
Plan Repair

A framework and a new heuristic with applications to logis-
tics

TRAIL Research School, Delft, November 2004

Authors
Ir. Roman van der Krogt
Dr. Mathijs de Weerdt
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
University of Technology

c© 2004 by R. van der Krogt, M. de Weerdt and TRAIL Research School

Contents

Abstract

1 Introduction . 1

2 Refinement Planning. 3

3 Plan repair . 5

4 Existing Strategies . 6

5 A New Unrefinement Heuristic . 7

6 Experimental Results . 9

7 Discussion . 13

Acknowledgements . 13

References . 14

Abstract

Planning can be a valuable tool for supporting a wide array of real-world prob-
lems, such as logistics, manufacturing and control. However, these applications
are often highly dynamic, resulting in plans that require updating. In such sit-
uations, plan repair methods can be used to adapt the plan.

In this paper, we propose a general framework for plan repair. This framework
is based on an existing general framework for planning, the so-called refinement
planning approach. One of the advantages of a general framework is that it helps
to understand existing techniques and improve upon them. As an example of
this, we show how we can extend an existing planning method into a system
that can also deal with plan repair problems. This system is tested on a number
of benchmark problems that deal with abstract transportation problems.

Keywords

planning, replanning, transport, logistics

Plan Repair 1

1 Introduction

In our everyday lives, we are often confronted with problems of the form “How
should I achieve X?”. For example, X can be things like “finishing this research
paper”, “traveling to Edinburgh” or “finding information on the TRAIL research
school”. The solution to such problems often take the form of a list of steps to
take. Problems of this type are referred to as planning problems. More formally,
in a typical planning problem, the agent (the person or entity that wishes to
achieve a certain goal) has a description of that part of the world that is relevant
(the current state of the world), a description of the goals it wants to attain,
and the list of steps (often referred to as actions) that may be taken (including
their preconditions and effects). The task, then, is to find a (partially ordered)
sequence of actions that (when executed by the agent) brings the world from
the current state into a state in which the agent has attained its goals.

Example 1. Suppose our desire is to travel to Edinburgh. To model this as a planning
problem, we should specify the current state, the goal, and the actions that we may
take.

• The specification of the current state should obviously contain our current loca-
tion. Furthermore, it should specify train and bus timetables, flight schedules,
taxi fares, and all other information that may be required during planning.

• The goal in this case is easy, we want our location to be in Edinburgh.

• The list of steps that we can take includes such actions as “booking a flight”,
“buying a ticket”, “biking to the train station”, “ringing a cab”, “checking-in
for a flight”, etc. For all of these, we list the necessary preconditions and effects.
For example, “checking-in for a flight” requires a reservation and our presence at
the right check-in desk (with any baggage that we want to bring). The effect of
our action would be that our luggage disappears into the dark vaults of Schiphol
(hopefully to reappear in Edinburgh), and that a boarding pass has been issued to
us.

A plan for this problem could start as follows: “book a flight”, “walk to the station”,
“buy a train ticket”, “travel to Schiphol Airport”, “proceed to the right check-in desk”,
etc.

Often, when such a plan is executed, the world may change in an unexpected
way; either because of actions by other agents or unexpected consequences of
actions of the agent itself. When this happens, the agent needs to reconsider the
remainder of its plan. This process is called plan repair (sometimes also referred
to as replanning).

Example 2. An example of failures in our plan for traveling to Edinburgh could be an
action that fails, such as missing the train (e.g. due to a long queue at the ticket counter).
Also the initial state or goals may change and render a plan broken. For example, our
goal may change to be in a specific location in Edinburgh, instead of Edinburgh in

2 TRAIL Research School, Delft, November 2004

general, or the initial state may change in that there are no trains going to Schiphol this
early in the morning, because of construction works.

In previous work (van der Krogt et al., 2003), we showed the similarities between
such plan repair methods and normal planning methods: the so-called refinement
planning framework (Kambhampati, 1997) was shown to be able to model plan
repair methods as well, by relaxing certain restrictions to it. Subsequent work
(first reported in (van der Krogt and de Weerdt, 2004)) led to the unrefinement
planning framework, which is a general framework to model plan repair systems.
There are two clear benefits of the new framework with respect to the (ab)use
of the refinement planning approach as we did earlier:

1. It is clearer, more precise and more elegant than our initial attempt at using
the refinement planning framework as a basis for a plan repair framework.

2. The new framework clearly distinguishes the two alternating phases of
plan repair: on the one hand, plans need to be broken down to some extent
(to remove actions that are no longer applicable in the new situation) and
on the other hand, plans need to be extended to include actions solving
the problem.

A benefit of general frameworks is that it allows to compare existing methods
and devise new ones based on the framework. In this paper, we discuss the
unrefinement planning framework and briefly show how some existing plan
repair systems can be conceived as instances of the framework. To show how
the framework can help to develop new techniques, we present a heuristic
method that can be used to incorporate existing planners with plan repair.
Experimental results show that the resulting system is competitive on a number
of benchmark problems in some abstract transportation domains.

First, however, we briefly summarize the most important elements of the re-
finement framework for plan construction.

Plan Repair 3

2 Refinement Planning

Plans are constructed to solve a certain planning problem. Such a planning
problem, denoted byΠ, is described by (i) information about which actions can
be used, (ii) the description of the initial state, and (iii) a specification of the goal
state.

A plan is a sequence of actions. It can be constructed in a series of steps. One way
to look at this construction process is to see it as an iterative refinement of the set
of all possible plans. This view is called refinement planning (Kambhampati et al.,
1995; Kambhampati, 1997). Since most existing (classical) planning algorithms
can be conceived in this way, it can be considered a unifying view on planning.
The idea behind refinement planning is that we start with a set of all possible
sequences of actions and reduce this set by adding constraints (such as “all plans
in this set should at least have this specific action”, or “action 5 should take place
before action 14”) until all plans that match the constraints are solutions to the
planning problem.1 During this refinement, not this set of all candidate plans is
stored, but the constraints are stored in a so-called partial plan.

The set of candidate plans that a partial plan P represents is denoted by
candidates(P). This set contains all action sequences c for which all the actions
in P are present in c, in an order consistent with the ordering described by the
partial plan. Note that candidates(P) may include plans with more actions than
P, as long as the constraints are all met. We define a minimal candidate to be a
candidate that does not contain more actions than the partial plan P.

A refinement strategy defines how a partial plan is to be extended and the set
of candidates thus refined. A refinement strategy R is a function that maps a
partial plan P to a set of partial plans P = {P1, . . . ,Pn}, such that for each of the

1Note that the presence of a particular action is considered a constraint on the final plan as
well: the constraints are not defined over actions, but over the plan as a whole.

Algorithm 1 Refine (P,Π)

Input: A partial plan P and a problemΠ

Output: A solution toΠ or ‘fail’

begin
1. if candidates(P) is empty then

1.1. return fail;

2. if solution(P,Π) returns a solution ∆ then
2.1. return ∆;

3. Select a refinement strategy R and generate the new plan set P′ = R(P).
4. Non-deterministically select a component P′i ∈ P′ and call Refine(P′i ,Π).

end

4 TRAIL Research School, Delft, November 2004

partial plans, the candidate set is a subset of candidates(P). Furthermore, we
introduce a function called solution that can be used to determine whether the
minimal candidate of a partial plan is a solution to a given planning problem.
If it is, the sequence of actions that solves the problem is returned.

A general refinement planner uses an algorithm as outlined in Algorithm 1.
Starting with an empty constraint set, represented by an empty partial plan,
say P, check whether a minimal candidate of P is a solution to the problem at
hand. If so, we are done. If not, we apply a refinement strategy R to obtain
a collection of partial plans P = R(P) where each partial plan has a different
additional constraint with respect to P. Select a component P′ ∈ P and check
again whether a minimal candidate of this partial plan is a solution and apply
R again if not.2 Proceed until a solution is obtained, or the set of partial plans is
empty. Clearly, the particular refinement strategy is crucial to this approach. It
is therefore that different planning algorithms mainly differ in their refinement
strategy.

By removing the restriction that we can only add constraints, refinement plan-
ning can be seen as a unifying view on both planning and plan repair (van der
Krogt et al., 2003). However, it is not very elegant, and, more importantly, hides
the fact that plan repair really constitutes two separate activities: removing
actions from the plan that are obstructing the successful alteration of the plan,
and the (often subsequent) expanding of the plan to include actions solving the
planning problem. Therefore, we propose the unrefinement planning approach.

2Note that the “select” here is in fact a non-deterministically selection. In practice, the wrong
one may be selected. In that case, the process should be tracked back, and continued at this
point with another decision.

Plan Repair 5

3 Plan repair

In the previous section, we discussed Khambampati’s (1997) refinement plan-
ning as a unifying approach to planning. This refinement planning approach
always adds constraints to the partial plan. However, to recover from errors,
we may have to remove actions, or orderings, or other constraints, as part of
the process of repairing our plan. Thus, the refinement planning approach is
not suitable for plan repair purposes. However, just as the refinement planning
approach provides a template for planning algorithms, we would like to have
a template for plan repair algorithms.

Our plan repair template differs from refinement planning in only two ways.
First, we choose between unrefining the plan, i.e. removing refinements (con-
straints), or refining the plan, i.e. adding refinements. For unrefining a plan
we select an unrefinement strategy D and apply it to the partial plan P. Re-
finement takes place as in the regular refinement planning approach (step 4.1
in Algorithm 2). Second, we use a history H to keep track of the refinements
and unrefinements we have made, in order to be able to prevent doing double
work (and endless loops). Each call to a refinement or unrefinement strategy
updates the history to reflect which partial plans have already been considered.
Techniques like Tabu-search (Glover and Laguna, 1993) may be employed to
best make use of this available memory. The refinement plan repair template is
depicted in Algorithm 2.

Algorithm 2 Plan Repair (P,Π,H)

Input: A partial plan P, a problem Π and a historyH
Output: A solution toΠ or ‘fail’

begin
1. if candidates(P) is empty then

1.1. return fail;

2. if solution(P,Π) returns a solution ∆ then
2.1. return ∆;

3. if we choose to unrefine then
3.1. Select a unrefinement strategyD and generate the new plan set 〈P,H ′〉 =
D(P,H).

4. else
4.1. Select a refinement strategy R and generate the new plan set 〈P,H ′〉 =
R(P,H).

5. Non-deterministically select a component Pi ∈ P and call Plan Repair(Pi,Π,H′).
end

6 TRAIL Research School, Delft, November 2004

4 Existing Strategies

In this section we support our claim that the plan repair template is a unifying
approach to plan repair. We do this by showing how some existing plan repair
algorithms can be conceived as instances of the template algorithm (Algorithm
2). More specifically, we show which refinement and unrefinement strategies
are present in these systems.

The first system we look at is called Replan (Boella and Damiano, 2002). Their
model of plans is similar to the plans used in the hierarchical task network (HTN)
formalism as described by Erol et al. (1994). A task network is a description of a
possible way to fulfill a task by doing some subtasks, or, eventually (primitive)
actions. For each task at least one such a task network exists. A plan is created
by choosing the right task networks for each chosen (abstract) task, until each
network consists of only (primitive) actions. Throughout this planning process,
Replan constructs a derivation tree that includes all chosen tasks, and shows how
a plan has been derived.

Plan repair within Replan is called partialisation. For each invalidated leaf node
of the derivation tree, the (smallest) subtree that contains this node is removed
(unrefinement, step 3.1). Initially, such an invalid leaf node is a primitive action,
and the root of the corresponding subtree is the task whose network contained
this action. Subsequently, a new refinement is generated for this task (step 4.1).
If the refinement fails, a new round is started in which subtrees for tasks higher
in the hierarchy are removed and regenerated. In the worst case, this process
continues until the whole derivation tree is discarded.

The GPG system by Gerevini and Serina (2000) uses an approach based on
the Graphplan planner (Blum and Furst, 1997). The idea of GPG is to divide
a plan in three parts: the head of the plan that consists of actions that can all
be executed from the current state, a tail that can be executed from some state
during execution of the plan to obtain the goals, and a middle part consisting
of actions coming after the head and before the tail. These three parts can be
identified using the planning graph that was constructed during the planning
phase. The middle part is then discarded (unrefinement, step 3.1) and a plan is
sought to bridge the gap that exists between the head and the tail of the plan
(refinement, step 4.1). If such a plan cannot be found, the gap is enlarged and
the process repeats. Eventually, all of the plan will be discarded, in which case
a completely new plan is constructed (if possible).

Other systems can be shown to fit the template as well. Examples include well-
known systems such as the SPA plan adaptation system by Hanks and Weld
(1995), MRL (Koehler, 1994) and the Sherpa replanner of Koenig et al. (2002).

Plan Repair 7

5 A New Unrefinement Heuristic

Besides a unifying view on replanning systems, the template algorithm also
gives us pointers for devising new plan repair methods. In the methods pre-
sented in the previous section, the refinement and unrefinement strategies are
tuned such that they complement each other. In this section we present an un-
refinement heuristic that can reuse an existing planning heuristic to incorporate
plan repair in planners using that heuristic. The planning heuristic that we use
in our unrefinement strategy is arbitrary, as long as it can evaluate partial plans
for their fitness (i.e. attach a value to a given partial plan indicating how close
to a solution it is). In the resulting system, the refinement and unrefinement
strategies are automatically tuned, because the unrefinement heuristic makes
use of the refinement heuristic to calculate heuristic values.

Our approach to unrefinement is sketched in Figure 1. On the lefthand side, we
have the current plan P that is to be unrefined. Then, we compute a number of
plans that result from removing actions from P. For each of the resulting plans,
we subsequently use the chosen planning heuristic (for example, a planning
graph heuristic is depicted in the figure) to estimate the amount of work it will
require to transform this plan into a valid plan (i.e. a a heuristic value for that
plan is calculated). In greater detail, this procedure consists of the following
steps.

The first step is to decide which actions we consider for removal (and thus, for
which plans we would like to calculate the heuristic value). Ideally, we would
like to consider all possible combinations of actions. However, there are an

⇒

⇒

⇒ ⇒

�

�

⇒ ⇒

⇒

h2

h1

h3

Figure 1: Sketch of the unrefinement heuristic. From the original plan on the
left, we derive three subplans and calculate heuristic values (h1, h2, and h3)
for them using (in this case) a planning graph heuristic.

8 TRAIL Research School, Delft, November 2004

exponential number of such combinations to investigate. Since the idea was to
quickly calculate an estimate, considering an exponential number of plans is
no option. Instead, we only consider removing certain sets of actions. These
sets have the following requirements: firstly, the actions should form a tree of a
number of levels deep. At the first level, we have exactly one action, subsequent
levels should either consist of all actions that satisfy preconditions of the actions
on the previous level (if the tree is going backwards in time), or it should consist
of all actions that have preconditions satisfied by actions at the previous level
(if the tree is forward in time). Secondly, the root action of the tree should be an
action at the beginning of the plan (if the tree is forwards), or at the end of the
plan (if the tree is backwards). We call such sets of actions removal trees. Figure
2 shows an example of a removal tree of three levels (shown in grey). Each
square represents an action, an arrow between two actions indicates that the
first action supports a precondition of the second one. The number of removal
trees in a given plan is polynomial in the size of that plan.

Given a removal tree, the second step is to calculate the

Figure 2: A back-
ward removal tree

heuristic value for that plan. To do this, we construct the
plan that results when removing the removal tree. Next,
we can simply apply the selected planning heuristic to ob-
tain a heuristic value for the plan. Some heuristics have a
problem with calculating a heuristic value for the kind of
broken down plans we produce. To overcome this prob-
lem, we can construct a special domain. This domain
consists of the original domain, as well as special actions
encoding the plan that we would like to reuse. For this
purpose, the plan is broken down into separate parts, called cuts (as shown in
Figure 3). Each cut is chosen such that there are no two actions in a cut that were
previously connected through one or more removed actions. (This is the reason
that in Figure 3, the two larger cuts are separated.) For each cut, an action is
added which has preconditions and effects equal to the cut. Now, if we calcu-
late a heuristic value for the empty plan in this custom domain, the computation
includes the “special” actions corresponding to the cuts, effectively producing
a heuristic value for the plan from which we constructed the domain.

The complete unrefinement strategy now works as follows: we begin by re-
moving removal trees of depth one. If the heuristic reports that one or more of
the plans can be expanded to a valid plan, we use the refinement strategy to try
and complete those plans. If a valid refinement cannot be found, we iteratively
increment the depth of the trees, until we find a removal tree for which the
heuristic shows that it is solvable.

Plan Repair 9

6 Experimental Results

The technique to add plan repair capabilities to existing planners, as described
in the previous section, has been applied to the VHPOP planner by Younes
and Simmons (2003). Here we present initial experimental results with the
benchmark set of GPG (Gerevini and Serina, 2000). This set contains problems
that feature some aspects of logistics, as we detail below. Each problem set
consists of a base problem and a number of derivations (typically 30 or 45). In
all cases, the goal is to modify the solution (plan) to the base problem, such that
it becomes a solution to the derived problem.

The modification was obtained by using the unrefinement heuristic as described
in the previous section. In each instance, we started by adapting the current
(base) plan to the new situation: impossible actions (i.e. actions in the plan
with preconditions that can never be reached, e.g. when a truck is no longer
available) are removed and preconditions of actions that are no longer satisfied
by the initial state are marked accordingly. Then, we calculate the cuts of the
plan, and use VHPOP to find a solution to the problem thus created.

Figures 4 through 8 show the runtime performance of our system, compared
to planning from scratch (using the VHPOP planner) and compared to the
GPG plan adaptation system. All times are reported in milliseconds and on a
logarithmic scale. For some instances, VHPOP was not able to produce a result
within 200 seconds, or ran out of the 500 Mb of memory that was available. In
both these cases, the runtime is reported as 200,000 milliseconds. The runtime
that is reported for both GPG and our system is the time when the first solution
was found. Usually, this solution can be optimised further, but here we are
interested only in the first solution.

Figure 4 shows the performance on 60 problems in the Gripper domain. Prob-
lems in this domain feature a robot, Robby, with two grippers that can move
around through a number of rooms. In some of these rooms balls are present,
which Robby is to pick up and bring to a specified location. The 60 problems
can be divided into two sets: one set in which 10 balls have to be delivered,
and a second set in which 12 balls are to be distributed. Both GPG and our
system outperform planning from scratch. The difference between both plan
adaptation systems is not large, although our system is slightly faster than GPG
on most problems.

The next three Figures (5 through 7) present the results from the Logistics
domain, with three different base problems. Note that the scale is different here,
as all problems could be solved (even from scratch) in under 2 seconds. This
domain consists of a number of packages that have to be brought from a source
location to their destination. Within a city, goods can be transported by trucks.
To transfer goods from one city to another, they have to be brought to the airport
from which they can be flown to the airport of the other city. Results on this
domain are similar to the results in the previous domain.

10 TRAIL Research School, Delft, November 2004

The third set consisted of 60 problems in the Rocket domain. The problems
in this domain involve transporting goods and people around the world by
rockets (which can be thought of as regular airplanes). Several things happen
here, as can be seen in Figure 8. First of all, we observe that both GPG and our
system are consistently faster than planning from scratch. Secondly, we see that
on average, both plan repair techniques are equally fast. However, whereas GPG
shows a consistent behaviour, our system strongly fluctuates, solving about half

1

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50 55 60

ti
m

e
(m

s,
lo

ga
ri

th
m

ic
)

instance

repair
scratch
gpg

Figure 4: Runtime for the 60 problems in the Gripper domain. The first 30
problems are with 10 balls, problems 31-60 have 12 balls.

1

10

100

5 10 15 20 25 30 35 40 45

ti
m

e
(m

s,
lo

ga
ri

th
m

ic
)

instance

repair
scratch
gpg

Figure 5: Runtime for the 45 problems in the Logistics domain (set A)

Plan Repair 11

of the problems ten times faster than GPG, and half of them ten times slower.
An explanation for this behaviour can be found in Figure 9. This figure depicts
the size of the search tree that was built during the search. It shows the number
of nodes (partial plans) that were generated and the number of nodes that was
actually visited during the search. One can see the same strong fluctuations
here. In some cases, very few plans are generated and visited. In other cases,
the search visits over a thousand plans. The fluctuations are explained by how
the goals and initial conditions change with respect to the base problem. For

1

10

100

5 10 15 20 25 30 35 40 45

ti
m

e
(m

s,
lo

ga
ri

th
m

ic
)

instance

repair
scratch
gpg

Figure 6: Runtime for the 45 problems in the Logistics domain (set B)

1

10

100

1000

5 10 15 20 25 30 35 40 45

ti
m

e
(m

s,
lo

ga
ri

th
m

ic
)

instance

repair
scratch
gpg

Figure 7: Runtime for the 45 problems in the Logistics domain (set C)

12 TRAIL Research School, Delft, November 2004

some changes, the passenger merely has to board another rocket, for other
changes, a rocket has to be flown to the person in question. In the former case,
very little work has to be done to repair the plan, whereas in the latter case,
some more work is necessary.

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45 50 55 60

ti
m

e
(m

s,
lo

ga
ri

th
m

ic
)

instance

repair
scratch
gpg initial

Figure 8: Runtime for the 60 problems in the Rocket domain. The first 30
problems are of set A, the others of set B.

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45 50 55 60

se
ar

ch
sp

ac
e

(p
la

ns
)

instance

generated
visited

Figure 9: Search statistics for the Rocket domain.

Plan Repair 13

7 Discussion

Planning is an important tool in realizing an efficient logistics chain. However,
since the domain of transportation problems is highly dynamic, the application
of planning in logistics requires efficient techniques for plan adaptation. This
paper describes a general framework for plan repair systems, called the unrefin-
ment planning approach. This approach elaborates upon Khambampati’s (1997)
refinement planning theory, which is recognized as a general framework for
planning algorithms. The modification consists of including a decision whether
to remove obstructing actions from the plan, or to add additional actions to the
plan. The new template clearly shows these two independent, yet related, activ-
ities, and allows different strategies to be employed for refining (extending) or
unrefining (reducing) a plan. We briefly showed how existing systems (specifi-
cally Replan (Boella and Damiano, 2002) and GPG (Gerevini and Serina, 2000),
but also other systems) fit in this template.

One of the interesting possibilities given a general framework is that it can be
used to devise new plan repair methods. To support this claim, we showed
a new unrefinement heuristic. This heuristic is not dependent upon a specific
refinement strategy. On the contrary, it is designed to be applicable in con-
junction with most existing planning heuristics. This feature was achieved by
constructing the heuristic such that the calculation of a value is dependent upon
a planning heuristic of choice. To illustrate the strength of this approach, we
applied it to the VHPOP planner by Younes and Simmons (2003), turning it
into a plan repair system. On a broad range of benchmark problems, this new
system is competitive to a recent plan repair system (GPG), as well as planning
from scratch. However, for some problems in a particular domain the results
are less satisfactory. A possible cause (and thus possibly an improvement) has
not been found yet. Besides further improvement of the new system, in future
work we would like to explore this idea in the context of multi-agent plan repair,
in which other agents may be able to support the plan repair of one agent.

Acknowledgements

The authors are part of the Collective Agent Based Systems (CABS) group at the
faculty of Electrical Engineering, Mathematics and Computer Science of Delft
University of Technology. Roman van der Krogt is supported by the Freight
Transport Automation and Multimodality (FTAM) research program, carried out
within the TRAIL research school for Transport, Infrastructure and Logistics.
His project, titled Incident Management Techniques in Transporation, is supervised
by Cees Witteveen. Mathijs de Weerdt was supported by the Towards Reliable
Mobility (TRM) research program of the Delft University of Technology.

14 TRAIL Research School, Delft, November 2004

References

Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph
analysis. Artificial Intelligence, 90:281–300.

Boella, G. and Damiano, R. (2002). A replanning algorithm for a reactive agent
architecture. In Artificial Intelligence: Methodology, Systems, and Applications (LL-
NCS 2443), pages 183–192. Springer Verlag.

Erol, K., Hendler, J., and Nau, D. S. (1994). Semantics for hierarchical task
network planning. Technical Report CS-TR-3239, UMIACS-TR-94-31, Computer
Science, University of Maryland.

Gerevini, A. and Serina, I. (2000). Fast plan adaptation through planning graphs:
Local and systematic search techniques. In Proc. of the Fifth Int. Conf. on AI
Planning Systems (AIPS-00), pages 112–121. AAAI Press, Menlo Park, CA.

Glover, F. and Laguna, M. (1993). Tabu search. In Modern Heuristic Techniques
for Combinatorial Problems. Scientific Publications, Oxford.

Hanks, S. and Weld, D. (1995). A domain-independent algorithm for plan
adaptation. Journal of AI Research, 2:319–360.

Kambhampati, S. (1997). Refinement planning as a unifying framework for plan
synthesis. AI Magazine, 18(2):67–97.

Kambhampati, S., Knoblock, C. A., and Yang, Q. (1995). Planning as refinement
search: A unified framework for evaluating design tradeoffs in partial-order
planning. Artificial Intelligence, 76(1-2):167–238.

Koehler, J. (1994). Flexible plan reuse in a formal framework. In Proc. of the 2nd
European Workshop on Planning (EWSP-93), pages 171–184. IOS Press, Vadstena,
Sweden. ISBN 90-5199-153-3.

Koenig, S., Likhachev, M., and Furcy, D. (2002). Lifelong planning A*. Technical
Report GIT-COGSCI-2002/2, Georgia Institute of Technology, Atlanta, Georgia.

van der Krogt, R. and de Weerdt, M. (2004). The two faces of plan repair. In
Proceedings of the Sixteenth Belgium-Netherlands Artificial Intelligence Conference
(BNAIC-04), page to appear.

van der Krogt, R., de Weerdt, M., and Witteveen, C. (2003). A resource based
framework for planning and replanning. Web Intelligence and Agent Systems,
1(3/4):173–186.

Younes, H. L. S. and Simmons, R. G. (2003). VHPOP: Versatile heuristic partial
order planner. Journal of AI Research, 20:405–430.

