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A B S T R A C T   

Over the next few years, digitalization and automation are expected to be key drivers for maritime transport 
innovation to be key drivers for maritime transportation innovation. This revolutionary shift in the shipping 
industry will heavily impact the reliability of the machinery which is intended to be operated remotely with 
minimum support from humans. Despite a large amount of research into autonomous navigation and control 
systems in maritime transportation, the evaluation of unattended engine rooms has received very little attention. 
For autonomous vessels to be effective during their unmanned mission, it is essential for the engine room un
derstand its health condition and self-manage performance. The unattended machinery plant (UMP) should be 
resilient enough to have the ability to survive and recover from unexpected perturbations, disruptions, and 
operational degradations. Otherwise, the system may require unplanned maintenance or the operation will stop. 
Therefore, the UMP must continue its operation without human intervention and safely return the ship to port. 
This paper aims to develop a machine learning-based model to predict an UMP’s performance and estimate how 
long the engine room can operate without human assistance. A Random Process Tree is used to model failures in 
the unattended components, while a Hierarchical Bayesian Inference is adopted to facilitate the prediction of 
unknown parameters in the process. A probabilistic Bayesian Network developed and evaluated the dependent 
relationship between active and standby components to assess the effect of redundant units in the performance of 
unattended machinery. The present framework will provide helpful additional information to evaluate the 
associate uncertainties and predict the untoward events that put the engine room at risk. The results highlight the 
model’s ability to predict the UMP’s trusted operation period and evaluate an unattended engine room’s resil
ience. A real case study of a merchant vessel used for short sea shipping in European waters is considered to 
demonstrate the model’s application.   

1. Introduction 

The safety of unattended machinery plants in Maritime Autonomous 
Surface Ships (MASS) is expected to significantly impact maritime trade. 
The concept of autonomous shipping has peaked considerable interest in 
recent years due to the potential of reducing operational cost (up to 36% 
of total operational cost [1]), removing the difficulties to hire onboard 
personnel [2], and reducing the number of human error-induced in
cidents in marine transportation [3]. According to the safety and ship
ping review presented by insurance company Allianz, between 75% and 
96% of marine accidents are influenced by the human factor [3]. By the 

absence of onboard experts, the operation will be susceptible to 
emerging risks, which will greatly impact the unattended machinery’s 
performance [4]. These unanticipated events could have a very signifi
cant negative impact on the assets’ acceptability, thus hindering the 
widespread deployment of intelligent operations in future maritime 
trade. 

The existing market and regulatory arrangements are mainly focused 
on advanced control systems [5–7], navigation, and communication 
[8–10] in autonomous ships. Examples of relevant projects include the 
Maritime Unmanned Navigation through Intelligence in Networks 
(MUNIN) project [11], The Advanced Autonomous Waterborne Appli
cations Initiative (AAWA) project [2], and more recently, the Autoship 
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project [12] that strives to convert a short sea-going vessel into an 
autonomous vessel. Currently, the apparent lack of coherent strategies 
assessing reliability of unattended machinery has been identified as a 
neglected part of autonomous ships that will directly affect the safety of 
maritime transportation [9,13,14,41]. Unmanned systems need to 
remain safe while being ’resilient’ to unpredictable changes and func
tional failures. The AAWA project states that onboard systems of an 
autonomous ship "need to be resilient to failure and extend maintenance 
intervals" [2]. Thus, to create a smart maritime technology, a robust 
probabilistic approach is needed to provide sufficient information about 
the availability of an unmanned engine room and reliably perform in
dependent missions for 500 h without human intervention [6,15]. 

As stated by [12], the major challenge is that the experience with 
autonomous ships is very limited to evaluate reliability of unattended 
machinery plants (UMP) the same as a manned system. A 
system-theoretic process analysis (STPA) was recently proposed [16,17] 
to identify the unmanned system’s safety structure and investigate its 
functionality. Although the STPA approach is a useful method for hazard 
identification of UMP in maritime transportation [18–20], it is mainly a 
qualitative-based approach focusing on safety aspects of maritime 
transportation. The research conducted by [11,13-14, 21] included 
analyzing safety concerns for a particular type of unmanned vessel in 
different degrees of autonomy. A few studies [1,11,22-24] focused on 
reducing the human task in unmanned vessel and its impact on remotely 
monitoring system performance; however, there was limited quantifi
cation solutions for reliability assessment of UMPs. 

The broader idea of resilience in unmanned operation can come from 
all levels of the system, including recovery of failed units in the condi
tion of encountering critical failure [25,12], mitigating emerging risk 
[26,27], and reducing system failures by eliminating human errors [4, 
28]. In resilience engineering, failure is regarded as the inability to 
perform necessary adaptations to the uncertain environment rather than 
a breakdown or malfunction [29]. This projection requires an under
standing of how a system can proactively ensure that things stay under 
control. Arguing that the failure probability is acceptably low is simply 
not enough for achieving a trusted unmanned operation. The system 
needs to be able to recover from unexpected disruptions and degrada
tions of the operational environment [29]. 

Among all quantitative and semi-quantitative approaches for resil
ience assessment, having redundant units for sensitive parts of 

unattended machinery is considered an effective resilience solution 
[25]. Allocating an appropriate level of redundancy to a system can 
make an operation able to sustain or restore its lost capacity following 
untoward changes [26]. Different approaches have recently been 
investigated for allocating redundancy based on predicting time to 
failures, such as assuming exponential distribution and Erlang distri
butions [30,31]. The latter assumption can model the time-varying 
hazard rate; however, it cannot consider the process’s uncertainty, 
especially if the variability of data is concerned. It seems that the UMP is 
likely to follow an increasing hazard rate function due to the large un
certainty in the occurrences of disturbances. It is essential to define a 
more robust model for predicting critical failures that stop the compo
nents from. 

This paper aims to develop a probabilistic approach for modeling 
redundancy of the UMP as an approach to estimate the system’s resil
ience to untoward changes. To this end, firstly a stochastic model is 
proposed to overcome the hurdles in predicting time-to-failures for 
assessing the performance of UMPs. A Random Process Tree (RPT) is 
developed to address the operation’s uncertainty and categorize the 
system’s non-nominal conditions into critical and non-critical failures. A 
Hierarchical Bayesian Model (HBM) is adopted to quantify the uncer
tainty associated with the tree due to its powerful reasoning capacity to 
predict events based on complete or incomplete information. This stage 
will enable the system to predict untoward events that disrupt the sys
tem. The system’s daily detected probability of failures will be estimated 
at this stage and imported to set up the redundancy model. A probabi
listic Bayesian Network (BN) is proposed to assess the redundancy of 
UMPs and evaluate the dependent relationship between active and 
standby components. The outcome will enable the system to predict the 
improvement in the reliability of unattended machinery. To demon
strate the application of the proposed model for unmanned maritime 
shipping, two different engine room design scenarios considered as the 
case study. The system with redundant high-risk units as the new system 
and non-redundant high-risk components as the current system moni
tored to indicate the behavior of the hazard rate in two cases. The 
comparison will allow the system designer to predict an UMP’s perfor
mance and estimate the potential increase of trusted operation time 
without human interventions. The remainder of this paper is organized 
as follows. Section 2 describes the problem definition and methodology. 
Section 3 discusses the case study to analyze an unmanned engine 

Nomenclature 

MASS Maritime autonomous surface ships 
UMP Unattended machinery plant 
RPT Random process tree 
BN. Bayesian network 
pdf Probability density function 
HBM Hierarchical Bayesian model 
DAG Directed Acyclic Graph 
CPT Conditional probability tables 
iid independent and identically distributed 
k represents the kth category of the event in observation 

process 
n Number of components in UMP 
δij Availability of standby components δij ∈ {1,0}
u1,…,uj Non-redundant components 
v1,…,vi Redundant-able components 
vl

i Standby items for each component 
l The enumeration for the number of a particular component 

in the single single series-parallel system l = 1, ...,nR 

SR. The system in new condition 
CFL Critical Failure Limits 

e Evidence in Bayes’ Theorem 
nv Number of redundant-able components 
nu Number of non-redundant components 
Cj jth Category in RPT 
Bj Branch in RPT (start from relevant Path ends to jth 

category) 
θ Unknown parameter in RPT 
φsk Positive number in the function of P(Bj

⃒
⃒θ)

αjs Non-negative integers in the function of P(Bj
⃒
⃒θ)

bjs Non-negative integers in the function of P(Bj
⃒
⃒θ)

Y Observation matrix for data 
L ratio of redundancy 
ΛR Standby coefficient factor 
nR Number of standby components 
f (x)l (t) The probability density function for the xth critical failure 

arrival 
Rl(t) Reliability at time instance t for the system without 

redundancy 
R(t) Reliability at time instance t for the system with 

redundancy  

M.M. Abaei et al.                                                                                                                                                                                                                               



Reliability Engineering and System Safety 219 (2022) 108176

3

room’s performance based on the proposed model, and Section 4 sum
marizes the conclusion and future works. 

2. The methodology: predicting the functional capacity of UMPs 

As the main limitation for removing human from the engine room, 
the availability of unattended machinery systems must extend for an 
independent mission of at least 500 h, the mission length specified by 
MUNIN [11]. The studies conducted by [4,20,32] have identified that 
the event-data will help predicting failures in the system, especially if 
there is not much informative historical data for autonomous ships. 
Mostly, the available event-based information about the machinery is 
the prior observation for requesting repair or maintenance. However, 
such information must incorporate a robust predictive approach to 
evaluate UMP’s performance of system in a longer period. In this study, 
a random process tree (RPT) is introduced by considering the uncer
tainty of discrete event system in such a way that the frequency of the 
occurrence for different events will be assessed (Step 1). The RPT is a 
non-deterministic approach for which the state and output of sequences 

are controlled with a probability that can be perceived from prior 
observation. For a left unattended system, it is expected that some events 
are observed very often, whereas others occur rarely. A Hierarchical 
Bayesian Model (HBM) is developed in (Step 2) to quantify the uncer
tainty in the RPT. In (Step 3) the framework is formalized with a 
redundancy model by developing a Bayesian Network (BN) for evalu
ating the system interdependencies according to the detection of critical 
and non-critical failures (Step 4). Finally, the simulation will be updated 
in (Step 5) to analyze the reliability of the system and predict the sys
tem’s functional capacity of UMPs compared to the non-redundant 
design condition. The framework will predict whether the system’s 
reliability satisfies the safety requirements for the operation of UMP; i.e., 
obtaining the minimum trusted operation time without human in
terventions. In general, the framework can re-evaluate the system from 
(Step 3) to reconfigure the sub-components’ redundancy model. The 
framework is also flexible when new observations become available; i.e., 
the model can be re-started from step 1 and update the critical events by 
feeding new data to the developed HBM (Step 2). The sequence of the 
current framework is shown in Fig. 1. 

Fig. 1.. The sequence of the developed model to evaluate the reliability of UMPs subject to the adverse conditions.  
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2.1. Solution procedure for uncertainty modelling of the process (Step 1 & 
2) 

As suggested by [35], considering a categorical distribution is a 
convenient approach for describing the system behavior and propa
gating the associate uncertainty in a complex process. The RPT models 
are substantively motivated statistical models that can be applied to 
categorical data and represent the performance of an operation globally 
[34]. This characteristic makes the RPT a suitable choice for modeling 
the categorical failures in a UMP. The RPT models simulate the cate
gorical data based on the assumption that the sample frequencies 
observed for the event data follow a multinomial distribution [35]. 
Importantly, RPT does not only assess the probabilities underlying these 
sample frequencies but aims to explain key parameters in terms of latent 
processes that determine the behavior of the entire process [35]. The 
other advantage of RPT architecture is that category probabilities are 
generally expressed as nonlinear functions of the underlying failure 
parameters. Thus, even though RPT models parameterize latent pro
cessing events, the represented category probabilities are usually 
nonlinear polynomial functions of the processing event parameters [35]. 
An RPT model is built out of a set of J>1 mutually exclusive and 
exhaustive observable categories, C = {C1,C2, ...,CJ}and a set θ of un
known parameters arrayed in a vector   θ = {θ1, θ2, ..., θS} in the relevant 
tree’s path. Each parameterθsrepresents the probability of the occur
rence and(1 − θs)the non-occurrence of latent events. The processing 
tree consists of a single path and a collection of processing branches, 
each terminating in a particular observable category. The observable 
category Cj is an indication of recovery actions for the system, i.e., doing 

maintenance, repair, or continuing the operation. The state probability, 
θ, denotes healthy state in the RPT. In general, an RPT model can have 
different order of paths (denoted by Bj,j = 1,2, ...,J) leading to category 
Cj. Each branch has a probability of occurrence that proceeds to a new 
condition for the system, and these probabilities are required to satisfy a 
specific functional form underlying parameters The combination 
ofIipaths that end at a particular leaf node Cj and consists of Branch 
orders Bij. Therefore, each branch has a probability of occurrence 
Cj ∼ P(Bj; θ); the symbol∼means an RPT may have different branches 
that end to a similarCj. In particular, the relevant probability for each 
branch orderBijdefines as: 

P
(
Bj; θ

)
= cj Π

S

s=1
θajs

s (1 − θs)
bjs (1)  

where cijis always a positive number aijsand bijsare non-negative integers 
[36,39]. Consequently, the categorical function  P(Cj

⃒
⃒θ) =

∑J
j=1P(Bj

⃒
⃒θ)over all possible paths will predict a system’s required re

covery action. The necessary conditions for the final categorical prob
abilistic structure of the model need to satisfy

∑

j
P(Cj

⃒
⃒θ) = 1, for all 

processing branches, allowing eachCjparameter to vary independently 
between [0,1]. A simple example of constructing RPT for a hypothetical 
component A is shown in Fig. 2. The component states are assumed as 
Healthy (H) for nominal condition; Minor(M) for small indication of 
errors in the system that need to be checked; Moderate(M) for abnor
mality in the components that will need maintenance at a proper time; 
and Severe(S) for the non-nominal condition that the system will stop 

Fig. 2.. A conceptual illustration to construct RPT for predicting the behavior of UMP.  
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immediately and the broken item will need for immediate repair. Each 
of these states can be represented in six different branches. Each branch 
has a probability of occurrence asθs = {θ1,1 − θ1,θ2,1 − θ2,θ3,1 − θ3}, 
probabilities for the degradation of operational condition from its 
nominal state, respectively. The combination of relevant branches in a 
particular path will end in a categorical action. For this particular 
example, the only critical path is I1, which consisting of branches 
numbers (1) and (2) that construct the branch order B12, and leads to 
repair action, C1. Also, Component A can observe maintenance action 
from two different paths I2 and I3 that ends to similar category of C3. For 
instance, the final categorical probability function for maintenance is 
formulated as P(C2,C3|θ1, θ2, θ3) = P(B2|θ1, θ2) + P(B3|θ2, θ3) which is a 
nonlinear polynomial function followed byθ2(1 − θ1) + (1 − θ2)θ3. This 
function proves that the component has the chance to observe 
non-critical events, even if it is in the Minor state, though its branch 
probability P(B45|θ2,θ3) = (1 − θ2)θ3is expecting to be very low. In this 
way, the process will easily categorize the critical and non-critical fail
ures by predicting the system priorities for repair or maintenance. 

Many uncertainties are within the final categories in the RPT, which 
can be quantified by predicting all possible combinations of the failure 
events in N trials. In DES, N trials will represent the order of time instants 
(relevant to the RPT circumstances), which are alternatively denoted as 
operation time t per day for each component [33]. The multinomial 
distribution is the most general and neutral statistical distribution for 
this purpose, which is a generalization of the binomial distribution to 
multiple categories. In the multinomial distribution, observations are 
independent and identically distributed (iid) over the categories C. Each 
category has an unknown parameter (i.e., parameter θ) representing the 
probability that a random observation falls into it (i.e., failure function 
P(C, θ)). Therefore, the RPT will express the probability parameters as 
the functions of system behavior for different circumstances and 
re-parametrize the multinomial distribution in return. 

In this study, Bayesian Inference is adopted to develop a probability 
model for predicting uncertain parameters in the RPT. Bayesian infer
ence is the process of fitting a probability model to a set of data and 
summarizing the result by a probability distribution on the parameters 
of the model and unobserved quantities such as predictions for new 
observations. This advantage will help quantify uncertainty of the sys
tem behavior by defining the appropriate failure model derived from the 
RPT. Apart from predictive reasoning, it also allows for diagnostic 
reasoning for specifying the most likely cause of a failure event. Due to 
the complexity of systems in autonomous ships, the prediction model 
needs to react as a function of a desired goal state and feedback 
regarding the experimental conditions of a system. Recent research on 
evaluating the reliability of marine operations and predicting the 
availability of systems highlights key attributes of the Bayesian method, 
namely the ability to incorporate qualitative information (i.e., evidence 
obtained from events) into the parameters [36–38]. Hierarchical 
Bayesian inference is a probabilistic approach that provides the orga
nization of inference based on real observations [12,28,36–38]. The 
advent of Markov chain Monte Carlo (MCMC) sampling has proliferated 
Bayesian inference by setting up a Bayesian network to quantify the 
uncertainty. This opportunity has brought them to a wider audience to 
conduct probabilistic risk and reliability assessment due to its capability 
to predict model parameters. In this study, Bayes’ theorem is considered 
for carrying out an inference [27] given by 

P(θ|y) =
L(y|θ)P(θ)

∫

θ
L(y|θ)P(θ)dθ

(2) 

In the equation θ is the unknown parameter of interest, L(y|θ) is the 
likelihood function, P(θ)and P(θ|y) are prior and posterior distribution, 
respectively. To this end, the likelihood function for the unknown 
parameter,θ. along with the observation of categorical events, y and the 
target component jth out of total n components, is defined by the 
multinomial distributions [35], 

L(y|θ) =
(

n
yr1, ..., yrk

)
∏K

k=1

⎛

⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎝

∑J

j=1
P
(
Bj
⃒
⃒θ
)

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
Pr (Ck ,θ)

⎞

⎟
⎟
⎟
⎟
⎠

yrk
⎞

⎟
⎟
⎟
⎟
⎠

(3) 

It should be noted that function C depends on θ as discussed above. 
The parameter kth represents category of the event in observation y, and 
the capital K represents the total number of elements for the observa
tions of categories. The likelihood function in Eq. (3) is not exchangeable 
for all observable parameters of y (i.e., Eq. (3) is applicable for any new 
observations in the same order). Therefore, the full observation matrix Y 
for all n components, where {yr1, ..., yrk} is the rth row of the observation 
in the set Y and r = 1, ...,nrepresents the target components. The like
lihood function in Eq. (3) will play an essential role in predicting the 
unknown parameter θ  to integrate with the Bayesian inferences. To 
develop the hierarchical Bayesian model, the unknown parameters θ, 
observation matrix Y, and hyper-parameters α and β defines in nodes ξ ∈

{θ, y,α, β} in a probability graph. The posteriorP(θ|y)∝Πp(ξ|pa[ξ])of 
distributions of all nodes ξ defines from the conditional on its parents 
pa[ξ]. The structure of designing HBM as the directed acyclic graph 
(DAG) to support the uncertainty of RPT is shown in Fig. 3. 

There is no informative prior knowledge for branch probabilities θ in 
the RPT model in the present study, i.e., the model is not supported with 
either physical, engineering information, expert judgments, and his
torical data under the same or similar circumstances for the system state. 
The only available practical knowledge is the frequency of categorical 
actions in the terminal nodes, C related to the final categories for critical 
or non-critical failures. This information will be a help to update the 
parameter of the interest in the probability network since the function C 
is the condition of θ in the formulation. 

In addition, the topology of the RPT for the current problem always 
have paths with an equal length similar to Fig. 2 in which the non- 
informative prior can be a good choice for populating the tree. This 
forces the posterior function to completely depend on observation data 
[12,28,35–37]. Therefore, the predicted posterior distribution will 
consider the uncertainty in available observation data and accurately 
reflect their true nature [37]. In this study, the non-informative prior for 
the hyper-parameters(α, β) are assigned to populate the tree without 
bias. Setting a non-informative uniform prior, the probability of each 
unknown parameter θ is equally distributed in the tree [9]. The uniform 
distribution, Jeffrey’s prior, diffuse gamma, and diffuse, normal distri
bution are the typical choice of non-informative distribution for 
hyper-parameters suggested by previous studies [35–37]. According to 
the suggestion made by [38], the Beta(α, β) prior distribution is used 
with α = 1 and β = 1 adopted, which represents uniform distribution. 
The uniform distribution is more suitable in inference solutions 
regarding employing external evidence through a multinomial distri
bution. In this study, the open-source MCMC WinBugs software Package 
[38] is employed to predict marginal posterior distributions. 

By predicting the parameter θ, the categorical function for all 
possible failures can be estimated as P(Cj

⃒
⃒θ)∝P(Bj; θ). This will result in 

estimating the critical failure events in the system for each trial. Finally, 
the Monte Carlo simulation will be employed to obtain the daily prob
ability of critical failures defined as f(daily ∼ trials) based on the pre
dicted posterior function P(Cj

⃒
⃒θ) and marginalize the multinomial 

distribution over each category count in the RPT. The probability vector 
for the multinomial distribution must satisfy the non-negativity and 
sum-to-one properties as discussed in section 3.1 (i.e., 

∑

j
P(Cj

⃒
⃒θ) = 1 ). 

Therefore, an appropriate distribution to model the marginalized 
probability uses the Dirichlet distribution alternatively [36]. The 
Dirichlet distribution is a conjugate for the parameters of the multi
nomially distributed responses. Therefore, the conditional posterior 
distribution of the category response rates is a Dirichlet distribution. 
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This helps randomize the category counts in the RPT, which is distrib
uted according to a multinomial distribution, and estimating the mar
ginal distribution by integrating on the distribution for relevant category 
(i.e.,P(Cj

⃒
⃒θ)) that can be learned as a random vector following a Dirichlet 

distribution. The daily probability function is essential for developing 
the redundancy model and predicting the performance while switching 
from a breakdown unit to a standby component. 

2.2. Solution procedure for developing the redundancy model (Step 3, 4 & 
5) 

Since the unmanned vessel needs to operate without any disruption 
of operations for a specific time, it is not feasible to repair the broken 
components onboard. Therefore, the weak components (i.e., highly 
dependent on human intervention) in the system should be considered 
non-repairable. The weak components need to be supported by a 
redundant unit to substitute the broken parts in observing critical fail
ures. There are two main approaches for redundancy modeling, active 
and cold-standby, described in detail by [25]. The cold-standby redun
dancy has always been recommended as an effective system design 
strategy [25, 46]. In the cold standby strategy, the components are 
protected from internal and external disruptions as they are not active 
during the operation. The cold-standby redundant components are also 
referred to as inactive components since they are not involved in the 
operation until the disruption occurred. Compared to other approaches 
discussed by [25,30,31], the cold-standby redundancy generally leads to 
higher system reliability, since the redundant unit will not be used until 
the observation of failure in the active component. However, the main 
hurdle for implementing cold standby is detecting failure events and 
activating the redundant component, while this is not necessarily 
required for active redundancy. 

It is preferred to allocate redundancy in the system for the highly 
failure-sensitive components. Therefore, the system reliability R(t) de
pends on the number of identified high-risk components n, ratio of 
redundancy L, and the total number of nR components performing a 
given function during time t in the system. The reliability of a single 
parallel system with cold standby redundancy and perfect switching is 
given by [25] 

R(t) = rl(t) +
∑nR − 1

x=1

∫ t

0
rl(t − u)f (x)l (u)du (4) 

Where rl(t) is the reliability at time t for the system without 
redundancy, and f (x)l (t) is the daily probability density function for the 
xth critical failure occurrences in the operation derived from step 1 & 2. 

The second term in Eq. (4) represents increasing reliability after 
including redundant components in the system. The subsequent nR − 1 
additive terms (in the summation of Eq. (4)) represent the mutually 
exclusive probabilities between 1 and nR − 1 failures while a redundant 
component is still operating at time t. In general, each unit in a system 
may have considered redundancy allocation with one or more parallel 
components. If the system uses more than one component (nR> 1), it 
means that the system has a redundant unit in parallel. Then there will 
be one initially operating component and nR − 1 components in cold 
standby waiting to be activated as required. Since the occurrence of the 
first critical failure in the system is random, it is necessary to integrate 
all possible failure times from zero to t. Eq. (4) will be used as the 
redundancy formulation to estimate the increasing reliability level of the 
UMPs. If there is more than one system, then the final reliability will be 
derived as an independent and identically distributed (iid) variable that 

defined byR(t) =
∏S

s=1
Ri(t) where S is the number of the operating system, 

while the Eq. (4) should derive for each system separately. 
To evaluate performance of new system, the RPT’s categorical 

probabilities must update given the condition that redundant parts are 
allocated to the old system. In general, not all components are poten
tially redundant due to logical reasons, such as limitation in space, cost, 
and weight. Therefore, the UMP operates as a complex series-parallel 
system. The components will be divided into two main categories; the 
components uj that cannot be redundant and the components vi that can 
be redundant. Each potentially redundant component can have  nR −

1standby components, sine in the engine room it is assumed that only 
one unit is operating before the occurrence of each failure event. This 
will result in a series-parallel subsystem, while the non-redundant 
components will only be in a series configuration. It means that if any 
components in the set uj  fail, then the whole operation will be disrupted. 
By this definition, the total number of failure sensitive components, n in 
the systems is the summation of nv + nu, where the nv is and nu are the 
number of redundant-able and non-redundant components, respec
tively. The ratio of redundancy and standby coefficient for the system is 
considered as a simple parameter to define the proportion redundancy of 
all high-risk components in an UMP group as L = nv/(nv +

nu)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b2 − 4ac

√
andΛR =

∑nv
v=1

∑nu
u=1δvu /(nv +

∑nv
v=1

∑nu
u=1δvu)respec 

tively. The coefficient ΛR shows the proportion of redundancy for 
potentially redundant components in the system, and the binary value 
ofδvu ∈ {1, 0}represents the availability of redundant components; 
where, δvu = 1 for activated standby component and  δvu = 0 not acti
vated standby component, In the hypothetical case of having an infinite 
number of standby components, the coefficient ΛR approaches one; 

Fig. 3.. The proposed hierarchical Bayesian probability network for modeling random variables in RPT.  
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however, in reality, it will always lower than one. The hyperparameters 
are only used to describe the redundancy condition of the system. The 
redundant components need to be added to the system depending on the 
failure frequency of that component but not on the hyperparameters. 
The block diagram for the whole system of a UMP is shown in Fig. 4. The 
series part of the graph represents non-redundant components (white 
blocks), u1, ...,unu ; and the first row in the series-parallel part of the di
agram represents potentially redundant components (Blue blocks)v1, ...,

vnv . The rest of the blocks parallel to the first rows represent the standby 
items for each componentv(l)nv . The notation l denotes the system condi
tion in the redundant mode l = 1, ..., (nR − 1)for the system in new 
condition SR given that the system in current condition may fail due to 
breakdown of a component in set v. 

To propagate the uncertainty of the block diagram and predict the 
reliability of the system subject to any new failure events, the relevant 
BN is proposed to map the system behavior in the probability network. 
To this end, discrete BNs will be employed to model the series-parallel 
redundant system. Discrete BNs are based on DAGs in which nodes 
represent the random variables while their statistical dependencies are 
formulated by directed arcs connecting the nodes. The developed BN for 
modeling reliability of UMPs considering the redundancy in the system 
is shown in Fig. 5. The graph shows multiple layers of a system with 
more than one redundant component for each unit. In general, the 
system should always recall itself for the next level of redundant units to 
observe failure events in the system (e.g., Level 1 to Level 2 in the 
figure). In BNs, the conditional probability tables (CPTs) are used as data 
structures for storing conditional dependencies between uncertain var
iables. Therefore, the joint distribution of all random variables will be 
formulated as the product of the conditional distributions given the 
parent nodes. If there are no parents for a node, its marginal distribution 
is used instead. In the model, the system condition P(S) in observing 
critical failures denoted as the parent node for all current switched-on 
components (i.e., the first raw in Fig. 4). The marginal probabilities 
for the current condition P(S)  (i.e., observing critical and non-critical 
failures) and conditional probabilities to the current system for 
observing failure events for all components (u and v) will be derived 
from steps 1 & 2 and fed to the network. 

The conditional probability nodes to the new system are defined 
according to the observation of critical failures, non-critical failures, and 
safe conditions by encoding binary classification representing 0 ~ non- 
occurrence and 1 ~ occurrence for each state. The joint distribution of the 
random variables for the present study will be estimated as the pro
duction of all conditional probabilities in the developed network; i.e., 

the CPT of the components will be estimated as: 
∏nv

i=1
p(vi|pa[vi]) for the 

first row of the series-parallel part, 
∏nv

i=1
p(vR

i
⃒
⃒pa[vR

i ])for allocating 

redundant components to the upper row, 
∏nu

j=1
p(uj

⃒
⃒pa[uj])the non- 

redundant components, and P(SR|S) for new system condition. 
The developed BN is then able to analyze the complexity of the 

system when updating the probabilistic model in light of observing 
critical failures. Whenever the failure is detected, then the Bayes’ The
orem will be employed to update the joint distribution in the network 
using p(ξ|e) = p(ξ, e)/

∑
\ξp(ξ, e), where e denotes new evidence 

andξ = {u, v, S, SR} is the network nodes. By this advantage, upon new 
observation become available as the evidence of failure in on one or 
more components, the information propagates throughout the network 
and updates other random variables’ distributions in the categorical 
multinomial process. Finally, the updated probabilities will be adopted 
for estimating the reliability of the entire system in the new system by 
estimating the hazard rate function and evaluating the increasing 
functional capacity of the system. In section 4, a real case study of an 
engine room will be discussed to demonstrate the method. 

3. Set up of the case study: performance analysis of UMPs in 
engine rooms 

A system breakdown of an engine room for a typical short sea mer
chant considered to implement the application of the framework. The 
system breakdown is based on a four-stroke diesel engine, and the 
components of each subsystem are grouped into failure-sensitive com
ponents as Group 1 and Group 2 that have high and medium impact on 
the continuing of the operation, respectively. The components in Group 
1 represent weakest units in the engine room, whose failure will cause an 
immediate stop of the operation (e.g., the cooling water pump for the 
main engine). In contrast, the Group 2 components represent the units in 
the engine room whose failures will not stop the operation but will 
reduce the functional capacity of the system (e.g., starting air system 
which only used to start the engine and will not be needed anymore 
during the sea operation). The selected list of components in each sub
system is presented in Table 1 and labelled with its relevant group’s 
type. This specification is adopted from the survey analysis conducted 
by [4] and will be used in present case study to demonstrate the 
advantage of the framework for evaluating the performance of UMPs, 
while there is no bias for the selection process. 

The selection of group components classified according to the Fre
quency Index (FI) which is created by BV [4 and 40] for reliability 
assessment of autonomous ships. The index is defined in frequency of 
occurrence of an event per year per ship. The highest values of FI=5, 4 
and 3 represent a frequency of ’multiple times per day’, ’once a day to 
once a week’ and ’once a week to once a month’ respectively. While the 
lowest values of FI=2 and 1 represent ’once every 3 months to once a 
year’ and ’once every 5 to 10 years’ respectively. In addition, to 

Fig. 4.. Block diagram for modeling reliability of UMPs considering redundant and non-redundant components in the system.  
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elaborate the importance of redundancy of high impact units in per
formance of unmanned engine room, the new engine room will be 
considered only for the possible redundant units in Group 1. The reason 
is that the Group 1 has a high impact on continuing the operation 
remotely due to its short-term availability in the emergence of failure 

events. The simulation will help understand how long a UMP can be left 
unattended considering the short-term failures in the most critical units 
listed in Group 1. 

3.1. Application example for constructing RPT 

The present framework will be employed to do a comprehensive 
quantitative assessment of the performance of UMPs according to a 
component’s need for repair and maintenance activities. 

As an example, the constructed RPT for Group 1 is shown in Fig. 6, 
which represents evaluating the propagation of critical disturbances in 
high-impact components. The tree is constructed according to the cri
terion that none of the components should be disrupted when left un
attended. It means that all sensitive components must be reliable enough 
to operate in an adequate functional capacity while working remotely. 
In this particular example, the categorical failure functions are selected 
C={C1,…, C8} according to the components listed in Table 1 for Group 1. 
The arrays C1,…,C6 account for the critical failure function of each 
component in the Group 1, which is categorized as repair action, C7 
represents maintenance, while C8 is the safe condition. The branches’ 
probability of intermediate lines is defined as θs→θs+6where s = 1,…,6; 
and the branches for staying in non-critical condition are defined as 
θs→(1 − θs+6)and the final branch for the safe condition is defined as1 −
∑6

s=1θs. According to the discussion in section 3.1 (Step 1), the cate
gorical failure functions for components RPT model are given by: 

P(Cs|θs, θs+6) = θs × θs+6 Critical Failure where s = 1, ..., 6

P(C7|θ1, ..., θ12) =
∑6

s=1
θs(1− θs+6) non − Critical Failure

P(C8|θ1, ..., θ6) = 1 −
∑6

i=1
θs safe Condition

(3) 

These unknown categorial failure probabilities will be employed to 
construct the likelihood function, Eq. (2), and model the process for all Y 
observations. The same process will be performed for other subsystems 
and groups to estimate the functional capacity of an unmanned system. 
As the RPT is constructed, the prior observations are fed into the HBM to 
sample from likelihood functions in each observation and estimate the 
posterior distribution of random variables θ. Since the integration of the 
posterior probability is unknown due to the non-linearity of the 

Fig. 5.. The developed BN for modeling reliability of UMPs considering redundancy in the system.  

Table 1. 
Selected weak components in UMP of an unmanned engine room with the 
minimum level of redundancy (Indices are according to the survey conducted by 
[4]).  

Subsystem Sensitive Components in the 
Engine Room    
Group 1 Frequency Index   

Maintenance Repair 
Main Engine     

Gear Box 2 2  
Cylinder Cover 2 1  
Stern Tube Seal Cover 3 3 

Cooling Water 
System 

Sea Water Cooling pumps 2 2  

Jacket Water Cooling Pumps 2 1  
Central cooling water pumps 2 2 

Exhaust Gas 
System 

Exhaust Turbo Charger 4 1 

Subsystem Sensitive Components in the 
Engine Room    
Group 2 Frequency Index   

Maintenance Repair 
Main Engine Piston/Cylinder Liner 2 1  

Driving Gear 2 1  
Attached Pump 3 1  
maneuvering system 2 1  
Clutch 2 2 

Cooling Water 
System 

Expansion tank Freshwater 
treatment 

1 
4 

1 
2 

Exhaust Gas 
System 

Economizer 4 2 

Fuel oil system Settling Tank 
Fuel Oil Centrifuge 
Fuel Oil Filter 

1 1 

Lubrication Oil 
System 

Lubricating Oil Full Flow Filter 3 1  

Cylinder Lubricators 2 1  
Lubricating Oil Service Tank 1 1  
LO Centrifuge 2 1 

Starting air system Starting air compressors 3 2 
Electrical system Main switchboard Breakers 3 2  
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likselihood function and non-conjugate prior information, the integral is 
estimated by adopting the MCMC sampling approach. Two chains were 
considered in the MCMC simulation using WinBUGS for calculating the 
probabilities of processing branches θ. Each simulation is performed 
with a total of 200 E + 03 iterations to predict the posterior distribu
tions. The results will then transfer to the proposed redundancy model to 

evaluate the system behavior in redundant and non-redundant condi
tions. The analysis will help the designer understand the automation 
level for an unmanned system and allocating required redundant com
ponents to achieve a trusted operation time without human 
intervention. 

Fig. 6.. The designed RPT for components in Group 1 of the proposed unmanned engine room.  

Fig. 7.. Categorical Probability occurrence of major disruptions (repair and maintenance needs) for all individual subsystems in the engine room (a), marginalized 
probability density function for observing critical failures in subsystems (b). 
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3.2. Results and discussion: performance analysis of UMPs 

In the first step, it is essential to evaluate the performance of each 
subsystem individually and predict the outcome of failure events in a 
projected operation time. The estimated probabilities are categorized 
according to the needs for repair and maintenance (i.e., critical and non- 
critical failures) without considering the combination and the event 
dependencies with other subsystems. Therefore, this result will repre
sent the functional capacity of each subsystem individually. The simu
lation is set up for the first 1000 operation days, and the predicted 
categorical actions that lead to repair and maintenance are plotted in 
Fig. 7a. The marginalized probability density functions for observing the 
need for repair actions in each subsystem are predicted and plotted in 
Fig. 7b. The plot represents the number of repairs which denotes the 
breakdown of relevant components in the subsystem. The graphs 
demonstrate that the unmanned system will behave stochastically, 
making the prediction of the UMP’s health condition complicated. The 
reason is that each subsystem has a different failure rate in its lifetime, 
and this will result in a great deal of uncertainty that comes from the 
source-to-source variability of components. 

The results shown in Fig. 7 cannot yet be regarded as a complete 
evaluation of UMP performance, since it cannot represent a reliable 
estimation of total engine room failure. It is desired to predict the per
formance of all equipment in the engine room while all critical units are 
operating safely together. The functioning of an individual subsystem 
will not give a guarantee for a trustworthy autonomous system. There
fore, all subsystems should be analyzed simultaneously. The present 
methodology is applied for evaluating the functional capacity of com
ponents in Groups 1 and 2 simultaneously. To this end, the hazard rate 
functions for both Groups are predicted and illustrated in Fig. 8 and 
Fig. 9. Four different Critical Failure Limits (CFL) are considered to 
observe the time of disruptive events from the simulations, which are 
defined as CFL = [2/100, 5/1000, 3/1000, 1/1000]. Each limit repre
sents an allowable threshold; e.g., 5/1000 means that the machinery is 
safe if it has less than five critical failures over 1000 days. If the system 
exceeds the CFLs, the probability that the operation will encounter 
major disruptions is unacceptably high. These safety thresholds are 
selected to show the effectiveness of the framework to estimate time- 
depended failure rates, and they can be regarded as a real case accord
ing to the autonomous shipping standards [40]. The plots describe the 
critical failure rates per day in the system for all desired time intervals. 
The results demonstrate that the medium impact components can 
operate safely without observing critical failures between starting the 

operation to days 355. That is, Group 2 components can be left unat
tended freely for more than a month with an acceptable risk of critical 
failures, although the operation should be monitored for planned 
maintenance to prevent further degradation of the system. Compared to 
this, the high-impact components (Group 1) are expected to start 
degradation just 15 days after starting the operation. It means that the 
current system may put itself at a high risk of being entirely stopped due 
to observing major disruptions since the engine room is intended to 
operate unattended for at least 500 h. 

3.3. Application example for redundancy model 

To avoid unexpected stops in the operation of UMP from any un
wanted disruptions and extend the trusted operation time of the engine 
room, it is essential to increase the resilience of sensitive components by 
adding appropriate redundant components in the system. It is desired to 
design an engine room without adding full redundancy for all compo
nents, to reduce associated cost and weight while minimizing the space 
requirements at the same time. Therefore, following the framework 
proposed in section 3.2 and the discussion provided in Table 1, the 
redundant unit set u is selected as stern tube seal cover, sea-water, and 
jacket-water cooling pumps, and central cooling water pumps, while the 
non-redundant unit set v is selected as the gearbox, cylinder cover and 
exhaust turbocharger. The BN for modeling one-level redundancy of the 
high-impact components in Group 1 is constructed in Fig. 10. The new 
engine room is designed only with one redundant unit for each active 
part, i.e., the seals and all cooling pumps. Therefore, the level of 
redundancy is L = 0.5 and the standby coefficient for redundant com
ponents is also ΛR = 0.5. 

3.4. Results and discussion: performance analysis of redundant condition 

The estimated probabilities from the BN are transferred to the RPT 
model for populating the tree and evaluating the new system condition. 
The simulation was performed for 1000 operation days, and results were 
compared with the non-redundant engine room, as shown in Fig. 11. The 
chance of observing reliable operation for the entire engine room during 
1000 days in the new redundant system increased from total operation 
days of 156 days to 478 days (first bar and dotted line in Fig. 11-a). 
Although the number of observing one repair item during the operation 
is the same for both systems (almost 361 days in the second bar and 
dotted line, Fig. 11-a), it is demonstrated that the total amount of 
observing more than one repair in the high-impact units is drastically 

Fig. 8.. Hazard rate function H(t) for the degradation process of Group 2 components.  
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decreased in the redundant system. For instance, as shown in Fig. 12-a, 
the expected number of repairs of two and three components are 
decreased to 145 and 20 days respectively in the new system compare to 
the current engine room, which are 281 and 141 days. To predicted the 

worst-case scenarios in both systems for observing critical failures (i.e., 
an excessive number of repair requests), extreme value analysis is per
formed over the samples. As shown in Fig. 11-b, it is predicted that the 
new system has the expected chance of observing P(Crepair

⃒
⃒SR) = 0.09 

Fig. 9.. Hazard rate function H(t) for the degradation process of components in Group 1.  

Fig. 10.. The proposed BN model for redundancy assessment of components in Group 1.  

Fig. 11.. The comparison of repair requirements between the redundant and non-redundant engine room.  
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requesting repair actions in 1000 days, while the current engine is 
expecting to request major repair almost twice the new engine room, 
which is predicted as P(Crepair

⃒
⃒SR) = 0.18. It means that the observing 

critical failures in the new system decreased almost half of the current 
system (Fig. 11-b), it is expected that new systems will need more 
planned maintenance. 

Logically, the additional maintenance workload is proportional to 
the number of components that are made redundant. The more redun
dant components, the more needs for requesting planned maintenance 
of failed units. Otherwise, if only a few of many components are made 
redundant, the impact on maintenance will be small. In this study, only 
four sensitive components are selected for redundancy among all units 
in the engine room, which leads to a small amount of increases main
tenance activity. The engine room components will be monitored ac
cording to the manual for regular maintenance schedules to prevent 
further degradation in the system, which is no different if the system is 
supported with redundant components. Besides, the risk of non- 
redundant parts (i.e., gearbox, turbocharger, and cylinder cover) for 
the new engine rooms remains the same as the current engine, since 

these units’ failure immediately leads to stop the operation. 
A comparison study conducted to evaluate the degradation process 

between redundant and non-redundant engine room. To this end, the 
daily chance for observing critical events that can lead to failure of 
components in the engine room are plotted in         Fig. 12. The quantities 
in the plots represents the probability of observing at least one critical 
component (high impact units) in the engine room per operation day. 
The comparison shows a considerable reduction in the chance of 
observing critical disruptions in the new engine room. The expected 
daily probability of component failure is estimated as 3.45e-04 per day, 
while the new engine room stands for 1.72e-04 accordingly. The new 
engine room is only supported with four redundant units (i.e., sea water 
cooling pumps, jacket water cooling pumps, central cooling water 
pumps and stern tube seal cover), while there are three other compo
nents (i.e., cylinder cover, gearbox and turbocharger) remained without 
redundant. 

The time and number of detected component failures in both systems 
are shown in Fig. 13. The values in the Fig. 13 derived based on the limit 
of observing at least four component failures per day to show one of the 

Fig. 12.. Daily probability of occurance of critical failures during the operation.  

Fig. 13.. Number of detected critical failures during the operation for redundant and non-redundant engine room for 1000 simulations.  

M.M. Abaei et al.                                                                                                                                                                                                                               



Reliability Engineering and System Safety 219 (2022) 108176

13

most critical condition in the degradation of UMPs in the redundant 
system and non-redundant system. The limit of observing four compo
nent failures is defined as an example to show the effectiveness of the 
present framework regarding including the redundant units in the UMPs 
and increasing the trusted operation time. As shown in the graph, the 
redundant engine room improved remarkably by observing consider
ably fewer disruptions in the high-impact components during the 
operation. However, the current engine room is expected to observe 
many critical failures of their units, far away from being considered a 
suitable case for converting a conventional ship to unmanned condi
tions. The observation’s randomness is due to the variability of different 
units in the engine room and their various time to failure events. For 
more evaluation of the UMPs, the failure detection graphs similar to 
Fig. 13 can be derived based on different limitation set for observing 
faults. In general, assigning the limit can be defined according to the 
design process requirement for estimating the system’s resilience in the 
emergence of failure events. 

For further comparison, the reliability of the new system is compared 
with the current system, and the results are represented in Fig. 14. In the 
beginning of the operation, there is no significant improvement in reli
ability of the UMPs (less than 0.75 percent increasing in the reliability by 
day 20); since all components are in their new condition. Therefore, by 
adding relevant redundant units to the relevant components, the resil
ience of the new engine room is increased considerably by continuing 
the operation, although the reliability of the active components de
creases gradually. This outcome will directly lead to increasing UMP’s 
trusted operation period specifically for high impact components, thus 
considering the new engine room reliable enough to be left unattended 
at least for 500 h. It should be noted that the results of the current case 
study derived from a particular available data and cannot be inferred as 
a general deduction for all UMPs in the application of the autonomous 
ships. Due to the limited available data related to the unmanned ships 
and relevant failure events in the UMPs make it difficult for to infer a 
generic hazard rate function for all autonomous ships. Providing more 
information regarding the operation of autonomous shipping will 
highlight further to show the effectiveness of the present model, thus can 
integrate into more details for the evaluation of the reliability of UMPs. 

4. Conclusion and future work 

This study proposed a probability model for evaluating the perfor
mance of UMP in autonomous shipping and developing a predictive tool 
for estimating the trusted operation time of the system without human 
interventions. The model consists of five different steps to predict the 

randomness of the process and develop a redundancy strategy to in
crease the resilience of the engine room under the influence of disrup
tions. The implementation of the model was assessed by a case study, 
and the results seem to be proficient for predicting the performance of 
UMPs. However, due to the limited operational data related to un
manned vessels, yet further investigation is needed to predict more ac
curate confidence intervals of trusted operation times of UMPs. For this 
particular case study, the redundancy approach highlights a significant 
change in mitigating failures of high-risk components. By comparing the 
case study results, the new engine room can surpass almost 67 days more 
than the current engine to leave all high impact components unattended 
safely. The model predicted the starting degradation days shifted from 
15 to 82 days for the system, adding one redundancy level, which shows 
considerably satisfying the MUNIN goal (500 h for unmanned 
operation). 

This study’s outcomes show that adding redundancy has a consid
erable advantage on reducing the costly unscheduled downtime for 
unattended systems. This will support the industry in reducing warranty 
costs by preventing failures and minimizing the unplanned maintenance 
and repair visits of the UMPs. The model used the advent of Bayesian 
Inference to predict the unknown probability of parameters in the 
random process due to the limitation of real operation data of unmanned 
ships. 

The presented framework, which is one of the first attempts to 
evaluate an UMP’s performance, may bring new insights into under
standing the trustworthiness of unattended engine rooms under 
different operational scenarios and considering the impact of redun
dancy for improving the resilience of the system. The method may be 
used to support decision-making concerning the design of engine rooms 
for autonomous shipping purposes and performing asset integrity 
assessment to meet future goals for increasing the operation time of 
unmanned systems. In the future, a potentially further developed 
version of the model could be used for more holistic analyses and 
considering the recovery of high-impact components in the observation 
of critical failures. The recovery process is an essential step to create 
smart maintenance for the machinery in unmanned vessels. Further
more, it is well worth studying the impact of adopting new technologies 
from the organizational level, elaborate the integration of humans with 
new levels of automation and explore the effects of machine learning 
approaches (beyond Bayesian Networks) in predicting critical events 
onboard in the absence of crews. Additional elements need to be 
included in the presented predictive model, such as failure modes 
identification of each high impact component in operation, detecting 
incipient faults in the system, and determining the asset criticality 

Fig. 14.. The comparison of survival conditions between the redundant and non-redundant UMPs in the engine room for the current case study.  
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importance before encountering unexpected maintenance requests. Be
sides, maritime organizations need to consider how to implement pre
dictive models into their daily operations and validate the recently 
developed machine learning approaches to improve the speed and ac
curacy in their maintenance decision making. 
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