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Discrete orthogonality relations for Hall–Littlewood polynomials are employed so as to derive cubature
rules for the integration of homogeneous symmetric functions with respect to the density of the circular
unitary ensemble (which originates from the Haar measure on the special unitary group SU(n;C)).
By passing to Macdonald’s hyperoctahedral Hall–Littlewood polynomials, we moreover find analogous
cubature rules for the integration with respect to the density of the circular quaternion ensemble (which
originates in turn from the Haar measure on the compact symplectic group Sp(n;H)). The cubature
formulas under consideration are exact for a class of rational symmetric functions with simple poles
supported on a prescribed complex hyperplane arrangement. In the planar situations (corresponding to
SU(3;C) and Sp(2;H)), a determinantal expression for the Christoffel weights enables us to write down
compact cubature rules for the integration over the equilateral triangle and the isosceles right triangle,
respectively.

Keywords: cubature rules; Hall–Littlewood polynomials; random matrices; compact classical Lie groups;
Haar measures.

1. Introduction

It is well known that the Haar measures of the classical compact Lie groups (Simon, 1996; Procesi,
2007) yield the densities of ubiquitous random matrix ensembles (Mehta, 2004; Forrester, 2010). A
crucial issue, from the point of view of applications, is the development of techniques that permit to
perform efficient numerical integration with respect to the densities in question. In recent years, Gauss-
like cubature rules were constructed serving this purpose (Munthe-Kaas, 2006; Li & Xu, 2010; Moody
& Patera, 2011; Moody et al., 2014; Hrivnák & Motlochová, 2014; Hrivnák et al., 2016), with the
aid of a fundamental toolset based on the use of orthogonal polynomials (Stroud, 1971; Hoffman &
Withers, 1988; Beerends, 1991; Sobolev, 1992; Cools, 1997; Sobolev & Vaskevich, 1997; Cools et al.,
2001; Dunkl & Xu, 2014). For the pertinent class of integrals at issue the cubature nodes arise in this
picture from the zeros of characters of irreducible representations of the underlying Lie group. These
characters are given explicitly by Schur polynomials, and the aim of the present work is to generalize the
corresponding construction from Schur polynomials to Hall–Littlewood polynomials (Macdonald, 1995;
Macdonald, 2000/01; Nelsen & Ram, 2003). To this end we exploit discrete orthogonality structures
for the Hall–Littlewood polynomials originating from mathematical physics (van Diejen, 2006;
van Diejen, 2007; van Diejen & Emsiz, 2017). Our approach entails cubature rules for the integration
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2 J. F. VAN DIEJEN AND E. EMSIZ

of rational symmetric functions with prescribed poles on a complex hyperplane arrangement, controlled
by the orthogonality measure of the Hall–Littlewood polynomials. In the special case of a rank-one Lie
group, we reproduce in this manner particular instances of known quadrature rules stemming from the
Bernstein–Szegö polynomials (Daruis et al., 2006; Bultheel et al., 2009; van Diejen & Emsiz, 2018a),
which were conceived to integrate rational functions with prescribed poles against the Chebyshev weight
functions. The material is organized as follows.

In Section 2 we formulate our cubature rule stemming from the Hall–Littlewood polynomials. The
formula in question serves to integrate homogeneous symmetric functions with respect to the density of
the circular unitary ensemble (CUE), given by the Haar measure on the special unitary group SU(n;C).

In Section 3 we provide an analogous construction based on Macdonald’s hyperoctahedral Hall–
Littlewood polynomials. The corresponding cubature rule is designed to integrate symmetric functions
with respect to the density of the circular quaternion ensemble (CQE), which is given in turn by the
Haar measure on the compact symplectic group Sp(n;H).

In both situations the cubature nodes turn out to be located at common roots of an associated family
of quasi-orthogonal polynomials. An explicit formula for the quasi-orthogonal polynomials of interest
is derived in Section 4.

The Christoffel weights of our cubature rules are encoded by squared norms determined by discrete
orthogonality relations for the (hyperoctahedral) Hall–Littlewood polynomials from van Diejen (2006,
2007) and van Diejen & Emsiz (2017). In Section 5 we formulate a compact determinantal formula
for these Christoffel weights in the case of planar integrals (associated with SU(3;C) and Sp(2;H)).
The corresponding cubature rules serve to integrate over the equilateral triangle and the isosceles right
triangle, respectively.

Section 6 concludes our presentation by pointing out how various previous cubature rules studied
in Munthe-Kaas (2006), Li et al. (2010), Li & Xu (2010), Moody & Patera (2011), Hrivnák &
Motlochová (2014), Moody et al. (2014), Hrivnák et al. (2016), van Diejen & Emsiz (2019), van
Diejen & Emsiz (2018b) can be seen as parameter degenerations of those considered here. The Hall–
Littlewood polynomials specialize at the parameter values of interest to (symplectic) Schur polynomials
or to symmetric monomials, respectively.

Note: Below we will occasionally refer to the dominance partial ordering of vectors in R
n:

x ≤ y ⇐⇒ x1 + · · · + xk ≤ y1 + · · · + yk (k = 1, . . . , n). (1.1)

We will also employ the following notation for counting the multiplicity of x ∈ R inside x =
(x1, . . . , xn) ∈ R

n:

mx(x) := |{1 ≤ j ≤ n | xj = x}|. (1.2)

2. Cubature rules associated with Hall–Littlewood polynomials

In this section we present a cubature rule for the evaluation of integrals of homogeneous symmetric
functions in the variables zj = eiξj (j = 1, . . . , n), over the fundamental domain

A
(n)
a := {(ξ1, . . . , ξn) ∈ R

n
0 | ξ1 > ξ2 > · · · > ξn > ξ1 − 2π} (2.1)

for the hyperplane

R
n
0 := {(ξ1, . . . ξn) ∈ R

n | ξ1 + · · · + ξn = 0}. (2.2)
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 3

Here the integration is with respect to the density of the CUE

ρa(ξ) :=
∏

1≤j<k≤n

|eiξj − eiξk |2 = 2n(n−1)
∏

1≤j<k≤n

sin2
(

ξj − ξk

2

)
(2.3)

stemming from the Haar measure on the special unitary group SU(n;C). The coordinates ξ :=
(ξ1, . . . , ξn) correspond in this picture to the angles of the eigenvalues.

2.1 Hall–Littlewood polynomials

The Hall–Littlewood polynomials constitute an important orthogonal basis for the space of symmetric
functions in n variables, which has been studied intensively from the point of algebraic combinatorics
through its connections with the representation theory of affine Hecke algebras. For our purposes it
suffices to collect only a few elementary properties extracted from the standard references Macdonald
(1995, Chapter III), Macdonald (2000/01, §10) and Nelsen & Ram (2003).

A convenient way to label Hall–Littlewood polynomials is by means of dominant weight vectors

Λ(n)
a := {l1ω1 + · · · + ln−1ωn−1 | l1, . . . , ln−1 ∈ Z≥0} (2.4a)

that are generated by the SU(n;C) fundamental weight basis (cf. (Bourbaki, 1968, Planche I))

ωj = e1 + · · · + ej − j
n (e1 + · · · + en) (j = 1, . . . , n − 1) (2.4b)

spanning the hyperplane R
n
0. (Here the vectors e1, . . . , en refer to the standard unit basis of R

n.)

Specifically, for any μ = (μ1, . . . , μn) ∈ Λ
(n)
a the corresponding Hall–Littlewood polynomial is given

explicitly by

Pa;μ(ξ ; q) :=
∑
σ∈Sn

Ca(ξσ1
, . . . , ξσn

; q) exp(iξσ1
μ1 + · · · + iξσn

μn), (2.5a)

where

Ca(ξ1, . . . , ξn; q) = Ca(ξ ; q) :=
∏

1≤j<k≤n

(
1 − q e−i(ξj−ξk)

1 − e−i(ξj−ξk)

)
, (2.5b)

and the summation is meant over all permutations σ = (
1 2 ··· n
σ1 σ2 ··· σn

)
comprising the symmetric group

Sn. For −1 < q < 1 Hall–Littlewood polynomials are known to obey the following fundamental
orthogonality relations, cf. e.g., Macdonald (2000/01, §10) or Nelsen & Ram (2003, Section 3) (with
the root system R of type An−1):

1

(2π)n−1n1/2

∫
A

(n)
a

Pa;μ(ξ ; q)Pa;ν(ξ ; q)|Ca(ξ ; q)|−2d ξ (2.6)

=
⎧⎨
⎩
∏

1≤j<k≤n
μj−μk=0

1−q1+k−j

1−qk−j if ν = μ,

0 if ν �= μ

(μ, ν ∈ Λ
(n)
a ).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article-abstract/doi/10.1093/im
anum

/draa011/5838512 by Bibliotheek TU
 D

elft user on 26 M
ay 2020



4 J. F. VAN DIEJEN AND E. EMSIZ

Remark 2.1 In the orthogonality relations (2.6) the integration is meant with respect to the Lebesgue
measure dξ stemming from the standard volume form associated with the (n−1)-dimensional euclidean

space R
n
0. In particular:

∫
A

(n)
a

dξ = Vol
(
A

(n)
a
) = (2π)n−1n1/2

n! .

2.2 Finite-dimensional orthogonality relations

Given a fixed positive integral level m we consider the following finite alcove in Λ
(n)
a :

Λ(m,n)
a := {l1ω1 + · · · + ln−1ωn−1 | l1, . . . , ln−1 ∈ Z≥0, l1 + · · · + ln−1 ≤ m}. (2.7)

In van Diejen (2006) a lattice Laplacian on Λ
(m,n)
a was constructed (with Robin-type boundary

conditions involving the parameter q) for which Pa;μ(ξ) (viewed as a function of μ ∈ Λ
(m,n)
a ) constitutes

an eigenfunction provided the spectral variable ξ ∈ A
(n)
a belongs to a discrete set of nodes ξ

(m,n)
a;λ ,

λ ∈ Λ
(m,n)
a parametrizing the eigenvalues. For −1 < q < 1 the construction in question gave rise to

a novel finite-dimensional orthogonality relation for the Hall–Littlewood polynomials of the form (van
Diejen, 2006, Section 5.2):∑

μ∈Λ
(m,n)
a

Pa;μ

(
ξ

(m,n)
a;λ ; q

)
Pa;μ

(
ξ (m,n)
a;κ ; q

)
δ(m,n)
a;μ (q) = 0 if λ �= κ (2.8a)

(λ, κ ∈ Λ
(m,n)
a ), where

δ(m,n)
a;μ (q) :=

∏
1≤j<k≤n
μj−μk=0

1 − qk−j

1 − q1+k−j

∏
1≤j<k≤n
μj−μk=m

1 − qn−k+j

1 − qn+1−k+j
. (2.8b)

2.3 Positions of the nodes

At general parameter values −1 < q < 1 explicit formulas for the positions of the spectral nodes
ξ

(m,n)
a;λ , λ ∈ Λ

(m,n)
a are not available unfortunately. Instead, we will recur to a simple numerical algorithm

stemming from van Diejen (2006, Section 4), where the eigenvalues of the underlying discrete Laplacian
were characterized in terms of the critical points of an associated family of Morse functions, by means
of a powerful mathematical toolkit that is known in mathematical physics as the Bethe Ansatz method
(cf. e.g. (Korepin et al., 1993; Mattis, 1994; Gaudin, 2014) and references therein). Specifically, for any
−1 < q < 1 and λ = (λ1, . . . , λn) ∈ Λ

(m,n)
a the explicit position of the pertinent node ξ

(m,n)
a;λ turns out to

be given by the unique global minimum of an auxiliary semi-bounded Morse function V(m,n)
a;λ : Rn → R:

V(m,n)
a;λ (ξ) :=

∑
1≤j<k≤n

∫ ξj−ξk

0
vq(ϑ) d ϑ +

∑
1≤j≤n

(
m
2 ξ2

j − 2π(a;j + λj)ξj

)
, (2.9a)

where
a;j := 1

2

(
n + 1 − 2j

)
(j = 1, . . . , n) (2.9b)

and

vq(ϑ) :=
∫ ϑ

0
uq(θ) d θ with uq(θ) := 1 − q2

1 − 2q cos(θ) + q2 . (2.9c)
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 5

Notice in this connection that the existence of this global minimum is guaranteed because V(m,n)
a,λ (ξ) →

+∞ as |ξ | → ∞, whereas the uniqueness follows by convexity:

H(n,m)
a;j,k (ξ) := ∂ξj

∂ξk
V(n,m)
a;λ (ξ) (2.10)

=
⎧⎨
⎩

m +∑1≤l≤n
l �=j

uq(ξj − ξl) if k = j

−uq(ξj − ξk) if k �= j,

so (for any (x1, . . . , xn) ∈ R
n)

∑
1≤j,k≤n

H(m,n)
a;j,k (ξ)xjxk =

∑
1≤j≤n

mx2
j +

∑
1≤j<k≤n

uq(ξj − ξk)(xj − xk)
2

≥ m
∑

1≤j≤n

x2
j .

The numerical positions of the nodes can now be conveniently computed from the equations for the
critical point ∂ξj

V(m,n)
a;λ (ξ) = 0:

mξj +
∑

1≤k≤n
k �=j

vq(ξj − ξk) = 2π(λj + a,j) (j = 1, . . . , n), (2.11)

by means of a fixed-point iteration scheme such as Newton’s method. At this point numerical integration
for the evaluation of vq(ξ) is to be avoided, since it is much more efficient to invoke the explicit formula

vq(ϑ) = 2 arctan
(

1+q
1−q tan

(
ϑ
2

))
for −π < ϑ < π , in combination with the quasi-periodicity vq(ϑ +

2π) = vq(ϑ) + 2π for ϑ ∈ R. At the special parameter value q = 0 equation (2.11) degenerates into

a linear system, the solution of which is given explicitly by ξj = 2π(λj+a,j)

n+m , j = 1, . . . , n; this explicit
solution at q = 0 serves as a suitable initial estimate for starting up the Newton iteration at general
parameter values −1 < q < 1 (cf. Remark 2.3 below).

Remark 2.2 It is instructive to observe that the nodes ξ
(m,n)
a;λ , λ ∈ Λ

(m,n)
a belong to the domain A

(n)
a

(2.1). Indeed, by summing the n equations in equation (2.11) characterizing the position of ξ
(m,n)
a;λ , one

sees—upon exploiting that vq(ϑ) is odd in ϑ—that the critical point in question lies on the hyperplane
R

n
0. Furthermore, by subtracting the kth equation from the jth equation:

m(ξj − ξk) +
∑

1≤l≤n

(
vq(ξj − ξl) − vq(ξk − ξl)

)
= 2π(λj − λk + k − j), (2.12)

it is manifest that at ξ = ξ
(m,n)
a;λ the inequality 2π > ξj − ξk > 0 holds when 1 ≤ j < k ≤ n. Here one

uses the monotonicity and the (above) quasi-periodicity of vq(ϑ) in ϑ , together with the observation that

in this situation 0 ≤ λj − λk ≤ m (because λ ∈ Λ
(m,n)
a ).
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6 J. F. VAN DIEJEN AND E. EMSIZ

Remark 2.3 Since 1−|q|
1+|q| ≤ uq(θ) ≤ 1+|q|

1−|q| for θ ∈ R, the following bounds for the position of the node

ξ = ξ
(m,n)
a;λ (λ ∈ Λ

(m,n)
a ) are immediate from equation (2.12) via the mean value theorem:

2π(k − j + λj − λk)

m + κa;−(q)
≤ ξj − ξk ≤ 2π(k − j + λj − λk)

m + κa;+(q)
(2.13a)

for 1 ≤ j < k ≤ n, where

κa;±(q) := n

(
1 − |q|
1 + |q|

)±1

. (2.13b)

These bounds confirm that

ξ
(m,n)
a;λ

∣∣∣ q=0 = 2π(λ + a)

n + m
(λ ∈ Λ(m,n)

a ), (2.14)

where a := (a,1, . . . , a,n). Moreover, since at ξ = 2π(λ+a)
n+m (λ ∈ Λ

(m,n)
a ) the inequalities in equations

(2.13a), (2.13b) are satisfied for any −1 < q < 1, this special point provides a convenient initial estimate
when computing the position of the node ξ

(m,n)
a;λ numerically from equation (2.11) via Newton’s method.

2.4 Cubature rule

Let

P
(m,n)
a := Span

μ∈Λ
(m,n)
a

{Ma;μ(ξ)}, (2.15)

with

Ma;μ(ξ) := 1

Na;μ

∑
σ∈Sn

exp(iξσ1
μ1 + · · · + iξσn

μn) (2.16a)

normalized such that each exponential term on the RHS occurs with multiplicity one:

Na;μ :=
∏

1≤j<k≤n
μj−μk=0

1 + k − j

k − j
. (2.16b)

Notice that the space P
(m,n)
a is isomorphic to the

(m+n−1
m

)
-dimensional space of symmetric polynomials

of degree at most m in each of the variables zj = eiξj (j ∈ {1, . . . , n}) subject to the relation z1 · · · zn = 1.

Theorem 2.4 (Hall–Littlewood cubature). For q ∈ (−1, 1) and m ∈ Z>0 the following cubature rule

holds true for any symmetric polynomial f (ξ) in P
(2m−1,n)
a :

1

(2π)n−1n1/2

∫
A

(n)
a

f (ξ)|Ca(ξ ; q)|−2d ξ =
∑

λ∈Λ
(m,n)
a

f
(
ξ

(m,n)
a;λ

)
Δ̂

(m,n)
a;λ , (2.17a)
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 7

with Christoffel weights given by

Δ̂
(m,n)
a;λ :=

( ∑
μ∈Λ

(m,n)
a

∣∣∣Pa;μ

(
ξ

(m,n)
a;λ ; q

)∣∣∣ 2δ(m,n)
a;μ (q)

)−1

. (2.17b)

Proof. It is immediate from the discrete orthogonality relations in equations (2.8a), (2.8b) that the
following matrix is unitary:

[√
δ
(m,n)
b;μ (q)Pa;μ

(
ξ

(m,n)
a;λ ; q

)√
Δ̂

(m,n)
a;λ

]
μ,λ∈Λ

(m,n)
a

.

By ‘column-row duality’ this means that for any μ, ν ∈ Λ
(m,n)
a (cf. (van Diejen, 2007, Theorem 1)):

∑
λ∈Λ

(m,n)
a

Pa;μ

(
ξ

(m,n)
a;λ ; q

)
Pa;ν

(
ξ

(m,n)
a;λ ; q

)
Δ̂

(m,n)
a;λ =

{
1/δ

(m,n)
a;μ (q) if ν = μ,

0 if ν �= μ.
(2.18)

If we compare this formula with the standard orthogonality relations for the corresponding Hall–
Littlewood polynomials in equation (2.6), then it is clear that both scalar products are equal if ν

(say) is restricted to Λ
(m−1,n)
a . Hence, since Pa;ν(ξ ; q) = Pa;(−νn,...,−ν1)

(ξ ; q) and (−νn, . . . , −ν1) =
ln−1ω1 + ln−2ω2 + · · ·+ l1ωn−1 when ν = l1ω1 + l2ω2 + · · ·+ ln−1ωn−1, we conclude that the asserted
cubature rule is valid for all symmetric polynomials f (ξ) of the form

f (ξ) = Pa;μ(ξ ; q)Pa;ν(ξ ; q) with μ ∈ Λ(m,n)
a , ν ∈ Λ(m−1,n)

a . (2.19)

The products in question actually span P
(2m−1,n)
a (because the monomial expansion of f (ξ) (2.19)

contains Ma;μ+ν(ξ) and monomial symmetric functions Ma;κ(ξ) corresponding to dominant weights
κ that are smaller than μ + ν in the dominance partial order). The cubature rule thus follows for general
symmetric polynomials f (ξ) in P

(2m−1,n)
a by linearity. �

The following corollary interprets Theorem 2.4 as an exact cubature rule for the integration of a
class of rational symmetric functions against density of the CUE.

Corollary 2.5 (Cubature in CUE). For q ∈ (−1, 1) and m ∈ Z>0 one has that

1

(2π)n−1n1/2

∫
A

(n)
a

Ra(ξ)ρa(ξ) d ξ =
∑

λ∈Λ
(m,n)
a

Ra
(
ξ

(m,n)
a;λ

)
ρa
(
ξ

(m,n)
a;λ

)
Δ

(m,n)
a;λ (2.20)

with Δ
(m,n)
a;λ := |Ca(ξ

(m,n)
a;λ ; q)|2Δ̂(m,n)

a;λ and Ra(ξ) := f (ξ)
Oa(ξ ;q)

, where the denominator is of the form

Oa(ξ ; q) :=
∏

1≤j<k≤n

(
1 − 2q cos(ξj − ξk) + q2)

and the numerator f (ξ) is allowed to be any symmetric polynomial in P
(2m−1,n)
a .
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8 J. F. VAN DIEJEN AND E. EMSIZ

Proof. Immediate from Theorem 2.4 via the identity

|Ca(ξ ; q)|−2 = ρa(ξ)/Oa(ξ ; q).

�
Remark 2.6 When n = 2 Theorem 2.4 boils down to a special instance of the quadrature rule on m+1
nodes presented in van Diejen & Emsiz (2018a, Theorem 5) (viz., with d = d̃ = 1, ε+ = ε̃+ = 0,
ε− = ε̃− = 1 and α1 = α̃1 = −q, respectively). The corresponding degree of exactness is D = 2m − 1,
which is off by two from the optimal Gaussian degree 2m + 1. More generally, via a change of variables
of the form (cf. e.g. (Munthe-Kaas, 2006, Section 3.4), (Li & Xu, 2010, Section 5.1) or (Hrivnák et al.,
2016, Section 3)):

Xj :=

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
Ma;ωj

(ξ) + Ma;ωn−j
(ξ)
)

if j = 1, . . . , � n−1
2 �,

1√
2
Ma;ωj

(ξ) if j = n
2 ,

1
2i

(
Ma;ωj

(ξ) − Ma;ωn−j
(ξ)
)

if j = � n+1
2 �, . . . , n − 1.

(2.21)

Theorem 2.4 can be reformulated as an exact cubature rule for f ∈ Π(2m−1,n−1) supported on
dim(Π(m,n−1)) nodes, where Π(D,n−1) refers to the

(D+n−1
D

)
-dimensional space of all polynomials in

X1, . . . , Xn−1 of total degree at most D:

1(
π

√
2
)n−1

∫
A(n)
a

f (X1, . . . Xn−1)

√
ρa(X1, . . . , Xn−1)

Oa(X1, . . . , Xn−1; q)
d X1 · · · dXn−1 (2.22)

=
∑

λ∈Λ
(m,n)
a

f
(
X(m,n)
a;λ

)
Δ̂

(m,n)
a;λ .

Here ρa and Oa refer to the transformed functions expressed in the new coordinates X1, . . . , Xn−1 and

A(n)
a :=

{(
X1(ξ), . . . , Xn−1(ξ)

) | ξ ∈ A
(n)
a

}
,

X(m,n)
a;λ := (X1(ξ

(m,n)
a;λ ), . . . , Xn−1(ξ

(m,n)
a;λ )

)
.

To perform this coordinate transformation one uses that on the hyperplane ξ1 + · · · + ξn = 0 the

Jacobian is given by
∣∣∣ ∂(X1,...,Xn−1)

∂(ξ1,...,ξn−1)

∣∣∣ = ( 1√
2

)n−1√
ρa(ξ) (cf. (Li & Xu, 2010, Lemma 5.5) or (Hrivnák et

al., 2016, Proposition 4)) and the volume form reads dξ = √
n dξ1 · · · dξn−1. The linear isomorphism

between the spaces P(D,n)
a and Π(D,n−1) induced by this change of variables reveals that the number of

nodes to achieve the exact integration for all f ∈ P
(2m−1,n)
a is bounded from below by the (Gaussian)

value dim
(
P

(m−1,n)
a

)
(cf. e.g. (Dunkl & Xu, 2014, Chapter 3.8)). The number of nodes employed by the

cubature rule in Theorem 2.4 thus exceeds this lower bound by

dim
(
P

(m,n)
a

)− dim
(
P

(m−1,n)
a

) =
(

n + m − 2

m

)
= dim

(
P

(m,n−1)
a

)
.
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 9

Remark 2.7 The symmetric functions Ra(ξ) = f (ξ)
Oa(ξ ;q)

admit simple poles supported on the zero
locus of the denominator Oa(ξ ; q). For 0 < q < 1 the pole locus in question consists of the complex
hyperplanes

ξj − ξk = i log(q) mod 2π (1 ≤ j �= k ≤ n),

whereas for −1 < q < 0 it consists of the complex hyperplanes

ξj − ξk = π + i log(−q) mod 2π (1 ≤ j �= k ≤ n).

At the boundary of the parameter domain −1 < q < 1 this complex hyperplane arrangement
approximates itself to the closure of the integration domain A

(n)
a (2.1). Indeed, for q → 1 the pole

locus intersects the closure of A(n)
a at the boundary hyperplanes ξj − ξj+1 = 0 (j = 1, . . . n − 1) and

ξ1 − ξn = 2π , while for q → −1 the intersection stems from the hyperplanes passing through the
interior: ξj − ξk = π (1 ≤ j < k ≤ n).

3. Cubature rules associated with hyperoctahedral Hall–Littlewood polynomials

In this section the above construction is adapted for the compact symplectic group Sp(n;H). The
pertinent Haar measure corresponds to the density of the CQE

ρb(ξ) := 2n(n+1)
∏

1≤j≤n

(
1 − cos2(ξj)

) ∏
1≤j<k≤n

(
cos(ξj) − cos(ξk)

)2
(3.1)

on the fundamental domain

A
(n)
b := {ξ = (ξ1, . . . , ξn) ∈ R

n | π > ξ1 > ξ2 > · · · > ξn > 0
}

. (3.2)

Macdonald’s hyperoctahedral Hall–Littlewood polynomials produce in this situation cubature formulas
for the integration of symmetric functions in zj = cos(ξj) (j = 1, . . . , n) over the fundamental domain

A
(n)
b with respect to the density ρb(ξ).

3.1 Hyperoctahedral Hall–Littlewood polynomials

Macdonald’s hyperoctahedral Hall–Littlewood polynomials are a variant of the Hall–Littlewood
polynomials associated with the hyperoctahedral group of signed permutations, which can be retrieved
from Macdonald (2000/01, §10) upon picking the root system R of type BCn. The polynomials in
question are labeled by Sp(n;H) dominant weight vectors

Λ
(n)
b := {(μ1, . . . , μn) ∈ Z

n | μ1 ≥ · · · ≥ μn ≥ 0} (3.3)

that are non-negatively generated by the fundamental basis e1 + · · · + ej, j = 1, . . . , n (cf. (Bourbaki,
1968, Planche III)). Here we restrict attention to a two-parameter subfamily of these polynomials given
by

Pb;μ(ξ ; q, q0) :=
∑
σ∈Sn

ε∈{1,−1}n

Cb(ε1ξσ1
, . . . , εnξσn

; q, q0) exp(iε1ξσ1
μ1 + · · · + iεnξσn

μn), (3.4a)
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10 J. F. VAN DIEJEN AND E. EMSIZ

with μ ∈ Λ
(n)
b and

Cb(ξ1, . . . , ξn; q, q0) = Cb(ξ ; q, q0) (3.4b)

:=
∏

1≤j≤n

1 − q0 e−iξj

1 − e−2iξj

∏
1≤j<k≤n

(
1 − q e−i(ξj−ξk)

1 − e−i(ξj−ξk)

)(
1 − q e−i(ξj+ξk)

1 − e−i(ξj+ξk)

)
.

The symmetrization is now with respect to the action of the hyperoctahedral group of signed permuta-
tions, which involves summing over all σ = ( 1 2 ··· n

σ1 σ2 ··· σn

) ∈ Sn and all ε = (ε1, . . . , εn) ∈ {1, −1}n. For
−1 < q, q0 < 1 the polynomials Pb;μ(ξ ; q, q0) satisfy the following orthogonality relations (Macdonald,
2000/01, §10):

1

(2π)n

∫
A

(n)
b

Pb;μ(ξ ; q, q0)Pb;ν(ξ ; q, q0)|Cb(ξ ; q, q0)|−2d ξ =
⎧⎨
⎩
∏

1≤j<k≤n
μj−μk=0

1−q1+k−j

1−qk−j if ν = μ,

0 if ν �= μ

(3.5)

(μ, ν ∈ Λ
(n)
b ).

Remark 3.1 In the orthogonality relations (3.5) the integration is meant with respect to the standard
Lebesgue measure dξ = dξ1 · · · dξn for Rn. In particular:

∫
A

(n)
b

dξ = Vol
(
A

(n)
b

) = (π)n/n!.

3.2 Finite-dimensional orthogonality relations

In the same spirit as before the construction of an appropriate lattice Laplacian (with Robin-type
boundary conditions) on the finite alcove

Λ
(m,n)
b := {(μ1, . . . , μn) ∈ Z

n | m ≥ μ1 ≥ · · · ≥ μn ≥ 0} (3.6)

of level m ∈ Z>0, has given rise to a novel finite-dimensional orthogonality relation for the
hyperoctahedral Hall–Littlewood polynomials of the form (van Diejen & Emsiz, 2017, Section 11.4):

∑
μ∈Λ

(m,n)
b

Pb;μ

(
ξ

(m,n)
b;λ ; q, q0

)
Pb;μ

(
ξ

(m,n)
b;κ ; q, q0

)
δ
(m,n)
b;μ (q) = 0 if κ �= λ (3.7a)

(λ, κ ∈ Λ
(m,n)
b ), where

δ
(m,n)
b;μ (q) :=

∏
1≤j<k≤n
μj−μk=0

1 − qk−j

1 − q1+k−j
. (3.7b)

In the current situation the positions of the nodes ξ
(m,n)
b;λ , λ ∈ Λ

(m,n)
b parametrizing the eigenvalues of

the lattice Laplacian turn out to depend on three parameters in the interval (−1, 1): q0 (which governs
the boundary condition at the wall μn = 0), q (which governs the boundary condition at the walls
μj = μj+1, j ∈ {1, . . . , n − 1}) and an additional parameter q1 (which governs the boundary condition
at the affine wall μ1 = m) (van Diejen & Emsiz, 2017).
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 11

3.3 Positions of the nodes

In the absence of explicit formulas for the positions of the nodes in equations (3.7a), (3.7b) at general
values of the parameters q, q0, q1 ∈ (−1, 1), we recur again to a characterization in terms of the
minimum of an auxiliary Morse function from van Diejen & Emsiz (2017, Section 10.1) so as to enable
numerical computations.

Specifically, the position of the node ξ
(m,n)
b;λ , λ ∈ Λ

(m,n)
b turns out to be governed by the unique global

minimum of the following semi-bounded Morse function V(m,n)
b;λ : Rn → R:

V(m,n)
b;λ (ξ) : =

∑
1≤j<k≤n

(∫ ξj+ξk

0
vq(ϑ) d ϑ +

∫ ξj−ξk

0
vq(ϑ) d ϑ

)

+
∑

1≤j≤n

(
(m + 1)ξ2

j − 2π(b;j + λj)ξj +
∫ ξj

0

(
vq0

(ϑ) + vq1
(ϑ)
)

d ϑ

)
, (3.8a)

where vq(ϑ) is of the form in equation (2.9c) and

b;j := n + 1 − j (j = 1, . . . , n). (3.8b)

As before, the existence and uniqueness of the global minimum ξ
(m,n)
b;λ of V(m,n)

b;λ (ξ) is ensured by the

unbounded radial growth V(m,n)
b;λ (ξ) → +∞ for |ξ | → ∞, in combination with the convexity:

H(n,m)
b;j,k := ∂ξj

∂ξk
V(n,m)
b;λ (ξ)=

⎧⎨
⎩

2(m+1)+uq0
(ξj)+uq1

(ξj)+
∑

1≤l≤n
l �=j

(
uq(ξj+ξl)+uq(ξj − ξl)

)
if k = j

uq(ξj + ξk) − uq(ξj − ξk) if k �= j

(3.9)

(with uq(θ) taken from equation (2.9c)), so

∑
1≤j,k≤n

H(m,n)
b;j,k xjxk =

∑
1≤j≤n

(
2(m + 1) + uq0

(ξj) + uq1
(ξj)
)

x2
j

+
∑

1≤j<k≤n

(
uq(ξj + ξk)(xj + xk)

2 + uq(ξj − ξk)(xj − xk)
2
)

≥ 2(m + 1)
∑

1≤j≤n

x2
j .

The equations ∂ξj
V(m,n)
b;λ (ξ) = 0 for the numerical computation of the position of the node ξ

(m,n)
b;λ

using Newton’s method now become:

2(m + 1)ξj + vq0
(ξj) + vq1

(ξj) +
∑

1≤k≤n
k �=j

(
vq(ξj + ξk) + vq(ξj − ξk)

)
= 2π(b;j + λj), (3.10)
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12 J. F. VAN DIEJEN AND E. EMSIZ

for j = 1, . . . , n. A corresponding suitable initial estimate stemming from the explicit solution of this

system at the linear point (q, q0, q1) = (0, 0, 0) in parameter space is given by ξj = π(λj+b;j)

n+m+1 ,
j = 1, . . . , n (cf Remark 3.2 below).

Remark 3.2 Upon adapting Remarks 2.2 and 2.3, it is deduced from equation (3.10) that ξ
(m,n)
b;λ ∈ A

(n)
b

(3.2) for any λ ∈ Λ
(m,n)
b (3.6) and that at ξ = ξ

(m,n)
b;λ :

π(n + 1 − j + λj)

m + 1 + κb;−(q, q0, q1)
≤ ξj ≤ π(n + 1 − j + λj)

m + 1 + κb;+(q, q0, q1)
(3.11a)

for 1 ≤ j ≤ n and

π(k − j + λj − λk)

m + 1 + κb;−(q, q0, q1)
≤ ξj − ξk ≤ π(k − j + λj − λk)

m + 1 + κb;+(q, q0, q1)
(3.11b)

for 1 ≤ j < k ≤ n, where

κb;±(q, q0, q1) := 1

2

(
1 − |q0|
1 + |q0|

)±1

+ 1

2

(
1 − |q1|
1 + |q1|

)±1

+ (n − 1)

(
1 − |q|
1 + |q|

)±1

. (3.11c)

These bounds confirm that for vanishing parameter values:

ξ
(m,n)
b;λ

∣∣∣ q,q0,q1=0 = π(λ + b)

n + m + 1
(λ ∈ Λ

(m,n)
b ), (3.12)

where b := (b,1, . . . , b,n). Moreover, since at ξ = π(λ+b)
n+m+1 (λ ∈ Λ

(m,n)
b ) the inequalities in equations

(3.11a)–(3.11c) are satisfied for any −1 < q, q0, q1 < 1, this special point provides a convenient initial

estimate when computing the position of the node ξ
(m,n)
b;λ numerically from equation (3.10) via Newton’s

method.

3.4 Cubature rule

Let

P
(m,n)
b := Span

μ∈Λ
(m,n)
b

{Mb;μ(ξ)}, (3.13)

with

Mb;μ(ξ) := 1

Nb;μ

∑
σ∈Sn

ε∈{1,−1}n

exp(iε1ξσ1
μ1 + · · · + iεnξσn

μn) (3.14a)

normalized such that each exponential term on the RHS occurs with multiplicity one:

Nb;μ := 2m0(μ)
∏

1≤j<k≤n
μj−μk=0

1 + k − j

k − j
(3.14b)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article-abstract/doi/10.1093/im
anum

/draa011/5838512 by Bibliotheek TU
 D

elft user on 26 M
ay 2020



CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 13

(cf. equation (1.2)). Notice that P(m,n)
b amounts to the

(m+n
m

)
-dimensional space of symmetric polynomi-

als of degree at most m in each of the variables zj = cos(ξj) (j ∈ {1, . . . , n}).
Theorem 3.3 (Hyperoctahedral Hall–Littlewood cubature). For q, q0, q1 ∈ (−1, 1) and m ∈ Z>0, the

following cubature rule holds true for any symmetric polynomial f (ξ) in P
(2m,n)
b :

1

(2π)n

∫
A

(n)
b

f (ξ)|Cb(ξ ; q, q0)|−2d ξ =
∑

λ∈Λ
(m,n)
b

f
(
ξ

(m,n)
b;λ

)
Δ̂

(m,n)
b;λ , (3.15a)

with Christoffel weights given by

Δ̂
(m,n)
b;λ :=

( ∑
μ∈Λ

(m,n)
b

∣∣∣Pb;μ

(
ξ

(m,n)
b;λ ; q, q0

)∣∣∣ 2δ
(m,n)
b;μ (q)

)−1

. (3.15b)

Proof. It is immediate from the discrete orthogonality relations in equations (3.7a), (3.7b) that the
following matrix is unitary:

[√
δ
(m,n)
b;μ (q)Pb;μ

(
ξ

(m,n)
b;λ ; q, q0

)√
Δ̂

(m,n)
b;λ

]
μ,λ∈Λ

(m,n)
b

.

By ‘column-row duality’ this means that for any μ, ν ∈ Λ
(m,n)
b :

∑
λ∈Λ

(m,n)
b

Pb;μ

(
ξ

(m,n)
b;λ ; q, q0

)
Pb;ν

(
ξ

(m,n)
b;λ ; q, q0

)
Δ̂

(m,n)
b;λ =

{
1/δ

(m,n)
b;μ (q) if ν = μ,

0 if ν �= μ.
(3.16)

Upon comparing with the standard orthogonality relations for the corresponding hyperoctahedral Hall–
Littlewood polynomials in equation (3.5), it is seen that the asserted cubature rule is valid for all
symmetric polynomials f (ξ) of the form

f (ξ) = Pb;μ(ξ ; q, q0)Pb;ν(ξ ; q, q0) with μ, ν ∈ Λ
(m,n)
b (3.17)

(where we have used that Pb;ν(ξ ; q, q0) = Pb;ν(ξ ; q, q0)). Since the products in question span P
(2m,n)
b

(because the monomial expansion of f (ξ) (3.17) contains Mb;μ+ν(ξ) and symmetric monomials Mb;κ(ξ)

with κ smaller than μ + ν in the dominance partial order), the cubature rule again follows for general
symmetric polynomials f (ξ) in P

(2m,n)
b by linearity. �

Theorem 3.3 can be reinterpreted in turn as an exact cubature rule for the integration of a class of
rational symmetric functions against the density of the CQE.
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14 J. F. VAN DIEJEN AND E. EMSIZ

Corollary 3.4 (Cubature in CQE). For q, q0, q1 ∈ (−1, 1) and m ∈ Z>0 one has that

1

(2π)n

∫
A

(n)
b

Rb(ξ)ρb(ξ)dξ =
∑

λ∈Λ
(m,n)
b

Rb
(
ξ

(m,n)
b;λ

)
ρb
(
ξ

(m,n)
b;λ

)
Δ

(m,n)
b;λ (3.18)

with Δ
(m,n)
b;λ := |Cb(ξ ; q, q0)|2Δ̂(m,n)

b;λ and Rb(ξ) := f (ξ)
Ob(ξ ;q,q0)

, where the denominator is of the form

Ob(ξ ; q, q0) :=
∏

1≤j<k≤n

(1 − 2q cos(ξj − ξk) + q2)(1 − 2q cos(ξj + ξk) + q2)

×
∏

1≤j≤n

(1 − 2q0 cos(ξj) + q2
0),

and the numerator f (ξ) is allowed to be any symmetric polynomial in P
(2m,n)
b .

Proof. Immediate from Theorem 3.3 via the identity

|Cb(ξ ; q, q0)|−2 = ρb(ξ)/Ob(ξ ; q, q0).
�

Remark 3.5 For n = 1 Theorem 3.3 recovers another special instance of the quadrature rule on m + 1
nodes presented in van Diejen & Emsiz (2018a, Theorem 5) (viz., with d = d̃ = 1, ε± = ε̃± = 1 and
α1 = −q0, α̃1 = −q1, respectively). Its degree of exactness D = 2m is only one shy of the optimal
Gaussian degree 2m + 1. For general n we can proceed as in Remark 2.6 and perform a change of
variables of the form

Xj := Mb;e1+···+ej
(ξ), j = 1, . . . , n (3.19)

(cf. e.g. (Hoffman & Withers, 1988, Section 7), (Moody & Patera, 2011, Section 3) and (Hrivnák et
al., 2016, Section 3)), so as to recast Theorem 3.3 in the form of an exact (Gaussian) cubature rule for
f ∈ Π(2m,n) supported on dim(Π(m,n)) nodes:

1

(2π)n

∫
A(n)
b

f (X1, . . . Xn)

√
ρb(X1, . . . , Xn)

Ob(X1, . . . , Xn; q, q0)
dX1 · · · dXn =

∑
λ∈Λ

(m,n)
b

f
(
X(m,n)
b;λ

)
Δ̂

(m,n)
b;λ , (3.20)

where ρb and Ob refer to the transformed functions expressed in the new coordinates X1, . . . , Xn and

A(n)
b :=

{(
X1(ξ), . . . , Xn(ξ)

) | ξ ∈ A
(n)
b

}
,

X(m,n)
b;λ := (X1(ξ

(m,n)
b;λ ), . . . , Xn(ξ

(m,n)
b;λ )

)
.

Here we have used that the Jacobian is now of the form
∣∣∣ ∂(X1,...,Xn)

∂(ξ1,...,ξn)

∣∣∣ = √
ρb(ξ) (cf. e.g. (Moody &

Patera, 2011, Proposition 3.3) and (Hrivnák et al., 2016, Proposition 4)). The upshot is that in the
present situation it is seen from this change of variables that the number of nodes employed by the
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 15

cubature rule in Theorem 3.3—achieving the exact integration for all f ∈ P
(2m,n)
b —coincides with the

(Gaussian) lower bound dim(P
(m,n)
b ) (cf. e.g. (Dunkl & Xu, 2014, Chapter 3.8)).

Remark 3.6 The locus where the symmetric functions Rb(ξ) := f (ξ)
Ob(ξ ;q,q0)

admit simple poles stem-
ming from the denominator Ob(ξ ; q, q0) is given by the following complex hyperplane arrangement:

ξj − ξk = π

2

(
1 − sign(q)

)± i log(|q|) mod 2π

ξj + ξk = π

2

(
1 − sign(q)

)± i log(|q|) mod 2π

(1 ≤ j < k ≤ n) and

ξj = π

2

(
1 − sign(q0)

)± i log(|q0|) mod 2π

(1 ≤ j ≤ n). At the boundary of the parameter domain −1 < q, q0 < 1 this pole locus approximates

the closure of the integration domain A
(n)
b (3.2) via: (i) the boundary hyperplanes ξj − ξj+1 = 0

(j = 1, . . . n − 1) when q → 1, (ii) the boundary hyperplane ξn = 0 when q0 → 1, (iii) the hyperplanes
passing through the interior: ξj ± ξk = π (1 ≤ j < k ≤ n) when q → −1, and (iv) the boundary
hyperplane ξ1 = π when q0 → −1.

4. The positions of the (hyperoctahedral) Hall–Littlewood cubature nodes as roots of associated
quasi-orthogonal polynomials

In this section the cubature nodes are shown to be common roots of associated quasi-orthogonal
polynomials in P

(m+1,n)
c \ P(m,n)

c (where c = a or c = b), cf. Proposition 4.1 (below).

4.1 Statement of the result

For μ ∈ Λ
(m+1,n)
a \ Λ

(m,n)
a let

Qa;μ(ξ) := Pa;μ(ξ ; q) − qmμ1 (μ)mμn (μ)Pa;μ−ωa;μ
(ξ ; q) (4.1a)

with

ωa;μ :=
min(mμ1 (μ),mμn (μ))∑

j=1

(
emμ1 (μ)+1−j − en−mμn (μ)+j

)
, (4.1b)

and for μ ∈ Λ
(m+1,n)
b \ Λ

(m,n)
b let

Qb;μ(ξ) := Pb;μ(ξ ; q, q0) − q
1
2 mμ1 (μ)(mμ1 (μ)−1)q

mμ1 (μ)

1 Pb;μ−ωb;μ
(ξ ; q, q0) (4.2a)

with

ωb;μ := e1 + e2 + · · · + emμ1 (μ). (4.2b)
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16 J. F. VAN DIEJEN AND E. EMSIZ

These definitions ensure that μ − ωc;μ ∈ Λ
(m,n)
c and that Qc;μ(ξ) enjoys the following quasi-

orthogonality property: the polynomial in question is orthogonal—with respect to the inner products
(2.6) and (3.5), respectively—to the finite-dimensional subspace of P(m,n)

c spanned by the monomials
Mc;ν(ξ) with ν ∈ Λ

(m,n)
c smaller than μ − ωc;μ in the dominance partial order (c ∈ {a,b}).

Proposition 4.1 (Cubature nodes as roots of Qc;μ(ξ)). For c ∈ {a,b} the (hyperoctahedral) Hall–

Littlewood cubature nodes ξ
(m,n)
c;λ , λ ∈ Λ

(m,n)
c are common roots of the

(m+nc
m+1

)
polynomials Qc;μ(ξ),

μ ∈ Λ
(m+1,n)
c \ Λ

(m,n)
c , where na := n − 1 and nb := n.

Remark 4.2 It follows from Proposition 4.1 that at q1 = 0 one has that Qb;μ(ξ) = Pb;μ(ξ ; q, q0)

for μ ∈ Λ
(m+1,n)
b \ Λ

(m,n)
b . Hence, the cubature nodes are in this situation common roots of the

hyperoctahedral Hall–Littlewood polynomials Pb;μ(ξ ; q, q0), μ ∈ Λ
(m+1,n)
b \ Λ

(m,n)
b . The equality

between the inner products in equations (3.5) and (3.16) then extends to all μ ∈ Λ
(m+1,n)
b and ν ∈ Λ

(m,n)
b .

The upshot is that at q1 = 0 the cubature rule in Theorem 3.3 is valid for all f (ξ) in P
2m+1,n
b , i.e., the

degree of exactness then jumps to the optimal Gaussian value 2m + 1.

4.2 Proof of Proposition 4.1 for c = a

To derive the proposition it is convenient to temporarily extend the definition of Pa;μ(ξ ; q) (2.5a), (2.5b)
to any μ ∈ Span

Z
(ω1, . . . , ωn−1). The corresponding Hall–Littlewood polynomials are known to obey

the following straightening rule (cf. e.g. (Macdonald, 1995, Chapter III §2, Example 2)).

Lemma 4.3 (Straightening rule). For any μ ∈ Span
Z
(ω1, . . . , ωn−1) one has that

μj − μj+1 = −1 �⇒ Pa;μ(ξ ; q) = qPa;μ+ej−ej+1
(ξ ; q) (j ∈ {1, . . . , n − 1}).

Proof. For j ∈ {1, . . . , n − 1} let rj act on the components of ξ = (ξ1, . . . , ξn) by transposing ξj and
ξj+1:

rj(ξ1, . . . , ξn) := (ξ1, . . . , ξj−1, ξj+1, ξj, ξj+2, . . . , ξn).

Then

Ca(ξ ; q)

Ca(rjξ ; q)
= q − ei(ξj−ξj+1)

1 − q ei(ξj−ξj+1)
,

and thus

Ca(ξ ; q) + Ca(rjξ ; q) ei(ξj−ξj+1) = qCa(ξ ; q) ei(ξj−ξj+1) + qCa(rjξ ; q).

Multiplication of both sides of the latter identity by exp(iξ1μ1 + · · · + iξnμn), with μ ∈
Span

Z
(ω1, . . . , ωn−1) such that μj − μj+1 = −1 (so rjμ = μ + ej − ej+1), gives rise to the asserted

straightening rule upon symmetrization with respect to the permutation action (on ξ ). �
Moreover, at the cubature nodes ξ = ξ

(m,n)
a;λ , λ ∈ Λ

(m,n)
a a system of algebraic relations between the

variables ξ1, . . . , ξn is satisfied:

eimξj = (−1)n−1
∏

1≤k≤n
k �=j

(
1 − q ei(ξj−ξk)

ei(ξj−ξk) − q

)
(j = 1, . . . , n). (4.3)
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 17

Indeed, equation (4.3) is immediate from equation (2.11) after multiplying by the imaginary unit and
exponentiation of both sides with the aid of the identity

exp
(− ivq(ϑ)

) =
(

1 − q eiϑ

eiϑ − q

)
(−1 < q < 1).

In this situation the Hall–Littlewood polynomials turn out to obey an additional affine analogue of the
above straightening rule (cf. (van Diejen, 2006)).

Lemma 4.4 (Affine straightening rule). For any μ ∈ Span
Z
(ω1, . . . , ωn−1) and variables ξ satisfying

equation (4.3) one has that

μ1 − μn = m + 1 �⇒ Pa;μ(ξ ; q) = qPa;μ−e1+en
(ξ ; q).

Proof. Let ra act on the components of ξ = (ξ1, . . . , ξn) by transposition of ξ1 and ξn:

ra(ξ1, . . . , ξn) := (ξn, ξ2, . . . , ξn−1, ξ1).

Then equation (4.3) implies that

eim(ξ1−ξn) = Ca(raξ ; q)

Ca(ξ ; q)

(
1 − q ei(ξ1−ξn)

q − ei(ξ1−ξn)

)
,

and thus

Ca(ξ ; q) + Ca(raξ ; q) e−i(m+1)(ξ1−ξn) = qCa(ξ ; q) e−i(ξ1−ξn) + qCa(raξ ; q) e−im(ξ1−ξn).

Multiplication of both sides of the latter identity by exp(iξ1μ1 + · · · + iξnμn), with μ ∈
Span

Z
(ω1, . . . , ωn−1) such that μ1 − μn = m + 1 (so raμ = μ − (m + 1)(e1 − en)), gives rise

to the asserted affine straightening rule upon symmetrization with respect to the permutation action
(on ξ ). �

Proposition 4.1 now follows by iterated use of the straightening rules in Lemmas 4.3 and 4.4. Indeed,
if we first apply the affine straightening rule in Lemma 4.4 to Pa;μ(ξ ; q) with μ ∈ Λ

(m+1,n)
a \ Λ

(m,n)
a ,

and subsequently rearrange the components of μ − e1 + en in weakly decreasing order through iterated

transpositions employing the straightening rule of Lemma 4.3, then it is readily seen that at ξ = ξ
(m,n)
a;λ ,

λ ∈ Λ
(m,n)
a :

Pa;μ(ξ ; q) = qmμ1 (μ)+mμn (μ)−1Pa;μ−emμ1 (μ)+en−mμn (μ)+1
(ξ ; q).

Iteration of the latter relation entails that at ξ = ξ
(m,n)
a;λ , λ ∈ Λ

(m,n)
a :

Pa;μ(ξ ; q) = qmμ1 (μ)mμn (μ)Pa;μ−ωa;μ
(ξ ; q),

which completes the proof of the proposition for c = a.
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18 J. F. VAN DIEJEN AND E. EMSIZ

4.3 Proof of Proposition 4.1 for c = b

The above proof for c = a is readily adapted to the case c = b. Specifically, after temporarily
extending the definition of Pb;μ(ξ ; q, q0) (3.4a), (3.4b) to any μ ∈ Z

n, we first verify the corresponding
straightening rule (cf. (Nelsen & Ram, 2003, Proposition 2.1)).

Lemma 4.5 (Straightening rule). For any μ ∈ Z
n one has that

μj − μj+1 = −1 �⇒ Pb;μ(ξ ; q, q0) = qPb;μ+ej−ej+1
(ξ ; q, q0) (j ∈ {1, . . . , n − 1}).

Proof. With the notation as in the proof of Lemma 4.3 we again have that

Cb(ξ ; q, q0)

Cb(rjξ ; q, q0)
= q − ei(ξj−ξj+1)

1 − q ei(ξj−ξj+1)
(j ∈ {1, . . . , n − 1}).

The straightening rule thus follows in the same manner as before, except that now μ ∈ Z
n (with μj −

μj+1 = −1) and we symmetrize instead with respect to the signed permutation action (on ξ ). �
The additional algebraic relations between the variables ξ1, . . . , ξn, which are satisfied at the nodes

ξ = ξ
(m,n)
b;λ , λ ∈ Λ

(m,n)
b , are similarly deduced by exponentiating equation (3.10):

e2i(m+1)ξj =
(

1 − q0 eiξj

eiξj − q0

)(
1 − q1 eiξj

eiξj − q1

) ∏
1≤k≤n

k �=j

(
1 − q ei(ξj+ξk)

ei(ξj+ξk) − q

)(
1 − q ei(ξj−ξk)

ei(ξj−ξk) − q

)
(j = 1, . . . , n).

(4.4)

We now arrive at the following affine straightening rule.

Lemma 4.6 (Affine straightening rule). For any μ ∈ Z
n and variables ξ satisfying equation (4.4) one

has that

μ1 = m + 1 �⇒ Pb;μ(ξ ; q, q0) = q1Pb;μ−e1
(ξ ; q, q0).

Proof. Let rb act on the components of ξ = (ξ1, . . . , ξn) by flipping the sign of ξ1:

rb(ξ1, . . . , ξn) := (−ξ1, ξ2, . . . , ξn).

Then equation (4.4) with j = 1 can be rewritten as

e2i(m+1)ξ1 = Cb(rbξ ; q, q0)

Cb(ξ ; q, q0)

(
1 − q1 eiξ1

q1 e−iξ1 − 1

)
,

which implies that

Cb(ξ ; q, q0) + Cb(rbξ ; q, q0) e−2i(m+1)ξ1 = q1Cb(ξ ; q, q0) e−iξ1 + q1Cb(rbξ ; q, q0) e−i(2m+1)ξ1 .
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 19

Multiplication of both sides of the latter identity by exp(iξ1μ1 + · · · + iξnμn), with μ ∈ Z
n such that

μ1 = m+1 (so rbμ = μ−2(m+1)e1), entails the asserted affine straightening rule when symmetrizing
with respect to the signed permutation action (on ξ ). �

Upon applying first the affine straightening rule of Lemma 4.6 to Pb;μ(ξ ; q, q0) with μ ∈ Λ
(m+1,n)
b \

Λ
(m,n)
b , and then rearranging the components of μ − e1 with the aid of Lemma 4.5 in weakly decreasing

order, one infers that for ξ = ξ
(m,n)
b;λ , λ ∈ Λ

(m,n)
b :

Pb;μ(ξ ; q, q0) = qmμ1 (μ)−1q1Pb;μ−emμ1 (μ)
(ξ ; q, q0).

By iterating the process in question we get

Pb;μ(ξ ; q, q0) = q
1
2 mμ1 (μ)(mμ1 (μ)−1)q

mμ1 (μ)

1 Pb;μ−ωb;μ
(ξ ; q, q0),

which completes the proof of the proposition for c = b.

5. Specialization to planar domains: determinantal formula for the Christoffel weights

In order to convert the cubature rules of Corollaries 2.5 and 3.4 into effective numerical tools compact
expressions are desired for the Christoffel weights Δ

(m,n)
c;λ . For nc = 1 explicit formulas achieving this

purpose can be read-off upon specializing (van Diejen & Emsiz, 2018a, Theorem 5) (cf. Remarks 2.6
and 3.5). In this section we generalize the corresponding formulas for the Christoffel weights to the
planar situation: nc = 2. The cubature formulas of interest are designed to integrate (trigonometric)
rational functions over the equilateral triangle and the isosceles right triangle, respectively, as such they
fit within a rich tradition of cubature rules on triangular domains in polynomial spaces (cf. e.g. (Cowper,
1973; Lyness & Cools, 1994; Papanicolopulos, 2016)) and trigonometric polynomial spaces (cf. e.g. (Li
et al., 2008, 2010; Munthe-Kaas, 2006)), respectively.

5.1 Integration on the equilateral triangle

For n = 2 and n = 3 the fundamental domain A
(n)
a (2.1) consists of a line segment and an equilateral

triangle, respectively. In these situations the following proposition provides a determinantal formula for
the Christoffel weights in Corollary 2.5.

Proposition 5.1 (Determinantal formula for Δ
(m,n)
a;λ , na ≤ 2). For na = n − 1 ≤ 2 the Christoffel

weights in Corollary 2.5 are of the form

Δ
(m,n)
a;λ = m

n

(
det
[
H(m,n)
a;j,k (ξ

(m,n)
a;λ )

]
1≤j,k≤n

)−1

, (5.1)

with H(m,n)
a;j,k (ξ) taken from equation (2.10).

Proof. The asserted determinantal formula is immediate from the expressions of the Christoffel weights
in Theorem 2.4 and Corollary 2.5 upon invoking the determinantal evaluation formula in van Diejen
(2007, Proposition 3). �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article-abstract/doi/10.1093/im
anum

/draa011/5838512 by Bibliotheek TU
 D

elft user on 26 M
ay 2020



20 J. F. VAN DIEJEN AND E. EMSIZ

Remark 5.2 In the planar situation the cubature of Remark 2.6 in the coordinates X1 = cos(ξ1) +
cos(ξ2) + cos(ξ1 + ξ2), X2 = sin(ξ1) + sin(ξ2) − sin(ξ1 + ξ2) (with (ξ1, ξ2) ∈ R

2 such that ξ1 − ξ2 > 0,
ξ1 + 2ξ2 > 0 and 2ξ1 + ξ2 < 2π ) becomes a rule for the integration over the interior region bounded by
Steiner’s deltoid of area 2π (cf. e.g. (Koornwinder, 1974b, Section 3))

1

2π2

∫
A(3)
a

f (X1, X2)

√
ρa(X1, X2)

Oa(X1, X2; q)
dX1 dX2 =

∑
l1,l2≥0

l1+l2≤m

f
(
X(m,3)
a;l1ω1+l2ω2

)
Δ̂

(m,3)
a;l1ω1+l2ω2

, (5.2)

where

A(3)
a ={(X1, X2) ∈ R

2 | ρa(X1, X2) > 0},
ρa(X1, X2) =8(X3

1 − 3X1X2
2) − (X2

1 + X2
2 + 9)2 + 108,

Oa(X1, X2; q) =1 + q6 − (q + q5)
(
X2

1 + X2
2 − 3

)
+ (q2 + q4)

(
6 − 5(X2

1 + X2
2) + 2(X3

1 − 3X1X2
2)
)

− q3((X2
1 + X2

2 + 3)2 − 4(X3
1 − 3X1X2

2) − 16
)
,

Δ̂
(m,3)
a;l1ω1+l2ω2

= ρa
(
X(m,3)
a;l1ω1+l2ω2

)
Oa

(
X(m,3)
a;l1ω1+l2ω2

; q
)Δ(m,3)

a;l1ω1+l2ω2
,

and f (X1, X2) is allowed to be any polynomial of total degree at most 2m − 1 in X1, X2. For q = 0
the cubature rule (5.2) can be found in Li et al. (2008, Section 5.2) (cf. also Section 6.1 below) and
for q → 1 in Munthe-Kaas (2006, Section 3.4), Li et al. (2008, Section 5.3) and Hrivnák et al. (2016,
Section 4.1) (cf. also Section 6.3 below).

5.2 Integration on the isosceles right triangle

The fundamental domain A
(n)
b (3.2) boils down to a line segment and an isosceles right triangle,

respectively, when n = 1 and n = 2. The corresponding Christoffel weights in Corollary 3.4 are then
given by the following determinantal formula.

Proposition 5.3 (Determinantal formula for Δ
(m,n)
b;λ , nb ≤ 2). For nb = n ≤ 2 the Christoffel weights

in Corollary 3.4 are of the form

Δ
(m,n)
b;λ =

(
det
[
H(m,n)
b;j,k (ξ

(m,n)
b;λ )

]
1≤j,k≤n

)−1

, (5.3)

with H(m,n)
b;j,k (ξ) taken from equation (3.9).

Proof. The idea of the proof is to provide a corresponding determinantal evaluation formula for the
representations of the Christoffel weights in Theorem 3.3 and Corollary 3.4. To this end one uses that
at the cubature nodes ξ

(m,n)
b;λ , λ ∈ Λ(m,n) the relations in equation (4.4) are satisfied. Specifically, from

the explicit formula for the hyperoctahedral Hall–Littlewood polynomial in equations (3.4a), (3.4b) it
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 21

follows that

|Cb(ξ ; q, q0)|−2
∑

μ∈Λ
(m,n)
b

∣∣∣Pb;μ

(
ξ ; q, q0

)∣∣∣ 2δ
(m,n)
b;μ (q) (5.4a)

=
∑

σ ,σ ′∈Sn
ε,ε′∈{1,−1}n

Cb

(
ε1ξσ1

, . . . , εnξσn
; q, q0

)
Cb

(
ε′

1ξσ ′
1
, . . . , ε′

nξσ ′
n
; q, q0

)Gb

(
ε1ξσ1

− ε′
1ξσ ′

1
, . . . , εnξσn

− ε′
nξσ ′

n

)
,

where

Gb(ξ1, . . . , ξn) :=
∑

μ∈Λ
(m,n)
b

δ
(m,n)
b;μ (q) eiμ1ξ1+···+iμnξn . (5.4b)

For n = 1 this simplifies to

2(m + 1) + Cb(ξ1; q, q0)

Cb(−ξ1; q, q0)
Gb(2ξ1) + Cb(−ξ1; q, q0)

Cb(ξ1; q, q0)
G(−2ξ1) (5.5a)

with

Gb(ξ1) =
∑

0≤μ1≤m

eiμ1ξ1 , (5.5b)

whereas for n = 2 one arrives at

∑
σ ,σ ′∈S2

ε,ε′∈{1,−1}2

Cb

(
ε1ξσ1

, ε2ξσ2
; q, q0

)
Cb

(
ε′

1ξσ ′
1
, ε′

2ξσ ′
2
; q, q0

)Gb

(
ε1ξσ1

− ε′
1ξσ ′

1
, ε2ξσ2

− ε′
2ξσ ′

2

)
(5.6a)

with

Gb(ξ1, ξ2) =
∑

m≥μ1>μ2≥0

eiμ1ξ1+iμ2ξ2 + 1

1 + q

∑
m≥μ1=μ2≥0

eiμ1ξ1+iμ2ξ2 . (5.6b)

In both situations summation of the pertinent geometric series and subsequent elimination of all
instances of e±imξj (j = 1, . . . , n) by means of the relations in equation (4.4), gives rise to a

(cumbersome) expression that can be rewritten as det
[
H(m,n)
b;j,k (ξ)

]
1≤j,k≤n

. �
Remark 5.4 In the planar situation the cubature of Remark 3.5 in the coordinates X1 = 2 cos(ξ1) +
2 cos(ξ2), X2 = 2 cos(ξ1 + ξ2) + 2 cos(ξ1 − ξ2) (with (ξ1, ξ2) ∈ R

2 such that π > ξ1 > ξ2 > 0)
becomes a rule for the integration over the region bounded by the parabola X2

1 − 4X2 = 0, and the lines
−2X1 + X2 + 4 = 0 and 2X1 + X2 + 4 = 0 (cf. e.g. (Koornwinder, 1974a, Section 3)):

1

4π2

∫
A(2)
b

f (X1, X2)

√
ρb(X1, X2)

Ob(X1, X2; q, q0)
dX1 dX2 =

∑
m≥λ1≥λ2≥0

f
(
X(m,2)
b;(λ1,λ2)

)
Δ̂

(m,2)
b;(λ1,λ2)

, (5.7)
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22 J. F. VAN DIEJEN AND E. EMSIZ

where

A(2)
b ={(X1, X2) ∈ R

2 | X2
1 − 4X2 > 0, −2|X1| + X2 + 4 > 0},

ρb(X1, X2) =(X2
1 − 4X2)(2X1 + X2 + 4)(−2X1 + X2 + 4),

Ob(X1, X2; q, q0) =(1 + q4 − (q + q3)X2 + q2(X2
1 − 2X2 − 2)

)
× (1 + q4

0 − (q0 + q3
0)X1 + q2

0(X2 + 2)
)
,

Δ̂
(m,2)
b;(λ1,λ2)

= ρb
(
X(m,2)
b;(λ1,λ2)

)
Ob

(
X(m,2)
b;(λ1,λ2)

; q, q0

)Δ(m,2)
b;(λ1,λ2)

,

and f (X1, X2) is allowed to be any polynomial of total degree at most 2m in X1, X2. For q ∈ {0, 1}
and q0 ∈ {0, 1} the cubature rule (5.7) falls within class of planar cubatures studied in greater generality
in Moody & Patera (2011), Xu (2012), Moody et al. (2014) and Hrivnák et al. (2016, Section 4.2) (cf.
also Sections 6.2 and 6.4 below).

5.3 Numerical test of the determinantal formula for Δ
(m,n)
c;λ with nc > 2

It is expected that the determinantal formulas for the Christoffel weights in Propositions 5.1 and 5.3
in fact persist for nc > 2, but a direct confirmation along the lines of the above proofs for nc = 2
would quickly turn into a very tedious computational tour de force. On the other hand, for f (ξ) ≡ 1
we can evaluate the multivariate integral under consideration explicitly in closed form by means of the
orthogonality relations in equations (2.6) and (3.5) (with μ = ν = 0), in combination with Macdonald’s
constant term identity (cf. (Macdonald, 2000/01, §10))

Pa;0(ξ ; q) = Pb;0(ξ ; q, q0) =
∏

1≤j<k≤n

1 − q1+k−j

1 − qk−j
=
∏

1≤j≤n

1 − qj

1 − q
. (5.8)

By comparing with the (exact) value of the integral produced by the cubature rule this entails the
following identity for the Christoffel weights:

∑
λ∈Λ

(m,n)
c

|Cc(ξ
(m,n)
c;λ )|−2Δ

(m,n)
c;λ =

∏
1≤j≤n

1 − q

1 − qj
(5.9)

(where Cc(ξ) := Ca(ξ ; q) (2.5b) if c = a and Cc(ξ) := Cb(ξ ; q, q0) (3.4b) if c = b). For m = 1 the
identity under consideration specializes to

∑
0≤j≤nc

|Cc(ξ
(1,n)
c;ωc;j

)|−2Δ(1,n)
c;ωc;j

=
∏

1≤j≤n

1 − q

1 − qj
, (5.10)

where ωc;j := ωj (2.4b) if c = a and ωc;j := e1 + · · · + ej if c = b, with the convention that ωc;0 := 0.
Tables 1 and 2 provide numerical examples for m = 1 and nc = 3 that exhibit the cubature

nodes, the values of the Christoffel weights predicted by the determinantal formula and the values of
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 23

Table 1 Hall–Littlewood cubature on the tetrahedron A
(4)
a (2.1): cubature nodes, Christoffel weights

(via the determinantal formula (5.1)) and orthogonality measure for na = 3 and m = 1, with q = 1
5

ξ (1,4)
a;ωa;j

Δ
(1,4)
a;ωa;j |Ca(ξ

(1,4)
a;ωa;j

)|−2

j = 0 (1.7848, 0.58020, −0.58020, −1.7848) 2.6453 · 10−3 50.892
j = 1 (2.9276, 0.21398, −0.99059, −2.1510) 2.6453 · 10−3 50.892
j = 2 (2.5614, 1.3568, −1.3568, −2.5614) 2.6453 · 10−3 50.892
j = 3 (2.1510, 0.99059, −0.21398, −2.9276) 2.6453 · 10−3 50.892

Table 2 Hyperoctahedral Hall–Littlewood cubature on the tetrahedron A
(3)
b (3.2): cubature nodes,

Christoffel weights (via the determinantal formula (5.3)) and orthogonality measure for nb = 3 and
m = 1, with q = 1

5 , q0 = 1
3 , q1 = 1

7

ξ
(1,3)
b;ωb;j

Δ
(1,3)
b;ωb;j

|Cb(ξ
(1,3)
b;ωb;j

)|−2

j = 0 (1.6920, 1.1134, 0.56095) 9.1533 · 10−4 98.915
j = 1 (2.3903, 1.1508, 0.57998) 1.0877 · 10−3 232.57
j = 2 (2.4257, 1.7964, 0.60785) 1.1607 · 10−3 212.18
j = 3 (2.4470, 1.8327, 1.2423) 1.1394 · 10−3 72.198

Table 3 Euclidean distance between the node ξ (1,4)
a;ωa;j

and the Newton iterates of equation (2.11)

starting from the initial estimate 2π
5 (ωa;j + a), with q = 1

5

0 1 2 3 4

j = 0 1.57 · 10−1 8.49 · 10−4 9.32 · 10−8 1.08 · 10−15 1.53 · 10−31

j = 1 idem
j = 2 idem
j = 3 idem

the (hyperoctahedral) Hall–Littlewood orthogonality measure at the nodes. The data in these tables
were computed in Maple using floating point arithmetic with a precision of 8 digits. The quadratic
convergence of Newton’s method for the computation of the nodes in question via equations (2.11), and
(3.10) is illustrated by Tables 3 and 4, respectively; in order to be able to show the convergence up to
the fourth iteration we relied on a high precision computation in Maple of 50 digits.

The data of Tables 1 and 2 are compatible with the equality in equation (5.10) (within the numerical
precision of the tables). Indeed, when c = a the LHS yields 0.53850, which coincides with the value
15625
29016 on the RHS in five decimals. Similarly, when c = b the LHS yields 0.67205, which differs from
the value 125

186 on the RHS by a unit in the fifth decimal (caused by the rounding error stemming from
the precision of the data in the table).

As a second check we have tested the cubature rules in question with the determinantal expressions
for the Christoffel weights beyond the domain of exact integration. To this end the function

exp( 1
2 cos ξ1 + · · · + 1

2 cos ξn)/Oa(ξ ; q) (5.11a)
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24 J. F. VAN DIEJEN AND E. EMSIZ

Table 4 Euclidean distance between the node ξ
(1,3)
b;ωb;j

and the Newton iterates of equation (3.10)

starting from the initial estimate π
5 (ωb;j + b), with q = 1

5 , q0 = 1
3 , q1 = 1

7

0 1 2 3 4

j = 0 2.50 · 10−1 3.35 · 10−3 7.49 · 10−7 4.02 · 10−14 1.29 · 10−28

j = 1 1.69 · 10−1 8.19 · 10−4 4.82 · 10−8 1.66 · 10−16 2.11 · 10−33

j = 2 1.26 · 10−1 2.70 · 10−4 3.12 · 10−9 6.72 · 10−19 3.15 · 10−38

j = 3 8.56 · 10−2 2.03 · 10−4 9.34 · 10−10 4.86 · 10−20 1.60 · 10−40

Table 5 Comparison for m = 1 of the Hall–Littlewood cubature HLC (Corollary 2.5) using
the determinantal formula (5.1) and the Schur cubature SC (Proposition 6.1), when integrating the
testfunction (5.11a) with q = 1

5 against ρa(ξ)

na = 2 na = 3
Value Relative Value Relative

integral error integral error

Maple 0.7317 0.5825
HLC 0.7450 1.8 · 10−2 0.5926 1.7 · 10−2

SC 0.6862 6.2 · 10−2 0.5452 6.4 · 10−2

Table 6 Comparison for m = 1 of the hyperoctahedral Hall–Littlewood cubature HHLC
(Corollary 3.4) using the determinantal formula (5.3) and the symplectic Schur cubature SSC (equation
(6.4)), when integrating the test function (5.11b) with q = 1

5 , q0 = 1
3 and q1 = 1

7 against ρb(ξ)

nb = 2 nb = 3
Value Relative Value Relative

integral error integral error

Maple 1.17979 0.964386
HHLC 1.18029 4.2 · 10−4 0.964801 4.3 · 10−4

SSC 1.11198 5.7 · 10−2 0.905819 6.1 · 10−2

Table 7 Comparison of the relative cubature errors when integrating the testfunction (5.11a), (5.11b)
against ρc(ξ) for nc = 2 (q = 1

5 , q0 = 1
3 and q1 = 1

7 )

m = 1 m = 2 m = 3 m = 4

HLC 1.8 · 10−2 3.2 · 10−4 2.4 · 10−6 9.8 · 10−9

SC 6.2 · 10−2 1.3 · 10−2 2.5 · 10−3 5.4 · 10−4

HHLC 4.2 · 10−4 1.8 · 10−5 1.4 · 10−7 5.7 · 10−10

SSC 5.7 · 10−2 6.7 · 10−3 7.5 · 10−4 8.3 · 10−5

( = exp
( 1

2 Re(Ma;ω1(ξ))
)
/Oa(ξ ; q)

)
with q = 1

5 was integrated in Maple with a precision of 8 digits
against the weight function ρa(ξ), both for n = 3 (when the determinantal expression is justified by
Proposition 5.1) and for n = 4 (when the determinantal expression is conjectural). Table 5 shows for
m = 1 that in both cases the corresponding Hall–Littlewood cubature from Corollary 2.5 performs
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 25

somewhat better than the corresponding Schur cubature from Proposition 6.1 (below). Similarly, the
function

exp(cos ξ1 + · · · + cos ξn)/Ob(ξ ; q, q0) (5.11b)( = exp
( 1

2 Mb;ω1(ξ)

)
/Ob(ξ ; q, q0)

)
with q = 1

5 , q0 = 1
3 and q1 = 1

7 was integrated in Maple with a
precision of 8 digits against the weight function ρb(ξ); Table 6 reveals for m = 1 that the corresponding
hyperoctahedral Hall–Littlewood cubature from Corollary 3.4 significantly outperforms the symplectic
Schur cubature from equation (6.4) (below), both when n = 2 (with the determinantal expression being
justified by Proposition 5.3) and when n = 3 (with the determinantal expression being conjectural).

Table 7 illustrates that by augmenting the number of nodes there is a clear tendency in both examples
for the planar (hyperoctahedral) Hall–Littlewood cubature to perform significantly better than the
(symplectic) Schur cubature (by producing roughly twice as many significant digits). To achieve the
required accuracy the latter table was computed in Maple with a precision of 12 digits.

6. Degenerations: q = 0 and q = 1

The (hyperoctahedral) Hall–Littlewood cubatures of Theorems 2.4 and 3.3 turn out to unify several
previous rules from the literature. In this section we identify a few examples stemming from the
specializations q = 0 and q = 1.

6.1 Schur cubature for c = a

At q = 0 the Hall–Littlewood polynomial Pa;μ(ξ ; q) (2.5a), (2.5b) simplifies to a Schur polynomial.
Theorem 2.4 (in its its algebraic reformulation of Remark 2.6) then reduces to a more elementary
cubature rule from Li & Xu (2010); Moody & Patera (2011). In the present formulation this rule is
well suited to integrate homogeneous symmetric polynomials against the density of the CUE.

Proposition 6.1 (Schur cubature: c = a). For q = 0 (and m ∈ Z>0) the cubature rule in Theorem 2.4
specializes to

1

(2π)n−1n1/2

∫
A

(n)
a

f (ξ)ρa(ξ) d ξ = 1

n(n + m)n−1

∑
λ∈Λ

(m,n)
a

f
(2π(a + λ)

m + n

)
ρa

(2π(a + λ)

m + n

)
, (6.1)

where a = (a;1, . . . , a;n) and f (ξ) denotes an arbitrary symmetric polynomial in P
(2m+1,n)
a .

Proof. As argued in Remark 2.3 when q = 0 the nodes are positioned at: ξ
(m,n)
a;λ = 2π(a+λ)

m+n

(λ ∈ Λ
(m,n)
a ). The corresponding Christoffel weights simplify in this situation to

Δ
(m,n)
a;λ =

∣∣∣∣Ca

(
2π(a + λ)

m + n
; 0

)∣∣∣∣ 2

⎛
⎜⎝ ∑

μ∈Λ
(m,n)
a

∣∣∣∣Pa;μ

(
2π(a + λ)

m + n
; 0

)∣∣∣∣ 2

⎞
⎟⎠

−1

=
⎛
⎜⎝ ∑

μ∈Λ
(m,n)
a

∣∣∣∣∣det

[
exp

(
2π i(a;j + μj)(a;k + λk)

m + n

)]
1≤j,k≤n

∣∣∣∣∣ 2

⎞
⎟⎠

−1

= 1

n(n + m)n−1
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26 J. F. VAN DIEJEN AND E. EMSIZ

(where the last step relies on well-known discrete orthogonality relations for the antisymmetric
monomials, cf. e.g. (Kac, 1990, §13.8), (van Diejen, 2007, Section 4.2) and (Moody & Patera, 2011,
Section 7.4)). It remains to infer that at q = 0 the cubature formula extends from f ∈ P

(2m−1,n)
a to

f ∈ P
(2m+1,n)
a , which is done by carefully reviewing/adapting the proof of Theorem 2.4. Indeed, if

μ ∈ Λ
(m+1,n)
a \ Λ

(m,n)
a then Pa;μ

(
2π(a+λ)

m+n ; 0
)

= 0 for all λ ∈ Λ
(m,n)
a (by Proposition 4.1). So at q = 0

the equality between the orthogonality relations in equations (2.6) and (2.18) (and thus the cubature
rule with f (ξ) of the form in equation (2.19)) is in fact valid for any μ ∈ Λ

(m+1,n)
a and ν ∈ Λ

(m,n)
a (cf.

Remark 4.2). �
Up to rescaling (of the underlying root– and weight lattices) by the (index) factor n the cubature

rule in Proposition 6.1 boils down to that of Li & Xu (2010, Theorem 5.8). Moreover, the cubature in
question can also be seen as a special case of Moody & Patera (2011, Theorem 7.2) corresponding to
the root system R = An−1 (cf. also (Munthe-Kaas, 2006)).

Remark 6.2 Proposition 6.1 elucidates in particular that at q = 0 the degree of exactness jumps to the
optimal Gaussian value 2m + 1. Indeed, as emphasized in the above proof: Proposition 4.1 recovers the
known fact that the q = 0 cubature nodes 2π(a+λ)

m+n , λ ∈ Λ
(m,n)
a consist of common roots of the Schur

polynomials Pa;μ(ξ ; 0), μ ∈ Λ
(m+1,n)
a \Λ

(m,n)
a (cf. (Li & Xu, 2010, Theorem 5.7) and (Moody & Patera,

2011, Section 5)).

Remark 6.3 Proposition 6.1 confirms that at q = 0 the determinantal formula for the Christoffel
weights in Proposition 5.1 persists for arbitrary na = n − 1 ≥ 1. Indeed, for this special parameter
value:

det
[
H(m,n)
a;j,k (ξ)

]
1≤j,k≤n

= det
[
(m + n)δj,k − 1

]
1≤j,k≤n

= m(m + n)n−1

(where δj,k refers to the Kronecker delta).

6.2 Schur cubature for c = b

At q = 0 the cubature rule in Section 3.4 becomes of a type studied in van Diejen & Emsiz (2018b).
The rules in question are designed to integrate symmetric functions, with prescribed poles at coordinate
hyperplanes, against the density of the CQE.

Proposition 6.4 (Schur cubature: c = b). For q = 0 (with q0, q1 ∈ (−1, 1) and m ∈ Z>0) the cubature
rule in Corollary 3.4 specializes to

1

(2π)n

∫
A

(n)
b

Rb(ξ)ρb(ξ) d ξ =
∑

λ∈Λ
(m,n)
b

Rb
(
ξ

(m,n)
b;λ

)
ρb
(
ξ

(m,n)
b;λ

)
Δ

(m,n)
b;λ , (6.2a)

where

Rb(ξ) = f (ξ)∏
1≤j≤n(1 − 2q0 cos(ξj) + q2

0)
, (6.2b)
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 27

with f (ξ) denoting an arbitrary symmetric polynomial in P
(2m,n)
b . The corresponding cubature roots and

Christoffel weights then take the form

ξ
(m,n)
b;λ =

(
ξ

(m+n)
λ1+n−1, ξ (m+n)

λ2+n−2, . . . , ξ (m+n)
λn−1+1, ξ (m+n)

λn

)
(6.2c)

and

Δ
(m,n)
b;λ =

∏
1≤j≤n

Δ
(m+n)
λj+n−j, (6.2d)

respectively, where

Δ
(m+n)
l := Δ

(m+n−1,1)
b;l =

(
2(m + n) + uq0

(
ξ

(m+n)
l

)+ uq1

(
ξ

(m+n)
l

))−1
(6.2e)

and ξ
(m+n)
l := ξ

(m+n−1,1)
b;l denotes the unique real root of the transcendental equation

2(m + n)ξ + vq0
(ξ) + vq1

(ξ) = 2π(l + 1) (6.2f)

(0 ≤ l < m + n).

Proof. It is immediate from equation (3.10) that at q = 0 the nodes are of the form in equation (6.2c)
with ξ

(m+n)
l solving equation (6.2f). Moreover, we have that (cf. (van Diejen et al., 2018, Remark 3.7))

Pμ(ξ ; 0, q0) =
det[pn−j+μj

(ξk; q0)]1≤j,k≤n∏
1≤j<k≤n(2 cos(ξj) − 2 cos(ξk))

,

with

pl(ξ ; q0) := c(ξ ; q0) eilξ + c(−ξ ; q0) e−ilξ , c(ξ ; q0) := 1 − q0 e−iξ

1 − e−2iξ
. (6.3)

The corresponding Christoffel weights thus take the form

Δ
(m,n)
b;λ =|Cb(ξ

(m,n)
b;λ ; 0, q0)|2

( ∑
μ∈Λ

(m,n)
b

∣∣∣Pb;μ

(
ξ

(m,n)
b;λ ; 0, q0

)∣∣∣ 2
)−1

=
∣∣∣∣∣∣
∏

1≤k≤n

c
(
ξ

(m+n)
n−k+λk

; q0

)∣∣∣∣∣∣ 2 ×
( ∑

μ∈Λ
(m,n)
b

(
det[pn−j+μj

(ξ
(m+n)
n−k+λk

; q0)]1≤j,k≤n

)2
)−1

.
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28 J. F. VAN DIEJEN AND E. EMSIZ

The sum in the denominator can be rewritten as:

∑
μ∈Λ

(m,n)
b

(
det[pn−j+μj

(ξ
(m+n)
n−k+λk

; q0)]1≤j,k≤n

)2

=
∑

m+n>ν1>ν2>...>νn≥0

(
det[pνj

(ξ
(m+n)
n−k+λk

; q0)]1≤j,k≤n

)2

(i)= det

⎡
⎣ ∑

0≤ν<m+n

pν(ξ
(m+n)
n−j+λj

; q0)pν(ξ
(m+n)
n−k+λk

; q0)

⎤
⎦

1≤j,k≤n

(ii)= det

⎛
⎝diag

⎡
⎣ ∑

0≤ν<m+n

∣∣∣pν(ξ
(m+n)
n−k+λk

; q0)

∣∣∣ 2

⎤
⎦

1≤k≤n

⎞
⎠ ,

where we relied on the Cauchy–Binet formula (i) and on a special instance of the orthogonality in
equation (3.7a) corresponding to a single variable on m + n nodes (ii).

The upshot is that the Christoffel weights factorize at q = 0 as follows:

Δ
(m,n)
b;λ =

∏
1≤j≤n

Δ
(m+n)
n−j+λj

with

Δ
(m+n)
l =

∣∣∣c(ξ (m+n)
l ; q0

)∣∣∣ 2

⎛
⎝ ∑

0≤ν<m+n

∣∣∣pν(ξ
(m+n)
l ; q0)

∣∣∣ 2

⎞
⎠

−1

= Δ
(m+n−1,1)
b;l =

(
2(m + n) + uq0

(
ξ

(m+n)
l

)+ uq1

(
ξ

(m+n)
l

))−1
,

where the last equality hinges on the formula in Proposition 5.3 (with nb = 1 and m + n nodes). �
The rule in Proposition 6.4 boils down to a special case of van Diejen & Emsiz (2018b, Theorem

2) with d = d̃ = 1 and ε±, ε̃± = 1. It fits within a general framework due to Berens, Schmid and Xu
designed to promote Gaussian quadratures to cubature rules for symmetric functions, cf. Berens et al.
(1995, equation (8)). If in addition q0 = q1 = 0 then our rule simplifies further:

1

(2π)n

∫
A

(n)
b

f (ξ)ρb(ξ) d ξ = 1

2n(m + n + 1)n

∑
λ∈Λ

(m,n)
b

f
(π(b + λ)

m + n + 1

)
ρb

(π(b + λ)

m + n + 1

)
, (6.4)

where b := (b;1, . . . , b;n) and f (ξ) denotes an arbitrary symmetric polynomial in P
(2m+1,n)
b . As

before the jump to the optimal Gaussian degree of exactness 2m + 1, at vanishing parameter values, is
a consequence of the fact that the pertinent cubature nodes π(b+λ)

m+n+1 , λ ∈ Λ
(m,n)
b are common roots of

the (symplectic) Schur polynomials Pb;μ(ξ ; 0, 0, 0), μ ∈ Λ
(m+1,n)
b \ Λ

(m,n)
b (cf. Remark 4.2). In fact, the
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CUBATURE RULES FROM HALL–LITTLEWOOD POLYNOMIALS 29

(symplectic) Schur cubature rule in equation (6.4) can be identified as a special case of the Gaussian
cubature rule in van Diejen & Emsiz (2019, equations (9.2a), (9.2b)) with ε± = 1. Closely related
cubature rules were discussed in Hrivnák & Motlochová (2014, Section 5).

Remark 6.5 Proposition 6.4 confirms that at q = 0 the determinantal formula for the Christoffel
weights in Proposition 5.3 persists for arbitrary nb = n ≥ 1 since for this special parameter value:

det
[
H(m,n)
b;j,k (ξ)

]
1≤j,k≤n

= det
(

diag
[
2(m + n) + uq0

(ξj) + uq1
(ξj)
]

1≤j≤n

)
=
∏

1≤j≤n

(
2(m + n) + uq0

(ξj) + uq1
(ξj)
)
.

6.3 Monomial cubature

At q = 1 the Hall–Littlewood polynomial degenerates to a symmetric monomial Pa;μ(ξ ; 1) =
Na;μMa;μ(ξ), μ ∈ Λ

(m,n)
a . The corresponding cubature rule can be found in Li & Xu (2010, Section

5.3) in the algebraic formulation of Remark 2.6 (upon rescaling the variables with the index n) and in
Munthe-Kaas (2006, Section 3.2) and Hrivnák et al. (2016, Section 3.2) (upon specialization to the root
system R = An−1):

1

(2π)n−1n1/2

∫
A

(n)
a

f (ξ) d ξ = 1

n mn−1

∑
λ∈Λ

(m,n)
a

f

(
2πλ

m

)
δ
(m,n)
a;λ (1) (6.5a)

for f (ξ) in P
(2m−1,n)
a , where

δ
(m,n)
a;λ (1) =

∏
1≤j<k≤n
λj−λk=0

k − j

1 + k − j

∏
1≤j<k≤n
λj−λk=m

n − k + j

n + 1 − k + j
. (6.5b)

Remark 6.6 By adapting the proof of Theorem 2.4 the cubature in equations (6.5a), (6.5b) can be
readily inferred independently. To this end it suffices to replace the orthogonality relations in equations
(2.6) and (2.18) by the corresponding q = 1 degenerations:

1

n mn−1

∑
λ∈Λ

(m,n)
a

Pa;μ

(
2πλ

m
; 1

)
Pa;ν

(
2πλ

m
; 1

)
δ
(m,n)
a;λ (1) =

{
1/δ

(m,n)
a;μ (1) if ν = μ

0 if ν �= μ

(cf. e.g. (van Diejen & Vinet, 1998, Section 5.2)) and

1

(2π)n−1n1/2

∫
A

(n)
a

Pa;μ(ξ ; 1)Pa;ν(ξ ; 1) d ξ =
{

Na;μ if ν = μ

0 if ν �= μ

(μ, ν ∈ Λ
(m,n)
a ).
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30 J. F. VAN DIEJEN AND E. EMSIZ

6.4 Symmetrized quadrature

For q = 1 the multivariate hyperoctahedral Hall–Littlewood polynomials can be conveniently expressed
in terms of the corresponding univariate polynomials:

Pb;μ(ξ ; 1, q0) =
∏

1≤j≤n

pμj
(ξj; q0) (6.6)

(where pl(ξ ; q0) is taken from equation (6.3)). Our cubature rule then becomes an n-fold product of
quadratures restricted to the space of symmetric functions:

1

(2π)n

∫
A

(n)
b

Rb(ξ1, . . . , ξn)
∏

1≤j≤n

ρb(ξj) d ξj (6.7a)

=
∑

λ∈Λ
(m,n)
b

Rb
(
ξ

(m+1)
λ1

, . . . , ξ (m+1)
λn

)⎛⎝ ∏
1≤j≤n

ρb(ξ
(m+1)
λj

)Δ
(m+1)
λj

⎞
⎠ δ

(m,n)
b;λ (1),

where the integration measure determined by ρb(ξ) = 4(1 − cos2(ξ)), the Christoffel weights Δ
(m+1)
l

and nodes ξ
(m+1)
λj

are governed by equations (6.2e) and (6.2f) and

δ
(m,n)
b;λ (1) =

∏
1≤j<k≤n
λj−λk=0

k − j

1 + k − j
. (6.7b)

The cubature rule in question is exact for symmetric rational functions with prescribes poles of the form

Rb(ξ1, . . . , ξn) = f (ξ1, . . . , ξn)∏
1≤j≤n(1 − 2q0 cos(ξj) + q2

0)
, (6.7c)

where f (ξ1, . . . , ξn) denotes an arbitrary symmetric polynomial in P
(2m,n)
b (or in P

(2m+1,n)
b if q1 = 0, cf.

Remark 4.2).

Remark 6.7 As before (cf. Remark 6.6) the cubature in equations (6.7a) to (6.7c) is readily verified by
adapting the proof of Theorem 3.3. The relevant q = 1 degenerations of the orthogonality relations in
equations (3.5) and (3.16) read:

∑
λ∈Λ

(m,n)
b

(
Pb;μ

(
ξ

(m+1)
λ1

, . . . , ξ (m+1)
λn

; 1, q0

)
Pb;ν

(
ξ

(m+1)
λ1

, . . . , ξ (m+1)
λn

; 1, q0

)
δ
(m,n)
b;λ (1)

×
∏

1≤j≤n

|c(ξ (m+1)
λj

; q0)|−2Δ
(m+1)
λj

)
=
{

1/δ
(m,n)
b;μ (1) if ν = μ,

0 if ν �= μ,
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and

1

(2π)n

∫
A

(n)
b

Pb;μ(ξ1, . . . , ξn; 1, q0)Pb;ν(ξ1, . . . , ξn; 1, q0)
∏

1≤j≤n

|c(ξj; q0)|−2 d ξ

=
{

1/δ
(m,n)
b;μ (1) if ν = μ,

0 if ν �= μ.

Remark 6.8 The cubature rule in equations (6.7a) to (6.7c) amounts to a particular example of the
symmetrized n-fold quadrature rule in Berens et al. (1995) (cf. the formula in loc. cit. on the middle
of page 31). The pertinent underlying orthogonal polynomials pl(ξ ; q0) (6.3) can be identified as one-
parameter Bernstein–Szegö polynomials of the second kind (Szegö, 1975, Section 2.6). For specific
values of the parameter q0 one reduces to Chebyshev polynomials of the second kind (q0 = 0), of
the third kind (q0 = −1) or of the fourth kind (q0 = 1), respectively (cf. e.g. (van Diejen & Emsiz,
2019, Remark 6.1)). When specializing q1 in the same way the associated quadratures stem from the
orthogonality relations of standard discrete (co)sine transforms: DCT-2 (q0 = 1, q1 = 1), DCT-4 (q0 =
1, q1 = −1), DCT-8 (q0 = 1, q1 = 0), DST-1 (q0 = 0, q1 = 0), DST-2 (q0 = −1, q1 = −1), DST-4
(q0 = −1, q1 = 1), DST-5 (q0 = 0, q1 = −1), DST-6 (q0 = −1, q1 = 0), DST-7 (q0 = 0, q1 = 1), cf.
e.g. (van Diejen & Emsiz, 2018b, equation (3.8)). A systematic study of some of these and other closely
related symmetrized n-fold quadrature rules was carried out in Hrivnák & Motlochová (2014), Moody
et al. (2014), Hrivnák et al. (2016).
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