Sy FITE
T

e

»
- &)

Srnilveomen ey e

o

D TR diss
- 2089

Downward extrapolation
of

multi-component seismic data



20@

Downward extrapolation
of

multi-component seismic data

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus,
prof. drs. P.A. Schenck,
in het openbaar te verdedigen
ten overstaan van een commisie,
aangewezen door het College van Dekanen
op dinsdag 1 september 1992 te 10.00 uur door

GREGORY CARLO HAIME

geboren te Paramaribo, Suriname

natuurkundig ingenieur




Dit proefschrift is goedgekeurd door de promotor:

prof. dr. ir. A.J. Berkhout

Toegevoegd promotor:

dr. ir. C.P.A. Wapenaar

Copyright ©1992, by Delft University of Technology, Delft, The Netherlands.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior writ-
ten permission of the author G.C. Haimé, Delft University of Technology, Faculty of Applied Physics P.O. Box
5046, 2600 GA Delft, The Netherlands.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Haimé, Gregory Carlo

Downward extrapolation of multi-component seismic data
Gregory Carlo Haimé - [S.1. : s.n.] (Zoetermeer: Gebotekst)
Thesis Technical University Delft. - With ref.

ISBN 90-9005213-5

Subject headings: elastic wave field extrapolation / redatum-
ing / migration.

SUPPORT
The research for this thesis has been financially supported by the DELPHI consortium.

Typesetting and graphing system: Apple Macintosh with FrameMaker® and WaveMetrics Igor
Printed in The Netherlands by: N.K.B. Offset bv, Bleiswijk.



Aan mijn moeder

Aan Indra



Table of contents

Notation and definitions v
Introduction 1

Elastic processing 5
2.1 Multi-component Elastic data 5
2.2 Seismic inversion in three steps 11
2.2.1 Decomposition of the data and multiple elimination (surface) 14
2.2.2 Macro model estimation followed by redatuming and migration
(overburden) 16
2.2.3 Lithostratigraphic inversion (target) 21

Elastic extrapolation operators 23
3.1 Reciprocity 24




Chapter Table of contents

3.1.1 Elastic Kirchhoff-Helmholtz integral relations 27
3.1.2 Green’s function due to an impulsive P wave source 30
3.1.3 Green’s function due to an impulsive S wave source 33
3.1.4 Reciprocity relations for Green’s wave fields 34
3.1.5 Modified Kirchhoff-Helmholtz integral 36
3.2 Modified Rayleigh integrals 39
3.2.1 Forward extrapolation operator for P waves 50
3.2.2 Forward extrapolation operator for S waves 51
3.2.3 Extrapolation operators for primary up- and downgoing waves 52
3.2.4 Summary 54
3.3 Backward propagating Green’s functions 54
3.3.1 Kirchhoff-Helmholtz integral with backward propagating Green’s
functions 54
3.3.2 Rayleigh-integrals with backward propagating Green’s functions 57
3.3.3 Inverse extrapolation operator for primary P waves 61
3.3.4 Inverse extrapolation operator for primary S waves 62
3.3.5 Summary 62

4 Amplitude analysis 65
4.1 Error analysis 66
4.2 Influence of macro model errors 81
4.2.1 Sensitivity 85
4.2.2 Decomposition; before or after extrapolation ? 88
4.3 Concluding remarks 92

5 Modified Rayleigh operators in redatuming and migration 9s
5.1 Elastic redatuming and migration 95
5.1.1 Principles 95
5.1.2 Imaging condition 113
5.2 Conclusions 116

Appendix A Elastic Rayleigh integral contributions 119

Appendix B Implementation aspects of seismic modeling 129
B.1 Introduction 129
B.2 Theory 130
B.3 P and SV buried sources 137




B.4 Stress-sources at a free surface 145
B.5 Absorbing boundaries; Clayton and Engquist (1977) 147
B.6 Staggered grid 148

B.7 Absorbing boundary conditions; Randall (1988,1989) 150
B.8 Conclusions 153

References 157
Summary 163

Samenvatting 165




Chapter Table of contents




Notation and definitions

Throughout this thesis scalar quantities will be denoted by italic symbols (e.g.
@, ¢,). Vectors will be bold face (e.g. u, ¥). Matrices (and tensors) will be bold
face with a tilde ~ underneath (e.g. 8, W ). Time-space domain quantities will
always be presented in lower-case, while frequency-space domain quantities
will be presented in upper-case. Frequency-wavenumber domain quantities are

presented by uppercase symbols with a tilde ~ above (e.g. D, ¥).

In this thesis use will be made of the Einstein’s summation convention for
repeated indices. Repeated indices imply a summation from 1 to 3. Thus, for
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the following is written




vi

Tij - C‘jklaluk = 0 (0'2)

where i (or j, k, ) = 1,2,3 stand for x, y, z, respectively. The summation conven-
tion does not apply to repeated indices x, y or z.

The temporal Fourier transformation used in this thesis is defined as

400
H(x,y,2,0)= | h(x,y,2,1) e"“dr 0.3)

—o0

and the inverse as

+oo
h(x,y,z,t):i | H(x.y.2,0) ¢"*dw . 0.4)

Throughout this thesis it is assumed that A(x,y,z,z) is a real function, so that

H(x,y,2,~0) = H" (x,y,2,0), (0.5)

where the asterisks * denotes complex conjugation. With this assumption the
invere Fourier transform may also be written as

+oo .

h(x,y,z,t):iRe j H(x,y,z,0) e“""dw} . (0.6)

n
0

Hence, in this thesis only positive @ will be considered. The double spatial
Fourier transform of H(x,y,z,®) is defined as




+oo .
Ak kyzs0)= | [HOy,2,0) ¢ ) ay ©.7)

—o0

and the inverse as

—i(kx+k,

+o0
H(x,y,z,w)=# | JBU kyz,0)e y)dk,dky. ©0.8)
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Introduction

One of the simplifying assumptions in the industrial approach to seismic pro-
cessing is that the wave fields contain only compressional waves and the pres-
ence of shear waves is regarded as noise. The last few years an increasing
amount of effort is spent on the problem how to treat seismic wave fields in an
elastic way. Thus, shear waves are no longer seen as noisy components but as
events that contain relevant information about the subsurface. In addition,
amplitude effects such as transmission losses are treated more satisfactory. The
amplitude behavior of seismic data contains essential information on the elastic
parameters of the subsurface layers.

Going from seismic measurements to elastic parameters is generally referred to
as inversion. Tarantola (1987) argues that, if there was no limitation on com-
puter power, seismic inversion should be carried out by means of a global non-
linear inversion algorithm, where all elastic parameters are estimated
simultaneously. At the other end, Berkhout (1982,1989) and Berkhout and




Chapter 1 Introduction

Wapenaar (1990) argue that the parameters should be divided into three groups:
surface parameters, overburden parameters (macro) and target parameters
(detail). By stepwise inversion the parameters of each group can be estimated
in a controlled way, irrespective to the available computer power. The nucleus
in stepwise inversion is seismic migration.

Migration techniques depend largely on the quality of the wave field extrapola-
tion operators involved. In most migration schemes these operators are based
on the acoustic assumption. Economic acoustic operators are acceptable if the
only concern is to obtain structural information. To go beyond structural infor-
mation, i.e. toward elastic parameters and rock characterization, it is necessary
to make use of elastic extrapolation operators. Even for the processing of
marine data it is necessary to use elastic operators in order to take into account
the full elastic propagation properties of the medium below the seabed. Kuo
and Dai (1984) use the elastic Kirchhoff-Helmbholtz integral in terms of stresses
and displacements as the starting point for elastic wave migration. As a conse-
quence, P and S waves are handled simultaneously in their scheme. In this the-
sis we follow a different approach, based on decomposition of the elastic wave
field into up- and downgoing P and S components, prior to migration. Decom-
position has been studied for modeling purposes by many authors: Aki and
Richards (1980), Kennett (1983), van der Hijden (1987), de Hoop (1992). For
an extensive overview on this subject the reader is referred to Ursin (1983).
Decomposition of multi-component measurements into up- and downgoing P-
and S-components for inversion purposes has obtained much less attention;
Devaney and Oristaglio (1986) and Dankbaar (1987) for VSP measurements;
Dankbaar (1985), Wapenaar et al. (1990), Berkhout and Wapenaar (1990) and
Herrmann (1992) for seismic surface measurements. Wapenaar and Haimé
(1990) derived elastic extrapolation operators for decomposed surface mea-
surements. By decomposing the elastic Green’s function as well, the decom-
posed P and S data can be extrapolated separately, making the extrapolation
process insensitive for inconsistencies between P and S macro velocity models.

The main objective of this thesis is to present an evaluation of the problems
involved in elastic seismic migration. Elastic wave field extrapolation operators




are presented that are applicable to a general 3D elastic and anisotropic
medium. Although the elastic operators derived in this thesis are stand alone
elements and can be used in any migration scheme, they are developed to take
part in the stepwise elastic inversion scheme proposed by Berkhout and Wape-
naar (1990).

In Chapter 2 the advantages of multi-component seismic acquisition are dis-
cussed. In the first part the necessity of multi-component data in elastic pro-
cessing is demonstrated by an example. In the second part a global description
of all modules in the stepwise elastic inversion scheme is given. In Chapter 3
elastic P and S extrapolation operators are derived starting from the full elastic
Kirchhoff-Helmholtz integral. Chapter 3 forms the heart of this thesis. An ana-
lysis of the contribution of the different elastic terms in the extrapolation pro-
cess is presented. Also, it will be made clear in this chapter that there are many
different ways to generate extrapolation operators for a so called macro model.
(Such a macro model represents a global description of the subsurface in terms
of velocities and densities and must be estimated before the actual extrapola-
tion step can be carried out.) In Chapter 4 a quantitative error analysis of the
extrapolation operators proposed in Chapter 3 is carried out. Also, the influence
of macro model errors on the amplitudes of the extrapolated P and S wave
fields is examined. The final chapter deals with the use of the elastic P and S
extrapolation operators in redatuming and migration schemes.
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Elastic processing

2.1

To obtain maximum information out of seismic reflection measurements it is
necessary to do multi-component acquisition. Most often in seismic practice
only one-component data is recorded. This imposes an important constraint to
the main objective of seismic exploration which is to create an accurate and
detailed image of the subsurface. Therefore it is not surprising that in the last
few years there is a tendency to do more multi-component seismic acquisition
on land. In the next section it will be illustrated by an example what can ulti-
mately be accomplished by elastic processing of full multi-component data.

Multi-component Elastic data

Consider the following seismic experiment where an elastic 2D subsurface
model is situated in the x-z plane (Fig. 2.1), where the horizontal x-axis points
to the right and the vertical z-axis points downward. For practical reasons all
the examples in this thesis will be 2D examples, but the theory throughout the




Chapter 2 Elastic processing

Fig. 2.1
Graben-structure
(overburden, layers
0.1,2 and 3) overly-
ing a hydrocarbon
reservoir (target;
layers 4,5 and 6)

thesis applies to general 3D situations. The model consists of a three layered
Graben-structure overlying a reservoir. A vertical stress-source (7,;) is placed
on top of the free surface (note that the source is actually a line source perpen-
dicular to the paper and the model is just a cross section). A receiver array is
positioned on top of the free surface ranging from x=24 m to x=2064 m as illus-
trated in Fig. 2.1 by the triangles. The distance between two receivers is 8 m.
The receiver line carries in total 256 receivers. The number of sources amounts
to 81, ranging from x=472 m to x=1752 m with a separation distance of 16 m.
Fig. 2.2 shows three snapshots of the horizontal and vertical displacement of
the wave field due to a T, source positioned at (x,z)=(1112,0) (source#41). In
the snapshots several phenomena can be observed. The wave field emitted by
the 7,, source contains both P and S waves. A head wave connects the emitted §
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2.1 Multi-component Elastic data

Fig. 2.2

Three successive
snapshots in terms of
the horizontal and
vertical displace-
ment (at times 50 ms,
200 ms and 400 ms)
of the wave field
travelling through
the elastic medium
due to a 1,; source at
the free surface.

wave with the horizontally propagating P wave. A Rayleigh wave can be
observed as the strong surface event moving to the left and right away from the
source. The emitted wave field is scattered by the reflectors in the subsurface.
The scattered wave field is detected by the receiver array and constitutes the
elastic reflection response of the source in that medium. The data recorded by
the receiver array are shown in Fig. 2.3. The two data sets correspond to the
horizontal and vertical displacement respectively. In both these data sets P and
S events are mixed. The first event @ corresponds to the direct wave field
emitted by the source and travels with the compressional wave velocity along
the receiver line. The strongly dipping event ® is the Rayleigh wave, often
referred to as “ground roll”. This low velocity surface event may be removed
from the data by applying a velocity filter in the wavenumber domain. In prac-
tice, however, this is not easily done and one has to use other tools to get rid of
the Rayleigh wave. The way to remove the Rayleigh wave in the data will not

e N ™




Chapter 2 Elastic processing

Fig. 2.3

a) and b) Recorded
elastic data in terms
of the horizontal
and vertical dis-
placement due to a
T,, source.(D) and
® indicate the
direct wave and the
Rayleigh wave
respectively.
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2.1 Multi-component Elastic data

Fig. 2.4

Three successive
snapshots (at times
50 ms, 200 ms and
400 ms) of the prop-
agating wave field
due to a Ty, source at
the free surface.

be considered anymore in this thesis. The reader is referred to Saatcilar, R., and
Canitez, N., 1988; Beresford-Smith, G., and Rango, R., 1989; Morse, P. F,, and
Hildebrandt, G. E, 1989; McMechan and Sun, 1991. In seismic practise when
collecting land data with a vibroseis technique it is common to use a 7,, source
and record only the vertical component.

The data in Fig. 2.3 represent the recordings of the total wave field at the free
surface (up- and downgoing P and § waves). The upgoing waves in these data
are the primary responses of the reflectors followed by multiples. The upgoing
wave field is scattered downward when it hits the free surface. This scattered
wave field constitutes the downgoing part in the data.

To decompose the data at the source side uniquely into downgoing P and §
waves a second multi-component data set is necessary and that is data due to a
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Fig. 2.5

a) and b) Elastic
reflection data in
terms of the horizon-
tal and vertical dis-
placement
respectively due to a
Ty, SOUrce.
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2.1 Multi-component Elastic data

Fig. 2.6

Typical elastic angle
dependent reflection
functions.

(These curves are
derived for a hori-
zontal reflector
between two homo-
geneous half spaces
with the parameters
of layers 4 and 5 in
the Graben model of
Fig.2.1.)

T,, source. Snapshots of the wave field due to a 7, source at (x,z)=(1112,0) are
shown in Fig. 2.4. The data in terms of the horizontal and vertical displacement
are shown in Fig. 2.5. In the next section it will be illustrated step by step how
the multi-component elastic data (Fig. 2.3 and Fig. 2.5) are processed accord-
ing to an elastic processing scheme proposed by Berkhout and Wapenaar, 1988,
The objective is to extract the maximum on information from the elastic data,
thereby utilizing traveltime as well as amplitude information and taking into
account all the elastic characteristics in the data. Angle dependent reflection
behavior is expressed in the seismic amplitudes and therefore one has to be
careful not to destroy this information when inverse extrapolating the recorded
events toward the reflectors. Typical angle dependent reflection functions PP,
SP, SS and PS are shown in Fig. 2.6.
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Chapter 2 Elastic processing

2.2

To go any deeper into the Earth a macro model is needed describing the propa-
gation properties of the subsurface, irrespective the kind of extrapolation tech-
nique one uses. Macro model estimation is a crucial step when it comes to true
amplitude redatuming and migration. The significance of highly sophisticated
wave field extrapolators can only be appreciated when a “good” macro model
is used as a basis. Treating the data in an elastic way means that a P macro
model and an S macro model have to be estimated. In practise these two macro
models will generally not be fully consistent. Later on in the thesis a careful
analysis will show that, as a consequence of this inconsistency, it is better to
extrapolate the P and S data by two separate procedures, meaning that one
should do the deéomposition into P and S waves before extrapolation.

Seismic inversion in three steps

Forward model of seismic data

The physics of a seismic reflection experiment can be described as follows:
source excitation —

downward propagation of the source wave field —

reflection at interfaces —

upward propagation of the reflected wave fields —

detection by receivers —

reflection by the free surface —

downward propagation of the reflected wave field j

Dividing the seismic inversion into three main steps is probably the most natu-
ral way to go (Berkhout, 1989, Berkhout and Wapenaar, 1990). These steps are
(see also Fig. 2.7)

1) surface related preprocessing (surface),

2) wave field extrapolation (overburden),

12



2.2 Seismic inversion in three steps

Fig. 2.7

Elastic processing
scheme divided into
three major catego-
ries.

I. surface related pre-
processing

II. wave field extrapo-
lation

1. lithostratigraphic
inversion.

3) lithostratigraphic inversion (target).

The main idea behind the first step is to unravel the elastic data at the surface as
far as possible without any loss of information before going any deeper. The
second step takes care of the effects of propagation on the incident wave field
and the reflected wave fields due to propagation through the overburden. From
the corrected incident and reflected wave fields at the target the angle depen-

muiti-component shot records

Decomposition into
upgoing P and S waves

Surface related
multiple elimination

Estimation of
S macro model

Estimation of
P macro model

Redatuming / Migration
of P response

Redatuming / Migration
of Sresponse

Lithostratigraphic inversion

Rock and Pore

parameters
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Chapter 2 Elastic processing

dent reflection functions can be retrieved by generalized imaging. These func-
tions contain crucial information about the elastic and lithologic parameters of
the system, which are retrieved in the third step.

The material discussed in Chapter 3 is a part of the second step. It is assumed
that the first preprocessing step has been carried out already. In the following
sections a global overview is given of the different steps in the elastic process-
ing scheme. From this it will be clear where the extrapolation operators dis-
cussed in Chapter 3 fit into this scheme.

2.2.1 Decomposition of the data and multiple elimination (surface)

When a multi-component seismic survey is carried out a total decomposition of
the recorded data can be achieved. This means decomposition of the recorded
data into upgoing P and S wave fields at the receiver side and decomposition of
the source wave field into downgoing P and S waves at the source side (see Fig.
2.8).( It would go beyond the scope of this thesis to go any deeper into the pro-
cess of the wave field decomposition.The reader is referred to Dankbaar, 1985;
Wapenaar et al., 1990; Herrmann, 1992. The following is confined to a global
overview of the way decomposition can be performed.) At the end of the two
decomposition steps four data sets are left, namely P«P, S«P, PSS and S<S.
It should be emphasized that the decomposition process is merely a reordering
of the original data, hence, no information is lost during the process. The four
data sets still constitute the full elastic response of the subsurface organized in
a different but more convenient way. Notice that in Fig. 2.8 multiples are not
pictured but they are fully included in the decomposition process. Obviously,
multiples may interfere destructively with primary responses from interfaces
situated deeper in the subsurface. Therefore, it is recommendable, when strong
surface related multiples are present to apply a surface multiple elimination
procedure, thus leaving only the primary responses (and internal multiples) of
the different reflectors in the subsurface in the decomposed data. The multiple
elimination procedure is a prestack wave equation based procedure (Kennett,
1979; Berkhout, 1982; Verschuur, 1991). Therefore one only needs to know the
reflecting properties of the free surface where the acquisition is done and a

14



2.2 Seismic inversion in three steps

Fig. 2.8

Total decomposition
of multi-component
data in two steps;
first separation into
P and S waves at the
receiver side fol-
lowed by a separa-
tion at the source
side.

surface
PS )
PP\ P S s
reflector
— decomposition at the receiver side
Ps P P
PP s P 5§ s
— decomposition at the source side
P
PP ss s
PS P
s SP

source wavelet. No knowledge of the subsurface is needed. In fact, the data
itself is used as an operator to predict the multiples. This is in contrast to other
multiple elimination procedures (Bernth and Sonneland, 1983; Berryhill and
Kim, 1986) where accurate knowledge about the subsurface in the form of a
macro model is necessary (at least for the first layers) to eliminate the multi-
ples. The source wavelet needed for the first procedure is estimated during the

15



Chapter 2 Elastic processing

elimination procedure itself (adaptive multiple elimination). The theory is valid
for acoustic as well as elastic data. In the elastic case, when taking into account
the elastic reflection properties of the free surface, even the converted multiples
can be eliminated.

After the decomposition and the surface related multiple elimination procedure
there are four data sets left, namely P¢«P, S¢-P, PSS and S¢-S. In these data
sets mainly the upgoing primary responses of the reflectors in the subsurface
are left due to either a P or an S source (there are still some internal multiple
reflections present that are often very weak compared to the primary
responses). The four decomposed data sets that correspond to the example from
the previous section are displayed in Fig. 2.9.

2.2.2 Macro model estimation followed by redatuming and migration
(overburden)

It is mainly from the P ¢—P data and the S¢S data from which a P macro model
and an S macro model are estimated. The macro model estimation procedure is
based on the coherency analysis of Common Depth Point gathers obtained by
shot record redatuming (for more details on this subject see Cox, 1991).

Once the P and S macro models are estimated the P and S extrapolation opera-
tors can be calculated for use in redatuming and migration algorithms (Chapter
3). Errors in the macro models will affect the quality of these extrapolation
operators and consequently also affect the migrated result. In Chapter 4 the
influence of macro model errors on amplitudes is studied in more detail. The
redatuming process brings the sources and the receivers to a level just above
the area of interest (target area) in a non-recursive step. The (simulated) result
for the Graben model is shown in Fig. 2.10 for the same lateral source position
as the one in Fig. 2.9 but now at level z=300 m. Using the incident and reflected
wave field as input, angle dependent reflection curves can be obtained by gen-
eralized imaging.

It should be emphazised that the results shown in Fig. 2.10 were simulated by
forward modeling to show what can be ultimately obtained from multi-

16



2.2 Seismic inversion in three steps

Fig. 2.9
Decomposition of the
elastic data into upgo-
ing PP (a), S&P
(b), S-S (c)and
P¢&S (d) data.
and@ are the P
wave responses from
the overburden and
the target respectively.
SandS)are the s
wave responses from
the overburden and
the target respectively.
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2.2 Seismic inversion in three steps

Fig. 2.10

a) - d) Simulated
decomposed data.
Source and receivers
at z=300 m (reda-
tuming level. The
lateral source posi-
tion corresponds to
surface source #41).
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2.2 Seismic inversion in three steps

component seismic data. The data are shown for the full aperture (x=24-2064
m) at the redatuming level (z=300 m). In Chapter 5 the actual processing
results will be shown and they will be compared with the results in Fig. 2.10.

2.2.3 Lithostratigraphic inversion (target)

As mentioned before the aim of the prestack migration process is to retrieve
angle dependent reflection information for each point (depth point) on all the
different reflectors in the target area. The angle dependent reflection informa-
tion can then be used in a parametric inversion algorithm to produce more
detailed estimates of the P and S wave velocities and the densities (de Haas,
1992) and/or the lithostratigraphic properties (Lortzer, 1990; de Bruin, 1992).
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Elastic extrapolation operators

The migration process can be described as the process that brings back a dif-
fracted wave field recorded at the surface to the location that caused this dif-
fraction. The mathematical tool that is used in this process is called the
extrapolation operator. In a complicated medium as the earth advanced extrapo-
lation operators are needed in order to back propagate the recorded wave field,
thereby incorporating the inhomogeneous elastic effects of the overburden. In
this Chapter elastic extrapolation operators are developed for separate forward
and inverse extrapolation of primary P and S waves. The Kirchhoff-Helmholtz
integral is modified such that it expresses either the P or § wave potential in a
point in the medium in terms of a closed surface integral. From thereon Ray-
leigh-type integrals are derived that express the P and S potential in a point in
the medium in terms of the P and S wave fields at a plane surface.
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3.1

Reciprocity

In this section Betti’s reciprocity theorem (Aki and Richards, 1980; de Hoop,
1990) is presented in the space-frequency domain. From this theorem elastic
Kirchhoff-Helmholtz integrals will be derived which form the basis of high
quality elastic extrapolation operators as will be discussed in sections 3.2 and
3.3.

We consider an inhomogeneous anisotropic lossless solid medium. Outside
some sphere of finite radius the medium is assumed to be homogeneous and
isotropic. Let uA(r,t) and 1:“ (r,t) be the displacements and stresses associated
to an elastic wave field due to an external force density f“(r,t). Then, the com-
ponents of displacement vector uA(r,t) and stress-tensor '5" (r,t) satisfy the fol-
lowing set of equations

9t —profult =4 G.1)
and
tf — cfudui =0 (3.2)

where c{},d are the components of a fourth-order stiffness tensor g“‘(r) and
pA(r) is the mass density. This situation shall be referred to as state A.

Let ub(r,) and t8(r,r) be another independent elastic wave field due to
fB(r,t). The components of displacement vector uB(r,t) and stress-tensor
t2(r,0) satisfy

9ty —p"ofu ==1° (33)

and
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Tg - cgklaluf =0 (34)

where cg are the components of a fourth-order stiffness tensor g”(r) and

pB (r) is the mass density. This situation shall be referred to as state B.

Across interfaces between different kinds of solids (which are assumed to be in
rigid contact), u; and 7; n; are continuous in both states (n; denotes the compo-
nents of the normal vector at such an interface).

Applying a temporal Fourier transform to the two sets of the above equations
yields

o, +p0*Uf =-FA (3.5)
and
7?;" - CguatUI? =0 (3.6)
for state A and
0,1} +pPw*vf =-F? (3.7
and
Ty —ciudUE =0 (3.8)

for state B, where U , T}j and F; (i.e., the components of U, T and F) are the

i
space-frequency domain representations of the space-time functions u; , T

and f; respectively.
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Fig. 3.1

Volume V with sur-
face S and outward
pointing normal vec-
tor n.

We derive the reciprocity theorem that relates state A and B in some volume V
in the solid medium. This volume is enclosed by surface S with outward point-
ing normal vector n (components n;), see Figure 3.1. In V, an interaction quan-
tity O; may be defined according to

0, =T}v? -TU. (39)

Applying the theorem of Gauss to (3.9) and using equations (3.5)-(3.8) yields
the well known reciprocity theorem that is due to Betti,

§@}U - 17U njas =

N
fif [(F,-BU,f‘ ~FAUE) +(cfyy - cBi)oubaup
14

~o?(p*- pB)U,f‘U,-B]dV (3.10)




3.1 Reciprocity

where the contributions from interfaces have canceled in view of the above
mentioned boundary conditions. Assuming that ¢;=cu;» (meaning that the
medium is ‘reciprocal’) (3.10) becomes

$a@fvl - 17U njds =
S
J.H[(F;'BU;’A —FiAUiB) + (Cf?kl' Cgu)aszajU;A
1%
-o?(p* —pB)U{‘UiB]dv. 3.1

From here on it is assumed that in both states the medium parameters are iden-
tical, thus

Ci?kl = Cgkz = Ciju (3.12)
and
pt=pf=p, (3.13)

hence, for this situation the last two terms in volume integral (3.11) are equal to
zero, i.e.

#aful -1l mas =[[f(FPUf - FAUF)av . (3.14)
§ v

3.1.1 Elastic Kirchhoff-Helmholtz integral relations

A special form of the reciprocity theorem (3.14) can be obtained when for one
wave field a Green’s function is chosen and for the other the physical wave
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28

field. A Green’s function represents the impulse response of the medium. State
A will be chosen to be the wave field related to a Green’s function. Then,
according to (3.5) and (3.6) the Green’s displacement field and stress field sat-
isfy

0,8y + PG,y = =8, 8(r —14) (3.15)
and
8jjm — %G m =0, (3.16)

where the components of '!'A(r,a)) and U“(r,w) have been replaced by the
components of @, (r,ry,w) and G, (r,r,,w) respectively. The extra parame-
ter r, indicates the position of the Green’s source and m denotes that this source
is a force acting in the m-direction. In the time domain the Green’s function will
be denoted by @, (r,r,,t) for the stress field and g, (r,r4,?) for the displace-
ment field. The causality conditions for @,,(r,r,,?) and g, (r,rs,?) read

0,,(r,rs,1)=0 for t<0 (3.17)
and

g,,(r,r4,0) =0 for 1<0. (3.18)

Furthermore assume for state B that no external forces are present inside V, i.e.

FE(r,w)=0 (3.19)




3.1 Reciprocity

inside V.

Superscript B ysed to indicate state B, related to the physical wave field, may
now be dropped, i.e. in the following T(r,®) and U(r,w) will be written
instead of 1‘” (r,@) and U (r,w). Using the symmetry property of the stress
tensor, i.e.

T; =T; (3.20)

and
Bjim = Ojim (3.21)
then (3.9) can also be written as

Qm = QmU_TGnh (3.22)

With regard to these new notations and with (3.19) and (3.22) equation (3.14)
becomes

Up(rg, @) = —ﬁ(@m(r, r4,0)U(r,0) - T(r, 0)G ,,(r, rA,w))‘ nds. (3.23)
M

This representation theorem states that the elastic wave field in any point inside
a closed surface S can be represented in terms of a surface integral involving
known quantities U and T on S (de Hoop, 1958; Burridge and Knopoff, 1964;
Aki and Richards, 1980). Notice that in the derivation of (3.23) it is assumed
that the medium parameters for both wave fields are identical ((3.12) and
(3.13)). In practice, however, the medium in which the Green’s function is
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obtained, the so called reference medium, may differ from the true medium i.e.
the physical medium. In that case the terms involving the medium parameters
in the volume integral on the right hand side of (3.11) do not vanish. At this
point it is important to realize that the physical medium can be thought as a
superposition of a slowly varying (background) medium, describing mainly the
propagation properties, and a rapidly varying (contrast) medium describing
mainly the reflectivity properties of the physical medium. In the following
(3.23) will be used as the basis for deriving extrapolation operators. Extrapola-
tion operators are operators that aim to incorporate propagation effects during
extrapolation. Therefore only a description of the background medium is neces-
sary. Hence, if one is only interested in the propagation properties of the
medium one can suffice by providing a reference medium that describes these
propagation properties (later on in this thesis such a description of the back-
ground medium will be referred to as a ‘macro model’). Hence, for the deriva-
tion of wave field extrapolation operators it is justified to say that if the
reference medium does not differ too much from the physical medium, i.e.
Cf}kl - Ci?kl =A Ciilg = 0 and pA - pB= A p =0, it is allowed to neglect these
terms.

3.1.2 Green’s function due to an impulsive P wave source

The wave field emitted by a unit impulsive force in an elastic medium will con-
sist of P and S waves. In the following modified elastic Green’s functions will
be derived due to either an impulsive P wave source or an impulsive S wave
source.

From equations (3.15) and (3.16) ©;,,, may be eliminated leaving

9,(C;juiGr )+ PO’G, pp = ~8;S(x —14). (3.24)

Assume that the medium is locally isotropic at r,. Multiplying the left hand
side and the right hand side of equation (3.24) by the operator
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—K (t4)0p, , (3.25)

where a,,,A for m=1,2,3 denotes spatial differentiation with respect to the
Green’s source point coordinates x4, ¥4, 24, respectively, and where

K (r4) = A(ry) +211(rs), (3.26)

yields

0;(CyuO(~Ko (1), Gy ) + PO’ (=K (£4)0,, G ) =

myJim

K (60)8nd 8(r—14)  (327)
or, with 9, 8(r—r14)=-9,6(r—r4),
9 (G ¢) + szai,:p =K (84)8,,0,,6(r —14) (3.28)
or, with §,,9,, = 0; ;
9;(c;juiCr p) + PO*Gy y = ~K (54)08(r - 1), (3.29)
where
G; 4(r,rp, @) =—K (r4)9,,,G; (.14, @). (3.30)

The Lamé coefficients A and u that appear in equation (3.26) are related to the
stiffness coefficients, according to
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Cijua (1) = A(0)8;8 + 11(r)(8y8 iy + 88 i) . (3.31)

The source term on the right hand side of (3.29) represents a P wave source at
r,, if the medium is assumed to be isotropic and the gradient of the medium
parameters is assumed to be zero at r, (Wapenaar and Haimé, 1990). The
Green'’s displacement field G,-.q,(r, ry,) for i=1,2,3 are the three components
of the Green’s displacement vector G 4(r,r4,®). The subscript ¢ stands for the
Green’s impulsive P wave source at . Note that the emitted P wave field may
encounter all kinds of inhomogeneities on its way from source point r, to
observation point r. Therefore, the Green’s wave field at observation point r,
G¢(r, r,, ), may consist of both (quasi-) P and (quasi-) S waves.

Assuming in observation point r as well that the medium is isotropic and that
the gradient equals zero, a Green’s P wave scalar potential in r may be defined
according to

[y 4(r14.0) =K (DV -Gy(r,r4,0) (3.32)
or

Ty 4(r.rs,0)=-K (1)3G; o(r.,ry,0) , (3.33)
and a Green’s S wave vector potential by
Ty o(r.rs,0) = p(r)Vx G¢(r,rA,w) (3.34)

or

Ty, 4(r.04,0) = ~p(1)€;0;G; o (r.1p, 0) (3.35)
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where the subscripty corresponds to the S wave character of the wave field and
€y;; represents the alternating tensor:

Eij = 0 if any of k, i, j are equal, otherwise

€123 = €312 = €231 =—€3 = €321 =€ =1.

Iy, ¢ for k=123 are the three components of the Green’s § potential vector
I'y.¢ as defined in (3.34). The Greek symbol I" denotes a Green’s wave field
potential. The first subscript corresponds to the wave type (¢ for P ory for S) at
observation point r. The second subscript corresponds to the type of the
Green’s source (¢ for P ) at r,. Hence, Green’s potentials with two different

subscripts always correspond to converted wave fields.

3.1.3 Green’s function due to an impulsive S wave source

Applying operator —Kc(rA)amA to wave equation (3.24) transformed the char-
acter of the Green’s source from an impulsive force to an impulsive P wave
source. Under the same assumptions, applying

—H(EA) O, (3.36)

to (3.24) transforms that same impulsive force to an impulsive S wave source.
Hence,

9j(CijudiGr,y, )+ PCUZGi,W,, = —p(Tp)Eindn(r —14), (3.37)
where

Gy, (1,1, 0) = ~U(T) Epnny, G (1,74, @). (3.38)

The right hand side of equation (3.37) now corresponds to a Green’s S wave
source polarized in the plane perpendicular to the 4-axis, where hA=1,2,3 stands
for x, y or z respectively (Wapenaar and Haimé, 1990). Gi.w,. (r,rA,w) with




Chapter 3 Elastic extrapolation operators

i=1,2,3 are the three components of the Green’s displacement vector
Gw‘_ (r, | w) . The subscript v, refers to the S,-wave character of the Green’s
source at r,. Again assuming the medium isotropic and with zero gradient in
observation point r a Green’s P potential may be defined by

Ty, (14, 0) ==K (1)V -G, (1,14, 0) (3.39)

or

Ty, (r14,0) =K (1)3,G; . (r,14,0) , (3.40)
and a Green’s S wave vector potential by

Ty.y, (614,0)=p(r)Vx G, (r,ry,0) (3.41)

or

Ty, v, (114, 0) = —p(1)€y;d;G; y, (1,14, ) (3.42)

where I .., Tepresents the kth-component of Green’s displacement vector
I‘W, v, as defined in (3.34).

Fig. 3.2 gives an overview of the Green’s potential functions due to an impul-
sive P wave source and due to an impulsive S, wave source (h=2).

3.1.4 Reciprocity relations for Green’s wave fields

Applying (3.14) to the Green’s function, taking surface S at infinity yields




3.1 Reciprocity

Fig. 3.2 -
Schematic overview Ty (v, @) Inhomogeneous
of elastic Green's re anisotropic oTy
potential functions r (r r w) elastic medium impulsive
Vpe\A Pwave
source
I,
AR <> iInhomogeneous
re anisotropic ofa

elastic medium impulsive
S, wave
source

G (104, @)= Gy i (14,1, 0) . (3.43)

From (3.30), (3.33), (3.35), (3.38), (3.40) and (3.42) together with this reci-
procity relation the following reciprocity relations for the Green’s potential
functions can be derived

F¢,¢(r’rA’w)= r¢,¢ (rArr»w)y (3.44)
Ty, .y, (rrg,0)=Ty, \, (ry,r,0) (3.45)

and
I‘v,‘_,,(r,rA,m): Ly, (rar,0). (3.46)
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3.1.5 Modified Kirchhoff-Helmholtz integral

Kirchhoff-Helmholtz integral (3.23) states that the elastic wave field in terms of
displacements U, (r,,®) can be calculated in any point inside an elastic
medium V by integrating the interaction of the Green’s function with the physi-
cal wave field over surface S. In this section the physical wave field in the
Kirchhoff-Helmholtz integral (3.23), that is still in terms of stresses and dis-
placements, will be transformed to a wave field that is entirely in terms of P
and S potentials.

The P potential in r, according to (3.32) may be defined by

(D(TA,(I)) = —KC(I‘A)VA 'U(rA,w) (3.47)

or

q’(rA’ (0) = _Kc(rA)amAUm(rA > CO) (3.48)

where V4 and 3”,‘ denote differentiation with respect to coordinates x4, y4, z4,
respectively. Substituting Kirchhoff-Helmholtz integral (3.23) in (3.48) and
changing the order of integration (along S(r)) and differentiation at r, yields

D(ry,w) = —ﬁ[(—KC(rA)amA 8,,(r, rA,w))U(r,m)
s

—I‘(r,a))(—KC(rA)amAGm(r,rA,a)))].ndS (3.49)
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d>(r,,,w>=ﬁ[?(r,w)G¢(r,rA,w)—§¢(r,rA,w)U(r,w)].nds (3.50)
N

with
G¢(r,rA,w) = —KC(rA)amAGm(r,rA,a)) (3.51)
and

0,(r,r4,0)=-K (14)d,,, Op(r,ry,0). (3.52)

Equation (3.50) states that the P wave potential at r, can be expressed in terms
of a surface integral over S where a Green’s function is used that is due to an
impulsive P wave source at r.

Similarly, the S potential at r4 may according to (3.34) be defined by
Y(ry,0)=ury)V,y x U(ry, @) (3.53)
or
W (ry,0)=—p(ry )s,,,,ma,,AUm(rA,a)) (3.54)

where ¥, for h=1,2,3 are the three components of ¥ . Substituting Kirchhoff-
Helmholtz integral (3.23) in (3.54) and changing the order of integration (along
S(r)) and differentiation at r, yields
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W, (ry,0)= ﬁ['g(r, 0)G y, (1,14, )~ Oy, (1,14, 0)U(r, a)):l. ndS  (3.55)
s
with

Gy, (r,T4, @) = =T ) €40y, G (1,14, @) (3.56)

and
By, (1,1),0) = ~L(XA)Epmn0s, Om(r.T4,@). (3.57

Equation (3.55) states that the S, wave potential at r, can be expressed in terms
of a surface integral over S where a Green’s function is used that is due to an
impulsive S, wave source at r,.

Summary. What has been achieved in this section is that aside from the tradi-
tional form of the Kirchhoff-Helmholtz integral (3.23), which expresses the
displacement field in some point r, inside an elastic medium in terms of a sur-
face integral, two other Kirchhoff-Helmholtz integrals have been derived
expressing either the P potential (3.50) or the § potential (3.55) in r4 in terms of
a surface integral. The Green'’s sources used in (3.50) and (3.55) are impulsive
P and S sources respectively, whereas in (3.23) an impulsive force is to be used.
In this respect one may say that the Green’s function is decomposed at the
source side into P and S components.

Kirchhoff-Helmholtz integrals (3.23), (3.50) and (3.55) can be captured in a
somewhat more general notation given by

Qry,w)= ﬁ[]‘(r,w)G a(r.ry,0)-6g (r,rA,w)U(r,m)}ndS (3.58)
s




3.2 Modified Rayleigh integrals

with £2 G and Qg given in Table 3-1.

Table 3-1
Q: U, or D or Y,
Gg: G, or G, or G %,
8,: 6, o © o Oy

3.2 Modified Rayleigh integrals

We shall now consider the special situation where the closed surface S enclos-
ing volume V is shaped as a pill box (see Fig. 3.3). Surface S can be divided
into three connected surfaces; a flat surface on top of the disc S, (at level z,), a
flat surface closing the disc at the bottom S, (at level z;) and a cylindrically
shaped surface S, with radius R. Assuming that all physical sources are above
Sy it is allowed to choose surfaces S; and S, in infinity, i.e. letting z,— o and R
— oo, In that case the contribution of the surface integrals over S; and S, van-
ishes (Bleistein, 1984; Wapenaar and Berkhout, 1989) and (3.58) can now be
written as

Fig. 3.3 g ;

Elastic medium V

with surface § and
outward pointing S| Tl
normal vector n. ‘
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Fig. 3.4

Cross section of
elastic medium V
with the up- and
downgoing physical
wave field and the
Green's function
through S, at level
zy. Surfaces S} and
S, are chosen in
infinity.

Qry,0) = H[T(ro,w)G Q(ro,rA,w)—eg(ro,rA,w)U(ro,w)].ndxdy (3.59)
so

or, using the fact that n points in the negative z-direction at zy,

Q(rA,m) = ‘”.[ez’g(ro,rA,w) . U(l’o, a))—‘G_Q(ro,rA,w) . Tz(ro,a))]dxdy (3.60)
So

where ry =(x,y,2y), ez,g(=—99n =@,i,) represents the third column of
Green'’s tensor @, and T,(= —Tn = Ti,) represents the third column of wave
field tensor T and use has been made of the symmetry properties of T and
8,

For the following analysis it is assumed that at z, the medium is isotropic and
that the gradient of the medium parameters is equal to zero. At z, the wave field
can be thought of to consist of up- and downgoing wave fields (see Fig. 3.4).
Thus, for the displacement at z, the following can be written

homogeneous

true medium reference medium




3.2 Modified Rayleigh integrals

U=U +U" (3.61)

and for the traction at z,
T,=T, +T;, (3.62)

where the superscripts — and + denote up- and downgoing wave fields respec-
tively. Similarly, for the Green’s function the following holds for the displace-
ment at z,

Go=Ggo+ G§ (3.63)
and for the traction at z,
0,,=06,,+6],. (3.64)

With (3.61), (3.62), (3.63) and (3.64) Kirchhoff-Helmholtz integral (3.60)
becomes

Qg 0)=f [(e; 2+850)- (U +U )HGo +Gh) (T, + T} )]dxdy .(3.65)
So

Without loss of generality it is allowed to choose the reference medium for the
Green’s function above z, (including z;) homogeneous. Since the Green’s
source is positioned below z,, it means that there is only an upgoing Green’s
wave field through surface z, (see Fig. 3.4). Hence, at z, the Green’s function
(3.63) reduces to

41



Chapter 3 Elastic extrapolation operators

G,=Gp (3.66)

and (3.64) to

8,0,=6,,, (3.67)

and with this choice (3.65) becomes

Q@) = [[[87.0- (U +U* -G (T; + T ) axay. (3.68)

So

Applying Parseval’s theorem (Dudgeon and Mersereau, 1984) to Kirchhoff-
Helmbholtz integral (3.68) yields

2 oo
Q(ry,0)= (1) “[GZQ U +U+)—Grz (Tz‘ +'i'z+)120dkxdky. (3.69)

The prime accompanying the Green’s function indicates that k, and k, are
replaced by -k, and -k, respecnvcly, ie. GQ —GQ(—kx, ky,zo,xA,yA,zA,w)
and 9, 0= 92 Q(=kyx,—ky,2p:X4,Y4,2450) . After collecting terms of up- and
downgoing wave ﬁelds thls equation can also be written as

Q(rAvw) =

(2,,)2?![ (60 07 -Ga T;)+ (e;jn-fﬁ_(;';,.i-;)]zodkxdky

(3.70)
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The first term in the integral between parentheses corresponds to the interaction
between the Green’s function, which is only upgoing, and the upgoing part of
the wave field at z,. Obviously, this wave field must be a scattered wave field
since the sources are assumed above z;. The second term between parentheses
corresponds to the interaction of the Green’s function and the downgoing part
of the wave field at z,. It is shown below that the first term between parentheses
vanishes and that the second term can be rewritten in terms of P and S wave

potentials.

We may define P and S potentials for the physical wave field at z as follows

U(ry,0) = —— (VO + VX ¥) ; V- ¥ =0
pw
or, equivalently with (3.61),
Uk(rp, 0) = ——5 (VO* + Vx¥*) ; V. ¥* =0
pw
and for the Green’s function

1
Gg(l‘o,l‘A,m)=;g)7(Vr¢,Q+erv/,n) » V-Ly =0

or, with (3.66),

i, 1 - _
G (ry, T, 0) = ;a?(vr;,g +VxTy0); V-Ty, 0 =0.

3.71)

3.72)

3.73)

3.74)
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In the wavenumber-frequency domain the two-way wave equations for P and S
waves read

*d -

=57 = kp? (.75
and

i 4 .

=7 = ~kZ ¥ (3.76)

respectively, where the tilde ~ denotes the wavenumber domain and where

2 o’ 2 ;2
kz,p =——k; —ky 3.7
Cp
and
2 o’ 2 .2
kz,s = —L—‘T —kx — ky , (3.78)

5

where ¢, and ¢, stand for the compressional and shear wave velocity respec-
tively. The relation between these velocities and the Lamé parameters is given

by
c,= f’l 2 (3.79)
p

and




3.2 Modified Rayleigh integrals

¢, = %. (3.80)

From (3.75) and (3.76) the one-way wave equations follow immediately,

aii = Fik, ,®* (3.81)
and
T e
- = Fik, P (3.82)
where
kyp =t —K2 =k for K22k +k2 ; k, =;“i, (3.83)
k,, = il + k2—kZ for k2 <kl+k], (3.84)
k=K —KE k2 for K22k +KD 5 k =c2, (3.85)
and

kyy=—ink2 +k2 k2 for k2 <kZ+E2. (3.86)
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In the wavenumber-frequency domain equation (3.72) together with (3.81) and
(3.82) may be written as

Ut =DBidt + D, ¥ ; By ¥t =0 (3.87)
where
-—ikx _lkx
bt = 1 —ik . f):t_L —ik
»=—3| —iky |; D =—| —ik, (3.88)
po‘| _ pw°| _
Fik, Fik,
and
. . 0 ik, ik,
D, =p_w2- Fik, ¢ 0 ik, |. (3.89)
ik, —iky 0

The traction is related to the displacements by equation (3.6). Using this rela-
tion and relation (3.31), that expresses the relation between the stiffness coeffi-
cients and the Lamé parameters for the isotropic situation, the relation between
the traction and the P and S potentials is given by

TE=EXo* + B ¥, (3.90)

where the operators Ei and Ef are related to operators ﬁf, and I:): as fol-
lows
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~ ~ 4 ~
E; =K, D} (3.91)
and
B -RED2, 692)
where
Fuik,, , 0 —pik,
Ko=| 0  TFuik,  -uik (3.93)
—Aik,  —Aik,  FA+2)ik, ,
and
Fuik,, O —pik,
RKi=| o Fuk,  -pik, | 3.94)

~dik, =Mk, FA+2)ik,

Expressions (3.87) and (3.90) relate the displacement and the stress to the P
and § potential for the physical wave field respectively.

Similarly, the relation between the Green’s displacement and the Green’s
potentials, analogous to (3.87), is given by

Ga=D,la+D;T, o D Ty =0 (3.95)
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and between the Green’s stress and the Green’s potentials, analogous to (3.90),
by

6, =K, T7o+E T, (3.96)

or using the followmg relations D ; D —Dx ; Di —D‘_L and
Ef=-E7; B =—E, (395 and G. 96) can also be written as

Gg=-D;lq-DiTyq: D} Tyg=0 3.97)
and
0, g=-Elso-EiT, o (3.98)

Substituting (3.87), (3.90), (3.97) and (3.98) yields after some calculus for the
first term between parentheses in (3.70)

(6,0 0 -G5-T;)=0 (3.99)
and for the second term
(670U -Gg-T7)=[ik, , Ty 0@ +ik, [y o ¥*] (3.100)

leaving
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2 too

2 (1 L el
.Q(rA,w)=p—wz~(-2—n) [ [zk,,pl’¢,9a)++;k2,sI‘v,,Q.\}'+]zo dkydk, . (3.101)

—o0

Substituting one-way wave equations (3.81) and (3.82) and applying Parseval’s
theorem again yields

Q=2 l)’?[rq,jg(agp*) Ty (0¥ ey G102
So
or, equivalently,
Qry,0)=2 | jﬁ[(azrgg)q)* +(9,Ty0)- W*]dxdy. (3.103)
So

These relations represent the one-way elastic Rayleigh I and the one-way elas-
tic Rayleigh II integral respectively. These equations are exact under the
assumption that the medium is locally homogeneous and isotropic at z,. From
these integrals it can be seen that the terms that occur within the brackets
involve the upgoing Green’s function and the downgoing part of the wave field
at 2, (see Fig. 3.5). The interaction between the upgoing Green’s function and
the upgoing part of the wave field (i.e. the first term between parentheses in
(3.70)) is equal to zero. Thus, in general there is no interaction between the
Green’s function and the wave field if they travel in equal directions. Also,
there is no mixed interaction between P and S components at z,. There is only
constructive interaction between P components if the Green’s function and the
physical wave field travel in opposite directions and similarly between S com-
ponents that travel in opposite directions. Notice that in (3.102) and (3.103)
£X(r,,m) represents either the displacement U, (with m=1,2,3) or the P poten-
tial @ or the S, potential ¥} at r,.
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Fig. 3.5

Cross section of
elastic medium V
with the up- and
downgoing poten-
tials of the physical
wave field and the
upgoing Green's
potentials through Sy
at level zy. Surfaces
Sy and §; are cho-
sen in infinity.

true medium reference medium

3.2.1 Forward extrapolation operator for P waves

In the case that Q represents the P potential a Green’s impulsive P wave source
must be used and then, for instance, Rayleigh II integral (3.103) becomes

oy, 0) = 2[f #[(a,rg,,)cb" +(0Tye) oy,  (3.104)
So

The downgoing wave field at z, (@* and W*) consists of a primary part
(directly from the source) and a multiply scattered part. If the source emits P
waves only then the S waves (W*) will consist of converted waves only (see
Fig. 3.6). Also, the Green’s wave field at z, is due to an impulsive P wave
source at r4 and therefore the Green’s S potential at z, (I‘,’,,, ¢) will consist of
converted waves only. Hence, the magnitude of the second term between
brackets in (3.104) ((9,Ty,4)-¥") is proportional to multiply converted
waves and is two orders lower than the first term ((3,1‘ ¢j¢)d§+ ). Thus, for this
situation, (3.104) may be approximated by
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Fig. 3.6

If the sources above
Sg are P wave
sources and the
Green'’s source is
also a P wave source
then the interaction
of the S components
on Sg will be of sec-
ond order compared
to the interaction of
the P components.

homogeneous

Tyo Toy

Bt 0) = 2f[—[(2,T5 5 )" Jaay. (3.105)
5, P@

This result states that the P wave field in A can be reconstructed from the inter-
action of the decomposed downgoing P wave field and the decomposed upgo-
ing P Green’s function at z,. Amplitude errors are of second order only. In case
of a homogeneous medium (3.105) is exact.

3.2.2 Forward extrapolation operator for § waves

In the case that Q2represents the S, potential a Green’s S,-wave source must be
used and the Rayleigh II integral then becomes

¥, (ry, 0) = 2 p—:7[(azr¢j,,,h Jo* +(aTyy, ) ¥y, (3.106)
So

Assuming S wave sources only above z,, then with similar arguments as given
above (but now the first term is two orders lower than the second term), (3.106)
may be approximated by
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Fig. 3.7

If the sources above
Sy are S wave
sources and the
Green’s source is
also a S wave source
then the interaction
of the P components
on Sg will be two
orders lower com-
pared to the interac-
tion of the S
components.

homogeneous

reference medium

(14, 0) = 2 £ { plw[(azl‘v,',w)-‘l‘*]dxdy. (3.107)

Thus the S wave field in A can be reconstructed from the interaction of the
decomposed downgoing S wave field and the decomposed upgoing S Green’s
function at z,. Amplitude errors are of second order only. In case of a homoge-
neous medium (3.107) is exact.

3.2.3 Extrapolation operators for primary up- and downgoing waves

Equations (3.104) and (3.106) express either the total P or total S wave poten-
tial in a point A in the subsurface and are exact in the situation where the (inho-
mogeneous, anisotropic) reference medium exactly matches the true medium
from z, to infinity. Considering primary wave fields only in the macro model
(I' - T) then the primary downgoing P wave field in A may be written as

torn o e 210 Y
@* (ry,0) 2{{-55[(3,13,,,)4) Jxay (3.108)
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Fig. 3.8

Cross section of
elastic medium V
with the up- and
downgoing poten-
tials of the physical
wave field and the
upgoing Green’s
potentials through S
at level z. Surface
S, is chosen in infin-
ity.

and for the primary downgoing S wave field in A
+ 1 - +
¥ (ry, @) ~ 2 W[(azrw_% )+ |axay. (3.109)
So

In a similar way the primary upgoing waves at r, can be expressed in terms of
integrals at S; below r4. The primary upgoing P wave field in A reads

- 1 = _
@ (14, 0) ~2[f ;w—z[(a,rgd,)@ Jaxay (3.110)
S
and the primary upgoing S wave field in A reads

¥ (14, 0) ~ -2 #[(azf,;fwh)-‘l"]dxdy. @3.111)
S

homogeneous

I

\
Ty

irue medium reference medium
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3.2.4 Summary

The primary downgoing wave field (the incident wave field) in subsurface
point A can be reconstructed from the downgoing wave field at z, (see Fig. 3.9
a) with forward operators (3.108) and (3.109), whereas the primary upgoing
wave field in A can be reconstructed from the upgoing wave field at z; (see Fig.
3.9 b) with forward operators (3.110) and (3.111). Since in seismic practice
there is no data available from z;, inverse extrapolation operators are needed
that act upon the upgoing reflected data at z, in order to reconstruct the upgoing
wave field in A. These inverse extrapolation operators use backward propagat-
ing Green’s functions (see Fig. 3.9 ¢ and d). The theory of the backward propa-
gating Green’s functions will be discussed in the next section.

Backward propagating Green’s functions

In this section backward propagating Green’s functions will be used for inverse
wave field extrapolation.

3.3.1 Kirchhoff-Helmholtz integral with backward propagating Green’s
functions

Let Q,, be a new vector function defined by (compare with (3.22))
Q,=6,U-TG,,, (3.112)

where * denotes complex conjugation (by taking the complex conjugate the
causal Green’s function transforms to an anti-causal function). Applying the
theorem of Gauss to (3.112) yields in analogy with eq. (3.23)

U, (ry,0)= —ﬁ (QL(r, r4,@)U(r,0) - T(r,0)G,,(r,r, co)} ndS (3.113)
s
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Fig. 3.9 Forward extrapolation with Inverse extrapolation with
With a forward prop- Forward propagating Backward propagating
agating Green's Green’s functions Green’s functions
function the upgoing
wave field in A can
be calculated from
the upgoing wave
field at z;, while with
a backward propa-
gating Green’s func-
tion (Gy) that same
wave field is calcu-
lated from the upgo-
ing wave field at z;,.
The reference a)
medium is chosen
homogeneous above
zg and below z;.

m scattering
object

d)
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Table 3-2

Helmholtz integral (3.113) is exact and is equivalent to (3.23). Following a
similar path as already taken in the derivation of (3.50) and (3.55) the next two
Kirchhoff-Helmbholtz integrals can be obtained

D(r,,w) = ﬁ['l‘(r,m)(};(r, r, a))— Q’;(r,rA,w)U(r,w)}ndS (3.119)
s
and
W, (ry, )= ﬁ[l‘(r,w)(}% (r,r4, )-8y, (r,ry, 0)U(r, w)].ndS . (3.115)
s

Again, these three integrals can be captured in the following way (compare
€q.(3.58))

Qry,0) = ﬁ[]‘(r, ©)Gg(r,r4,0)-05(r,r,, 0)U(r, m)]. ndS, (3.116)
S

with £ G, and 8, given in Table 3-2.

Q U, oo @ or ¥
Go G, or G; or G:yk
e g, o 6, o 6y
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3.3.2 Rayleigh-integrals with backward propagating Green’s functions

Consider the configuration of Fig. 3.9. Surface S, corresponds to the recording
surface, thus the wave field is considered to be known only at surface S; (which
corresponds to the seismic situation). Sources are again assumed to be present
only above ;. For this situation Kirchhoff-Helmholtz integral may be divided
into two separate integrals

Q(I'A,CO) J'J‘|: l‘g, G_Q(l'o,l'A, )Q};(ro,rA,w)U(ro,a))].ndxdy+

J‘j[ l‘l, G_Q l'],rA, )_Qz(r],rA,w)U(rI,w)].ndxdy

3.117)

where ry=(x.y,2) and r;=(x,y,z;), or, using a somewhat more compact notation,
Q(ry, @) = (s, 0) + 4 (ry, 0), (3.118)

where
Q(ry, 0) = H[ 15, 0)G (1.4, @ )—Q}l(ro,rA,w)U(ro,w)]‘ndxdy,(3.119)
and

Q(ry, )= H[ 1, 0)G o (r;, 14, )00 (1), 14, @ )U(r,,w)].ndxdy.(3.120)
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Unlike in section 3.2, the integral over S; does not vanish when S, is moved
infinitely downward. For the following analysis it is assumed that the medium
at zy and z; is isotropic and that the gradient of the medium parameters is zero.
At z; and z, it is allowed to separate the wave field into up- and downgoing P
and S wave fields. The reference medium for the Green’s function is chosen
homogeneous above z, (including z;) and below 2z, (including z;). Hence, at z,
the Green’s function is only upgoing and at z; the Green’s function is only
downgoing. The contributions from S, and S; may then be written as

Q4. = [[[870-(U +U* )G (T + T )|axay (3.121)
So
and
Qo) =-ff[80 (U +U )65 (7 + T} )arty,  (3122)
S

respectively. Notice that in (3.121) and (3.122) complex conjugation of the
Green’s functions results in a Green’s wave field that travels towards the
Green’s source. Thus, G}; (in (3.121)) is actually a Green’s displacement field
that travels in the positive z-direction.

Using (3.87) and (3.90) then for (3.121) and (3.122), after some calculus (simi-
larly as in section 3.2), the following may be written

Qy(ry,0) =2 ! { p—;T[(a,r,,jg)* P+ (a,r,,,jg)* : ‘P‘]dxdy (3.123)

and
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Qe 0) =2 #[(a,rgn)* o +(9,0y0) -w*]dxdy. (3.124)
S

In the derivation of (3.123) and (3.124) it is assumed that the wavenumbers &,
and k,  satisfy

2p =kzp (3.125)

and

*

kps=ks s (3.126)

at zp and z;. Equations (3.125) and (3.126) and, therefore, also (3.123) and
(3.124),0nly hold for propagating waves. In other words, evanescent waves are
not correctly handled.

From Fig. 3.9 d it is clear that with the use of a backward propagating Green’s
function the upgoing wave field through A can be obtained by integration over
surface S, only. There is, however, still a missing upgoing part as illustrated in
Fig. 3.10. This missing part is caused by inhomogeneities above A. A small
portion of the upgoing wave field will be scattered back by these inhomogene-
ities and will travel as a downgoing wave field through S,. Hence, the upgoing
wave field in A may be written as

Q7 (ry,0) = Gy(rs,0) + £ (14, ) (3.127)

or
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Fig. 3.10

The upgoing wave
field in A can be
divided into a trans-
mitted part that con-
tinues through zp and
a reflected part that
continues throughz;.
The same can be
done with the
Green's function. If
the contrasts are not
100 strong between
zp and z; the contri-
bution of the inter-
acting wave field and
the Green's function
at z; may be consid-
ered a second order
effect compared to
the contribution from

zg.

The upgoing wave field through A can be divided
in a transmitted and a reflected part

Splitting up the back-propagating Green’s function leaves
a transmitted part and a reflected part that act upon
the wave field at z, and z, respectively.
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@ ey 0) =2 —15[(a,r¢jg)* & +(9,0y0) -‘I‘_]dxdy
5, P@

2Ll (0.r50) 0 +(0.r)0) ¥ [y, G128)
s, P@

Since the wave field is only known on S, this small part of the upgoing wave
field in A can not be taken into account and will express itself as an error in the
amplitude of the upgoing wave field in A. If the contrasts between z; and z, are
weak to moderate (which is certainly the case in seismic practice) it is allowed
to neglect this term since this term is an interaction of a scattered wave field
and a scattered Green’s function (Fig. 3.10). Neglecting this term will cause a
second order amplitude error only. Hence, by neglecting the error term
£ (ry,w) the upgoing wave field in A can be written as

_ 1 BN -V a-

Q (r,,,co)=2jjm[(a,r¢,g) @ +(a,r,,,,g) N 4 ]dxdy. (3.129)
So

3.3.3 Inverse extrapolation operator for primary P waves

Similar as in section 3.2.3 only primary wave fields will be considered in the
macro model (I — T'). The upgoing primary P potential in A can be obtained
by choosing an impulsive P wave source for the Green’s function, in that case
(3.129) becomes

D (1, 0) =2 £ { p—;)z[(a,f¢j¢)* @ ]dxdy : (3.130)

Similarly, the downgoing primary P wave field in A reads
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" (r4,0) = 2[f —;f[(a,f¢f¢ } q>+]dxdy : (3.131)
s, P

3.3.4 Inverse extrapolation operator for primary S waves

For the primary S, potential an impulsive S, wave source is chosen for the
Green’s function and (3.129) then becomes

¥ (v, 0) ~-2ff Lz[(azr,;w) -‘I"]dxdy . (3.132)
5, P@

Similarly, the primary downgoing S wave in A reads

(10, 0) = —2H—[( Tyy,) ¥ axay (3.133)

3.3.5 Summary -

Equations (3.130) and (3.132) represent non-recursive inverse wave field
extrapolation operators for propagating P and S waves respectively. The upgo-
ing wave field in a point A in the medium below (acquisition) surface S, is
expressed in terms of a surface integral over S,. In case of inhomogeneities (not
too severe) amplitude errors are of second order only, which corresponds to the
negligence of multiply reflected and multiply converted waves. For high con-
trast media the error term ; (r4,®) may no longer be neglected and should
be estimated in an iterative way (Wapenaar and Berkhout, 1989). Together with
equation (3.108) and (3.109) these equations express the up- and downgoing
(reflected and incident) primary P wave field or primary S wave field respec-
tively in point A (see Fig. 3.11).
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Fig. 3.11
Overview of pri-
mary down- and
upgoing P and §
waves in a point Ain
the subsurface in
terms of an integral
over surface Sp.

- r rarwwrr w  — — — —————

2l ) o
()

#[(821_“,;% ). ‘I"]dxdy
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Amplitude analysis

For the generation of Green’s functions a reference medium is needed describ-
ing the relevant parameters for wave propagation as a function of space and
time. In seismics such a reference medium is often referred to as a ‘macro
model’ (see also Chapter 3, section 3.1.1). In the elastic situation, besides a
velocity model for the P waves, also a velocity model is needed for the §
waves. A macro model is estimated from the most important horizons that
occur in the seismic data, therefore a macro model describes mainly the propa-
gation properties of the subsurface. Very small contrasts or rapidly changing
horizons in the true medium are of minor influence on the traveltimes of the
wave field that travels from the surface to the target and vice versa.

The amplitude of a wave field propagating through a complex medium is sub-
jected to a number of influences which can be categorized as follows:
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4.1

1) Geometrical spreading

2) Angle dependent transmission effects, at macro boundaries
3) Angle dependent transmission effects, at micro boundaries
4) Internal multiples between macro boundaries

5) Internal multiples between micro boundaries

6) Anelastic losses

Almost every wave field extrapolation operator accounts for geometrical
spreading and ignores the other effects. In this chapter I go one step further and
shall focus on the second item. The effects of errors in the macro model on the
P and S transmission amplitudes will also be studied. As stated in Chapter 3 it
is necessary for the forward and inverse extrapolation operators derived in that
chapter that the reference medium matches the true medium as close as possi-
ble (at least for the macro properties) otherwise errors are introduced that may
be of influence on both the phase and the amplitude of the forward or inverse
extrapolated wave field.

Error analysis

A seismic wave field that travels from the source to a reflector located in the
target area will encounter several interfaces on its way down. Every time that
an interface is passed the wave field will be distorted. The distortion is
expressed in the amplitude of the transmitted wave field and is angle depen-
dent. This distortion as a function of angle is called a transmission function.
The reflections in the target caused by this downgoing wave field travel upward
to the surface passing the same interfaces in the overburden again but now in
the opposite direction. These target reflections carry important angle dependent
reflectivity information with them and will also be distorted on their way to the
recording surface. The task of inverse extrapolation operators is a.0. to remove
the distorting transmission effects from the overburden, both from the illumi-
nating (downgoing) wave field as well as from the recorded (upgoing) wave
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Fig. 4.1

Incident P and S
waves on a horizon-
tal interface.

¢and yare the P
and S wave potentials
as defined in Chap-
ter 3. c,, c;and p
represent the P wave
velocity, the S-wave
velocity and the
mass density, respec-
tively.The subscripts
0 and 1 refer to the
upper and the lower
half spaces, respec-
tively. a and 3 corre-
spond to the
reflection and trans-
mission angles in the
upper and the lower
half space respec-
tively.

field. These transmission effects can only be removed properly if the macro
model is close to the true model. In general, the errors in the transmission func-
tions caused by the mismatch between macro model and true model will also
be angle dependent.

The elastic plane wave reflection and transmission coefficients at a horizontal
interface between two homogeneous isotropic half spaces can be elegantly for-
mulated in terms of a matrix notation, see Fig. 4.1 (Aki and Richards, 1980;
Berkhout, 1987)

mg=hm CHY

CpO’ Cs0:P
cp] +Cs1-P1

Cpo:cso,ﬂ)
CpI 'Cs1sPy

»®Vy

Cp0:Cs0:Fp - Cp0-Cs50-Pp
Cp1:Cs1sPr X Cpl’csbpf
: &
o z . =
- L4 "5}
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where matrix m follows from the boundary conditions at the interface and is

defined as
m =
.2
(I-2sin” o)
c2 c
2580 sinar, cosar, 2-3LsinB,cosp
o2 P P “2 s 4
p0 pl
. Ce0 -
sin o BCs0 i B
PiCsg
Picpicosa, PCpo 0SB,

—(21 -2sin’B,) —2sinocosa

(-2sin’ )

—picpsine,,

—2sin 8 cos B,
—(1-2sin® B;)

PCso

PiCst
R)Cpo sin ﬂ P

cosag cosf

4.2)

Scattering matrix s that holds all possible reflection and transmission coeffi-

cients as defined hereafter is written as

Rop Top Ros
T Ry Ty
" |Rp T, R
T, Ry, T
and

-1 0 0
0 1 0

h=
=10 0 -1
0 0 0

~ O O O

Tps
ps
T-

S5

4.3)

4.4)
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The reflection and transmission coefficients can be obtained by solving the fol-
lowing equation

s=m~hm, 4.5)

The reflection and transmission coefficients for an incident P wave from
medium 0 to medium 1 are defined as follows

& =Ry (4.6)
& 2Tt @.7
Vo =Ryd (4.8)
vi=Tow, 4.9

where ¢ and y are the P and S wave potentials as defined in Chapter 3. (Similar
relations can be given for the other coefficients.)

For the moment we will restrict the analysis for simplicity to the acoustic situa-
tion. In the acoustic situation only the four coefficients in the top-left corner of
matrix s are non-zero. Thus for this situation the matrices that appear in (4.1)
reduce to

1 -1
m=
= (pICpl cosO,  MCpo cosﬁpJ’ @.10)
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R, T,
§=( i R”_P) @.11)
TPP pp
and
-1 0
h= - 4.12)

Note that in the acoustic situation the P wave potential ¢ is equal to the acoustic
pressure. Solving (4.1) for the acoustic situation yields,

Cp1P1 COS A — Cpofy COS B

Ry, = Detm] , (4.13)
+ _2cppcosa
= Detm] (4.14)
R, = Spofh cosli t-[ ;GIPI cosa @15
and
T = 2p0c0sh 4.16)

P~ Detfm]

where
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Det[m] = (¢, cosP + ¢, 0 cOS X)), “4.17)

From (4.13)-(4.17) some interesting relations can be deduced that will later be
extended for the elastic situation. The first relation that is particularly interest-
ing for inverse wave field extrapolation involves the transmission and reflec-
tion coefficients related to an upgoing wave field. It can be verified with (4.13)-
(4.17) that

o i L bl 4.18
pp pp C0f COs B pppp = (4.18)
or with
_ Chofpcos P
T, =T, 22200
pp PP CpiPy COSCL @.19)
it easily follows that
—t - p— _
TopTpp + RppRpp =1 (4.20)

holds for all angles.

The physical meaning of (4.18) and (4.20) can be explained by looking at the
Rayleigh integral for inverse wave field extrapolation (for the acoustic situa-
tion) in the wavenumber domain (see also Fig 4.2). The acoustic Rayleigh inte-
gral reads (compare eq. (3.128), where in the acoustical limit both products
concerning the § waves are zero; Wapenaar et al., 1989)
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- 2 ' V-
PA (I'A,(D)=‘[b—a)2- —J;J'[(QZGO) PO ]Zodxdy

2 ' +\ pt
v —j” j[(a,a,) P dedy @.21)

Fig. 4.2 Acoustic Wave field
a) An upgoing P
wave through A splits
in an upgoing (trans-
mitted) part through
Sp and a downgoing
(reflected) part
through S ;.

b) Corresponding
Green's function.

Acoustic Green’s function

"y
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where the elastic symbols @ and I have been replaced according to
P(r)=@(r) 4.22)
and
G(r,ra) =Ty 4(rrs) (4.23)

where P and G represent the acoustic pressures related to the physical wave
field and the acoustic Green’s function respectively.

Using Parseval, (4.21) can also be written as

_ 2 (IV ', (A e
PA (rAvw) = A)wz ('2—15") _J;,J-[lklo (Go ) Po :|Zo dkxdky

2 (IV . [\ s
_,)17(%) _.[o I [’kz, (GI) P ]21 dk.dk, . (4.24)

In (4.24) it is assumed again that &, = k; (hence, (4.24) only hold for propagat-
ing waves).In the following integral relation (4.24) will be evaluated for a sim-
ple situation. For this position vector r, is chosen to be r,=(0,0,z4). With this
choice the left hand side of (4.24) can be written as (in accordance with the
Fourier integral definition used in this thesis),

_ IV T o
P; (rA,w)=(%) [ Br ey 205 0}l 4.25)

—o0
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Without loss of generality, the wave field at z, may be normalized, i.e. the wave
field at z, is chosen to be ISA" (ky,ky,z4;0) = 1. With this choice and dropping
the integrals in (4.24) it follows that

GV | - Sl e A ]
I=—=lik, |Gy ) F, - —| ik, |G/ ) P, . 4.26
s lzo( o) 0 " ha? lz,( 1) s (4.26)

The (normalized) pressure at surface S, can be written as

By = ¢ Mool ik eieal 4.27)

where the phase shift factors in the right hand side account for upward propaga-
tion from z,4 to z; and from z; to zy. In a similar way, the (normalized) pressure at
surface §; reads

—i —zla —ik. |z:—
By = Ml ikl (4.28)

The Green’s function at Sy, that is due to an impulsive monopole source situ-
ated in A, reads

—ik, |zo—zi| ~_  —ik, Iz,-—zAI
G =peo?— Tt 4.29)
2ik,,
and at surface S,
—iky 2=zl 5— —iky; |74
~ e M R,e
Gt = pw? £E , (4.30)
2ik;,
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4.1 Error analysis

Fig. 4.3

The upgoing Green's
function in (4.29)
may be replaced by a
downgoing Green's
function on basis of
reciprocity.

where the denominator 2ik,;, in (4.29) and (4.30) accounts for the monopole
character of the Green’s source. Substituting (4.27)-(4.30) into (4.26) yields

Z, _— —_
1=T, 0 =2+ Ry,R,, @.31)

which is the wavenumber domain equivalent of (4.18).

On the other hand, by means of reciprocity instead of (4.29) the following
Green’s function (see Fig. 4.3) may be used

—ik; |z4—2i] =+ —ikyq |2:—20|
e Tppe

2ik

20

G = po?

(4.32)

Substituting this reciprocal Green’s function into (4.26) together with (4.27),
(4.28) and (4.30) yields

Reciprocal Acoustic Green'’s function

Gy

__________ ——— - P 1]

Zi

*V
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Chapter 4 Amplitude analysis

—TYT- + R R
1=Ty T + R R, (4.33)

which is the wavenumber domain equivalent of (4.20). Equation (4.20) (or
(4.33)) are extremely suitable for error analysis. Immediately it can be seen
from (4.33) that neglecting the contribution from surface S; in (4.21) (which
corresponds to the second product on the right hand side of (4.33)) means that a
factor of ﬁ;pﬁ;f, is missing in the amplitude. For the following an amplitude
error function E will be defined, i.e.

E=1-|f )| ws

where E = E(k,)2 E(wp), and where p represents the ray parameter defined
by

_sine, sing, _sinf, _sinf, _k
[4

=, (4.35)
pi Cs1 Cp2 Cs2 o

Note that E quaritifies the angle dependent error that is made in practice when
only the integral over surface S, in (4.21) is computed.

In Fig. 4.4 a graphical representation is given of (4.34) for three different con-
trasts as a function of the ray parameter. For the first contrast the first transition
in the elastic model from Fig. 2.1 is chosen (the first contrast will be referred to
as g=1, the second as g=2 and the third as g=3). Notice that the ray parameter
that corresponds with an angle of emergence of 90° (i.e. p=4400"sim,
p=3600"s/m and p=2800"1s/m for g=1,2 and 3 respectively) is different for all
three contrasts as indicated in Fig. 4.4. Beyond these points the wave field
becomes evanescent and is of no more interest to us. As can be seen, the error
in the amplitude keeps fairly constant for a wide range of angles and grows rap-
idly for very high angles. Obviously, one always aims to keep the error function
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Fig. 4.4
a) The transmission
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as constant as possible for a wide range of angles in order to preserve angle-

dependent amplitude behavior.

In a similar way elastic expressions such as acoustic expression (4.33) can be
deduced from the solution of matrix equation (4.5) or equivalently from the
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elastic Rayleigh integral that for the reconstruction of the upgoing P potential
in point A in the subsurface reads

& (14, 0) ~ 2 %[(a,r,,;, ) & +(a.ry,) - ‘I"]dxdy
5, @

‘2J;f pl_;z'[(azr ¢f¢)* " +(azrllf+.¢)* : ‘1’+]dxdy’ (4.36)
1

(which follows immediately from (3.123) and (3.124)). It is shown in Appendix
A that for the contributions to an upgoing P wave field in A the following rela-
tion holds

Pt = L PrE— B B 4 P P —
T Top + T + Ry R + Ry R = 1 (4.37)

which is the more general expression of acoustic expression (4.20) (or equiva-
lently (4.33)).

It should be emphasized though that to come to (4.37) in (4.36) the P and S
potentials (¢',‘I-",(D+ and ‘I’+) at surfaces S, and S; are wave field compo-
nents (transmitted and converted) that are directly related to the upgoing P
wave field through A. In addition to the acoustic expression (4.33) there are two
extra products that appear in (4.37) where the converted components are
involved. Notice that, in the inverse wave field operator derived in Chapter 3
(expressed by equation (3.130)) only the first product in (4.36) is taken into
account (it is argued that the other terms are of second order only). From (4.37)
the individual contributions of these four products can now easily be analyzed
and from the following analysis it will be clear why this choice is justified. In
Fig. 4.5 these four contributions are visualized for three different contrasts.
Again it can be seen that the amplitude error remains constant up to high angles
of emergence even in case of the highest contrast (g=3). As expected, the error
term due to the converted waves slowly grows as the contrast grows but seems
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Fig. 4.5
a)-b) The first two
products from equa-
tion (4.37) for three
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calculated for three
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Fig. 4.5
(continued)

¢)-d) The last two
products from equa-
tion (4.37) for three
different contrasts.
e) The error function
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4.2 Influence of macro model errors

4.2

to have very little influence for the smaller angles. Notice that the first contrast
(g=1) is closest to most seismic situations.

The elastic Rayleigh integral for an upgoing S wave through subsurface point A
reads

Fy (14, 00) = Zﬂ—i_f[(azr'iw )* >+ (azr'l/-V’h )* ’ ‘P_]dXdy
5, P ®

-2 £ [ E%[(azrgw ) " +(3,T)y, ) . ‘I’+]dxdy . (4.38)
1

From this integral a similar expression can be derived

ThT +Tule +ROR, +RR =1 | (4.39)

sp’ ps sstss spips

where again the four products in this equation correspond to the four products
that appear in the integrals in (4.38). Fig. 4.6 shows the individual contribu-
tions of these four terms to an upgoing S wave in A for the same contrasts as the
ones given by the table in Fig. 4.5. Comparing these results and the results in
Fig. 4.5 it follows that for the extrapolation of S waves the error function is not
as constant as for the extrapolation of P waves for this particular example. It
seems that especially for the high angles the error is no longer constant and
therefore for these angles the converted term (Fig. 4.6 b) is no longer negligi-
ble. The irregular behavior in all the functions displayed in Fig. 4.6 is caused
by the fact that the P waves in the upper and lower layer become evanescent.

Influence of macro model errors

Suppose that one chooses to extrapolate the P and S wave fields simultaneously
from level z, to another level z; through a horizontal interface (this can be con-
sidered equivalent to the situation where one chooses to extrapolate the total
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Fig. 4.6

a)-b) The first two
products from equa-
tion (4.39) calcu-
lated for three
contrasts given by
the table.

Amplitude

Amplitude

v |layer 0 | 2200 1400 2000
layer 1

2800 1600 2100

layer 0| 2200 |1400 2000

o

N

&\ layer 1| 3600 |2057 (2100
(3]

layer 0 | 2200 {1400 [2000
&\ layer 14400 (2517 12100

1 . AJ
1 H \
1 H A
' H A
' H b
! i
"""""""""" NS SN o
o Se 1 X
- \\I ‘.:
- 1
0.4 y ;
1 )
0.0 T T T L T 1,
0 100 200 00 400 LOO 600x10Q
ray parameter p (s/m) = - 7\ bl
1] '| H
o t :l ,:
TopTps fon
3 ] ! H
' ;
0.8 ) i
1 »
- i
0.4 p—_————— 1 :
P _---------‘-'..(!.., :
PR A T Lt - SN N et
0.0 | S T i .
0 100 200 300 400 500 600x10

ray parametes p (s/m)

82



4.2 Influence of macro model errors

Fig. 4.6
(continued)
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Chapter 4 Amplitude analysis

vector wave field in terms of particle velocities, thus without decomposition).
The data is supposed to be known on level z, only. In the case of a correct
macro model and neglecting the two reflection terms (the contribution of level
z;) relation (4.37) reduces to

T +ThTo =1, (4.40)

In case of an erroneous macro model, however, for which the parameters of the
first layer are chosen to be ¢ 200 ¢y and fp and of the second layer these are
&p1> &5y and py (the depth of the reflector is chosen equal to the one in the
true model) equation (4.37) then transforms to (see Appendix A, eq.(A.21))

_ _i(kzp,o —I::,P,o )Izi—zol e_i(k‘p,l —IE,pJ )|zA—z,-| N

.
ToppTpp €
X~ ~ilk, —k 2;—2, ~ilk, .~k Z4—2;
Ty e oo o sl (pa =ty Jea=ed =1. (441
An amplitude error function may now be defined according to
p y g
b1y, ool o
Fuge ¢ o ho Ji-sd s PN

or




4.2 Influence of macro model errors

N
Esim =1- Tpprp e +

:+ - —i(kZ:,o _IE’.\‘,O )ll,-—zol
T, I, e

T , (4.43)

where the subscript ;, stands for the simultaneous extrapolation of P and S
waves. Similarly, an amplitude error function for the extrapolation of decom-
posed PP data only may be defined as(see Fig. 4.8)

Epp=1-

T (4.44)

In the following two sections error functions (4.43) and (4.44) will be used to
analyze the influence of macro model errors.

4.2.1 Sensitivity

In order to study the sensitivity of amplitude errors in the transmitted wave
field due to macro model errors first the situation will be considered when the
extrapolation is carried out on the decomposed wave field (thus for the extrapo-
lation of the decomposed PP data the error function as defined in (4.44) is con-
sidered). Wave field extrapolation operators as described in Chapter 3 aim to
compensate for transmission losses. Therefore it is important to realize that the
main interest is to study the effects of macro model errors on a transmitted
wave field.

Fig. 4.7 shows several angle dependent error functions (eq.(4.44)) in relation to
the parameters of the first interface in the Graben model. Plots are shown due
to errors introduced in the P wave velocity of the second layer increasing from
5%, 10% and 20% respectively. Notice that in spite of the large error (20%) the
error function is relatively small but what is more important is the fact that this
function remains nearly flat up to high values of the ray parameter.
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Fig. 4.7
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In the following expressions will be derived that are exact for normal inci-

dence. The reflection coefficient for normal incidence is written as

or equivalently

— Pic1— Ao

Aco

Pic1+ Mo

(4.45)
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r=1=4, (4.46)
1+A
where A shall be referred to as the impedance ratio defined by
A=BC 4.47)

picy

It can be easily verified that the relative error in the reflection coefficient due to
a relative error in A is given by

AR
— 4.48

R (4.48)
where

ﬁ = relative error in the reflection coefficient and

AA _ relative error in the impedance contrast.
A

A similar relation may be derived for the transmission coefficient which is
defined as

T=1I+R. (4.49)

From (4.49) it then easily follows that

T (I+A)

AT A AA
Y 4.50)
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where

ATZ = relative error in the transmission coefficient.

For seismic applications where in general the impedance ratios lie somewhere
in the vicinity of 7 it follows from (4.48) and (4.50) that the sensitivity for
errors in the macro model is less strong for the transmitted wave than for the
reflected wave. In fact a relation between the reflection and transmission errors
can be readily obtained from (4.48) and (4.50)and reads

AT _ (I—A)i‘k’.‘i. 4.51)

T 2

If contrasts are not too severe relations (4.48), (4.50) and (4.51) may be used as
an approximation for even higher angles.

According to these formulas, if the impedance contrast for the first interface in
the Graben model (Fig 2.1) is 5% then the relative reflection error (4.50)
amounts to 17% while the relative transmission error amounts to only 2.1%.

4.2.2 Decomposition; before or after extrapolation?

In case of a correct macro model it makes no difference, from a mathematical
point of view, whether one decomposes the data into P and S waves before
extrapolation or after extrapolation, however, from (4.43) it immediately fol-
lows why in practice it should be preferably done before extrapolation.

Equation (4.43) shows that beside the error in amplitude there is also an error in
phase for the two products that appear in this equation which is a consequence
of the use of an erroneous macro model. The phase difference can easily be
obtained from (4.43) and can accordingly be written as

—((kz,_,, k) (ks ))zi - 2. (4.52)




4.2 Influence of macro model errors

In general, depending on the magnitude of the phase difference, it may be con-
cluded that amplitude information may be lost due to possible destructive inter-
ference of these two products.

Example

For the layer parameters given in Fig. 4.8 (where only an error in the P wave
velocity of the first layer is included) and choosing the distance z-z, equal to
160 m, it can be shown that, for a seismic wavelet with a typical central fre-
quency of 30 Hz, (()klp,o - k,p’o -(kl_sdo _klx,o )izi - zol = 7 rad. The corre-
sponding ray parameter equals 125.710™ s/m. Hence, for this particular example
the two products will be added with a phase difference of & (for p=125.1 0% s/
m and approximately 7z for all other values of the ray parameter), which means
that there is a subtraction (destruction) rather than an addition of amplitudes.
As a consequence there will be a disturbance in the amplitude behavior which
could lead to errors in the lithostratigraphic inversion process. Fig. 4.8 shows
the results of this particular example. First the result is shown if a correct
macro model is used followed by the effects of the use of an erroneous macro
model. The corresponding error functions for these two situations are included
as well. Notice that the error that corresponds with the erroneous macro model
(Fig. 4.8 d) is, due to the phase difference, already varying for relatively small
values of the ray parameter which is of course an undesirable feature.

Decomposing the data before extrapolation allows separate extrapolation of the
decomposed P and S data. The fact that the extrapolation is carried out sepa-
rately means that after extrapolation two separate extrapolated wave fields
(both originated from one and the same event) are obtained. One is now free to
decide whether to add these results (with or without a residual correction) or
after comparison to decide to update the macro model in case of inconsisten-
cies (phase shifts) and extrapolate one or both wave field potentials once more
in order to eliminate the phase difference.

From the results in Fig. 4.8 it may be concluded that in practice the separate
result that leads to the error function expressed by (4.44) is preferred above the
simultaneous result that leads to error function (4.43). Taking into account the
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Fig. 4.8
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as a function of the
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Fig. 4.8
(continued)
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from equation
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4.3

extra converted component is only necessary for the very high angles and can
be of use in order to use the phase shift between the two results to update the
macro model.

In practice often an acoustic operator is used to extrapolate the elastic reflection
response. The difference between the use of an acoustic and an elastic operator
for the parameters given in the previous figure is demonstrated in Fig. 4.9.

Concluding remarks

Using a perfectly known macro model, the amplitude analysis results in this
chapter show that the negligence of the contribution from surface z; as well as
the contribution of the converted term on z, is valid as long as the contrasts are
weak. For large angles (close to critical) this approximation no longer holds. It
should be emphasized though that the results presented in the various figures
are all related to a particular set of parameters. Therefore equations (4.33)
(acoustic relation), (4.37) (elastic P) and (4.39) (elastic S), which hold for any
set of parameters, should be seen as the main result from this chapter.

In case of an erroneous macro model (which is always the case in practice) it is
shown that because of inconsistent P and $ macro models it is better to do the
decomposition into P and S waves at the surface, thus before extrapolation. The
results also show that errors in the macro model lead to relatively small ampli-
tude errors in the extrapolated wave field (transmitted wave field) and that this
error remains fairly constant for a wide range of angles. Thus the angle depen-
dent behavior is hardly affected except for a constant factor. Finally, from the
result in Fig 4.9, where (for an elastic medium) an acoustic operator is tested
against an elastic operator, it can be concluded that for a wide range of angles
the acoustic operator is as accurate as the elastic operator.
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Fig. 4.9
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Modified Rayleigh operators in
redatuming and migration

5.1

The operators derived in Chapter 3 are to be used in elastic redatuming and
migration schemes. In this chapter the performance of these operators will be
studied on data generated for the Graben model displayed in Fig 2.1. First a
description of the theory concerning redatuming and migration will be pre-
sented and it will be pointed out where these elastic operators fit into these
schemes. A more detailed description concerning these subjects may be found
in Berkhout, 1982 and Wapenaar and Berkhout, 1989.

Elastic redatuming and migration

5.1.1 Principles

Moving the data to a new datum other than the surface is a process that is often
referred to as redatuming. In the beginning this terminology originated from the
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source

receivers
VVVV_VVVVVV

Fig. 5.1
Redatuming from
surface acquisition
to an acquisition
level just above the
target.

theory related to the statics correction problem. In this thesis this term will be
used in a somewhat more general sense. The redatuming process that is referred
to in this thesis is the mathematical process that transforms the original surface
acquisition (source and receiver positions at the surface) to an acquisition at a
different (often deeper) level without any loss of information (see Fig. 5.1).
Obviously, this process aims to obtain ‘clear’ recordings just above the region
of interest which enables us to do a better job in delineating the target area.

As already stated in Chapter 2 the wave field operators from Chapter 3 are
applied to decomposed, multiple free elastic data. The decomposition and the
surface related multiple elimination process are the two preprocessing steps in




5.1 Elastic redatuming and migration

the elastic processing scheme. The original multi-component seismic data in
terms particle velocities (or equivalently in terms of displacements) due to
stress sources can be organized in a matrix as follows

Y, 0. (20:20) Yy, 2, (20.20) Yy (20,20)
¥(20’20)= Yvy,‘l‘”(zo’zo) ¥vy,‘ryz(20’20) ¥vy,‘r"(20v20) (5.1)

¥"er1: (20’ 20) sz,'tyl (ZO’ ZO) Yv,,’ru (20’20)

where each of the submatrices contains a monochromatic single-component
multi-source multi-receiver data set. The first subscript (v,, v, or v,) refers to the
type of receiver and the second subscript (7, T,, and 1,,) to the type of source.
After the preprocessing this data matrix is transformed to an equivalent multi--
component one-way data matrix but now the data is written in terms of
received potentials (9, ¥4 and ;) due to potential sources (@, v, and y). The
data resulting from the preprocessing modules at surface level z, may be cap-
tured in a multi-component one-way response matrix (Wapenaar and Berkhout,
1989)

X6.0(20:20) Xy (20:20) Xy (20,20)
X(20,20)=| Xy, ,0(20,20) Xy, y, (20:20) Xy, y, (20.2) (5.2)

Xw,,¢(zo,zo) wa.w, (29.29) wa,w, (20,2p)

where again the submatrices are data matrices where each submatrix holds a
multi-source multi-receiver data set for one particular potential component that
is due to only one potential source type (single-component one-way response
matrices). For instance, the ith column of the first submatrix X¢.¢ (z9,2p) con-
tains the (monochromatic) P wave recordings (indicated by the first index) due
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Chapter 5 Modified Rayleigh operators in redatuming and migration

to a P source (indicated by the second index) that is placed at the ith source
position. After redatuming a similar multi-component one-way response matrix
should be obtained at the redatuming level. The relation between this matrix
and the one at the surface is given by

X(20,20) = W (20,24) X(24,20) W (24,29) + 'overburden response’, (5.3)

where z, denotes the new redatuming level and matrices W~ and W* are
propagation matrices that describe upward and downward propagation through
the overburden respectively. They are based on the modified Rayleigh integrals
derived in Chapter 3. The overburden response are all the reflections caused by
the inhomogeneities in the overburden and have no relation whatsoever to the
target reflections which are of course our main interest. These overburden
reflections, however, form the main ingredient for a macro model estimation
procedure. For the elastic situation both a P and an § macro model has to be
estimated. Propagation operators W~ and W* are then calculated using the
estimated macro model. In order to obtain the response at redatuming level
these operators should be inverted and be applied to the left hand side and to
the right hand side of equation (5.3) after moving the ‘overburden response’ to
the left hand side first, such that this equation now becomes

X(ZA9ZA) =

-1 —1
[Vyf (29,24 )] (X(zo ,29)— 'overburden response‘)[vy+ (zp-29 )]

5.4)

or




5.1 Elastic redatuming and migration

-1 -1
X(ZAJA):[W—(ZO’ZA)] X(Zo’lo)[WJr(ZA,ZO)] +

-1 —1
- [vy- (29,24 )] (‘overburden response')[W*(zA ,zo)] . (5.5

After transforming the results to the time domain, the second part on the right
hand side of (5.5) concerning the ‘overburden response’ will appear at negative
times and will not seriously interfere with the target response. In the remainder
of this chapter I shall no longer pay any attention to the overburden response
and shall concentrate only on the target response and on the way this response
is handled by the wave field operators. Hence, the multi-component one-way
target response matrix at the new datum may be written as

X(ZAszA)zE—(ZA’ZO)X(ZO’ZO)E+(ZOvZA)’ (56)
where
-1
F(2402) = [W_(Zo,l,;)] 5.7)
and
—1
F* (29,20) = [w+(zA,zo)] . 5.8)

In Chapter 3 it is already argued that during propagation converted waves may
be neglected for a wide range of angles. For the first submatrix in the multi--
component target response matrix X(z4,z4) from (5.6) the following may then
be written
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Chapter 5 Modified Rayleigh operators in redatuming and migration

X.6(24:24) = Fg 4(24,20) X 4,4 (20,200 F 5 4(20,24) (5.9)

or using a more general notation that includes all other submatrices of matrix
X(z4,2,4) as well '

Xa,.0Gs20)=Fg o (z4-20)X g, 0 (ZO’ZO)E?),,Q, (29,24) (5.10)

where £2; and £, stand for ¢ or y; or ¥, and where

-1
E?bﬂz (ZA,Z()):l:W}b'Qz(ZO,ZA)jl 5.11)
and
~1
Fo.0,(20.20) = [W},I,Q, (zA,zo)] . (5.12)

Note that conversion during reflection is still included in the matrices in (5.10).
Assuming that the contrasts in the subsurface are weak to moderate, which is a
valid assumption in the seismic situation, then in analogy with Chapter 3 for
the forward and the inverse operators the modified matched inverse operators
may be used, i.e.

-

E;Jz.ﬂz(z/"zo)=|:WI)2.!§(ZN20)] (5.13)
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5.1 Elastic redatuming and migration

and

*

F0,.0,(z0,20) = [VY};,,Q, (zo,zA)] (5.14)

where * denotes complex conjugation. Notice that each row of propagation
operator vy},l, 2, (24,29) corresponds to the z-derivative of the complex conju-
gated Green’s function that is derived in Chapter 3 (compare (3.130) or
(3.132)). In fact, using the first submatrix as an example (eq. (5.9)), by apply-
ing the first inverse operator to the surface response only, it follows that

X¢‘¢(ZA,Z(})=E},¢(ZA,20)X¢,¢(20,20) (5.15)

or, with (5.13), that

*

X¢_¢ (z4,29) = [W;,q,(zmzo)] X¢,¢(Zo,lo). (5.16)

Note that (5.16) is merely a matrix notation for the integral operator (3.130)
that is derived in Chapter 3 (at least for a finite aperture). This first step is the
process that downward extrapolates the receivers to level 2z, Thus
X.9(24,29) represents the one-way target response at level z4 due to sources
at level z,. The next step is to apply (5.14) to (5.16) which is actually the pro-
cess that downward extrapolates the sources to level z, i.e.

X0.0(24:24) = X,6(24,20)F} 4(20,24) (5.17)
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Chapter 5 Modified Rayleigh operators in redatuming and migration

or with (5.14)

X0.0(24.24) = ¥¢,¢(ZA,20)[W$,¢(ZO,ZA)] . (5.18)

It should be emphasized that the quality of the redatuming process depends on
1) the accuracy with which one is able to estimate the macro model (P and S
velocity models) and 2) the way the Green’s function is generated with the use
of this macro model. Often in the seismic industry the Green’s function is cal-
culated using a ray-tracing algorithm. In this thesis the Green’s function is cal-
culated using a full elastic finite difference algorithm (see Appendix B). In such
an algorithm all wave types are included (reflections, transmissions, wave con-
versions, diffractions, headwaves, surface waves, interface waves).

Redatuming of PP data

In order to redatum the 81 (=NS) decomposed data sets from the Graben
model, 256 (=NGSr) Green’s functions are calculated using the correct macro
model (so the macro model matches the overburden exactly, see also Fig. 5.2).
After a Fourier transform, the z-derivatives of these Green’s functions form the
rows of the propagation matrix in (5.13). Another 8/ (=NGSs) Green’s func-
tions need to be generated (either by modeling or by applying the reciprocity
principle), again using the correct macro model, in order to downward continue
the 81 sources. After a Fourier transform, the z-derivatives of these 81 Green’s
functions form the rows of the propagation matrix in (5.14) (see Fig. 5.3 where
this redatuming process is visualized using the decomposed PP data). For the
Green’s functions a P wave source is used and at the receiver side the response
is decomposed into one-way P and § responses. Thus, similarly as to the seis-
mic data the Green’s functions are decomposed at the source side and at the
receiver side. The seismic wavelet and the source signature of the Green’s func-
tion are displayed in Fig. 5.4. Of course one expects a delta pulse for the
Green’s function but this is not necessary. A sufficient condition is that the
spectrum of the Green’s source is unity within the seismic bandwidth (compare
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5.1 Elastic redatuming and migration

Fig. 5.2
Configurations used
to calculate the
inverse and forward
operators.

a) Green's functions
to bring down the
256 receivers.

b) Green's functions
to bring down the 81
sources.

256 P receivers
vy v v V VV VYV VY VYV VY YV VYV VYVYVY Y VY VY

rden §

81 Green’s P sources

Fig. 5.4 b and d). In Fig. 5.5 one of the 8/ redatumed PP data sets can be
observed. The first data set, Fig. 5.5 a, corresponds to the PP target response
after this has been isolated from the rest of the surface PP data (see Fig. 2.9 a).
The maximum angle from the target that is recorded at the far sides of the
receiver array is about 70°. Fig. 5.5 b shows the redatumed PP data after the
complete redatuming procedure where source and receivers are at one and the
same level, z,=300 m (eq. (5.18)). The arrows indicate how angles in the sur-
face data map to angles in the redatumed data. Of course, we may expect accu-
rate wave field reconstruction only between the (approximate) bounds of -70
and +70 degrees. In the following this range shall be referred to as the
‘expected aperture’ (see Fig. 5.6). This aperture is calculated for the first inter-
face (layer#3 to layer#4) in the target. For deeper interfaces another aperture
(often wider) is applicable. (It should be emphasized though that the indicated
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Fig. 5.3 NGSr

Inverse and forward 1) NNS 1S ™\ NGSs

operators applied to , ,
Green's decomposed Green's

the PP data from the ; .

Graben model. functions PP data functions

NR=number of NT NT NT
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NT=number of time

samples

NF=number of fre- FFT FFT FFT
quencies
NGSr=number of

Green’s sources to
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receivers I ™N NS ~NGSs

NGRr(=NR)=number _
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1o bring down the ; ; w;
receivers NF NF NF
NGSs(=NS)=number k J/ i/ \L
of Green’s sources to <
bring down the NGRr @ | N NR @ | N NGRs | ©
sources
NGRs=number of
Green's receivers to
bring down the
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NGSr NR

;
NGSs

NGRr NS NGRs

Xo.0(za:24) = Fy4(z4,29) X Xo4(20:20) x Ky 4(2p,24)

104



5.1 Elastic redatuming and migration

Fig. 54

a) Seismic wavelet.

b) Spectrum of the
seismic wavelet.
¢) Green's source
wavelet.

d) Spectrum of the
Green’s source
wavelet.
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bounds of -70 to +70 degrees are not stringent..) For comparison, a data set for
exactly the same source position as the redatumed source position has been
simulated at z4=300 m and this simulated data set is displayed in Fig. 5.5 c.
The first thing that can be noticed is that, due to the finite aperture at the sur-
face, the aperture at the redatuming level has reduced considerably. This does
not mean however that the range of angles has been reduced in comparison to
the range of angles that was available in the surface data. Although the aperture
at the redatuming level is smaller it is still expected that true amplitudes can be
reconstructed for a wide range of angles because the redatuming level is very
close to the target zone (the distance between the redatuming level and the top
of the target amounts to only 40 m!. Notice in Fig. 5.5 b and c, that the angle
changes rapidly as a function of offset because of the small distance). Taking a
closer look at the redatumed data it can also be observed that toward the edges
of the expected aperture there is a decrease of the amplitude. This amplitude
decay can be explained by the presence of artifacts. These artifacts are due to
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Fig. 5.5

a) Isolated PP tar-
get response at the
surface.

b) Redatumed PP
target response
(source position
x=1112 m, source
#41). Source and
receiver at z=300 m.
¢) For comparison.
Simulated PP data.
Source and receiv-
ers at z=300 m.
Notice that, the reda-
tumed data (b) is
supposed to match
the simulated data
only within the win-
dow of the expected
aperture. Outside
this aperture (shaded
area) the data are
out of range of the
surface aperture so it
is not possible to
reconstruct the wave
Sfield for this area.
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5.1 Elastic redatuming and migration

Fig. 5.5

(continued).

the truncation of the data and the operators at the surface. One way to suppress
these artifacts, at least for the smaller offsets, is by tapering the data (or the
operators) at the sides. This, however, will not restore the amplitudes at the
edges of the aperture (a more accurate way to reduce aperture artifacts, based
on diffraction theory, is presently under investigation). To obtain the result in
Fig. 5.5 b and later on in Fig. 5.9 b no taper was used. One can observe some
tails of the artifacts just above the hyperbolas. In Fig. 5.7a the zero-offset
traces (for source #41 this corresponds to receiver #137) of the redatumed PP
data and the simulated PP data are plotted and in Fig. 5.7b their spectra are
compared. Note that the match is very good. Selecting the zero-offset traces
from all the 81 redatumed data sets yields a zero-offset data set at level
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Fig. 5.6

Surface aperture and
the aperture after
redatuming. Notice
that, although the
expected aperture is
smaller it still covers
the same range of
angles that was
already present at
the surface.

Fig. 5.7

a) Comparison of the
zero-offset traces of
the redatumed PP
data and the simu-
lated PP data.

b) Comparison of the
spectra.
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5.1 Elastic redatuming and migration

Fig. 5.8
Comparisonbetween
a) the redatumed
zero-offset PP data
and

b) the simulated
zero-offset PP data.
¢) Residual section.
Notice that in these
pictures both axes
have been scaled
compared to previ-
ous data displays
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z=300 m. A comparison between this data set and the simulated zero-offset
data at z=300 m can be seen in Fig. 5.8. The trace shown in Fig. 5.7 corre-
sponds to trace 4/ (source#41) in Fig. 5.8. Note that the match is very good.
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Fig. 5.9

a) Isolated SS target
response at the sur-
face.

b) Redatumed SS
target response
(source position
x=1112 m, source
#41). Source and
receiver at z=300 m.
¢) For comparison.
Simulated SS data.
Source and receiv-
ersatz=300m
Again, similarly as
in the PP example,
the redatumed SS
data (b) is supposed
to match the simu-
lated data within the
range of the indi-
cated expected aper-
ture.
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5.1 Elastic redatuming and migration

Fig. 5.9

(continued)

Redatuming of SS data

To extrapolate the SS data now instead of P sources, SV sources have to be used
for the calculation of the Green’s functions. The configurations for these SV
Green’s functions remain exactly the same as the one displayed in Fig. 5.2. So,
in this figure P has to be replaced by SV. Similarly as in the case of redatuming
the PP data, Fig. 5.9 a shows the (isolated) SS target response at the surface
(compare Fig. 2.9 ¢), the redatumed SS data and for comparison the simulated
SS data at the redatuming level, respectively. (The displayed angles in this fig-
ure are approximations and may differ a few degrees compared to the angles in
Fig. 5.5.) Again, as can be observed there is a good match within the aperture
bounds. The expected apertures as indicated in Fig. 5.5 and Fig. 5.9 are calcu-
lated for the first transition in the target area (i.e. from layer#3 to layer #4). For
a deeper transition the expected apertures are supposed to be wider, although
the range of angles will, in general, decrease compared to a shallower interface.
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Fig. 5.10
a) Comparison of the 400 — simulated shot rec#137
zero-offset tracesof | Y ,f L redatumed shot rec#137
the redatumed PP 200
data and the simu- 8
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In Fig. 5.9 b it can be clearly seen that for the first (weaker) event the corre-
sponding aperture (as indicated) is smaller than for the second (strong) event,
which corresponds to the transition from layer#6 to layer#7. For the second
event the amplitudes are still strongly present even outside the expected aper-
ture, suggesting that for this second event another aperture (wider) should be
applied. In Fig. 5.10 a the zero-offset traces of the redatumed SS data and the
simulated SS data are plotted and in Fig. 5.10 b their spectra are compared. A
comparison between the zero-offset SS data set and the simulated zero-offset SS
data at z=300 m can be observed in Fig. 5.11. Again, as can be observed, the
match is very good.
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5.1.2 Imaging condition

The final goal of the extrapolation process is to obtain an image (x,z) of the
Earth’s interior. This image should then reveal the true layer structure. One
possibility to reveal the layer structure is to redatum to several levels in the
region of interest and then to pick the r=0 component at the zero offset from
each redatumed data set. These =0 components are then stored in a (x,z) image
at the corresponding redatumed source position. In this way one builds up a
genuine zero-offset image of the target zone. In this image the zero offset
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Fig. 5.12

a) Migrated PP data
for the target area.
b) Migrated SS data
for the target area.

reflection coefficients are available for every point in the target and can be used

to estimate the impedances.

From the redatumed PP and S§ data migrated PP and SS sections are obtained
which can be observed in Fig. 5.124 and b respectively. Obviously, due to the
lower shear wave velocity (shorter wavelength), the migrated SS section has a
higher resolution than the migrated PP section. The redatumed PP data have
been migrated with a constant velocity that corresponds with the compressional
wave velocity at the redatuming level (layer #3), i.e. ¢, = 3100 m/s. Similarly,
the redatumed SS data have been migrated using a constant velocity that corre-
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5.1 Elastic redatuming and migration

sponds with the shear wave velocity at the redatuming level, i.e. ¢, = 1700 mis.
Due to the relatively long wavelength and the thin layering there is a strong
interference of the different reflectors as can be seen in both migrated sections.
Notice that in these sections only the zero-offset reflectivity is available and
therefore one can invert for impedances only.

To be able to invert for the elastic parameters (c,, ¢, and the density) we go one
step backward and examine the redatumed data more closely (e.g. Fig. 5.5b
and Fig. 5.9 b). Then, it can be shown that angle dependent reflection informa-
tion is available in each of these data sets. By performing a generalized imag-
ing procedure it is possible to obtain from each redatumed data set angle
dependent reflection information for each depth point (a detailed description on
the concept of generalized imaging and the retrieval of angle-dependent reflec-
tivity would lead us beyond the scope of this thesis. The interested reader is
referred to de Bruin, 1988 and 1992). Thus, instead of having a scalar (zero-off-
set reflectivity R(0)) per depth point it is possible to have a vector (angle-de-
pendent reflectivity R()) per depth point. Obviously, the range of angles that
can be retrieved fully depends on the range of angles available in the surface
data which, of course, on its turn depends on the acquisition geometry of the
seismic survey.

For the shale-gas transition on top of the reservoir (from layer #3 to layer #4)
the amplitude behavior as a function of the ray parameter p has been recon-
structed for one x location. For the PP data this behavior is displayed in Fig.
5.13 a and for the SS data this is displayed in Fig. 5.13 b. Notice that, in Fig.
5.13 a the maximum ray parameter corresponds to the critical angle belonging
to the P wave velocity (p=1/3100 = 323.10° s/m), whereas in Fig. 5.13 b the
maximum value corresponds to the S wave velocity (@=1/1700
=588.10° s/m). It can be observed in Fig. 5.13 b that the match in the SS data
deteriorates at the point where the P wave becomes evanescent as was expected
according to the results achieved in Chapter 4.
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5.2 Conclusions

The redatuming results shown in Fig. 5.5 (PP data) and Fig. 5.9 (SS data) illus-
trate that the amplitude handling of the P and § extrapolation operators ((3.130)
and (3.132) respectively) is as we expected good, at least for not too large off-
sets. For larger offsets the example clearly illustrates the effect of truncation
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(finite aperture) when applying these P and S extrapolation operators, where it
is assumed that the data is collected over a range from -ee 1o +eo. Truncation
artifacts mainly affect amplitudes that are close to the edge of the aperture.
Although the recovered aperture at the redatuming level is small (because this
is very close to the target) the results in Fig. 5.13 a and b show that the recon-
structed angle dependent P and S reflection curves match the true curves very
well for a wide range of angles. As expected from the results in Chapter 4 the
match in case of the SS data (Fig. 5.13 b) deteriorates after the p-value where
the P wave becomes evanescent (i.e. p=1/3100 ~323.10° s/m). Also in both
figures it can be seen that at about 50 degrees and higher the amplitude decays
considerably which is, as stated before, the effect of truncation.
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Appendix A

Elastic Rayleigh integral
contributions

Although it can be verified from the solution of (4.5) that elastic equations
(4.37) and (4.39) are true, for the proof that these equations are indeed correct
we shall start in this Appendix from the modified Rayleigh integrals that are
derived in Chapter 3. In this Chapter 3 we showed that for the reconstruction of
the upgoing P potential in point A in the subsurface the modified elastic Ray-
leigh integral reads
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& (ry,0) =2 ﬁ[(a,r@, ) & +(9,Ty) .‘I"]dxdy
So

| 'ng,fuz[(azf ¢T¢)*¢++(a,r.;¢)*-'r+]dxdy, (A1)

(which follows immediately from (3.123) and (3.124)) where in (A.1) both sur-
face integrals (i.e. over S, and S;) are included (see Fig. A.1).

Again, without any loss of generality, we choose for the spectrum of the wave
field in A a flat spectrum (i.e. @~ (k,, k,, 240)=1 ). In order to keep the calcu-
lations orderly this analysis will be carried out for the 2D situation (in this way
we may take into account only one of the three components of the vectorial
wave fields). With this choice and after rewriting (A.1) it follows that

I= #[ikzp,o (f¢?¢ )* éO_ + ik’-na (f‘;y"o) .Py_'o :L,
-2l (o, () B s

]
At surface S, we may write for the upgoing P wave field potential
@ = e_ik"'”lzo—zilf;;,e_ik“’" fi=2al (A3)
and for the upgoing S, potential
3 =iky, o |20=2il . —iks, ;|2i-24]
Ho=e ™ e (A4)

Similarly, at surface S; we may write for the downgoing P potential
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Fig. A.1
The elastic wave field
and Green's function
due to an upgoing P
wave through A.
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o —ik, |zi-zls_ ik, |z:—z4]
‘Pyv:l =e = Rspe e .
For the Green’s P potential at S, we may write

~ik, lzo~zi| . —ik, lzi~z4l
.0 i 2p, 1%
e T,pe

Iy =po?
9.0 =PI 2ik,
p.d

and for the Green’s S, potential

e-ik,s,O |z0-2i] -s_e-—ik,pll lzi—24]

Iy »=po’ 4
vyt =Pt 2ik,

p.d

(A.6)

(A7)

(A.8)

Similarly, at surface S; we may write for the downgoing Green’s P potential

5 e—ik'[’.l |Zl—2,'|ié_ e-'ikzp" |2" —ZAl
r~ +
Ly =po >

2ik.

Zp.1

and for the Green’s S, potential

e_ik's,l |27-2] .;,e—ik,p'} |zi=24|

Iy o =po’
Vyo =P 2ik,

Pl

For this situation equation (A.2) transforms to

(A9)

(A.10)
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12/] kzp', Zp1 k,

pd

k k k
— p] Zp,0 F— 25,0 - D— D— Zs0 p— p—
10| TPPTPP+rinsp] - [R,,,,R +-—Rs,,Rsp} . (AN
29 Z]

On the other hand, similarly as in the acoustic situation we may use reciprocal
Green'’s functions (see Fig. A.2). The reciprocal Green’s function of (A.7) reads

—ik, za-zl=, ik, olz—z0]
p.1 + p.0
e Tppe

I}y = po? : (A.12)
4 2ik, ,

while the reciprocal Green’s function for the Green’s S, potential in (A.8) reads

e_ikzp.g IZA_zilf;se_ikz-“J [zi—z|

Pt = pw? (A.13)
oy, =P 2ik

25,0

Similarly, at surface §; we may write for the reciprocal Green’s S, potential
expressed in (A.10)

e—ik,p'l lea—zi| 5 ik, |z:—z)|

I, =pw? P ) A.l4
o.v, Pr 2ikz” ( )

Notice that there is no need to specify a reciprocal Green’s function for (A.9)
because these are exactly the same. Using these reciprocal Green’s functions it
can be verified that after substitution into equation (A.2) this equation now
becomes

_ At e P— B~ 4 Bt P
1=T3 T +ThTo + R Ry, + R R, (A.15)
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Fig. A.2
Reciprocal elastic
Green’s functions
that correspond to
the Green’s function’s
in(A.7),(A8) and
(A.10) respectively.
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The four products that appear in this equation correspond with the four prod-
ucts in integral relation (A.1). Thus, (A.15) enables us to analyze the contribu-
tion of each of the four products in elastic Rayleigh integral (A.l1) in a
quantitative way. In the forward and inverse operators that are derived in
Chapter 3 only the first term is taken into account. The other three terms are of
second order as demonstrated in Chapter 4.

For the reconstruction of the upgoing S potential in A the Kirchhoff integral
reads

Wy (1, 0) = 2ff —!—2[(911* 9.V )* ¢+ (azrw—,w;. )‘ -‘I"]dxdy
5,

_ZH_I—Z[(‘QZFJW )* "+ (BZI‘,;% )* '\Iﬁ]dx‘iy . (A.16)
S; po

The derivation of (4.39) from (A.16) goes in a similar way as the previous der-
ivation.

Erroneous macro model

The Green’s functions that lead to the result in (A.15) are supposed to be calcu-
lated in a correct macro model. In the following we shall examine what hap-
pens if the macro model is in error.

Similar as in Chapter 4 we choose for the erroneous macro model the following
parameters for the first layer ¢,5, ¢ and gy and for the second layer
Cp1» €5y and Py (the depth of the reflector is chosen equal to the one in the
true model). Using these macro model parameters it can be shown that equa-
tion (A.1) transforms to
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Fig. A3 Elastic Wave field
The elastic wave field

and Green's function
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where the caret " relates the underlying quantity to the estimated macro model.
Neglecting the integral over §; yields

2 Ny x_ Voo o~ X o
Isu—-“)w [lkzp'o(r¢'¢) ) +lkzs,0 (rWy,‘P) q’y'o] (A.18)
20

At surface S, the upgoing P and S, potentials are still correctly represented by
equations (A.3) and (A.4). The reciprocal Green’s P potential is now given by

ik, |ea-zlz, —ik,, |z~
p.d st Zp,o 1™
e T,pe

gty = oo’ ] (A.19)
2ik,
p.0
and the reciprocal Green’s S, potential by
- . . " e"‘l.l;zp’o IZA_Zi‘f;Se_ilzzsvl IZ"—Zol
Loy, =ho 27 (A.20)
5,0
Using these Green'’s functions it can be shown that (A.18) transforms to
xom il s, Juzol  i{ke,, ke, , Jea=2i
Tl € V77 °F e P F +
Xy~ —ilk, —i, 2;—2 —ilk, —/2, Zp~2;
+T, T, e (o ko il (s "-’_)l L, (A21)

where it can be seen that when an erroneous macro model is used the phase
term in (A.21) will generally be non-zero.
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Appendix B

Implementation aspects of seismic
modeling

B.1 Introduction

The performance of newly developed elastic data processing algorithms can
only be adequately determined if those algorithms pass several stages of testing
and evaluation. One of these stages is to test the algorithm upon simulated data
where all the parameters are known. Testing a new algorithm directly upon
field data is from a scientific point of view inadmissible. Over the years a large
number of elastic modeling algorithms has been presented in the literature.
However, the moment one chooses either one of those algorithms to work with
one notices that there are still lots of problems that have yet to be overcome for
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B.2

which no solution is given. Fixing these “minor” problems is the most time
consuming part in the development of a modeling algorithm. In this Appendix,
a number of these problems will be addressed together with some solutions.

Theory

The displacement vector u=u(x.y,z,t) satisfies for an isotropic, heterogeneous
elastic medium the vector wave equation

V(A +24)V.u] -V x (uV x u) +

2
(V- VIu—(V)V-u+(Vu)x(V xu)] —p%?ll =-V3(r—rp)s(z)
B.1)

where A =A(x,y,z) and p=p(x.y,z) represent the Lamé parameters. The density is
denoted by p=p(x.,y,z). On the right hand side a compressional point source is
taken into account at position ry=(x,,yp,2,). The time variation of the point
source is given by s(). This equation can be written in a somewhat more com-
pact notation as follows

d%u . V3(r - rg)s(z)

=Lu+———92""7
Y u P (B.2)

with operator L defined by

Lu=p '[V[(A+24)V.u]- Vx (uV xu) +
2(Vie- V)u—(VR)V-u+(Ve)x (Vxu)]]. (B.3)

For the 2D situation (the medium and the wave field are assumed to be invari-
ant in the y-direction) the components of displacement vector u satisfy
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u 8(r o) s(r)
2% L = oY)
or? Mo p (B.4)
and
Qu, d(r—ry) s(z)
=L 20
or z oz p (B.5)
with

40 ou, du du 10 ou, du
Lu=o12|2| % 2% |17, % 19 (__z x)
M=p ax{’l( x| oz )+ oF” ]+p az[“ * oz (B.6)

and

—p19 (BL 51) 2 e |y 19 (%_ aux)
Lu=p az[’l x o) P TP w Mt )| ®D

The differential operators that occur in these equations may be approximated
by bandlimited versions that are valid within the seismic band (Berkhout,
1987). Let d;(.) denote a bandlimited version of the first order differential oper-
ator and d,(.) a bandlimited version of the second order differential operator,
thus for example

ou

—Z

3 di(z) % u, (B.8)

and
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0%u,

?—=d2(t)*ux, (B.9)

where * denotes convolution. In view of this notation (B.4), (B.5), (B.6) and
(B.7) become

dy(£) 1, = Lu+p~ldy(x)* 3(r —rp)s(z) (B.10)

and

dy(t)*u, =L,u+p~'d,(z) »8(r —rg)s(r) (B.11)
with
L,u=p d(x)* [l(dl(x) w ity +dy(2) %y ) +2p1dy (x) ux] +
Pl (2) w[1(dy (x) s, + i (2) %1, )] (B.12)

and

L,u=p4,(2) *[A(dl(x)*u, +d)(2) % u, )+ 2udy(z) * u,]+
p e (x) x| (dy (x) %y + dy (2) 1 )] . (B.13)

The length of the differential operators d;(.) and d,(.) depends on the desired
accuracy. The longer the operator the more accurate the approximation gets.
Second order approximations to d,(.) and d,(.) can already be found by use of a
three points operator (Mitchell, 1969). For the first order derivative this is
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_d(+A)-8(.—A)
d1(~)———2A (B.14)
and for the second order derivative
&)= 8(.+A)—28(.)+8(.—A)’ ®.15)

2A?

where A represents the discretization interval. Higher order approximations to
the first- and second order differentiation operators d;(.) and d,(.) can be easily
obtained through Taylor expansions (see also Abramowitz and Stegun, 1964;
Mufti, 1990). The main advantage of these higher order operators is that the
discretization interval A may be chosen larger which can be directly translated
in an increase of speed or the abilityto handle larger models. The price paid for
having this advantage however is that the accurate representation of detail in
the model has to be sacrificed.

Applying (B.14) and (B.15) to (B.10) and (B.11) yields

Uy (x,z,t + Ar) = 2u, (x,2,t) —u, (x,z,t — Ar) +
S(X—XO—AX)—S(X—Xo+AX) 8(2—2 )fm
2Ax 07y
(B.16)

Ar? [Lxu(x, )+ (

and

u(x,z,t + At) = 2u,(x,z,t) — u, (x,z,t — Ar) +

Atz{Lzu(x,z,t)+(8(z 7= A2) =8z + AZ)JB(x —xo)s—(ﬂ

2Az
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and after discretization (writing u,(x,z,f) as u,(m,n.D), u(x,z1) as u(mn,l) and
s(®) as s(), where x=mAx, z=nAz, 1=IAt and h=Ax=Az) the following second
order explicit finite-difference scheme (see also Kelly et al., 1976) is obtained

u,(m,n,1+1) =2u,(m,n,l)~u,(m,n,l—1)+

o )
) my+1,m my—1,m S(l)
At [L,u(m,n,l)+(————2h )Sn,no _p ] (B.18)

and

u,(m,n, 1 +1) = 2u,(m,n,l)~u,(m,n,l - 1)+

B +1 ~ Sy~ 0
A2l L n,l _mnotl  Tmnel s ¢
t[ Ju(m,n )+( Y Mg.m PRE (B.19)

where 8, represents the Kronecker delta (§;=1 if i=j; 8;=0 if i#j). These finite-
difference equations describe elastic wave propagation in a 2D heterogeneous
medium. The medium parameters (A, y and p) are defined on a 2D grid. In
order to avoid divergence of the errors (made in approximating the derivatives)
during calculation, the finite-difference algorithm has to satisfy the following
stability condition (Alterman and Loewenthal, 1970)

h

<
A< m , (B.20)

where ¢, and c, represent the compressional and shear wave velocities respec-
tively and are related to the Lamé parameters through

A+2u
C,=4[—— B.21
P \/ P (B.21)
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and

c. = (B.22)

<=

Grid dispersion is another aspect of modeling that should be given serious con-
sideration. As the waves travel through the grid these waves become progres-
sively dispersed. The degree of dispersion depends largely on the coarseness of
the grid. Alford et al. (1974) concluded that in order to keep grid dispersion
below an acceptable level the grid interval & should be chosen at least ten times
as low as the wavelength at the upper half-power frequency of the source s(z).
In formula from this reads

~ 2'min - Crin

10 10f,° (B.23)

where A, is the shortest wavelength, ¢, is the lowest velocity present in the
model and f, denotes the upper half-power frequency in the source function. It
is our experience, however, that at least twenty grid points per wavelength are
necessary for proper amplitude processing.

In (B.16) and (B.17) use is made of the differential operator given by (B.15) to
approximate the second order time differentiation. In this way at least two time
slices should be kept in memory. Applying a higher order approximation, for
instance a five points operator, means that now at least four time slices should
be stored. There is an other way to approximate the second order time deriva-
tive without the need for extra memory. Consider therefore equation (B.2)
again

%t—;’ =Lu+S, (B.24)
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where a more general source vector function S is used, scaled by the density.-
Writing u(t+A¢) as a Taylor expansion yields

Aou A% AP Pu At ot
uerAD=u ot T TR T ar ot

and similarly writing u(-Af) as a Taylor expansion yields

Ardu A 9%u AP 9’u At 84
Ap=u(@p) -2 X A S
T A T R TR P TR ™ - (829

Addition of these two series gives

2
u(r+ An +u(t — Ar) = 2u() + AP = 9

or
o’ _ u(r+Ar)—- 2u(t)+u(t—At) A 9% 4
= o TR +0(A*). (B.28)

Notice that the first term on the right hand side corresponds to the second order
approximation given in (B.15). A fourth order approximation without effecting
the memory usage can now be found in the following way. Taking the second
order time derivative of (B.24) gives

%u %S

o' C )
at o’

2 (B.29)

82
= a?(Lll +S) =
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B.3

Substitution of (B.24) in the right hand side of (B.29) yields

4 2
0N L(Lu+s)+ LS

Y =z (B.30)

Substitution of this result in (B.28) yields a fourth order approximation to the
second order time derivative that reads

’u _ut+An-2u@+u—Ar A’ %S 4
FY% i AL - L(Lu +S)+— +0(At ) (B.31)

Finally, using this result then (B.24) becomes a fourth order FD scheme in time

2
u(@+An)=2u@)—u@-At)+ AIZLII +— Ar (L(L +S)+___S.] . (B.32)

So instead of having to keep two extra time slices of the entire wave field in
memory now an extra term has to be calculated given by the last term on the
right hand side of (B.32).

P and SV buried sources

Differentiation of the source term the way it appears in (B.18) and (B.19)
causes problems because the amplitudes are too high for such a small operator
and higher order terms may no longer be neglected. Often, to overcome this
problem, the source components are calculated analytically and then imposed
on the numerical grid on the edge of a small rectangular area enclosing the
source. To avoid source components to travel inwards the source contribution
is then deleted inside the square at every time step. This method is due to Alter-
man and Karal (1968) and later on used by several other authors. Although this
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Fig. B.1

a) and b): P wave
source implemen-
tation stencils the
way they appear in
(B.18) and (B.19)
for the x-compo-
nent and z-compo-
nent respectively.
The black dot
marks the source
position.

c) and d): Corner
points are used as
well in order to
compensate for the
energy loss over
the diagonal
paths.
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way to implement the source may seem to work satisfactorily it is certainly not
the easiest and most elegant way of source implementation. I shall now present
an alternative way to implement sources (P and SV) which is much easier and
more direct. First the P wave line source. From the source term on the right
hand side of (B.18) and (B.19) it can be seen that for each component (u, or u,)
there are only two points to be used (see Fig. B.1 a and b). The weight of these
components is defined by the source amplitude, which I shall denote by A,
divided by the traveled distance # (for brevity I shall for the moment omit the
division by 2Ax as it appears in (B.14)). Because of the very high amplitudes in
the vicinity of the source location one would desire a much finer mesh in the
source area to get a better distribution of energy over there (Fig. B.1 c and d). If
a finer mesh was used then the source energy would travel along the diagonal
paths as well instead of only the horizontal path and vertical path as Fig. B.1a
and b suggest. Hence, in the scheme of Fig. B.1 a and b there is energy missing
on the diagonal elements. This energy loss however can fully be accounted for
by adding an additional term on the corner points. The weight of such a corner
term is determined by two factors. The first one is the loss of amplitude due to
geometrical spreading (i.e. A/(hV2)) and the second one from the cosine
directivity of the displacements, i.e. cos(45°)=+/2 /2. Together this makes
(A/(rV2)x2/2=)A[2h (see Fig. B.1 c and d).

A comparison can be made between the analytical solution and the FD solution
for a homogeneous medium. To verify the validity of the source implementa-
tion described above the following experiment is performed. Consider the
model displayed in Fig. B.2. A receiver is placed 300 m vertically (0°) under
the source and another one is placed on the diagonal (45°) at a distance of
about 424 m (see Fig. B.2). A 60 Hz Gaussian wavelet is used described by
s(#). The spatial grid interval is 2 m. The size of the grid is 400x400 points. The
results of this experiment can be observed in Fig. B.3. From Fig. B.3a and b it
can be seen that there is no problem whatsoever concerning the amplitudes in
the source area and the source behaves as a perfect P wave line source. Fig. B.3
¢ and d show that there is an almost perfect match between the FD solution and
the analytical solution using this way of source implementation.
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Fig. B.2
Homogeneous
model. Source is
positioned at (0,0)
and two receivers
are positioned at
(0,300) and
(300,300) respec-
tively.

For an SV wave line source the source term on the right hand side of wave
equation (B.1) should read

0
V x| 8(r—rp) |s(). (B.33)
0

With this term on the right hand side of (B.1), then with (B.14) and (B.15) for
the 2D situation (B.18) and (B.19) now become

absorbing
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Fig. B.3 a)and b):
Snapshots of the hori-
zontal and vertical dis-
placement at time 200
ms using a P wave line
source (20 dB clipped).
¢) and d): Comparison
between the FD solution
and analytical solution
for the two receiver
positions.
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u, (m,n, 1 +1)=2u, (m,n0)—u,(mn,I—-1)+

8 -3
2 nng+1 — Yn,ng-1 S_(Q
At [L,u(m,n,z)+(———2h JS%,m p] (B.34)

and

u,(m,n,1+1)=2u,(m,n,l)—u,(m,n,l - 1)+

5 -3, _ 1)
A2lL nly—| 2mathm ~ Omo-lim o s(
t[ Lq(m,nl) (——Zh nng o | (B.35)

The source implementation stencils for the SV wave source are shown in Fig.
B.4. Just like in the P source situation the SV source implementation is tested
against the model and configuration displayed in Fig. B.2. Results are presented
in Fig. B.5. A slight mismatch can be noticed that is due to the fact that in order
to satisfy the dispersion relation the lowest velocity should be involved and
most often this will be the shear wave velocity. Thus, in this example, for the
shear waves 10 gridpoints per wavelength are chosen but as the compressional
wave velocity is larger then the shear wave velocity this number is often higher
(=15-30) for compressional waves.

The problem of high amplitudes in the source area can be solved by simply tak-
ing into account values at the corner points (Fig. B.1 ¢ and d and Fig. B.4 ¢ and
d). The weight of these values is half of the ones that are used in the horizontal
or vertical direction. Source implementation in this way is easy and direct.
Early reflections will travel through the source in a natural way without inter-
fering with the direct source wave. Sources can be placed anywhere in the het-
erogeneous medium, close to inhomogeneities or even right across
inhomogeneities.
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Fig. B4

a) and b) SV wave
source implementa-
tion stencils the way
they appear in (B.34)
and (B.35) for the x-
component and z-
component respec-
tively. The black dot
marks the source
position.

c)and d) corner
points are used as
well in order to com-
pensate for the
energy loss over the
diagonal paths.
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Fig. B.S

a) and b): Snapshots
of the horizontal and
vertical displacement
at time 200 ms using
a SV wave line source
(20 dB clipped).

c) and d): Compari-
son between the FD
solution and analyti-
cal solution for the
two receiver posi-
tions.
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B4 Stress-sources at a free surface

B4

Stress-sources at a free surface
At a (horizontal) free surface stresses have to vanish. For the 2D situation this
implies
Ty =T, =0 (B.36)
(which obviously does not apply to sources located at the free surface).
According to the stress-displacement relationship this means that
e =2 1% g (B.37)
0z ox
and
ou, ou, )
T, =4l =—2%2+—21=0
Xz l’l( az ax . (B.38)
Applying the first order differential operator (B.14) to these two conditions
yields (Kelly et al., 1976)
A +2p)(u,(m,1,1) —u,(m,—l,l)) + Ay (m +1,0,0) —u, (m— 1,0,1)) =0
(B.39)
and
Uy (m, 171) - ux(m7—lrl) + U, (m + 1! Os I) _uz(m - 190’ I) = O. (B-40)
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Fig. B.6

A fictitious line is
introduced in
order to satisfy the
free surface condi-
tions at z=0. The
displacements at
this line are calcu-
lated using (B.39)
and (B 40).

-1 fictitious line

(=]

Jree surface

/1 e

N

With these equations the values for the horizontal and vertical displacement at
a fictitious line at (z=-Az or m=-1) are calculated to guarantee the free surface
condition (Fig. B.6). Unlike the scheme given in Kelly et al. it can be noticed in
(B.39) and (B.40) that I prefer to apply a centered difference in the z-direction
which is centered at the z=0 line. In this way the free surface is located exactly
at z=0 while in the scheme from Kelly’s paper the free surface is actually
between z=-Az (fictitious line) and z=0.

Applying a 7,,-source at a free surface with source variation s(/) means that at a
certain lateral position (x),0) = (myAx,0) the following may be written

(A +2p)(u, (mo, 1,1) — u, (mg, ~1,1)) + A(, (mg +1,0,1) — u, (mg — 1,0,1)) = 5(¢)
(B.41)

and with (B.40) still holding at the source position. Similarly for a €,,-source at
a free surface with source variation s(z) the following can be written

u, (mo,1,0) - u, (mg,—1,1) + u, (my +1,0,1) —u, (my —1,0,1) = s(2) (B.42)
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B.5

Fig. B.7

a) and b) Snapshots fo
the horizontal and
vertical displacement
from the same experi-
ment depicted in Fig.
B.2 at time 300 ms (25
dB clipped). At the
edges boundary con-
ditions are applied
that are due to Clay-
ton and Engquist
(1977).

and now (B.39) still holds at the source position.

Absorbing boundaries; Clayton and Engquist (1977)

At the edges of the grid absorbing boundaries are applied given by Clayton and
Engquist (1977). These conditions are based on the paraxial approximation of
the elastic wave equation. This approximation has the property that the absorb-
ing boundary works well for small angles of incidence but rapidly deteriorates
for higher angles with almost total reflection for very high angles. Fig. B.7

i, %

b)

shows the same snapshot displayed in Fig. B.3 but now 25 dB clipped. It may
be concluded that these conditions fail for high angles looking at the reflection
data because the reflected amplitudes from the absorbing boundary easily
exceed that of events reflected at an interface. Later on in section B.7 a compar-
ison is made with absorbing boundary conditions formulated by Lindman
(1975) for the scalar wave equation and later on extended to the elastic case by
Randall (1988, 1989).
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B.6 Staggered grid

Instead of starting of with the second order differential wave equation (B.1) it is
also possible to start with the first order elastodynamic equations given by

av,_ar;, 0Ty
”at T oox * oz’

dv, 0T ot

L2 L Tz

o  ox oz ’

ot ov
O _ 2 Lx
o (A +2u) . +A

o,
0z

0T, _ v,
—a—t———(ﬂ,+2#) 52 +A

Wy
ox

and

o5 (2, 20)
ot H 0z Ox

(B.43)

(B.44)

(B.45)

(B.46)

(B.47)

where v, and v, represent the horizontal and vertical component respectively of
the particle velocity vector v. Using the differential notation from equation

(B.8) this system transforms to

di(®) % v, = p Ay (X) % Ty +dy(2) % T,,),

A av, =p dy(x)x T +dy (2)% T;;),

(B.48)

(B.49)
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B.6 Staggered grid

d(£) % T = (A +2U)dy (x) %V, + Ady(2) % v, , (B.50)
di () % T, = (A +20)dy (x) % v, + Ady (2) % v, (B.51)

and
dy (1) % Ty, = (A (2) % v, + dy(X) % v,) . (B.52)

Discretization of the above system leads to a staggered grid as can be seen in
Fig. B.8 (Virieux, 1984). The differential operator d;(.) may be approximated
by a second order centered difference given by

Fig. B.8
Calculation stencil
for a staggered grid.
Black symbols and

® v.r

white symbols are

staggered 1/2 Atin

time. Ahﬁﬁ A

I\ T 42, A

‘ ) N\ Tk
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B.7

_ 8(+128)-8(—1/24)

ad() A

(B.53)

A fourth order approximation of the differential operator d;(.) is given by
Levander, 1988. Unlike the non-staggered method discussed previously the
velocity components v, and v, do not coincide. The grid is staggered in place
but also in time, hence, the stress fields and the velocity fields are never known
at the same time. The implementation of a P wave line source is extremely easy
and is done just by adding an equal portion of the source variation to T, and T,
which are defined at the same nodal point (Gauthier, 1983). The implementa-
tion of an SV wave line source can be done by adding the source term to one
point on7,,. One has to be careful though, because this term should be positive
to calculate the horizontal velocity (B.48) and negative for the vertical velocity
(B.49) and removed when calculating the €, stress field (B.52) itself for each
timestep. Stress-sources are also simple because the stress fields are now
directly accessible. The stability criterion for a second order staggered grid
scheme is somewhat more stringent and is given by

ok (B.54)

The grid-dispersion relation is the same as the one valid for the non-staggered
grid scheme.

Absorbing boundary conditions; Randall (1988,1989)

Randall (1988, 1989) extended the highly absorbing boundary conditions pre-
sented by Lindman in 1975 for the acoustic wave equation to the elastic wave
equatio, for both the non-staggered grid scheme as well as for the staggered
grid scheme (Randall, 1988 and Randall, 1989 respectively). I have imple-
mented these conditions for a second order staggered grid scheme as the one
described above. Using the same homogeneous model as depicted in Fig. B.2,
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B.7 Absorbing boundary conditions; Randall (1988,1989)

Fig. B.9 a)andb)
Horizontal and verti-
cal displacement. At
the edges of the grid
absorbing boundaries
are applied that are
due to Randall
(1989). Snapshots are
25 dB clipped (com-
pare Fig. B.7).

with the same P wave line source on the same location, it can be seen from Fig.
B.9 that these conditions are far superior to the one given by Clayton and
Engquist (1976), especially for high angles (compare Fig. B.7).

There is one disadvantage however and that is the fact that these conditions
only work well if the boundary is completely homogeneous while in the case of
the conditions given by Clayton and Engquist (1976) this restriction is not that
severe. The only way to circumvent this problem for the moment is to smooth
the velocity and density fields near the edges of the model. Another thing that
can be noticed is that from these snapshots one may observe that the conditions
applied in the corners also absorb the incoming wave energy extremely well.
Randall (1989) proposed to use in the comers of the grid the transparent condi-
tions formulated by Liao et al., (1984). Although this is probably one of the
possible solutions I followed however a different path that led to the results in
Fig. B.9. Because a detailed discussion on this would lead us beyond the scope
of this appendix, I shall suffice by presenting the final results of the solution
that where found to be effective for the corners. By separating the elastic wave
field at the edges of the grid into compressional and shear waves it is possible
to apply the highly absorbent boundary conditions from Lindman (1975). In

|||| P,

o=
w= il
et ll

a) b)
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these boundary conditions use is made of so called correction functions 4,, (one
for compressional waves and two for shear waves). The boundary condition
(the so called L1 condition, see Lindman (1975) or Randall (1989)) for the
compressional wave on the right side of the grid reads

9%, 9 _ 3
R mZ=lhm, (B.55)
where
9? )
% =BV by = @, c?V2 (c i) (B.56)
and
, 9t 9
Vi= gﬂ 37 (B.57)

For the 2D situation (x-z plane) this operator reduces to

2 &
Vi= ’a—f (B.58)
74

In equations (B.55) and (B.56) ¢ denotes the scalar P potential and ¢ the com-
pressional wave velocity. Coefficients o, and f3,, are obtained by minimizing a
weighted average of the refiection coefficients. Lindman already got reflection
coefficients less then 0.01 for propagating waves for angles up to 89° with only
three terms (M=3). The correction function i, is known everywhere on the
edges of the grid except in the comers. A good estimate for these comer values
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B.8 Conclusions

of the correction functions can readily be found by Taylor expansions. For the
correction function on the right boundary h,,(x,,.,,2,2) this gives

by, (X2 + D2,1+ A1) = h,,,(xmu,z,t)+ﬂ'%,éii’hm(mz,mz)

1! 9z 1! or
(B.59)
or
—Azt—Af)= _Az0h, A dhy 2 A2
Ry (Xmax-2 — Az,t = A1) = By (X ax5 2,1) T3z 11 o +0(Az*,Ar”)
(B.60)

Adding these two series yields a second order approximation for A(x+Ax, t+A?)

Py (K> 2 + A2yt + A1) = 21y (Xnax s 258) = By (X n 2 — Az, £ = AL) + O(AZ2, Ar?)
(B.61)

or after discretization
i_z,,,(N,M,i +D)=2h,(N.M—-1,)—h,(N.M-2,0-1), (B.62)

where x,,,,=NAx and t=I/At (see Fig. B.10). The same approximation can be
made for the correction functions for the shear wave components.

B.8 Conclusions

Alternative implementations of P and SV buried sources in a second-order cou-
pled displacement scheme (Kelly et al., 1976) are presented. These implemen-
tations are equivalent to the one presented by Alterman and Karal (1968) but
have the advantage that implementation is very simple and that there is no
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Fig. B.10 The corner
value hm of the correc-
tion function for a stag-
gered grid may be
approximated by (B.62).

M-2
m_¢ M-1

b 19 M

== -

restriction to the complexity of the source area. Stress-sources at a free surface
are also described for a second-order coupled displacement scheme and appear
to work adequately.

One big disadvantage of the second-order coupled FD scheme is that there are
some upper limits with respect to the Poisson’s ratio (see Kelly et al., 1976).
For the free surface the ratio between the compressional and shear wave veloc-
ity should be kept below 0.35. Liquid-solid boundaries are not possible.

In a staggered grid scheme (Virieux, 1986) all Poisson’s ratios can be modelled.
Liquid-solid interfaces are correctly handled, which is important for marine
seismic problems. Surface and buried sources are easily implemented. Because
both stresses and velocities are directly available in the staggered grid scheme,
boundary conditions such as free surface conditions can easily be satisfied. A
disadvantage of the staggered grid scheme is that the different components of
the wave field are not available on the same nodal point which is often desir-
able especially when collecting surface data.
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B.8 Conclusions

A comparison between absorbing boundary conditions presented by Clayton
and Engquist (1977) and by Randall (1988,1989) reveals the superior perfor-
mance of the latter. An alternative solution for the comer points for this condi-
tion is presented by equation (B.62) to the one proposed by Randall (1988,
1989).
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Summary

In commercially available seismic processing software wave field extrapolation
operators are based on the acoustic assumption. It is well known that these
operators can handle the P wave traveltime information properly but the ampli-
tudes are not handled correctly. Currently there is an increasing interest con-
cerning the amplitude contents of seismic reflection data. Seismic amplitudes
contain important information on the litho-stratigraphy of hydrocarbon reser-
voirs. In view of this growing interest, this thesis presents forward and inverse
elastic extrapolation operators that properly handle seismic amplitudes.

From the elastic Kirchhoff-Helmholtz integral relation, which is in terms of
displacements and stresses, modified Rayleigh-type integrals are derived that
express either the P or the S wave field in some subsurface point A in terms of a
surface integral that is entirely expressed in terms of P and S potentials. These
type of integrals use decomposed elastic P and S Green’s functions related to
either an impulsive P or an impulsive S source excitation in subsurface point A.
From these modified Rayleigh integrals accurate P and S extrapolation opera-

163



Summary

tors can easily be obtained by evaluating the interaction between the decom-
posed primary P and S wave fields of the data and the Green’s functions. For
most realistic seismic situations the amplitude error involved can be neglected.
The modified Rayleigh integrals are well suited for a quantitative elastic ampli-
tude analysis of extrapolation results. The amplitude behavior is studied for
both correct and incorrect macro models. It is found that small errors in the
macro model do not affect transmission amplitudes up to high angles of inci-
dence. For larger macro model errors the amplitude error is not negligible but it
remains nearly constant for a wide range of angles. Hence, the amplitude ver-
sus offset is hardly affected by the extrapolation process except for a constant
factor. It is also shown that due to inconsistencies in the P and S macro models
the decomposition into P and S waves should preferably be performed before
the actual wave field extrapolation takes place.

Finally, the extrapolation operators are tested on a 2D synthetic multi-compo-
nent data example. After the data have been decomposed into up- and downgo-
ing P and S waves, the extrapolation operators are used to downward
extrapolate these P and S data in two separate extrapolation processes. The
example clearly shows the benefits; but it also illustrates some of the problems
to be expected in practice. One of these problems concerns the effect of the
finite aperture, which is inherent to seismic data acquisition. The truncation of
the data at the sides causes artifacts in the extrapolated data; they affect the
amplitudes within the aperture, especially at the far offsets. However, despite
these truncation artifacts the results show that the extrapolation operators han-
dle amplitudes in such a way that for each lateral position in the target area
accurate angle dependent reflection curves can be constructed.
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Samenvatting

In commercieel beschikbare seismische processing software zijn golfveld
extrapolatie operatoren gebaseerd op de akoestische aanname. Het is bekend
dat deze operatoren de looptijden van de P golven correct meenemen maar dat
de amplitudes incorrect behandeld worden. Momenteel is er een groeiende
belangstelling met betrekking tot de amplitudeinhoud van seismische reflectie
data. Seismische amplitudes herbergen belangrijke informatie over de litho-
strategrafie van een gas en/of olie-reservoir. Met het oog op deze groeiende
interesse worden in dit proefschrift voorwaartse en inverse elastische extrapo-
latie operatoren gepresenteerd die seismische amplitudes correct meenemen.

Vanuit de Kirchhoff-Helmholtz integraal relatie, in termen van uitwijkingen en
tracties, worden gemodificeerde Rayleigh integralen afgeleid die het P of het S
golfveld in een punt A in de ondergrond beschrijven in termen van een opper-
vlakte integraal die geheel gespecificeerd is in termen van P en S potentialen.
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Samenvatting

Dit type integralen maakt gebruik van gedecomponeerde elastische P en S
Greense funkties die gerelateerd zijn aan een impulsieve P bron of aan een
impulsieve § bron in A. Vervolgens worden, uvitgaande van deze gemodificeerde
Rayleigh integralen, nauwkeurige P en § extrapolatie operatoren verkregen
door de interactie tussen de de primaire P en S golven in de data en in de
Greense funkties te evalueren. In de meeste realistische seismische situaties
mogen amplitude fouten ten gevolge van deze operatoren verwaarloosd wor-
den.

De gemodificeerde Rayleigh integralen zijn uiterst geschikt voor quantitatieve
amplitude analyse van extrapolatie resultaten. Het amplitude gedrag is bekeken
voor correcte en voor incorrecte macro modellen. Het blijkt dat transmissie
amplitudes tot op grote hoeken niet in belangrijke mate beinvloed worden door
kleine fouten in het macro model. Voor grote fouten is de invloed signifikant
maar deze blijft vrijwel constant voor een groot hoekbereik. Dus het laterale
amplitude gedrag wordt nauwelijks beinvloed door het extrapolatie proces
afgezien van een constante factor. Verder wordt aangetoond dat het beter is het
elastische golfveld in P en § te decomponeren nog voor het extrapolatie proces
plaatsvindt. Dit ten gevolge van inconsistente P en S macro modellen.
Tenslotte zijn de extrapolatie operatoren getest op een 2D gesimuleerde multi-
componenten dataset. Nadat de data aan het oppervlak gesplitst zijn in Pen S
golven worden vervolgens de extrapolatie operatoren gebruikt om deze in P en
S gescheiden data neerwaarts te extrapoleren in twee afzonderlijke extrapolatie
processen. Het voorbeeld maakt heel duidelijk wat de voordelen zijn, maar
illustreert ook de problemen die verwacht kunnen worden in de praktijk. Een
van deze problemen betreft het effect van een eindige apertuur, hetgeen inhe-
rent is aan seismische data acquisitie. De truncatie van de data aan weerszijden
heeft tot gevolg dat er artefacten ontstaan in de geéxtrapoleerde data; deze tas-
ten de amplitudes binnen de apertuur aan, met name voor de hogere hoeken. De
resultaten laten verder zien dat de extrapolatie operatoren de amplitudes dus-
danig goed meenemen dat, ondanks bovengenoemde artefacten, voor elke la-
terale positie in het reservoir nauwkeurige hoekafhankelijke reflectie curves
geconstrueerd kunnen worden.
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