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Abstract

Cavitation is a complex multiphase phenomenon, where the production of vapor bubbles leads to opaqueness
of the flow. While it is nearly impossible to visualize the interior of the cavitation region with visible light, we
show that with X-ray computed tomography it is possible to obtain the time-averaged void fraction distribution
in an axisymmetric converging-diverging nozzle (venturi). This technique is based on the amount of energy
absorbed by the material, based on its density and thickness. Time-averaged 3D reconstruction of the X-ray
images is used (i) to distinguish between vapor and liquid phase, (ii) to get radial geometric features of the flow,
and (iii) to quantify the local void fraction. The results show the presence of intense cavitation at the walls of
the venturi, and the vapor fraction decreases downstream of the venturi with the vapor cloud.

Keywords: venturi; X-ray computed tomography; cloud cavitation

1. Introduction

Cavitation in a flow occurs when the static pressure at a given location in the flow drops below the vapor pressure of
the liquid. If a cavitation bubble or cloud collapses close enough to the solid wall, it will induce a high-speed micro-jet
and shock waves, which can result in erosion [1]. Understanding the correct cavitation physics is important because
then the adverse consequences such as erosion can be reduced.

Among the studies on cavitation, high-speed visualization is the most popular technique to investigate the cavita-
tion. However, quantitative information regarding the vapor fraction is difficult to obtain from the high-speed imag-
ing, because the cavitation bubbles scatter light and make the flow opaque. Recently, X-ray densitometry has been
demonstrated as a valuable technique to quantify the void fractions in various cavitation related studies [2, 3, 4]. Void
fractions are of high importance in the understanding of shedding behavior in the periodic cavitation. Recently Ganesh
et al. [5] found that under particular conditions a condensation shock can be the dominant mechanism for periodic
cavitation shedding, instead of the re-entrant jet. Time-resolved X-ray densitometry was used to investigate the local
void fractions in the flow field. They found that void fractions increase with an increase in cavitation intensity. These
experiments were performed on a 2D wedge. Although cavitation can also be observed in other test geometries, a
converging-diverging nozzle (venturi) is used in this study. Due to its high contraction ratio, wider cavitation dynamic
range can be achieved.

X-ray computed tomography is extensively used in medical imaging. It uses the relation between the material
properties and the attenuation coefficient of X-rays. Images are created of the attenuation along the beam paths. This
capability will be utilized in this study to examine the vapor fractions, and radial geometric characteristics in the flow.

2. Experimental details

2.1. Flow facility

A schematic overview of the experimental setup is given in Figure 1(a). The flow in the closed loop system is driven by
a centrifugal pump, and a flowmeter is used to measure the volumetric flow rate. The measurements from the upstream
pressure transducer, downstream pressure transducer, and the temperature sensor are used to determine the cavitation
number σ . A water column is present at an angle due to space restrictions to collect the air bubbles entrained in the
flow during degasification, and to vary the global static pressure of the system. A vacuum pump is used to control the
global static pressure below ambient pressure.
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Figure. 1: (a) Schematic overview of the experimental setup. (b) Picture of the converging-diverging part (venturi) in the experimental setup. (c)
The geometry and relevant dimensions of the venturi.

In Figure 1(b) and (c), a picture of the venturi can be seen with its geometrical parameters. The flow direction is
from left to right in the figure, upward in reality. The convergence and divergence angles are 36◦ and 16◦, respectively
(inspired by previous studies: [6, 7, 8]). An area ratio of 1:9 (area of the throat versus exit area) is chosen. An oxygen
sensor is used to determine the gas content in the system.

2.2. X-ray imaging

Figure 2(a) and (b) show a photograph of the measurement section in the X-ray setup and schematic overview of the
method, respectively. A source-detector pair is used to measure the attenuation of the X-rays through the cavitating
venturi. The source is operated at 120 keV and 5 mA in order to achieve a high contrast between the liquid and vapor
phases within the venturi. The flat detector, Xineos-3131 CMOS model, consists of a 307×302 mm sensitive area.
For the experiments, the field of view of 1548×660 pixels is chosen. Each pixel has a size of 198×198 µm with 14
bits of pixel depth. The images are recorded at 60 Hz during 1 min. As the typical shedding frequency is 40 Hz at σ

= 0.46, this ensures that the statistics are based on sufficient shedding cycles.

(a) (b)

Figure. 2: (a) Test-rig inside the X-ray setup. (b) Sketch of the X-rays imaging method, the viewing angle in the experiments is smaller than the
depicted angle.
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2.3. Experimental procedure and post-processing

The water is degasified and the setup is operated for a few minutes before the measurements are started in order to
obtain a uniform water temperature. The global static pressure of the system is set to a fixed value and the mea-
surements are started when the pressure measurements are constant. All the sensor values (pressure, flow rate, and
temperature) and the X-ray images (explained in more detail in the later paragraph) are saved concurrently by using a
data acquisition system.

A background subtraction operation is performed for the raw X-ray images, for which background images with
only the liquid phase without flow are captured. In order to improve the contrast, an image adjustment operation is
performed on images. This process involves rescaling the grayscale intensities in order to have 1% of the data being
saturated at low and high intensities. 3600 instantaneous X-ray images are averaged to get a representative time-
averaged image, averaging also reduces the noise considerably. Calibration for the void fraction is done by inserting 5
empty thin-walled plastic cylinders of known, different diameters into the venturi filled with water, and X-ray images
are obtained. The wall thickness of the plastic cylinders is very small, so it is neglected. The obtained calibration
curve is used to calculate the void fractions for the reconstructed images (explained in the results).

Filtered back projection is applied to the cone-beam 2D time-averaged X-ray image (Figure 3) using the ASTRA
Toolbox [9]. It is a stabilized and discretized version of the inverse Radon transform. Density slices of the object
perpendicular to the centerline axis are created. As the measurement section is axisymmetric, we assume axisymmetry
in the flow. The 3D reconstruction is performed with a time-averaged image obtained from the projections recorded at
a single viewing angle.

3. Results

Figure 3(a) shows the time-averaged X-ray intensity data. This panel is before tomographic reconstruction, i.e. a pro-
jection along the line between source and detector. Figure 3(b) shows reconstructed slices at different axial positions,
showing growth of the cavitation cloud. Figure 3(a) and (b) show that most of the vapor is attached to the nozzle wall
and persists until 4 diameters downstream of the throat. This is the point where the cavity detaches during the periodic
shedding, this is also confirmed from the high-speed images [10]. After detaching, the vapor cloud moves towards the
center of the venturi and diffuses with the liquid phase.

Flow

1 cm

(a)

(b)

Figure. 3: (a) Time-averaged X-ray image of the cavitating venturi at σ = 0.46 (vapor is light gray, liquid is black). (b) Cross-sectional CT images
at different axial positions showing growth of the cavitation cloud. The contrast in the images is adjusted for better understanding.

Figure 4 represents two slices from two different positions along the venturi length, where the vapor and liquid
regions are shown in red and blue color, respectively. According to the calibration process discussed above and
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the corresponding color bar, the vapor fraction can be obtained easily for every pixel of the slice. It can be seen
from Figure 4(a) and (b), the cavitation changes from sheet cavitation to cloud cavitation with the interface diffusing
downstream of the venturi. The void fraction decreases as the cavitation structures expand in the liquid core.

(a) (b)

Figure. 4: (Top) A high-speed snapshot showing cavitation in the venturi. In (a) and (b), the quantitative measurements of vapor fractions at two
different locations along the venturi are shown. The red regions indicate the presence of vapor and the blue regions indicate the presence of liquid.
Note the difference in color scales.

4. Conclusions and Outlook

In this study, the phenomenon of cavitation was examined by CT measurements of the flow through a venturi. The
results look encouraging in terms of time-averaged vapor fractions. More detailed information about the cavitation
development is extracted using the cross-sectional CT-measurements as compared to the high-speed imaging. We can
now quantify the radial geometric features of this complex two-phase flow. This data will be essential to validate
our assumptions regarding the physical mechanisms. Furthermore, it will be helpful for the validation of numerical
studies.
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