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Abstract 
 

Activity classification in sports is a powerful tool for athlete monitoring, enhancing performance and 

injury prevention. In handball, detection and classification of throws during a practice or a (practice) 

match has not been done. Therefore, the aim of this study is to use machine learning algorithms to 

detect handball throws and to classify between different throwing types and wind ups in handball 

based on wrist IMU data during a practice or practice match. A total of 2475 throws from 16 players 

were used for the detection and classification. Multiple algorithms were tested for the binary (throw 

versus no throw) event detection. The k-Nearest Neighbours algorithm provided the highest accuracy 

and F1 score and is therefore the best fit. For classification, all throws were labelled with one of the 17 

throw types. Five categories were made to test on what scale the classification is possible. The 

categories consisted of all 17 throw types, shots versus passes, wind up type, a 7-class category and an 

intensity-based category. Even though multiple algorithms were tested, for all categories Support 

Vector Machines gave the highest F1-score and accuracy and was therefore the best fit. The categories 

based on intensity and wind up type scored higher than the categories with all 17 throw types and with 

7 classes. Future research should focus on balancing out and enlarging the dataset, preferably with lab 

data. 

 

1. Introduction 
 

Activity classification can be a powerful tool in sports. It is helpful in enhancing performance, athlete 

monitoring and injury prevention [1]. One way to obtain data during sport activities is with an inertial 

measurement unit (IMU). IMUs are sensors with an accelerometer, gyroscope and optionally a 

magnetometer. The accelerometer provides the linear acceleration data in g-force, the gyroscope 

measures the angular velocity in degrees per second and the magnetometer gives data about the 

magnetic field. The IMU can be incorporated into a small wearable device that does not limit normal 

movement [1]. IMU studies were conducted in many sports, including basketball [2], [3], tennis [4]–

[6], volleyball [7]–[10] and handball [11], [12].  

Anand et al. [4] and Bai et al. [2] used IMU data for detecting shots in respectively swing sports and 

basketball. With precisions over 90%, both studies showed that it is possible to detect shots with 

machine learning based on IMU data in a game scenario. Anand et al. [4] also classified between 

multiple shot types with an accuracy above 90% in tennis and squash. In handball, no classification has 

yet been done on during a game scenario. Handball is a popular, Olympic sport where shoulder injuries 
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are highly prevalent [13]. One of the factors for obtaining those shoulder injuries is training load [14]. 

Quantifying the training load can therefore be beneficial for reducing injury risk. In handball, both 

passes and shots on goal occur. The shots can be done standing, running or jumping. Furthermore, 

there are two types of throws based on the wind up: whip-like and circular. With a whip-like wind up, 

the ball moves from the front of the body upwards and then backwards, while with a circular wind up, 

the ball moves from the front first down and backward, making a circular motion [15]. Until now, one 

study has tried to classified the different throws in handball based on IMU data [11] and this was in a 

lab setting. 

Therefore, the aim of this study is to use machine learning algorithms to detect handball throws and 

to classify between different throwing methods and wind ups in handball based on wrist IMU data 

during a practice or practice match.  
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2. Methods 

 

2.1 Participants 

Data were collected from nine handball players in six practices. All players were right-handed and 

injury-free during data collection. The players were female semi-professional players in Norway or 

female youth elite players in the Netherlands. The study complied with the current ethical regulations 

for research, conformed to the latest revision of the Declaration of Helsinki. 

 

2.2 Procedure 

The measurements were performed during regular team training sessions. During practice, the players 

wore a sweatband with IMU on the distal dorsal side of the throwing arm. An Axivity ax6 IMU 

containing a 3-axis accelerometer (16 g range, 1600 Hz sampling frequency) and 3-axis gyroscope (2000 

°/s, 1600 Hz) was used. The session was recorded using a camera.  

Throws were manually classified based on the videos and recorded in a excel file with time of the throw 

(to a second accurate) and the throw type. The possible throw types are given in table 1. The calibration 

time was also noted to later align the video and IMU data. 

The IMU data was loaded in by the Open Movement GUI application (version 1.0.0.43, Newcastle 

University UK) and saved as an csv file. The data was pre-processed and analysed with MATLAB (version 

2019a). A lowpass filter with cut-off frequency of 7 Hz was used to pre-process the data. In order to 

obtain individual throws, the data was segmented by finding the local maxima in the filtered gyroscope 

x-axis data which were at least 500 °/s in prominence and 0.75 s after the last peak and a window of 

1.5 s around the peak was extracted. 

The features calculated within each window included axis mean, minimum, maximum, difference, 

standard deviation, variance, skewness, kurtosis, root-mean square and coefficient of variation. These 

were calculated for each axis (x, y, z) and the vector magnitudes (√𝑥2 + 𝑦2 + 𝑧2), resulting in a total of 

60 features. The events were normalized between 0 and 1 for equal contribution in the machine 

learning algorithms.  
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Table 1 – Handball throw types 

Shot Pass 

jump circle pass left circle 

jump whip-like pass left whip-like 

running circle pass right circle 

running whip-like pass right whip-like 

standing circle pass forward circle 

standing whip-like pass forward whip-like 

underarm shot pass underarm 
 

pass right push 
 

pass left push 
 

pass forward push 

 

2.3 Modelling  

2.3.1 Event detection 

In separating throws and non-throws, a binary classification was needed. With the classification app 

on MATLAB, Quadratic Discriminant, kernel Naïve Bayes, cosine k-Nearest Neighbours and 

RUSBoosted Trees provided the highest initial accuracies. In section 2.3.4 all algorithms will be 

explained. 

 

2.3.2 Classification  

All throws were manually classified into one of the 17 classes of table 1. To test if less than 17 throw 

types or a different division of the throws give different results, a total of five categories were created. 

Table 2 lists all the categories and which machine learning algorithms were used. The algorithms were 

chosen based on the highest accuracies provided by the classification application on MATLAB and 

varied per category. The first category uses all 17 throw classes as presented in table 1. The second 

category consists of two classes: shots and passes, table 1 shows which throws are considered shots 

and which are considered passes. Category three consists of seven classes: jump shots, running shots, 

standing shots, underhand throws, passes to left, passes to right, passes forward. Category four 

focusses on the wind up type and consists of three classes: whip-like, circular and other wind up. With 

a whip-like wind up, the ball moves from the front of the body upwards and then backwards, while 

with a circular wind up, the ball moves from the front first down and backward, making a circular 

motion [15]. Category five consists of two classes: high intensity and low intensity, where underhand 
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passes and push passes are considered low intensity and all other throws high intensity since 

underhand passes and push passes are very minor movements compared to the other throws and 

passes and therefore considered as low intensity throws.  

 

Table 2 – ML algorithms per category 

Category 17 throw 

types 

Shots and 

passes 

7 throw 

types 

Wind up 

type 

Intensity 

ML model      

Linear Discriminant    X  

Quadratic Discriminant  X   X 

Kernel NB     X 

Fine kNN X    X 

Weighted kNN    X  

Subspace kNN X X X   

Quadratic SVM X   X  

Cubic SVM X X X  X 

Bagged Trees X  X X  

RUSBoosted Trees  X   X 

 

2.3.2 Machine learning algorithms 
Linear and Quadratic Discriminant (LDA and QDA) analysis classifier works with a linear or quadratic 

decision surface which are easily computed and can work for multiclass problems [16], [17].   

Naïve Bayes (NB) is, just like the Quadratic Discriminant classifier a supervised machine learning model, 

but based on Bayes theorem of probability to predict the class of data sets [18]. Where normal Naïve 

Bayes works with a Gaussian distribution, kernel NB uses a continuous distribution and is thereby more 

flexible [19].  

K-Nearest Neighbour (kNN) is also a supervised machine learning model but can be used for both 

classification and regression. It assumes that similar data points belong to the same class, so new data 

is compared to the training data and classified to the class with the highest similarities [20]. While the 

standard kNN uses the Euclidean distance between points, with cosine kNN one minus the cosine of 

the angle between observations is used. With fine kNN, a small number of training samples which are 

close to the test samples are found before identifying the k-nearest neighbours, therefore also the 

distance based on representation is taken into account [21]. With weighted kNN, the nearest k points 



6 
 

are given a weight based on distance and distance-weighted voting provides the class [22]. Lastly, the 

subspace kNN is trained on a random set of features instead of the entire set of features to reduce the 

correlation between features [23].  

With the Support Vector Machine (SVM) classifier, the training examples are marked to belong to one 

of two categories [24]. New examples are assigned to one of the categories based on the training data. 

It is therefore a non-probabilistic binary linear classifier. It can be altered to work for multiclass 

problems, where the multiclass problem is reduced into multiple binary classification problem. With 

quadratic SVM, instead of using a line to separate the categories, a quadratic function is used [25]. 

With cubic SVM, a cubic function is used for the separation [26]. 

Decision Trees (DT) can be used for classification and regression. It separates the input into classes in 

a hierarchic way. If finds the best attribute to split the data, and continues doing this until it cannot be 

separated anymore [27]. With a Random Forest (RF) classifier, many individual decision trees are used 

that each give a class prediction. The most prevalent class prediction becomes the model’s 

classification [28]. The bagged trees is an algorithm that fits in between a standard DT and the RF 

model. Where bagged trees make multiple decision trees and choses the most prevalent class, Random 

Forest goes a bit further in making sure the sub-trees are uncorrelated [29]. The RUSBoost algorithm 

is designed for imbalanced databases where with random undersampling (RUS) examples from the 

majority class are removed until the dataset is balanced [30]. In combination, the RUSBoosted Trees 

algorithm runs boosted training data repeatedly on weak learners and combine it into a strong 

classifier. 

 

2.4 Evaluation of event detection & classification 

In order to evaluate the event detection and classification, cross-validation was applied. After training 

and testing the algorithm, a confusion matrix was made which provided the true and false positive and 

negative results of the prediction (Table 3). 

 

Table 3 – Confusion matrix 

  
Reference 

  
Positive Negative 

Prediction 
Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 
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With the values from the confusion matrix, the accuracy, sensitivity, specificity, precision and F1-score 

were calculated (Eq. 1-4) for both the event detection algorithms and the classification algorithms. For 

the binary classification (event detection and categories 2 and 5 of the classification), the results could 

be calculated directly, for the multi-class algorithms (categories 1, 3 and 4 of the classification), the 

weighted average was taken of the results of the individual classes. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (4) 
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3. Results 
 

In total, 16 players were measured doing a total of 2475 throws. All throws that were recorded as one 

of the shot types from table 1 were included. Other annotated throws were either changed to a 

corresponding shot type from table 1 or excluded due to not being a handball throw. Figure 1 shows 

the number of throws per type in each category. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1 - Number of throws per category 
 

3.1 Event detection 
The evaluation scores for the four algorithms used for event detection are shown in figure 2.  

This shows that the medians of the accuracy, F1-score and sensitivity were highest with the kNN 

algorithm (accuracy of 0.94 for k-Nearest Neighbour (kNN), 0.92 for Quadratic Discriminant analysis 

(QDA) and Decision Tree (DT), 0.90 for Naïve Bayes (NB); F1-score 0.81 for kNN, 0.76 for QDA and DT, 
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0.73 for NB; sensitivity 0.79 for kNN, 0.68 for QDA and DT, 0.62 for NB). For the precision, NB had the 

highest median (0.88 for NB, 0.86 for QDA and DT, 0.83 for kNN). 

Since the kNN algorithm provides the highest F1-score, the confusion matrix for this algorithm is shown 

in table 4. This shows that, over all 20 rounds, 3378 throws were missed (FN) and 4418 non-throws 

were classified as throws (FP). Appendix 1 gives the confusion matrices of all the algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Evaluation scores event detection. kNN = cosine k-Nearest Neighbours, NB = Kernel Naïve 

Bayes, QDA = Quadratic Discriminant Analysis, DT = RUSBoosted Decision Trees.  

 

Table 4 – Confusion matrix of kNN algorithm over all 20 rounds 
  

Reference 
 

  
Throw Non-throw 

Prediction Throw 16518 4418  
Non-throw 3378 111926 
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3.2 Shot classification 
 

Appendix 2 shows figures with the evaluation scores for all 5 categories and the different algorithms. 

All the median scores with corresponding algorithm are provided in table 5. 

As shown in table 4, cubic SVM was the algorithm with the highest evaluation scores for category 1 (all 

throw types) (accuracy of 0.97, F1-score of 0.62, precision of 0.57 and sensitivity of 0.69). For category 

2 (shots vs. passes), cubic SVM was the algorithm with the highest accuracy, F1-score and sensitivity 

(accuracy of 0.93, F1-score of 0.77 and sensitivity of 0.80), while the RUSBoosted DT gave the highest 

precision (0.76). For category 3 (7 throw classes), cubic SVM gave the highest accuracy, F1-score and 

precision (accuracy of 0.95, F1-score of 0.69 and precision of 0.64), while the subspace kNN had the 

highest sensitivity (sensitivity of 0.76). For category 4 (wind up type), quadratic SVM gave the highest 

scores (accuracy of 0.81, F1-score of 0.79, precision of 0.78 and sensitivity of 0.81). For category 5 

(intensity), cubic SVM gave the highest accuracy, F1-score and precision (accuracy of 0.90, F1-score of 

0.94 and precision of 0.94), while the RUSBoosted DT gave the highest sensitivity (sensitivity of 0.98).  

Based on the F1-scores, category 5 (intensity) presented the highest score (0.94), category 4 (wind up 

type) had the second highest score (0.79), category 2 (shots vs. passes) the third highest (0.77), 

category 3 (7 throw classes) the fourth highest score (0.69) and category 1 (all throw types) the lowest 

F1-score (0.62). 

The confusion matrices for all categories for the algorithm with the highest F1-score are shown in 

appendix 3. 

 

Table 5 – Evaluation scores all categories and algorithms. The algorithms with the highest scores are 

bold. 
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4. Discussion 
 

The aim of the study was to use machine learning algorithms to detect handball throws and to classify 

between different throwing types and wind ups in handball based on wrist IMU data during a practice 

or practice match. For the detection of handball throws, the cosine k-Nearest Neighbours (kNN) 

algorithm was the best with an accuracy of 0.94 and a F1-score of 0.81. For the classification between 

different throwing types and wind ups, five categories were created with all 17 throw types (category 

1), a binary category which classified between shots and passes (category 2), a category with 7 different 

throw types (category 3), a category with the different wind up types (category 4) and an intensity-

based category (category 5). For all categories, support vector machines provided the highest 

evaluation scores (accuracy and F1-score). As shown in table 4, category 5 gave the highest scores 

(accuracy of 0.90 and F1-score of 0.94), followed by category 4 (accuracy of 0.81 and F1-score of 0.79). 

Category 2 (accuracy of 0.93 and F1-score of 0.77) had a higher accuracy than category 4, but a lower 

F1-score. Category 3 (accuracy of 0.95 and F1-score of 0.69) and category 1 (accuracy of 0.97 and F1-

score of 0.62) had clearly lower F1-scores. 

In this study, the F1-scores were deemed more important than the accuracy, since the accuracy is 

based as much on the true positives as on the true negatives, while the F1-score focusses more on the 

true positives. Since the multiclass categories have a lot more true negatives than true positives and 

since we find it more important to get the amount of true positives right, the focus was mainly on the 

true positive values and thereby the F1-score. 

 

Limitations 
Although category 1 scored lowest off all, it is the most important category since it contains all the 

possible throw types that we want to classify. Therefore, it is important to look at the limitations of 

this study to see how the results of especially this category, but preferably all categories can be 

improved. 

There are two crucial parts with machine learning: the database on which machine learning is 

performed and the machine learning algorithms used. In this study, the database seems the main 

limitation since the database is imbalanced. For the event detection, this is shown in table 3 where 

there are only 20936 throws versus 115304 non-throws. For the classification, the imbalance becomes 

clear when looking to figure 1. This figure shows that in all categories there is a large difference in the 

number of throws in a category. To find ways to reduce these imbalances, there are many parts of 
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building the database that need to be discussed: collecting the data, labelling it, preprocessing and 

segmentation the data and lastly feature extraction. 

The collection of the data was done during handball practices or practice matches instead of the more 

common lab gathering of data. The main drawback to this was that there was no control over what 

throws were done. During the warming up, many passes were done and not as many shots on goal, 

which resulted largely in the imbalance. The advantage of this way of gathering data is that the 

movements are natural and closer to the movements which need to be classified in the end: real 

movements with defenders and in-game scenarios. Also, for the event detection, the real life data is 

more interesting, since during a practice, there are many more movements which are not done in the 

lab such as bouncing the ball, defending or high fiving a teammate. This study shows that even with 

the practice data event detection is possible. Another issue with the collection of the data was that 

some of the throw types are rarely done. There were for example fewer than 50 throws for the 

underarm shot (26), standing whip-like shot (28), standing circular shot (36), running whip-like shot 

(39) and left push pass (40). For machine learning, these amount of datapoints for one class is too low 

[31]. 

Furthermore,  labelling of the data was done manually by three different persons at different times. 

Although for most throws the labelling was very clear, there were in all practices some controversial 

shots or shots that were hard to put into one category. Since the labelling was done at different times 

and by different people, there might be some similar throws that were classified differently. Despite 

this being the case, it is expected that on the total number of throws, this makes only a marginal 

impact. There were also some throws (e.g. jump passes) that didn’t fit into one category. These were 

labelled as ‘other’ or described in words and later put into the category which resembled the throw 

the best.  

For the preprocessing and segmentation, a variety of methods were tried, before concluding the 

lowpass filter and the peak with threshold method worked best. The chosen threshold was quite 

conservative (500 °/s on the x-axis gyroscope data) since we wanted to be sure none of the shots were 

missed due to be filtered out. The event detection was based on the machine learning and not on 

filtering. But to balance out the large difference of throws and non-throws, it might be better to first 

make a selection based on one or multiple thresholds before using the machine learning. The main 

drawback of this would be that some of the less intense throws (e.g. underhand passes and push 

passes) will get filtered out. The question arises if this would really be a problem. If using classification 

for injury prevention than probably not, since these movements are less forceful. But for performance 

and counting which players do what types of throws, it might still be interesting to also show the less 
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intense throws. On that same note, there are also movements which are high intensity and resemble 

throws that are not taken into account in this study, like fake throws.  

The last part of building the database is the feature extraction. For this study, a large number of 

features (60) were used over all axis and the vector magnitudes of both the accelerometer and the 

gyroscope. It has not been tested if different, fewer or more features would provide better results, nor 

has it been investigated which features were mainly used by the machine learning algorithms to make 

the predications.  

Next to the imbalance in the database, the machine learning was also a vital part of this study. Although 

the F1-scores were deemed more important in this study, the choice of which algorithms to use were 

based on which provided the highest accuracies in the classification application in MATLAB. For all 

categories, 3-5 different algorithms were chosen to be used. All these algorithms were used in with 

their default settings. Results might improve if the settings were adjusted to better fit each of the 

categories. For all different categories, SVM came out as the best classifier, although it must be said 

that the results were often very close as can be seen in table 4. Therefore, different algorithms might 

provide better results than the SVM if different settings are used. 

 

Future work 
The most important point to improve is the database. Although using data obtained during practices 

has advantages, it results in such an imbalanced database that a lab-based database is preferred. In 

the lab, all shots can be done in equal numbers. The lab-based database can then be used for training 

the machine learning algorithms after which it can be tested with datasets from practices in order to 

find out if the system works.  

Also, the categories chosen might need to be looked at. Some of the categories were less informative 

than the other, like the intensity-based category where almost all throw types were in the high 

intensity category. This also leads to the before mentioned point of the goal of classifying the throws. 

Is it desired to measure all the different throws, or are the low intensity throws less important than for 

example shots on goal? 

For the building of the database, it might be interesting to see how the event detection works with 

more filters. Either on the raw data, or on some of the features. With this, the imbalance in the event 

detection database would be less. Another thing to investigate is which features are used and if these 

could be used in a better way. 
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Another step which can improve the results is the machine learning algorithms. As mentioned before, 

in this study the default settings were used. It would be good to experiment with different settings. 

Lastly, the computation and loading time was quite long, up to 30 minutes for one practice. The 

measurements were done with a frequency of 1600 Hz, resulting in a lot of datapoints. Lowering this 

frequency might result in similar results in a shorter time. 

 

5. Conclusion 
 

For the detection of throws during a handball practice, the k-Nearest Neighbours algorithm is the best 

machine learning algorithm based on accelerometer and gyroscope data of the dominant wrist. For 

the classification of the different throws, support vector machine is the best machine learning 

algorithm, although other machine learning algorithms gave similar results. The evaluation scores were 

highest for classifying between high and low intensity throws, classification based on wind up type and 

classification between throws and passes. The results were lower when trying to classify all throw types 

or classifying seven different throw types. In order to improve the results for all throw types, the 

dataset needs to be larger and more balanced with all types of throws in equal amounts. 
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Appendix 1 – Confusion Matrices all event detection algorithms 
 

Table 6 - Confusion matrix cosine kNN over all 20 rounds in amount of throws 
  

Reference 
 

  
Throw Non-throw 

Prediction Throw 16518 4418  
Non-throw 3378 111926 

 

Table 7 - Confusion matrix cosine kNN over all 20 round in percentages 
  

Reference 
 

  
Throw Non-throw 

Prediction Throw 83.0% 3.8%  
Non-throw 17.0% 96.2% 

 

Table 8 - Confusion matrix kernel Naïve Bayes over all 20 rounds in amount of throws 

  

 

Table 9 - Confusion matrix kernel Naïve Bayes over all 20 rounds in percentages 
  

Reference 
 

  
Throw Non-throw 

Prediction Throw 87.6% 9.3%  
Non-throw 12.4% 90.7% 

 

Table 10 - Confusion matrix Quadratic Discriminant analysis over all 20 rounds in amount of throws 
  

Reference 
 

  
Throw Non-throw 

Prediction Throw 17133 8046  
Non-throw 2763 108298 

 

Table 11 - Confusion matrix Quadratic Discriminant analysis over all 20 rounds in percentages 
  

Reference 
 

  
Throw Non-throw 

Prediction Throw 86.1% 6.9%  
Non-throw 13.9% 93.1% 

 

  

Reference 
 

  
Throw Non-throw 

Prediction Throw 17420 10814  
Non-throw 2476 105530 
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Table 12 – Confusion matrix RUSBoosted Trees over all 20 rounds in amount of throws 
  

Reference 
 

  
Throw Non-throw 

Prediction Throw 17232 7891  
Non-throw 2664 108453 

 

Table 13 – Confusion matrix RUSBoosted Trees over all 20 rounds in percentages 
  

Reference 
 

  
Throw Non-throw 

Prediction Throw 86.6% 6.8%  
Non-throw 13.4% 93.2% 
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Appendix 2 – Shot classification results 
 

Figure 3 - Evaluation scores category 1 (all throws) 

 

Figure 4 - Evaluation scores category 2 (shots vs. passes) 



20 
 

 

Figure 5 - Evaluation scores category 3 (7 throw classes) 

 

Figure 6 - Evaluation scores category 4 (wind up type) 
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Figure 7 - Evaluation scores category 5 (intensity) 
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Appendix 3 – Confusion Matrices shot classification 
 

Table 14 – Confusion matrix category 1 (all throw types) in percentages over 20 rounds1. In green the 

true positives. (JSC = jump shot circular, JSW = jump shot whip-like, RC = running circular, RW = 

running whip-like, SC = standing circular, SW = standing whip-like, US = underarm shot, PLC = pass 

left circular, PRC = pass right circular, PLW = pass left whip-like, PRW = pass right whip-like, PFC = 

pass forward circular, PFW = pass forward whip-like, PU = pass underarm, PRP = pass right push, PLP 

= pass left push, PP = pass forward push) 
  

Prediction 
  

JSC JSW RC RW SC SW US PLC PRC PLW PRW PFC PFW PU PRP PLP PP 

Reference JSC 56.7 8.9 8.9 1.6 2.3 0.3 0.9 0.8 6.3 0.2 1.9 4.2 2.7 2.1 1.1 0.9 0.3 

JSW 13.1 40.1 2.6 7.5 0.9 1.1 0.3 3.5 2.6 2.4 4.4 11.1 3.4 3.2 0.5 0.3 3.1 

RC 7.6 2.5 50.3 5.0 2.5 1.0 0.8 2.8 6.8 2.9 4.1 7.2 3.5 0.0 1.1 0.0 1.9 

RW 2.5 1.7 13.6 44.1 2.8 5.4 2.8 1.7 1.7 4.5 1.1 14.1 4.0 0.0 0.0 0.0 0.0 

SC 10.6 0.6 9.4 4.4 40.1 0.9 0.0 2.1 13.3 0.6 2.9 11.8 0.0 1.5 0.3 0.9 0.6 

SW 0.0 7.5 2.3 21.8 0.0 36.5 2.6 8.3 0.8 1.9 12.0 3.8 1.1 0.4 0.0 0.0 1.1 

US 3.7 4.9 13.9 7.3 5.3 2.0 33.1 1.2 5.3 6.5 2.0 3.7 2.4 1.2 0.8 0.0 6.5 

PLC 0.3 0.0 0.9 0.7 0.4 1.4 0.1 31.9 20.1 11.0 13.2 11.4 2.2 2.8 1.0 1.0 1.3 

PRC 0.7 0.1 1.2 0.4 0.6 0.0 0.0 11.4 51.0 5.1 11.0 9.5 4.8 0.8 1.4 1.1 1.0 

PLW 0.2 0.0 0.0 0.8 0.2 0.7 0.2 12.2 6.7 32.8 25.9 2.2 9.2 2.6 1.6 2.6 1.8 

PRW 0.5 0.1 0.0 0.2 0.3 0.2 0.0 7.2 11.5 16.8 47.9 2.6 6.5 1.2 1.2 1.5 2.2 

PFC 0.3 0.9 0.3 0.7 1.0 0.2 0.1 4.1 4.4 1.9 2.1 72.1 9.4 1.1 0.3 0.4 0.6 

PFW 0.8 0.7 1.5 0.2 0.0 0.4 0.0 1.1 3.4 8.0 7.8 15.9 51.5 3.3 1.0 0.8 3.8 

PU 1.1 1.2 0.4 0.0 0.0 0.2 0.0 3.8 4.0 8.2 7.6 5.5 11.4 37.8 8.4 4.5 6.0 

PRP 1.8 1.6 0.2 0.0 0.4 0.0 0.0 5.7 6.3 6.3 15.8 1.4 6.8 22.3 11.7 6.6 13.3 

PLP 0.8 0.8 0.0 0.8 1.7 0.3 0.0 6.6 7.8 20.8 16.3 4.7 5.5 10.8 9.1 5.3 8.6 

PP 0.8 3.5 0.6 0.1 0.0 0.5 0.0 4.1 5.7 9.9 15.8 4.2 10.6 10.4 6.4 4.2 23.2 

 

Table 15 – Confusion matrix category 2 (shots vs. passes) in percentages over 20 rounds1. In green 

the true positives. 
  

Prediction 
  

Shot Pass 

Reference Shot 76.8 23.2 

Pass 8.7 91.3 

 

 

 

 

1 Different 20 round than used in Appendix 1 and the results  
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Table 16 – Confusion matrix category 3 (7 throw classes) in percentages over 20 rounds1. In green the 

true positives. (JS = jumping shot, RS = running shot, SS = standing shot, UH = underhand, PL = pass 

left, PR = pass right, PF = pass forward) 
  

Prediction   
JS RS SS UH PL PR PF 

Reference JS 61.6 8.8 2.5 3.2 4.1 7.3 12.5 

RS 9.8 56.5 5.2 1.8 6.0 8.1 12.6 

SS 9.7 18.7 40.3 2.6 8.5 10.9 9.3 

UH 3.3 3.8 0.7 34.8 13.2 19.5 24.7 

PL 0.3 1.1 1.4 3.7 47.6 32.5 13.3 

PR 0.8 0.7 0.7 2.8 22.3 58.7 14.0 

PF 1.3 1.0 0.8 2.6 9.1 11.5 73.6 

 

Table 17 – Confusion matrix category 4 (wind up type) in percentages over 20 rounds1. In green the 

true positives. 
  

Prediction 

  
Circular Whip-

like 
Other 

Reference Circular 75.9 20.7 3.4 

Whip-
like 

22.3 71.3 6.4 

Other 18.4 35.5 46.1 

 

 

Table 18 – Confusion matrix category 5 (intensity) in percentages over 20 rounds1. In green the true 

positives. 
  

Prediction 
  

High Low 

Reference High 82.5 17.5 

Low 13.7 86.3 

 

 

 

 

 

 

1 Different 20 round than used in Appendix 1 and the results 


