimal value function

for a single step horizon (C.5) and successively applying the Bellman backup
operator to obtain the optimal value function for larger horizons.

The formulas above all hold for single belief vectors. If the belief space was
finite and discrete, it would be possible to apply the formulas for every possible
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state in every iteration. However, in POMDPs the belief space is defined over
the unit simplex Π(S) and is therefore continuous. So, applying the formulas for
every possible belief is no longer possible.

However, this doesn’t mean that finding the exact optimal value function
is impossible. In general there are two approaches to doing this. One of those
approaches focuses on enumerating all possible vectors ofHPOMDPV

∗
h−1, followed

by pruning of dominated vectors.

C.1.2 Enumeration Algorithms

The idea behind Enumeration algorithms is to simply compute all the α−vectors
that are generated by applying HPOMDP to V ∗h−1 given the known α-vectors in
V ∗h−1. The issue is that there have to be |A||V ∗h−1||O| vectors generated at each
step. Many of these vectors could be dominated by others and therefore not part
of V ∗h . Therefore, all enumeration algorithms perform some form of pruning to get
rid of such dominated vectors before the next step. Differences can be in either
pruning after generating all |A||V ∗h−1||O| vectors, or pruning in an incremental
fashion during the creation of the vectors.

How many vectors can be pruned is dependent on the problem. In the worst
case none of the vectors can be pruned. In any case, enumerating these vectors
takes a long time even for some small problems.

C.1.3 Witness Point Algorithms

The other approach to finding the exact optimal value function focuses on the
fact that it is not necessary to perform the Bellman backup procedure for ev-
ery possible belief. For every belief there exists a single optimal action that is
associated with that belief. This action defines a hyper-plane over the belief
simplex. We also know that the optimal value function consists of a finite set of
such hyper-planes (many beliefs will share the same optimal action/hyper-plane).
In theory, we would only have to perform the Bellman backup described in the
section above over the finite set of beliefs (called witness points) that generate
this optimal value function. The problem is, we don’t necessarily know what the
set of witness points is.

One algorithm called Cheng’s Linear Support algorithm tries to find the wit-
ness points in the following way. It first picks a random belief point b in the belief
space and finds the dominating vector for this belief point. This vector is known
to be the dominating vector at b (by construction) and the dominating vector for
some region of beliefs around b (due to the convex and piece-wise linear nature
of V ∗).

Let’s assume for now that this single vector entirely defines V ∗ (which means
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this vector dominates for every belief). If this assumption were false (which it
most likely is), the largest error would be made at the boundaries of the region
where this vector dominates (which we assumed to be the entire belief space).
So, we take these boundary points (let’s denote them bi) and find the vectors
that actually dominate for those belief points. This gives us a new set of vectors
which are known to dominate at b and bi and some regions surrounding those
points.

We now iteratively find the boundary points for the regions in which these vec-
tors dominate and construct the vectors that actually dominate on those bound-
ary points. This is repeated until at some point no new vectors are found. This
is the point that all dominating vectors are found and V ∗ is constructed in its
entirety.

C.2 Approximate Solutions

Most algorithms that solve the POMDP exactly try to optimize the value function
over the entire belief space. Those algorithms typically run into two problems:
curse of dimensionality and curse of history [8]. The former is due to the fact
that the dimensionality of the problem is equal to the number of states. In other
words, a POMDP with n states has to be solved over an n-dimensional belief
space. The latter refers to the fact that the number of belief-contingent plans
increases exponentially with the planning horizon.

Both of these attributes contribute to the fact that, in general, solving POMDPs
exactly is extremely difficult. In fact, finite-horizon POMDPs are PSPACE-
complete [10] and infinite horizon POMDPs are even undecidable [11]. As a
result, even small POMDPs are often computationally intractable. Therefore,
there is the need for approximate solutions.

C.2.1 Point-Based Algorithms

One class of such approximate techniques is the class of Point-Based Value It-
eration (PBVI) techniques [8]. Exact solutions optimize the value function over
the entire belief space, PBVI techniques try to only optimize over parts of the
belief space that are most informative. They do this by performing the point-
based Bellman updates (as described in C.1.1) for a set of belief points B. The
different PBVI methods differ in their way of selecting this set of belief points.
These approaches often exhibit good performance with few belief points (relative
to the size of the belief space), which addresses the curse of dimensionality.

The PBVI methods chose their set of belief points in different ways ranging
from fast and naive ways to more sophisticated techniques. An example of a
fast and naive way is to simply randomly sample your belief points from the
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belief space. More sophisticated techniques only sample from the set of reachable
beliefs. That is, beliefs that are actually reachable from the current prior belief
(no point in focusing on beliefs that will never be encountered). This can either be
done by building a tree of reachable beliefs starting from the current prior belief,
or by sampling belief states by simulating random interactions in the POMDP
environment.

Another approach is provided by PERSEUS [29], which aims to increase (or
at least not decrease) the value function over the belief points B at each stage.
The key idea is to only perform the Bellman backup for a (randomized) subset B̃
of B. New points are added to B̃ until the new Vn+1 (resulting from only backing
up points in B̃) is larger than or equal to Vn for every point in B.

A general property of point-based algorithms is that a trade off can be made
between problem complexity and solution accuracy by increasing or decreasing
the size of B.

C.2.2 MDP Based Heuristic Algorithms

Another approach is to use the value function of the MDP underlying the POMDP.
Calculating the optimal value function of the underlying MDP is much easier
compared to the POMDP because it does not have the exponential growth in the
size of the observation space (solving an MDP is P-complete versus PSPACE-
complete for POMDPs [10]).

One straightforward approach is to use the optimal value function for the
underlying MDP (denoted V ∗MDP (s)). The idea is to assume we are in the state
that is most likely according to our belief b(s). So, we approximate the POMDP
value function Ṽ by

ṼMLS(b) = V ∗MDP (arg max
s
b(s)) (C.8)

Another approach is to not use the most likely state, but instead take a
weighted average over the states weighed by the belief:

ṼMDP (b) =
∑
s∈S

V ∗MDP (s)b(s) (C.9)

A slightly more sophisticated variation of the above approach is the so called
QMDP approximation. The key idea behind this method is to assume all partial
observability disappears after a single step. The QMDP approximation defines
the following Q-function:

QMDP
t+1 (s, a) = R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗MDP,t(s
′) (C.10)
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This Q-function defines an α-vector (hyper-plane in the belief space) for each
action a. So the POMDP value function is approximated by:

ṼQMDP (b) = max
{αa}a

b · αa = max
{QMDP (a)}a

b ·QMDP (a) (C.11)

Note that the key idea behind this method is to assume all partial observability
disappears after the next step. This means that this method will never consider
policies that require repeated information gathering steps.

The above methods require you to have a prior belief, and perform a belief
update after every step, based on the action taken and observation received.

C.3 Offline vs Online Approaches

There is a distinction to be made between POMDP solving approaches: offline
vs online. Offline and online algorithms are typically used in different settings.
The offline setting is one in which all the planning/learning is done before any
execution takes place. That is to say, an offline algorithm has to derive the
optimal policy for every possible belief state before execution. The online setting
is one in which planning/learning and execution are interleaved. Typically, in
the online setting the algorithm tries to derive the optimal action to be taken in
the current belief state. Once found, this action is executed and the new belief
state is observed. The algorithm then tries to find the optimal action in the new
current state etc. There are some typical advantages and disadvantages between
offline and online methods that are due to the difference in setting.

As mentioned before, offline methods need to derive the optimal policy for
every possible belief state before execution. For many problems this takes too
large a time to solve. Moreover, they are typically not very robust against changes
in the dynamics of the environment [12]. This is because, if during execution
the dynamics of the environment change, the policy computed offline using the
previous dynamics might not be as relevant anymore. Similarly, going from a
low fidelity simulation to the real world could potentially also be thought of as a
change in dynamics of the environment (from simulation to real). The limiting
factor of online approaches is typically that it needs to run in real-time. In
other words, computation time is limited to the amount of time there is between
actions.

As opposed to offline methods, online methods don’t have to find the optimal
policy for every possible belief. They just have to find the optimal action for
the current belief. This is very useful if the size of the belief space becomes
very large (curse of dimensionality). Only finding the optimal policy for the
current belief/state, and repeating this after every time step also makes online
approaches more robust against changes in the dynamics of the environment.
The same holds for uncertainty on the dynamics of the environment, a mistake



POMDP Solution Approaches C-7

in this is not propagated through more than a single action into the future.
A limiting factor of online approaches is typically that it needs to run in real-
time. In other words, computation time is limited to the amount of time there is
between actions. To deal with the real-time constraint, many online approaches
continually keep track of the best found solution so far. This means that they
can be terminated at any time and still supply the best solution so far.

A combination of both approaches is also possible. A lot of online approaches
can be used as a way to improve upon some baseline (offline) solution.

C.4 Online Solutions

The general structure of online approaches is that they build a tree of the search
process. The root of the tree is always the current belief state. From the root,
taking an action will lead to an observation which together with the taken action
defines a new belief (using a belief update). In this way the search tree is built
by looking at several sequences of actions and observations up to a certain depth.
The value of a belief state is propagated from the leaf nodes all the way to the
root using Bellman’s equation.

The search tree is built by first initializing it to contain only the root node
(current belief). In each step the tree is expanded by selecting a leaf node from
which it should pursue the search. This leaf node is expanded, and the values
of the added nodes are usually estimated using some approximation computed
offline. The tree is iteratively build in this way until a termination condition is
met (typically a search time limitation). After this the action (edge outgoing
from the root node) with the best value found so far is chosen to be executed.

Most of the online algorithms differ in what reachable beliefs to explore (how
they construct the search tree). They can be classified into three catergories:
Branch-and-Bound Pruning, Monte Carlo Sampling and Heuristic Search.

C.4.1 Branch-and-Bound Pruning

The aim of this technique is to prune nodes that are known to be suboptimal
in the search tree. They manage this by storing upper and lower bounds on the
value function at each node of the tree. If a particular action in a belief state
has an upper bound that is lower than the lower bound of a different action, this
action can be pruned.

One algorithm that employs this technique is called Real Time Belief Space
Search (RTBSS) [30] [31]. This algorithm, in order to maximize pruning, expands
the actions in descending order of their upper bound (so highest upper bound
first). The reasoning behind this, is that if an action a has the highest upper
bound, it cannot be pruned by first expanding a different action. This is because
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the lower bound of those other actions can never exceed the upper bound of action
a (since they cannot exceed their own upper bounds, which by definition are lower
than the upper bound of a). So this method avoids the scenario where an action is
expanded that could have been pruned if the actions were expanded in a different
order. Another advantage to expanding in this descending order, is that once an
action is found that can be pruned, it is immediately possible to prune all the
other unexpanded actions. This is because their upper bounds are necessarily
lower than the one of the action that was just pruned. The algorithm performs
a depth first search (up to a predetermined expansion depth). This means it can
prune actions faster, since depth first search leads to tighter bounds.

The efficiency of these methods depend largely on the precision of the upper
and lower bounds computed offline. One drawback is that it explores all observa-
tions equally. This means that if the number of observations is large, the depth
of the tree has to be very limited. However, this does mean it can guarantee to
improve the original (offline) solution by a factor γD (where D is the expansion
depth).

C.4.2 Monte Carlo Sampling

Monte Carlo sampling approaches solve the problem of small expansion depth
by expanding the search tree on a sampled subset of observations. One such
approach is the McAllester and Singh algorithm [32] which samples from a gen-
erative model. Sampling in this way relieves the complexity of the algorithm in
exchange for a less precise estimate. However, it assumes that a few samples
can be good enough because the observations contributing most to the value of
an action are those with the highest probability of occurring (and therefore the
highest probability of being sampled).

Another Monte Carlo sampling approach is the rollout algorithm [33]. This
algorithm uses an initial rollout policy to estimate the value of every action at the
root node. It then simply chooses the action with the highest estimated value.
An improvement on this method is where instead of a single initial policy a set
of initial policies is tested. For every action and every policy in the initial set a
number of samples are rolled out and the sample average is used to determine the
value of the action. This method is guaranteed to perform at least as well as the
initial policy with enough samples. However, it does not expand the search tree
beyond the first actions. This means that if the initial policy cannot be improved
by changing just a single action, this method will never improve upon it.

One drawback of Monte Carlo sampling approaches is that it does not guaran-
tee correct propagation of the lower and upper bound. This means that pruning
is not possible. These approaches differ from Branch-and-Bound approaches in
that they expand a node by evaluating each action (through Monte Carlo sam-
pling of the observations), rather than evaluating the actions in a particular order
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and pruning actions whenever possible. This can be viewed as trading off the
expansion factor due to the observation space versus the expansion factor due to
the action space. As a result, Monte Carlo sampling approaches can be difficult
if the number of actions |A| is large.

C.4.3 Heuristic Search

The previous two methods tried to reduce the branching factor of the search.
Heuristic search however, tries to use heuristics to pick the most relevant fringe
nodes. The most relevant ones are the ones that allow the algorithm to make
good decisions as fast as possible.

C.5 Model-based vs Model-free Approaches

Most of the methods discussed so far require explicit knowledge of the POMDP
model. Specifically, in order to perform a belief update or Bellman backup you re-
quire explicit knowledge of the transition probabilities T (s′|s, a), reward function
R(s, a) and/or observation probabilities O(o|s′, a). These functions are defined
over S,A and O. However, these spaces can be too large to store those functions
explicitly. For instance, one way to store the transition probabilities T (s′|s, a)
would be to have a 3-dimensional matrix over SxAxS. However, as soon as
the state space gets to a certain size, storing this matrix becomes impossible.
This is an issue all model-based (because they explicitly depend on the model)
methods share. Model-based approaches become impractical for large or complex
problems.

For larger problems we require so called model-free approaches. They are
called model-free because they do not require explicit knowledge of the POMDP
model. They typically only require implicit knowledge of the model through
interaction with a generative model G. A generative model G is function which
takes as input a state st and action at and generates as output the next state
st+1, observation ot+1 and reward rt+1

(st+1, ot+1, rt+1) ∼ G(st, at) (C.12)

Generative models allow on-the-fly samples from the distributions T (s′|s, a),
R(s, a) and O(o|s′, a) at low computational cost. An example of such an ap-
proach is the Monte Carlo Sampling approach discussed in section C.4.2.
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Large Observation Space

The POMCP algorithm uses Monte-Carlo sampling of states for both the tree
search and belief state updates to deal with large state spaces. Consequently, it
outperformed all the previous POMDP solvers on large problems.

A large state space is not the only thing that complicates a POMDP how-
ever. Some real world problems have not just large state spaces, but also large
observation spaces. There are several extensions to the POMCP algorithm that
try to solve problems with large state and observation spaces.

POMCP builds the belief tree by sampling observations from a generative
model. When at belief node h and taking action a, every new observation o
received results in a new history, resulting in a new belief node hao. The issue
with large observation spaces is that the probability of obtaining the same ob-
servation in two separate simulations becomes smaller and smaller as the size of
the observation space grows. In other words, if we are in h and perform a, the
probability of sampling observation o in two separate simulation runs would be
negligible if the observation space is large enough.

So, because each simulation will most likely sample a new observation, it will
most likely create a new belief node. In this scenario our search tree would not
extend deeper than the first layer (see figure D.1 from [18]). Remember that after
every creation of a new belief node, the rollout policy is applied to a state sampled
from the belief. Solutions of this algorithm will closely resemble QMDP solutions.
Recall that a QMDP solution assumes all partial observability disappears after
the next step and will therefore never consider repeated information gathering
steps.

D-1
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Figure D.1: Example showing that for large observation spaces the search tree
never extends beyond the first layer.

Furthermore, if we want the POMCP algorithm to improve upon some base-
line solution (perhaps found offline), this can be achieved by using this baseline
as the rollout policy. The issue than becomes that, because the tree will never
extend deeper than the first action, this method will never discover improvements
on the baseline that differ from it in more than one action.

D.1 Continuous Spaces

The most extreme example of a large action space is the continuous case. The
issue with a continuous space is that the probability of a ‘hit’ (second occurrence
of an action) is zero. The authors in [18] describe two algorithms that deal with
POMDPs with continuous state, action and observation spaces.

The POMCP algorithm can already handle continuous state spaces due to its
Monte-Carlo sampling of states. However, as detailed above, it runs into problems
when the action and/or observation spaces are large (let alone infinite). Their
algorithms are based around the idea of Double Progressive Widening (DPW).

The name progressive widening comes from the fact that they hard limit
the amount of children a node can have by k ∗ nα. If the limit of children is
reached, instead of creating a new child they sample from the existing ones with
probability proportional to how often a child occurred. This limit term increases
with the amount of times n the node is visited. In this way the tree progressively
widens. It is called double progressive widening because this concept is applied
to both the observation space and the action space.
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D.1.1 POMCP-DPW

The first solution they describe is the POMCP-DPW solution. This is simply
POMCP but with double progressive widening for the action and observation
spaces. This solution may converge to the optimal solutions for POMDPs with
large but discrete observation spaces. However, [18] prove that for a continuous
observation space, this solution converges to the QMDP solution. This can be
understood intuitively because every node other than the root only has a single
state representing the belief (since the probability of a ‘hit’ is zero). So, from
those nodes onwards the rollout just solves the MDP problem, not the POMDP.
Regular POMCP and DESPOT both share this same characteristic.

If the POMCP-DPW algorithm reaches the observation limit, it would sam-
ple from the existing observations and then uniformly sample a state from the
belief of that observation. The problem in continuous spaces is that an observa-
tion is ever only ’hit’ once, meaning the belief of that observation is a particle
filter with a single particle (state). To solve this issue of state particle dilutions,
they propose the Partially Observable Monte-Carlo Planning with Observation
Widening (POMCPOW) method.

D.1.2 POMCPOW

In the case the observation limit isn’t reached yet, POMCPOW, just like POMCP-
DPW, samples a new state s′ and observation o from the generative model. Both
algorithms then update the tree with the new observation o and add the new
state s′ to the particle filter of hao. One difference between POMCPOW and
POMCP-DPW is that the latter uses an unweighted particle filter, whereas the
former uses a weighted one (with weights proportional to O(o|s′, a)). Further-
more, in the POMCP-DPW algorithm, the previously samples state s′ is used
for the continuation of the simulation. In POMCPOW on the other hand, a new
state s′′ is sampled from the belief at hao, proportional to their weights.

If the observation limit is reached, the POMCPOW algorithm still samples
a new state s′ and observation o from the generative model. However, because
the observation limit is reached, o cannot be added to the tree (if o isn’t already
in there, which in the continuous case it will never be). Instead, an observation
o′ is sampled from the existing observations and s′ is added to the particle filter
of this node (with weight O(o′|s′, a)).

The key result from those differences is that in the POMCPOW algorithm
the particle filter of a belief node always has as many particles as amount of times
the node was reached, avoiding the issue of particle dilution.
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D.2 DESPOT

Another algorithm that tries to deal with large observation spaces is based on the
DESPOT algorithm. DESPOT stands for Determinized Sparse Partially Observ-
able Tree [34]. It is a variation on POMCP that aims to improve on POMCPs
worst case performance. A standard belief tree of height D has O(|A|D|Z|D)
nodes. If the observation space |Z| is large, this leads to a huge amount of nodes.

The DESPOT algorithm doesn’t build a standard belief tree, instead it builds
a Determinized Sparse Partially Observable Tree (DESPOT). The DESPOT is a
belief tree that is build only from a set of K so called scenarios. These scenarios
are randomly sampled a priori from the generative model. A DESPOT than
consists of belief tree obtained by evaluating all possible action sequences for
every single scenario. So it differs from a regular belief tree in that it only
contains the observations from the K scenarios. So a DESPOT contains all the
action branches but not all of the observation branches. The amount of nodes in
a DESPOT of height D is O(|A|DK) (since every scenario covers all |A|D possible
policies). So, for POMDPs with large observation spaces, the DESPOT contains
significantly less nodes than a regular belief tree (see figure D.2 from [34]).

Figure D.2: Example showing the DESPOT contains less observation nodes than
the regular belief tree.

D.2.1 Scenario

A scenario is defined through the use of a deterministic generative model. The de-
terministic generative model is defined to deterministicaly provide the POMDPs
next state and observation given a state, action and real scalar φ:

(st+1, ot+1) ∼ g(st, at, φ) (D.1)

It is defined in such a way that if φ is uniformly distributed over [0, 1], than g
should be distributed according to p(st+1, ot+1) = T (st+1|st, at)O(ot+1|st+1, at).
With this deterministic generative model in mind, a scenario Φ is now defined as
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a start state s0 (sampled from the initial belief) and a sequence of real numbers
φi uniformly sampled over [0, 1]:

Φ = (s0, φ1, φ2, ...) (D.2)

Given the deterministic generative model g and an action sequence ā =
(a0, a1, a2, ...), a scenario Φ now defines a trajectory (s0, s1, a1, o1, s2, a2, o2, ...).
This trajectory traces out a history (descent path) of the belief tree: (a1, o1, a2, o2, ...).

So, a DESPOT is created by sampling K such scenarios and evaluating them
for all possible action sequences (all possible policies).

D.2.2 Basic Algorithmic Structure

The key idea behind a DESPOT algorithm is to approximate the optimal policy
by searching through the space of all policies on a subset of scenarios. This is
in contrast to for instance POMCP, which searches through a subset of policies
(due to computational limitations) on the set of all scenarios. So in a typical
DESPOT algorithm, you first create the full DESPOT ( O(|A|DK) nodes), then
find the best policy on this DESPOT.

There are various versions of the DESPOT algorithm. One is the Basic
DESPOT (B-DESPOT). This algorithm simply performs normal tree search
where the value of an action is simply the average of the values of that action
over the different scenarios.

One issue with basic DESPOT is that it can overfit to the sampled scenarios.
The Regularized DESPOT (R-DESPOT) tries to deal with this. The authors of
[34] derive a lower bound on the actual value Vπ(b0) of a policy π in terms of the
estimate of this value V̂π(b0) obtained from a DESPOT. They rewrite this lower
bound into a regularized utility function V̂π(b0)−λ|π| and show that maximizing
this will lead to a near-optimal policy with high probability (if a small optimal
policy π∗ exists). The R-DESPOT algorithm finds the policy that maximizes
this regularized utility function by performing bottom up dynamic programming
on the DESPOT.

D.2.3 AR-DESPOT

The B-DESPOT and R-DESPOT algorithm have limitations to their online per-
formance because they have to create the entire DESPOT every turn. The Any-
time Regularized DESPOT (AR-DESPOT) deals with this by creating a version
of R-DESPOT that can be terminated at anytime and still provide the best
solution found so far.

The AR-DESPOT algorithm builds a partial DESPOT for as long as time
permits, once time is up, it performs the R-DESPOT algorithm on the partial
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DESPOT by maximizing the regularized utility. It builds the partial DESPOT
using a combination of heuristic search and branch-and-bound pruning (using
lower and upper bounds on the value).

It performs the heuristic search by running trials over the DESPOT that store
upper and lower bounds on every belief node. A trial is performed by choosing
actions that maximize the upper bound on the action node and choosing the
observation nodes that maximize a so-called weighted excess uncertainty. This
weighted excess uncertainty is a measure of how close the upper- lower-bound
gap is compared to a desired one weighted by the amount of trials that have
passed this node.

The initial upper bound can be set by taking the average of the upper bound
over all scenarios passing through the particular node. The upper bound of
any particular scenario is the maximum value achieved over any policy on that
scenario. This can be computed in O(K|S||A|D) time. To construct an initial
lower bound, it is possible to use any policy on all the scenarios and take the
average of the total discounted rewards (average over scenarios).

D.3 α-DESPOT

The DESPOT algorithm can handle larger observation spaces than POMCP due
to it only searching over a finite set of scenarios. However, it still struggles
with really large observation spaces for the same reason POMCP does: if the
probability of obtaining the same observation twice are negligible, theK scenarios
will result in K different observations, leading to belief nodes with single state
particle filters, leading to policies over-optimistic policies that underestimate the
uncertainties (see figure D.3 from [35]).

Figure D.3: Example showing that for large observation spaces the DESPOT
never extends beyond the first layer.

The DESPOT with α-vector update (DESPOT-α) algorithm deals with this
particle divergence by having so called sibling belief nodes share their particles
[35]. Sibling belief nodes are belief nodes that have histories (descent paths)
that differ only in the last observation received. In the DESPOT-α algorithm
particles aren’t partitioned into belief nodes based on the observations the particle
generates. Instead, every child belief node inherits all its parents particles in a
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weighted particle filter. The weight of the particle is determined by the likelihood
of the particle generating that observation O(ot+1|st+1, at). Note that this does
require explicit knowledge of the observation probabilities, but the weight update
is only based on the states found in the particle filters and therefore can be
performed efficiently for problems with large state spaces.

Another attribute of DESPOT-α is that it shares the value function calcula-
tion among sibling belief nodes.

DESPOT-α is designed to scale up to problems with extremely large obser-
vation spaces and can scale to complex real-world problems which require very
fast decision making and have complex dynamics [35].
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Extended Results

E.1 POMCP-UCD Implementation

Figure E.1: Comparison between the two POMCP-UCD versions with depth
parameter d = 3. Shown are the averages and 95% confidence intervals over
50 runs for exploration constants in the range c = {1, 2, 3, 4, 5, 6, 7} and 1100
simulations per timestep.

E-1
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Figure E.2: Comparison between the two POMCP-UCD versions with depth
parameter d = 3. Shown are the averages and 95% confidence intervals over
50 runs for exploration constants in the range c = {1, 2, 3, 4, 5, 6, 7} and 1100
simulations per timestep.
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Figure E.3: Comparison between the two POMCP-UCD versions with depth
parameter d = 3. Shown are the averages and 95% confidence intervals over
50 runs for exploration constants in the range c = {1, 2, 3, 4, 5, 6, 7} and 1100
simulations per timestep.
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E.2 POMCP-UCD Parametrizations

Figure E.4: The max over exploration constants c = {1, 2, 3, 4, 5, 6, 7} for all
possible depth parametrizations d = {0, 1, 2, 3} of POMCP-UCD. Shown are 50
runs with simulations per time step in the range of {300, 500, 700, 900, 1100}.
The markers denote the averages over those 50 runs.



Extended Results E-5

Figure E.5: The max over exploration constants c = {1, 2, 3, 4, 5, 6, 7} for all
possible depth parametrizations d = {0, 1, 2, 3} of POMCP-UCD. Shown are 50
runs with simulations per time step in the range of {300, 500, 700, 900, 1100}.
The markers denote the averages over those 50 runs.
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Figure E.6: The max over exploration constants c = {1, 2, 3, 4, 5, 6, 7} for all
possible depth parametrizations d = {0, 1, 2, 3} of POMCP-UCD. Shown are 50
runs with simulations per time step in the range of {300, 500, 700, 900, 1100}.
The markers denote the averages over those 50 runs.
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E.3 All Methods

Figure E.7: The max over exploration constants c = {1, 2, 3, 4, 5, 6, 7} for all
POMCP based methods. Shown are 50 runs with simulations per time step in
the range of {300, 500, 700, 900, 1100}. The markers denote the averages over
those 50 runs.
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Figure E.8: The max over exploration constants c = {1, 2, 3, 4, 5, 6, 7} for all
POMCP based methods. Shown are 50 runs with simulations per time step in
the range of {300, 500, 700, 900, 1100}. The markers denote the averages over
those 50 runs.
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Figure E.9: The max over exploration constants c = {1, 2, 3, 4, 5, 6, 7} for all
POMCP based methods. Shown are 50 runs with simulations per time step in
the range of {300, 500, 700, 900, 1100}. The markers denote the averages over
those 50 runs.
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