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Abstract
Adhesively bonded joints have proven to outperform their mechanically fastened joint coun-

terparts, as they present a more structurally efficient method of load transfer, lower stress
concentrations and better fatigue performance at reduced weight. In the specific case of the
Adhesively Bonded Single Lap Joint (ABSLJ), bending-induced stresses that result from the
load path eccentricity add up to the adherend inplane stresses. Moreover, significant peak
peel and shear stresses develop at the lap ends of the adhesive and associated adherend in-
terlaminar tensile stresses have a detrimental effect on the joint’s strength. Such joints made
of Fiber Reinforced Polymer (FRP) adherends bonded with an epoxy adhesive layer sustain
a substantial amount of damage, from failure onset to ultimate failure. With the purpose of
design structurally efficient and damage tolerant composite joints, it is essential to understand
the stress distribution and to accurately predict the damage initiation and propagation events
in such joints made of composite materials.

A well-established set of Damage Progression Models (DPMs) in the framework on the
Continuum Damage Models (CDMs) were developed as a tool to predict the global response,
damage initiation load and ultimate load of the specimens. Hashin 3D, Puck and LaRC05 were
the implemented failure criteria to detect the initiation of damage in the adherends. After this
point, the elastic properties of the detected damage elements were reduced according to sudden
and gradual material degradation models. As for the adhesive, the von Mises criterion was used
to detect the damage onset and a linear softening law modeled the material degradation. For
the validation of the DPMs, the numerical results were compared against the data of an already
published experimental study. Four different adherend layup sequences: [45/90/ − 45/0]2𝑠,
[90/−45/0/45]2𝑠, [0/45/90/−45]2𝑠 and [45/0/−45/0]2𝑠 were studied based on data extracted
from the mechanical testing, Digital Image Correlation (DIC) and Acoustic Emission (AE).

Good correlations between numerical predictions and averaged experimental linear stiff-
nesses were found, particularly for the two configurations with the outmost ply at 45∘, for
which the difference was lower than 5%. The initial non-linear stage of the global response
seems to be governed by the longitudinal bending stiffness, while the subsequent linear behav-
ior is controlled by the longitudinal membrane stiffness of the adherends. Regarding damage
initiation, numerical predictions showed to be 11.5%, 7.5%, 29.9% and 6.1%, respectively,
more conservative for the four analysed configurations, when compared to the AE results,
whose established criterion should be further developed. With respect to the ultimate load,
the relative differences between predictions and tests showed significant variability among the
tested configurations; specifically the deviations were of: 33.2%, 37.4%, -0.4% and -13.71%.

Despite the encouraging results, an inherent shortcoming of CDMs is the representation
of damage in a smeared manner due to the homogenization of the anisotropic material in
the modeling process. A blended framework using CDMs to model intralaminar failure and
discrete crack models to model interlaminar failure and matrix cracking might lead to more
realistic damage patterns.

KEYWORDS: Adhesively bonded single lap joints; Composites; Damage progression;
Continuum damage models.
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1
Introduction

Over the last decades, aerospace industry has been gradually embracing Fiber Reinforced
Polymers (FRPs) and adhesively bonded joints as main material [90, 92] and joint method
[6, 62, 97, 102, 114], respectively. While composite materials overcome their metal counter-
parts in terms of: higher specific properties, improved durability, less sensitivity to fatigue and
resistance to corrosion [63]; adhesive bonded joints, in turn, outperform bolted and riveted
joints providing: a more structurally efficient method for load transfer, lower stress concentra-
tions, better fatigue performance, reduced weight [16, 45] and vibration damping [66].

On ground of ease of manufacturing, Adhesively Bonded Single Lap joints (ABSLJ) in par-
ticular, have been widely studied [101], nonetheless, its mechanical analysis is far from being
trivial. The anti-symmetric configuration and the significant transverse displacements caused
by the eccentric load path makes this joint configuration inherently inefficient [38, 68] induc-
ing high stress concentrations at the overlap ends. In this critical region, the longitudinal-
transverse shear stress component and all normal components experience a sudden grow,
namely the out-of-plane component in the adhesive (commonly named as peel stresses) and in
the adherends (commonly named as interlaminar stresses). The analysis becomes even more
complex when the adherends are made of Fiber Reinforced Polymeric (FRP) materials given
their anisotropic behavior.

A FRP composite material is made of a combination of two very distinct phases that can
be specifically tailored to comply with a broad range of design requirements and to achieve
a desirable mechanical performance for a given aerospace application [36, 47, 74]. The fiber
reinforcement is the backbone of the material, defining the strength and stiffness in its direc-
tion [20]. On the other hand, the matrix (the continuous phase) protects, bonds, supports
and transfers the local stresses from one fiber to the other through shear mechanisms [47].
Multidirectional laminates are composed of multiple layers stacked together of Uni-Directional
(UD) material (each layer is commonly designated as ’ply’ or ’lamina’) oriented in different
directions resulting in complex mechanical interactions [30]. When the composite structure is
loaded, a stress field develops throughout the whole laminate, being the local stresses different
from ply to ply, particularly between differently oriented plies. Raising the load level up to
the strength of a given lamina will trigger a damage phenomenon, most likely starting with
matrix cracking.

1
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Both the academia and the industry have been striving for accurate failure prediction in
FRP through the development and implementation of failure theories [110] that aim to fully
describe the non-linear constitutive behavior caused by the characteristic failure mechanisms
since damage initiates, followed by its propagation until ultimate failure.

The institutionalized philosophy regarding damage tolerance in composite structures for
aerospace applications has been extremely conservative, leading to over-designed solutions
[74]. The reality is that most of composite structures sustain a substantial amount of damage
prior to ultimate failure [7, 32]. It is therefore vital to accurately predict when damage initiates
(by means of appropriate failure criteria) and how damage propagates (captured by a suitable
material property degradation models) [2, 30], in order to fully understand the constitutive
behavior of composite materials, enabling at the same time the possibility of a tailored efficient
composite design for specific technical and economic objectives.

Initially conceived to model damage in isotropic and homogeneous materials, Continuum
Damage Models (CDMs) have been quite popular and effective in this endeavor to model dam-
age in FRP, owing to the versatility and convenience of implementation in a Finite Element
(FE) environment. However, as Forghani et al. [29] emphasize, extending the concepts of
CDMs to orthotropic materials is not straightforward. Over the years, several authors pro-
posed new composite’s damage models, tending to gradually incorporate new enriching phys-
ical considerations rather than relying purely on phenomenological relations. Amongst the
mainstream models, Hashin [42], Puck [85] and LaRC05 [82] failure criteria excel in terms of
predictive capabilities. Concerning damage propagation, CDMs assume the effect of the dam-
age by the selective degradation of the engineering constants of the material. In the scope of
material degradation models, two main approaches can be found: sudden degradation models
which instantaneously degrade a given elastic property to a smaller percentage, once damage
is detected, without subsequent reduction; and gradual degradation models that based on a
predefined evolution law or based on the assumption that the failure index remains constant
find the progressively reduced value of the elastic parameters.

This document is structured in a logical manner, sequentially addressing the defined re-
search subquestions: The following chapter 2 presents and discusses, in a systematized manner,
relevant findings in the literature. This chapter is subdivided in three sections: an review on
adhesively bonded structures and the influence of geometrical; an overview on the constitutive
relations of FRP composite materials and an outline over the progression damage analysis, in-
cluding an overview on state-of-the-art CDM. This culminates in chapter 3, where the research
question and objective are formulated. It follows chapter 4 in which the research methodology
is defined for the preliminary studies and the damage progression study, including: numer-
ical ABSLJ model definition, numerical considerations, User MATerial subroutine (UMAT),
verification and validation. It follows, chapter 5 that presents and discusses the results of
the preliminary studies: a) the mesh convergence study; b) the stress study, comparing four
adherend layups under a prescribed displacement along four pre-defined paths. Still in this
chapter, the DPM is validated against an existing experimental campaign. From this discus-
sion, conclusions are drawn and presented in chapter 8 along with several recommendations
for further development of this topic.
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2.1. Adhesively bonded joints
Adhesive bonding can be described as the joining process in which materials (the adherends)

are bonded by means of an interface substance (the adhesive), holding the adherends together
by surface attachment. The forces that enable this surface attachment are a combination of
microscopical mechanical locking and chemical bonding [70].

In bonded joints, the adhesive is subjected to shear and normal stresses in the out-of-plane
direction (also known as peel stresses). The main function of the adhesive is to transfer the
loads from one adherend to another [19]. It is through the formation of chemical bonds (mainly
of the covalent type and intermolecular forces, which play a less determinant role) between the
adherend surface atoms and the adhesive compounds that this load transfer mechanism takes
place [6].

Composite parts for aerospace applications are either bolted/riveted or bonded for join-
ing purposes. Adhesively bonded methods present several advantages over conventional me-
chanically fastened joining counterparts [50, 65, 96]. Applying bolted joints in composites
is undesirable for the following reasons: a) the anisotropic behavior of FRP leads to high
stress concentrations1; b) the brittleness of the composite material allows little stress relieve
through plasticity at the critical locations of the loaded hole’s edge and c) UD laminates
present low through-the-thickness strength leading to (interlaminar) delamination [11]. By
contrast, adhesively bonded joints show: a) continuity with regards to load transfer; b) en-
hanced strength-to-weight ratio, c) improved damage tolerance and d) ease fabrication at lower
costs [6]. Appendix B - table P.1 summarizes in a table the advantages and disadvantages of
both methods.

2.1.1. Adhesively bonded joint types
Adhesively bonded joints are used in many configurations as shown in figure 2.1 a). The

designer should be able to find a compromise among competing requirements. If on the one
1For a laminate only containing 0∘oriented uni-directional (UD) plies, the stress concentration factor at 90∘of the
hole’s edge is almost 7 (see appendix A - figure P.2).

3
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hand a joint should have a simple and smooth geometry and be cheap to produce, on the other
it should effectively sustain static and/or cyclic loads during the aircraft operational period
[40].

Some joint configurations might be excluded from the design options due to limited strength
[figure 2.1 b)] or owing to non-compliance with more specific requirements such as aerodynamic
smoothness. The inherent geometric step in adhesively bonded single lap joints (ABSLJ) might
induce laminar–turbulent transition in a surface that is intended to be in laminar regime. Not
exclusively but also for this reason, ABSLJ are not used in wing covers.

Figure 2.1: Adhesively bonded joint types: a) different designs; b) joint strength vs. adherend thickness. (Reproduced
from [40], copyright Kluwer, 2003).

An overview on the different joint types

Single lap joint

Either by analytical, finite difference or finite element methods, the ABSLJ is the most
extensively studied joint design [41, 112]. Furthermore, the ABSLJ is the simplest adhesively
bonded joint to produce [41, 68]. Nevertheless, its stress analysis is not trivial.

Owing to load path eccentricity, unsupported SLJ are inherently inefficient [39]. In practical
terms, owing to the anti-symmetric geometry of the joint (i.e. the offset in the line of action
of the load), high bending and peel stresses develop at the lap ends, which causes the joint to
rotate. The use of alignment tabs dramatically improves the strength of the joint [38] due to the
fact that it reduces the load path eccentricity, hence mitigating the detrimental effects caused
by the non-uniform peel and shear stresses. Section 2.1.3 explore in detail the parameters that
influence this joint type strength.

The longitudinal-transverse shear is known for its ’bathtub’ distribution along the bond
length. The reason for the peak shear stresses at the adhesive overlap ends relates to strain
mismatch between the adherends, at those regions. At the adherend lap start (red region in
figure 2.2), where the stress concentration is located, the strains are greater than the strains
experienced by the corresponding lap end (green region in figure 2.2) of the other adherend
which is, in reality, lightly loaded. By contrast, in the center of the bondline, the adhesive
experiences small shear stresses, considering that the smaller mismatch between the adherends’
strains. Yet, the effect of the simple shear in the adhesive central elements should be considered.
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Figure 2.2: Illustration of the high shear strain experience by the adhesive at the lap ends.

Single strap joint

When compared to other joint configurations, the single strap joint counts with relatively
little research in terms of stress analysis. Given that it is an asymmetric joint (with respect to
the 1-2 plane) and particularly for thick adherends, when loaded develops high adhesive peel
stresses and associated through-thickness adherend interlaminar stresses [see figure 2.3 a)] that
affect the adhesive shear stress distribution. The abrupt eccentricity at the butt region results
in high bending moments in the middle of the splice plate [40]. This joint type is commonly
used for repair procedures in the automotive and aerospace industries [112].

Double lap joint

Considering that double lap bonded joint is symmetric (with respect to the 1-2 plane), one
might think that the analysis only involve extensional deformations of the adherends. Yet,
reality is that the load path is also eccentric2, meaning that peel stresses are also present in
this configuration due to the induced moment about the neutral axis which, by its turn, was
created by the shear load acting in the bonded face of the adherend at a distance 𝑡/2 (for a
symmetric layup). Thus, peel stresses do develop at the lap ends, which might be significant
and determinant, specially for thick adherends [see figure 2.3 a)].

Despite the existence of peel stresses, these play a lesser role (when compared to ABSLJ),
hence the strength of these joints is much less sensitive to the influence of the overlap length
[38]. Based on this, it expectable that, for the same lap length, the strength of this joint is
always more than double of its ABSLJ counterpart [112].

Double strap and tapered-strap joints

Hart-Smith [40] states that for sufficiently thick outer adherends, double strap bonded joints
are subjected to peel strength cutoffs (see figure 2.3), i.e., beyond a certain adherend thickness,
the strength of the joint is no longer governed by the adherend strength but instead by the
peel stress state. These peel stresses are originated due to abrupt changes in the joint axial
stiffness at the thickness transition, ultimately leading to a through-thickness (interlaminar)
failure.

The tapered-strap bonded joint overcomes this limitation, by gradually reducing the thick-
ness of the splice plates (outer adherends) ends. Even though tapering significantly improves
the peel strength of the joint, the shear strength is generally not affected by it, which ex-
plains the gradual increase of the joint strength with the adherend thickness, up to a shear

2The load that flows axially through the central adherend splits in two directions just before it reaches the overlap
region, acquiring a vertical component.
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governed failure, as opposed to the (untapered) double strap bonded joint whose failure is peel
dominated [see figure 2.1 b)].

Figure 2.3: Effect of high peel on thick adherends: a) failure sequence; b) governing failure modes in function of
adherend thickness. (Reproduced from [40], copyright Kluwer, 2003).

Stepped-lap and scarf joint

The stepped-lap and the scarf joints are the most efficient configurations in the sense that
the stress concentration at the lap ends is minimized, which obviously results in a stronger joint.
These configurations are recommended for thicker adherends (rule of thumb: 𝑡 > 6.35[𝑚𝑚]
[40]), considering that the stiffness is relatively constant throughout the lap length, avoiding the
development of peel stresses lap ends. Scarf and stepped-lap3 are frequently use in the repair
of aerospace composite parts, ensuring aerodynamic smoothness [36] that might be crucial for
performance purposes, as explained before.

Scarf joints have the remarkable feature of being flush and co-linear. The shear and normal
stresses in this joint type are dependent on the adherend thickness and scarf angle [36] which
also define the overlap length. Yet, due to the fact that the tips of the adherends have a finite
thickness (which leads to a stress concentration) and due to the stiffness imbalance between
the adherends, the structural efficiency of such joints is smaller than the theoretical. Hence, it
is of vital importance to maintain the stiffness constant throughout the whole lap length even
if two different materials are being joint4.

Despite the huge advantage of having a null load path eccentricity which translates into
null bending moments under a tensile load case, leading to constant peel and shear stress
distributions over the overlap length, there is a trade-off that needs to be addresses regarding
the scarf angle 𝛼 value. If 𝛼 is not small enough, then the tensile projection5 of the force
acting on the adhesive will be significant which might compromise the joint’s loading capability,
attending to the fact that adhesives are rather inefficient under a tensile loading [45]. On the
other hand, an excessively small 𝛼 might cause manufacturing issues or/and an extremely long
overlap region. Figure 2.4 illustrates the load decomposition on one adherend of a scarf joint.

3If produced flush as opposed to the illustration of a stepped-lap joint shown in figure 2.1 a).
4In practice to ensure stiffness balance in the case of two different materials, the geometrical stiffness compensates
the imbalance in the material stiffness.

5The force acting on the scarf inclined overlap section can be decomposed in two components: a shear component
𝐹𝑠ℎ𝑒𝑎𝑟 = 𝐹.𝑐𝑜𝑠(𝛼) and a tensile component 𝐹𝑡𝑒𝑛𝑠𝑖𝑜𝑛 = 𝐹.𝑠𝑖𝑛(𝛼).
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Figure 2.4: Tensile and shear projections of the forces acting in the adherend of a scarf joint.

While the strength of the scarf joint increases as the scarf angle decreases, the strength of
the stepped-lap joint, for a fixed number of steps, is barely affected. The latter’s strength is
improved by maximizing the number of steps [36].

2.1.2. Failure modes in FRP adhesively bonded joints
The failure modes are determined by several factors, namely: quality of the bond, specimen

geometry and load case [6]. Although not explicitly referred by the author, the failure mode
is affected by the adherend properties - material and geometrical. Take the previous charts
in figures 2.1 b) and 2.3 b) and consider a tapered-strap joint configuration loaded in tension
until failure, with rather thin and compliant adherends, each composed by the following layup:
[90]2𝑠 bonded using a brittle adhesive. Now, only changing the adherend properties, consider a
thicker and stiffer pair of adherends with the following layup: [0/0/0/45/ − 45/45/ − 45/90]2𝑠.
Most likely, the failure modes would not be the same. Based on the referenced figures, in the
first case an adherend failure would be expected, whereas a shear failure would be the likely
scenario, in the latter case.

The standard practice for classifying failure modes in adhesively bonded FRP joints (ASTM
D5573) [3] identifies and characterizes seven classes of failure modes, described and illustrated
in the following table:
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Table 2.1: Definition and illustration of the failure modes classified by ASTM D5573. (Adapted from [3]).

Failure mode (Ab-
breviation) Definition Illustration

Adhesive (or interfa-
cial) failure Separation appears to be at the adhesive-adherend interface.

Cohesive failure Separation is within the adhesive.

Thin-layer cohesive
(or interphase) failure

Failure similar to cohesive failure, except that the failure is very
close to the adhesive-adherend interface, characterized by a ’light
dusting’ of adhesive on one adherend surface and a thick layer of
adhesive left of the other.

Fiber-tear failure
Failure occurring exclusively within the fiber reinforced plastic
(FRP) matrix, characterized by the appearance of reinforcing fibers
on both ruptured surfaces.

Light-fiber-tear failure
Failure occurring within the FRP adherend, near the surface, char-
acterized by a thin layer of the FRP resin matrix visible on the
adhesive, with few or no glass fibers transferred from the adherend
to the adhesive.

Stock-break failure Break of the FRP adherend outside the adhesively bonded-joint
region, often occurring near it.

Mixed failure Any combination of two or more of the previous six classes.

Even though this practice accomplishes its goal in presenting a comprehensive definition of
possible failure modes in FRP adhesively bonded joints, it does not explain the cause of each
of the presented failure modes. For that, theoretical stress analysis models and finite element
models validated by empirical results, were developed in order to provide a good understanding
of the critical parameters that lead to a particular failure mode.

2.1.3. Parameters influencing the single lap bonded joint strength
The structural performance of an adhesively bonded joint is affected by several parameters,

such as: 1) manufacturing bonding process; 2) surface preparation, 3) geometrical parameters
[subdivided in 3.1) bondline thickness, 3.2) joint configuration and 3.3) overlap length] and 4)
material properties [subdivided in 4.1) adhesive properties and 4.2) adherend material].

Taking into account that the first three parameters are not within the scope of this thesis,
brief considerations about the influence of some of the these on the joint strength are presented
in appendix D.

2.1.3.1. Adhesive properties

In a review paper [10] published in 2017, Budhe et al. state that in order to satisfy industry
demands, advanced adhesive materials are being developed in order to meet the demanding
requirements. Thus, the selection process of an adhesive material for a specific application is
quite complex since it depends on several factors such as: the adherend characteristics, the
curing temperature, the expected environmental condition in service, the type of load in the
bonded elements and, of course, the cost [6].

The mechanical properties of an adhesive, particularly the stress-strain curve and the shear
modulus define the adhesive behavior [6]. This behavior may range from relatively brittle
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to very ductile [see figure 2.5 a)], even though, in reality the shear properties manifest as
viscoelastic6 rather than elastic-plastic, making the mechanical analysis too complex [45]. For
reasons of simplification and for sake of practicality, the shear stress-strain curve is idealized
through a bilinear elastic-perfectly plastic approximation. Thus the actual highly non-linear
(NL) region and the hysteresis energy losses are neglected, yet, the idealization complies with
the shear strain energy absorbed by the adhesive, i.e., the area under the actual shear stress-
strain curve is equal to the area in the equivalent analytical model. Figure 2.5 b) represents
both, the actual behavior and the idealized model which is defined by three parameters: a)
the plastic shear stress (maximum) 𝜏𝑝; b) the elastic shear strain 𝛾𝑒 and c) the plastic shear
strain 𝛾𝑝.

Figure 2.5: a) Comparison of shear stress-strain curves and associated absorbed energies for brittle and ductile
adhesives. (Reproduced from [39], copyright NASA, 1974); b) Actual characteristic and idealized adhesive shear
stress-strain curves and parameters that characterize the idealized model. The areas bellow both plots are equal, i.e.,
the energy absorbed by the adhesive is the same in both models. (Adapted from [39]).

2.1.3.2. Effect of adhesive ductility

Adhesive ductility has profound effects on the mechanical behavior of adhesively bonded
joints. First of all, a useful parameter should be presented so it gives a good indication of
the adhesive’s elastic-plastic behavior and toughness. Thus, a conveniently named, Adhesive
Ductility Parameter (ADP) relates the plastic shear strain with the elastic shear strain (𝐴𝐷𝑃 =
𝛾𝑝/𝛾𝑒). If the ADP is equal to zero it means that the adhesive is purely elastic, i.e., brittle.
On the other hand, stating that ADP is equal to ten means that the adhesive is ten times more
plastic than elastic, i.e., ductile [45].

Figure 2.5 a) clearly shows that ductile adhesives generally present higher toughness values.
Additionally, brittleness increase the magnitude of peel stresses with respect to the average ad-
6Viscoelastic materials exhibit both viscous and elastic characteristics when undergoing deformation. Due to the
viscous component, hysteresis takes place in the stress–strain curve, i.e., some energy is ’dissipated’ during the
loading cycle.
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herend stresses, especially for short overlaps, fact that naturally decreases the joint efficiency,
as shown in appendix E.1 - figure P.7 a). In the same appendix, figure P.7 b) explicitly estab-
lishes the relation between the adhesive brittleness and the shear joint efficiency, corroborating
the previous conclusions. Plus, the referred chart indicates that the worst case scenario when
it comes to joint efficiency, is having a brittle adhesive with an eccentric load path.

It should be emphasized that ABSLJ strength is rarely governed by shear strength, but
rather by induced peel stresses due to load path eccentricity that ultimately lead to delamina-
tions due to high through-thickness adherend stresses [38].

2.1.3.3. Adherend material

2.1.3.4. Effect of adherend stiffness imbalance

Any stiffness imbalance between adherends intensifies stress concentration in the adherends
which leads to a reduced joint efficiency in comparison to balanced adherends (see figure 2.6
a), and for this reason Hart-Smith [38] suggests that the use of imbalanced SLJ should be
avoided. Furthermore, this stiffness imbalance greatly increases the adhesive peel stresses with
respect to the average adherend stresses (appendix E.2 - figure P.8).

The author highlights the fact that in imbalanced ABSLJ, the bending moments seen by
adherend at the overlap ends are inversely proportional to the adherend axial stiffness, mean-
ing that a thinner/softer adherend will be subjected to higher stress levels induced by bending.
Specifically for composite adherends, the author concluded that increasing the bending stiff-
ness parameter 𝑘𝑏 = 12𝐷(1 − 𝜈2)/(𝐸𝑡3) results in an improved joint efficiency for a given
stiffness imbalance value.7 [38]. In other words, by maximizing the bending stiffness 𝐷 of both
adherends by concentrating the stiffer 0∘plies as far as possible from the neutral axis minimizes
the detrimental effects of the axial stiffness imbalance between them, as can be observed in
figure 2.6 b).

7One of the parameters that the author uses to quantify the stiffness imbalance is the ’adherend extensional stiffness
ratio’ which he abbreviates to ETR (check table 1 in reference [37]).
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Figure 2.6: Effects of adherend stiffness imbalance on adherend joint efficiency: a) for different adherend thickness
ratio; b) for different adherend extensional stiffness ratio and bending stiffness values. (Reproduced from [38],
copyright NASA, 1973).

Hart-Smith [38] also studied the effect of the adherend stiffness imbalance on peel (inter-
laminar tensile) adhesive stresses for different adherend thickness ratios (see appendix E.2 -
figure P.8). The author concluded that this failure mode is more likely for thicker adherends,
for the reasons stated before related to the load path eccentricity, and that the adhesive peel
stresses for an adherend thickness ratio of 𝑡1/𝑡4 = 0.1 can be as 14 times higher as for an
identical adherend case.

2.1.3.5. Effect of stacking sequence

Matthews and Tester [68] experimentally studied the influence of the stacking sequence
of Carbon Fiber Reinforced Polymer (CFRP) adherends in the strength of ABSLJ subjected
to a quasi-static tensile loading.The tested composite specimens were all symmetric and were
laminated using UD CFRP plies oriented at 0∘or 45∘. Several stacking sequence combinations
were built for laminates composed by 6, 8, 10 and 12 plies.

The authors concluded that the strength increased with proportion of 0∘plies. Moreover,
the 8-ply specimens corroborated Hart-Smith theory that stronger joints have the 0∘plies on
the outside of the laminate. Yet, for 6-ply layups there was no correlation between experiments
and theory, which led the authors to speculate that thinner laminates were more sensitive to
experimental inaccuracies, such as specimen alignment and load eccentricity. Finally, a twisting
behavior was observed which affected the results leading to an intensification of shear stresses,
which by its turn resulted in a premature failure. They associated this twisting behavior with
the existence of bending-twisting coupling (𝐷16, 𝐷26 ≠ 0). Notwithstanding, the authors did
not explicitly related the existence of this coupling with the fact that some of the laminates
were not antisymmetric, which is a necessary condition to eliminate bending-twisting couplings.

Using the Finite Element Method (FEM), Aydin [4] assessed the 3D effects of fiber orien-
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tation angle of CFRP multidirectional laminates on the stress distributions and on the failure
indices of epoxy bonded SLJs. While one of the ABSLJ end was fixed, a pressure of 70𝑀𝑃𝑎
was applied on the cross section of the other ABSLJ cross-section. Eight layup configurations,
each composed by 16 plies, were studied: [45/ − 45]4𝑠, [55/ − 55]4𝑠, [0/90]4𝑠, [30/60]4𝑠, [0]16,
[90]16, [90/45/ − 45/0]2𝑠, [90/30/ − 30/90]2𝑠. The author concluded that the ply stacking
sequence have a significant effects on the stress distribution and failure predictions in the ad-
herend and adhesive. For a prescribed loading, laminates [0]16 and [0/90]4𝑠 generally showed
the lower stress concentrations in both, the adherend and the adhesive. The author justified
this result with the fact that in both cases the adhesive’s neighboring plies are 0s. As explained
before, a higher number of 0s and their remote position from the neutral axis, increases the
bending stiffness of the adherend.

2.2. Progressive Damage Analysis (PDA) in compos-
ites

Damage can be defined as the development of cavities or cracks at microscopic, mesoscopic
and macroscopic levels which results in the deterioration of the mechanical properties of the
material [75]. For Ochoa and Reddy [79] the main difficulty in mathematical modeling of
damage relates to the different scales involved from the initiation to propagation of damage.
First failure always initiates at micro-level and gradually evolves into a macro damage mode [29,
79]. This statement is supported by Kassapoglou [52] who warns for the fact that, even though
desirable, analysis on events taking place at the micro-level is extremely complex to perform,
instead focus should be redirected to ply-level scale (mesolevel). Nevertheless, disregarding
the micro-scale events is neglecting the physical phenomenon of damage initiation, itself. In
practice, FRP laminates are idealized as a homogenized orthotropic material, which leads to the
loss of micro physical and mechanical information that will detrimentally affect the progressive
damage analysis [108].

Catastrophic failure of a composite structure usually takes place due to propagation or
accumulation of damage as the load is increased, meaning that the load at which the structure
ultimately fails hardly corresponds to the first ply failure load [92]. The following stress-strain
curve shows first ply failure and damage propagation events, stages 2 and 3, respectively (figure
2.7).
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Figure 2.7: Stress-strain curve of an angle-ply composite under loading, unloading and repeated loading. (Reproduced
from [120], copyright Elsevier, 2004).

2.2.1. Progressive damage analysis methodology
Typically, researchers follow two approaches in PDA, either analytical (i.e., by means of

closed-form solutions) or numerical (i.e., by means of Finite Element Analysis [FEA] solu-
tions). Analytical computations of the stresses and displacements near to the crack tip are
only feasible for simple problems. By contrast, for most of real engineering problems which
comprise complex geometries, numerical solutions using FEM are required [28, 46]. Leone et
al. [58] indicate that verification and validation are critical tasks for the development of PDA
using FEM. Verification assesses whether the model results are consistent with the fundamen-
tal concepts and assumptions of the model under evaluation, by other words, it checks if the
model meets its specifications. Validation, by other hand, assesses whether the model accu-
rately represents the physics of the problem when compared to experimental data i.e., whether
it fulfills its intended purpose.

Within the paradigm of a numerical approach, Puck and Schürmann [84] identify four
fundamental constituent elements for PDA in composites:

1. analysis of strains and stresses ply-by-ply;
2. lamina’s fracture criteria;
3. degradation models to include the effects of partial damage, which often does not lead

to ultimate failure of the laminate;
4. a routine that simulates the progressive fracture process by applying the above sequences

iteratively.

This approach is generally corroborated in the review article conducted by Garnich and
Akula [30] and in the extensive NASA report authored by Sleight [92], whereupon the author
states that initial lamina failure and respective failure mode can be predicted by applying an
appropriate failure criteria. For the subsequent failure prediction (i.e., after damage initiation),
Sleight claims that such analysis requires a deep understanding of the failure modes and of the
damage propagation mechanisms captured by a material degradation model that adjusts the
material properties of the lamina.
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One of the most relevant concluding remarks of the world-wide failure exercise (WWFE)
[94] was that most of the performed theories provide accurate predictions of the laminate
properties at low strains, up to initial failure. From that point on, damage progresses and
large NL effects take place, which are not accurately modeled by state-of-the-art methods.

2.2.2. Damage modeling of composites at various scales
Damage initiation and propagation is composite structures is a multi-scale phenomenon

that usually starts with microscale cracking of the matrix, that grow to mesoscale cracks
and delaminations with further load increase, eventually culminating in macrocracks and fiber
failure [29]. In the same manner, the scale of spacial resolution in modeling composites can be
discretized in three levels: micro, meso, macro, as shown in figure 2.8.

Figure 2.8: Illustration of different modeling approaches of composite materials at the a) microscale, b) mesoscale
and c) macroscale. (Reproduced from [86], copyright Elsevier, 2018).



2.2. Progressive Damage Analysis (PDA) in composites 15

2.2.2.1. Microscale - representative volume element

Microscale models treat both phases of the composite material separately. In such approach,
the interaction between the fibers and the matrix is analysed. The ’building block’ of this
approach consists of fibers in the middle surrounded by matrix material.

While these models have proven successful in predicting the elastic properties of the un-
damaged material and onset of damage, they presented issues with capturing the evolution of
damage. Furthermore, these models proven unable to extrapolate the localized damage to the
whole composite structure [86].

2.2.2.2. Mesoscale - ply-based modeling

Modeling composites at the ply-level has been the most popular and extensively applied
approach for studying the damage behavior of such structures. The ’building block’ of this
approach is each lamina that is defined by its homogeneous equivalent properties, typically
the engineering constants (which are the required material inputs), that are extracted from
experimental tests on UD laminates. The layers are commonly assumed to be perfectly bonded
unless interface elements (such as cohesive elements) are used to model interlaminar failure
[86].

Ply-based models rely on the assumption that the structural behavior of each ply is inde-
pendent of its neighbors, thus the interaction of failure mechanisms is typically neglected [29].
Despite its popularity and decent predictive capacity, mesoscale models are usually computa-
tionally expensive.

In the framework of mesoscale modeling, appendix F describes and derives the constitutive
relations of multi-directional laminates.

2.2.2.3. Macroscale modeling

Forghani et al. [29] argue that macroscale models are the only viable and practical approach
for simulation of large-scale structures. Even though these models are not focused nor capable
of predicting the details of damage events in the layers, they were conceived to predict, in a
smeared manner, the overall NL response of the laminate or the structure.

The ’building block’ of this approach is the sublaminate of the composite structure.

The driven issues with this approach are the calibration of the macroscopic material prop-
erties (recall that the representative volume is the sublaminate) and required level of discretiza-
tion.

2.2.2.4. Multiscale modeling

Combining the potentials of the analysed approaches by modeling the behavior of compos-
ite structures at different scales is the main idea of multiscale modeling. Multiscale models
subdivide in two groups: hierarchical and concurrent.

Hierarchical models transfer the predicted global elastic response from the micro-level to the
macro-level, meaning that the macroscopic behavior is controlled by the underlying constitutive
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relations [86]. Yet, due to homogenization, this approach is unable to predict damage and
failure in terms of fracture energy and size effect [29].

By contrast, concurrent multiscale models selectively employ both scales simultaneously.
In undamaged areas, the homogenized macromodel is used, while in damaged regions the
resolution is increased and the analysis is done under the framework of meso-micro scale.

Even though multiscale failure analysis models are desirable [108], the implementation of
such frameworks is limited due to its inherent complexity and immense computational cost.
For this reason, researchers and engineers usually target one of the mentioned scales to study
the damage behavior and structural response of composite structures [29, 86].

2.2.3. Failure mechanisms in composites
In order to properly analyze progressive damage in composites, it is crucial to characterize

the failure modes. Unlike isotropic materials, FRP laminated materials show a panoply of
failure mechanisms, which might take place within a ply (intralaminar failure) or between
plies (interlaminar failure) [80, 109].

Due to the fact that FRP composites consist of very dissimilar phases (stiff elastic brittle
fibers and a compliant yielding matrix), damage takes place according to different damage
mechanisms [42, 52]. These may include: matrix cracking, fiber micro-buckling, fiber-matrix
debonding, delamination, fiber breakage, or any combination of all these mechanisms [2, 53, 87],
as figure 2.9 shows.

Figure 2.9: Scanning Electron Microscope (SEM) images of damaged E-glass/epoxy multiaxial specimens after impact
showing: a) matrix cracks (1300x); b) delaminations (150x); c) interface debonding and fiber fractures (1500x).
(Reproduced from [60], copyright TU Delft, 2015). d) Photograph of damaged carbon fiber woven composite
showing different failure mechanisms. (Adapted from [18]).

In this regard, Kassapoglou [51] states that, due to the fact that the matrix has much
lower strength than the fibers, usually damage starts in form of matrix cracks transverse to
the primary load direction, which may multiply, grow and coalesce into delaminations for
increased loads. Moreover, local stress concentrations may lead to fiber-matrix (interface)
debonding. Further load increase leads to some fibers to break. The load is redistributed
throughout the remaining load-carrying capable material until the laminate has no significant
residual strength left, ultimately leading to catastrophic failure. Therefore, these different
damage mechanisms are able to interact with each other [see figure 2.9 d)], affecting the local
mechanical properties of the laminate and consequently leading to a significant reduction of
the structure load-carrying capability [87]. The occurrence of these failure modes depends on
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the constituent properties, the lamination sequence and loading conditions [30].

In the failure model for FRP under inplane and three-dimensional stress states proposed
by Pinho et al. [81], five main failure modes of laminated FRP composites were identified and
characterized:

2.2.3.1. Fiber Tensile Failure (FFT)

Considering the fibers’ high stiffness and strength and the fact that the structure is usually
not able to redistribute the load, large amounts of energy are released in a short time period,
causing a catastrophic failure [81].

2.2.3.2. Fiber Compression Failure (FFC)

Once again and even though the laminate might experience uniaxial compression, this
failure mode is mostly affected by matrix shear behavior, voids and fiber misalignment. Such
imperfections usually lead to localized damage modes such as: fiber micro-buckling, matrix
shear failure or fiber breakage. As an observable result, kink bands can be easily identified at
the micro-scale as shown in appendix G.1 - figure P.12. [81].

2.2.3.3. Matrix Tensile Failure (MFT)

This failure mode is characterized by the fracture plane being usually perpendicular to
the load direction (transverse matrix cracking). The strength of this failure mode is greatly
affected by structural properties of the surrounding laminae, phenomenon designated by the
authors as in-situ effects (see subsection 2.2.4) [81].

2.2.3.4. Matrix Compression Failure (MFC)

Due to the fact that the failure occurs in a given plane angle, most likely not aligned with
the load direction, indicates a shear dominant nature of the process [81]. When the crack
occurs along the fiber direction, it is called a splitting crack.

2.2.3.5. Delamination

Kassapoglou [52] defines delamination in a laminate as any separation between two adjacent
plies. This damage mode is caused by high interlaminar stresses, typically in association
with low out-of plane strength8 [113]. Once delaminated, a composite structure experience a
serious reduction in its material properties, particularly in its bending stiffness [81]. Besides
degrading the structural properties of composite materials, delaminations are difficult to detect
by traditional non-destructive inspection techniques [14].

For both quasi-static and fatigue loading cases, delaminations are a critical damage mode.
In quasi-static condition, crack propagates under single fracture modes when the strain en-
ergy release rate equals the interlaminar fracture toughness [107]. Even though cyclic loading
8Generically, out-of-plane properties are dominated by the matrix properties in the light of the fibers only provide
reinforcement in the plane of the laminate.
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conditions are beyond the scope of this work, it deserves mention that under these loading
conditions, delaminations may grow up to a critical size for load levels well below the ultimate
load [14].

Delaminations are driven by through-thickness stresses that exceed the strength of the thin
matrix layer between plies [52]. The development of these interlaminar stresses may have five
causes [52, 104, 113]:

• Out-of-plane loading: the applied load direction has a projected component that is
perpendicular to the laminate plane. Lug fittings and rib-to-skin joints [see appendix G.2
- figures P.13 a) and b), respectively] are a paradigmatic example of this failure cause;

• Structure geometry: a) tapered laminates generate shear and normal out-of-plane
stresses by diffusing the load throughout the changing thickness [see appendix G.2 - figure
P.13 c)]; b) curved laminates also originate interlaminar normal stresses when induced
moments tend to reduce the curvature. The associated issues become more significant
when the ratio thickness to radius increases [see appendix G.2 - figure P.13 d)]; c) lastly,
geometries with load path eccentricity induce peel stresses on the adhesive and through-
thickness adherend interlaminar stresses, which for the purposes of this thesis is the most
significant case [28, 113].

• Localized interlaminar stresses: singularities arise at geometrical or material sharp
discontinuities where the stresses, theoretically, become infinite. The failure progresses
if there is sufficient energy involved driving the propagation process. Classical examples
are: cracks, discontinuous plies, ply drops and free edges [see appendix G.2 - figures P.13
e) and f), respectively].

• Impact: delamination is a critical damage mode under impact loading [113] that might
take place during manufacturing (e.g., bridging of plies), service (e.g., runaway debris
and hail damage) or maintenance (e.g., tool dropping) [28, 52]. It can be particularly
deceitful for low speed-high mass impacts where almost no evidence of damage can be
found on the surface, while inside the laminate matrix cracks and delaminations may
be found. Whereas this type of damage has relatively small influence on residual tensile
strength [113], it can reduce up to 60% the compression and shear strength [52].

• Temperature and moisture effects: the residual stresses originated due to the mis-
match between the matrix and fiber thermal expansion coefficients, during the curing
process can lead to delaminations [104].

Figure 2.10: Section cut showing the damage created in a quasi-isotropic laminate after 25J impact. (Reproduced
from [52], copyright Wiley, 2015).

2.2.4. In-situ strength properties
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2.2.4.1. Background theory

Inpired by Dvorak and Laws theory [26, 27], Camanho et al. [13] suggest that in order
to predict matrix cracking in a laminate subjected to transverse tensile stresses and in-plane
shear, the failure criterion should account for in-situ effects.

Figure 2.11 shows how Dvorak and Laws theory (solid line) correlates to experimental data
(markers) for different laminates. The thicker UD laminate [90]8𝑠 proved to be the weakest,
with a lamina strength lower that the UD strength value. However, for a inner 90∘ply thickness
of 0.125𝑚𝑚 in the [0/90𝑛/0] laminate, its strength value is more than the double of the UD
strength. This strongly suggests that thin plies are stronger than thick UD laminates.

Figure 2.11: Transverse strength of the 90∘oriented ply in multidirectional laminates with different numbers of
90∘laminae. The dashed line represents the UD strength value. The solid line represents Dvorak and Laws prediction.
(Reproduced from [26], copyright Wiley, 1987).

2.2.4.2. In-situ fundamentals

The latter labeled in-situ effect is characterized by higher transverse tensile and shear
strengths of a lamina when it is constrained by other laminae with different orientations in
a multi-directional laminate, when compared to the strength of the same lamina in a UD
laminate [13]. Pinho et al. [81] note that this in-situ strength depends not only on the location
and orientation of the constraining plies but also the number of clustered plies together. These
two last factors can be simply seen as the ply thickness since that, same oriented plies clustered
together are in fact a single thicker ply that is constrained by differently oriented plies.
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Considering the dependence of these in-situ strengths on factors such as ply thickness and
location, Pinho et al. [82] emphasize that the foundation for the ’strength enhancement’ is
structural rather than material.

The authors claim that under the same stress state, the conditions for micro-crack propa-
gation are much more propitious for an UD laminate than for a thin ply in a multi-directional
laminate neighbored by different orientations laminae. This stems from the fact that the
thickness of the ply and the presence of surrounding plies change the boundary conditions of
the fracture mechanics problem for crack propagation [82]. In fact, an UD laminate has a
multitude of potential transverse (1-3) fracture planes (parallel to the fibers), where a crack
once created can easily propagate in a transverse direction. This statement is supported by
Kassapoglou [52], who argues that cracks in FRP grow following an irregular path, which is
defined and constrained by the fibers in the adjacent plies that are in different orientations,
acting as crack stoppers.

In-situ strength values have been determined by experimental and analytical methods, Yet,
in the past, both approaches present accuracy issues in predicting the in-situ shear strength,
given the highly NL shear behavior of FRP [13]. Hence, the referenced article proposed an
analytical closed-form model that accurately predicts the in-situ shear strength as function of
ply thickness and location.

2.2.4.3. Ply classification and in-situ equations

Using fracture mechanics models Camanho et al. [13] derived the equations used to calcu-
late the in-situ strength properties for:

• Inner thick plies embedded in a multidirectional laminate where a slit crack firstly prop-
agates in the transverse direction and then in the longitudinal direction;

• Inner thin plies embedded in a multidirectional laminate where a slit crack propagates in
the longitudinal direction (the initial crack extends throughout the whole ply thickness).

• Outer thin plies are one-side unconstrained given that they are located on the surface on
the laminate. Because of this, the energy release rate is amplified, thus decreasing the
in-situ strength.

A ply that is embedded between two plies (inner ply) present greater in-situ strengths than
an unbounded outer ply which is more likely to develop surface cracks [91].

The transverse tensile, transverse compressive and in-plane shear strengths are calculated
using elastic properties (𝐸1, 𝐸2 and 𝐺12), the fracture toughness (𝐺𝐼𝑐 and 𝐺𝐼𝐼𝑐) and plastic
flow parameters (shear incremental stiffness under plastic flow 𝐾𝑝 and shear stress at which
the plastic flow is activated 𝑆𝐿𝑃 ). The diagram contained in figure 2.12 shows in a systematic
manner the in-situ property equations. Further details can be clarified in the original article
[13], for an extensive clarification and in [91] for a summarized description of the theory.
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Figure 2.12: Ply classification and related in-situ strength equations.

2.2.5. Continuum damage models (CDM)
The main idea of Continuum Damage Models (CDMs) is to substitute the mechanical

behavior of the damaged material in the Fracture Process Zone (FPZ) by associating the
implicit failure mechanisms with their overall effects on the elastic properties of the material
[86]. In other words, the FPZ is modeled in a smeared manner by degrading the apparent
stiffness of the material, i.e., softening the material, in that region [29]. Dávila [21] asserts
that the goal of CDM is to develop a framework that accurately describes the material response
caused by a progressive damage state . Thus, progressive failure analysis greatly depends on
the failure (initiation) criteria and the subsequent material property degradation models [30].
These are the two main ingredients that compose a CDM that is used for PDA of FRP.

These models use the local stress-strain state of an homogenized material and compare
it to material allowables by means of a given failure criteria to determine the occurrence of
damage initiation. From this point on, CDMs capture the damage propagation by means of a
damage state variable that selectively reduces the mechanical properties of the material. Even
though these CDMs do not represent the physical damage phenomenon at the microlevel, they
provide an appealing and convenient framework for implementation in FEA software [86].

This approach is particularly appealing to simulate intralaminar damage in view of the fact
that for multidirectional laminates, this type of damage forms in a more diffused and smeared
pattern [29].

2.2.6. Damage initiation criteria
Essentially, damage initiation criteria is materialized by mathematical equations that pre-

dict the occurrence of material damage and the associated stress state [30].



22 2. Literature study

Since 1965, when Tsai9 derived the strength characteristics of anisotropic materials from a
generalized distortional work criterion [106], continuous efforts have been done in developing
failure criteria to accurately predict the initial failure in UD FRP composite laminates [21, 99].
Presently, most of the damage initiation models are stress/strain based and there is no single
theory that accurately predicts failure mode and correspondent load for all loading conditions
and for all types of FRP [21].

The main failure criteria can be categorized in three groups [99]:

• Limit criteria: Failure load and mode are predicted by comparing lamina stresses or
strains with corresponding strengths separately, i.e., no interaction is considered. Ex-
amples are: maximum stress and maximum strain.

• Interactive criteria: Failure load is predicted by using a single quadratic or higher order
polynomial equation involving all stress (or strain) components. Failure mode is indi-
rectly determined by comparing stress (or strain) ratios. Examples are: Hill, Tsai-Hill,
Tsai-Wu, Hoffman and Yamada-Sun.

• Separate mode criteria: These criteria separates matrix failure criterion from fiber failure
criterion. Equations may depend on one or more stress components (may combine normal
stresses with shear); in the case of multiple stress components, failure mode is determined
by comparing stress (or strain) ratios, as is done with interactive criteria. Examples are:
Hashin-Rotem, and Hashin.

Damage initiation is assumed when for a given failure index is equal to one.

2.2.6.1. Hashin failure criteria: a heuristic 3D separate mode failure model

Hashin’s three-dimensional failure criteria [42] predict onset and type of damage in a com-
posite lamina [12]. These criteria are expressed in terms of quadratic stress polynomials. This
quadratic behavior is chosen, as explained by the author, based on curve fitting considerations
alone. Hence, the model is heuristically rather than physically grounded [109].

As mentioned above, due to the fact that a composite material comprises two dissimilar
phases, failure mechanisms should be differentiated. Hence, in the author’s first effort to
establish a failure criteria for FRP, in 1973, Hashin and Rotem [43] distinguished between fiber-
and matrix-dominated failure mechanisms. Later, in 1980, Hashin [42] further subdivided
each failure mode into tensile and compressive modes [103]. Accordingly, the outcome was
established in a piece-wise form, containing four equations that defined the three-dimensional
failure criteria for UD fiber composites (see appendix H.1).

Failure predictions of boron-epoxy and glass-epoxy off-axis specimens under tension, based
on Hashin’s failure criteria showed very good agreement with experimental results (see ap-
pendix H.2 - figure P.14).

By contrast, Dávila and Camanho [21] highlight the fact that in the past decade, several
studies indicated that the stress interaction proposed by Hashin not always fit the experimen-
tal results, particularly in the compressive criteria. The authors note that for a moderate
transverse compression (𝜎2 < 0) the apparent shear strength10 is improved, which is not ac-

9Supported by Hill’s previous work over the yielding and plastic flow of anisotropic metal, in 1943.
10The shear behavior depends on in-plane transverse stress, which in practical terms means that the shear response
gets ’stiffer’ when compressive transverse stresses are acting [81].
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counted in the present criteria but is already taken into consideration in Puck’s failure criteria
(presented below). Another unaccounted effect is the induced in-plane shear during fiber
compression, which significantly reduces the effective compressive strength of the ply [21]. Ad-
ditionally, Hashin’s model is incapable to predict uniaxial stress-strain curves for large strains.
Hereupon, the performance of this model in the WWFE-II was ranked among those requiring
further development [48].

Even though its clear limitations and the fact that it does not constitute a state-of-the-art
damage initiation model, it is undeniable that it established a benchmark for 3D separate mode
failure criteria. After more than 35 years since its development, Hashin failure criteria is still
being used11, studied [25] and modified [33].

2.2.6.2. Puck and Schürmann failure criteria: a dominantly phenomenologi-
cal model with physical considerations failure model

Puck and Schürmann [84] based the description of damage and fracture behavior on phe-
nomenological models but simultaneously placed on physical basis. Their model is not only
capable to predict stress levels that lead to crack initiation in a lamina when subjected to a
biaxial stress state [93] but also to indicate the direction of the cracks.

Essentially, Puck’s failure criteria is divided into two modes: 1) fiber failure (FF), which is
further subdivided into two failure modes: tensile and compression (kinking) and 2) inter-fiber
failure (IFF) which contains three failure modes, A, B and C.

A note should be done regarding the mismatch between the nomenclature used by the
authors and in the context of this work for the failure indices. Puck and Schürmann labeled
the failure indices as stress exposure factor in the fibers 𝑓𝐸_𝐹𝐹 and inter-fibers 𝑓𝐸_𝐼𝐹𝐹 .
In this thesis the former variable corresponds to the fiber failure indices (discriminated by
mode, tensile FFT and compressive FFC) and the latter relates to the matrix failure indices
(discriminated by mode, tensile MFT and compressive MFC).

Fiber failure (FF)

For a 3D state case, Puck and Schürmann define a fiber failure criterion similar to the
maximum stress criterion but extended to the fibers:

𝜎𝑓1 = 𝐸𝑓1𝜀1 + 𝜈𝑓12𝑚𝜎𝑓(𝜎2 + 𝜎3)

Where 𝜎1𝑓 is the stress in the fibers; 𝑚𝜎𝑓 is a mean magnification factor of the transverse
stress for the fibers (𝑚𝜎𝑓 ≈ 1.1 for carbon fibers) and 𝜈𝑓12 is the Poisson ration of the fibers
in the 2-direction caused by an applied stress in the 1-direction.

Recalling that the strain: 𝜀1 = 𝜎1
𝐸1

− 𝜈12
𝐸1

(𝜎2 + 𝜎3) and that at tensile failure 𝜎𝑓1 = 𝑋𝑇
𝑓 =

𝐸𝑓1
𝐸1

𝑋𝑇 , where 𝑋𝑇
𝑓 is the tensile strength of the fibers in the longitudinal direction and 𝑋𝑇 is

the tensile strength of the UD material in the longitudinal direction:

11Hashin damage model is built into ABAQUS®.
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𝐸𝑓1
𝐸1

𝑋𝑇 = 𝜎1𝐸𝑓1
𝐸1

− 𝜈12𝐸𝑓1
𝐸1

(𝜎2 + 𝜎3) + 𝜈𝑓12𝑚𝜎𝑓(𝜎2 + 𝜎3)

Dividing everything by 𝐸𝑓1
𝐸1

𝑋𝑇 :

𝑓𝐸_𝐹𝐹 ≡ 𝐹𝐹𝑇𝑃𝑢𝑐𝑘 = 𝜎1
𝑋𝑇 − 𝜈12

𝑋𝑇 (𝜎2 + 𝜎3) + 𝐸1
𝐸𝑓1𝑋𝑇 𝜈𝑓12𝑚𝜎𝑓(𝜎2 + 𝜎3) (2.1)

The authors did not include complex fiber compressive failure modes such as fiber kinking,
instead, the logic used for the fiber tensile mode was simply extended to the compressive mode,
using the compressive strength of the UD material in the longitudinal direction 𝑋𝐶 instead of
𝑋𝑇 , as follows:

𝑓𝐸_𝐹𝐹 ≡ 𝐹𝐹𝐶𝑃𝑢𝑐𝑘 = −( 𝜎1
𝑋𝐶 − 𝜈12

𝑋𝐶 (𝜎2 + 𝜎3) + 𝐸1
𝐸𝑓1𝑋𝐶 𝜈𝑓12𝑚𝜎𝑓(𝜎2 + 𝜎3)) (2.2)

Note that for the compressive mode, a minus sign was added due to the fact that all strength
values are considered positive, otherwise, the failure index would be negative.

Inter Fiber failure (IFF)

As for the IFF condition, it is based on Mohr-Coulomb fracture hypothesis, which states
that fracture is exclusively created by the stresses which act on the fracture plane [84]. In the
case of IFF on an inclined plane (at an angle 𝜃𝑓𝑝) parallel to the fibers are: the normal stress
𝜎𝑛, the transverse-transverse shear stress 𝜏𝑛𝑡 and the transverse-longitudinal shear stress 𝜏𝑛𝑙
(see figure 2.13).

While a transverse normal tensile stress 𝜎𝑛 > 0 promotes fracture (mode A), a compressive
𝜎𝑛 < 0 impedes shear fracture (modes B and C). This is a major improvement with respect
to the precedent criteria. Puck and Schürmann included in their IFF condition the benign
contribution of compressive normal stresses which add fracture resistance (it can be seen as a
supplementary internal friction).

Puck and Schürmann, first developed their physically based phenomenological model [84]
for the particular case of a composite material under plane stress conditions. Latter, the same
authors generalized the failure criteria to a 3D stress state [85]. Considering that latter is more
general, it will be presented first.

Inter Fiber failure (IFF) - 3D stress state

For a generalized 3D stress state of an UD composite element rotated by an angle 𝜃𝑓𝑝 from
𝑥2 to the 𝑥𝑛 direction12, Puck and Schürmann, based on the aforementioned Mohr-Coulomb
fracture hypothesis, developed the following Inter Fiber failure (IFF) criteria:
12𝑥𝑛 is the normal direction to the fracture plane (figure 2.13).
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• For a positive, i.e., tensile, normal stress acting on an arbitrary sectional plane with an
inclination angle 𝜃, 𝜎𝑛(𝜃) ≥ 0:

𝑓𝐸_𝐼𝐹𝐹 (𝜃) ≡ 𝑀𝐹𝑇𝑃𝑢𝑐𝑘(𝜃) =

=
√√
⎷

[( 1
𝑌 𝑇 −

𝑝𝑇
⊥𝜓

𝑅𝐴
⊥𝜓

)𝜎𝑛(𝜃)]
2

+ (𝜏𝑛𝑡(𝜃)
𝑅𝐴

⊥⊥
)

2
+ (𝜏𝑛𝑙(𝜃)

𝑆𝐿 )
2

+
𝑝𝑇

⊥𝜓
𝑅𝐴

⊥𝜓
𝜎𝑛(𝜃) (2.3)

• For a negative, i.e., compressive mode, 𝜎𝑛(𝜃) < 0:

𝑓𝐸_𝐼𝐹𝐹 (𝜃) ≡ 𝑀𝐹𝐶𝑃𝑢𝑐𝑘(𝜃) =

=
√√√
⎷

[
𝑝𝐶

⊥𝜓
𝑅𝐴

⊥𝜓
𝜎𝑛(𝜃)]

2
+ (𝜏𝑛𝑡(𝜃)

𝑅𝐴
⊥⊥

)
2

+ (𝜏𝑛𝑙(𝜃)
𝑆𝐿 )

2
+

𝑝𝐶
⊥𝜓

𝑅𝐴
⊥𝜓

𝜎𝑛(𝜃) (2.4)

The stresses acting on the potential fracture plane 𝜎𝑛, 𝜏𝑛𝑙 and 𝜏𝑛𝑡 are trivially obtained
through a 𝜃 rotation along the 1-axis, as shown in figure 2.13 (the transformation equations
can be found in appendix H.3). 𝑅𝐴

⊥⊥ is the fracture resistance of the action plane against its
fracture due to transverse/transverse shear stressing and it is given by: 𝑅𝐴

⊥⊥ = 𝑌 𝐶/[2(1+𝑝𝐶
⊥⊥)],

where 𝑝𝐶
⊥⊥ is the slope of (𝜎𝑛, 𝜏𝑛𝑡) fracture envelope for 𝜎𝑛 ≤ 0 at 𝜎𝑛 = 0. Parameters 𝑝𝑇

⊥𝜓
𝑅𝐴

⊥𝜓

and 𝑝𝐶
⊥𝜓

𝑅𝐴
⊥𝜓

are slope over resistance rotated parameters (for more information, refer to the original
article [85]).

Figure 2.13: Three-dimensional stresses on a UD composite element. (𝑥1, 𝑥2, 𝑥3) coordinate system is fixed to
fiber direction (𝑥1), laminate mid-surface (𝑥2) and thickness direction (𝑥3). The (𝑥𝑙, 𝑥𝑛, 𝑥𝑡) coordinate system is
rotated by an angle 𝜃𝑓𝑝 from the 𝑥2 direction to the 𝑥𝑛 direction which is normal to the fracture plane. The IFF is
only influenced by the three stresses 𝜎𝑛, 𝜏𝑛𝑡, 𝜏𝑛𝑙. (Reproduced from [84], copyright Elsevier, 1998).

The failure indices 𝑀𝐹𝑇𝑃𝑢𝑐𝑘(𝜃) and 𝑀𝐹𝐶𝑃𝑢𝑐𝑘(𝜃) are obtained through iteration by
finding the angle −90∘ ≤ 𝜃 ≤ +90∘ that maximizes these quantities. Based on Mohr-Coulomb
fracture hypothesis, Puck and Schürmann labeled the correspondent angle as the fracture plane
angle (𝜃𝑓𝑝). A possible pseudo-algorithm formulation would be:

find 𝜃𝑓𝑝 | max[𝑀𝐹𝑇𝑃𝑢𝑐𝑘(𝜃)] for 𝜎𝑛 ≥ 0
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find 𝜃𝑓𝑝 | max[𝑀𝐹𝐶𝑃𝑢𝑐𝑘(𝜃)] for 𝜎𝑛 < 0

For an IFF, modes B and C imply a compressive normal stress in the fracture plane (𝜎𝑛 <
0). The difference relies on the angle of the fracture plane: 𝜃𝑓𝑝 = 0∘ for mode B and 𝜃𝑓𝑝 ≠ 0∘

for mode C.

Inter Fiber failure (IFF) - plane stress state

For a state of plane stress(𝜎1, 𝜎2, 𝜏12), the condition that differentiates modes B and C can
be formulated in the following manner: if the ratio between the modulus of the compressive
normal stress in the 2-direction 𝜎2 and the shear stress 𝜏21 is smaller than the ratio between the
fracture resistance of the action plane against its fracture due to transverse/transverse shear
stressing 𝑅𝐴

⊥⊥ and the shear stress at the ‘turning point’ of the (𝜎2,𝜏21) fracture curve (see
appendices H.4 and H.5 - figures P.15 and P.16, respectively), then mode B is valid. Otherwise,
mode C takes place.

Furthermore, for both mode A and B, the angle of the fracture plane is equal to zero, i.e.,
fracture plane is parallel to 1-3 plane, whereas for mode C it depends on material properties
and the stress level.

Puck’s theory entails a very sophisticated modeling of IFF, through the introduction of
competing ply cracking modes and fracture plane orientation. Owing to theory’s solidity,
accurate and reliable predictions are verified, including: theoretical failure envelopes for the
UD lamina, final failure envelopes and stress–strain curves for the multidirectional laminates
that show very good agreement with the experimental results [93].

Nonetheless, the Puck’s model underestimates final failure strains and failure envelopes,
where large NL deformations are present. Another drawback of Puck’s phenomenological
approach is the inclusion of several non-physical material parameters that may be difficult to
quantify without considerable experience with a particular material system [21].

2.2.6.3. LaRC03, LaRC04 and LaRC05: three improved physically based fail-
ure models

In an effort to develop a damage model for FRP composites containing additional physical
features, three successively improved models were created: 1) LaRC03 failure criteria, a six
physically-based 2D intralaminar failure criteria; 2) LaRC04 failure criteria, a 3D extended
version of its precedent and 3) LaRC05 failure criteria, an improved failure criteria based on a
novel NL constitutive model.

In 2003, Dávila and Camanho [21] based on Dvorak’s fracture mechanics analysis of cracked
plies [26] and Puck’s fracture plane concept [84] described an original set of six failure criteria
for FRP laminates and named it LaRC03. Unlike most of damage initiation criteria which are
predominately heuristically based, LaRC03 present a solid physical framework [109].

Apart from separating the matrix cracking and fiber failure into tensile and compressive
modes, the authors further subdivided the compression cases according to the transverse stress
state, as it is summarized in the figure 2.14. The criteria for fiber and matrix compression are
based on Mohr-Coulomb effective stresses in interaction with the plane of fracture. Still, with
respect to fiber compressive failure, the criteria for fiber kinking is highly dependent on the



2.2. Progressive Damage Analysis (PDA) in composites 27

misalignment angle. The matrix tensile failure criterion is based on fracture mechanics models
of matrix cracks and on related in-situ effects [21].

Based on the results of the proposed criteria, the authors concluded that LaRC03 correlate
well with experimental results when it comes to failure load envelops and respective failure
mode predictions.

Figure 2.14: Summary of LaRC03 failure criteria (Adapted from [21]).

Two years later, Pinho et al. [81] extended LaRC03 failure criteria by generalizing it to a
3D stress state and by incorporating matrix shear non-linearities. This model follows the same
physically based approach as its precedent. It also presents the same structure in the sense
that it subdivides the matrix and fiber compressive modes according to the transverse stress
state.

In spite of the good agreement showed by LaRC04 predictions with respect to experimental
data, this model relies on several iterative processes to compute quantities related to the com-
pressive fiber failure, more specifically related to fiber kinking13, which makes its application
computationally expensive.

The updated failure criteria, conveniently named LaRC05 (published in two articles: part
A [82] and part B [83]), are founded on a NL pressure-dependent 3D constitutive model,
i.e., the yielding response of the resin as well as the effect of the hydrostatic pressure were
included in modeling laminated FRP composites subjected to a 3D stress state. The philosophy
behind this approach is that failure models and respective criteria should include as much
physical phenomena as possible, so that they capture and incorporate the failure processes at
micromechanical level, ultimately allowing valid and accurate solutions [82].

13Namely the initial misalignment angle and the shear strain in the misalignment frame.
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Part B [83] suggests the integration of plasticity theory and some crucial constitutive re-
sponse features in the 3D stress analysis of UD composites, such as: hydrostatic sensitivity,
non-linearity and multi-axial sensitivity.

Similarly to its former models, LaRC05 predicts the failure modes, the fracture plane
orientation and the failure load. Moreover, it also accounts for in-situ effects based on fracture
mechanics analysis. Yet, it was restructured into three modes failure modes: matrix failure,
fiber kinking/splitting and fiber tensile failure.

Owing the inclusion of some assumptions and simplifications, namely in the fiber kinking
failure mode, some exhaustive computations of iterative nature of LaRC04 were replaced by
closed-form solutions in LaRC05, resulting in a considerable decrease in the associated com-
putational effort.

A summary of the LaRC05 failure criteria is provided:

2.2.6.4. Tensile fiber failure

The FFT index is based on the maximum stress criterion:

𝐹𝐼𝐹𝑇 ≡ 𝐹𝐹𝑇𝐿𝑎𝑅𝐶05 = 𝜎1
𝑋𝑇 (2.5)

2.2.6.5. Compressive fiber failure - fiber splitting and kinking

Pinho et al. [82] describe the compressive fiber failure as fiber splitting or kinking.

According to the authors, it starts with manufacturing defects such as fiber misalignment
or for increased compression loads, failure of the neighboring plies resulting in localized high
shear stresses which originates fiber splitting. Further load increase generates more bending
in the fibers which leads to even more splitting. Finally, the fibers break due to a pernicious
combinations of compressive and bending stresses resulting in a kink band [82].

In the model, this differentiation is made based on the magnitude of the longitudinal
compressive stress 𝜎1 with respect to the longitudinal compressive strength value 𝑋𝐶: lower
absolute compressive stress values are associated with fiber splitting (𝜎1 > −𝑋𝐶/2 or in
absolute terms |𝜎1| < |𝑋𝐶|/2), otherwise, fiber kinking is assumed.

The FFC index is calculated based on the following equation:

𝐹𝐼𝐾𝐼𝑁𝐾,𝑆𝑃𝐿𝐼𝑇 ≡ 𝐹𝐹𝐶𝐿𝑎𝑅𝐶05 = ( 𝜏𝑚
23

𝑆𝑇 − 𝜂𝑇 𝜎𝑚
2

)
2

+ ( 𝜏𝑚
12

𝑆𝐿 − 𝜂𝐿𝜎𝑚
2

)
2

+ (max(0, 𝜎𝑚
2 )

𝑌 𝑇 )
2

(2.6)

Where 𝜎𝑚
2 , 𝜏𝑚

12 and 𝜏𝑚
23 are the rotated stress components in the misalignment frame; 𝜂𝐿

and 𝜂𝑇 are the slope coefficients for longitudinal and transverse shear strength, respectively
(check the original article [82] for more details regarding the implicit transformations).
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2.2.6.6. Matrix failure

Similar to Puck and Schürmann’s model, LaRC05 is based on Mohr-Coulomb theory for
matrix failure prediction. For both MFT and MFC the suggested failure index equation is:

𝐹𝐼𝑀 ≡ 𝑀𝐹𝑇𝐿𝑎𝑅𝐶05, 𝑀𝐹𝐶𝐿𝑎𝑅𝐶05 = ( 𝜏𝑛𝑡
𝑆𝑇 − 𝜂𝑇 𝜎𝑛

)
2

+( 𝜏𝑛𝑙
𝑆𝐿 − 𝜂𝐿𝜎𝑛

)
2

+(max(0, 𝜎𝑛)
𝑌 𝑇 )

2

(2.7)

Where: 𝜎𝑛, 𝜏𝑛𝑙 and 𝜏𝑛𝑡 are the stresses acting on the potential fracture plane. The
transformation equations can be found in appendix H.3. The last term only contributes for
increasing the failure index value if the normal stress acting on the fracture plane 𝜎𝑛 is tensile,
reinforcing the idea that compressive matrix failure delays matrix failure owing to the fact that
it tends to close the crack.

This failure criteria show very good agreement with the test cases, earning it a remarkable
classification in the WWFE [48] as one of the top performing models in 3D failure analysis.
Yet, in order to be a reliable and accurate physically based predictive failure model, it requires
extensive characterization of the input material parameters [83].

2.2.7. Material property degradation models
Composite structures have the capability of damage accumulation after damage initiation

and before structural collapse [7, 30, 32, 88]. For this reason, the sole use of failure initiation
criteria for design purposes results in inaccurate predictions leading to quite conservative design
solutions given the considerable residual strength and damaged tolerance that a damaged
composite structure exhibits after failure initiates. Thereupon, understanding the NL behavior
of quasi-brittle materials due to damage accumulation is paramount, considering that the rate
and direction of damage propagation determines the structure’s damage tolerance and ultimate
failure [64].

Garnich and Akula [30] performed an extensive review on material degradation models for
PDA of FRP composites, using the FEM. The authors claim that one of the main challenges in
this field is to properly characterize the residual stiffness and strength of the damaged material
in a given location. The complexity of modeling PDA in FRP arise from: a) multiple failure
modes; b) directionality of failure; c) the interaction between the pristine and the damaged
material and d) numerical implementation related issues.

Still in the same article, the researchers classified the studied models as:

• Sudden degradation: all properties are instantaneously reduced to some fraction of the
undamaged properties.

• Gradual degradation: one or more properties are reduced in function of other evolving
variable, such as strain.

Figure 2.15 clearly schematizes how each approach treats material degradation. While the
former group outperforms the latter when it comes to simplicity in the implementation due
to its binary nature (the material is either considered undamaged or completely degraded)
in characterizing the degraded properties which is translated into computational expediency,
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on the other hand, it does not realistically reflect the damage accumulation phenomenon,
where the stiffness of the structure changes nonlinearly with damage propagation requiring
equilibrium equations to be satisfied at each increment in order to re-establish equilibrium
[30].

Figure 2.15: Schematic of sudden (path OBCD) and gradual (path OBD) property degradation models. (Reproduced
from [30], copyright ASME, 2009).

Given the lack of physical basis and agreement on virtually every material property degra-
dation model resulting in a panoply of different proposals, only three models will be covered
in this thesis. Despite the seniority of these models, they created a solid framework on which
other authors were inspired to develop further work.

Starting by the classical approach of capturing the effects of damage by reducing the ma-
terial stiffness by means of a constant internal state variable, Camanho and Matthews [12]
proposed a light an easy to implement sudden material degradation model. In the realm of
gradual degradation theories, Puck and Schürmann [85] suggest two methods for capturing
material degradation that have been recognized as solid, showing good agreement with exper-
imental data [93]. Finally, a linear softening model is suggested as an accurate method in
capturing the damage evolution in the adhesive of bonded joints [67].

Within the framework of continuum damage mechanics, the damage state of a material
is captured by a damage parameter which, along with the constitutive relations describe the
mechanical behavior of the damaged material and the further failure development [30, 75].

Damage in a specimen under uniaxial stress

In order to better understand the physical/mechanical meaning of material damage, the
concept of effective stress �̂� is introduced through the simplest loading case. Consider a
specimen of cross area 𝐴, loaded by an applied force 𝐹𝑎, as illustrated in figure 2.16. It
is evident that the uniaxial stress is given by:

𝜎 = 𝐹𝑎
𝐴 (2.8)
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Figure 2.16: 1-D Damaged element. (Reproduced from [57], copyright Springer, 1996).

A bit more subtle to realize is that for a damaged specimen, the effective surface resisting
the applied load is the cross-sectional area 𝐴 minus the cross sectional area of the voids 𝐴𝑑.
This means that the effective stress �̂� is given by:

�̂� = 𝐹𝑎
(𝐴 − 𝐴𝑑) (2.9)

The damage quantity 𝑑 is defined as the ratio between the cross-sectional area of the voids
and the specimen’s cross-sectional area14:

𝑑 = 𝐴𝑑
𝐴 (2.10)

Dividing the numerator and denominator of equation (2.9) by 𝐴 and inputting this last
definition, it simply becomes:

�̂� =
𝐹𝑎
𝐴

(𝐴−𝐴𝑑)
𝐴

= 𝜎
1 − 𝑑 (2.11)

For the sake of clarity, the damage parameter ranges from zero to unity, representing, in
practical terms the material’s damage state:

⎧{
⎨{⎩

𝐴𝑑 = 0 ⇒ 𝑑 = 0 ⇒ �̂� = 𝜎 Undamaged material
0 < 𝐴𝑑 < 𝐴 ⇒ 0 < 𝑑 < 1 ⇒ �̂� > 𝜎 Damaged material
𝐴𝑑 = 𝐴 ⇒ 𝑑 = 1 ⇒ �̂� → ∞ Ultimate failure

Lemaitre [57] uses the strain equivalence principle to define the constitutive behavior of a
damaged material. This principle postulates the following:
14Matzenmiller et al. [69] state that the damage parameter may be seen as the ’loss area’.
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“Any strain constitutive equation for a damaged material may be derived in the
same way as for a virgin material except that the usual stress is replaced by the
effective stress.”

Based on this, the elastic strain 𝜀𝑒 is simply given by:

𝜀𝑒 = �̂�
𝐸 = 𝜎

𝐸(1 − 𝑑) (2.12)

Hence, the effective elasticity modulus of the damaged material is trivially obtained:

̂𝐸 = 𝜎
𝜀𝑒

= 𝐸(1 − 𝑑) (2.13)

2.2.7.1. Camanho and Matthews: a sudden method of stiffness reduction

Following a classical approach for modeling the progressive damage of mechanically fastened
joints in composite laminates, Camanho and Matthews [12] took into account the effects of
damage by selectively and suddenly reducing the engineering constants of the orthotropic
material. This stiffness reduction is carried by using an internal state variable 𝑑 which is
multiplied to the initial modulus of the material (𝐸0 or 𝐺0), when a given failure condition is
met.

The following table presents the damage values for each failure mode:

Table 2.2: Constant damage variables of Camanho and Matthews [12] sudden degradation model.

Mode 𝐸1 𝐸2 𝐸3 𝐺12 𝐺13 𝐺23
FFT 0.07 - - - - -
FFC 0.14 - - - - -
MFT - 0.2 - 0.2 - 0.2
MFC - 0.4 - 0.4 - 0.4

The authors notice that for carbon/epoxy laminates only 𝐸2, 𝐺12 and 𝐺23 are considerably
affected with increasing crack density [12].

2.2.7.2. Puck and Schürmann material degradation model: two suggested
approaches; a predefined degradation law and an iterative method

Puck and Schürmann material degradation model [84, 85] is an extension of the corre-
spondent failure criteria treated in the last subsection 5.6, both composing an integral PDA
model.

For this matter, the authors suggest two different methods to degrade the elastic constants:

1. Predefined Degradation Law (PDL): an assumption regarding the function of the
degradation parameter 𝜂 is done, particularly an hyperbolic dependence is adopted:

𝜂(𝑓𝐸_𝐼𝐹𝐹 ) = 1 − 𝜂𝑟
1 + 𝛽(𝑓𝐸(𝐼𝐹𝐹) − 1)𝜉 + 𝜂𝑟 (2.14)
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Where 𝜂𝑟 is the degradation factor residual value and 𝛽 and 𝜉 are constants that control
the decay rate of the degradation factor. Figure 2.17 shows the hyperbolic variation of
𝜂 for increasing stress exposure values 𝑓𝐸_𝐼𝐹𝐹 and the effects of different values for the
decay parameters 𝛽 and 𝜉. Using this approach implies that the stress exposure factor
𝑓𝐸_𝐼𝐹𝐹 is free to take any value.

2. Constant Stress Exposure (CSE): this method does not make any assumption re-
garding the degradation factor behavior. Instead, once damage initiates 𝑓𝐸_𝐼𝐹𝐹 = 1,
the stress exposure factor (authors’ nomenclature for failure index) is kept constant at
that value and the degradation factor 𝜂 is found through an iterative process such that
the condition 𝑓𝐸_𝐼𝐹𝐹 = 1 is followed. In practice, when an element reaches a failure
index of one (i.e. damage initiates), its elastic moduli are degraded making that element
bearing less load than it used to be capable of, leading to a load redistributing along the
remaining structure.

Figure 2.17: Degradation factor hyperbolic variation for increasing stress exposure values for different characteristic
parameters 𝛽, 𝜉, and different residual values 𝜂𝑟.

Both methods have advantages and drawbacks. While the second is computationally heav-
ier given that the degradation factor 𝜂 is found through iteration (using the Newton-Raphson
method for fast convergence) and several iterations may be required to ensure a small toler-
ance error, it is free from any presumption about the evolution of this parameter, thus not
requiring any values for the coefficients, which can be especially important for new materials.
Furthermore, intuitively, the second approach is more relatable with the physical process of
damage.
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2.2.7.3. Linear softening law material degradation model: a practical method
to model damage evolution

There are several mathematical relations for idealizing the evolution of damage in quasi-
brittle materials, such as: linear, bilinear, trapezoidal and exponential [22, 73]. Taking the
most simple and convenient, in terms of implementation, the linear softening law (figure 2.18),
prior to damage initiation, the material behaves according to its own constitutive relation
up to damage onset (𝜀𝑒𝑞_0, 𝜎𝑒𝑞_0). From this point onward, for the current k-th load (or
displacement) increment, the elastic modulus of the material, is degraded according to equation
2.15 until final failure (𝜀𝑒𝑞_𝑢, 𝜎𝑒𝑞_ = 0).

𝐸𝑘(𝜀𝑘
𝑒𝑞) = [1 − 𝑑𝑘−1(𝜀𝑘−1

𝑒𝑞 )]𝐸0 (2.15)

Where: 𝑑𝑘−1(𝜀𝑘−1
𝑒𝑞 ) is the damage variable for a given equivalent strain state 𝜀𝑒𝑞 at the

previous (k-1)-th load increment and 𝐸0 is the elastic modulus of the undamaged material.

The equivalent strain for an isotropic material is calculated according to:

𝜀𝑒𝑞 = 1√
2(1 + 𝜈)

√(𝜀𝑥 − 𝜀𝑦)2 + (𝜀𝑦 − 𝜀𝑧)2 + (𝜀𝑧 − 𝜀𝑥)2 + 3
2(𝛾2𝑥𝑦 + 𝛾2𝑦𝑧 + 𝛾2𝑧𝑥) (2.16)

The damage variable for the previous (k-1)-th load increment is computed as follows:

𝑑𝑘−1 = 𝜀𝑒𝑞_𝑢(𝜀𝑘−1
𝑒𝑞 − 𝜀𝑒𝑞_0)

𝜀𝑘−1𝑒𝑞 (𝜀𝑒𝑞_𝑢 − 𝜀𝑒𝑞_0) (2.17)

Where: 𝜀𝑒𝑞_0 is the equivalent strain at damage onset and 𝜀𝑒𝑞_𝑢 is the ultimate equivalent
strain.

As can be observed in figure 2.18, there are three possible damage cases:

⎧{
⎨{⎩

Elastic region: 𝑑 = 0 for: 0 ≤ 𝜀𝑒𝑞 < 𝜀𝑒𝑞_0
Softening region: 0 < 𝑑 < 1 for: 𝜀𝑒𝑞_0 < 𝜀𝑒𝑞 < 𝜀𝑒𝑞_𝑢
Final failure: 𝑑 = 1 for: 𝜀𝑒𝑞 = 𝜀𝑒𝑞_𝑢
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Figure 2.18: Stress-strain relation for an idealized linear damage evolution.

The area under the stress-strain curve is a measure of the critical energy release rate.
In order to have dimensional consistency, a characteristic length must be introduced when
transforming displacements into strains.

2.2.8. Discussion over modeling intralaminar using the reviewed
CDMs

Even though the constitutive behavior of laminated composites is quite complex to model
(namely the NL material response), experimental findings show that the incorporation of this
complexity in a damage model is vital for the stress field prediction in each lamina. Following
this logic, only an extensive incorporation of the underlying physical failure mechanisms will
allow a factual determination of the laminate failure load and respective mode. Nevertheless,
the relation between the phenomenon complexity and its relevance for the constitutive relation
is not trivial to determine [82].

In the sequence of this reasoning, Hashin’s damage initiation model generically shows a
poor predictive performance given its heuristic nature and deficient incorporation of physical
phenomena. Nonetheless, it is easy to implement in a FEA environment and it only requires the
material allowables, translating into low computational power. The lack of physical foundation
was overcome by Puck’s model. Based on Mohr-Coulomb failure theory and phenomenologi-
cal observations, this model judiciously analyzed and modeled IFF. The fracture plane angle
is iteratively determined which adds computational effort to the model. Furthermore, Van
Dongen [109] classified its implementation as straightforward, requiring only a few empirical
parameters.

All LaRC models are physically based, incorporating unique features such as the in-situ
effects (covered in subsection 2.2.4) using fracture mechanics fundamentals for crack growth.
LaRC03 considers the classical 2D failure modes but differentiates the compressive failure cri-
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teria according to the orthogonal stress state with respect to the associated allowable. LaRC04
expands the precedent theory to 3D, adding, however, considerable computational effort due
to exaustive iterative processes. Finally, setting the state-of-the-art damage initiation model,
LaRC05 integrates new features such as: the effect of the matrix yielding response and the effect
of the hydrostatic pressure. Another noteworthy characteristic of this plasticity theory-based
model relates to recognizing unaccounted factors that play a major role in FRP failure predic-
tion, suchlike: edge effects, statistical effects, residual thermal stresses... Explicitly pointing
these limitations, raises awareness among the scientific community for further investigation.

However, the main strength of Puck and, particularly, LaRC05 relates to their accuracy
in failure predictions. In a comparison among the predictive capabilities of 12 failure criteria
and related experimental data for 12 test cases under various 3D states of stress, Puck and
LaRC05 excel among the other theories, in both: part A (’blind’ predictions, i.e., no access
to experimental results) and part B (revised predictions) of the WWFE-II [48]. Both theories
obtained grade ’A’ (i.e., within ±10% of the experimental value) in approximately 30% of the
test cases and grade ’B’ (between ±10% and ±50% of the experimental value) in approximately
50% of test cases for part A, making them the best models for part A [48]. LaRC05 also
transcended the remaining theories for part B, i.e., where its predictions were compared with
experimental results. For more than 95% of the test cases, Pinho’s model [82, 83] got at least
grade ’B’ and got the highest grade for approximately 40% of the test cases [48].

Sudden property degradation models provide an expeditious yet non-realistic solution in
modeling continuous isotropic material. Notwithstanding the oversimplification in modeling
damage evolution, the sudden approach reveals adequate for modeling fiber failure owing to the
catastrophic nature associated with the event of fiber breakage. Considering the mechanical
properties of carbon fibers, namely high strength and stiffness, these structural elements are
capable of carrying considerably high loads. For an increasing load application, when a fiber
breaks, the load that used to be carried by this fiber is redistributed to the remaining fibers that
now become overloaded, usually resulting in a sudden failure of the structure. This cascade
phenomenon usually takes place in a very short time period. For these reasons, the use of a
sudden failure criterion to model fiber failure is adequate.

Accordingly, and having in mind the progressive nature of damage accumulation in the
matrix phase of the composite, by means of crack density growth, gradual material degradation
models seem to properly represent reality. In this category, Puck’s CSE method stand out owing
to its independence from experimentally pre-determined parameters. Furthermore, instead of
risking an assumption regarding the transverse modulus degradation, its only assumption is
that the failure index remains constant and equal to one after damage initiation, which is a
sounding assumption. Both Puck’s suggested techniques lead to a hyperbolic evolution of the
degradation factor and the engineering constants associated with matrix failure.

The consequence of CDM being based on the homogenization assumption and on the stress
state is that the resulting smeared crack will always propagate where the stress is highest [108],
disregarding the fact that the material is heterogeneous and neglecting the interaction of the
different material constituents. In reality, fibers act as crack stoppers [52], as shown in figure
2.19.



2.3. Conclusions 37

Figure 2.19: Crack propagation in a homogeneous orthotropic medium and in a fiber-matrix material. (Reproduced
from [108], copyright TU Delft, 2010).

Despite the shortcomings of CDMs, their convenient and straightforward implementation
in a FE framework make them a still popular approach [86]. Because the material is modeled
as continuous throughout the damage process, re-meshing is not needed [75]. Furthermore
Forghani et al. [29] argue that these models offer a better representation of intralaminar
damage compared to the discrete approach.

2.3. Conclusions
Several conclusions have been drawn from the literature study:

• Scarf joints are the most efficient joint design since there is no load path eccentricity, thus
no peeling stresses develop due to secondary bending. Yet, for a structurally efficient scarf
joint, the scarf angle needs to be minimized (so that the tensile [peel] component acting
on the adhesive is also minimized) which might lead to manufacturing and requirement
issues.

• ABSLJ are inherently structurally inefficient due to: 1) the sudden stiffness ’jump’ from
the unbonded region to the overlap region and 2) the load path eccentricity. This load ec-
centricity induces high bending stresses in the adherend’s lap ends (where the stress con-
centration is located due to the sudden change in stiffness), which by its turn contribute
for intensifying the already high adhesive peel stresses, correspondent through-thickness
adherend interlaminar stresses and longitudinal stresses.

• Generically, increasing the brittleness of the adhesive increases the adhesive peel and
shear stresses. Furthermore, ductile adhesives are capable to absorb much more energy
than brittle adhesives.

• A stiffness imbalance (either geometrical or material) between the adherends has a detri-
mental effect on the joint’s efficiency, particularly for low values of bending stiffness
parameter.

• Laying the 0∘oriented plies as far from the neutral axis as possible, increases the bending
stiffness parameter which improves the joint efficiency.

• Increasing the overlap length always improves the joint efficiency.
• Under the framework of CLT, composites are analyzed at meso-scale level. Four elastic

material constants are needed to characterize the material behavior. The laminate is then
subjected to a known load case. Based on these, the strains and stresses are computed
and first ply failure is determined according to a given failure criteria.

• Symmetric ([𝐵]=0, i.e., no inplane-out-of-plane couplings) and balanced (𝐴16 = 𝐴26 =
0, i.e., extension-shear coupling) laminates are preferable for most of aerospace composite
designs.
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• An anti-symmetric laminate (𝐷16 = 𝐷26 = 0, i.e., no bending-twisting coupling) is
necessarily balanced and non-symmetric, unless it is composed only by 0∘and 90∘oriented
plies.

• The damage progression methodology comprises four fundamental ingredients: a) stress-
strain ply analysis; b) the stresses or strains are compared with the allowables by means
of a failure criteria; c) after damage has been detected, the material properties are con-
tinuously degraded as damage propagates by means of a material property degradation
model; d) a numerical routine that iteratively ensures the reestablishment of equilibrium
every time a new failure is detected.

• Damage in FRP composites is complex to describe and analyze. It usually starts with
transverse matrix cracks, which is most compliant constituent. These matrix cracks
grow, multiply or might coalesce into delaminations which are hard to detect. When the
load is sufficiently increased, fibers start to break leading to a catastrophic failure of the
structure.

• When analysing failure of multidirectional laminates, the in-situ effects should be ac-
counted, translating into greater longitudinal shear and transverse tensile and compres-
sive strengths. This strength enhancement essentially depends on the ply thickness and
location. Generally, an outer unbounded ply is more likely to develop surface cracks,
hence its insitu strengths are considered lower than inner plies, but greater or equal to
its UD allowables.

• Most of damage initiation models are empirically based and end up neglecting important
physical phenomena behind the damage process, leading to inaccurate failure predictions.
Contrastingly, LaRC05 and Puck’s models incorporate several physical features that
translate in reliable failure envelopes and accurate failure predictions when compared
against experimental data.

• In the framework of CDM, sudden property degradation models provide a practical and
realistic solution to degrade the elastic modulus in the fiber direction, given the typical
catastrophic nature of fiber failure. However, this sudden approach is not applicable to
model matrix failure propagation, owing to the progressive manner that crack density
grows. Gradual property degradation models capture the effects of damage evolution by
selectively and gradually reducing the engineering constants related to the matrix.



3
Research question and objective

In the wake of an thorough literature review on the subject of damage progression of FRP
ABSLJ, the research question and research objective are the materialization of the research
guide and focus of this thesis in light of pushing the state-of-the-art in the present problematic.

3.1. Research question

Main research question
The research core of this thesis work is synthesized in the main research question, which

was developed as follows:

Can state-of-the-art Continuum Damage Models (CDMs) accurately predict
the global response, damage initiation and propagation until final failure of adhe-
sively bonded single lap joints (ABSLJs), with FRP adherends for different layup
configurations, subjected to quasi-static uniaxial tensile loading?

The relevance of addressing this research question relates to the fact that no similar study
was found in the literature study where state-of-the-art CDMs were implemented in order to
concurrently predict the global response, damage initiation and ultimate loads in ABSLJ with
FRP adherends. In conformity with the findings of the WWFE [94], the implemented failure
criteria along with the selected material degradation models show a great potential of yielding
to realistic predictions. Furthermore the comparison among these proposed models in terms
of predictive accuracy may result in valuable conclusions and recommendations for further
research in this subject.

Research subquestions
The main research question branches out into narrower and more specific research subques-

tions. Ultimately, answering all these leads to a final answer to the main research question.
For structuring purposes, the subquestions were categorized into: theoretical foundation, pre-
liminary stress study, numerical implementation and comparative analysis.
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† Theoretical foundation

In the scope of the theoretical foundation, the following subquestions were addressed in the
literature study chapter 2.

The first subset of research subquestions concerns the study of adhesively bonded joints:

a) What are the main types of adhesively bonded joints?
b) How do material properties and geometrical parameters influence the ABSLJ strength

under quasi-static tension?
b.1) How does the stacking sequence in composite adherends influence the ABSLJ strength

under quasi-static tension?

The second subset of subquestions relates to an overview on the constitutive relations and
mechanical fundamentals of FRP composites:

c) Which equations describe the constitutive behavior of multidirectional composite lami-
nates?

d) How do layup characteristics such: symmetry, balance and anti-symmetry influence the
mechanical response of composite laminates?

The third sub-set of research subquestions concerns the theoretical foundation of progressive
damage on composite materials:

e) What are the scales for modeling damage in FRP composites?
f ) What are the damage mechanisms that characterize failure in FRP composites?
g) By which CDM theories and methods is damage initiation of FRP composites defined

and predicted, respectively?
h) By which CDM theories and methods is damage propagation of FRP composites defined

and predicted, respectively?

† Preliminary study

In order to understand the mechanical behavior and identify the critical stress regions of
ABSLJ with different adherent layup configurations subjected to uniaxial quasi-static uniaxial
tensile loading, a preliminary stress study addresses the following subquestions:

i) How do ABSLJs with different adherend layup configuration compare in terms of global
behavior (load-displacement curve) for a prescribed displacement?

j) How do stress components distribute in each ABSLJ configuration along: a) the adhesive
overlap length; b) through the thickness on the overlap end and c) the adherend first two
plies length.

† Numerical implementation

Properly addressing the previous research sub-questions sets a solid theoretical framework
and mechanical understanding for the numerical implementation stage. With respect to this
stage, the following sub-question is formulated:

k) By which CDMs can intralaminar PDA of composite structures be implemented in FEM?
l) Which numerical configurations better define the problem?
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† Comparative studies

Having implemented a set of CDMs candidates in four different models and analyzed the
respective FE simulation results, in terms of predictive accuracy and versatility, leads to the
following research question:

m) How do numerical results obtained by the four implemented CDMs compare with exper-
imental data for different layup configurations?

m.1) In terms of global response, when compared to the data extracted from the tensile
testing machines and extensometer.

m.2) Regarding the prediction of damage initiation, when compared to Acoustic Emission
(AE) experimental data.

m.3) Regarding the prediction of final failure, when compared to the data extracted from
the tensile testing machines.

m.4) Regarding strain maps, when compared to Digital Image Correlation (DIC) exper-
imental data.

3.2. Research objective
Having clearly defined the research question and derived subquestions, the research ob-
jective is formulated addressing relevant criteria, regarding: usefulness, feasibility, clarity
and informativeness.

To accurately predict the global behavior, damage initiation and ultimate
failure loads of ABSLJ with different FRP adherends layup configurations
under quasi-static tension by the numerical implementation of state-of-the-
art CDMs, comprising valid failure criteria and material degradation models.





4
Methodology

4.1. Computational framework
The proposed DPM comprise the integration and communication amongst different pro-
gramming interfaces as can be seen in the diagram shown in figure 4.1.

An input python script containing all the information needed to create and configure the
FE model operates in an external Python environment. Through parametric modeling,
this data is then exported to Abaqus/CAE through Abaqus Scripting Interface which
is used to: create the geometrical part, define the material properties, assign sections,
create useful sets, mesh the part and define other FE configurations.

Using an implicit integration scheme, the Abaqus/Standard solver uses the Newton-
Raphson method to solve the nonlinear equilibrium equations, i.e., it finds the load at
each displacement increment (for the case of a prescribed displacement) that guaran-
tees the system equilibrium. During this process, a Fortran user material subroutine is
compiled and run defining the material’s constitutive behavior. For each displacement
increment the state of stress of a given element is evaluated and input to a given failure
criteria. Based on whether failure is detected or not, material degradation of the target
element takes place.

The output of this analysis is an Abaqus Output DataBase (ODB) file that is opened in
Abaqus/Viewer, a subset of Complete Abaqus Environment (Abaqus/CAE) for postpro-
cessing purposes. Most of the output data processing (mostly reading ODB field output
date and writing it in raw .txt files) was automated using Abaqus Scripting Interface
given the repetitive nature of the analysis procedures.

Having the raw data, Python scripts were used to read and write this information by
writing it in structured workbook files. Using Python’s matplotlib library, this data was
then plotted into visually appealing graphs.
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Figure 4.1: Computation framework of the proposed DPM.

4.2. Finite element model definition and configu-
rations

4.2.1. Coordinate system, characteristic dimensions and re-
gions
The coordinate system definition follows the CLT convention. The global/load coordinate
system 𝑂𝑥𝑦𝑧 has the x-axis contained in a plane parallel to the laminae (i.e. inplane)
and parallel to the longitudinal direction1. The z-direction is inplane and parallel to the
width of the specimen. The y-coordinate is parallel to the out-of-plane direction. The
origin of this reference system is located in the center of the joint length-wise and and
thick-wise. In order to ensure only positive width coordinates, the origin was positioned
in a lateral face as shown in figure 4.2. Consider the material/local coordinate system as
𝑂123: 1-direction is inplane and along fibers; 3-axis is inplane and perpendicular to the
fibers and 2-coordinate is in the out-of-plane direction, orthogonal to 1- and 3-directions.

The dimensions of the modeled specimen (figure 4.2) were defined based on the ASTM
D5868 - 01(2014) standard. Table 4.1 summarizes the geometrical parameters and the
material properties of the model used to study the stress distribution in the adhesive and
adherends.

Both adherends were composed by 16 CFRP UD layers, having 25.4mm (1 inch) of width
(w) and lap length (2𝑐). The free-length of the adherends (𝑙) was 76.2mm. Regarding
the adhesive, its thickness (𝑡𝑎) was set to 0.125mm and the spew region was defined as
an isosceles right triangle with each leg defined eight times higher the ply thickness, i.e.,
half triangular. Because the spew was assumed half triangular, this implies that the spew
width was given by: 𝑠𝑝𝑤𝑤 = 𝑠𝑝𝑤ℎ +𝑡𝑎. Figure 4.4 clearly illustrates these characteristic
dimensions.

1Which is also parallel to the load application orientation
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Figure 4.2: Main dimensions of the ABSLJ model. Dimensions are to scale.

Table 4.1: Characteristic dimensions of the adherends and the adhesive.

Adherend geometrical parameters: Adhesive geometrical parameters:
Number of plies 𝑛𝑝𝑙𝑦 [-] 16 Adhesive thickness 𝑡𝑎 [mm] 0.125*/0.0625**
Half overlap length 𝑐 [mm] 12.7 Spew size*** 𝑠𝑝𝑤ℎ/𝑡𝑝𝑙𝑦 [-] 8
Free-end length 𝑙 [mm] 76.2*/87.3**
Width 𝑤 [mm] 25.4
Ply thickness 𝑡𝑝𝑙𝑦 [mm] 0.125 

* values used for the preliminary study.
** values used in the experimental study of Kupski et al. [55] and for respective validation.
*** measured in number of covered plies.

Several characteristic regions were identified for clarification and coherency purposes.
It is important to have a consistent framework such as the one proposed in figure 4.3,
considering that further discussions in this work refer to these regions of interest.

Figure 4.3: Characteristic regions of the ABSLJ.
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4.2.2. Material properties
The materials used in the model were UD Carbon Fiber Reinforced Epoxy (CFRE)
prepreg tapes for the adherends and epoxy film for the adhesive. Given that the proposed
numerical model was validated against experimental data extracted from Kupski et al.
[55] experimental study, the same materials were used.

The used prepreg tape material was Hexply®F6376C-HTS(12K)-5-35% that contains
Tenax®-E HTS45 P12 12K standard modulus fibers. As for the adhesive, Hysol®EA
9695𝑇𝑀 050K AERO was chosen, which presents an areal weight of 240𝑔/𝑚2. The
material data were extracted from the referred article [55] and the datasheets of the
respective materials. Table 4.2 shows the relevant material properties used, valid at
room temperature (23∘C).

Table 4.2: Material properties of the adherends - Hexply®F6376C-HTS(12K)-5-35% and the adhesive - Hysol®EA
9695𝑇𝑀 050K AERO. (Adapted from: [55]).

Adherend material properties: Adhesive material properties:
Longitudinal tensile modulus 𝐸1 [MPa] 142000 Tensile modulus 𝐸𝑎 [MPa] 2019
Transverse tensile modulus 𝐸2 = 𝐸3 [MPa] 9100 Poisson ratio 𝜈𝑎 [-] 0.34
Inplane Poisson ratio 𝜈12 = 𝜈13 [-] 0.27 Tensile strength 𝑋𝑎 [MPa] 48
Transverse Poisson ratio 𝜈23 [-] 0.3 Normal strain at break 𝜀𝑎_𝑢𝑙𝑡 [-] 0.11
Inplane shear modulus 𝐺12 = 𝐺13 [MPa] 5200 Shear strain at break 𝛾𝑎_𝑢𝑙𝑡 [-] 0.3
Transverse shear modulus 𝐺23 [MPa] 3500
Longitudinal tensile strength 𝑋𝑇 [MPa] 2274
Longitudinal comp. strength 𝑋𝐶 [MPa] 1849
Transverse tensile strength 𝑌𝑇 [MPa] 102
Transverse comp. strength 𝑌𝐶 [MPa] 255
Inplane shear strength 𝑆12 = 𝑆13 [MPa] 63
Transverse comp. strength 𝑆23 [MPa] 35

4.2.3. Boundary conditions and applied load
All the analysed samples were subjected to the same boundary conditions. The bottom
left adherend (figure 4.4) was set as clamped (no displacements nor rotations allowed).

In respect of the load application, it was displacement controlled at the tip of the top
right adherend. The loading rate was set to 13mm/min, as suggested in the ASTM
D5868 - 01(2014) standard.
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Figure 4.4: Illustration of the ABSLJ characteristic dimensions, boundary conditions and loading.

4.2.4. Assumptions
The subsequent analysis relied on the following set of assumptions:

• The adhesive material is considered to be isotropic, whereas the adherend material
is considered to be orthotropic, both requiring the input of the elastic constants.

• Both the adherend and adhesive materials behave linear-elastically. Their consti-
tutive behavior is governed by the local element matrices described in subsection
O. In reality, this assumption is an overstatement because this particular adhesive
shows some ductility. Because of the complexity of its implementation, plasticity
effects were not ignored, i.e., the adhesive was considered brittle.

• Both materials were considered to be homogeneous. This is a bold assumption in
the case of the adherend material given its distinctive phase composition, hence
not physically representing reality. Yet, this is a common simplification within the
meso-level modeling of composites which is assumed for convenience and to alleviate
computational cost in the simulation. The attribution of orthotropic properties to
the adherend material is done by means of the so-called ’engineering constants’.

• Laminae are perfectly bonded together and to the adhesive, therefore displacements
are continuous through the joint thickness.

• Only intralaminar failure was assessed. No interlaminar model was implemented to
capture delaminations.

• The spew geometry is idealized as half triangluar.
• No visco-elastic effects were considered nor any other time-dependent effects.

4.2.5. Parametric model generation - Python scripting in
Abaqus
While working in Abaqus/CAE, for every performed action, there is a correspondent
Python command. This automation of repetitive tasks, is done through Abaqus Scripting
Interface2 where a full model can be generated and/or analysed by means of a python

2Abaqus Scripting Interface is an Application Programming Interface (API) used to, among other purposes, create
or modify Abaqus models and read from Abaqus output database.
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script.

The created script to generate the ABSLJ model not only generates the bulk part based
on characteristic dimensions, but it also partitions it by the number of plies so the ma-
terial orientation can be later assigned based on the fiber orientation intended for each
specific lamina. Furthermore, based on the inputs defined by the user, if the UMAT
option is turned on, user material properties are attributed to the adherend and adhesive
materials including any specific material property used by a given failure criteria, other-
wise the materials are simply defined by their engineering constants. The use of insitu
strength properties might, as well, be turned on or off.

Many useful sets are created in light of further analysis, namely: bottom and top ad-
herends; numbered individual laminae; characteristic regions such as the lap, spew and
free-adherend regions; boundary condition and load application faces; among other useful
subsets.

The meshing of the part is also parameterized through seeding of specific edges, specif-
ically: the longitudinal (subdivided in lap, spew and free-adherend regions), the width
and the thickness edges of the ABSLJ model. The element type and other mesh config-
urations are fully configurable.

The boundary conditions and loads are then applied in the predefined face sets and the
field output requests is customized.

The versatility of using this API does not end in the model creation as it can be used to
read from output database files and write data in a spreadsheet (in formats such .txt or
.csv). The data contained in these spreadsheets can then be post-processed using other
python scripts that transform (using mathematical libraries such as NumPy or SymPy)
and plot (using a plotting library named Matplotlib) according to the set configurations.

By automating these actions, not only time can be saved but mistakes are more likely
avoided for manually repeated action. Section 4.1 elaborates on what each environment
does and how they communicate with each other.

4.2.6. Numerical considerations

4.2.6.1. Abaqus Standard vs. Explicit

In appendix J - table P.3 summarizes the differences, consequences and potential appli-
cations of the two available procedures in Abaqus: Abaqus/Standard, a general-purpose
finite element program and Abaqus/Explicit, an explicit dynamics finite element pro-
gram.

In summary, the implicit scheme finds a solution to a Non-Linear (NL) system of equa-
tions iteratively based on the previous and current states of the system, whereas explicit
scheme solution is only based on the current state and does not require computationally
expensive iteration techniques. Despite its conditional stability, requiring small time
steps, the explicit approach is well suited for problems involving severe non-linearities or
complex contact condition whereas the implicit approach may fail to converge analysing
such problems [86].
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Based on the findings of the preliminary stress study (section 5.2), in which a linear
global response was found, few iterations are expected. On top of this, in the critical
region (lap ends) the mesh was refined making the size of the elements in that region
considerable small. An explicit procedure would require an considerably small time
increment, thus significantly increasing the required computational power. Taking into
account these two important considerations and the trade-off present in table P.3, an
Abaqus/Standard procedure has been chosen.

Despite the fact that an implicit procedure is considered to be unconditionally stable, it
might still lead to convergence issues.

For some FEA problems it is not trivial to determine, which type of procedure would be
more computationally efficient given the number of factors and their respective weights
in affecting the computational cost of the analysis. For the present problem and in light
of future academic research on the topic, it is recommended that this issue is further
investigated.

4.2.6.2. Static, quasi-static vs. dynamic loading

Static loads imply that inertial forces are zero, meaning that there is no acceleration in
the load application. Slightly different is the quasi-static loading condition that entails
a very small acceleration of the load application, which, for the purposes of the analysis,
can be neglected.

By contrast, dynamic loading implies cyclic loading in short periods, causing the structure
to vibrate. In this loading regime, the inertial forces are considerable.

Both the FEA and the referenced experimental campaign used to validate the DPM were
under quasi-static conditions.

4.2.6.3. Load vs. displacement control

Generically, mechanical testing of structural elements can be load or displacement con-
trolled. Typically the tensile load tests are displacement controlled at a fixed given
displacement rate. This means that the load adjusts according to the stiffness of the
structure in order to maintain the displacement rate at a constant value. Conversely, in
a load controlled test, a given load rate is imposed and the displacement in the structure
is free. A note should be made with respect to the evolution of these controlled variables
over time. Standard test methods for lap shear joints define a constant displacement or
load rate.

Abaqus, as many other FEA software allow both loading conditions. Similarly to the
testing campaign, also the FE simulation was displacement prescribed.

This option avoids the snap-trough instability. This phenomenon happens when for an
increasing load, the structure starts to show a softening behavior up to the point that
the ’stiffness become negative’ (𝜕𝐹

𝜕𝑢 ≤ 0), followed by a stiffness recovery which, in some
cases, might even exhibit a hardening behavior with respect to the initial stiffness (figure
4.5). A load controlled procedure might diverge or neglect the existence of this ’valley-
shaped’ region, whereas a displacement controlled method is capable of capturing this
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phenomenon.

A displacement prescribed method is not able to deal with snap-back behavior (when
displacement reverts). Considering the nature of the problem in analysis, the snap-back
behavior is not expected to happen.

Figure 4.5: Displacement vs. load control procedures and convergence graphical representation based in a displace-
ment prescribed (in red) and load prescribed (in green) procedures.

4.2.6.4. Newton-Raphson method

Generic description and algorithm

Generically, the Newton–Raphson method is a root-finding algorithm that sequentially
produces better approximations of the roots in real-valued functions. The concept is to
start with an initial guess for the root, and take the derivative of the function at that
position and compute its x-intercept, leading to a better approximation to the true root.
This is done iteratively until an acceptably small error 𝜖𝑡𝑜𝑙 is reached.

The pseudo algorithm for Newton-Raphson implementation can be formulated as follows:

𝑤ℎ𝑖𝑙𝑒 |𝑓(𝑥𝑛+1)| > 𝜖𝑡𝑜𝑙 𝑑𝑜 ∶

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)
𝑓′(𝑥𝑛)

𝑖𝑓 |𝑓(𝑥𝑛+1)| ≤ 𝜖𝑡𝑜𝑙 𝑡ℎ𝑒𝑛 ∶
𝑟𝑒𝑡𝑢𝑟𝑛 𝑥𝑛+1

𝑒𝑙𝑠𝑒 ∶
𝑥𝑛 = 𝑥𝑛+1

In appendix K.1 - figures P.17 and P.18 show two graphical representations of Newton-
Raphson method implementation. In same appendix - table P.4, presents the root ap-
proximation values and the function values obtained for each iteration.

Abaqus nonlinear solver

Abaqus/Standard uses Newton–Raphson method, as a numerical technique to solve
nonlinear equilibrium equations. Appendix K.2 summarily explains how the Newton-
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Raphson method is implemented in Abaqus for a load controlled case, followed by a
graphical representation of the process and the associated algorithm.

Finding Puck’s degradation factor through Newton–Raphson method

Puck’s constant stress exposure degradation model establishes that once damage initiates,
the stress exposure factor (for inter-fiber failure mode) 𝑓𝐸_𝐼𝐹𝐹 , generally designated as
matrix failure index, is kept constant (𝑓𝐸_𝐼𝐹𝐹 = 1) and the degradation factor 𝜂 is
iteratively found such that the condition 𝑓𝐸_𝐼𝐹𝐹 = 1 is maintained. There seems to be
an hyperbolic dependence of 𝜂 on 𝑓𝐸_𝐼𝐹𝐹 [figure 4.11 c)]. Convergence on finding the
roots of such behavior can be easily done by using Newton-Raphson technique.

The pseudo algorithm for the Newton-Raphson implementation to find the degradation
factor that sets the stress exposure factor equal to one after damage initiation, can be
found in appendix K.3.

4.2.6.5. Solid elements

Considering that a 3D stress state was expected, particularly in the lap region elements,
where the out-of-plane stresses could not be neglected, 3D solid elements were used. In
fact, the values of this stress component were of the same order of magnitude as the
remaining normal stresses (see results in appendix P - figures P.21 - P.24.)

Abaqus/Standard allows the use of reduced integration for first-order brick elements, also
referred to as centroid strain elements with hourglass control [1].

The difference between full- and reduced-integration elements lies on the order of integra-
tion to generate the element stiffness matrix. While fully integrated linear brick elements
(C3D8) use eight (2x2x2) integration points, reduced linear brick elements (C3D8R) use
one (1x1x1) integration points, as illustrated in figure 4.6.

Figure 4.6: a) Full (2x2x2) integration point scheme in a brick element - C3D8 b) Reduced (1x1x1) integration point
scheme in in a brick element - C3D8R

Reduced-integration significantly decreases the computational effort, particularly in 3D
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problems. In some cases its use is recommended over full integration without compro-
mising results accuracy.

Furthermore, some authors suggest that the use of the reduced integration option con-
siderably mitigates the shear locking phenomenon [61, 119]. The reason for this is that
this reduced scheme alleviates the shear stiffness. The next subsection treats this shear
locking phenomenon in detail.

In this analysis, continuum 3D 8-node elements (also known as hexahedron or even solid
brick elements) with reduced integration (C3D8R) were used.

4.2.6.6. Shear locking phenomenon

In the present case, a modeling deficiency phenomenon named ’shear-locking’ must be
considered, particularly when linear quadrilateral (2D) or hexahedron (3D) elements are
used. Shear locking is characterized by an unrealistic over-stiff behavior for bending
dominated load cases. Rather than showing a bending behavior, the element deforms in
shear, thus presenting parasitic shear stresses that physically misrepresents reality (figure
4.7).

Figure 4.7: Illustration of shear locking phenomenon in a 2D linear element with four nodes and four integration
points. Blue thick lines represent the element under shear locking when subjected to a bending load. Orange lines
represent the real behavior.

Given that the origin of this error is related to the inherent characteristic of the shape
function low degree polynomial [23], using higher order elements mitigates the occurrence
of this error.

Additionally, high aspect ratio (AR) elements in the mesh emphasize the shear locking
effect, leading to underestimated displacements. In order to alleviate this effect, the AR
of the elements was limited to a relatively low value, as detailed in the next point.

4.2.6.7. Element aspect ratio (AR) effects

Dow [23] highlights another cause for over-stiffening behavior, the AR stiffening, again
related to an excess of strain energy due to shear. Shear locking and AR stiffening are
caused by an analogous mechanism.
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Furthermore, high ARs, as well as poorly shaped elements, lead to inaccurate results,
especially in regions with strong field gradients.

Aspect ratios between eight and ten are usually the accepted limits within the engineering
community, being the latter the limit recommended by Abaqus [1]. As a rule of thumb,
elements with an AR lower than five are, generally, considered as good. An AR of one,
i.e., a cube when using brick elements is the ideal in terms of minimizing the potential
numerical errors. To ensure a proper mesh quality Abaqus has a mesh verification tool
that highlights and helps the user to identify elements that do not comply with the AR
customized limit.

In the present case, the adhesive thickness was always the bottleneck in terms of element
sizing. As a practical example, if the limit aspect ratio is set to an AR of 5, in the lap
region, where the stresses are expected to be more critical, having a bondline thickness
of 𝑡𝑎 = 0.0625𝑚𝑚 implies that no element dimension in that region exceeds the length
of 0.3125𝑚𝑚.

4.2.6.8. Hourglass control

Hourglass modes are non-physical modes that are induced by reduced integration. The
typical outcome is an unrealistic response of the structure (figure 4.8) due to zero-energy
modes of deformation. This happens when all stress components are equal to zero at the
element’s integration point. Further information regarding the causes of this phenomenon
is provided in appendix L.

Figure 4.8: Improper hourglass control in a femur loaded in a 3-point bending load case.

In order to mitigate this effect, fictitious elastic stiffness and viscous damping are added.
This is done by selecting the most appropriate hourglass control method. Because a
first-order reduced-integration was used, an enhanced hourglass control was selected, as
suggested in the manual [1]. Another strategy used to avoid this effect is through mesh
refinement.

4.3. Preliminary studies
Because CDMs rely on the stress-strain state to capture damage, two preliminary stress
studies were performed to: 1) build confidence on the reliability of the predicted stresses;
2) identify regions of troubling convergence; 3) identify critical regions in terms of stress;
4) understand the stress distribution along those critical regions and 5) understand the
effect of the layup configuration in the stress distribution.
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4.3.1. Adherend layup configurations
Specifically for the preliminary stress study, four layup configurations were used to study
the influence of the stacking sequence in the stress distribution in the joint (in both,
the adherend layers and the adhesive). To each Finite Element Stress Analysis Layup
(FESAL) was attributed a code, as presented in table 4.3.

Table 4.3: Layup configurations used to study the stress distribution in the ABSLJ.

Code Compacted layup Extended layup
FESAL1 [0]16 [0/0/0/0/0/0/0/0/0/0/0/0/0/0/0/0]
FESAL2 [0/90]𝑠3 [0/90/90/0/0/90/90/0/0/90/90/0/0/90/90/0]
FESAL3 [+45/-45]4𝑠 [+45/-45/+45/-45/+45/-45/+45/-45/-45/+45/-45/+45/-45/+45/-45/+45]
FESAL4 [+45/0/-45/90]𝑠2 [+45/0/-45/90/90/-45/0/+45/+45/0/-45/90/90/-45/0/+45]

4.3.1.1. FESAL1 - [0]16

A laminate composed only by 0∘plies is intrinsically symmetric (𝐵 = 0, no inplane -
out-of-plane coupling), balanced (𝐴16 = 𝐴26 = 0, no extension - shear coupling) and
anti-symmetric (𝐷16 = 𝐷26 = 0, no bending - twisting coupling).

This laminate presents high axial and bending stiffness in the longitudinal direction, yet
it is ’unprotected’ against secondary loads, namely the transverse stresses induced by the
Poisson effect. Moreover, it has a relatively low shear rigidity.

Because this laminate is only composed by UD plies, matrix cracks can propagate easily
given the absence of other fiber orientations that would arrest its progression. I any
event, the implemented model is ’blind’ to this fact since the material was idealized as
homogeneous at the meso-level.

4.3.1.2. FESAL2 - [0/90]𝑠3

This second laminate is made by 0∘and 90∘plies stacked together in a triple symmetry
configuration. As the first laminate, FESAL2 is intrinsically symmetric, balanced and
anti-symmetric.

Even though this laminate is protected against transverse secondary loads by having
90∘oriented plies it presents less axial and bending stiffness than its predecessor. On top
of this, the change in direction every two plies acts as a crack propagation stopper, which
is not captured by CDMs.

4.3.1.3. FESAL3 - [+45/-45]4𝑠

The third laminate is only composed by ±45∘ UD plies. Even though it is symmetric
and balanced, it is not anti-symmetric anymore, meaning that to a bending or torsional
moment, a twisting or bending deflection will be, respectively, induced.

The absence of 0s and the predominance of 45s make this laminate the most compliant
of the group to axial and bending deflections, yet the stiffer to shear.
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Regarding the crack propagation, the same logic to FESAL2 applies in this laminate.

4.3.1.4. FESAL4 - [+45/0/-45/90]𝑠2 (QI)

This Quasi-Isotropic (QI) laminate is composed by the classical orientations and has
double symmetry. Each ply is offset by 45∘with respect to the next, except for the
adjacent middle layers. As the previous laminate, FESAL4 is symmetric and balanced
but not anti-symmetric.

Even though it is not the stiffer laminate, it presents the best compromise among all the
important design considerations, such that: axial and bending stiffness, performance in
many directions and alternation in the ply orientation that hinders crack progression. It
is, therefore the most balanced configuration.

4.3.1.5. Analysis of the ABD matrices

The constitutive equations for a multi-directional laminate were derived in appendix
F.3.6. The [𝐴𝐵𝐷] matrix characterizes the mechanical behavior of the laminate. For
each term of the matrix, the respective couplings were characterized. Submatrix [𝐴]
represents the inplane axial/shear stiffness; submatrix [𝐵] defines the inplane-flexure
coupling and submatrix [𝐷] gives the bending/twisting stiffness.

For each FESAL, the ABD matrix were computed and can be found in appendix I. Table
4.4 summarize the longitudinal axial 𝐴11 and bending stiffness 𝐷11 terms for all the
laminates and the relative value with respect to the stiffest configuration, FESAL1.

Because FESAL1 has only 0∘oriented plies, it has the highest axial and bending stiff-
nesses, 𝐴11 = 285333.0𝑁/𝑚𝑚 and 𝐷11 = 95111.0𝑁𝑚𝑚, in the load direction. For both
analysed components, these values represent almost the double with respect to FESAL2;
as for FESAL3 they are more than three times higher. The QI configuration (FESAL4) is
positioned in between these last two, showing 42.2% and 44.4% of the respective stiffness
components.

Considering that FESAL2 has the same number of 0∘and 90∘oriented laminae, the inplane
axial stiffnesses have the same value (𝐴11 = 𝐴22). Given that no other ply orientation
were used, both the shear and twisting stiffness terms, 𝐴66 and 𝐷66, respectively, have
the same values in both laminates. It is worth mentioning that the bending stiffness 𝐷11
and 𝐷22 are not the same considering that the relative position of the plies matter for
the these terms, hence having the outermost ply 0∘oriented in the reason for 𝐷11 > 𝐷22.
Hence, having stiffer 0∘oriented plies as far as possible from the neutral axis, increases
the bending stiffness in the direction parallel to the fibers.

As expected, FESAL3 has the highest shear stiffness 𝐴66 considering that it is composed
only by ±45∘ oriented plies, but the lowest axial and bending stiffnesses, 𝐴11 = 𝐴22
and 𝐷11 = 𝐷22. As mentioned before the QI layup, FESAL4, is the most balanced
configuration.
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Table 4.4: Axial and bending stiffness values and relatives percentages (to FESAL1) in the main direction for the
four considered layups.

Code 𝐴11 [𝑁/𝑚𝑚] 𝐷11 [𝑁𝑚𝑚]
FESAL1 285333.0 (100.0%) 95111.0 (100.0%)
FESAL2 151809.2 (53.2%) 52689.4 (55.4%)
FESAL3 88773.1 (31.1%) 29591.0 (31.1%)
FESAL4 120291.2 (42.2%) 42241.6 (44.4%)

4.3.2. Mesh convergence study
A QI layup configuration (FESAL4, see subsection 4.3.1) under the application of a
prescribed displacement of 𝛿𝑥 = 0.5𝑚𝑚 was chosen for the mesh convergence study.
The stress component parallel to the fibers 𝜎1 was the selected variable to perform the
convergence study given that it is the dominant stress component. The stresses were
compared along two paths defined in the middle of joint’s width, namely throughout:
the adhesive length and the first ply length. These paths were selected due to their
proximity to the stress concentrations, where convergence is most demanding.

The assumed convergence criterion was of 𝜖𝑟𝑒𝑙 ≤ 0.01, meaning that convergence was
assumed when the relative error between the finest configuration and the others was less
or equal than 1%.

The mesh generation was fully parameterized by seeding all model’s edges. The edges
categories were identified: longitudinal edges (x-direction); width edges (z-direction) and
thickness direction (y-direction). In the spew region, the vertical seeding was fixed by
the ply thickness. As for the horizontal direction, considering that the spew was defined
as an isosceles triangle, the element width also coincided with the ply thickness.

Longitudinal edges seeding

The mesh of the current model was subdivided in three regions and the longitudinal
edges were seeded by size according to different bias options:

• Lap region: this region was double bias seeded, meaning that a minimum and a
maximum element sizes were defined, at both lap ends and lap center, respectively.

• Spew region: a constant element size was defined for this region equal to the lap
region minimum, meaning that no bias seeding was considered.

• Free-adherend region: this region was single bias seeded, meaning that a minimum
and a maximum element sizes were defined, at the spew end and the free-adherend
end, respectively.

Figure 4.14 provides a good illustration of the bias used in seeding the different regions
of the longitudinal edges.
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Width edges seeding

As the stress variation along the transverse inplane coordinate was beyond the scope of
this thesis, the seeding throughout the width direction had no bias and the element size
was kept 3 to 5 times the size of the smallest element. Higher aspect ratios were avoided
due to its detrimental effect on results accuracy.

Thickness edges seeding

For all configurations, every ply and adhesive were seeded by element size: one per edge;
under the assumption that the stress gradient is weak within the respective structures in
the out-of-plane direction.

Mesh configurations

As stated before, the expected critical stress region is located near to the lap ends. For
this reason, the mesh of the model was refined in that same region, as shown in figure
4.9. Each mesh was characterized by the length of its smallest element, located at the
spew tip, as shown in figure 4.9. The following table shoes the minimum element size
used at each mesh configuration and respective total number of elements.

Table 4.5: Minimum size element and total number of elements for each mesh configuration used in the preliminary
stress convergence study.

Label Coarse level 𝑒𝑙𝑠𝑧 [𝑚𝑚] # of elements
M1 Coarsest 0.5 85714
M2 Coarse 0.375 155340
M3 Fine 0.125 574600
M4 Finest 0.0625 1735734
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Figure 4.9: Four mesh refinement configurations in the spew region, with different minimum element sizes, from
the coarsest to the finest: a) M1 - coarsest - 𝑒𝑙𝑠𝑧 = 0.5𝑚𝑚; b) M2 - coarse - 𝑒𝑙𝑠𝑧 = 0.375𝑚𝑚; c) M3 - fine -
𝑒𝑙𝑠𝑧 = 0.125𝑚𝑚; d) M4 - finest - 𝑒𝑙𝑠𝑧 = 0.0625𝑚𝑚.

Two singularities at each lap end were identified, considering the geometry without tan-
gential continuity. Both can be clearly seen in figure 4.9, marked with a red spot.
Theoretically, the stresses at the singularities tend to infinity. In the adjacent regions of
these sharp corners, convergence is harder to achieve closer to the singularity.

The results of the preliminary mesh convergence study are properly presented in the
results chapter under section 5.1.

4.3.3. Preliminary stress study
The present subsection treats the methodology of a preliminary stress study of ABSLJs
made of different layup configurations (FESAL 1-4, check 4.3.1) for a prescribed displace-
ment of 𝛿𝑥 = 0.5𝑚𝑚. Effectively, the stress distribution over three paths of interest are
presented and discussed in subsection 5.2.

As concluded from the literature survey (section 2.1), in the vicinity of the overlap ends,
peak longitudinal and out-of-plane normal stresses as well as peak longitudinal-transverse
shear stresses can be found in the adherends and in the adhesive, for two main reasons:

(a) The stiffness ’jump’ from the unbonded to the overlap region creates two stress
concentration regions3 on each side of the lap that along with the eccentricity in the
load path induce high bending stresses, which rotate the joint overlap region and
translate into high longitudinal and transverse normal stresses in the overlap ends;

(b) The strain mismatch between the start of one of the adherends overlap and the
3Even though the spew considerably alleviates this undesirable phenomenon, it is still significant.
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correspondent end of the other induces high longitudinal-transverse shear stresses
in the adhesive at the lap ends, forming the well known bathtub-shaped distribution
(see figure 2.2).

4.3.3.1. Selected paths of analysis

The stress analysis was carried along three paths of interest, as shown in figure 4.10,
taking into account the stress state of the designated regions:

• Adhesive length (in the x-direction) at the mid-bondline. This is a critical region
given that the adhesive transfers the loads from one adherend to the other. Along
the bondline length, the stress distribution takes the already mentioned bathtub
shape.

• Joint thickness path (in the y-direction) at the adherend lap start. The stress
distributions along the joint thickness were analyzed to understand the variation of
the stress from the closest to the farthest plies from the adhesive and to identify the
adherend free end effect.

• Adherend’s first two layers length (in the x-direction) at the middle of the ply. The
first two adhesive neighboring plies were assessed, considering their proximity to the
stress concentration region, being, for this reason, the most critical.

Figure 4.10: Selected paths for the stress analysis: a) adhesive length; b) joint thickness; c) adherend layer length.

The results of the preliminary stress study are properly presented in the results chapter
under section 5.2.

4.4. Damage progression model (DPM)

4.4.1. Selected failure criteria and material degradation mod-
els
Subsections 2.2.6.1-2.2.7.3 review relevant failure criteria and material degradation mod-
els in the scope of consolidated CDMs found in literature. The outcome of that study was
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the judiciously selection of three failure criteria combined with three material degradation
methods in four combined damage models, summarized in table 4.6:

Table 4.6: Overview of the selected PDA models.

PDA-Adherend Failure criteria Material degradation model
CDM1 Hashin 3D [42] Camanho & Matthews (Sudden) [12]
CDM2 Puck [84, 85] Puck - Pre-defined damage law (PDL) [84, 85]
CDM3 Puck [84, 85] Puck - Constant stress exposure (CSE) [84, 85]
CDM4 LaRC05 [82, 83] Puck - Constant stress exposure (CSE) [84, 85]

4.4.1.1. Motivation for the selected combinations

Adherend models

The first model, Hashin 3D + Camanho & Matthews (a sudden degradation model), was
selected as a simplified but well established damage model. Hashin 3D failure criteria
[42] has been widely used by the failure analysis community. Despite its simplicity
and mainly empiric background, Hashin’s model yields to accurate failure predictions.
Similarly, sudden material degradation models, such as the one proposed by Camanho
& Matthews (Sudden) [12], are also quite simple and of expeditious implementation,
ensuring a light computational cost. Hence, the first CDM follows a traditional approach
of failure analysis and relies on its simplicity and light computational cost while ensuring
decent predictions.

The second and third models, Puck + Puck PDL and Puck + Puck CSE, respectively,
were considered by reason of a systemic implementation of Puck’s failure analysis model
[84, 85]. Being the failure criteria the same, the difference between the two models re-
sides in the determination of the damage degradation parameter approach as thoroughly
explained in subsection 2.2.7.2. The purpose of having both CDMs with the same failure
criteria but with different material degradation approaches was to test the hypothesis
that Puck CSE produces more accurate results in damage propagation regime owing to
the fact that it does not make any assumption regarding to the degradation variables
evolution.

The objective of CDM4, LaRC05 + Puck CSE was to compare Puck’s failure criteria
with LaRC05 failure criteria in terms of prediction accuracy of damage onset, taking
into consideration that both, CDM3 and CDM4 have the same implemented material
degradation model. Based on the WWFE-I [94] and WWFE-II [48] findings, these two
failure criteria were considered top performing models in 3D failure analysis, showing
very good agreement with experimental results.

Adhesive model

As for the isotropic adhesive material, the well-established von Mises criterion was se-
lected. For the subsequent degradation of the material, the linear softening model, ade-
quately discussed in subsection 2.2.7.3 was selected, taking into consideration the fairly
good correlation obtained by other authors [67] when implementing the same material
degradation model in the adhesive.
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4.4.1.2. Summary of failure criteria governing functions and specific pa-
rameters

Table 4.7 summarizes the used functions and values of specific parameters for each failure
criteria implemented in the adherends, per failure mode. More details concerning each
failure criteria can be found in the literature study subsections 2.2.6.1 - 2.2.6.3, which
review the used failure criteria models.

Table 4.7: Failure index equations and specific parameter values for each failure criteria model.

Failure index Hashin Puck LaRC05
FFT eq.(P.42) eq.(2.1) | 𝑚𝜎𝑓 = 1.1 eq.(2.5)
FFC eq.(P.44) eq.(2.2) | 𝑚𝜎𝑓 = 1.1 find 𝜓 | max[eq.(2.6)]
MFT eq.(P.46) find 𝜃 | max[eq.(2.3)] for 𝜎𝑛 > 0 find 𝜃 | max[eq.(2.7)] for 𝜎𝑛 > 0
MFC eq.(P.47) find 𝜃 | max[eq.(2.4)] for 𝜎𝑛 < 0 find 𝜃 | max[eq.(2.7)] for 𝜎𝑛 < 0

4.4.1.3. Summary of material degradation functions and specific param-
eters

Table 4.8 summarizes the used functions and values of specific parameters for each mate-
rial degradation model. More details concerning each material degradation model can be
found in the literature study subsections 2.2.7.2 - 2.2.7.3, which review the used material
degradation models.

Table 4.8: Degradation factor functions and specific parameter values for each material degradation model.

Degradation factor Sudden Puck-PDL Puck-CSE
𝜂𝐸1(𝐹𝐹𝑇 ) 0.07 0.07 0.07
𝜂𝐸1(𝐹𝐹𝐶) 0.14 0.14 0.14
𝜂𝐸2=𝐸3(𝑀𝐹𝑇 ) 0.2 𝜂(𝑀𝐹𝑇 ) = eq.(2.14) | 𝛽=5.3;𝜉=1.3;𝜂𝑟=0.03 find 𝜂 | MFT = 1
𝜂𝐸2=𝐸3(𝑀𝐹𝐶) 0.4 𝜂(𝑀𝐹𝐶) = eq.(2.14) | 𝛽=5.3;𝜉=1.3;𝜂𝑟=0.03 find 𝜂 | MFC = 1
𝜂𝐺12=𝐺13(𝑀𝐹𝑇 ) 0.2 𝜂(𝑀𝐹𝑇 ) = eq.(2.14) | 𝛽=0.95;𝜉=1.17;𝜂𝑟=0.03 find 𝜂 | MFT = 1
𝜂𝐺12=𝐺13(𝑀𝐹𝐶) 0.4 𝜂(𝑀𝐹𝐶) = eq.(2.14) | 𝛽=0.95;𝜉=1.17;𝜂𝑟=0.03 find 𝜂 | MFC = 1

As table 4.8 shows, the degradation of fiber related properties, namely 𝐸1, was modeled
in a sudden manner as proposed in [12], reducing the longitudinal modulus to 7% of
the original value for tensile fiber failure and to 14% for compressive fiber failure, for all
material degradation models. Fiber failure usually occurs by fiber breakage, resulting
in a catastrophic failure of the structure. For this reason, fiber failure propagation was
modeled in a sudden way.

Figure 4.11 illustrates an Abaqus output of the damage in an element in the proximity of
the adherend overlap region (i.e. near to the stress concentration) in a ABSLJ. The top
plots show the variation of the tensile matrix failure index over time, whereas the bottom
plots depict the correspondent degradation of the Young’s modulus perpendicular to the
fibers 𝐸2 over time for: a) CDM1, b) CDM2 and c) CDM3.
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Figure 4.11: Examples of the variation of tensile matrix failure index (MFT) along time in the top, and Young’s
modulus perpendicular to the fibers (𝐸2) along time in the bottom, for different damage progression models: a)
Hashin 3D + Sudden degradation; b) Puck + Puck PDL; c) Puck + Puck CSE.)
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4.4.2. User Material Subroutine (UMAT) implementation
Within an implicit scheme, Abaqus/Standard, the developed DPM was implemented
using a User-defined MATerial (UMAT) subroutine. Effectively, UMAT is used to define
the mechanical constitutive behavior of the material. Appendix P.20 shows a flowchart
of UMAT’s framing in a generic Abaqus/Standard simulation.

This subroutine is called for every integration point of the existent elements. Given that
eight-node brick element with reduced integration (C3D8R) were selected, UMAT ran
once per element.

It must be noted that in UMAT, all strains and stresses are in the local orientation
coordinate system.

4.4.2.1. Algorithm

In the framework of FEA of structural problems, the User-defined Material (UMAT)
subroutine acts on the constitutive behavior of the element.

Based on the defined material name (string variable recognized by Abaqus/Standard as
CMNAME): if the string contains ’CFRP’, then adherend’s subroutine (UMAT1) is ran,
otherwise the adhesive subroutine (UMAT2) is ran. The following steps of the algorithm
are common for both, UMAT1 and UMAT2.

The user-defined material properties [PROPS(NPROPS), where NPROPS is the number of
user-defined material properties, defining the size of the vector PROPS] are loaded, read
and attributed to UMAT internal variables.

The solver passes the (mechanical elastic) strain vector [STRAN(NTENS), where NTENS
is the size of the vector] and the strain increment vector [DSTRAN(NTENS)], at the
beginning of the time increment.

The constitutive behavior of the material is determined by means of the local material
Jacobian matrix [DDSDDE(NTENS,NTENS)]. Having the local tangent stiffness matrix,
the stress vector is computed [STRESS(NTENS)]. Appendix (N) demonstrates how these
vectors and matrix are computed for a given load increment. After this appended section,
the local isotropic and orthotropic local material Jacobian matrices are assembled in
appendix (O).

Having the stress vector, a specific failure theory is applied and based on the outputs, for
failure indices greater than one, the material elastic properties degrade, otherwise remain
the same. Information of the current state must be passed to the subsequent load incre-
ment. This is accomplished via solution-dependent state variables [STATEV(NSTATV),
where NSTATV is the number of state variables].

These state variables are user defined, thus relevant parameters in the failure analysis
are requested, such as: the failure indices (FFT, FFC, MFT and MFC), elastic moduli
(𝐸1, 𝐸2, 𝐸3, 𝐺12, 𝐺13, 𝐺23), degradation factor (𝜂) and other failure criteria specific
variables (e.g. 𝜃𝑓𝑝 when Puck is used).

This process is redone for all elements at every time increment. When non-linearities are
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present, several iterations may be required in order to meet the convergence criterion.
If the solution fails to converge, the time increment is automatically reduced. In the
case of the solution still failing to converge for a predefined allowed number of iterations,
the simulation stops. Among several plausible reasons, the most likely indicates final
failure4. In essence, for an increasing prescribed displacement, if the adhesive material
gets degraded to a point that cannot continue transferring the loads, numerically this
means that there is no correspondent load for that prescribed displacement, hence the
equilibrium equation is not satisfied and the solution diverges.

Figure 4.12 shows the flowchart of the implemented UMAT subroutine in the framework
of a NL FEA in Abaqus/standard.

4A viscous regularization scheme was used to test this hypothesis, as it facilitates convergence. Check the next
subsection 4.4.3 for more details.
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Figure 4.12: Flowchart of the implemented UMAT.

4.4.3. Viscous regularization
In implicit analysis, using material models that exhibit softening behavior and stiffness
degradation may lead to convergence issues. Furthermore, the FE predicted softening
behavior is sometimes quite irregular, in a step-wise manner.

A viscous regularization scheme can be used to mitigate these difficulties by forcing the
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tangent stiffness matrix of the softening material to be positive for sufficiently small time
steps [1]. However, high viscous regularization values might pollute the results.

The regularized damage variable is defined by the following evolution equation:

̇𝑑𝑣 = 1
𝜇𝑣𝑟

(𝑑 − 𝑑𝑣)

Expanding the equation, yields to:

𝑑𝑣,𝑘 − 𝑑𝑣,𝑘−1
Δ𝑡 = 1

𝜇𝑣𝑟
(𝑑𝑘 − 𝑑𝑣,𝑘)

Algebraically manipulating the terms, the regularized damage variable becomes:

𝑑𝑣,𝑘 = Δ𝑡
Δ𝑡 + 𝜇𝑣𝑟

𝑑𝑘 + 𝜇𝑣𝑟
Δ𝑡 + 𝜇𝑣𝑟

𝑑𝑣,𝑘−1 (4.1)

As can be seen from equation 4.1, the regularized damage variable is not only affect
by the viscous regularization coefficient but by its relationship with the time increment.
Van Dongen [109] elaborated on the practical effects of the 𝜇𝑣𝑟/Δ𝑡 ratio on the regular-
ized damage parameter. The author presented the variation of the regularized damage
variable over time for different 𝜇𝑣𝑟/Δ𝑡 ratios as shown in figure 4.13. Nunes et al. [78]
conclude that the used coefficient should be the smallest possible (𝜇𝑣𝑟/Δ𝑡 → 0).

In cases of strong mesh dependency and irregular softening behavior, as demonstrated
in [78], such undesirable effects could be mitigated by using an appropriate viscous reg-
ularization coefficient.

Figure 4.13: Illustration of the effect of viscosity on the evolution of the regularized damage variable (∆𝑡 = 0.01[𝑠]).
(Reproduced from [109], copyright TU Delft, 2017)
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On the scope of this thesis, considering that the set time increment was of 0.092 sec-
onds, the viscous regularization was set at 0.001, this means that the governing ratio is
approximately equal to 0.011 which, according to figure 4.13, should be small enough to
not contaminate the results.

4.4.4. Computational cost estimation
The computation power required during a damage progression simulation while using
UMAT is dependent on the number of (the symbol # will henceforward be used to denote
number of ) elements, steps, load increments, iterations and the number of requested
actions in the UMAT subroutine.

The following equation gives a rough order of magnitude estimate on the number of
computations performed by UMAT subroutine in a damage progression simulation:

TOTAL # comp. = [# el.]×[# steps]×[# of inc.]×[𝑎𝑣𝑒𝑟𝑎𝑔𝑒(# ite./inc.)]×[# UMAT comp.]
(4.2)

Where the # UMAT computations is given by the sum of 𝑛 individual actions plus the
sum of 𝑠 products of the ranges of 𝑞 − 𝑡ℎ order nested loops:

# UMAT comp. =
𝑛

∑
𝑚=1

𝑎𝑐𝑡𝑖𝑜𝑛𝑚 +
𝑠

∑
𝑟=1

𝑞
∏
𝑝=1

𝑟𝑎𝑛𝑔𝑒𝑝 (4.3)

Considering that: the models are composed by approximately one million elements; one
step is applied segmented in almost a hundred load increments, most of each requiring one
iteration and a UMAT cycle comprises thousands of computations, these coarse values
can be inputted into equation 4.4:

TOTAL # comp. = (∼ 106) × (∼ 100) × (∼ 102) × (∼ 100) × (∼ 103) ≈ 1011 (4.4)

This leads to an order of magnitude of 11, meaning that for an entire damage progression
simulation it takes roughly several hundred thousand million UMAT computations.

4.4.5. Verification and validation
In the FEM framework, Leone et al. [58] indicate that verification and validation are
critical tasks for the development of PDA using FEM. Verification assesses whether the
model results are consistent with the fundamental concepts (in this case, the failure crite-
ria equations) and assumptions of the model under evaluation. By other words, it checks
whether implemented mathematical relations and simulation specifications are according
to the conceptual model [116]. Validation, on the other hand, assesses whether the model
accurately represents the physics of the problem when compared to experimental data
i.e., whether it fulfills its intended purpose.
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To ensure that the implementation of the model was correct, several techniques were
followed:

• Construction of logic flow diagrams that included each action performed (e.g. the
UMAT flowchart presented in section 4.4.2.1) and following a ’structured walk-
through policy’ throughout the code;

• Examination of the simulation outputs for reasonableness for different values of the
input parameters;

• Comparing the intermediate global behavior (through load-displacement curves) of
the structure with experimental results.

4.4.5.1. Failure envelopes - verification of the implemented failure crite-
ria

The main verification step for the created model was the failure criteria code verification
via failure envelope comparison. The procedure consisted in comparing the obtained
failure envelopes with the theory’s failure envelopes, i.e. the ones published by the
authors. Each failure envelope was drawn for a given material, of which the strength
values were known, under a specific stress state. These can be found in appendix Q
along with detailed captions.

Given a set of assumptions (e.g. principal stress state [𝜏12 = 𝜏13 = 𝜏23 = 0], the
condition to draw the failure envelopes was setting all the failure indices equal to one
and finding the stresses that satisfied this condition. The pseudo-code could be simply
formulated as:

𝑓𝑖𝑛𝑑({𝜎}) | 𝐹𝐹𝑇 = 𝐹𝐹𝐶 = 𝑀𝐹𝑇 = 𝑀𝐹𝐶 = 1.0

Most failure envelopes required a numerical approach in order to retrieve the data-points
required to bound the envelope, owing to: 1) the iterative nature of some criteria, such
matrix failure in Puck or LaRC05 models; 2) the fact that the problem to be solved was
an indeterminate system of equations (i.e., the number of independent equations was less
than the number of unknowns).

The results of this verification step are duly presented in the results chapter under section
5.3. Because of the size of the failure envelopes, these were presented in appendix Q.

4.4.5.2. Validation method

The validation of the model suggested in this thesis will be validated against experi-
mental data obtained by Kupski et al. [55]. Details about the methodology followed to
test ABSLJs made of different adherend CFRP layup configurations under quasi-static
uniaxial tension can be found in the referenced article.

Adherend layup configurantions

Four different adherend layup configurations were tested in this experimental study, three
quasi-isotropic and one variant with only 0s and 45s: [45/90/−45/0]2𝑠; [90/−45/0/45]2𝑠;
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[0/45/90/ − 45]2𝑠; [45/0/ − 45/0]2𝑠.

Membrane and bending stiffnesses

Based on CLT, the longitudinal membrane 𝐸1𝑚 and bending stiffnesses 𝐸1𝑏 of a laminate
were calculated by means of the following formulae:

𝐸1𝑚 = 1
𝑡𝑎11

(4.5)

𝐸1𝑏 = 12
𝑡3𝑑11

(4.6)

Where 𝑡 is the thickness of the laminate and 𝑎11 and 𝑑11 are the 11 entries of the inverse
of the 𝐴 and 𝐷 matrices for a symmetric and balanced laminate, respectively. Under
these conditions, these entries are given by:

𝑎11 = 𝐴22
𝐴11𝐴22 − 𝐴2

12

𝑑11 = 𝐷22
𝐷11𝐷22 − 𝐷2

12

The longitudinal membrane and bending stiffnesses are measures of how stiff a laminate
is to stretching and to bending, respectively in the main direction. Table 4.9 shows the
values of the membrane and bending stiffnesses for the four studied laminates.

Owing to the fact that the first three laminates are composed by the same quantity of ply
orientations but in a different sequence, their membrane stiffness values are equal. The
membrane stiffness value is independent of the sequence. On the contrary, because the
[0/45/90/ − 45]2𝑠 layup has a 0∘oriented ply as the outermost ply, its bending stiffness
is the greatest, even higher than the laminate with 0s instead of 90s ([45/0/ − 45/0]2𝑠).
Yet, the [45/0/ − 45/0]2𝑠 layup is the stiffest to stretching in the main direction due to
the fact that is has 0s in place of 90s.

Table 4.9: Longitudinal membrane stiffness (𝐸1𝑚) and longitudinal bending stiffness (𝐸1𝑏) for the four tested
laminates.

[45/90/ − 45/0]2𝑠 [90/ − 45/0/45]2𝑠 [0/45/90/ − 45]2𝑠 [45/0/ − 45/0]2𝑠
𝐸1𝑚 [MPa] 54622 54622 54622 81113
𝐸1𝑏 [MPa] 39653 45996 72424 69391

Mesh configuration

From the analysis of the convergence study, (check the results in section 5.1) the mesh
configuration 5 that allowed very small error, even for adjacent regions to the singularity,

5As the computational efficiency is out of the scope of this study, the relatively refined mesh that adds computational
effort was not of primary concern.
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was the mesh with the minimum element size equal to the adhesive thickness (𝑒𝑙𝑠𝑧 =
0.0625𝑚𝑚) which results in a total number of 1002294 elements. From these, 1000836
were hexahedron-shaped elements and 1458 wedge-shaped elements. The latter were
located along the diagonal face of the spew.

This configuration ensures a small maximum AR (∼ 2−3) on the elements in the critical
region, where considerable deformation is expected, which contributes for high results
accuracy. In fact, the worst measured AR was of 6.00 and 5.02; the average was of 3.01
and 2.79 for the hexahedron and wedge elements, respectively. Figure 4.14 illustrates the
top and lateral view of the final mesh configuration in the damage progression study.

Figure 4.14: Final mesh configuration: a) top view; b) lateral view. The smallest element, at the spew region is
0.0625mm long.

Studied parameters

As part of the endeavour to address the main research question in the stage of compari-
tative studies, several aspects were studied regarding the response of the joint to damage,
namely: a) the global stiffness response, b) the damage initiation load, c) the ultimate
load and d) the strain maps.

† Load-displacement curves

During the quasi-static tensile testing, Kupski et al. [55] used the load cell in Zwick-
Roell AllroundLine Z250 SW to measure the load. For the displacement, a mechanical
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extensometer, BTC-EXMACRO.H02 by Zwick-Roell/testXpert II – where the arms were
center placed, 60mm apart, (lengthwise and widthwise) on the overlap region.

In the FEA, the loads were obtained by summing the reaction forces in the x-direction in
all the nodes contained in the pulled faced. Regarding the displacements, the middle node
(thicknesswise and widthwise) on each adherend was found at a distance of ±30𝑚𝑚 from
the center of the joint. The displacement at the top (pulled) adherend was subtracted to
the bottom (fixed) adherend at each time increment.

The comparative study of the global behavior of the specimens was of quantitative nature
by comparing the stiffness of the linear region. Regarding the initial non-linear region a
qualitative analysis was performed.

† Damage initiation load

To capture the damage initiation, Kupski et al. [55] employed an acoustic emission (AE)
system by Vallen Systeme GmbH was employed which consisted of two VS900-M sensors,
that were attached onto the same face of the specimen at ±42.5𝑚𝑚 from the overlap
centre and connected to the AEP4H 34 dB amplifier, as described in the referenced
article. The raw data was processed by applying a novel criterion, based on the burst
energy. The burst energy is defined as the integration of the squared recorded voltage
over a time period. This quantity is meaningful since it accounts for the number of hits
and their amplitude over a given time increment.

The defined criterion was based on distinctive burst energy values by comparison with
the average value, excluding the events of initial gripping of the specimens (when some
matrix cracking occurs) and the final failure when a loud sound is recorded resulting in
a quite energetic burst. The criterion was defined as the first event in which the burst
energy in one of the sensors at a given time step t (capture frequency at 1 Hz) is greater
than 4 times the average of the test in the same sensor:

𝑚𝑎𝑥[ 𝑛𝐸𝑡
𝑠1

𝑛
∑

𝑡𝑖=0
𝐸𝑡𝑖

𝑠1

, 𝑛𝐸𝑡
𝑠2

𝑛
∑

𝑡𝑖=0
𝐸𝑡𝑖

𝑠2

] ≥ 4 (4.7)

Where: 𝐸𝑡
𝑠1 is the measured energy burst in the time increment 𝑡 in sensor 1, 𝑛 is the

number of time increments excluding the initial gripping and final failure. The same
applies to sensor number 2.

As for the numerical analysis, damage initiation was defined whenever an element ex-
ceeded the failure index value of one. Once again, this definition is contestable. The
failure indices are calculated based on the element’s stress state which can be a problem
at singularities due to unreliability of the stress values at those, where convergence was
not obtained (even though the error found in the mesh convergence study [section 5.1 -
figure 5.2], figure was not too significant). This is assumed as a considerable limitation in
this work which deserve a proper reflection on the section of recommendations for future
research (section 6.2).

The comparative study of the damage initiation was of quantitative nature.
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† Ultimate load

The ultimate failure in both cases (numerical and experimental) was found by the point
of maximum load.

The comparative study of the ultimate failure was of quantitative nature.

† Strain maps

The strain field of the overlap area was obtained using the non-destructive testing tech-
nique - digital image correlation (DIC) technique [55]. The VIC-3D system by Correlated
Solutions, Inc. was used at a 2 Hz frame capture speed and the logarithmic strains were
requested.

As for the numerical model, the logarithmic strain maps in the global coordinate system
were obtained from the output file. Due to space limitations, only one configuration was
analysed.

Considering the generic nature of the information contained in the strain fields, a com-
parative study of qualitative nature was carried out.
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Results and discussion

5.1. Preliminary mesh convergence study

5.1.1. Load-displacement curves
The global behavior of the structure does not significantly changed for different mesh
configurations as can be observed in figure 5.1. In fact, for all cases, the error at each
time step was always lower than 0.15%.

Figure 5.1: Load-displacement curve for the different mesh configurations. The displacements were taken at the
adherend tips.

73
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5.1.2. Stress distribution in the adhesive length
The following analysis was performed along the path shown in figure 4.10 a).

Generically, the longitudinal stress component 𝜎1 in the adhesive’s length presents con-
vergence issues in the spew region, considering its proximity to two singularities, as
presented in figure 5.2. Particularly, at the spew tips [𝑥 = ±(𝑐 + 𝑠𝑝𝑤𝑤)], convergence
was not obtained, even considering the fact that the relative error dropped from 23.1%
to 1.5% from the M1 to the M3 mesh configurations, respectively, having M4 as refer-
ence. The fine mesh ensured a relative error less than 1% everywhere else, except at the
adhesive tip and at the starting of adherend overlap (𝑥 = ±𝑐), where the relative error
reached a maximum of 5.6% (figure 5.3).

Figure 5.2: a) Stress component 𝜎1 along the adhesive length path [figure 4.10 a)] of FESAL4, for the different mesh
configurations; b) Zoomed stress distribution in the spew region.

Figure 5.3 shows in detail the error oscillation along the adhesive semi-length for the
coarser meshes with respect to the M4 discretization and the set mesh convergence crite-
rion. Corroborating the expected scenario of convergence along the the lap’s length, M3
showed more accurate results (92.08% of the lap’s length showed convergence), followed
by the coarse configuration (72.28%) and finally the coarsest configuration (65.35%). The
averaged relative errors along the path for the latter sequence were: 0.37%, 2.5% and
4.8%, for M3, M2 and M1, respectively.



5.1. Preliminary mesh convergence study 75

Figure 5.3: Relative error of the stress component 𝜎1 along the adhesive semi-length path [figure 4.10 a)] of FESAL4,
for the different mesh configurations with respect to M4.

5.1.3. Stress distribution along the length of the first two
adherend layers
The following analysis was performed along the path shown in figure 4.10 c).

Regarding the stress component parallel to the fibers 𝜎1 along the first ply’s length,
three sensitive regions were identified, namely: both adherend tips and the starting of
adherend overlap (figure 5.4). While the former are not critical regions, showing relatively
low stress levels, the latter is the most critical region. In fact, at the adherend overlap
region, the stresses were found to be discontinuous, as figure 5.4 d) suggests. Yet, as
the mesh refinement increased, the gap between stress values right before and after the
interface coordinate (𝑥 = ±𝑐) tended to decrease [figure 5.4 d)]. Furthermore, the M3
configuration was the only configuration that showed an error smaller than 5% despite
of its proximity to the singularity.

At the fixed adherend tip, the stresses suggested convergence [figure 5.4 b)], despite the
fact that the convergence criterion was not met. Further refinement would be required
for a definite conclusion over the convergence in this region.
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Figure 5.4: a) Stress component 𝜎1 along the length of the first lamina (+45∘) path [figure 4.10 a)] of FESAL4, for
the for different mesh densities; b) Zoomed stress distribution at the adherend’s tip; c) Zoomed stress distribution in
the spew region; d) Zoomed stress distribution at the stress discontinuity at the singularity.

Figure 5.5 shows the distribution of the relative error, explicitly showing three peaks
which relate to the above mentioned sensitive regions. As discussed before, the existence
of geometrical regions without tangential continuity is the cause for this divergence be-
havior in the stresses. The convergence criterion was fulfilled in 97.5% of the ply’s length
for the M3 mesh, in 94.08% of the M2 mesh and in 84.73% of the M1 configuration. For
the adherend, the averaged relative errors were considerably lower, 0.20%, 0.32%, 0.66%,
for M3, M2 and M1, respectively.
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Figure 5.5: Relative error of the stress component 𝜎1 along the length of the first lamina (+45∘) path [figure 4.10
a)] of FESAL4, for the for different mesh densities with respect to M4.

Based on the obtained results, the M3 discretization (𝑒𝑙𝑠𝑧 = 0.125𝑚𝑚) was selected as
the configuration that was further implemented in this thesis. This refinement allowed a
relative error always bellow 5%, with respect to M4, while not costing as much compu-
tational power as the finest configuration. Furthermore, the highly structured shape in
the spew region ensured a element low aspect ratio, particularly for the smaller elements
and a non-distorted shape, both contributing for result accuracy. On top of this, the
fact that the elements in the spew have the same length as the ply thickness allowed for
a simplified automation of the part meshing.

Another outcome of this mesh refinement study is the determination of the non-convergence
regions, i.e. locations fairly close to the singularities where convergence was not achieved
and these regions (defined by a radius around the singularity and extruded throughout
the whole width) have been flagged as not reliable in terms of developed stresses.

5.2. Preliminary stress study
All the normal and shear stress components for the four selected paths are presented in
appendix P. In the main body, only the most relevant (in terms of stress values and/or
distribution) plots will be shown and analyzed.
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5.2.1. Load-displacement curves
For a prescribed displacement of 𝛿𝑥 = 0.5𝑚𝑚 the different laminates show a different
carried load. As it is presented in figure 5.6, after an initial slightly non-linear behavior1,
a linear relation takes place until the prescribed displacement is reached. As the reaction
load is much bellow the load level to initiate damage, no softening behavior is detected.

Despite the initial slight non-linearity, through a linear interpolation it is possible to
extract the stiffness 𝑘 values for each laminate. As expected, the laminate containing
only 0s is the stiffer 𝑘1 = 38.31𝑘𝑁/𝑚𝑚, followed by the also anti-symmetric laminate
composed only by 0s and 90s which is almost twice compliant 𝑘2 = 20.76𝑘𝑁/𝑚𝑚. The
laminate containing only 45s is the least stiffer 𝑘3 = 5.40𝑘𝑁/𝑚𝑚, by a factor of more
than seven, when compared with the first configuration. As expected the QI laminate
behaved more compliant 𝑘4 = 15.02𝑘𝑁/𝑚𝑚 than the first two laminates but almost 3
times more stiffer than the third configuration.

Figure 5.6: Force-displacement curves for the different layup configurations with a prescribed displacement of 𝛿𝑥 =
0.5𝑚𝑚. The displacements were taken at the adherend tips.

5.2.2. Stress distribution along the adhesive length
The following analysis was performed along the path shown in figure 4.10 a).

The normal stress distribution in the adhesive along the lap length showed two very
pronounced peaks: one at the spew tips and a generally more pronounced at the lap
ends, for all three components 𝜎1, 𝜎2 and 𝜎3. Showing a typical bathtub shape, the
longitudinal-transverse shear component 𝜏12 distribution (figure 5.9) exhibited a more

1Due to the initial non-linear geometric deformation of the structure, characterized by the rotation of the joint.
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gradual stress variation i.e. much lower stress concentration factors2, at the starting of
the adherend overlap region even if the absolute values of this shear component in that
location were higher for the the stiffer laminates when compared with the absolute values
of any other normal stress component.

Because of the spew geometry, two peak stress regions can be identified, namely: spew tip
and the starting of adherend overlap region. Both are near to singularities (geometrically,
sharp corners), meaning that the stresses do not converge with mesh refinement, hence,
any interpretation of the stress readings should be carefully done considering that the
real stress state might be considerably different.

Addressing the stress component parallel to the load application 𝜎1 in the adhesive, the
stress concentration increases for stiffer adherends, as can be seen in figure 5.7. For
FESAL1 (the stiffest) the stress concentration is 10.63 whereas for FESAL3 (the most
compliant) is 5.25.

Looking at the peel 𝜎2 and longitudinal-transverse shear 𝜏12 stress distributions in the
adhesive (figures 5.8 and 5.9, respectively), an opposite trend is verified when comparing
to the longitudinal stress component 𝜎1. Stiffer configurations showed smaller stress
concentrations in the starting of the adherend overlap region.

Figure 5.7: Normal stress in the direction parallel to the fibers 𝜎1 along the adhesive length.

2Stress concentration factor is a dimensionless quantity used to quantify how concentrated is in a structure. In
mathematical terms it is the ratio of the maximum stress over a reference stress, in this case, the average.
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Figure 5.8: Peel stress 𝜎2 along the adhesive length.

Figure 5.9: Longitudinal-transverse shear stress 𝜏12 along the adhesive length.

Another remarkable aspect, common to all so-far analysed stress components is that the
ratio between the highest peak located at the lap end and the lower peak located at the
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spew tip increases for stiffer adherend configurations.

The inplane shear component 𝜏13 and the transverse shear component 𝜏23 values were
negligible for all laminates. Notwithstanding, for FESAL3 and FESAL4, residual values
were recorded for both components, as can be visualized in P - P.21 e) and f) charts. This
is related to the fact that the neighboring plies were 45s in both cases, which explains
these low, yet existent shear stress values.

Check appendix P - figure P.21 for all stress components along the adhesive length.

5.2.3. Stress distribution along the joint thickness
The following analysis was performed along the path shown in figure 4.10 b).

Along the thickness of the joint path, near to the start of adherend overlap region (𝑥 =
−𝑐 + d𝑠, where d𝑠 is an infinitesimally small length), the stresses vary in step-wise
manner. Figure 5.10 illustrates the distribution of 𝜎1 across the defined path. Because
FESAL1 is only composed by 0s, the stress only grows from the bottom layer up to the
top adjacent layer to the adhesive, where it reaches a maximum of more than 800 MPa.
In the adhesive region, the stresses dramatically drop for less than 50 MPa. In the top
adherend, the stresses are more than 4 times lower than to the symmetric ply in the
bottom adherend. The reason behind this is related to the fact that the region near to
the top adherend’s free end is relatively unloaded considering the load path.

As for FESAL2, the 90∘oriented plies show residual stress levels, considering that 𝜎1 is
the stress parallel to the fibers (and to the load application), for the 90s, the fibers are
perpendicular to the load application, thus, barely carrying any load. This explains the
sudden raise in the stress levels for each subsequent 0∘oriented lamina, to the stress levels
showed by FESAL1 at the same coordinate.

Regarding the peel stress 𝜎2 distribution along the thickness path (presented in figure
5.11), this component is blind with respect to fiber orientation in terms of the stress
distribution shape because the out-of-plane direction is always govern by the matrix
properties. Nonetheless, as the stiffer laminates carry more load for a prescribed dis-
placement, these showed greater stress values, as anticipated. Specifically, the FESAL1
reached a maximum stress value of approximately 50 MPa, five times higher than the
most compliant laminate with only 45s (FESAL3). From the bottom-most ply of the
bottom laminate up to the adhesive the stresses gradually grow in a structured step-wise
manner. Contrary to the first stress component distribution, the peel stresses in the
adhesive remain at the maximum value. On the lap end of the top adherend, the stresses
drop a bit faster than their previous grow and in a less structured manner, due to the
reasons explained before that relate to the relatively unloaded state of this region.

Figure 5.12 shows the distribution of the longitudinal-transverse shear stress 𝜏12 along
the thickness of the joint. FESAL1 show a more gradual because all laminae face in
the same direction but steeper growth of this shear stress component up 70MPa, at the
adhesive. In contrast, FESAL2 exhibit many sudden variations at the interface of the
0s and 90s, up to the critical value at the adhesive of ∼45MPa. At the 90s, 𝜏12 tends
to be lower in magnitude. By far, the lowest stress accumulation happened in FESAL3
composed only by 45s, where throughout the path the stress levels kept low, evolving
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smoothly up to a maximum of 15MPa, in the adhesive region. The justification behind
this relates to the fact that this is the most compliant configuration. Once again, an
intermediate behavior between FESAL2 and FESAL3 was found in the QI FESAL4,
reaching a maximum of 35MPa in the adhesive. It should be noted that, for all cases,
in the bottom-most region of the bottom adherend, negative shear stresses were found
meaning a stress in the reverse shear deformation of the contained elements.

The inplane shear stress component 𝜏13 (figure 5.13) showed to be negligible in the first
two laminates, considering that their composition was limited to 0s and 90s. For other
orientations, this inplane shear stress show significant stress levels. As for FESAL3 (only
composed by 45s) bottom adherend, the inplane shear stresses grew from 10 MPa to
almost 30 MPa, from the bottom-most to the top-most plies, alternating at each lamina
(except on the middle of the laminate, given its symmetry) the sign of the stress based
on the sign of the fiber orientation. Likewise, for the QI laminate, the considerable
shear stress values were only recorded at the 45∘oriented plies. For all configurations,
the inplane shear stress at the adhesive showed residual values, as expected, taking into
consideration the problem’s symmetry (with respect to the 1 − 2 plane).

Figure 5.10: Normal stress in the direction parallel to the fibers 𝜎1 along the adherend-adhesive-adherend out-of-plane
path.
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Figure 5.11: Peel stress 𝜎2 along the adherend-adhesive-adherend out-of-plane path.

Figure 5.12: Longitudinal-transverse shear stress 𝜏12 along the adherend-adhesive-adherend out-of-plane path.
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Figure 5.13: Inplane shear stress 𝜏13 along the adherend-adhesive-adherend out-of-plane path.

Check appendix P - figure P.22 for all stress components along the adherend-adhesive-
adherend out-of-plane path.

It should be borne in mind that, for the adherend-adhesive-adherend out-of-plane path,
by integrating each stress component over the cross sectional area, the forces flowing
through them are obtained. To be more specific, by integrating 𝜎𝑥 over the width (along
the z-direction) and thickness (along the y-direction) of the joint, the correspondent
applied load should be found: 𝐹𝑥 = ∫𝑤

0 ∫𝑡+𝑡𝑎/2
−(𝑡+𝑡𝑎/2) 𝜎𝑥(𝑦, 𝑧)d𝑦d𝑧.

5.2.4. Stress distribution along the length of the first two
adherend layers
The following analysis was performed along the path shown in figure 4.10 c).

Figure 5.14 presents the stresses along the fiber direction 𝜎1 over the first two layers of
the adherend. The values of this stress component gradually grow from the fixed tip to
the vicinity of the overlap region, where a rapid grow can be observed, for both first two
plies. This is particularly true and pronounced for 0∘oriented plies. The value of this
stress component reaches, approximately, 950𝑀𝑃𝑎 for the (0∘) first plies of FESAL1 and
FESAL2.

As for the second ply [figure 5.14 b)], for FESAL1 and FESAL4, both containing 0s as the
second ply, this value drops to, approximately, 750𝑀𝑃𝑎. As anticipated, having a 90∘as
the second ply orientation, FESAL2 shows a residual (approximately equal to zero) 𝜎1
value throughout the whole ply length, given that the fibers are perpendicularly oriented
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with respect to the load orientation, thus carrying residual amounts of compressive stress
due to the Poisson effect. Reference should be made to the stress evolution over the lap
region, i.e. the region after the adherend overlap, the stresses rapidly drop to values 5
times smaller of the highest peak.

Figure 5.14: Normal stress in the direction parallel to the fibers 𝜎1 along: a) the first ply length and 2) the second
ply length.
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Illustrated in figure 5.15, the variation of peel stresses 𝜎2 in the adherend’s plies is, per-
haps, one of the most interesting and critical results of this study. The peel stresses
are close to 0𝑀𝑃𝑎 for all laminates in most of the ply’s length, except in the vicinity
of both spews, where it suddenly reaches very pronounced peaks. This is even espe-
cially prominent for 0∘plies, where for FESAL1 𝜎1 reaches 50𝑀𝑃𝑎 in the first ply for a
𝛿𝑥 = 0.5𝑚𝑚 prescribed displacement, roughly half of its correspondent transverse tensile
strength 𝑌 𝑇 = 102𝑀𝑃𝑎. After this quite pronounced peak, the stresses dramatically
drop to a compressive regime. Over the lap length, the peel stresses stay compressive
and low in magnitude (approximately, −5𝑀𝑃𝑎 for FESAL1’s first ply right after the
highest tensile peak). At the middle of the lap length, the plies experience very small
peel stress values. The distribution along the lap region is asymmetric, showing higher
peaks at the starting of the lap region rather than the its end. The stress concentration
is higher for stiffer adherends.
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Figure 5.15: Out-of-plane stress 𝜎2 along: a) the first ply length and 2) the second ply length.

The longitudinal-transverse shear stress 𝜏12 distribution along the length of the first two
laminae (figure 5.16) shows a similar behavior to the peel stress 𝜎2 distribution, including
the magnitude of the peak stresses. However, several differences were identified: while 𝜎2
stresses are typically higher on the start of the adherend overlap, 𝜏12 stresses are typically
higher at the end of the adherend overlap; furthermore, and following the same trend
of the stress distribution in the adhesive path, while the peel stresses suddenly increase
at the starting of the adherend overlap and then abruptly decrease to a compressive
regime over the lap length, tending to zero in the middle of this region, the longitudinal-
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transverse shear stress decrease from the first peak more gradually in a bathtub shape,
growing to a higher peak at the end of the adherend overlap.

Figure 5.16: Longitudinal-transverse shear stress 𝜏12 along: a) the first ply length and 2) the second ply length.

Check appendix P - figures P.23 and P.24 for all stress components along the two first
adherend layer paths.
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The trend of the transverse inplane stress 𝜎3 is quite similar to the trend of 𝜎1 but with
the 90s showing the highest peak values (the 3-direction of a 90∘oriented ply is aligned
with the load x-direction, hence the ply stiffness is dominated by the matrix properties)
and one order of magnitude smaller than 𝜎1 peaks.

Only the 45∘oriented plies showed significant inplane shear stress 𝜏13 values, which, as
already explained, the 45∘oriented plies are the ones that better resist to shear deforma-
tions.

Every layer orientation developed transverse shear 𝜏23 stresses, except for the 0s. Two
distinctive peaks were identified in the vicinity of the spew region.

5.3. Verification - failure envelopes
As noted before, the following analysis relates to the failure envelopes presented in ap-
pendix Q. The reason behind this relates to the size of the figures where the plots are
contained being too large to be placed in the main body of the thesis.

Both von Mises and Hashin failure envelopes, figure P.25 and figure P.26 respectively,
show a perfect agreement between the theory and the implemented failure criteria. Re-
calling that von Mises criterion rely in a single condition, its implementation was trivial.

As for Hashin criteria, this perfect correlation also suggests that the implemented ma-
trix failure criteria (note that the Hashin’s fiber mode is independent of the transverse
stresses) equations are bug free.

Concerning Puck’s failure criteria, when comparing failure envelopes for a GFRP under
biaxial loading (𝜎2, 𝜏12) a mismatch was found for the compressive matrix mode, par-
ticularly in mode C (𝜎𝑛 < 0 and 𝜃 ≠ 0), as can be observed in figure P.27 - the trend
defined by the blue markers does not match the theory. After an extensive search errors
in the implemented theory, no bug was found in the code. Nonetheless, it should be
emphasized that the present problem is a predominantly tensile load case, hence, even
considering the Poisson effect, the compressive stresses in the transverse directions do
not govern failure (as has been demonstrated in the preliminary stress study results 5.2).
Given that the obtained predictions are more conservative than theory’s predictions, only
if the (unlikely) occurrence of compressive damage is detected, this implementation issue
should be further investigated.

Also in conflict with theory, but consistent with the previously analysed failure envelope,
is the biaxially loaded (𝜎1, 𝜎2) failure envelope (figure P.28). Additionally to the com-
pressive matrix failure disagreement, two additional features do not conform with the
envelopes published by Puck and Schürman:

• First and most important is the rounded regions observed in the theory’s failure
envelope. There is no apparent reason for the existence of these rounded lines given
that the theory does not suggest any interaction between FF and IFF. Both modes
are analysed independently, even if both share stress components suchlike 𝜎2 and
𝜎3. As explained before, Puck’s failure criteria are categorized as separate mode
criteria rather than interactive criteria.
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• The second aspect relates to the inclination of the FF envelope lines (in green)
obtained after implementation, as opposed to the straight vertical lines shown in
the article [85]. The authors suggest two ways of calculating FF: 1) as limit criteria,
where the stress parallel to the fibers 𝜎1 is directly compared with the correspondent
allowable (𝑋𝑇 for tensile fiber failure and 𝑋𝐶 for compressive fiber failure); 2) as a
separate mode criteria, by including the Poisson effects of the UD material and the
fiber material properties, specifically. The former was used in the theory’s failure
envelopes and the latter in this work’s implemented damage model.

Due to the fact that matrix failure in LaRC05 is also modeled based on Mohr-Coulomb’s
theory, the biaxial (𝜎1, 𝜏12) failure envelope (figure P.29) is similar to Puck’s for ten-
sile matrix failure. Because Puck’s model has additional considerations regarding the
compressive mode, its failure envelope is closed by clearly defined compressive boundary.
Contrariwise, LaRC05’s compressive side is open, suggesting that (in theory) the mate-
rial could withstand unrealistically high compressive inplane transverse stresses without
failing, as long as the inplane shear stresses were small enough. Yet, with respect to ver-
ification, an equivalent (𝜎2, 𝜏12) failure envelope was obtained for the implementation of
LaRC’s theory [82].

As for LaRC05-case 5 (figure P.30) for a GFRP laminate under triaxial normal load-
ing (𝜎2, 𝜎1 = 𝜎3), the obtained failure envelope matched the theory’s failure envelope
indicating that the matrix failure criterion is implemented correctly.

5.4. Validation

5.4.1. Load-displacement curves: experimental vs. FE model
For all laminates, the load-displacement curves of the FE model showed a stiffer behavior
when compared against the tested specimens. This is specially true for the beginning
of the analysis, at the non-linear region due to the rotation of the joint. At the linear
region, this discrepancy is also verified (compare the stiffness 𝑘 values of the FE model
against the tested specimens in figures 5.17 - 5.20).

A possible reason for this over-stiff behavior might be related to the shear-locking be-
havior, particularly when using solid 3D elements (see subsection 4.7 for more details).

On the other hand, the justification for this response may result from manufacturing
defects in the tested specimens. Voids in the adhesive or in the adherend3 cause a ’more
compliant’ behavior of the whole structure.

After the ultimate point, the numerical model exhibits a softening behavior rather than
a sudden failure, as shown by figure 5.21. This is an effect of the viscous regularization
parameter (in this case 𝜇𝑣𝑟 = 0.001) in the adhesive material. Even though the use of
this parameter does not significantly affect the ultimate load itself, it was found that it
predicts a gradual dampened final failure which seemed artificial. As it was explained in
more detail in subsection 4.4.3, the use of this parameter alleviates mesh dependency and

3The adherends were made of prepreg material cured in an autoclave. No remarks on manufacturing defects on
adherends were reported in the article [55], hence the void volume fraction were likely lower than 1%.
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ensures the analyst that the ultimate point was reached4, despite its effect in polluting
the results.

Figure 5.17: Experimental (solid lines) vs. FEA load-displacement curves (dashed lines), initial failure (IF) and
ultimate failure (UF) events for the [45/90/ − 45/0]2𝑠 configuration. The displacements were measured at the
extensometer arms positions: 60mm apart, adjacent to the overlap area.

Figure 5.18: Experimental (solid lines) vs. FEA load-displacement curves (dashed lines), initial failure (IF) and
ultimate failure (UF) events for the [90/ − 45/0/45]2𝑠 configuration. The displacements were measured at the
extensometer arms positions: 60mm apart, adjacent to the overlap area.

4When viscous regularization was not used, the analysis often terminated with convergence issues without showing
any softening behavior or any indication that the ultimate failure was reached. With the use of a viscous parameter,
this uncertainty is removed.
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Figure 5.19: Experimental (solid lines) vs. FEA load-displacement curves (dashed lines), initial failure (IF) and
ultimate failure (UF) events for the [0/45/90/ − 45]2𝑠 configuration. The displacements were measured at the
extensometer arms positions: 60mm apart, adjacent to the overlap area.

Figure 5.20: Experimental (solid lines) vs. FEA load-displacement curves (dashed lines), initial failure (IF) and
ultimate failure (UF) events for the [45/0/ − 45/0]2𝑠 configuration. The displacements were measured at the
extensometer arms positions: 60mm apart, adjacent to the overlap area.

Figure 5.21 compares the response of all configurations in the same chart. As expected,
the laminate with eight 0s ([45/0/−45/0]2𝑠) is considerably stiffer than the others given
the effect of this lamina orientation on both the longitudinal axial 𝐴11 and bending 𝐷11
stiffness components, which govern the material stiffness behavior of the joint.
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Regarding the other three QI configurations, as expected, the one with the outermost
0∘oriented ply ([0/45/90/−45]2𝑠) showed a stiffer behavior in the non-linear region, when
compared to the two other configurations ([45/90/−45/0]2𝑠 and [90/−45/0/45]2𝑠), that
presented a quite similar behavior among themselves. According to CLT, the relative
position of the 0s in a laminate does not affect the longitudinal membrane stiffness 𝐸1𝑚
but it does affect the longitudinal bending stiffness 𝐸1𝑏, reinforcing the notion that this
initial nonlinear region is a bending-dominated problem.

The initial behavior is therefore dominated by the bending stiffness. At the linear region,
no significant differences were noted among the three QI configurations considering that
their longitudinal membrane stiffness is equal, as shown in table 4.9.

Figure 5.21: FEA load-displacement curves, damage initiation and ultimate failure events for the four different tested
laminates.

5.4.2. Damage initiation and ultimate loads: experimental
vs. FE model
Bar charts, contained in figures 5.22 and 5.23 show that the numerical model predicts
generally well the experimentally measured damage initiation and ultimate loads. For
all layups, the predicted damage initiation loads were found lower than the experimental
averages, particularly for the [0/45/90/ − 45]2𝑠 case where the discrepancy was the
highest. Nonetheless, some dispersion was found in the damage initiation and ultimate
failure loads of the tested specimens, which is characteristic in the testing of composite
materials.

In terms of relative differences, for the four tested configurations: [45/90/ − 45/0]2𝑠,
[90/−45/0/45]2𝑠, [0/45/90/−45]2𝑠 and [45/0/−45/0]2𝑠, the PDM under-predicted the
damage initiation loads by, 11.5%, 7.5%, 29.9% and 6.1%, respectively, in relation to the
AE results. Regarding the ultimate load, the relative differences were quite discrepant:
33.2%, 37.4%, -0.4% and -13.71%, respectively.
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Concerning the damage onset discrepancy, a plausible motive for this variability might
be related with the used criterion to identify the onset of damage in the acoustic emission
and in the numerical model. Regarding the acoustic emission criterion, while the energy
burst might be a good parameter to define the onset moment considering that it is based
on the number of hits and related amplitude in a given time period, the setting of the
quantitative boundary is highly disputable as well as the parameter to which it should be
normalized5. The condition used in the numerical model is also highly debatable. The
first element to overcome the failure index of one might lead to an underestimation of
the damage onset owing to the fact that these elements contained singularities, regions
at which convergence was not obtained, resulting in a non-credible stress-state that was
ultimately used to evaluate the failure index.

As for the ultimate failure, the softer configurations [45/90/ − 45/0]2𝑠 and [90/ −
45/0/45]2𝑠 showed the greater mismatch with the numerical model being less conser-
vative than what was exhibited by the tested specimens. However, it should be noted
that the former referred layup presented significant dispersion, probably related to man-
ufacturing defects. By contrast, the laminate with the 0∘outer ply showed a very good
correlation between the numerical prediction and the experimental results.

In all three QI layups, the predicted ultimate failure was ∼ 9𝑘𝑁 which seems to indicate
that the sequence of a given layup does not influence the ultimate load in the adhesive.
For the stiffer laminate ([45/0/ − 45/0]2𝑠), both methods suggest a considerably higher
ultimate load but in this case, the numerical model laid on the conservative side. This
indicates that by increasing the number of 0s the joint becomes stronger, as already
suggest by Matthews and Tester [68].

Figure 5.22: Experimental vs. FEA damage initiation loads for the four different tested laminates.

5Several statistical quantities might be used for this purpose, such as: average, maximum, total...
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Figure 5.23: Experimental vs. FE model ultimate loads for the four different tested laminates.

Other plausible justifications for the mismatch between the numerical and experimental
results might be related to: a) manufacturing defects in the tested specimens; b) model
’blindness’ with respect to complex fiber-matrix interaction (material is homogenized); c)
model incapacity of capturing the interfacial adhesive-adherend mechanical interaction.

The location of the predicted damage can be found in subsection 5.5 - figure 5.26.

5.4.3. Strain maps: experimental vs. FE model
Comparison between the DIC (top) and the FE model (bottom) results of the layup
[0/45/90/ − 45]2𝑠 are presented in figures 5.24 and 5.25, for logarithmic strains 𝜀𝑥 and
𝜀𝑥𝑦, respectively.

For both analysed variables, the global strain field predicted by the DPM matches the
test results. Even though differences were found in the maximum and minimum values
for the analysed damage stages, these values were in the same order of magnitude and
the gradients agreed.

At the lap ends of the adhesive interface, pronounced maximum tensile and shear values
were found in both DIC and FEA for latter stages of damage propagation, as expected
for the reasons already elaborated in the preliminary stress study results (appendix P).
In contrast, the region around the free corners of the adherends was found practically
unloaded, also anticipated considering the geometry of the joint and the load paths.

Negative shear strain 𝜀𝑥𝑦 values were found in the opposite faces of the bonded region
at the lap ends, meaning an inverse shear deformation, as already verified in the prelim-
inary stress study in figure 5.12. In magnitude, these values were in the same order of
magnitude as the maximum positive shear values. At the same region, the longitudinal
strain 𝜀𝑥 showed residual values.
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The strain maps obtained from the DIC contained some limitations that should be solved
in further studies: a) the field area does not cover the entire lap region, i.e., there is
no strain information in the borders; b) the resolution should be enhanced for greater
accuracy in extracting strain values, especially when zoomed actions are required; c) the
speckle pattern should cover the non-bonded adherend region close to the lap ends since
this is a critical region fairly close to the stress concentrations.

Figure 5.24: Experimental vs. FEA logarithmic longitudinal strain 𝜀𝑥 maps in the joint region at: a) damage initiation;
b) average load value between damage initiation and ultimate failure; c) ultimate failure. The DIC results relate to
layup [0/45/90/ − 45]2𝑠 - specimen 5.
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Figure 5.25: Experimental vs. FEA logarithmic shear strain 𝜀𝑥𝑦 maps in the joint region at: a) damage initiation;
b) average load value between damage initiation and ultimate failure; c) ultimate failure. The DIC results relate to
layup [0/45/90/ − 45]2𝑠 - specimen 5.

5.4.4. Other remarks
The experimental results presented in the study of Kupski et al. [55] present different and
complex failure modes for the different tested layups. Based on the available information,
namely from mechanical testing, DIC and AE, it is not possible to trace-back the exact
location where damage initiated nor exactly how it propagated. Hence, any attempts to
pinpoint the damage initiation location in the tested specimens would be, in this case,
speculative. In order to retrieve this data from testing, techniques such in-situ Computed
Tomography (CT) scanning would have to be used (under the recommendations section,
check subsection 6.2.3 where this matter was further developed). For this reason and
considering the scope of this work, no comparison was made in terms of failure modes
nor damage location. Yet, the following section 5.5 analyses solely within the scope of
FEA the found damage maps, particularly the damage initiation region.

Several hypotheses might be formulated to suggest an explanation for the numerical
findings that indicate damage initiation and propagation solely the adhesive until final
failure:

• The assumption of a brittle adhesive might be contributing for an underestimation
of damage due to unaccounted plasticity effects. This means that if the adhesive
effectively behaves ductile, it is capable of absorbing more energy than a brittle
idealization.

• The used CFRP and adhesive strength values taken from the datasheets might
not correspond to the actual strength of the material. Significant discrepancies
have been found between the published tested values and the ones declared by
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the manufacturers: the adhesive EA 9695 AERO datasheet [44] provide a tensile
modulus of 3100 MPa, whereas Kupski et al. [55] present 2019 MPa. The same
applies to the tensile strength, 76 MPa against 48 MPa, respectively.

• Unaccounted damage modes such as interlaminar failure underestimated failure in
the adherends. This hypothesis is less likely given that interlaminar failure is usually
preceded of matrix failure that was not detected, yet, it should not be discarded.

From the analysis of the load-displacement curves of the tested specimens, it is notewor-
thy the scatteredness of the results in terms of stiffness, damage initiation and ultimate
failure. This variability is common in the mechanical response of composite structures
mostly due to manufacturing defects that lead to material and/or geometric uncertainties
[17].

The lack of accuracy in centering the extensometer arms in the joint and 60mm apart
might have induced an observational error in the displacement measurements that should
not be disregarded.

Another noteworthy aspect of the global response of the tested specimens (figures 5.17 -
5.20) is an irregular and ’shaky’ behavior. This can be explained by the activity of other
laboratory massive machines during the testing campaign that produce vibrations that
contaminate the test outcome.

The gradual softening behavior exhibited by the FE predictions after the ultimate point
until the final failure was an artificial effect of the used viscous regularization coefficient
of 0.001, since all tested specimen showed a rather sudden final failure. Studying the
sensitivity of this parameter is out of the scope of this thesis, however, it was determined
that as 𝜇𝑣𝑟 increased, a more pronounced fictitious softening behavior was observed
associated to a slightly lower ultimate load.

5.5. Failure index, degraded modulus and damage
maps in the adhesive
The failure index, degraded modulus and damage maps in the adhesive of the [0/45/90/−
45]2𝑠 configuration showed a coherent match of the values of these parameters for different
stages of damage propagation, as shown in figure 5.26.

At damage initiation [figure 5.26 a)], the failure index (according to the von Mises cri-
terion) in the lap ends reached one. At this moment, the Young’s modulus is still not
degraded and the damage variable remained equal to zero.

At the average load value between damage initiation and ultimate failure [figure 5.26 b)],
the failure index continued to increase around the lap ends and throughout the whole
width of the joint. In agreement, the damage variable increased to nearly half unit,
consequently degrading the Young’s modulus to half of its value.

At the ultimate failure [figure 5.26 c)] significant damage propagation can be identified
in the damage maps with ∼ 20% of the adhesive area completely degraded. At final
failure [figure 5.26 d)] only less than 70% is predicted to carry any load. Appendix R -
figure P.31 shows the Young’s modulus evolution over time, in selected elements of the



5.6. Failure index maps in the adherends at ultimate load 99

adhesive layer.

On a related note, the maps propagate in a non-symmetric (with respect to the 𝑥 − 𝑦
plane) diagonally manner. The reason behind this is the fact that the adherends are
non-antisymmetric layups. Based on the CLT (see appendix F for more details) this
type of laminates are prone to bending-twisting coupling due to the fact that the entries
𝐷16 and 𝐷26 are non zero. Put differently, when the joint undergoes in bending, because
of its non-antisymmetric configuration, a twisting response is induced. By its turn, this
twisting behavior affects the stress-strain field of the adhesive which governs the damage
progression model.

Figure 5.26: Failure index (𝐹𝐼), Young’s modulus (𝐸) and damage (𝑑) maps in the adhesive of the [0/45/90/−45]2𝑠
at: a) damage initiation; b) average load value between damage initiation and ultimate failure; c) ultimate failure
and d) final failure.

5.6. Failure index maps in the adherends at ulti-
mate load
At the ultimate load of the numerical analysis, no damage was detected in the adherends,
meaning that before any damage event took place in the matrix or fibers of the composite
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plates, the structure reached its ultimate failure due to the damage accumulation in the
adhesive. This was not verified in the experiments were damage in the adherends was
observed after the tests in all configurations, except in the [0/45/90/ − 45]2𝑠, where
mostly cohesive failure of the adhesive was verified. Even though the identified failure
modes in the remaining cases suggested complex and coupled failure modes: matrix
failure in the adherends, interlaminar failure and interface/cohesive failure, as explained
before, no information was provided related to in which phase damage started nor how
it propagated. Without the data from methods such in-situ CT scan, further attempts
to validate numerical models are not sufficiently solid. Further research in this matter
should focus in this validation issue.

The failure index maps of the [0/45/90/ − 45]2𝑠 at the ultimate failure are illustrated in
figure 5.27 and the maximum tensile fiber and matrix indices (FFT and MFT, respec-
tively) and correspondent layers are presented in table 5.1.

Regarding the tensile fiber failure, Hashin, based in curve fitting alone, is the most opti-
mistic criterion presenting approximately half of the failure index of Puck and LaRC05
(table 5.1). Following a simplified approach, LaRC05 uses the ratio between the stress
component parallel to the fibers with the respective allowable. Added to that ratio, Puck
uses the contribution of the fiber properties and the Poisson effect, which has little effect
on the failure envelopes as explained by the authors in [85]. The resulting failure indices
FFT of these two criteria are, therefore, quite similar.

Both Puck and LaRC05 based the matrix failure criterion on Mohr-Colomb’s theory as
properly elaborated in sub-section , under the assumption that the fracture plane angle
is the one that maximizes the matrix failure index. Despite this, the final formulations
of the failure conditions are entirely different, which explains the significant difference
among the maximum MFT values found (table 5.1). Hashin, on the other hand is purely
heuristically based, resulting in a more pessimistic MFT values.

Because the implemented CDMs rely on the stress state alone, it is predictable that the
critical region is located at the lap ends. Furthermore, as for fiber failure, the critical
layer is, undoubtedly, the 0∘oriented ply next to the adhesive layer; owing to the facts
that: 1) this layer contains a singularity which, in practice, results in stress concentration
and 2) the fibers are aligned with the applied, making the stress component parallel to
fibers 𝜎1 the dominant component; this can be explained by the high material stiffness
𝐸1 in this direction, which is dictated by the fibers modulus, consequently ’attracting’
more stresses.

In its turn, matrix potential failure is predominant in the ±45∘and in the 90∘direction;
with the former presenting greater deformation. Failure in the plies oriented in these
directions is govern by the relationship between a high normal tensile transverse (𝜎2 and
𝜎3) and shear (𝜏12 and 𝜏13) stress state and their respective tensile allowables (𝑌 𝑇 and
𝑆𝐿).
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Figure 5.27: Failure index maps of the [0/45/90/ − 45]2𝑠 at the ultimate failure: tensile fiber failure index (FFT)
and tensile matrix failure index (MFT) for different adherend failure criteria.

Table 5.1: Maximum failure index values and correspondent layers of the [0/45/90/ − 45]2𝑠 at the ultimate failure
for the different failure criteria.

Hashin Puck LaRC05
FFT 0.207 0.409 0.410
At layer(s) 1 1 1
MFT 0.704 0.567 0.342
At layer(s) 3 2,3 2,3

The proposed DPMs seem to under-predict the failure in the adherends. Owing to the fact
that the damage degradation models were not activated in the adherends, further analysis
in this matter is limited. Notwithstanding, new physically-based features should be added
to these models such that the physical phenomena can be modeled in a more realistic
manner. Also, despite the underlying challenges, DPMs should be able to capture the
interaction between failure modes. For this, a blended approach with fracture mechanics
based methods may be a valid solution, as elaborated in the recommendations section
6.2.





6
Conclusions and recommendations

6.1. Conclusions
This thesis aimed to develop and compare DPMs in the framework of CDMs capable
of accurately predict the global response, damage initiation, propagation and ultimate
failure of ABSLJ made of different FRP layup configurations under an uniaxial quasi-
static tensile load. From the analysis of the results, the following conclusions can be
drawn:

• The global response of a FRP ABSLJ is firstly non-linear due to the joint’s rotation
originated by the load eccentricity, which is governed by the structure’s antisymmet-
ric geometry. In this region, the longitudinal bending stiffness govern the structural
behavior of the ABSLJ, due to the bending-nature problem. After stabilization, the
structure is governed by the membrane stiffness and behaves linearly.

• Numerical results using 3D solid elements tend to exhibit a stiffer behavior when
compared to tested specimens, particularly in the initial non-linear region. The
reasons behind this might relate, among others, to manufacturing defects in the
experimental study or shear-locking effects of the 3D solid elements in the numerical
model.

• In the numerical predictions, the QI laminates showed quite similar global responses
in the linear region (𝑘 = 48.17±0.9𝑘𝑁/𝑚𝑚). This can be explained by the fact that
the longitudinal membrane stiffness is independent of the layup sequence. Nonethe-
less, the [0/45/90/ − 45]2𝑠 case exhibited a slightly stiffer bending behavior due
to relative position of the 0s, as the outmost plies, giving it a considerably higher
longitudinal bending stiffness which resulted in a stiffer behavior during the initial
rotation of the joint.

• The [45/0/ − 45/0]2𝑠 showed a much stiffer behavior (∼35% higher) in the linear
region when compared to the other three QI laminates. In spite of having the same
total number of plies, in place of 90∘oriented laminae, this laminate had 0 (doubling
its number in relation to the QI configurations) which resulted in an enhanced
longitudinal membrane stiffness.

• The numerical results suggest that the layup sequence of QI adherend layups seem
to not significantly affect the ultimate load, i.e., the three QI laminates, with an
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equal longitudinal membrane stiffness exhibited similar ultimate loads.
• In contrast, both numerical and experimental results suggest that the load at which

damage starts is affected by the neighboring ply of the adhesive. Owing to small
sample size and dispersion of the damage initiation loads, it was not possible to
establish a clear relationship between the effect of the neighboring ply on this pa-
rameter.

• The use of viscous regularization of 0.001 in the adhesive with a time increment
of 0.092 seconds seems to be large enough to pollute the results. While its use
stabilized convergence and presumably alleviated mesh dependency, its value was
high enough to introduce artificial damping effects.

• For the current geometry and materials, numerical predictions suggest that dam-
age started in the adhesive and propagated until final failure of the structure even
before any damage event have taken place in the adherends. Conversely, the exper-
imental campaign indicated different and complex failure modes among the tested
specimens.

• The predicted strain maps were in agreement with the DIC results for different
stages of damage propagation, showing high strain values at the lap ends (due to
the stiffness jump of the overlap region) and low strained regions at the unloaded
free corners.

• Even for the layup with the 0∘outmost lamina, the found damage patterns in the
adhesive were not symmetric, in fact were found skewed. This was attributed to the
fact that the layups were not anti-symmetric which results in a bending-twisting
coupling. The twisting response induced by bending results in an asymmetric pat-
tern.

• The available experimental data, including the load-displacement results from the
mechanical testing, AE and DIC results are not sufficient to assess the damage
progression in composite structures. New experimental techniques for damage as-
sessment such as in-situ CT-scan mechanical tests are required for a more complete
validation of the DPM.

6.2. Recommendations

6.2.1. Continuum damage model

6.2.1.1. Numerical issues

Mesh dependency is one major vulnerability of CDMs. During the softening process, the
material tangent stiffness matrix can loose the positive definiteness, becoming ill-posed.
At this point, the numerical solutions are mesh dependent which means that the amount
of dissipated energy throughout crack propagation tends to zero upon mesh refinement
[86]. This issue may be mitigated by using other integral models such as the crack band
method or gradient based models.

As mentioned before, another expeditious method to mitigate mesh dependency is by
regularizing the damage variable based on the viscous coefficient and time step. The
effects of the introduction of viscous regularization for a given time step should be further
studied for both the adhesive isotropic material and the adherend anisotropic material.
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The spew geometry greatly affects the peak stresses at the lap ends, as suggest Lang
and Mallick [56]. The authors concluded that by smoothing the transition of the spew in
the adhesive-adherend interface, the stress concentrations were alleviated. A triangular
idealization of the spew introduces two sharp corners, i.e., singularities. By using an
’arc-shaped’ spew, these singularities are eliminated because tangential continuity in
the structure is assured. The authors of the referred article found an overall greatest
reduction when an ’arc-shaped’ spew is used. When compared to a square-ended spew
geometry, an arc geometry achieved a local reduction of 60% in the shear stress, 87% in
the peel stress and 35% in the longitudinal stress. In contrast, the configuration used in
the present thesis (half triangular) achieved, 45%, 71% and 28% reduction, respectively.
It is recommended that the effect of the spew geometry is extended from a stress study
to a damage progression study.

6.2.1.2. Plasticity in the adhesive

Because most adhesives present a ductile behavior with a highly non-linear load-displacement
response, plasticity should be modeled in the proposed CDMs so that a more realistic
behavior of the ABSLJ is obtained. Modeling plasticity is not trivial, thence a literature
study on the subject is recommended for a more detailed understanding on the subject.

6.2.1.3. Interlaminar failure

The proposed model is not capable of capturing delaminations which are likely to oc-
cur considering the significant peel (associated with mode I fracture) and shear stresses
(associated with mode II fracture) at the lap ends regions [62, 98]. Two discrete crack
models particularly stand out for modeling delaminations in a FE environment [34, 108].

Particularly, the Virtual Crack Closure Technique (VCCT) is the most widely imple-
mented approach via FEM to simulate delamination within the framework of linear
elastic fracture mechanics [89, 110]. This technique determines strain energy release rate
based on the assumption that the strain energy released in the expansion process of an
infinitesimal crack by a small amount is equal to the amount of the work required to
close the crack to its original state [28, 54, 59].

Another popular method in the framework of discrete modeling is the Cohesive Zone
Model (CZM) which does not require a pre-existent crack and present no restrictions
with regard to the size of the damaged region. For its wider range of application and
capability of capturing crack initiation and propagation [89], the CZM is increasingly
used for general PDA of composites, specifically for delamination modeling [35, 72, 89,
118]. Moreover, Campilho and Fernandes [15] suggest that this technique is particularly
attractive for adhesively bonded joints considering the prime influence of ductility and
related stress gradients in the fracture process.

Blending the CDM approach to capture intralaminar failure with one of these methods to
model interlaminar failure might result in a more realistic damage progression modeling.
On this framework, Van Dongen [110], van Oostrum [111] and Bobeldijk [9] developed
relevant work, in fact the materialization of this collective effort was named Progressive
Blended Damage Analysis (PBDA) software.
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6.2.1.4. Introducing the manufacturing defects in the model

Within the framework of CDMs, the effect of damage is included in the model by degrad-
ing the elastic properties of the material. Following this reasoning, also manufacturing
defects could be accounted in the model through the introduction of material property
penalty factors, e.g. the relation between the void content in an adhesive and its effective
stiffness could be further studied.

6.2.2. Smeared representation of the crack
One of the main shortcomings of CDMs is that their inability to physically represent the
matrix cracking. Instead, this approach results in a smeared representation of damage
over the laminate’s laminae leading to unrealistic damage patterns [86, 110]. The rea-
son behind this relates to the homogenization of the inherently multi-phased composite
material. Consequently, the CDM relies on the association of the damage mechanisms
with their overall and ’smeared’ effect on the mechanical properties of the material, in
practice by means of material property degradation models.

In order to obtain more realistic and accurate damage patterns, an explicit incorporation
of discrete cracks in FEM is required. Concerning intralaminar damage, phantom-node
eXtended Finite Element Method (XFEM) approach is a major candidate for modeling
cracks with arbitrary orientations that might even coalesce into delaminations. With this
respect, van der Meer [108] concludes that the XFEM phantom node method accurately
captures and models the interaction between matrix cracks and delamination.

Song, Areias and Belytschk developed an efficient and accurate method for modeling
arbitrary dynamic crack propagation using phantom nodes [95]. These phantom nodes
were introduced to represent the discontinuity of the cracked elements.

If no damage occurs at the element level, then the element is intact and each phantom
node is constrained to its corresponding real node. Otherwise, the cracked element splits
into two parts. Depending on the orientation of the crack, each part is formed by a
combination of some real and phantom nodes, as it is illustrated in figure 6.1.

Figure 6.1: Damage propagation in XFEM using the phantom nodes concept: a) before partitioning and b) after
partitioning of cracked element. (Reproduced from [16], copyright Elsevier, 2011).

Blending CDMs with discrete methods such as XFEM to capture the multiple crack
propagation without the need of mesh updating seems a promising approach towards
accurate PDA of FRPs. Nonetheless, Van Dongen et al. [110] point out difficulties in its



6.2. Recommendations 107

implementation in Abaqus environment.

6.2.2.1. Insitu strength effects

Considering that the numerical model predicted damage only in the adhesive, the effects
of insitu properties in the adherend composite material were not studied. Further studies
with relatively weaker adherends should investigate the validity of including these insitu
effects.

6.2.3. Experimental studies

6.2.3.1. Sample size

Generically, in order to have a higher confidence level and power of the experimental
study to draw conclusions, a larger sample size is required. This is particularly true for
the testing of composite structures, which typically show high level of variability in the
measured parameters, particularly and relevant to this study: stiffness, damage initiation
load and ultimate load.

6.2.3.2. Imaging/scanning of the damage progression

One of the greatest challenges in studying damage progression in FRP composite struc-
tures is to detect exactly where the crack initiates and how and where to it propagates.
This requires the use of state-of-the-art non-destructive testing methods that provide
images or scans of the crack evolution over time.

Techniques such as Computed Tomography (CT) scanning can be used to validate the
numerical results presented in sections 5.5 and 5.6, concerning the damage accumula-
tion over time through time-lapse imaging. This non-destructive method provides high
resolution 3D imaging of materials by means of combinations of X-ray images taken
from different angles that allow a 3D visualisation of the specimen as well as detailed
cross-sectional representations of the location and extent of different failure modes.

Yu et al. [117] state that in-situ CT scanning promotes the crack event visibility given
that the imaging of the composite specimen is performed under load application.

Since in-situ CT scanning can be too expensive and requires specialized testing equip-
ment, a practicable alternative is the ex-situ approach. In concrete terms, while tensile
testing the specimen, once damage initiation is detected, the test stops and the speci-
men is submitted to CT scan test. Having gathered the CT data, the specimen is then
submitted to the remaining load until final failure.

For the purpose of validation of models using the discrete crack approach, the use of (high
resolution) high speed camera can provide image data regarding the crack growth at the
specimen’s lateral face. The main limitation of this technique is that no information
regarding the interior of the specimen is known, where all the damage action might take
place.
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A. Influence of the stacking sequence on the stress
concentration factor around a hole in a laminate
loaded in tension

Figure P.2: Stress concentration factor around a hole in an orthotropic plate. (Reproduced from [52], copyright
Wiley, 2015).

119



B. Trade-off between adhesively bonded joints and
mechanically fastened joints

Table P.1: Comparison of the advantages and disadvantages between adhesively bonded joints and mechanically
fastened joints. (Adapted from [5]).

Advantages Disadvantages
Adhesively bonded joints

Small stress concentration in adherends Limits to adherend thickness
Stiff connection Inspection other than for gross flaws difficult
Excellent fatigue properties Prone to environmental degradation
No fretting problems Sensitive to peel and through-thickness stresses
Sealed against corrosion Residual stress problems when joining to metals
Smooth surface contour Cannot be disassembled
Relatively lightweight May require costly tooling and facilities
Damage tolerant Requires high degree of quality control

Advantages Disadvantages
Mechanically Fastened joints

Extensively studied and reliable joint Considerable stress concentration
(Bolts) can be disassembled Prone to fatigue cracking in metallic component
No thickness limitations Hole formation can promote other composite damage
Simple joint configuration Composites’ s relatively poor bearing properties
Simple manufacturing process Pone to fretting in metal
Simple inspection procedure Prone to corrosion
Less sensitive to temperature and humidity changes May require extensive shimming
Provides through-thickness reinforcement;
not sensitive to peel stresses
No major residual stress problem

C. Tsai et al. improved analytical solution: 1-D
bar and 1-D beam formulations, expressions and
comparison plots

Figure P.3: Geometry and material parameters of the single-lap joint for: a) 1-D bar model and b) 1-D beam model.
(Reproduced from [105], copyright Elsevier, 1998).

120



Figure P.4: Normalized adhesive shear stress distributions of thick-adherend single-lap joint comparison: a) improved
1-D bar model (Goland and Reissner with adherend shear), 1-D bar model (Volkersen), original 1-D beam model
(Goland and Reissner) and b) improved 1-D beam model with the edge moment 𝑀0 (Goland and Reissner with
adherend shear), 2-D FEM model and original 1-D beam model (Goland and Reissner). (Reproduced from [105],
copyright Elsevier, 1998).

D. Considerations on other parameters that influ-
ence the joint strength

D.1. Manufacturing bonding process
The manufacturing process influences the failure process, the failure mode and the joint
strength of a bonded structure [10].

There are essentially four bonding processes:

• Co-curing: both structural elements are simultaneously cured; the use of adhesive
is optional;

• Co-bonding: one uncured adherend is cured together with an already cured ad-
herend using an adhesive layer between both;

• Secondary bonding: both already cured composite substrates are bonded by means
of an adhesive layer;

• Multi-material bonding: same as previous but with a combination of metal and
composite adherends.

Song et al. [96] investigated the effects of manufacturing methods on the shear strength
of composite ABSLJ and they found that by decreasing order the processes are sorted
as follows: co-cured without adhesive > secondary bonded > co-cured with adhesive >
co-bonded.

D.2. Surface preparation
Bond strength can be significantly improved by surface treating the adherends prior to
bonding [6].
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Generally, surface treatments are required to turn the surface receptive to the applied
adhesive. Hence, the main goal of treatment is to provide to the surface desirable physical
and chemical properties [19]. A clean surface is a necessary but not sufficient condition
for bond durability [6].

The main functions of surface preparation are summarized in the following list [19]:

• To remove and/or prevent the formation of contaminants (such as: oils, dusts ) and
weak layers (such as: weak oxides - in the case of metals adherends) on the adherend
surface; this is accomplished by the using a proper degrease agent;

• To maximize the degree of molecular contact between the adhesive and the ad-
herends by increasing the surface energy of the last, thus improving their wetting
and by introducing specific functional groups;

• Create a specific structure on the adherend surface that extends the surface area and
promotes interlocking mechanisms; these two last functions may be accomplished
through mechanical processes, such as abrasion or by using peel ply, however ac-
cording to the outcomes of a referenced research [49], the found fracture toughness
values for peel ply surface treated specimens were 70-80% lower when compared to
abraded treated specimens;

In summary, surface treatments decrease water contact angle, increase surface tension
resulting in a improved bond strength [71]. Apart from a high surface energy adherends,
a low surface energy adhesives are desirable for a maximized wetting.

It is worth mentioning that a particular surface treatment highly depends on the require-
ments and service conditions of the bond [19].

D.3. Geometric parameters

D.3.1. Bondline thickness

In a literature review article, Budhe et al. [10] collected the results from several studies
regarding the influence of the bondline thickness on the joint strength and fracture energy
for specimens under mode I (using double-cantilever beam [DCB], tapered DCB [TDCB]
and butt joints), mode II (using end-notched flexure [ENF] joints) and mixed-mode
loading (using single lap bonded joints [ABSLJ]).

It was found that for polymeric adhesives (excluding elastomers), the strength decreases
with an increasing bondline thickness, which was attributed to the fact that thicker bond-
lines contain more defects. Regarding the fracture energy, it was found that it increases
with the thickness of a ductile adhesive (the reverse applies for a brittle adhesive). Ac-
cording to the authors, no generalized relation is possible to establish between strength
and adhesive thickness given the influence of the other governing parameters.

D.3.2. Joint configuration

An efficiently designed joint presents a constant stress distribution throughout its bonded
area. For most of joint configurations, including the simplest and most studied ABSLJ,
this is not the case. Instead, both: the shear stress and the transverse normal (peel) stress
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distributions present high peaks at the lap ends. Commonly, the shear stress distribution
is, by analogy, refereed as ’bathtub’ shaped. The following plots, presented in figure P.5
and P.6, show the shear stress distribution and peel stress in a ABSLJ, respectively, from
finite element models and from Goland and Reissner analytical solutions.

Figure P.5: Shear stress distribution in a ABSLJ from finite-element models with and without spew and from Goland
and Reissner analytical solutions [31].

Figure P.6: Transverse normal (peel) stress distribution in a ABSLJ from finite-element models with and without
spew and from Goland and Reissner analytical solutions [31].

One strategy commonly use to significantly reduce the peak stresses and thus increase
the joint strength is the inclusion of spew. Spew is defined as the portion of adhesive that
is squeezed out from the lap area and forms a bead at the lap ends [56]. Two referenced
researches [8, 56] investigated how the spew geometry affects the peak stresses and stress
distribution in adhesively bonded ABSLJ through a finite element analysis. The authors
concluded that spews significantly contribute for stress reduction, particularly the peel
stresses (up to ∼ 70% of peak reduction for a half triangular spew geometry [56]) should
not be neglected in the stress analysis of single-lap joints. Furthermore, it was concluded
that increasing the size of the spew also reduces peak stress concentrations.
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E. Effect of the adhesive and adherend properties
on the joint strength

E.1. Effect of the adhesive ductility

Figure P.7: a) Effect of adhesive brittleness and overlap length on: a) the peel stresses of balanced ABSLJ (Reproduced
from [39], copyright NASA, 1974); b) the shear strength of ABSLJ. (Reproduced from [38], copyright NASA, 1973).
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E.2. Effect of the adherend stiffness imbalance on the adhe-
sive peel stresses

Figure P.8: Effect of the adherend stiffness imbalance on the adhesive peel stresses in ABSLJ. (Reproduced from
[38], copyright NASA, 1973).

F. Constitutive relations for anisotropic materials:
an overview
A constitutive model describes the material stress-strain relationship. Quasi-brittle ma-
terials, such FRP laminates exhibit a broad linear-elastic region, after which due to
inherent material non-linearities or due to damage events, the material presents a NL
behavior which might be more or less pronounced according to the material properties
and layup configuration.

This chapter is dedicated to derive the stress-strain relations in FRP laminates. First, the
constitutive relations of a thin lamina under plane stress conditions are derived. Then,
the stresses and strains in the material coordinates are transformed into stresses and
strains in the laminate/load coordinate system. It follows the formal definition of the
invariant stiffness matrix, displacements, strains, resultant forces and moments. With all
the ingredients set-up, the constitutive equations for a laminate are assembled together in
one matrix equation, relating the applied loads on the laminate to its associated strains.
The coupling implication of some popular laminate configurations are summarized in a
table. Finally, a generic algorithm to find the first ply failure load is presented.
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F.1. Stress-strain relations (3D)

F.1.1. General anisotropic material

The generalized Hooke’s law, which relates the stresses 𝜎𝑖 to the strains 𝜀𝑗 through the
stiffness components 𝐶𝑖𝑗 on a general anisotropic three-dimensional cubic element1 can
be written in contracted notation as [20, 47, 51]:

𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗 (P.1)

where: 𝑖, 𝑗 = {1, 2, 3, 4, 5, 6}

Energy considerations require additional symmetries:

𝐶𝑖𝑗 = 𝜕2𝑊
𝜕𝜀𝑖𝜕𝜀𝑗

= 𝜕2𝑊
𝜕𝜀𝑗𝜕𝜀𝑖

= 𝐶𝑗𝑖 (P.2)

Reducing the number of independent elastic constants from 36 to 21. The compliance
matrix 𝑆𝑖𝑗 is obtained by inverting the stiffness matrix:

𝜀𝑗 = 𝑆𝑗𝑖𝜎𝑖 (P.3)

F.1.2. Orthotropic material

Taking the particular case of an orthotropic material which presents three mutually
perpendicular planes of material symmetry, leads to the following considerations [20]:

• No normal stress - shear strain coupling;
• No shear stress - normal strain coupling;
• No coupling between a shear stress acting on one plane and a shear strain on a

different plane.

⎧{{{
⎨{{{⎩

𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12

⎫}}}
⎬}}}⎭

=

⎡
⎢⎢⎢⎢⎢
⎣

𝑆11 𝑆12 𝑆13 0 0 0
𝑆12 𝑆22 𝑆23 0 0 0
𝑆13 𝑆23 𝑆33 0 0 0
0 0 0 𝑆44 0 0
0 0 0 0 𝑆55 0
0 0 0 0 0 𝑆66

⎤
⎥⎥⎥⎥⎥
⎦

⎧{{{
⎨{{{⎩

𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12

⎫}}}
⎬}}}⎭

(P.4)

The compliance coefficients 𝑆𝑖𝑗 are defined in terms of the elastic engineering material
constants:

⎧{
⎨{⎩

𝑆11 = 1
𝐸1

; 𝑆22 = 1
𝐸2

; 𝑆33 = 1
𝐸3

;
𝑆12 = −𝜈12

𝐸1
; 𝑆13 = −𝜈12

𝐸1
; 𝑆23 = −𝜈23

𝐸2
;

𝑆44 = 1
𝐺23

;𝑆55 = 1
𝐺13

;𝑆66 = 1
𝐺12

(P.5)

1Symmetry of the stress 𝜎𝑖𝑗 = 𝜎𝑗𝑖 and the strain 𝜀𝑖𝑗 = 𝜀𝑗𝑖 was assumed, reducing from 81 to 36 independent elastic
constants
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The orthotropic material assumption reduces the number of independent elastic constants
from 21 to 9.

F.1.3. Transversely isotropic material

Assuming a transversely isotropic material, that is a special case of orthotropic material
when one of its principal planes (the 2-3-plane, known as plane of isotropy) has infinite
planes of symmetry, i.e., within planes parallel to the plane of isotropy, the material
properties are the same in all directions. The most popular example is an unidirectional
[UD] FRP lamina, as shown in figure P.9 a):

Transversely Isotropic

⎧{{
⎨{{⎩

𝑆12 = 𝑆13
𝑆22 = 𝑆33
𝑆55 = 𝑆66
𝑆44 = 2(𝑆22 − 𝑆23)

Figure P.9: a) Transversely isotropic material illustration (2-3-plane is the plane of of isotropy); b) Laminate section
before and after deformation due to normal displacement and bending. (Reproduced from [20], copyright Oxford
University Press, 2006).

⎧{{{
⎨{{{⎩

𝜀1
𝜀2
𝜀3
𝛾23
𝛾31
𝛾12

⎫}}}
⎬}}}⎭

=

⎡
⎢⎢⎢⎢⎢
⎣

𝑆11 𝑆12 𝑆12 0 0 0
𝑆12 𝑆22 𝑆23 0 0 0
𝑆12 𝑆23 𝑆22 0 0 0
0 0 0 2(𝑆22 − 𝑆23) 0 0
0 0 0 0 𝑆66 0
0 0 0 0 0 𝑆66

⎤
⎥⎥⎥⎥⎥
⎦

⎧{{{
⎨{{{⎩

𝜎1
𝜎2
𝜎3
𝜏23
𝜏31
𝜏12

⎫}}}
⎬}}}⎭

(P.6)

This leads to a relation that depends on only 5 independent elastic constants (𝐸1, 𝐸2,
𝐺12, 𝜈12 and 𝜈23):

⎧{{{{
⎨{{{{⎩

𝑆11 = 1
𝐸1

𝑆22 = 1
𝐸2

𝑆12 = −𝜈12
𝐸1

𝑆23 = −𝜈23
𝐸2

𝑆66 = 1
𝐺12

(P.7)
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F.2. Stress-strain relations for a thin lamina (2D): plane
stress state
The previous relation can be further simplified if a state of plane-stress is assumed. This
assumption implies that the thickness of the laminate is much smaller when compared
its other two in-plane dimensions [51]. Thus, the out-of-plane stresses 𝜎3, 𝜏23 and 𝜏31
are considered negligible in relation to the in-plane stresses.

Inserting these assumptions into matrix equation (P.6) results in null out-of-plane shear
strains: 𝛾23 = 0 and 𝛾31 = 0. Using the in-plane equations (𝜀1, 𝜀2 and 𝛾12) leads to the
stress-strain matrix equation for a transversely orthotropic ply under plane stress:

⎧{
⎨{⎩

𝜀1
𝜀2
𝛾12

⎫}
⎬}⎭

= ⎡⎢
⎣

𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

⎤⎥
⎦

⎧{
⎨{⎩

𝜎1
𝜎2
𝜏12

⎫}
⎬}⎭

= ⎡
⎢
⎣

1
𝐸1

−𝜈12
𝐸1

0
−𝜈12

𝐸1
1

𝐸2
0

0 0 1
𝐺12

⎤
⎥
⎦

⎧{
⎨{⎩

𝜎1
𝜎2
𝜏12

⎫}
⎬}⎭

(P.8)

{𝜀}12 = [𝑆]12{𝜎}12

Inverting the reduced compliance matrix 𝑆, results in the reduced stiffness matrix 𝑄.
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⎨{⎩

𝜎1
𝜎2
𝜏12

⎫}
⎬}⎭

= ⎡⎢
⎣

𝑄11 𝑄12 0
𝑄12 𝑄22 0

0 0 𝑄66

⎤⎥
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𝜀2
𝛾12
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⎢
⎣

𝐸11−𝜈12𝜈21
𝜈12𝐸21−𝜈12𝜈21

0
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𝐸21−𝜈12𝜈21
0

0 0 𝐺12

⎤
⎥
⎦

⎧{
⎨{⎩

𝜀1
𝜀2
𝛾12

⎫}
⎬}⎭

(P.9)

{𝜎}12 = [𝑄]12{𝜀}12

This constitutive relation only depends on only 4 independent elastic constants (𝐸1, 𝐸2,
𝐺12 and 𝜈12):

F.3. Constitutive equations of multi-directional laminates

Assumptions

The overall behavior of a multidirectional laminate is dependent on the stacking se-
quence and properties of the individual layers [20]. This behavior is predicted within
the framework of the classical laminate theory (CLT) which is valid under the following
assumptions:

(a) Each lamina of the laminate is quasi homogeneous and orthotropic.
(b) Strain-displacement and stress-strain relations are linear.
(c) The laminate and its laminae are in plane stress conditions (𝜎𝑧 = 𝜏𝑦𝑧 = 𝜏𝑧𝑥 = 0).
(d) Straight lines normal to the middle surface remain straight and normal to that

surface after deformation. This implies that transverse shear strains 𝛾𝑧𝑥 and 𝛾𝑦𝑧
are zero.

(e) All displacements are small compared with the thickness of the laminate (|𝑢|,|𝑣|,|𝑤|«ℎ).
(f) In-plane displacements vary linearly through the thickness of the laminate, i.e., 𝑢

and 𝑣 displacements in the 𝑥− and 𝑦−directions are linear functions of 𝑧.
(g) Normal distances from the middle surface remain constant, that is, the transverse

normal strain 𝜀𝑧, is zero. This implies that the transverse displacement w is inde-
pendent of the thickness coordinate z.
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F.3.1. Transformation of stress and strain equations

Assuming that a lamina is loaded at a arbitrary angle, other than 0∘ and 90∘. The imme-
diate consequence is that the loading direction do not coincide with the principal material
direction. For a 𝜃 oriented ply, where 𝜃 is measured positive counterclockwise (CCW)
from the x-axis (usually parallel to the main laminate direction or to the main load,
justifying 𝑂𝑥𝑦 being named the laminate/load coordinate system), to the 1-axis (parallel
to the fiber direction, justifying 𝑂12 being named the material coordinate system). Ap-
pendix F.4 demonstrates the stress and strain transformations from the laminate/load
coordinate system to the material coordinate system, in equations (P.39) and (P.40),
respectively:

⎧{
⎨{⎩

𝜎1
𝜎2
𝜏12

⎫}
⎬}⎭

= ⎡⎢
⎣

𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 −2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 (𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃)
⎤⎥
⎦

⎧{
⎨{⎩

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎫}
⎬}⎭

(P.10)

{𝜎}12 = [𝑇 ]{𝜎}𝑥𝑦

⎧{
⎨{⎩

𝜀1
𝜀2
𝛾12

⎫}
⎬}⎭

= ⎡⎢
⎣

𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 −2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 (𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃)
⎤⎥
⎦

⎧{
⎨{⎩

𝜀𝑥
𝜀𝑦

𝛾𝑥𝑦

⎫}
⎬}⎭

(P.11)

{𝜀}12 = [𝑇 ]{𝜀}𝑥𝑦

Invariant stiffness matrix

The invariant stiffness matrix relates the lamina strains with the lamina stresses in the
laminate/load coordinate system 𝑂𝑥𝑦. It is trivially obtained by: firstly inserting equa-
tion (P.9) into inverted equation (P.10):

{𝜎}𝑥𝑦 = [𝑇 ]−1[𝑄]12{𝜀}12 (P.12)

And secondly inserting equation (P.11) into the matrix product:

{𝜎}𝑥𝑦 = [𝑇 ]−1[𝑄]12[𝑇 ]{𝜀}𝑥𝑦 (P.13)

The product of the first 3 matrices on the right side of the equation is conveniently stored
in a single 3x3 matrix, named invariant stiffness matrix [𝑄]𝑥𝑦:

[𝑄]𝑥𝑦 = [𝑇 ]−1[𝑄]12[𝑇 ] (P.14)

Retaking equation (P.13) already with the invariant stiffness matrix, results in the ex-
panded relation:

⎧{
⎨{⎩

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎫}
⎬}⎭

= ⎡⎢
⎣

𝑄𝑥𝑥 𝑄𝑥𝑦 𝑄𝑥𝑠
𝑄𝑥𝑦 𝑄𝑦𝑦 𝑄𝑦𝑠
𝑄𝑥𝑠 𝑄𝑦𝑠 𝑄𝑠𝑠

⎤⎥
⎦

⎧{
⎨{⎩

𝜀𝑥
𝜀𝑦

𝛾𝑥𝑦

⎫}
⎬}⎭

(P.15)

{𝜎}𝑥𝑦 = [𝑄]𝑥𝑦{𝜀}𝑥𝑦
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F.3.2. Definition of displacements, strains

F.3.3. Displacements

The total inplane displacements 𝑢 and 𝑣 at any point of the laminate are given by the
sum of the normal displacements [first terms on right side of equations (P.16) and (P.17)]
and the displacements introduced by bending2 [see figure P.9 b)], as follows:

𝑢 = 𝑢0 − 𝑧𝜕𝑤
𝜕𝑥 (P.16)

𝑣 = 𝑣0 − 𝑧𝜕𝑤
𝜕𝑣 (P.17)

F.3.4. Strains

The normal strains 𝜀𝑥 and 𝜀𝑦 are the deformations in terms of relative displacements. In
mathematical terms each displacement is derived with respect to its respective coordinate:

𝜀𝑥 = 𝜕𝑢
𝜕𝑥 = 𝜕𝑢0

𝜕𝑥 − 𝑧𝜕2𝑤
𝜕𝑥2 (P.18)

𝜀𝑦 = 𝜕𝑣
𝜕𝑦 = 𝜕𝑣0

𝜕𝑦 − 𝑧𝜕2𝑤
𝜕𝑦2 (P.19)

The first term in the right side of both equations is identified as the midplane strain 𝜀0

and the negative second derivative that multiplies with distance 𝑧 is called curvature 𝐾.

The shear strain 𝛾𝑥𝑦 is given by:

𝛾𝑥𝑦 = 𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥 = 𝜕𝑢0

𝜕𝑦 + 𝜕𝑣0

𝜕𝑥 − 2𝑧 𝜕2𝑤
𝜕𝑥𝜕𝑦 (P.20)

Assembling the normal and shear strains into matrix form:

⎧{
⎨{⎩

𝜀𝑥
𝜀𝑦

𝛾𝑥𝑦

⎫}
⎬}⎭

=
⎧{
⎨{⎩

𝜀0
𝑥

𝜀0
𝑦

𝛾0
𝑥𝑦

⎫}
⎬}⎭

+ 𝑧
⎧{
⎨{⎩

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

⎫}
⎬}⎭

(P.21)

{𝜀}𝑥𝑦 = {𝜀}0
𝑥𝑦 + 𝑧{𝐾}𝑥𝑦

Inputing the last equation into (P.15):

⎧{
⎨{⎩

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎫}
⎬}⎭

= ⎡⎢
⎣

𝑄𝑥𝑥 𝑄𝑥𝑦 𝑄𝑥𝑠
𝑄𝑥𝑦 𝑄𝑦𝑦 𝑄𝑦𝑠
𝑄𝑥𝑠 𝑄𝑦𝑠 𝑄𝑠𝑠

⎤⎥
⎦

⎧{
⎨{⎩

𝜀0
𝑥

𝜀0
𝑦

𝛾0
𝑥𝑦

⎫}
⎬}⎭

+ 𝑧 ⎡⎢
⎣

𝑄𝑥𝑥 𝑄𝑥𝑦 𝑄𝑥𝑠
𝑄𝑥𝑦 𝑄𝑦𝑦 𝑄𝑦𝑠
𝑄𝑥𝑠 𝑄𝑦𝑠 𝑄𝑠𝑠

⎤⎥
⎦

⎧{
⎨{⎩

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

⎫}
⎬}⎭

(P.22)

{𝜎}𝑥𝑦 = [𝑄]𝑥𝑦{𝜀}0
𝑥𝑦 + 𝑧[𝑄]𝑥𝑦{𝐾}𝑥𝑦

2The contribution of the displacements induced by bending are negative because for the upper part of the neutral
axis of an upwards deflected beam [see figure P.9 b)], i.e., at a positive 𝑧-coordinate of a beam showing a positive
slope 𝜕𝑤

𝜕𝑥 , both displacements 𝑢 and 𝑣 decrease.
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F.3.5. Resultant forces and moments

The resultant forces and moments in a given direction and ply in the laminate are constant
throughout the edge of the laminate, thus it is convenient to define the resultant forces
and moments per unit width. Yet, the stresses are obviously not the same on each lamina
(it depends on the ply orientation and [if showing curvature] on the ply position).

Mathematically, the forces per unit width 𝑁 acting on the laminate [see figure P.10 a)]
in a particular direction are given by the integral of the stress in the respective direction
over the thickness 𝑡 of the laminate:

⎧{
⎨{⎩

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

⎫}
⎬}⎭

= ∫
𝑡
2

− 𝑡
2

⎧{
⎨{⎩

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎫}
⎬}⎭

𝑑𝑧 (P.23)

The resultant moments per unit width 𝑀 [see figure P.10 a)] are given by:

⎧{
⎨{⎩

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

⎫}
⎬}⎭

= ∫
𝑡
2

− 𝑡
2

𝑧
⎧{
⎨{⎩

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎫}
⎬}⎭

𝑑𝑧 (P.24)

Figure P.10: a) Resultant forces and moments in a lamina; b) Multidirectional laminate with coordinate notation of
individual plies. (Reproduced from [20], copyright Oxford University Press, 2006).

F.3.6. Constitutive equations for a laminate

Considering the discontinuities in the stresses between plies, these integrals must be
performed over each 𝑘 ply and then summed for 𝑛 number of plies [see figure P.10 b)] .
Inputing equation (P.22) into the two previous expressions:
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⎧{
⎨{⎩

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

⎫}
⎬}⎭

=
𝑛

∑
𝑘=1

∫
ℎ𝑘

ℎ𝑘−1

( ⎡⎢
⎣

𝑄𝑥𝑥 𝑄𝑥𝑦 𝑄𝑥𝑠
𝑄𝑥𝑦 𝑄𝑦𝑦 𝑄𝑦𝑠
𝑄𝑥𝑠 𝑄𝑦𝑠 𝑄𝑠𝑠

⎤⎥
⎦𝑘

⎧{
⎨{⎩

𝜀0
𝑥

𝜀0
𝑦

𝛾0
𝑥𝑦

⎫}
⎬}⎭

+𝑧 ⎡⎢
⎣

𝑄𝑥𝑥 𝑄𝑥𝑦 𝑄𝑥𝑠
𝑄𝑥𝑦 𝑄𝑦𝑦 𝑄𝑦𝑠
𝑄𝑥𝑠 𝑄𝑦𝑠 𝑄𝑠𝑠

⎤⎥
⎦𝑘

⎧{
⎨{⎩

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

⎫}
⎬}⎭

)𝑑𝑧

(P.25)
⎧{
⎨{⎩

𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

⎫}
⎬}⎭

=
𝑛

∑
𝑘=1

∫
ℎ𝑘

ℎ𝑘−1

(𝑧 ⎡⎢
⎣

𝑄𝑥𝑥 𝑄𝑥𝑦 𝑄𝑥𝑠
𝑄𝑥𝑦 𝑄𝑦𝑦 𝑄𝑦𝑠
𝑄𝑥𝑠 𝑄𝑦𝑠 𝑄𝑠𝑠

⎤⎥
⎦𝑘

⎧{
⎨{⎩

𝜀0
𝑥

𝜀0
𝑦

𝛾0
𝑥𝑦

⎫}
⎬}⎭

+𝑧2 ⎡⎢
⎣

𝑄𝑥𝑥 𝑄𝑥𝑦 𝑄𝑥𝑠
𝑄𝑥𝑦 𝑄𝑦𝑦 𝑄𝑦𝑠
𝑄𝑥𝑠 𝑄𝑦𝑠 𝑄𝑠𝑠

⎤⎥
⎦𝑘

⎧{
⎨{⎩

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

⎫}
⎬}⎭

)𝑑𝑧

(P.26)

Tanking into account that the midplane strains 𝜀0 and curvatures 𝐾 do not depend on
𝑧 and that the invariant stiffness matrix [𝑄]𝑥𝑦, as the name indicates, is also constant
on the integration over the thickness, all these quantities can be taken outside of the
integral3:

{𝑁}𝑥𝑦 =
𝑛

∑
𝑘=1

([𝑄]𝑘𝑥𝑦{𝜀}0
𝑥𝑦 ∫

ℎ𝑘

ℎ𝑘−1

𝑑𝑧 + [𝑄]𝑘𝑥𝑦{𝐾}𝑥𝑦 ∫
ℎ𝑘

ℎ𝑘−1

𝑧𝑑𝑧)

{𝑀}𝑥𝑦 =
𝑛

∑
𝑘=1

([𝑄]𝑘𝑥𝑦{𝜀}0
𝑥𝑦 ∫

ℎ𝑘

ℎ𝑘−1

𝑧𝑑𝑧 + [𝑄]𝑘𝑥𝑦{𝐾}𝑥𝑦 ∫
ℎ𝑘

ℎ𝑘−1

𝑧2𝑑𝑧)

Performing the integrals results in the final expressions:

{𝑁}𝑥𝑦 =
𝑛

∑
𝑘=1

([𝑄]𝑘𝑥𝑦{𝜀}0
𝑥𝑦(ℎ𝑘 − ℎ𝑘−1) + 1

2[𝑄]𝑘𝑥𝑦{𝐾}𝑥𝑦(ℎ2
𝑘 − ℎ2

𝑘−1)) [𝑁
𝑚]

(P.27)

{𝑀}𝑥𝑦 =
𝑛

∑
𝑘=1

(1
2[𝑄]𝑘𝑥𝑦{𝜀}0

𝑥𝑦(ℎ2
𝑘 − ℎ2

𝑘−1) + 1
3[𝑄]𝑘𝑥𝑦{𝐾}𝑥𝑦(ℎ3

𝑘 − ℎ3
𝑘−1)) [𝑁]

(P.28)

Given that the midplane strains and curvatures are not part of the summations, the in-
variant stiffness matrices and the distance terms can be transformed into three convenient
submatrices:

[𝐴𝑖𝑗] =
𝑛

∑
𝑘=1

[𝑄𝑖𝑗]𝑘𝑥𝑦(ℎ𝑘 − ℎ𝑘−1) (P.29a)

[𝐵𝑖𝑗] = 1
2

𝑛
∑
𝑘=1

[𝑄𝑖𝑗]𝑘𝑥𝑦(ℎ2
𝑘 − ℎ2

𝑘−1) (P.29b)

[𝐷𝑖𝑗] = 1
3

𝑛
∑
𝑘=1

[𝑄𝑖𝑗]𝑘𝑥𝑦(ℎ3
𝑘 − ℎ3

𝑘−1) (P.29c)

Where 𝐴𝑖𝑗 are extensional stiffnesses relating inplane loads to inplane strains; 𝐵𝑖𝑗 are
inplane-flexure coupling relating inplane loads to curvatures and moments to inplane-
strains; 𝐷𝑖𝑗 are bending or flexural laminate stiffnesses relating moments to curvatures.

3From this point on, the derivation will be displayed in the compact format.
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Assembling these three last submatrices into one general constitutive matrix that relates
in-plane forces and moments to midplane strains and curvatures:

⎧{{{
⎨{{{⎩

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦

⎫}}}
⎬}}}⎭

=

⎡
⎢⎢⎢⎢⎢
⎣

𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16
𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26
𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66

⎤
⎥⎥⎥⎥⎥
⎦

⎧{{{
⎨{{{⎩

𝜀0
𝑥

𝜀0
𝑦

𝛾0
𝑥𝑦

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

⎫}}}
⎬}}}⎭

(P.30)

In a compact format:

{𝑁
𝑀} = [𝐴 | 𝐵

𝐵 | 𝐷] {𝜀0

𝐾} (P.31)

Partially inverting, in order to obtain the midplane strains from the applied loads:

{𝜀0

𝑀} = [𝐴∗ | 𝐵∗

𝐶∗ | 𝐷∗] {𝑁
𝐾} (P.32)

Where:

[𝐴∗] = [𝐴]−1 (P.33a)
[𝐵∗] = −[𝐴]−1[𝐵] (P.33b)

[𝐶∗] = [𝐵][𝐴]−1 (P.33c)
[𝐷∗] = [𝐷] − [𝐵][𝐴]−1[𝐵] (P.33d)

Fully inverting equation (P.31) results in the most commonly used form of the laminate
constitutive equations:

{𝜀0

𝐾} = [𝑎 | 𝑏
𝑐 | 𝑑] {𝑁

𝑀} (P.34)

Where:

[𝑎] = [𝐴∗] − [𝐵∗][𝐷∗]−1[𝐶∗] (P.35a)
[𝑏] = [𝐵∗][𝐷∗]−1 (P.35b)

[𝑐] = −[𝐷∗]−1[𝐶∗] (P.35c)
[𝑑] = [𝐷∗]−1 (P.35d)

F.3.7. Corollary of the classical laminate theory

The following table presents special laminate configurations and its coupling implications.
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Table P.2: Special laminate configurations and its consequences in the mechanical behavior of the composite structure.

Property
Generic
layup
example

Effects on cou-
plings

Null ele-
ments

Examples of practical
consequences

Symmetry - lamination
sequence is symmetric
about the midplane

[𝜃/𝜙]𝑠
No extension -
bending coupling [B]=0 An applied shear does

not develop curvatures

Balanced - for every
theta oriented ply there is
a -theta oriented ply

[𝜃/-𝜃/-𝜙/𝜙] No extension -
shear coupling 𝐴16; 𝐴26 = 0

An applied tension does
not develop shearing be-
havior

Anti-symmetric - bal-
anced pairs of plies lo-
cated symmetrically with
respect to the midplane
of the laminate

[𝜃/-𝜙/𝜙/-𝜃] No bending -
twisting coupling 𝐷16; 𝐷26 = 0

An applied bending does
not develop twisting be-
havior

These are commonly used configurations in design of composite structures and mate-
rials. Noteworthy is that an anti-symmetric laminate is necessarily balanced and non-
symmetric, unless it is composed only by 0∘and 90∘oriented plies.

For the vast majority of aerospace applications, laminates are designed to be symmetric
and balance, given that extension-bending and extension-shear couplings, respectively,
are generally undesirable (e.g., non-symmetric laminate show warpage due to cooldown
after curing).

F.4. 2-D transformation of stresses and strains in the lamina
The stresses and strains in the material coordinate system are transformed from the load
coordinate system obtained through a free body diagram on the generally orthotropic
lamina [see figure P.11 a)].

Figure P.11: General orthotropic lamina element: a) stresses in the load coordinate system; b) projection of the
stresses in the laminate coordinate system onto the 1-direction material system; projection of the stresses in the
laminate coordinate system onto the 2-direction material system. (Reproduced from [76], copyright NASA, 1994).

From the free body diagram - P.11 figure b) in the 1-direction, material stress 𝜎1 is
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obtained:

∑ 𝐹1 = 𝜎1𝑑𝐴−𝜎𝑥(𝑑𝐴 𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃−𝜎𝑦(𝑑𝐴 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃−𝜏𝑥𝑦(𝑑𝐴 𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃−𝜏𝑥𝑦(𝑑𝐴 𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃 = 0

𝜎1 = 𝜎𝑥𝑐𝑜𝑠2𝜃 + 𝜎𝑦𝑠𝑖𝑛2𝜃 + 2𝜏𝑥𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (P.36)

From the free body diagram - P.11 figure c) in the 2-direction, material stress 𝜎2 is
obtained:

∑ 𝐹2 = 𝜎2𝑑𝐴−𝜎𝑥(𝑑𝐴 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃−𝜎𝑦(𝑑𝐴 𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃+𝜏𝑥𝑦(𝑑𝐴 𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃+𝜏𝑥𝑦(𝑑𝐴 𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃 = 0

𝜎2 = 𝜎𝑥𝑠𝑖𝑛2𝜃 + 𝜎𝑦𝑐𝑜𝑠2𝜃 − 2𝜏𝑥𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (P.37)

From the free body diagram - P.11 figure c) in the 1-direction, material stress 𝜏12 is
obtained:

∑ 𝐹2 = 𝜏12𝑑𝐴+𝜎𝑥(𝑑𝐴 𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝜃−𝜎𝑦(𝑑𝐴 𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝜃−𝜏𝑥𝑦(𝑑𝐴 𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃+𝜏𝑥𝑦(𝑑𝐴 𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃 = 0

𝜏12 = −𝜎𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜎𝑦𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝜏𝑥𝑦(𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃) (P.38)

Writing equations (P.36-P.38) in a matrix form:

⎧{
⎨{⎩

𝜎1
𝜎2
𝜏12

⎫}
⎬}⎭

= ⎡⎢
⎣

𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 −2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 (𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃)
⎤⎥
⎦

⎧{
⎨{⎩

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

⎫}
⎬}⎭

(P.39)

The previous square 3x3 matrix is conventionally named transformation matrix and
denoted by 𝑇 . Similarly, for the strains:

⎧{
⎨{⎩

𝜀1
𝜀2
𝛾12

⎫}
⎬}⎭

= ⎡⎢
⎣

𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃
𝑠𝑖𝑛2𝜃 𝑐𝑜𝑠2𝜃 −2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃

−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 (𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃)
⎤⎥
⎦

⎧{
⎨{⎩

𝜀𝑥
𝜀𝑦

𝛾𝑥𝑦

⎫}
⎬}⎭

(P.40)

It is worthwhile to mention that transformation matrix T has a special property. The
inverse of the transformation matrix for a 𝜃 angle is equivalent to the transformation
matrix for a minus 𝜃 angle:

[𝑇 (𝜃)]−1 = [𝑇 (−𝜃)] (P.41)

G. Failure modes in FRP composites
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G.1. Kinking bands

Figure P.12: Kinking bands originated from fiber compressive failure. (Reproduced from [81], copyright SAGE, 2005).

G.2. Features prone to delamination

Figure P.13: Features prone to delamination owing to: out-of-plane loading [a) lug fitting and b) rib-to-skin joint],
geometry [c) taper and d) curved section in bending] and discontinuities [e) ply drop and f) free edge]. (Reproduced
from [113], copyright The Royal Society, 2012).
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H. Failure criteria equations and supplementary
information

H.1. Hashin’s failure criteria equations

† Tensile fiber mode (𝜎1 > 0)

Accounting with shear contribution:

( 𝜎1
𝑋𝑇 )

2
+ 1

(𝑆𝐿)2 (𝜏2
12 + 𝜏2

13) = 1 2D=⇒ ( 𝜎1
𝑋𝑇 )

2
+ (𝜏12

𝑆𝐿 )
2

= 1 (P.42)

Disregarding shear contribution:
𝜎1 = 𝑋𝑇 (P.43)

† Compressive fiber mode (𝜎1 < 0)

𝜎1 = 𝑋𝐶 (P.44)

† Tensile matrix mode (𝜎2 + 𝜎3 > 0)

1
(𝑌 𝑇 )2 (𝜎2 + 𝜎3)2 + 1

(𝑆𝑇 )2 (𝜏2
23 − 𝜎2𝜎3) + 1

(𝑆𝐿)2 (𝜏2
12 + 𝜏2

13) = 1 (P.45)

2D=⇒ ( 𝜎2
𝑌 𝑇 )

2
+ (𝜏12

𝑆𝐿 )
2

= 1 (P.46)

† Compressive matrix mode (𝜎2 + 𝜎3 < 0)

1
𝑌 𝐶 [( 𝑌 𝐶

2(𝑆𝑇 ))
2
−1](𝜎2+𝜎3)+ 1

4(𝑆𝑇 )2 (𝜎2+𝜎3)2+ 1
(𝑆𝑇 )2 (𝜏2

23−𝜎2𝜎3)+ 1
(𝑆𝐿)2 (𝜏2

12+𝜏2
13) = 1

(P.47)
2D=⇒ 𝜎2

𝑌 𝐶 [( 𝑌 𝐶

2(𝑆𝑇 ))
2

− 1] + ( 𝜎2
2𝑆𝑇 )

2
+ (𝜏12

𝑆𝐿 )
2

= 1 (P.48)

Where: 𝜎𝑖 is the normal stress in the 𝑖 direction; 𝜏𝑖𝑗 is the shear stress contained in the
plane perpendicular to 𝑖 and in the 𝑗 direction; 𝑋𝑇 is the longitudinal tensile strength;
𝑋𝐶 is the longitudinal compressive strength; 𝑌 𝑇 is the transverse tensile strength; 𝑌 𝐶

is the transverse compressive strength; 𝑆𝐿 is the longitudinal shear strength; 𝑆𝑇 is the
transverse shear strength.
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H.2. Comparison between Hashin’s failure criteria and ex-
perimental results

Figure P.14: Comparison of failure criteria with test data: a) boron-epoxy off-axis specimens; b) glass-epoxy off-axis
specimens. 𝜃 angle is defined from load axes to material axes (Reproduced from [42], copyright ASME, 1980).

H.3. Transformation equations to obtain the stresses acting
on an arbitrary sectional plane

⎧{
⎨{⎩

𝜎𝑛(𝜃) = 𝜎2𝑐𝑜𝑠2(𝜃) + 𝜎3𝑠𝑖𝑛2(𝜃) + 2𝜏23𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃)
𝜏𝑛𝑡(𝜃) = (𝜎3 − 𝜎2)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜃) + 𝜏23(𝑐𝑜𝑠2(𝜃) − 𝑠𝑖𝑛2(𝜃))
𝜏𝑛𝑙(𝜃) = 𝜏13𝑠𝑖𝑛(𝜃) + 𝜏12𝑐𝑜𝑠(𝜃)

(P.49)

Where 𝜎𝑛, 𝜏𝑛𝑙 and 𝜏𝑛𝑡 are, respectively, the normal, the normal/longitudinal shear and
the normal/transverse shear stress components acting on the perpendicular plane rotated
by an angle of 𝜃.
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H.4. Puck’s master fracture surface for UD material

Figure P.15: Master fracture surface (for 𝜎1 = 0) for UD material in the (𝜎𝑛, 𝜏𝑛𝑡, 𝜏𝑛𝑙) stress space with fracture
resistances 𝑅(+)𝐴

⊥ , 𝑅𝐴
⊥∥ and 𝑅𝐴

⊥⊥ of the stress action plane. The (𝜎2,𝜏21) fracture curve follows a contour line (from
𝑎 to 𝑐) and then a boundary line of a cross-section (from 𝑐 to 𝑑). Compare with figure P.16. (Reproduced from
[84], copyright Elsevier, 1998).

H.5. Puck’s 𝑎-𝑏-𝑐-𝑑 fracture surface and associated failure
modes to IFF failure type

Figure P.16: Fracture curve (𝜏21, 𝜎2, for 𝜎1 = 0), representing three different fracture modes A, B, C. The curve is
generated by two ellipses and one parabola. (Reproduced from [84], copyright Elsevier, 1998).
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I. ABD matrices for FESALs
Recalling [ABD] matrix:

[𝐴𝐵𝐷] =

⎡
⎢⎢⎢⎢⎢
⎣

𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16
𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26
𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66

⎤
⎥⎥⎥⎥⎥
⎦

[[𝑁/𝑚𝑚] | [𝑁]
[𝑁] | [𝑁𝑚𝑚]]

The following matrices are the FESAL1, FESAL2, FESAL3 and FESAL4 [ABD] matri-
ces.

[𝐴𝐵𝐷]𝐹𝐸𝑆𝐴𝐿1 =

⎡
⎢⎢⎢⎢⎢
⎣

285333.0 4937.1 0.0 0.0 0.0 0.0
4937.1 18285.4 0.0 0.0 0.0 0.0

0.0 0.0 10400.0 0.0 0.0 0.0
0.0 0.0 0.0 95111.0 1645.7 0.0
0.0 0.0 0.0 1645.7 6095.1 0.0
0.0 0.0 0.0 0.0 0.0 3466.7

⎤
⎥⎥⎥⎥⎥
⎦

[𝐴𝐵𝐷]𝐹𝐸𝑆𝐴𝐿2 =

⎡
⎢⎢⎢⎢⎢
⎣

151809.2 4937.1 0.0 0.0 0.0 0.0
4937.1 151809.2 0.0 0.0 0.0 0.0

0.0 0.0 10400.0 0.0 0.0 0.0
0.0 0.0 0.0 52689.4 1645.7 0.0
0.0 0.0 0.0 1645.7 48516.8 0.0
0.0 0.0 0.0 0.0 0.0 3466.7

⎤
⎥⎥⎥⎥⎥
⎦

[𝐴𝐵𝐷]𝐹𝐸𝑆𝐴𝐿3 =

⎡
⎢⎢⎢⎢⎢
⎣

88773.1 67973.1 0.0 0.0 0.0 0.0
67973.1 88773.1 0.0 0.0 0.0 0.0

0.0 0.0 73436.1 0.0 0.0 0.0
0.0 0.0 0.0 29591.0 22657.7 −4172.6
0.0 0.0 0.0 22657.7 29591.0 −4172.6
0.0 0.0 0.0 −4172.6 −4172.6 24478.7

⎤
⎥⎥⎥⎥⎥
⎦

[𝐴𝐵𝐷]𝐹𝐸𝑆𝐴𝐿4 =

⎡
⎢⎢⎢⎢⎢
⎣

120291.2 36455.1 0.0 0.0 0.0 0.0
36455.1 120291.2 0.0 0.0 0.0 0.0

0.0 0.0 41918.0 0.0 0.0 0.0
0.0 0.0 0.0 42241.6 13136.6 −2607.9
0.0 0.0 0.0 13136.6 35982.7 −2607.9
0.0 0.0 0.0 −2607.9 −2607.9 14957.6

⎤
⎥⎥⎥⎥⎥
⎦
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J. Abaqus standard vs. explicit procedures
Table P.3: Comparison between Abaqus standard and explicit procedures (Adapted from [1, 86, 100]).

Features Abaqus/Standard Abaqus/Explicit

Solution technique

Stiffness-based solution
through iteration; Newton-
Raphson method or its
modified forms are used to
enforce equilibrium

Explicit time integration; kine-
matic stress state is obtained
from the end of the last time
increment

Dependence on
the current time
increment infor-
mation

Unknown values are obtained
from the current information
through iteration methods
(such as the Newton-Raphson
method). Convergence check-
ing is, therefore, required.
If too many iterations are
required, this procedure might
become too expensive.

Neither iteration nor conver-
gence checking are required.
Yet, this procedure is condition-
ally stable, depending on the
smallest element size and the
wave speed of the material.

Problem type ap-
plication

Linear and nonlinear static;
Linear dynamic; Low-speed
(low frequency response) non-
linear dynamic; Nonlinear heat
transfer; Coupled temperature-
displacement (quasi-static);
Coupled thermal-electrical;
Mass diffusion problems;
Structural-acoustics

High-speed (short duration) dy-
namics; Large, nonlinear, quasi-
static analyses; Highly dis-
continuous postbuckling and
collapse simulations; Coupled
temperature-displacement (dy-
namic); Structural-acoustics

Mesh refinement
cost

Computational cost is propor-
tional to the square of the num-
ber of degrees of freedom

Computational cost is propor-
tional to the number of el-
ements and inversely propor-
tional to the smallest element
dimension.

Disk space and
memory required

If many iterations are needed
for convergence, disk and space
memory are expected to be
large

Typically smaller for more com-
plex geometries and non-linear
behavior

K. Newton-Raphson implementation

K.1. Newton-Raphson implementation in two generic exam-
ples
The following figures,P.17 and P.18 illustrate two examples of numerical root-finding
using the Newton-Raphson method in the functions 𝑦 = 𝑠𝑖𝑛(𝑥) −0.7 and 𝑦 = 10𝑐𝑜𝑠(𝑥) +
1/𝑥 with an initial guess of 𝑥0 = 1.2 and 𝑥0 = 0.05, respectively. In the first case case,
finding the roots of the respective function would, obviously, be solvable analytically.
Yet, for demonstration purposes, the Newton-Raphson method was used as a numerical
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technique to solve the root-finding problem for both equations.

Figure P.17: Example of Newton-Raphson method implementation for a function 𝑦 = 𝑠𝑖𝑛(𝑥) − 0.7 with an initial
guess of 𝑥0 = 1.2 and a tolerated error of 𝜖𝑡𝑜𝑙 = 0.0001.

Figure P.18: Example of Newton-Raphson method implementation for a function 𝑦 = 10𝑐𝑜𝑠(𝑥)+1/𝑥 with an initial
guess of 𝑥0 = 0.05 and a tolerated error of 𝜖𝑡𝑜𝑙 = 0.0001.

Table P.4 presents, for the first analysed case, the root values and respective absolute
errors at each iteration.
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Table P.4: Root iteration values and respective absolute errors using Newton-Raphson method for a function 𝑦 =
𝑠𝑖𝑛(𝑥) − 0.7 with an initial guess of 𝑥0 = 1.2.

Step number 𝑥𝑛 𝑓(𝑥𝑛) 𝑓′(𝑥𝑛) 𝑥𝑛+1 𝑓(𝑥𝑛+1)
Initial (n=0) 1.2000 0.2320 0.3577 0.5513 -0.1762
1𝑠𝑡 it. (n=1) 0.5513 -0.1762 0.8492 0.7588 -0.0120
2𝑛𝑑 it. (n=2) 0.7588 -0.0120 0.7222 0.7753 -3.767E-05

K.2. Newton-Raphson implementation in Abaqus
A body is assumed in equilibrium if the net force acting at every node is equal to zero.
By other words, the internal nodal forces {𝑓𝑖𝑛𝑡} must balance the externally applied
forces {𝑓𝑒𝑥𝑡}.

{𝑓𝑒𝑥𝑡} − {𝑓𝑖𝑛𝑡} = 0

Yet, as numerical methods are of iterative nature, thus leading to approximate re-
sults, they require a convergence criterion that defines the method’s accuracy. In other
words, convergence is achieved when the difference between the external load increment
{𝑓𝑒𝑥𝑡}𝑡+∆𝑡 and the internal nodal forces {𝑓𝑖𝑛𝑡} at a displacement4 ({𝑎}𝑡 + {𝑎}𝑖) is
smaller than the tolerated error {𝜖}𝑡𝑜𝑙, in this case named residual force {𝑟}𝑖:

{𝑟}𝑖 = {𝑓𝑒𝑥𝑡}𝑡+∆𝑡 − {𝑓𝑖𝑛𝑡}({𝑎}𝑡 + {𝑎}𝑖)

Initially 𝑖 = 0, the iterated displacement is null {𝑎}𝑖=0 = 0:

{𝑟}𝑖=0({𝑎}𝑡 + {𝑎}𝑖=0) = {𝑓𝑒𝑥𝑡}𝑡+∆𝑡 − {𝑓𝑖𝑛𝑡}({𝑎}𝑡 + {𝑎}𝑖=0)

The initial tangential stiffness matrix, which graphically given by the rate of change of the
internal nodal forces over the displacement or the residual force over the displacement:

[𝐾]𝑖=0 = 𝜕{𝑓𝑖𝑛𝑡}({𝑎}𝑡 + {𝑎}𝑖=0)
𝜕𝑎 = −𝜕{𝑟}𝑖=0({𝑎}𝑡 + {𝑎}𝑖=0)

𝜕𝑎

The outcome displacement is given by the sum of the initial displacement with the found
displacement increment (graphically, is the horizontal leg of the right triangle, defined
by the legs 𝛿𝑎0 and 𝑟0):

{𝑎}𝑖=1 = {𝑎}𝑖=0 + {Δ𝑎}𝑖=0 = {𝑎}𝑖=0 + [𝐾]−1
𝑖=0{𝑟}𝑖=0({𝑎}𝑡 + {𝑎}𝑖=0)

If the maximum entry5 of the residue vector at the found displacement {𝑟}𝑖=1({𝑎}𝑡 +
{𝑎}𝑖=1) is smaller than the tolerated error 𝜖𝑡𝑜𝑙, then convergence is assumed, other-
wise, another iteration 𝑖 = 𝑖 + 1 is required until convergence is achieved. Hence, the
convergence criterion may be given by:

4Where {𝑎}𝑡 is the initial known displacement and {𝑎}𝑖 is unknown displacement at the 𝑖 − 𝑡ℎ iteration, which will
be the output once converge is achieved.

5Other criteria may be chosen instead of the maximum value of the vector, e.g. the sum of the absolute value of the
terms or the square root of the sum of the squares.
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𝑚𝑎𝑥[{𝑟}𝑖=1({𝑎}𝑡 + {𝑎}𝑖=1)] < 𝜖𝑡𝑜𝑙

Figure P.19: Graphical example of Newton–Raphson method applied to solve nonlinear equilibrium equations in
Abaqus.

The pseudo algorithm for Newton-Raphson implementation in Abaqus/standard can be
formulated as follows:

𝑖 = 0
𝑎𝑖 = 0.0
𝑤ℎ𝑖𝑙𝑒 𝑟𝑖 > 𝜖𝑡𝑜𝑙 𝑑𝑜 ∶

𝑟𝑖 = 𝑓𝑡+∆𝑡
𝑒𝑥𝑡 − 𝑓𝑖𝑛𝑡(𝑎𝑡 + 𝑎𝑖)

𝑖𝑓 𝑟𝑖 ≤ 𝜖𝑡𝑜𝑙 𝑡ℎ𝑒𝑛 ∶
𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑖

𝑒𝑙𝑠𝑒 ∶
𝐾𝑖 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐾(𝑎𝑡, 𝑎𝑖, 𝑓𝑖𝑛𝑡)
𝑎𝑖+1 = 𝑎𝑖 + 𝐾−1

𝑖 𝑟𝑖
𝑖 = 𝑖 + 1
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K.3. Newton-Raphson implementation in Puck’s model

𝑤ℎ𝑖𝑙𝑒 |(𝑓𝐸_𝐼𝐹𝐹 − 1)| > 𝜖𝑡𝑜𝑙 𝑑𝑜 ∶
# Degraded elastic constants for a given 𝜂
𝐸2 = 𝜂 ∗ 𝐸20
𝐺12 = 𝜂 ∗ 𝐺120
𝐸3 = 𝐸2
𝐺13 = 𝐺12

# Degraded elastic constants for an infinitesimal increment on 𝜂
(𝜂 + Δ𝜂) = 𝜂 + 0.00001
𝐸2_∆𝜂 = (𝜂 + Δ𝜂) ∗ 𝐸20
𝐺12_∆𝜂 = (𝜂 + Δ𝜂) ∗ 𝐺120
𝐸3_∆𝜂 = 𝐸2_∆𝜂
𝐺13_∆𝜂 = 𝐺12_∆𝜂

# Computation of the constitutive behavior and obtainment of the stress vector
{𝜎} = 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑣𝑒(𝐸2, 𝐸3, 𝐺12, 𝐺13, {𝜀})
{𝜎}_∆𝜂 = 𝑐𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑣𝑒(𝐸2_∆𝜂, 𝐸3_∆𝜂, 𝐺12_∆𝜂, 𝐺13_∆𝜂, {𝜀})

# Failure criteria check
𝑓𝐸_𝐼𝐹𝐹 = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎({𝜎}, 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒𝑠)
𝑓𝐸_𝐼𝐹𝐹_∆𝜂 = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎({𝜎}_∆𝜂, 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒𝑠)

# if convergence is obtained, return current 𝜂, otherwise go for a new NR iteration
𝑖𝑓 |(𝑓𝐸_𝐼𝐹𝐹 − 1)| ≤ 𝜖𝑡𝑜𝑙 𝑡ℎ𝑒𝑛 ∶

𝑟𝑒𝑡𝑢𝑟𝑛 𝜂
𝑒𝑙𝑠𝑒 ∶

𝜂 = 𝜂 − (𝑓𝐸_𝐼𝐹𝐹 − 1) ∗ Δ𝜂
𝑓𝐸_𝐼𝐹𝐹_∆𝜂 − 𝑓𝐸_𝐼𝐹𝐹

L. Hourglass control
The element stiffness matrix is calculated by numerical volume integration of the ele-
ment shape functions. Typical numerical integration methods are: Riemann integral,
trapezoidal rule and Simpson’s rule. Yet, these are computationally too expensive. An
efficient alternative is by using Gauss quadrature that turns an integration problem into a
simplified summation of weighted values evaluated at m integration points. This method
dictates that for a polynomial of 2m-1 order, m integration points and weights are used
[115]. In FEM, this corresponds to a full integration scheme. As explained before, if a
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lower number of Gauss points are used, the integration scheme is reduced.

While this option may significantly reduce the computational time, it also entails unde-
sirable effects, particularly when all nodes have identical displacements, i.e. no strains
in the element, leading to a so-called zero-energy mode.

A few undesirable scenarios may take in place including: a) deformation by translation
or rotation when improper constraints are applied; b) unrealistic strains away from the
integration points; c) over-deformed elements for bending problems (especially for con-
centrated load applications), where the single Gauss point experiences no strain, which
means that it produces a zero strain energy. This phenomenon is commonly known as
hourglass mode [115].
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M. UMAT framing in an Abaqus/Standard simu-
lation flowchart

Figure P.20: Flowchart of framing UMAT in a generic Abaqus/Standard simulation.

N. Incremental strain formulation
Abaqus/Standard uses a strain incremental formulation in order to compute the current
strain state [77]:

{𝜀}𝑘,𝑖 = {𝜀}𝑘−1 + {Δ𝜀}𝑘,𝑖

This means that the current strain {𝜀}𝑘,𝑖 (at the current 𝑘 − 𝑡ℎ load increment and
converged at the 𝑖 − 𝑡ℎ iteration) is obtained from the sum of the previous strain {𝜀}𝑘−1

(measured from the previous (𝑘 − 1) − 𝑡ℎ converged strain at the 𝑖 − 𝑡ℎ iteration),
plus the current strain increment {Δ𝜀}𝑘,𝑖. The first term of right side of the equation
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(previous strain state) is recognized by Abaqus/Standard within the context of UMAT as
STRAN(NTENS); the second term (strain increment) corresponds to DSTRAN(NTENS).

To obtain the current stress state, a similar logic applies:

{𝜎}𝑘,𝑖 = {𝜎({𝜀}𝑘−1)}𝑘−1 + {Δ𝜎({𝜀}𝑘,𝑖)}𝑘,𝑖

The incremental stress state is computed using the current local tangent stiffness matrix:

{𝜎}𝑘,𝑖 = {𝜎({𝜀}𝑘−1)}𝑘−1 + [𝜕Δ𝜎
𝜕Δ𝜀 ]

𝑘,𝑖
{Δ𝜀}𝑘,𝑖

The local tangent stiffness matrix is also known as the local Jacobian matrix:

[𝐽({𝜀})]𝑘,𝑖 = [𝜕Δ𝜎
𝜕Δ𝜀 ]

𝑘,𝑖

The next section O mathematically describes this matrix for isotropic and orthotropic
materials.

O. Jacobian matrix computation

O.1. Isotropic material Jacobian matrix
The constitutive behavior of an isotropic material is defined as:

⎧{{{
⎨{{{⎩

𝜎1
𝜎2
𝜎3
𝜏12
𝜏13
𝜏23

⎫}}}
⎬}}}⎭

=

⎡
⎢⎢⎢⎢⎢
⎣

𝜆 + 2𝐺 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝐺 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝐺 0 0 0
0 0 0 𝐺 0 0
0 0 0 0 𝐺 0
0 0 0 0 0 𝐺

⎤
⎥⎥⎥⎥⎥
⎦

⎧{{{
⎨{{{⎩

𝜀1
𝜀2
𝜀3
𝛾12
𝛾13
𝛾23

⎫}}}
⎬}}}⎭

Where: 𝜆 = 𝐸𝜈
(1+𝜈)(1−2𝜈) ; 𝐺 = 𝐸

2(1+𝜈) is the shear modulus; 𝐸 is the Young’s modulus and
𝜈 is the Poisson ratio of the isotropic material. Inside UMAT, this compliance matrix is
the local material Jacobian matrix - DDSDDE(NTENS,NTENS).

O.2. Orthotropic material Jacobian matrix
The constitutive behavior of an orthotropic material is mathematically described by
equation P.4. In order to obtain the stress vector as a function of the strains, the
compliance matrix is inverted6:

6Note that the order of the elements of stress and strain vectors was rearranged between equation P.4 which is based
in the referenced literature [20], while Abaqus/Standard uses a different convention.
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{𝜀} = [𝑆]{𝜎} ⇔ {𝜎} = [𝐶]{𝜖} (P.50)

The constitutive behavior of an orthotropic material is, therefore, given by:

⎧{{{
⎨{{{⎩

𝜎1
𝜎2
𝜎3
𝜏12
𝜏13
𝜏23

⎫}}}
⎬}}}⎭

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(1−𝜈23𝜈32)𝐸1𝜒
(𝜈12+𝜈13𝜈32)𝐸2𝜒

(𝜈13+𝜈12𝜈32)𝐸3𝜒 0 0 0
(𝜈12+𝜈13𝜈32)𝐸2𝜒

(1−𝜈13𝜈31)𝐸2𝜒
(𝜈23+𝜈13𝜈21)𝐸3𝜒 0 0 0

(𝜈13+𝜈12𝜈32)𝐸3𝜒
(𝜈23+𝜈13𝜈21)𝐸3𝜒

(1−𝜈12𝜈21)𝐸3𝜒 0 0 0
0 0 0 𝐺12 0 0
0 0 0 0 𝐺13 0
0 0 0 0 0 𝐺23

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎧{{{
⎨{{{⎩

𝜀1
𝜀2
𝜀3
𝛾12
𝛾13
𝛾23

⎫}}}
⎬}}}⎭

Where: 𝜒 = 1 − 𝜈12𝜈21 − 𝜈13𝜈31 − 𝜈23𝜈32 − 2𝜈21𝜈32𝜈13.
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P. Preliminary FE stress study results for different
layup sequences

Figure P.21: Normal and shear stress values along the adhesive path length: a) normal stress in the direction parallel
to the fibers 𝜎1; b) peel stress (i.e. in the out-of-plane direction) 𝜎2; c) normal stress in the inplane transverse
direction 𝜎3; d) longitudinal-transverse shear stress 𝜏12; e) inplane shear stress 𝜏13; f) transverse shear stress 𝜏23.
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Figure P.22: Normal and shear stress values along the adherend-adhesive-adherend out-of-plane path: a) normal
stress in the direction parallel to the fibers 𝜎1; b) normal stress in the out-of-plane direction 𝜎2; c) normal stress
in the inplane transverse direction 𝜎3; d) longitudinal-transverse shear stress 𝜏12; e) inplane shear stress 𝜏13; f)
transverse shear stress 𝜏23.
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Figure P.23: Normal and shear stress values along the bottom adherend’s first layer: a) normal stress in the direction
parallel to the fibers 𝜎1; b) normal stress in the out-of-plane direction 𝜎2; c) normal stress in the inplane transverse
direction 𝜎3; d) longitudinal-transverse shear stress 𝜏12; e) inplane shear stress 𝜏13; f) transverse shear stress 𝜏23.
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Figure P.24: Normal and shear stress values along the bottom adherend’s second layer: a) normal stress in the
direction parallel to the fibers 𝜎1; b) normal stress in the out-of-plane direction 𝜎2; c) normal stress in the inplane
transverse direction 𝜎3; d) longitudinal-transverse shear stress 𝜏12; e) inplane shear stress 𝜏13; f) transverse shear
stress 𝜏23.
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Q. Failure criteria code verification: failure en-
velopes

Figure P.25: Comparison between theory’s original [24] and obtained Von Mises failure envelopes for a random
isotropic material (principal stresses only). The stresses are normalized by the yield strength of the material.
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Figure P.26: Comparison between theory’s original [42] and obtained Hashin’s failure envelopes for an (unspecified)
orthotropic material under biaxial (𝜎2 and 𝜎3) loading. 𝑌 𝑇 = 45𝑀𝑃𝑎; 𝑌 𝐶 = 240𝑀𝑃𝑎; 𝑆𝑇 = 55𝑀𝑃𝑎.
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Figure P.27: Comparison between theory’s original [85] and obtained Puck’s failure envelopes for a E-
Glass/LY556/HT907/DY063 material under biaxial loading: 0° GFRP lamina under combined 𝜎2 and 𝜏12 stresses.
Strength values: 𝑌 𝑇 = 35𝑀𝑃𝑎; 𝑌 𝐶 = 114𝑀𝑃𝑎; 𝑆𝐿 = 72𝑀𝑃𝑎.
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Figure P.28: Comparison between theory’s original [85] and obtained Puck’s failure envelopes for a E-glass/MY750
epoxy material under biaxial loading: 0° GFRP lamina under combined 𝜎1 and 𝜎2 stresses. Strength values: 𝑋𝑇 =
1280𝑀𝑃𝑎; 𝑋𝐶 = 800𝑀𝑃𝑎; 𝑌 𝑇 = 40𝑀𝑃𝑎; 𝑌 𝐶 = 145𝑀𝑃𝑎; 𝑆𝐿 = 73𝑀𝑃𝑎; 𝐸1 = 45600𝑀𝑃𝑎; 𝐸𝑓1 =
72400𝑀𝑃𝑎; 𝜈12 = 0.278[−]; 𝜈𝑓12 = 0.22[−].
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Figure P.29: Comparison between theory’s original [82] and obtained LaRC05’s failure envelope (case 2) for a
T300/PR319 material under combined loading: 0° CFRP laminate under combined 𝜎2 and 𝜏12 stresses. Strength
values: 𝑋𝐶 = 950𝑀𝑃𝑎; 𝑌 𝑇 = 40𝑀𝑃𝑎; 𝑌 𝐶 = 125𝑀𝑃𝑎; 𝑆𝐿 = 97𝑀𝑃𝑎; 𝜂𝐿 = 0.082[−].
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Figure P.30: Comparison between theory’s original [83] and obtained LaRC05’s failure envelope (case 5) for a E-
glass/MY750 epoxy material under triaxial loading: 90° GFRP laminate under combined 𝜎2 and 𝜎1 = 𝜎3 stresses.
Strength values: 𝑌 𝑇 = 40𝑀𝑃𝑎; 𝑌 𝐶 = 145𝑀𝑃𝑎; 𝑆𝐿 = 73𝑀𝑃𝑎; 𝜂𝐿 = 0.082[−]; 𝛼0 = 50∘.
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R. Modulus degradation in the adhesive over time

Figure P.31: Young’s modulus degradation over time in some elements of the adhesive.

161


	List of Tables
	List of Figures
	List of abbreviations
	List of symbols
	Introduction
	Literature study
	Adhesively bonded joints
	Adhesively bonded joint types
	Failure modes in FRP adhesively bonded joints
	Parameters influencing the single lap bonded joint strength

	Progressive Damage Analysis (PDA) in composites
	Progressive damage analysis methodology
	Damage modeling of composites at various scales
	Failure mechanisms in composites
	In-situ strength properties
	Continuum damage models (CDM)
	Damage initiation criteria
	Material property degradation models
	Discussion over modeling intralaminar using the reviewed CDMs

	Conclusions

	Research question and objective
	Research question
	Research objective

	Methodology
	Computational framework
	Finite element model definition and configurations
	Coordinate system, characteristic dimensions and regions
	Material properties
	Boundary conditions and applied load
	Assumptions
	Parametric model generation - Python scripting in Abaqus
	Numerical considerations

	Preliminary studies
	Adherend layup configurations
	Mesh convergence study
	Preliminary stress study

	Damage progression model (DPM)
	Selected failure criteria and material degradation models
	User Material Subroutine (UMAT) implementation
	Viscous regularization
	Computational cost estimation
	Verification and validation


	Results and discussion
	Preliminary mesh convergence study
	Load-displacement curves
	Stress distribution in the adhesive length
	Stress distribution along the length of the first two adherend layers

	Preliminary stress study
	Load-displacement curves
	Stress distribution along the adhesive length
	Stress distribution along the joint thickness
	Stress distribution along the length of the first two adherend layers

	Verification - failure envelopes
	Validation
	Load-displacement curves: experimental vs. FE model
	Damage initiation and ultimate loads: experimental vs. FE model
	Strain maps: experimental vs. FE model
	Other remarks

	Failure index, degraded modulus and damage maps in the adhesive
	Failure index maps in the adherends at ultimate load

	Conclusions and recommendations
	Conclusions
	Recommendations
	Continuum damage model
	Smeared representation of the crack
	Experimental studies


	Bibliography
	APPENDICES
	Influence of the stacking sequence on the stress concentration factor around a hole in a laminate loaded in tension
	Trade-off between adhesively bonded joints and mechanically fastened joints
	Tsai et al. improved analytical solution: 1-D bar and 1-D beam formulations, expressions and comparison plots 
	Considerations on other parameters that influence the joint strength
	Manufacturing bonding process
	Surface preparation
	Geometric parameters

	Effect of the adhesive and adherend properties on the joint strength
	Effect of the adhesive ductility
	Effect of the adherend stiffness imbalance on the adhesive peel stresses

	Constitutive relations for anisotropic materials: an overview
	Stress-strain relations (3D)
	Stress-strain relations for a thin lamina (2D): plane stress state
	Constitutive equations of multi-directional laminates
	2-D transformation of stresses and strains in the lamina

	Failure modes in FRP composites
	Kinking bands
	Features prone to delamination

	Failure criteria equations and supplementary information
	Hashin's failure criteria equations
	Comparison between Hashin's failure criteria and experimental results
	Transformation equations to obtain the stresses acting on an arbitrary sectional plane
	Puck's master fracture surface for UD material
	Puck's a-b-c-d fracture surface and associated failure modes to IFF failure type

	ABD matrices for FESALs
	Abaqus standard vs. explicit procedures
	Newton-Raphson implementation
	Newton-Raphson implementation in two generic examples
	Newton-Raphson implementation in Abaqus
	Newton-Raphson implementation in Puck's model

	Hourglass control
	UMAT framing in an Abaqus/Standard simulation flowchart
	Incremental strain formulation
	Jacobian matrix computation
	Isotropic material Jacobian matrix
	Orthotropic material Jacobian matrix 

	Preliminary FE stress study results for different layup sequences
	Failure criteria code verification: failure envelopes
	Modulus degradation in the adhesive over time


