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Abstract

Plug-in architectures enable developers to build extensi-
ble software products. Such products are assembled from
plug-ins, and their functionality can be enriched by adding
or configuring plug-ins. The plug-ins themselves consist
also of multiple plug-ins, and offer dedicated points through
which their functionality can be influenced. A well-known
example of such an architecture is Eclipse, best known for
its use to create a series of extensible IDEs.

In order to test systems built from plug-ins developers
use extensive automated test suites. Unfortunately, current
testing tools offer little insight in which of the many possi-
ble combinations of plug-ins and plug-in configurations are
actually tested.

To remedy this problem, we propose three architectural
views that provide an extensibility perspective on plug-in-
based systems and their test suites. The views combine
static and dynamic information on plug-in dependencies,
extension initialization, and extension usage. The views are
implemented in ETSE, the Eclipse Plug-in Test Suite Explo-
ration tool. We evaluate the proposed views by analyzing
eGit and Mylyn, two open source Eclipse plug-ins.

1 Introduction

Plug-in architectures are widely used for complex sys-
tems such as browsers, development environments, or em-
bedded systems, since they support modularization, product
extensibility, and run time product adaptation and configu-
ration [2, 10, 11]. A well-known example of such an ar-
chitecture is Eclipse1 which has been used for building a
variety of extensible products, including a range of devel-
opment environments for different languages [17].

∗Work done while at the Computer Human Interaction and Software
Engineering Lab (CHISEL), Department of Computer Science, University
of Victoria, Canada.

1http://www.eclipse.org

The size and complexity of software products based on
plug-ins can be substantial. To deal with this, software de-
velopers rely on extensive automated test suites. For ex-
ample, in their book Contributing to Eclipse, Gamma and
Beck emphasize test-driven development of Eclipse plug-
ins [7]. Likewise, the Eclipse developer web site2 describes
the structure of the unit and user interface tests that come
with Eclipse.

A consequence of systematic automated testing is the
test suite understanding problem: Developers working with
such well-tested plug-in-based architectures, face the prob-
lem of understanding a sizable code base along with a sub-
stantial test suite. As an example, the Mylyn3 plug-in for
Eclipse comes with approximately 50,000 lines of test code.
Developers responsible for modifying Mylyn, must also ad-
just the Mylyn test suite.

To address the test suite understanding problem, re-
searchers have identified test smells pointing to problematic
test code, test refactorings for improving them, and have
proposed visualizations of test execution [3, 12, 19, 20].
Most of the existing work, however, focuses on the unit
level. While this is an essential first step, for plug-in-based
architectures it is insufficient, since it will not reveal how
plug-ins are loaded, initialized, and executed dynamically.
As an example, just starting Eclipse loads close to one hun-
dred plug-ins. Since these plug-ins do have interactions,
looking at plug-ins in isolation yields insufficient insight in
the way the dynamic plug-in configuration is exercised in
test suites.

Based on this, we propose to look at test suites from
an extensibility perspective, focusing on the way in which
plug-ins are used dynamically to extend system function-
ality. Thus, the central research question of this paper is:
How can we support developers in understanding complex
test suites for plug-in-based architectures from an extensi-
bility perspective?

To address this question, we propose three architectural
views [18] that can help engineers understand plug-in in-

2http://wiki.eclipse.org/Eclipse/Testing
3http://www.eclipse.org/mylyn
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teractions. The views we propose are tailored towards the
plug-in architecture of the Eclipse ecosystem. Eclipse is
of particular interest, since it not only offers regular plug-
ins as software composition mechanism, but also dynamic
extension-points, through which a plug-in can permit other
plug-ins to extend its functionality.

To offer insight in these extension mechanisms, we pro-
pose three views: the Plug-in Modularization View, the Ex-
tension Initialization View, and the Extension Usage View,
which will be discussed in Section 3. To construct these
views, we follow the Symphony software architecture re-
construction approach [18], and deploy a mixture of static
and dynamic analysis.

To evaluate the usefulness of these views, we discuss
their application to two open source Eclipse plug-ins: the
fairly small eGit plug-in permitting the use of the git ver-
sioning system within Eclipse, and the substantial collection
of plug-ins that comprises the Mylyn plug-in for work item
management.

The paper is structured as follows. Section 2 provides
the necessary background material on plug-in architectures.
Section 3 describes our approach, and covers the three ar-
chitectural views. Section 4 discusses our tool suite for re-
constructing these views, after which Section 5 describes
how the views helped to understand two case studies. We
reflect on the case study findings in Section 6, after which
we conclude with a summary of related work, contributions,
and areas for future research.

2 Background
2.1 Eclipse Modularization

Plug-in based dynamic modularization systems are
widely used to create adaptive and configurable systems [2].
A well known example is OSGi4, which provides a dynamic
modularization platform for Java.

The Eclipse plug-in architecture5 is based on the
Equinox6 implementation of OSGi. Eclipse groups classes
and packages into units, the so called plug-ins. Plug-in ap-
plications, like the well known Eclipse development envi-
ronment, are composed from constituent plug-ins coming
from different developers. We call the collection of all plug-
ins forming a common application, including the plug-in ar-
chitecture itself, a software ecosystem. A plug-in consists
of code and a specific meta data file, the manifest. The man-
ifest describes, among others, the dependencies between
plug-ins.

Plug-ins represent the basic extensibility feature of
Eclipse, allowing dynamic loading of new functionality.

4http://www.osgi.org/
5http://www.eclipse.org/articles/

Article-Plug-in-architecture/plugin_architecture.htm
6http://www.eclipse.org/equinox

Figure 1. The Eclipse plug-in extension
mechanism

Plug-in P can invoke functionality from other plug-ins Pi.
At compile time, this requires the availability of the con-
stituent plug-in’s Java interfaces, giving rise to usage rela-
tion between P and Pi.

A next level of configurability is provided by means of
the extension mechanism, illustrated in Figure 1. Plug-in A
offers an extension-point, which is exploited by B to extend
A’s functionality. As an example, A could define a user-
visible menu, and B would add an entry with an action to
this menu.

An extension may be an executable extension contribut-
ing executable code to be invoked by the extended plug-in, a
data extension, contributing static information such as help
files, or a combination of both [17]. For executable exten-
sions, a common idiom is to define a Java interface that the
actual extension should implement, as shown in Figure 1.

A plug-in declares the extensions and extension-point it
provides in an XML file. In addition, each extension-point
can describe the expected syntactical descriptions of exten-
sions by means of an optional XML schema file. From the
extension declarations we can derive an extension relation
from extensions to extension-points.

2.2 Eclipse Testing Practices

Gamma and Beck [7] provide best practices for testing
Eclipse, and, thus, for plug-in-based architectures, in gen-
eral. Their book emphasizes test-first development of plug-
ins. It does not focus on integration testing of plug-in sys-
tems. Guidelines for testing Eclipse7 emphasize unit test-
ing as well as user interface testing for which capture-and-
playback tools are used.

The literature addressing OSGi testing focuses on the
provisioning of the infrastructure required during the set-up
of integration tests [16]. We have not been able to find test
strategies targeting integration testing of dynamic modular-
ization systems in general, or plug-in systems in particular.

7http://wiki.eclipse.org/Eclipse/Testing
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A substantial body of research has been conducted in the
area of integration testing [1, 9, 13]. Closest to the Eclipse
extension mechanism are test strategies addressing poly-
morphism, such as the all-receiver classes adequacy crite-
rion [15].

Most integration testing approaches are model-based,
and explain how, e.g., UML state machines can be used to
derive test cases systematically [8, 14]. In the Eclipse set-
ting, it is not common to have models of plug-ins and their
extension-points available a priori. As we will see, however,
our views can be reverse engineered from static dependency
declarations as well as from run time plug-in interactions.
As such, they can help developers compare actual plug-in
interactions with declared dependencies.

3 Models for Test Suite Understanding

When facing the problem of understanding a large test
suite, a first step for an engineer is to look at the documen-
tation, to gather basic static and dynamic information on
e.g. the size in lines of code, and to assess the test cover-
age and timing through test execution. These activities are
similar to what newcomers do with regular code in a “first
contact” setting, as described by DeMeyer et al. [5].

While this provides an initial sense of the scope and set-
up of the test suite, it does not yield insight in the inter-
nal structure and organization of the test suite. Currently,
the only way towards deeper insight is the (manual) inspec-
tion of the code. The goal of the first view, the Plug-in
Modularization View, therefore, is to provide such struc-
tural and organizational awareness with respect to the code-
dependencies of plug-ins.

Equipped with this basic structural knowledge, the sec-
ond step is the analysis of the extension relations between
plug-ins and the way they are exercised by the test suite.
This is realized through the Extension Initialization View.

Finally, the Extension Usage View completes the picture
by providing the developer with insight in the way the test
suite exercises the actual methods involved in the exten-
sions.

In this section we present these views, state their goal,
and formulate the information needs they address. To re-
construct the views, we follow the Symphony architecture
reconstruction method [18]. Thus, we distinguish source
models corresponding to the raw data we collect, target
models reflecting the view that we eventually need to derive,
as well as mapping rules between them. In what follows we
present a selection of the meta-models for the source and
target models involved, as well as the transformation be-
tween them.

3.1 The Plug-in Modularization View

The Plug-in Modularization View provides insight in the
static as well as dynamic dependencies between plug-ins
and the test code. The developer can use this view to an-
swer such questions as “which plug-ins are tested by which
test-component?”, “where are test harness and test utilities
located?”, and “which tests are exercising this plug-in?”.

The static part of the view can be obtained through sim-
ple static analysis of plug-in source code and meta-data, tak-
ing the test suites as starting point. The dynamic dependen-
cies are obtained by running instrumented versions of the
code reporting all inter-plug-in method calls.

Figure 2 illustrates this view. It shows test-component
commons.tests of Mylyn and its static (on the left) and dy-
namic code-dependencies (on the right). On the left we see
that commons.tests statically depends on four other plug-
ins. The dynamic representation on the right side, reveals
that only two out of those four plug-ins are actually ex-
ercised in a test run. It does not explain why this is the
case (reasons could be that the test suite requires manual
involvement, or that a different launch configuration should
be used), but it steers the investigation towards particular
plug-ins.

3.2 Extension Initialization View

The plug-in modularization view provides a basic under-
standing of the test architecture and the code-dependencies
between all test artifacts and their plug-ins. This is a prereq-
uisite for the following step of understanding the test suite
from the more fine-grained extensibility perspective.

By means of this perspective, we will not only be able to
tell which extensions and extension-points are tested in the
current test suite, but we also gain insights in the system-
under test and its extensibility relations. The meta model of
this view is illustrated in Figure 3.

The view helps answering questions on extensions and
the way they are tested at system, plug-in, and test-method
level, as discussed below.

System Scope. At system scope, the view gives insights
in the extension relations present in the system-under test,
i.e., which plug-in contributes to the functionality of another
plug-in. This is visualized in one graph, as shown in Fig-
ure 7. The graph presents the overall contributions of the
systems, i.e., all extension-points and extensions within the
system-under test. In case plug-in A declares an extension-
point and plug-in B provides an extension for it, the graph
shows a link between the two nodes.

The label of the link represents the number of statically
declared extensions one plug-in provides for the other, and
the number of extensions that are actually used during a test
run.
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Figure 2. Static and Dynamic Dependencies of Test-Component “mylyn.commons.tests”

Extension Initialization View

extension point

test-method

1..*
shows

1..*
causes initialization

plug-in

1..*
provides

extension

          0..*

addressed by 

0..*

provides

Figure 3. Meta model of the Extension Initial-
ization View

Plug-in Scope. Zooming in to the plug-in level, the next
view presents the relations of all extension-points declared
by a plug-in to existing contributions (i.e., extensions) de-
clared by the system under test.

This can be visualized e.g., by means of a graph. An ex-
ample is given in Figure 6. The graph presents all involved
plug-ins as ellipse-shaped nodes. Extension-points are rep-
resented as rectangles. Relations between an extension-
point and a plug-in providing an extension are presented as
edges. Extensions that are actually used during the test run
are filled with a color.

The view can also be used to show all extensions de-
clared by the system-under test, and those that have been
activated during a test run.

Test-Method Scope. At method scope, the developer can
observe which test-methods have invoked the code of an
extension-point responsible for loading extensions, and
which extensions have been created for it. In this way, a
developer or tester can identify the location of the test-code
for a particular extension-point.

3.2.1 Underlying Meta-Models

This view is based on static meta data and dynamic trace in-
formation. The meta data comes from the mandatory XML

trace 1..* event

method call

object

plugin

signature

timestamp
sender receiver

extension initialization

target

has

caller
     1

has

    1

belongs to

runtime class

has

extension-point extension

is for initialize
has

Figure 4. Trace meta model

Listing 1. Extension Initialization Aspect

trace call createExecutableExtension(..) with target(Object o);

before createExecutableExtension(){
write(o.getExtensionPoint(), o.getContributor, time)
}

file, and from the optional XML-schema file (see Section
2).

The trace used for this view comprises “extension ini-
tialization events” during the test run, as illustrated by the
the trace meta model in Figure 4. An “extension initializa-
tion event” is recorded before a method named “createEx-
ecutable()” is called. In the Eclipse Platform, this method
is used to create the extension from a given class, passed
as parameter. This also is the point we intercept to trace
the caller of this method and the target-object, by means of
an aspect. The pseudo-code of such an aspect is given in
Listing 1.

This trace data shows only the initialization of an exten-
sion. It does not show the usage of this extension, which
would be the invocation of a method of the class of the ex-
tension.
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3.2.2 Reconstructing the View

The data behind this view comprises the static meta data
files for extension and extension-point declaration, and the
information gained by tracing the creation of extensions
during a test run.

The dynamic trace comprises only executable exten-
sions, because only those are created by the method we
trace. An alternative to include also data extensions, is to
intercept not the creation of an extension, but the look-up
of extensions from the plug-in registry. We decided against
this approach for two reasons: first, the views would be-
come more complex. Second, data extensions, i.e., exten-
sions that enhance the system only with static data, are less
interesting from a testing perspective.

Thus, before we can compare the static and dynamic
data sources, we have to know which extensions are data
extensions, and which extension-points load only data ex-
tensions. An executable extension has to state at least one
class in its meta data file, used to instantiate the extension.
Thus, to determine the type of an extension we analyze the
presence or absence of classes in the meta data file.

An extension-point, on the other hand, states the class
an extension has to be based on in the XML-schema file.
We analyze these schemes to retrieve the attributes defining
the base class. However, an XML schema is not mandatory.
If it is missing, we try to find an actual extension for the
extension-point. If that extension contains a class, we con-
clude that the extension-point is executable, otherwise it is
a data extension-point. If we cannot find an extension we
classify the type of the extension point as unknown.

The remaining data can be filtered and grouped, to show
which extensions have been created, by which extension-
points, and which test-method is involved. The data does
expose information about the usage of an extension. To take
advantage of that, the Extension Usage View is introduced
in the following.

3.3 Extension Usage View

The Extension Usage View focuses on characterizing the
usage of an extension during the test run. The goal of this
view is to give the developer or the tester an understanding
of how the integration of the extensions has been tested.
The question it addresses is “which extensions have been
actually used during the test run, and when and how have
they been used?”

The meta model of the Extension Usage View is illus-
trated in Figure 5. In this view, extensions are referenced
by their name. Extensions are furthermore related to the
extension-points they are target at, and to the test-methods
exercising them. Recall from Figure 1 that extension-points
can declare types (interfaces or classes) that are imple-
mented by actual extension classes.

Extension Usage View

extension
name: String

test-method           0..*
tested by

extension method

       1..*
has

extension-point

 1

     1

extends
1..*

shows

extension class

       1..*
has

1..*
invokes

Figure 5. Meta Model: Extension Usage View

The Extension Usage View can be used at system, ex-
tension, and usage level. On system scope, we can gain de-
tailed information about which of the declared extensions
have been actually used during a test run, and how many of
the test-methods are associated with extension usages. Us-
ing an extension means to invoke a method of the extension
class, overwritten or inherited by the type declared at the
extension-point.

Zooming in to the extension scope, the developer can see
which test-methods have used a given extension. This infor-
mation is helpful to spot the right piece of code responsible
for the extension usage, e.g., to enhance or change it.

A refinement of this view to the usage scope shows how
the extension has been used during the test run. All meth-
ods of an extension that have been called during testing are
listed. The view also visualizes which of those methods
have been redefined by the particular extension. With this
view, the tester gains knowledge about which integrations
of extensions have been tested, and can locate test code re-
sponsible for the usage of an extension.

3.3.1 Underlying Meta-Models

The execution trace used to construct the Extension Usage
View comprises detailed method calls of a test run, as illus-
trated by the meta model in Figure 4.

We trace all public calls directed to the system-under
test. For each extension, we calculate all types that the ex-
tension is based on and that are declared by the extension-
point, as explained in the next subsection. Subsequently we
trace all method calls to these types.

In order to see actual usage of extensions, dynamic in-
formation is required. As an example, consider Listing 2
illustrating an simplified example of an invocation of an ex-
tension. Class Extension defines the base class of the exten-
sion. Class B and C are extensions, extending the base class.
The ExtensionUsage represents the code in the extension-
point using an extension. In the trace an invocation of an

SERG Greiler, Gross & van Deursen – Understanding Plug-in Test Suites from an Extensibility Perspective
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Listing 2. Extension Usage Example
class Extension{

void me1() {}
}

class B extends Extension {
void mb1() {}
void me1() {}
}

class C extends Extension {
void mc1() {}
}

class ExtensionUsage{
void invokeExtension(Extension [] extensions){

for(Extension e : extensions)
e.me1();

}}

extension is visible as a call to “Extension.me1()”. This im-
plies, that the runtime-class for every extension invocation
has to be known, in order to distinguish the extensions from
each other, e.g., B from C in the example.

3.3.2 Reconstructing the View

To construct this view, we need in addition to the dynamic
data discussed before, the method set of an extension that
can be used by an extension-point to invoke it. We will
refer to this set as to the extension method set. As Eclipse
does not force an extension-point to declare formally the
type an extension has to extend, we might have to derive
our extension method set based on a heuristic.

First, in case the extension-point declares a base class for
an extension, the algorithm uses this to derive recursively all
methods defined by it and its super-types, i.e., interfaces and
ancestors. This collection represents the extension method
set.

In the case, no base class is provided, the algorithm col-
lects all the classes an extension declares in its meta data
file. Starting from these classes, the algorithm recursively
derives all super-types of these classes. Note, however, that
not all of them might be visible to the extension-point. For
example, consider a class A, defined in plug-in Pa, that ex-
tends class E, defined in plug-in Pe and implements Inter-
face I also defined in Pa. Since no declaration of a base
class is provided, the algorithm has to decide whether A is
based on I or E. The algorithm classifies types as visible for
the extension-point if they are declared outside of the plug-
in providing the extension. Contrary, a type is considered as
invisible when declared within the plug-in of the extension.
Those are excluded from the type set. Applying this to our
example reveals that the base class has to be E.

If the extension and the extension-point are declared in
the same plug-in all types are considered relevant. This re-
sults in an optimistic heuristic, i.e., it cannot miss a relevant
type, but might include too many. From the resulting set of
types the extension method set can be derived.

Finally, the trace is inspected for calls made to methods
included in the method set. Only when the traced runtime-
class corresponds to the class of an extension, the call is
considered as an actual usage in a particular test-method.

Based on this analysis, the view shows for every exten-
sion which test methods have caused their usage, and which
methods out of the extension method set have been used.

4 Implementation

We implemented the reconstruction and presentation of
our views in ETSE8, our “Eclipse Test Suite Exploration
Tool”. It is implemented in Java, and offers an API to con-
struct the views in question.

To analyze the static Java code we use the Byte Code
Engineering Library9, which inspects and manipulates the
binary Java class files. Meta data, including the OSGi man-
ifest and the plugin.xml files, is collected and analyzed. To
trace the execution of the test run, we use aspect-oriented
programming, in particular the AspectJ10 framework. We
defined several aspects, addressing different join points to
weave in our tracing advices. There are three main classes
of aspects that can be differentiated: the aspect used for
weaving into the initialization of the extensions, the aspect
used to trace method calls, and the aspect used to trace plug-
in starts and stops.

5 Evaluation of the Views

The evaluation is based on a case study including two
subject systems whose test suites have been investigated by
means of the proposed views. We defined the following
research questions to evaluate whether the views meet the
information needs of a developer (RQ1&2), and to estimate
how scalable (RQ3) and accurate (RQ4) the views are:
RQ1: To which extent does the Extension Initialization
View help to understand the influencing relations between
the plug-ins under test, and how much does it help to under-
stand which of those relations have been addressed in the
test suite?
RQ2: To which extent does the Extension Usage View help
to understand how the integration of extensions has been
addressed by the test suite?
RQ3: How understandable and manageable are the views

8We are in the process of creating an ETSE distribution at http://
swerl.tudelft.nl/bin/view/Main/ETSE

9http://jakarta.apache.org/bcel
10http://www.eclipse.org/aspectj
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Figure 6. Static and Dynamic Dependencies based on Extension-Points: Plug-In Scope
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Figure 7. Static and Dynamic Dependencies based on Extension-Points: System Scope

for large-scale systems?
RQ4: How accurate are the views presenting the system-
under test?

All research questions are addressed with respect to the
different abstraction levels provided by the proposed views.

5.1 The Subject Systems

One experimental subject is eGit11, a smaller plug-in
system designed to integrate the source control management
system Git into Eclipse. eGit is a good fit for our evalua-
tion, mainly of its small size, that permits, in addition to the
investigation by means of the views, to manually inspect
the complete system. eGit consists of three main plug-ins,
and two test suites. One test suite comprises the core tests,
and the other the user-interface tests based on the SWTBot
framework. The underlying source code has 28,300 lines of
code, and the test suites comprise 1,700 lines of code.

The other study subject is Mylyn, a task management
system for Eclipse. Mylyn has been chosen because it rep-
resents a large-scale plug-in system, and gives valuable in-
sights to the ability of the views to help comprehending such
a complex system, as well as to the scalability of the views.
We used Mylyn 3.4 for Eclipse 3.5. It includes the selection
of 27 plug-ins that make up the core contribution. Those 27
plug-ins come with 11 test-components. Additional contri-
butions, like connectors, are excluded from this study. The
source code comprises 200,000 lines of code, and the test
suite has 30,000 lines of code. We investigate the included
AllComponents test suite which runs 518 test cases.

11http://www.eclipse.org/egit

5.2 Information Needs

This section presents the evaluation results for investi-
gating research questions one and two. We do so by going
through the use of the views for Mylyn, followed by a re-
flection on the strengths and weaknesses of the views.

The Views in Practice The 27 plug-ins in Mylyn offer
25 extension-points to contribute functionality, and also de-
clare 148 extensions to enhance its functionality and that of
Eclipse.

The first question during this evaluation is whether the
Extension Initialization View helps to understand how the
148 extensions are related to the 25 extension-points within
the system-under test, and also which of those relations have
been covered by the test suite.

This view at system scope for Mylyn is illustrated in Fig-
ure 7. An edge between two plug-ins means that one plug-
in declares an extension-point for which the other plug-in
provides an extension. The view abstracts from the spe-
cific extension-points declared. However, the fraction on
the edge states how many of the static declarations (bottom
of fraction) are activated during a test run (top).

At plug-in scope, this view is illustrated by Figure 6
for plug-in mylyn.context.core. The plug-in provides three
extension-points, namely bridges, internalBridges and re-
lationProviders. The view shows that within Mylyn six
plug-ins exist that use extension-point bridges to influence
the plug-in, represented by the six nodes connected to this
extension-point. The coloring of five nodes indicates that
only five of the relations are activated during the test run.
The view does not give explanations, but points to one plug-
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Figure 8. Extension-Initialization View

Figure 9. Extension Usage Profile

in the developer might manually inspect and find an empty
XML declaration for this extension.

To understand which test-method causes this extension-
point to load its extensions, the developer zooms at method
scope, as illustrated by Figure 8. Subsequently, the Exten-
sion Usage View provides deeper insight in the actual usage
of those extensions and reveals that none loaded by bridges
is actually used during a test run.

Findings. The Extension Initialization View allows to un-
derstand the relations of the plug-ins under test, based on
their contributions to each other. Especially for a large-scale
system like Mylyn, the system scope view has proven useful
to visualize and represent how plug-ins influence the behav-
ior of each other, and to indicate which of those extension
relations have been addressed by the test suite. On the other
hand, the view does not show how the system-under test
influences or is influenced by its ecosystem, i.e., Eclipse.
Nevertheless, the borders defining the system-under test can
be chosen by the viewer. On plug-in level, the view helps to
understand which extension-points load extensions. On the
other hand, the view does not indicate reasons why some
relations are activated and others are not, as in Figure 6.

The Extension Usage View helps to understand how the
test suite addresses integration with respect to extensions.
On a detailed level, this view allows to locate the test code
related to an extension, as Figure 9 shows for an extension
of exportWizards. Further, the view sheds light on the struc-
tural testing approach followed by this test suite, e.g., how
many of the methods of an extension have been used.

However, both of the views do not evaluate the test suite
against coverage and test adequacy criteria. Despite that,
they give the developer a valuable perception to judge the
quality of the test suite. With respect to Mylyn and eGit, the
views revealed that not all of the extension-points and ex-
tensions are tested. By means of the detailed views, we were
able to locate source code and get insights in the testing ap-
proaches for extension and extension-points. For example
the bridges extension-point, addressed in the examples be-
fore, is tested through explicit adding of an extension-object
by the test-method.

5.3 Scalability

This section presents the scalability of the views first,
with respect to their understandability by human viewers
and then, in terms of the manageability of disk space re-
quired for the trace files.

In general, the views provide several abstraction levels
(e.g, system, plug-in and method scope) to better cope with
scalability issues. We discuss scalability for both views at
several of these abstraction levels.

Extension Initialization View. At system scope, the num-
ber of entities displayed turns the balance. The viewer has
to be able to comprehend the relations the entities have with
each other to understand the overall system. Within My-
lyn, the system view is, with 15 related plug-ins, still under-
standable. On the other hand, the system scope view is not
scalable enough to represent a plug-in system as complex
as the Eclipse IDE in a usable way.

The evaluation for eGit showed eGit is too simple for
the initialization view at system scope. eGit only has a few
plug-ins with a few extension relations: the view is more
helpful for more complex systems.

The understandability of the view at plug-in scope de-
pends on the number of extension-points defined per plug-
in, and not on the overall size of the system-under test. This
means that within a small system like eGit, the view can
be as helpful as in a large-scale system. In both subject
systems, the views are understandable with an average of 2
and a maximum of 10 extension-points defined per plug-in
(based only on plug-ins providing extension-points).

Extension Usage View. The extension usage view
presents at all abstraction levels information that can be
consumed per item. This means the entities do not have to
be put in relation with each other by the viewer. Therefore,
we consider this view as scalable, independent of the size
of the system-under test or the number of extensions. At all
scopes, the viewer will be either interested in a summary of
the data, like 15 out of 58 created extension have been used,
or the developer is concerned with a particular extension, or
method.

Another question is the manageability of the data with
respect to its required disk space. The size of the trace file
used to create the Extension Initialization View is reason-
able, e.g., 32Mb for Mylyn and 52Kb for eGit. On the
other hand, the trace file required for the identification of
the Extension Usage includes trace data from several pack-
ages outside of the system-under test and can become large.
The trace of Mylyn, for all of the 148 extensions has 6Gb.
However, the number of packages included for tracing are
affected by the number of extensions analyzed. The size of
the file depends on this variable. We argue that an usual us-
age scenario for this view involves the inspection of a small
number of extensions, e.g., 1-5. Then the according trace
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would be much smaller. Once this trace is analyzed the
remaining information can be stored within the megabyte
range, (e.g., 6Mb for Mylyn).

5.4 Accuracy and Correctness

The Extension Initialization View tells the developer
which test method causes an extension-point to load an ex-
tension. For Mylyn, the view shows nine test-methods re-
lated to an extension-point defined in Mylyn.

We manually inspected all of those nine test-methods, to
see if it is apparent from the test-method how it is involved
in testing the extension-point. For all, it was immediately
clear that the code tests the extension-point, i.e., no false-
positives occurred.

The accuracy of the Extension Usage View is mainly in-
fluenced by the classification of the classes to be either vis-
ible or invisible for the extension-point. A classification er-
ror might occur, if the extension-point does not provide a
base-class in its XML schema file. When in doubt, the algo-
rithm behaves optimistic and classifies all types, that are ex-
tended by the class of the extension as related. This means
no extension usages are missed, but it leads to a wrong clas-
sification if the extension class does not only extend the
Type declared by the extension-point. Then, the view in-
dicates more extension usages than happen, and the viewer
has to reduce them manually.

This false classification is reduced, by considering that
if the extension-point is not declared in the plug-in that
provides the extension, and a type extended by the exten-
sion is defined within this plug-in, this Type cannot be vis-
ible to the extension-point, and can be excluded. Until the
extension-point is required to indicate a Type, we cannot
elude misclassification. In Mylyn, all extension-points pro-
vide an XML schema-file. To get an impression for the
likelihood of a misclassification we manually inspected all
29 extension classes declared for an extension-point within
Mylyn, i.e. representing the system-under test. None of
those would have led to a misclassification. In addition, we
inspected 9 extension classes declared for extension-points
declared outside the subject system (but in the ecosystem)
to see their potential classification error. Of these, only one
class would have caused a misclassification.

6 Discussion
Limitations. At the moment, we are only partly address-
ing the integration of the system-under test in its ecosystem.
The views mainly focus on the relations within the system-
under test. Contributions to the ecosystem, i.e., extensions
from the system-under test for extension-points defined out-
side are addressed. But, the Extension Usage View does not
yet address directly extension-points defined by the system-
under test and their extensions outside of the system-under

test. That would be an extension e.g., defined by Eclipse
for an extension-point inside the system-under test. Even
though, the tester would have to think about if this part of
Eclipse should not be included in the system-under test.

Recommendations. Standardization. As discussed, ex-
tensions can be of two types, data or executable extensions.
In Eclipse there is no formal way to distinguish them. Fur-
ther, an extension-point is not forced to provide an XML
schema-file describing the syntactical contract between cre-
ator and contributor. We would recommend stricter decla-
rations for extension-points. Also a standardization for core
elements required within the meta data XML file would fa-
cilitate the comprehensibility of plug-in systems.

Set-Up and Tear-Down. While executing a test suite with
the Eclipse plug-in test runner, the framework is only started
once. Also plug-ins and extensions are created on demand
and not automatically stopped after a test execution of one
method. This means that the execution of a test-method
can change the state of the system, and therefore possibly
change the outcome of following tests. For example, a test-
method that creates an extension, might also need to activate
the plug-in providing this extension. In the case, the exten-
sion would be used also by a subsequent test-method, this
test-method would not have to activate the plug-in anymore.
We believe that there is not enough awareness for the impli-
cations of this circumstance. The test runner should allow
to configure the set-up and tear-down behavior for the exe-
cution environment, in this case Eclipse.

Threats to validity With respect to external validity, the
case studies chosen, Mylyn and eGit, can be considered rep-
resentative for Eclipse plug-ins. In particular Mylyn is a
complex plug-in, and hence we expect the views to be use-
ful to other complex plug-ins as well.

While the extension mechanism is Eclipse-specific, it is
essentially a callback mechanism, which is a common way
to achieve extensibility in many systems. We conjecture
that the proposed views are useful in such a callback set-
ting as well, in particular if they are, like Eclipse, based on
OSGi.

Concerning reliability (repeatability), the subject sys-
tems are open source and accessible by other researchers.

7 Related Work

A recent survey on the use of dynamic analysis for pro-
gram understanding purposes is provided by Cornelissen et
al. [4]. One of the findings of this survey is that very few
studies exist addressing dynamically reconfigurable sys-
tems – a gap that we try to bridge with our paper.

In the area of test suite analysis and understanding, van
Deursen et al. [19] proposed a series of JUnit test smells
(pointing to hard to understand test cases) as well as a num-
ber of refactorings to remedy them. Later, this work was
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substantially elaborated by Meszaros into an extensive book
on xUnit patterns [12]. Van Rompaey et al. propose a for-
malization of a series of test smells, as well as metrics to
support their detection [20]. They also propose heuristics
to connect a test class to its corresponding class-under-test
– which we also use in our approach. Gälli et al. present
a taxonomy of (Smalltalk) unit tests, in which they distin-
guish tests based on, for example, the number of test meth-
ods per method-under test, and whether or not exceptions
are taken into account [6].

In order to support the understanding of test suites, Cor-
nelissen et al. investigate the automated extraction of se-
quence diagrams from test executions [3]. Zaidman et al.
investigate implicit connections between production code
and test code, by analyzing their co-evolution in version
repositories [21]. While these studies provide important
starting points, none of them approaches test suite under-
standing from an integration or extensibility point of view.

8 Concluding Remarks

In this paper, we have addressed the problem of under-
standing test suites for plug-in-based architectures. In par-
ticular, the following are our key contributions: (1) Two ar-
chitectural views that can be used to understand test suites
for plug-in-based systems from an extensibility perspective;
(2) the Eclipse Plug-in Test Suite Exploration (ETSE) tool,
that can be used to recover the proposed views from existing
systems by means of static and dynamic analysis; and (3) an
empirical study of the use of these views in Mylyn and eGit.
In our future work, we will first of all apply the proposed ap-
proach to further plug-in-based architectures. Furthermore,
we will investigate to what extent the views can be used as a
base to derive adequacy criteria used to prevent failures re-
ported in the actual usage of concrete plug-in-based systems
such as Eclipse. Finally, we plan to enhance this base with
models representing the shared properties of plug-in based
systems. Together, from the models a new test strategy and
approach for plug-in based systems that provide dynamic
reconfigurations should emerge.
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