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Summary

Illuminating the functional part of the genome of livestock species has the potential to facilitate
precision breeding and to accelerate improvements. Identifying functional and potentially
deleterious mutations can provide breeders with crucial information to tackle inbreeding depression
or to increase the overall health of their populations and animal welfare. By performing Genome
Wide Association Studies (GWAS) the genome can be interrogated for mutations that co-occur with
a phenotype of interest. However, every GWAS delivers a large number of potentially functionally
important single nucleotide polymorphisms (SNPs). The exact effect of each of these SNPs is often
not known, especially for SNPs in noncoding sequences. Investigating each candidate SNP variant
in detail is laborious and, eventually, infeasible, given the sheer number of variants. Thus, there is
a strong need for approaches to select the most promising SNP candidates. Prioritizing variants, in
particular, SNPs, has seen major developments in recent years which led to several discoveries and
insights inheritable diseases of humans. Despite their great economical value, for livestock and
other non-human species, this development is lagging behind.

A major contributing factor to the deficit in prioritization tools for non-human species is a lack of
genomic annotations. In this thesis, we translated one of the currently popular SNP prioritization
tools, CADD (Combined Annotation-Dependent Depletion), to mouse (mMCADD) and performed an
experiment in which we simulated a decrease in the number of available genomic annotations.
These results showed that following the CADD approach to predict the putative deleteriousness of
SNPs is meaningful in a non-human species, even when fewer genomic annotations are available
than for the human case. This motivated us to build various CADD-like SNP prioritization tools for
livestock species, in particular for pig (pCADD) and chicken (chCADD). We validated the pig
prioritization tool on a set of well-known functional pig variants. Further, we showed how functional
and non-functional parts of the pig genome are scored differently by pCADD. In collaboration with
the breeding industry, we built upon the pCADD scores and implemented them in a pipeline to
identify likely causal variants in GWAS. To this end, we utilized SNPs that were found significant in
GWAS based on SNP-array data and found variants with high pCADD scores in whole genome
sequence data that are in linkage disequilibrium with high GWAS-scoring SNPs. Thus, these
pCADD-identified SNPs are likely (causal) functional candidates for the phenotypes tested. We also
identified several expression quantitative loci (eQTL) variants, SNPs that explain observed
differences in gene expression, which we were able to validate using RNA-seq data. This
demonstrated the power of this new tool and its usefulness in identifying novel, functional variants.
For chicken, we used the chCADD to interrogate highly conserved elements in the chicken genome.
Here we found that, despite being highly conserved, not all parts of these elements might be
functionally active. chCADD differentiates between regions within each conserved element that are
predicted to be functionally different. Taken together, the results presented in this thesis
demonstrate SNP prioritization can successfully be done in non-human species, which can greatly
assist breeders and animal geneticists in their work to illuminate the functional genome.
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1.1 - Effects of in-silico genome science on animal breeding

1.1. Effects of in-silico genome science on animal breeding

Humans have domesticated animals for around 12000 years [1] for the purpose of food production
(e.g. livestock), protection (e.g. guard dogs), pest control (e.g. cats) and other functions. With
these goals in mind, humans selected in particular the offspring of animals which displayed
conducive traits to enhance these in future populations. In this way domestication differs from
taming of animals, in which humans do not control the selection of mates to produce subsequent
generations. By amplifying desirable traits in each generation, they become predominant in the
controlled populations until the domesticated animals are clearly distinguishable from their wild
counterparts, with their own characteristics.

For millennia, desirable traits have been selected based on visual inspection and evaluation of the
mating candidates and their pedigrees. Statistical models were developed to predict breeding
outcome (estimated breeding value (EBV) [2]) between two animals, to properly select the parent
animals that have the highest potential to give birth to a generation of animals with improved
phenotypes. Through this, animal breeding became more and more a theoretical subject in the
natural sciences, with the constant goal of generating more accurate EBVs, to better select parent
animals. One of the most widely used statistical models to calculate EBVs is the so-called best
unbiased predictor (BLUP) [3]. It utilizes phenotype information and family relationships to
calculate weighted phenotype averages that are corrected for potential systematic biases. Such
biases include e.g. variation between farms, when differences in phenotypes are not due to
differences in genetic value but differences in feed etc.

Breeders can use these predictions to formulate a breeding plan, which optimises the development
of a trait in their populations. Through improvements in genomics, the development of genetic
selection (GS) [4] and the ever decreasing costs of genome-wide single nucleotide polymorphism
arrays (SNP arrays), this approach has been drastically enhanced in recent history. GS suggests
the use of genetic markers rather than pedigree to identify the relatedness between individuals.
This yields more accurate relationship estimates and more accurate EBVs. This progress helped to
achieve major genetic improvements. From 1961 to 2008, egg, milk and meat production of major
livestock species have increased by 20-30% due to improvements in genetics and other factors
[5]. Broiler chickens in particular grew around three times faster in 2001 than in 1957, while
consuming only a third of the feed [6].

Despite these improvements and the continuously growing amount of genomic data, the exact
expression of a trait in any individual remains difficult to predict. This can be due to non-additive
inheritance [7], underestimation of environmental effects that cause variations in the phenotype or
absence of predictive genetic markers [8]-[10].

For genomic prediction, usually many tens or hundreds of thousands of SNPs measured in high
throughput (genome wide association study (GWAS)) are considered as genetic markers. In these
studies, associations between the genome and a phenotype of interest are usually found by
analysing the overrepresentation of SNPs between two different cohorts of individuals. Livestock
species usually carry 2 to 4 times more mutations than humans [11]-[14]. Combined with the fact
that 25-50% of rare non-synonymous mutations in humans are predicted to have an adverse effect
on the survivability of the individual [15], a relatively larger humber of genomic variants with
adverse effects on survivability or phenotype can be assumed to be present in any genome of
livestock species. These mutations, especially heterozygous occurrences of homozygous recessive
variants, can stay present in the population at low frequencies. Due to high rates of inbreeding in
breeding plans to emphasize the expression of a particular trait, even low frequency, heterozygous
variants can frequently become homozygous and have adverse effects on the phenotypes. They
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jointly lower the performance and fitness of the population, but due to their low frequency they are
hard to identify and remove.

GWAS are the go-to approach to investigate associations between the genotype and phenotype.
Even though at first view the approach to look for over-/under representations of alleles in two
cohorts seems relatively straight forward, it is based on a number of assumptions and may be
difficult to conduct without introducing biases. To find all variants in a GWAS that have an effect on
the phenotype, all variations of all individuals need to be tested. In humans, persons differ by
around 8-10 million SNPs from each other and around 40 million base pairs are affected by
structural variations [16], which may differ between cohorts as well. This means the number of
tested people need to be enormous, otherwise there is no chance that any variation may be
identified due to low statistical power. In animal GWAS, the same problem of low statistical power
occurs. To increase power, either more samples can be used or fewer alleles. Most often the
number of samples cannot be increased, thus fewer alleles are chosen. A selected number of
marker SNPs can still be informative about the genotype because SNPs in close proximity are often
inherited together, so a SNP can give information (SNP imputation) [17] on nearby SNPs even if
they are not measured directly. The mutual inheritance of SNPs is called linkage disequilibrium [18]
(LD). The sizes of these LD-blocks, which are inherited together, depend on the degree of
inbreeding, with more inbreeding leading to larger LD-blocks. For this reason, marker SNPs should
be carefully selected for GWAS to represent LD blocks associated with the phenotype of interest
[19]-[21]. still, errors may accumulate and the observed change of phenotype, caused by each
marker, does not necessarily sum up to change that would be expected [22], [23].

SNPs constitute the most common and most easily measured type of genetic variation, hence the
strong emphasis on these in GWAS. In GWAS, SNPs located in the same LD-block are highly scored
if that LD-block segregates between the two tested cohorts of animals. Generally, it is assumed
that there is only one variant per highly scored LD-block which affects the investigated phenotype,
while the other marker SNPs are only linked to that causal/functional mutation through LD. Due to
the low likelihood of truly causal SNPs being selected in the subset of measured SNPs, the results
of GWAS have to be further scrutinized. LD-blocks differ in size and can range over several millions
of base pairs (Mbp), covering numerous genes. As manual identification of the causal variant is
infeasible, in silico SNP prioritization tools have been developed. These tools often calculate a
specific metric for each SNP; one of these is its expected deleteriousness. Deleteriousness is not
clearly defined and can have several meanings. First there is the gene-centric definition of
deleteriousness. It states that the SNP has an adverse effect on a gene, either by lowering its
expression or disrupting the structure of the encoded protein, rendering it incapable of performing
its function. Another definition is centered around evolution, identifying deleteriousness as the
likelihood of a SNP to be under negative selection due to a disadvantageous effect on the
phenotype that decreases the probability of the individual to reproduce.

Besides the use of SNP prioritisation tools in GWAS, they may be able to help to study functional
elements across the genome which would eventually support selection in breeding plans. So far, in
animal breeding, the genome has been used as a black box, emphasizing genomic loci rather than
individual functional mutations. Illuminating the genomic black box could lead to improved
weighting of SNPs in genomic breeding, which has the potential to greatly increase genetic gains in
of the studied animals.

The identification of functional elements and SNPs depends on the region of the genome in which
they are supposed to be located. Until recently this has been the reason why great emphasis was
put on the identification of functional SNPs in exonic regions, while SNPs in other regions have
been neglected due to the difficulty to infer causality for their function. In the past, this has led to
the incorrect assumption that sequences which do not code for a gene were unimportant. This
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assumption was coined in the term “junk DNA" [24]. Since then, many regulatory active regions
that are essential for survival of the individual, have been identified within the non-coding part of
the genome [25]-[28]. Thus, there is a great need to investigate variations in all parts of the
genome. SNP prioritisation tools, capable of scoring variants genome-wide, may be able to help
identify and discriminate functional from non-functional DNA sequences. In this way they provide
an order of importance, to study variations that could complement and improve existing breeding
methods.

1.2. Metrics and methods for SNP prioritization

To prioritize SNPs, we first have to identify properties of SNPs related to the evaluation metric
used. A SNP in itself has only three distinct properties: its location on the genome, frequency
within the population and the nucleotide substitution it represents. The most informative property
is its location. When researchers investigate the effect of a particular SNP on a phenotype, they can
derive conclusions based on additional annotations known at that location. The number and
diversity of these additional annotations differ greatly between genomic regions and species. A SNP
located in a known exon may have many more annotations than SNPs in other parts of the
genome; moreover, by taking advantage of the nucleotide substitution which the SNP represents,
potential effects downstream of protein production can be inferred. The first and most common
kind of SNP effect prediction and prioritization tools are specific for these information-rich genomic
positions. Tools such as SIFT [29], PolyPhen & PolyPhen-2 [30], [31], SNAP & SNAP2 [32], [33]
and Provean [34] make use of amino acid conservation and the potential effect of an amino acid
substitution on the function of the protein. Unfortunately, in mammals only roughly 1%-3% of the
genome codes for protein [35], which limits the overall use of missense specific SNP prioritisation
tools. Further, it has been estimated that non-synonymous mutations only account for 20% of the
genetic variation that influences a change of phenotype [36]. The majority of the genome does not
code for a protein and the majority of influential loci, identified in GWAS, are located in regions that
are not annotated with any genes or that belong to the noncoding part of a gene. Regulatory
elements which have an effect on gene expression and phenotype are often located in these
regions. This is the main motivation behind the push to develop more elaborate SNP prioritization
tools capable of annotating mutations in noncoding DNA sequences.

Due to the complexity of any trait, its expression depends on a plethora of interacting regulatory
programs that work together and create the observable phenotype. At each stage, from DNA to
RNA to protein, regulatory effects manifest themselves. These regulatory effects are caused either
by cis- or trans-regulatory elements. Cis regulatory elements are located in the DNA sequence,
most likely in close proximity to the regulated gene, i.e. promoter regions of a gene. While
promotors are always close to their associated gene, enhancer and silencer regions may be more
distant to their target and have to be identified via measurements of the quaternary structure of
the DNA or other specific characteristics of those regions such as their methylation and acetylation
status. Trans-regulatory elements are elements such as transcription factors or miRNAs which are
not located on the same DNA molecule as the regulation target. Each of these elements can be
measured in various ways, resulting in many different data types. SNP prioritisation tools usually
capitalize on this data to prioritize variants in non-coding regions.

DNA quaternary structure is of importance because of the densely packed nature of DNA which
only allows for the binding of transcription factors (TF) at exposed sites. These can be
experimentally identified via FAIRE-seq, DNase-seq and ChiP-seq assays [37]-[39]. Due to the
relative importance of these regulatory regions, several methods have used the rich data sets of
the ENCODE data base [40] to learn predictors for sequence motifs which indicate DNA accessibility
and TF binding sites. Three of these methods (DeepBind, DeepSea, Basset [41]-[43]) are suitable
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to varying degrees to make predictions about the putative effect of SNPs in predicted regulatory
active regions. DeepBind is the least optimized for the prioritization of SNP: based on ChiP-seq
data, it predicts sequence motifs and scores sequences containing those. It then uses these
sequence scores to score individual SNPs contained in them. DeepSea is more tailored to predict
the functionality of SNPs at single bp resolution. It is a deep learning approach that uses a
convolutional layer to learn features from the DNA sequence which are informative for DNase
activity, TF binding and histone marks. Then it predicts how these features change when the
investigated sequence harbours a SNP relative to the reference sequence. Basset takes a similar
approach but predicts only DNA accessibility via DNase activity. It sets itself apart from the other
two methods by predicting the change of DNA accessibility per cell type, which allows for the
prioritization of SNPs with respect to cell type specific traits.

Disadvantages of all these methods are that they are limited to specific regions, similar to the
previously mentioned missense specific methods. Missense specific methods are limited to amino
acid changing mutations; DeepBind, DeepSea and Basset are limited to accessible noncoding
regions but ignore SNPs in other regions. Further, epigenetics differs from cell type to cell type and
can change with age and other environmental circumstances, thus SNPs functional for the trait of
interest may not be detected in the investigated sample. It has been shown that in some cases, the
epigenome influences gene expression more than sequence and that some epigenetic markers are
more strongly conserved than the sequence in that region, which allows for the introduction of
SNPs without major changes in gene expression [44]. This means SNP effects are hard to derive
from genome sequence alone. Finally, the three methods rely to a large extent on the vast amount
of data available in public databases for human genome research. For the purpose of creating a
SNP prioritization tool for non-human species, these approaches are less suitable due to a lack of
publicly available data. This is even true for model organisms. ENCODE v93 (accessed 06-12-2019)
contains the results of 10,485 assays for human while for mouse there are only 1916; the database
which is supposed to be established as part of the FAANG project [45], aiming to be the
counterpart to ENCODE for livestock genomes, is at the beginning of December 2019 [46] still in its
early development.

A similar problem is observed when one wants to recreate models for non-human species that are
trained on known disease SNPs. Human examples of such models are FATHMM-MKL [47] or GWAVA
[48]. Both use data sets of experimentally validated disease-associated variants for training. Such
data sets are not available to the same extent for other species, which limits the portability of
these methods. Moreover, problems may arise due to the variants used for training. It can be
hypothesized that these represent an extreme subset of functional variants and therefore any
model learned on them would have difficulty to differentiate well among less extreme variants.

SNP prioritization approaches such as Combined Annotation Dependent Depletion [49] (CADD) and
linear-INSIGHT [50] (LINSIGHT) avoid these kinds of problems. Instead of training a model on a
small set of already validated variants, they use evolutionary models to capture signals of natural
selection over many generations. In this way, they obtain large numbers of variants that can be
used to train models which emphasize the discrimination of variants under purifying selection.
LINSIGHT uses the INSIGHT [51] evolutionary model that estimates which regions are under
purifying selection by contrasting them to neutrally evolving regions. To do this, it uses differences
between population and outgroup variants. Then a generalized linear model is trained to predict
the INSIGHT classification based on genomic annotations such as conservation scores, TF binding
sites and epigenetic markers. The resolution of the score can range from single bp to several kbp.
CADD on the other hand does not make assumptions about entire regions of negative selection. It
relies more strongly on the inference of past ancestral states, since it derives a nucleotide
substitution model from substitutions between different ancestral genomes. This substitution model
is then employed to simulate de novo variants which are more likely to have experienced negative
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selection and therefore are enriched in deleterious variants. This set of simulated variants is used
as a positive set and the negative set contains derived alleles which are (almost) fixed in the
species of interest. These alleles have experienced many generations of selection pressure and
should be depleted of variants with an adverse effect on the phenotype. As in the previously
discussed methods, all variants are annotated with a wide range of genomic annotations to train a
machine learning model to differentiate between both classes. In CADD this is a penalized linear
logistic model. In comparison to LINSIGHT, CADD has a single nucleotide resolution genome-wide,
with individual scores for different alleles at the same site, and it incorporates coding and
noncoding regions while LINSIGHT is trained particularly for non-coding DNA.

1.3. Thesis outline / contributions

The research presented here focuses on the use of the CADD approach for non-human species.
CADD is based on a single model for the entire genome and has been well received in the
investigation of human genomes [52]-[56]. Its general framework can be reproduced for any
species as long as whole genome sequences of at least three other closely related species are
known. First, Chapter 2 presents a feasibility study in mouse, demonstrating that CADD
methodology can be meaningfully reproduced for other non-human species, even when fewer
genomic annotations are available. Chapter 3 follows up on these results and introduces the CADD
methodology for pig. Chapter 4 shows the insights and value which can be generated by
incorporating pig-CADD (pCADD) in the prioritisation process of SNPs in the breeding environment.
Finally, Chapter 5 introduces chicken-CADD (chCADD) and exploits its single allele resolution to
investigate highly conserved regions in chicken, for which detailed genomic annotations are
missing.
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2.1 - Abstract

2.1. Abstract

Background: Predicting the deleteriousness of observed genomic variants has taken a step
forward with the introduction of the Combined Annotation Dependent Depletion (CADD) approach,
which trains a classifier on the wealth of available human genomic information. This raises the
question whether it can be done with less data for non-human species. Here, we investigate the
prerequisites to construct a CADD-based model for a non-human species.

Results: Performance of the mouse model is competitive with that of the human CADD model and
better than established methods like PhastCons conservation scores and SIFT. Like in the human
case, performance varies for different genomic regions and is best for coding regions. We also
show the benefits of generating a species-specific model over lifting variants to a different species
or applying a generic model. With fewer genomic annotations, performance on the test set as well
as on the three validation sets is still good.

Conclusions: It is feasible to construct species-specific CADD models even when annotations such
as epigenetic markers are not available. The minimal requirement for these models is the
availability of a set of genomes of closely related species that can be used to infer an ancestor
genome and substitution rates for the data generation.

2.2. Background

With the possibility of determining variation in genomes at large scale came an interest in
predicting the influence of a mutation on a phenotype, in particular its pathogenicity. Initially, such
predictions were restricted to missense mutations, as these cause a change in the corresponding
amino acid chains and are thus most likely to have immediate functional effects. SIFT [1],
PolyPhen2 [2], SNAP2 [3] and Provean [4] are examples of this kind of predictor. Recently, a
number of methods for variant annotation were proposed that assign a single deleteriousness score
to mutations throughout the entire genome, based on a large collection of genomic and epigenomic
measurements. These methods - a.o. CADD [5], GWAVA [6], FATHMM-MKL [7] - are based on
supervised classification. CADD (Combined Annotation Dependent Depletion) takes an interesting
approach, in that it trains classifiers to distinguish between observed benign variants and inferred,
putatively deleterious variants, instead of exploiting only known regulatory or disease-associated
variants. This opens up the possibility to reproduce this approach for other non-human species as
well. It shares similarities with fitCons [8] and LINSIGHT [9] by exploiting evolutionary models,
which capture signals of natural selection over many generations in the generation of training data.

Although the use of CADD is already well-established in human genetics research and clinical
practice [10], [11], for non-human species the situation is quite different. While generic predictors
such as SIFT, Provean and SNAP2 can be used, genome-wide variant annotation methods are
generally not available. A major reason is that for non-human genomes fewer genomic annotations
are available, complicating the construction of more advanced models. This is even the case for
model organisms, such as zebrafish (Danio rerio), drosophila (Drosophila melanogaster) and
mouse (Mus musculus). Additionally, extensive population studies similar to the 1,000 and 100,000
Genomes Projects [12], [13] are lacking for non-human species, hampering the creation of good
training data sets. Finally, models for non-human species are much more difficult to evaluate due
to a lack of known disease-associated or phenotype-altering variants such as ClinVar offers for
human [14].

Here, we explore the development of a functional prioritization method for SNVs located across the
entire genome of a non-human species. The species we selected to investigate is mouse. As a
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model species it is well studied, with relatively rich, publicly available, genomic annotation data
sets [15]-[20]. Even though not all annotations used in the human CADD model are available for
mouse, the large overlap of annotations allows performance evaluation and comparison between
the original CADD and our mouse CADD. With this proof-of-principle, we aim to gain insight into
design choices for porting such a methodology to non-human species.

2.3. Results

We trained a CADD model on mouse data (mCADD) and a CADD model on human data (hCADD).
Performances of both are evaluated on test sets of variants located in different genomic regions. In
addition, mCADD is evaluated on three validation sets (Fairfield, Mutagenetix, ClinVar-ESP data
sets). We also compared mCADD to benchmark metrics such as SIFT and two PhastCons scores
based on two phylogenies of different depth. Further, we trained mCADD and hCADD on four
different annotation subsets to investigate the performance of a CADD-like classifier for species
with fewer known annotations. These models are referred to as hCADD(n) and mCADD(n), with n
the number of annotations used during training. To investigate the benefits of developing species-
specific CADD models, we compared mCADD to 1) CADD v.1.3. C-scores by lifting validation
variants from mm10 to hgl9 , and 2) a CADD model trained on human data which, without further
adaptation, is applied on mouse data to evaluate the mouse SNVs (hCADD*).

2.3.1. mCADD performs similarly on mouse as hCADD does on human

The ROC-AUC performance of mCADD(931) on the entire test set equals 0.668 (Figure 1), which is
similar to the performance of hCADD(1000) applied on human data (Figure 2). Overall,
mCADD(931) has a better performance across all genomic regions, with the most pronounced
difference for the translated missense variants. Both models, mCADD(931) and hCADD(1000),
discriminate between simulated and derived better than SIFT and PhastCons scores.
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Figure 1: a-d) ROC-AUC scores of the four different mCADD models evaluated on seven
different subsets of the mouse held-out test set reflecting different genomic regions
and/or functional annotations. e, f) Seven different subsets of the mouse held-out test
set evaluated by glire- and vertebrate based PhastCons scores, respectively. g) Missense
mutations of the mouse held-out test set evaluated by SIFT. h) The subsets of the mouse
held-out test set evaluated by hCADD*.: I) all data, II), not-transcribed, III) transcribed,
IV) transcribed but not translated, V) translated, VI) translated and synonymous, and
VII) translated and missense. The different models are indicated at the top of the panel.

All displayed scores are ROC-AUC.
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Figure 2: ROC-AUC scores of the four different hCADD models evaluated on the human
held-out test set. e, f) Seven different subsets of the human held-out test set evaluated
by primate- and vertebrate based PhastCons scores, respectively. g) Missense mutations
of the human held-out test set evaluated by SIFT. (see caption Figure 1 for remaining
explanation).

It is known that the distribution of CADD scores differs between genomic regions, and that the
disruptive effect of variants in exonic regions can be estimated more precisely than that of variants
in non-coding regions [21], [22] We observe a similar trend for mCADD(931) as well as
hCADD(1000). Most of the performance increase from genomic regions I, III, V to VII (Figure 1) is
even due to the high performance on correctly classifying missense mutations that become more
enriched in these regions. This is in contrast to the performances in genomic regions II, IV and VI
which do not contain any missense mutations.

2.3.2. Models trained on selected annotation subsets experience
performance drop in coding Regions

To see whether models behave differently when less information is available, we reduced the
number of annotations to train human and mouse models. The first subset of annotations (872)
was chosen based on the idea that epigenetic measurements and species-specific annotations
might not be available for some species. The performances of mCADD(931) and hCADD(1000) as
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well as mCADD(872) and hCADD(872) are very similar, with the mCADD models performing
slightly better than the hCADD models (Figure 1 and Figure 2).

The second subset of annotations consist of 229 annotations derived from sequence only, i.e.
conservation scores and VEP consequences (mCADD(229), hCADD(229)). The situation is now
different. The trend is still that performance increases from non-coding to coding to missense
mutations. Also, SNVs in non-coding regions can still be classified with a performance comparable
to that of models with more annotations. However, with the loss of particular information about
coding regions and SIFT as an annotation, the performance of mCADD(229) to evaluate missense
mutations drops below that of SIFT.

The smallest subset (44 annotations) excludes the VEP consequences and solely contains
conservation scores and sequence features (mCADD(44), hCADD(44)). Now performances drop
even further, but mCADD(44) shows that a simple combination of sequence based features and
conservation scores outperforms the PhastCons scores for all genomic regions.

Interestingly, hCADD* (the human trained model applied on mouse data) performance lays
between mCADD(229) and mCADD(44) for all translated regions (see Figure 1 V-VII) and is better
than the PhastCons scores for those variant sets. On the other hand, hCADD* shows mostly
random performance when non-translated regions are considered, indicating it is necessary to
adapt the CADD model to species-specific data.

Taken together, decreasing the number of available annotations decreases performance, which
drops relatively faster in coding regions than in non-coding regions. The drop in performance
between mCADD(931) and mCADD(872) is, however, negligible, suggesting that epigenetic and
species-specific annotations can be safely ignored.

2.3.3. Evaluation of phenotype affecting SNVs by mCADD

To show that mCADD is capable of accurately scoring real data and not only differentiates between
simulated and derived variants, we evaluated the different mCADD models on three independent
validation sets (see Figure 3). mCADD(931) and mCADD(872) perform extremely well on all three
validation sets (ROC-AUC > 0.95) and hardly differ (see Figure 3). mCADD(229) performs
comparably well on the ClinVar-ESP data set and shows a drop in performance on the Fairfield and
Mutagenetix data sets. The drop increases when fewer annotations are considered for training
(mCADD(44)). All mCADD models and hCADD* perform better than the two conservation scores,
except for mCADD(44) on the Mutagenetix data. On all validation sets, the hCADD* performance
lays between the performances of mCADD(229) and mCADD(44) and has relatively good
performance on the ClinVar-ESP data set.
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Figure 3: ROC-AUC scores of mCADD models evaluated on three
different validation sets: the a) Fairfield, b) Mutagenetix and c)
Clinvar-ESP data sets. The numbers below the bars indicate the
number of annotations used during model training. Roman
numbers indicate: I) the glire-PhastCons score, II) the vertebrate
PhastCons score, and III) the hCADD* score. The nhumbers above
the bars show the exact ROC-AUC of that particular model and
validation set combination.
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Figure 4: ROC-AUC scores of mCADD models and C-
scores evaluated on three different validation sets
(a) Fairfield, b) Mutagenetix, c) ClinVar-ESP) lifted
from mouse to human. Arabic numbers underneath
the bars indicate the nhumber of annotations used for
model training. The numbers above the bars show
the exact ROC-AUC of that particular model and
validation set combination.
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Figure 5: Comparing the ranks of the absolute weights assigned
to annotations when training mCADD (horizontal axis) with those
when training hCADD (vertical axis). A lower rank indicates an
annotation with larger impact on the log-odds of a model.

2.3.4. Species-specific CADD model improves performance

To learn whether it is necessary to develop a mouse-specific model, we additionally lifted all three
validation data sets from mm10 to GRCh37 and annotated the variants with CADD v.1.3 C-scores.
We took care to only lift variants which have the same reference allele, thus displaying the same
nucleotide substitution. Some variants could not be lifted due to a missing homozygous region.
Negative samples were more often not lifted than positive ones, i.e. the Fairfield data set loses 50
negative samples and 27 positive ones, the Mutagenetix data set loses 235 positive and 398
negative samples, and for the ClinVar-ESP data set we had to omit 5 positive sample and 103
negative ones, due to the requirement of having the same reference allele.

For the Fairfield data set, the performance of all mMCADD models dropped due to the removal of 77
samples (see Figure 4.A). The C-scores perform between mCADD(229) and mCADD(872). For the
Mutagenetix data set, the mCADD models did not suffer from the removal of 633 SNVs, instead all
computed ROC-AUCs increased (Figure 4.B). The C-scores perform again between mCADD(229)
and mCADD(872). For the Clinvar-ESP data set, the mCADD model performances are hardly
affected (see Figure 4.C). Applied on the ClinVar-ESP data set, mCADD(229) performs better than
C-scores. Taken together, the species-specific mMCADD model outperform lifting variants to human
and using the hCADD model to score the variants, especially if considered that not every SNV can
be easily lifted.

2.3.5. Annotation weights are moderately correlated between mCADD
and hCADD

We examined whether different annotations are used by mCADD and hCADD. The absolutes of
weights, assigned to each annotation by the logistic regressor, were ranked and the ranks of 595
annotations with a non-zero weight in both models were plotted against each other (see Figure 5),
having a Spearman's rank correlation of 0.4.
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Top-ranking mCADD annotations are enriched in combinations of DNA secondary structure
predictions of DNAshape [23] (see Table S4). Furthermore, predictions of intronic and intergenic
regions seem to be important, together with the neutral evolution score of GERP++ (GERPN) [18].

Top-ranking hCADD annotations are PhastCons and PhyloP conservation scores, all based on
different phylogenies. Of these, the most influential annotations are PhastCons scores based on a
primate alignment [5], [19]. The second most important group of annotations are predictions on
intronic regions.

The combination of primate-based PhastCons scores in hCADD with predicted VEP consequences
indicating intronic and intergenic regions is similar to the combination of the same VEP
consequences and the neutral evolution score of GERP++ in mCADD. From this, we conclude that
the primate-based PhastCons scores are replaced by GERPN in mCADD.

Vertebrate-based PhastCons scores are ranked high for both mCADD and hCADD. Top ranked
annotations in hCADD which are ranked low in mCADD are enriched in mammalian-based
PhastCons and mammalian-based PhyloP scores. Vice versa, feature combinations with DNA
secondary structure predictions are exclusively used by mCADD.

2.4. Discussion

We demonstrated the possibility of creating a CADD-based model for the mouse genome, capable
of predicting the deleteriousness of variants. We created a model trained on mouse data (mCADD)
and evaluated it on a held-out test set and validation sets of phenotype altering SNVs. We
compared the performance of our model to that of other metrics, such as conservation scores and
the variant prioritization tool SIFT, as well as to C-scores for which we lifted the annotated variant
locations to the human genome. We also compared performances on mouse test set variants to
deleteriousness estimates of human test set variants, a.o. scored with a human CADD model that
we trained ourselves (hCADD). As a final approach we trained a model on human data and
evaluated it on mouse data (hCADD*).

Performances of mCADD and hCADD were very similar, with the mouse model performing better on
the hold-out test sets. In addition, validation on three experimentally annotated data sets showed
that the mCADD model is clearly capable of prioritizing deleteriousness of SNVs. Scoring lifted
variants with hCADD performed reasonably well on these validation data sets, but less so than
mCADD, whereas the generic hCADD* model had a consistent performance between mCADD(229)
and mCADD(44). Together, this shows the importance of generating species-specific models when
more annotations are available than only sequence specific ones, especially when lifting is not an
option.

Evaluating the trained models on variants located in different genomic regions, we observed that
mCADD and hCADD display the same trend, with increasing performance from non-coding to
coding variants, and the best performance for missense mutations. Strikingly, mCADD, hCADD as
well as other metrics all performed poorly on synonymous variants within coding regions.

We further assessed the annotation weightings in the human and mouse models. Despite a
moderate correlation, both models rely on different annotations. This may explain the poorer
performance of hCADD when evaluated on mouse data sets (i.e. hCADD*). Among the most
important annotations are different conservation scores and/or combinations of these scores with
VEP consequence annotations. It seems that hCADD relies relatively more on conservation scores
than mCADD, while mCADD puts more emphasis on DNA structure predictions.
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2.4.1. Performance depends on genomic region

Previous studies indicated that performance of the CADD classifier is not constant over the entire
genome [21], [22]. We also observed changing performances between the investigated genomic
regions. This may be due to intrinsic differences in the SNVs, but it might also be due to a
difference in the number of annotations between non-coding and coding regions. When evaluating
the distribution of putative deleterious and benign SNVs across genomic regions (Table S2), we
find an imbalance in class labels of the held-out test set, but these do not explain the changes in
performance. A striking difference in performance is found between the translated missense
variants and translated synonymous variants. Annotations that help to differentiate between
positive and negative missense mutations, such as SIFT, are not available for synonymous
mutations. Hence, the main predictors for translated synonymous SNVs are the same as those for
non-coding regions, namely different conservation scores, suggesting that the lack of meaningful
annotations available for synonymous and other mutations limits the performance.

Note that CADD models are trained with putative benign and deleterious variants, as derived from
the ancestor genome, and not with variants for which their effect is experimentally established.
Although training variants are proxies, the trained CADD models perform extremely well on the
experimentally validated SNVs as shown by the good performance on the validation sets.
Apparently, the training variants are informative, and we, consequently, believe that the
performances on the held-out test set can be interpreted at least qualitatively.

Together, this makes us believe that differences in observed performance between genomic
regions are due to intrinsic properties of these regions such as the number of available
annotations. This does, however, influence the applicability of any CADD-like model to prioritize
disruptive SNVs truly genome wide.

2.4.2. Models based on limited numbers of annotations can be predictive

One of the objectives of this study was to investigate the predictive power of CADD-like models in
the case of incomplete annotation sets when compared to the human case. For that purpose, we
defined four different sub annotation sets: all annotations (mCADD(931), hCADD(1000)), all but
epigenetic and species-specific annotations (m/hCADD(872)), annotations including VEP's
(m/hCADD(229)), and annotations including only conservations scores (m/hCADD(44)).

The general trend is that mCADD models perform worse with fewer annotations, on the held-out
test set as well as on the three validation sets. This is most pronounced for variants within coding
regions. Differences in performance between mCADD(931) and mCADD(872) are negligible. For the
Fairfield and Mutagenetix validation sets, mCADD(872) even performs better. The biggest drop in
performance is observed between mCADD(872) and mCADD(229), even though the performance of
mCADD(229) on all three validation sets is still above ROC-AUC > 0.91. These results indicate that
a reliable model can be built, even if only very few annotations are known. Moreover, if only
conservation scores and sequence features are available, it is still possible to outperform individual
conservation scores.

hCADD shows a similar, but lower, trend, although the performance of hCADD(872) improves over
that of hCADD(1000) using all subsets of the held-out test set. One of the main differences
between mCADD and hCADD is that when generating training variants, mCADD uses an
evolutionary older ancestor genome than hCADD. Thus, the time window over which mouse-
derived variants have experienced purifying selection is longer than in the human case. Equally,
substitution rates for the simulated SNVs are derived from evolutionary more distant ancestors,
resulting in a larger proportion of deleterious SNVs in mouse than in human data. The impact of
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the evolutionary observed differences is, however, poorly understood and warrants further
investigation.

2.4.3. Limited interpretability of scores mapped between different species

An established method to evaluate different alleles in the genome of any species is to compare
them with known orthologous regions in other species for which annotations are known. Although
annotating lifted variants with human-based C-scores worked well, evaluating the same variants
with a species-specific model gave better results. In addition, not every variant position in the
validation sets could be annotated by C-scores as they have to be located in sequences that can be
aligned to human. Further, similar variants in different species may differ in the phenotype they
cause. This has to be considered for any comparative genomic analysis [24].

2.5. Conclusions

We have shown that the CADD approach for prioritizing variants can be applied to non-human
species, and that it is important to train species-specific models. Interestingly, not all original
annotations used by CADD are necessary to achieve good performance: only conservation scores
and VEP consequences of variants (the set of 229 annotations we explored) may suffice to make
meaningful predictions. These annotations are available for many species. Nevertheless, if possible,
adding additional annotations for coding regions will help to improve the trained models.
Altogether, our work has shown that species-specific CADD models can be successfully trained,
opening new possibilities for prioritizing variants in other less well-studied species.

2.6. Methods

2.6.1. Overview of the CADD approach

We construct a CADD model for mouse, mCADD, as well as a CADD model based on human data,
here denoted by hCADD. In contrast to the original CADD approach, mCADD and hCADD are
trained specifically on single nucleotide variants. We also construct a model trained on human data
and evaluated it on mouse variants, which will be further referred to as hCADD*. The purpose of
this model is to learn about the performance to be expected if one wants to evaluate variants for
which no model exists and that cannot be lifted between genomes. The SNVs and their annotations
used for hCADD and hCADD* originate from the data set used for CADD v.1.3. Annotations that are
specific for insertions or deletions were removed from the data set. Briefly, the original CADD
model [5] is trained to classify variants as belonging to the class of simulated or derived variants.
To train the CADD model, simulated and derived variants were generated based on the human-
chimpanzee ancestral genome and mutation rates derived from a 6-taxa primate alignment [25].

Derived variants are variant sites with respect to the ancestral genome that are fixed in the human
lineage, or nearly fixed with a derived allele frequency of above 95% in the 1000 Genomes Project.
Due to the purifying selection they experienced, derived variants are assumed to be depleted in
deleterious variants.

Next to observed derived variants, variants are simulated that do not occur in the human lineage.
Hence, simulated variants did not experience purifying selection, therefore fitness reducing variants
are not depleted in this group. All variants are annotated with a large number of genomic features,
ranging from sequence features, conservation scores, variant effect predictor annotations to
epigenetic measurements.
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2.6.2. Derived and simulated variants in mouse

Due to a lack of sufficient sequencing data of large, freely reproducing mouse populations, we
focused on identifying differences between an inferred mouse-rat ancestral genome and the most
recent mouse reference assembly (mm10) [26]. The mouse-rat ancestral genome is based on the
EPO 17-eutherian-mammal alignments [25], [27], [28] (Figure S2) provided by Ensembl release
83 [29]. In total we observed 33,622,843 sites with a derived allele in the mouse reference that
were not adjacent to another variant site.

To generate an equal number of simulated variants we made use of the CADD variant simulator
[5]. Based on the mm10 reference, it uses an empirical model of sequence evolution derived from
the EPO 17-eutherian-mammal alignments, with CpG di-nucleotide specific rates and locally
estimated mutation rates within windows of 100kb. Only SNVs with a known ancestral site were
selected. In this way, we generated 33,615,003 SNVs. The final dataset contains an equal number
of simulated variants, equally divided over 11 folds (10 for cross-validation and training, the
remaining for testing), yielding a total of 67,229,998 SNVs. Table S2 gives an overview of these
SNVs and their distribution over different genomic regions.

2.6.3. Genomic annotations

An overview of all annotations that we assembled for mouse can be found in Supplementary Data
2,3. Histone modifications, transcription factor binding sites, DNAase Seq peaks and RNAseq
expression measurements were downloaded from ENCODE [16]. The mm10.60way vertebrate
alignment was retrieved from the UCSC Genome Browser [30]. This multiple sequence alignment
was used to calculate four different PhyloP and PhastCons scores based on differently sized
subalignments, in particular an 8-taxa Glire alignment, a 21-taxa Euarchontoglire alignment, a 40-
taxa Placental alignment and a 60-taxa Vertebrate alignment (Figure S1). PhyloP and PhastCons
scores were computed without taking the mouse reference sequence into account. Furthermore,
information about regulatory motifs, micro-RNA predictions (microRNA binding [31], microRNA
targets [32]) and chromatin state predictions (ChromHMM [33]) were taken into account. GERP++
neutral evolution and rejected substitution scores, GERP Elements scores and GERP Elements p-
values were taken from [18] and mapped from mm9 to mm10 via CrossMap [34]. All 5-mer
combinations of the 4 nucleotides were generated and based on that the DNA secondary structure
was predicted for each 5-mer [23]. Differences in the predicted scores for the reference 5-mer and
alternative 5-mer at the investigated positions were used as annotation. Summaries of
consequences predicted by the Ensembl Variant Effect Predictor (VEP v.87 [27]) were used in
combination with other annotations to create additional composite annotations (Table S3,
Supplementary Data 2, Supplementary Note). Additional annotations that rely on a gene build such
as the SIFT protein score, reference and alternative amino acid, variant position within a transcript
and coding region are also generated by VEP v.87.

Human annotations were downloaded from the original CADD publication v.1.3. [5] (download: 17-
2-2016). Annotations which are by definition only available for InDels were removed.

2.6.4. Annotation subsets

From the annotations, four subsets were created of decreasing size and increasing likelihood of
availability in non-human species (see Supplementary Data 2 for a complete overview). The first
set consists of all available annotations, i.e. 1,000 for hCADD, 931 for mCADD and 902 for
hCADD*. The annotations used to train hCADD* are those which can be meaningfully compared
between mouse and human. The second subset has 872 annotations. It excludes all epigenetic
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annotations and species-specific ones, leaving annotations available for both mouse and human.
The third subset incorporates 229 annotations, including conservation scores, nucleotide sequence
features and VEP consequence/annotation combinations. Annotations specific for coding regions
were excluded, with the exception of coding region-specific VEP consequence values. The fourth
subset of 44 annotations can be entirely generated from the sequence information itself. It includes
conservation scores and nucleotide sequence annotations, such as the GC% within a 75bp window
upstream and downstream of the variant position.

2.6.5. Training and evaluating the mCADD model

The CADD model is centered on a logistic regressor trained to differentiate between simulated and
derived variants. This was done using the logistic regression module of Graphlab v2.0.1 [35], the
same tool the CADD authors have used since CADD v1.1. Before training we standardized the
human and mouse data by dividing each feature by its standard deviation. We did not center the
features, in order to preserve sparsity. The mouse data set was split into 11 partitions of equal size
(6,111,818 SNVs). The 11th partition was used as held-out test set. On the remaining 10 partitions
we performed 10-fold cross validation to determine the number of training iterations for the logistic
regressor and the L2 regularization parameter. The cross validation results are shown in Table S3.
The final model was trained on the joined ten partitions with a maximum number of 100 iterations
and a regularization parameter set to 0.1.

To obtain the human held-out test set, we selected 2,851,642 SNVs. Similar to the mouse case,
this amounts to every 11th SNV from those available in the CADD v.1.3 data set. The hCADD and
hCADD* models are trained with a maximum number of 10 iterations and an L2 regularization
parameter of 1, to keep the settings as similar as possible to CADD v.1.3.

All model performances were evaluated with the area under the receiver operating characteristic
(ROC-AUC). Trained classifiers were assessed based on their performances on their respective
held-out test sets. These sets were further divided according to the genomic regions from which
each variant originates. An overview and description of the resulting 7 subsets can be found in
Table S2.

We further evaluated the classifiers on three additional data sets: (i) 60 SNVs associated with
changes in phenotype as obtained from an exome sequencing study of 91 mouse strains with
Mendelian disorders (Fairfield data set) [36]; (ii) 481 N-ethyl-N-nitrosourea (ENU) induced SNVs
(Mutagenetix data set) [37]; (iii) 9,348 variant sites lifted from the ClinVar-ESP validation set
utilized in CADD v.1.3 (ClinVar-ESP data set) [5]. Similar to the training data, all data sets were
standardized but not centered, using the scaling factors for each annotation which were obtained
from the whole mouse data set.

Data for the Fairfield validation set is provided by Table S4 [38] of the Fairfield et al. publication.
The Mutagenetix data set was provided by several labs and downloaded from the Mutagenetix data
base [37], [39]. All data were checked for the reported reference allele and, in the case of
uncertainty, manually verified with the records on the website. If the reported allele could not be
found in close proximity of the reported genomic location, the variant was discarded. Both the
Fairfield and Mutagenetix validation sets contain phenotype altering SNVs, therefore all of these
were considered as potentially deleterious without differentiating between the exact nature of the
phenotype change (positive data set). To find an equal number of variants that can be used as a
negative data set, we made use of SNVs identified in 36 mouse strains from the Wellcome Trust
Sanger's Mouse Genomes Project [15], filtered for an allele frequency (AF) = 90%. We sampled to
have a matching number of negative SNVs for both data sets, we took care that the proportions of
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transcribed, synonymous and non-synonymous mutations are the same among the positive and
negative SNVs.

The ClinVar-ESP data set contains curated variants from the ClinVar database [14] that were
identified to have a pathogenic effect in human. As a negative set (5,635 SNVs), variants from the
Exome Sequencing Project (ESP) [40] were selected with a derived allele frequency of > 5%. We
lifted the variants from GRCh37 to mm10 and selected SNVs which introduce the same amino acid
substitution or stop codon change in human and mouse.

2.6.6. Analysis of model weights

The logistic regressor assigns weights (betas) to each annotation used for training. These weights
indicate the effect of one unit change on the log odds of success of the trained model. A zero
weight implies that the annotation is not used. We compared the weights assigned to each
annotation by mCADD and hCADD to derive information about annotations of general importance
for CADD-like models. As different regularization terms were applied in hCADD and mCADD,
causing the beta's to be on different scale, we compared ranks instead of weights. Ranks were
computed for non-zero beta's and based on the absolute weight. Annotations of mCADD and
hCADD were compared with each other when they have a non-zero weight in both models. Three
types of annotations were not identical between mouse and human, but considered comparable:

e Primate-based PhastCons&PhyloP [19], [20] scores in hCADD were compared with glire-
based PhastCons&PhyloP scores of mCADD. These are the smallest alignments used to
compute conservation scores in both species.

¢ Mammalia based PhastCons&PhyloP scores in hCADD were compared to scores based on a
placentalia alignment for mCADD.

¢ CHROMHMM [33] chromatin state predictions were mapped based on the overlap of their
predicted consequences in human and mouse.
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2.8. Appendix - Supplementary Data

Supplementary files “supplementary _data2-4.xlsx” are available online under:

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-018-2337-5

2.8.1. Supplementary Note

2.8.1.1. Annotation pre-processing

To train mCADD and hCADD models only SNV were considered. Differences between the inferred
ancestor genome and the mouse reference were utilized as negative class for training. Differences
were considered when they were not adjacent to another site that was different between the
ancestor and reference. These mutations are directed back in time while simulated variants are
orientated forward in time. Therefore annotations that are sensitive to these differences have to be
swapped in the set of derived variants. Namely, the nucleotide reference and alternative columns
(Ref, Alt ), the amino acid substitutions (nAA, 0AA) and the variant effect consequence predictions
made by the ENSEMBL Variant Effect Predictor v87 for the labels (STOP_Gained, STOP_LOST).

motifEHIPos, GerpRS, SIFTval, GerpRSpval, mirSVR-Score, mirSVR-E, mirSVR-Aln, targetScan,
Expression, DNAseSig, H3K27ac, H3K4mel, H3K4me3, tOverlapMotifs, motifDist, motifECount,
motifEScoreChng, TFBS, TFBS-Peak, TFBSPeaksMax, cDNApos, relcDNApos, CDSpos, relCDSpos,
prot-Pos, relprotPos, Dst2Splice, Grantham

The following annotations were mean imputed based on the mean of the simulated variants:

GC, CpG, dnaRoll, dnaProT, dnaMGW, dnaHelT, GerpN, GerpS, GerpRS, euaPhCons, euaPhyloP,
gPhCons, gPhyloP, minDistTSS, minDistTSE, plaPhCons, plaPhyloP, verPhCons, verPhyloP

For the following annotations, another category (UD = undened) was introduced to indicate missing
values:

Domain, Dst2SpIType, SIFTcat, 0AA, nAA
Missing values in the annotation (isTv) were replaced by 0.5.

For the set of following annotations, an indicator feature was created which is set to 0 if the
annotation is dened and set to 1 if undefined:

Dst2SplType_ACCEPTOR, Dst2SplType DONOR, mirSVR-Score, targetScan, cDNApos, CDSpos,
protPos, SIFTval, Grantham

The annotations (minDistTSE ,minDistTSS) were capped at 10000.
The following annotations were log-transformed:
minDistTSE ,minDistTSS, GerpRS

All categorical annotations were OneHotEncoded. Further annotation combinations were created.
Namely, all possible combinations of Ref and Alt, representing an annotation for each possible
nucleotide substitution. The same was done for nAA and 0AA, thus there is one annotation for each
possible amino acid substitution. Lastly, combinations of the set of the following annotations were
made with each of the 15 summarized consequences (Supplementary Data 2) of the Ensembl
Variant Effect Predictor.
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cDNApos, CDSpos, Dst2Splice, GerpS, GerpN, plaPhCons, plaPhyloP, minDistTSE, minDistTSS,
euaPhCons, euaPhyloP, protPos, relcDNApos, relCDSpos, rel-protPos, verPhCons, verPhyloP,
dnaHelT, dnaMGW, dnaProT, dnaRoll, gPhCons, gPhyloP
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2.8.2.

Supplementary Tables

Table S1: VEP consequences are summarized in 15 categories. If multiple annotations
exist for the same variant, the consequence is selected according to the displayed
hierarchy, with STOP-GAINED being the most important and UNKNOWN the least

important category.

Hierarchy Abbreviation VEP Consequence
categories

1 SG STOP-GAINED

2 CS CANONICAL-SPLICE

3 NS NON-SYNONYMOUS

4 SN SYNONYMOUS

5 SL STOP-LOST

6 S SPLICE-SITE

7 us 5PRIME-UTR

8 u3 3PRIME-UTR

9 R REGULATORY

10 1G INTERGENIC

11 NC NONCODING-CHANGE

12 I INTRONIC

13 upP UPSTREAM

14 DN DOWNSTREAM

15 0 UNKNOWN

Table S2: This table gives a description about the genomic regions which were selected
to evaluate the mCADD and hCADD models. Underneath the Genomic region, the total
number of SNVs located in that region is displayed. H=Human, M=Mouse.

Genomic Region
Total number SNV

Description

Class distribution

Human

Class distribution
Mouse

entire genome
H:31,368,062,
M:67,229,998

randomly selected SNVs
taken from the entire
genome.

Derived: 0.5
Simulated: 0.5

Derived: 0.5
Simulated: 0.5

not transcribed
H:30,592,093,
M:64,278,844

randomly selected SNVs
which are located outside of
known transcript regions.

Derived: 0.5
Simulated: 0.5

Derived: 0.5
Simulated: 0.5

Transcribed
H:775,969, M:2,951,154

randomly selected SNVs
which are located in known
transcript regions.

Derived: 0.4
Simulated: 0.6

Derived: 0.46
Simulated: 0.54

transcribed not translated
H:461,057, M:1,684,821

randomly selected SNVs
which are located in
transcript regions but not
translated. (5'UTR, 3'UTR,
Intron)

Derived: 0.47
Simulated: 0.53

Derived: 0.5
Simulated: 0.5

translated
H:314,912, M:1,266,333

randomly selected SNVs
which are located in known
translated regions (Exon).

Derived: 0.29
Simulated: 0.71

Derived: 0.42
Simulated: 0.58

translated synonymous
H:126,103, M:625,183

randomly selected SNVs
which are located in
translated regions but do
not code for a missense
annotations with an
associated SIFT value.

Derived: 0.41
Simulated: 0.59

Derived: 0.62
Simulated: 0.38

Translated missense
H:188,809, M:641,150

randomly selected SNVs in
translated regions that have
a missense annotation with
an associated SIFT value.

Derived: 0.21
Simulated: 0.79

Derived: 0.23
Simulated: 0.77

29




2.8 - Appendix - Supplementary Data

Table S3: 10-fold cross validation performance of mMCADD models. Each row is showing a
different number of iterations, each column a different L2-penalization.

Iteration | L2- 0.1 1 10

Penalization

10 Mean: 0.623 Mean: 0.625 Mean: 0.626
Std: 0.01 Std: 0.011 Std: 0.009

100 Mean: 0.668 Mean: 0.634 Mean:0.667
Std: 0.001 Std: 0.104 Std: 0.003

1000 Mean: 0.638 Mean: 0.638 Mean: 0.653
Std: 0.06 Std: 0.076 Std: 0.042

Table S4: Top performing predictors in hCADD and mCADD

top 10 mCADD | top 10 hCADD top 10 hCADD hCADD>500 hCADD<100
and mCADD and and
100>mCADD 500<mCADD
GerpN priPhCons verPhCons UPxdnaMGW IGxmamPhyloP
IGxGerpN mamPhCons DNxdnaMGW IGxmamPhCons
dnaRoll verPhCons RxdnaHelT RxmamPhCons
SIFTval verPhyloP IxdnaRoll 0AAXUD
IxGerpN mamPhyloP IND_protpos
IGxdnaRoll priPhyloP mamPhCons
dnaMGW IxpriPhCons nAAxUD
IxdnaRoll IGxpriPhCons IND_CDSpos
verPhCons GerpS
GC IxverPhyloP
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Supplementary Figures

2.8.3.
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Figure S2: Phylogenetic tree, displaying the taxa used in the 17-eutherian mammal EPO
alignment. That alignment was used to infer the mouse ancestral sequence and to derive

substitution rates to simulate variants.
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3.1. Abstract

Background: In animal breeding, identification of causative genetic variants is of major
importance and high economical value. Usually, the number of candidate variants exceeds the
number of variants that can be validated. One way of prioritizing probable candidates is by
evaluating their potential to have a deleterious effect, e.g. by predicting their consequence. Due to
experimental difficulties to evaluate variants that do not cause an amino-acid substitution, other
prioritization methods are needed. For human genomes, the prediction of deleterious genomic
variants has taken a step forward with the introduction of the combined annotation dependent
depletion (CADD) method. In theory, this approach can be applied to any species. Here, we
present pCADD (p for pig), a model to score single nucleotide variants (SNVs) in pig genomes.

Results: To evaluate whether pCADD captures sites with biological meaning, we used transcripts
from miRNAs and introns, sequences from genes that are specific for a particular tissue, and the
different sites of codons, to test how well pCADD scores differentiate between functional and non-
functional elements. Furthermore, we conducted an assessment of examples of non-coding and
coding SNVs, which are causal for changes in phenotypes. Our results show that pCADD scores
discriminate between functional and non-functional sequences and prioritize functional SNVs, and
that pCADD is able to score the different positions in a codon relative to their redundancy. Taken
together, these results indicate that based on pCADD scores, regions with biological relevance can
be identified and distinguished according to their rate of adaptation.

Conclusions: We present the ability of pCADD to prioritize SNVs in the pig genome with respect to
their putative deleteriousness, in accordance to the biological significance of the region in which
they are located. We created scores for all possible SNVs, coding and non-coding, for all autosomes
and the X chromosome of the pig reference sequence Sscrofall.l, proposing a toolbox to prioritize
variants and evaluate sequences to highlight new sites of interest to explain biological functions
that are relevant to animal breeding.

3.2. Background

Since humans started breeding animals, a key challenge has been to control the inheritance of
traits. In farm animals, genetic gain has been achieved using pedigree information and statistical
models. Since the introduction of genomic selection (GS) [1], breeding is transitioning from
selecting animals based on visual inspection and pedigree data to approaches that exploit genetic
information. However, given the complexity of genomes and the generally low level of knowledge
about the relation between genotype and phenotype, undesirable alleles may accumulate, through
genetic hitchhiking or genetic drift [2], [3] because of the small effective population size in
livestock breeds under artificial selection.

Recent approaches incorporate whole-genome sequence data to improve genetic predictions.
Because the number of tested single nucleotide variants (SNVs) is larger in whole-genome
sequence data compared to array-based assays, truly causal genetic variants are more likely to be
identified. While the use of whole-genome sequence data has improved genetic prediction, the
improvements fall short of expectation and yield only moderate performance increases [4], [5],
partly due to the inclusion of noise. Therefore, current strategies involve pre-weighting of potential
candidate SNVs that have a higher probability of being causal. Several methods have been
developed to score variants according to their putative deleteriousness and identify those that may
have a detrimental effect on the fitness of individuals. Well-known variant prioritization tools
include SIFT [6], PolyPhen2 [7], SNAP2 [8] and Provean [9]. However, these are limited to scoring
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(non-synonymous) variants in coding regions. In contrast, the combined annotation dependent
depletion (CADD) [10] model that was developed to investigate SNVs in human populations, can
score variants at any location in the genome. CADD is comparable to methods such as fitCons [11]
and Linsight [12]: it captures signals of evolutionary selection across many generations and
combines this with annotations—genomic features, epigenetic data, other predictors etc.—to
estimate a deleteriousness score for a given variant. While CADD and similar models are well
established and used to predict the effects of variants in the human genome [13]-[18], to date,
they have not been applied to non-human species. In recent work [19], we applied CADD to
mouse, and studied the effect of having a limited number of annotations, which is expected for
non-model species, compared to the human case. The results demonstrated that applying the
CADD methodology to non-human species is valid and powerful.

Here, we introduce pCADD (p for pig), a model based on the CADD methodology to create scores
for the prioritisation of SNVs with respect to their putative deleteriousness in the genomes of wild
and domesticated pigs (Sus scrofa). The aim of this paper is to assess the ability of pCADD to
prioritize individual SNVs and genomic regions relative to their biological function. The ability of
pCADD to score any SNV in the entire pig genome with respect to its predicted deleteriousness
helps researchers and breeders to evaluate (newly) observed SNVs and rank potentially harmful
SNVs that are propagated by breeding.

3.3. Methods

Briefly, the CADD model, which is a logistic regressor, assigns a deleteriousness score to a SNV
based on a set of 867 genomic annotations such as DNA secondary structure, conservation scores,
protein function scores and many more (see Additional file 1 and Additional file 2: Table S1). Model
parameters are fitted based on a large training set, containing two classes of SNVs: derived (proxy
benign/neutral) and simulated (proxy deleterious) SNVs. The set of derived SNVs is generated by
identifying (nearly) fixed alleles in the species of interest that differ from those of a reconstructed
ancestral genome (Figure 1la). Proxy deleterious SNVs are simulated de novo mutations, which
have not experienced any selection, thus deleterious variants are not depleted in this set (Figure
1b, ).
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Figure 1: A. Fixed or almost fixed differences between an
inferred ancestor sequence and the investigated pig population
are used as proxy benign/neutral SNVs. B. Simulation, first
step: differences between differently deep ancestor sequences
are identified and substitution rates are derived. C. Simulation,
second step: the derived substitution rates are used to simulate
de novo variants that have not experienced any selection and
therefore are not depleted in the number of deleterious
variants.

With the pCADD model, every position in the pig genome can be scored with respect to its
predicted deleteriousness. To differentiate more easily those SNVs that are potentially of interest,
we created a PHRED-like score, which is similar to that in the original CADD approach [10]. To this
end, the outcomes of the logistic regressor for all variants are ordered and transformed. The
pCADD score is a log-rank score that ranges from ~95 to 0, with higher scores indicating more
deleterious variants. The top 1% and 0.1% highest scored SNVs have a pCADD score higher than
20 and 30, respectively, thus the most deleterious variants are differentiated from the likely
neutral ones. In the following, we describe the data used to train the pCADD model and
demonstrate its use by performing several analyses.
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3.3.1. Training and test set construction

To create the set of derived variants, which consists of putatively benign/neutral variants, we
identified (nearly) fixed alleles in a pig population that differ from those of the reconstructed
ancestral genome of pig, cow and sheep (Figure la, Sus scrofa [20], Bos taurus [21] , Ovis aries
[22] ]). These alleles have become fixed in the pig population due to genetic drift or positive
selection, thus they are depleted in deleterious variants and can be assumed to have a benign or
neutral effect. The ancestral sequence was obtained from the 25-eutherian-mammals EPO (Enredo,
Pecan, Ortheus) [23], [24] multiple alignment files (MAF), downloaded from the Ensembl v.91
database. To avoid errors due to misaligned InDels, only SNVs that are not adjacent to another
variant site, between the pig population and the inferred ancestor, were retained. The pig
population used in our study included 384 individuals, representing 36 breeds, e.g. Asian and
European, wild, commercial and local breeds (see Additional file 2: Table S2). For each site in the
inferred ancestor, we selected an allele when its frequency was higher than 0.9 in the pig
population and when it differed from the ancestral allele. Because the population includes pigs from
many breeds, the number of functional variants that may have reached fixation due to founder
effects in individual populations is limited. In addition, we removed sites that carry an allele at a
frequency higher than 0.05 in the population and for which the alternate allele is equal to the
ancestral allele. To simulate variants for the proxy deleterious set, substitution rates were derived
from observed differences between more distant ancestors of pig (Figure 1b, c). In particular, rates
for nucleotide substitutions and CpG sites in window sizes of 100 kb were computed based on the
inferred substitutions between the ancestral sequences of pig-cow, pig-horse and pig-dog. Only
SNVs that were located at a site with a known ancestral allele of the pig-cow-sheep ancestor were
simulated. These SNVs are de novo mutations that have a larger than uniform chance, with respect
to other de novo mutations, to occur in the populations. Although these variations may have never
occurred by chance along the evolutionary branch of pig, they may have also been actively
selected against. In other words, these random mutations have a greater chance of being
deleterious than benign [25], therefore the set of simulated variants is expected to be enriched in
deleterious variants in comparison to the derived proxy benign/neutral set.

In total, 61,587,075 proxy benign/neutral SNVs were derived and a similar number of SNVs was
simulated. To form the training and test sets, the dataset was randomly split into two sets with an
equal number of samples from both classes. The training dataset contained 111,976,500 SNVs
whereas the test set consisted of 11,197,650 SNVs. To assess the dependency on the genomic
location of the variants, the test set was split into six overlapping subsets: (i) intergenic (non-
cDNA) variants; (ii) all transcribed sites (cDNA); (iii) transcribed but not translated sites (5'UTRS5,
3’UTR3 and introns); (iv) coding regions; (v) synonymous SNVs in coding regions and (vi) non-
synonymous SNVs in coding regions.

3.3.2. Variant annotation

Genomic annotations were obtained from the Ensembl Variant Effect Predictor (VEP v91.3)
database [26] and supplemented by PhyloP [27], PhastCons [28] and GERP [29] conservation
scores as well as Grantham [30] amino-acid substitution scores and predictions of secondary DNA
structure (DNAshape) [31].

VEP-predicted consequences of SNVs were summarised in 14 categories. They were either used
directly or combined with other data to create composite annotations (see Additional file 1 and
Additional file 2: Table S3). Annotations that rely on a gene build, such as the SIFT protein score,
reference and alternative amino-acid, variant position within a transcript and coding region were
also used.
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PhyloP and PhastCons scores are based on three differently sized multiple species alignments: a 6-
taxa laurasiatheria, a 25-taxa eutherian-mammals and a 100-taxa vertebrate alignment. The
laurasiatheria and eutherian-mammals alignments were downloaded from Ensembl [32] v91
whereas the 100-taxa vertebrate alignment was downloaded from UCSC [33], [34] (December 29,
2017). Next, PhyloFit [35] phylogenetic models were created for the laurasiatheria and eutherian-
mammals alignments to compute PhastCons and PhyloP scores for pig. PhyloFit models for the
100-taxa vertebrate alignment were downloaded from the UCSC genome browser and used to
compute PhastCons and PhyloP scores. PhastCons and PhyloP scores based on the 6- and 25-taxa
alignments were directly computed for pig, while the scores for the 100-taxa alignment had to be
first computed for the human reference GRCh38 and then mapped to Sscrofall.l using CrossMap
[36]. To avoid a positive bias in predictive power in favour of PhastCons and PhyloP scores, the pig
sequence was excluded from the generation of both sets of scores. Genomic evolutionary rate
profiling (GERP) neutral evolution, GERP conservation, GERP constrained element and GERP
constrained element p-values were retrieved from Ensembl91 using a custom Perl script.

Predicted differences in the secondary DNA structure between reference and alternative alleles
were added as annotations to the dataset, as computed by DNAshape [31]: minor gap width
(MGW), Roll, propeller twist (ProT) and helix twist (HelT).

After computing all annotation combinations, imputing missing values and recoding all categorical
values to binary variables (see Additional file 1), the final number of features was equal to 867.
Each feature was scaled by its standard deviation obtained from the variants in the training set.

3.3.3. Construction of the model

We assigned class label 0 to the proxy benign/neutral variants and 1 to the proxy deleterious
variants. Then, we trained a logistic regression classifier to predict the posterior probability of a
variant being proxy deleterious. We used the logistic regression module provided by Graphlab v2.1
[37]. Based on previous experience and given the lack of a sufficiently large validation set, we
applied the set of hyper parameters that were found to be optimal for mouse CADD19, i.e. L2-
penalization was set to 0.1 and the number of iterations to 100. Feature rescaling, performed by
the logistic regression function by default, was deactivated.

3.3.4. Score creation

The pCADD scores were computed for all potential SNVs (3 per position) on the 18 autosomes and
the X allosome. Each SNV was annotated with 867 genomic annotations and scored by the trained
logistic regression model. Subsequently, these scores were sorted in descending order and
assigned a pCADD score defined as —10 *log,,(i/N), with i being the rank of a particular SNV and N
the total humber of substitutions (N = 7,158,434,598).

3.3.5. Analyses

3.3.5.1.  Codon analysis

From the Ensembl v.93 pig gene build, we retrieved 10,942 genes with only one annotated
transcript to avoid complications due to overlapping transcripts. We created three sets, consisting
of the minimum pCADD score found at a site, per transcript, one for each of the three positions of
a codon. We computed one-tailed Mann-Whitney U-tests between each of the three sets. The
resulting p-values were Bonferroni corrected. All calculations were performed in Python version 3
using SciPy v.1.1.0 [38] and Statsmodels v.0.9.0 [39].
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3.3.5.2.  miRNA analysis

We obtained all annotated (pre-)miRNA sequences from the Ensembl v93 database, i.e. 484
sequences, and, after removal of sequences that overlapped with any of the training SNVs, 294
sequences remained. As a second set, equally long sequences up- and downstream of the miRNA
sequence were selected. For each position in both sets, the miRNA sequences and surrounding
sequences were annotated with the maximum pCADD score. To test whether miRNA sequences had
a significantly higher pCADD score than their neighbouring sequences, we applied a one-tailed
Mann-Whitney U-test using SciPy v.1.1.0 in Python 3.

3.3.5.3.  Intron analysis

We used the REST API of Ensembl v93 to download the intron coordinates of all 40,092 transcripts.
We annotated all the sites in all the introns with the maximum pCADD score found at these sites.
For each intron, we performed one-tailed Mann-Whitney U-tests to check if the investigated intron
had a significantly higher pCADD score than all the other introns in the same transcript. p-values
were Bonferroni corrected over all transcripts, per intron. To display the results, we normalized the
number of rejected null-hypotheses by the number of conducted tests, which decreases as the
number of introns increases.

3.3.5.4.  Tissue analysis

We downloaded porcine Affymetrix expression data of several tissues published by Freeman et al.
[40]. We selected the genes that were clustered and associated with a particular tissue and had a
robust multi-array average (RMA) [41] expression level of at least 100 or more to filter out genes
with no activity. Of these genes, we considered all the coding DNA sequences (CDS); if a particular
CDS was present in more than one transcript, it was selected only once. In addition to the
housekeeping genes, genes specific for 16 tissues were selected (cartilage-tendon, blood,
cerebellum, dermal, epithelium, eye, kidney, liver, lung, muscle, neurone, pancreas, placenta,
salivary gland, testis, and vasculature). All CDS were annotated with the maximum pCADD score
found at each site of the CDS and merged into one set per tissue. Tissue sets were tested for
higher scores than those of the housekeeping set with one-tailed Mann-Whitney U-tests; p-values
were Bonferroni corrected. All calculations were done in Python 3 using the SciPy v.1.1.0 and
Statsmodels v.0.9.0. modules.

3.4. Results

In this study, we trained a CADD-like model for SNV prioritisation in the pig genome, which is
referred to as pCADD. It is a linear regressor that is trained to differentiate between two classes of
variants, a set of simulated variants, which is relatively more enriched in potentially deleterious
variants than a set of derived variants, which is depleted in deleterious variants. The pCADD
generated a score for every possible SNV of the Sscrofall.l reference genome on all autosomes
and the X allosome. Then, these scores were tested on a held-out test set, they were used to
evaluate seven SNVs with known functional effect and we examined whether they could
discriminate between functional and non-functional sequences.

3.4.1. pCADD data characteristics

The class distribution in the training and test sets were balanced, but subsets of SNVs found in
different genomic regions displayed varying proportions of simulated and derived SNVs (Table 1).
These imbalances were similar to those found for the human (hCADD) and mouse (mCADD)
datasets in our previous study [19]. The largest difference among the three models is the total
number of SNVs used for model training: ~31 million for hCADD, ~67 million for mCADD and ~112
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million for pCADD. This results from the use of a more distant ancestor of the pig than the
ancestors used for mouse in mCADD (mouse and rat) and for humans in hCADD (human and
chimpanzee). A more distant ancestor yields more differences between the inferred ancestor and
the species of interest, resulting in a larger derived class and, thus, in a larger total number of
SNVs to create a balanced dataset.

Table 1: The number of SNVs and their relative proportions of the six subsets of the test
set for pCADD.

Pig Number SNVs / Num. Num. Class distribution

partition proportion of test set Simulated Derived (Simulated/Derived)
Test set 11,197,628 / 100.00% 5,598,814 5,598,814 50.00% / 50.00%
Not cDNA 10,884,147 / 97.20% 5,404,059 5,480,088 49.65% / 50.35%
cDNA 313,481/ 2.80% 194,755 118,726 62.13% / 37.87%
Not CDS 154,622 / 1.38% 84,730 69,892 54.80% / 45.20%
CDS 158,859 / 1.42% 110,025 48,834 69.26% / 30.74%
Synonymous 75,216 / 0.67% 40,147 35,069 53.38% / 46.62%
Missense 83,643 / 0.75% 69,878 13,765 83.54% / 16.46%

3.4.2. Increased discriminative power of pCADD with increased biological
relevance of the sequence in which the queried SNVs are located

The performance of pCADD is evaluated by computing the receiver-operator-area under the curve
characteristic (ROC-AUC) on a test set, which consisted of simulated and derived SNVs, none of
which were used for training. The overall ROC-AUC on the entire test set is ~0.683 but differs
considerably for six subsets of SNVs (Figure 2a). The test sets are subsets of each other, with
decreasing numbers of SNVs beginning with the whole test set and ending with the missense
mutations. In transcribed regions of the genome, the scores are more discriminative than in non-
transcribed regions, while in coding regions they are more discriminative than in non-coding
regions such as the 5’UTR, 3’UTR and introns. The scores are most discriminative for missense
mutations, which have the largest number of genomic annotations, resulting in high discriminative
performance of the pCADD model.
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Figure 2: This figure displays the prediction performances of different prioritization tools
on test sets, representing different regions of the genome for which different number of
features are available. I: Whole test set; II: Intergenic SNVs; III: Transcribed SNVs; IV:
SNVs in intron, 5’ & 3’ UTRs; V: Coding SNVs; VI: SNVs causing synonymous mutations;
VII SNVs causing missense mutations. A) pCADD performance measured in ROC-AUC on
the different subsets of the pig held-out test set. B) mCADD test performance measured
in ROC-AUC on the same genomic subsets in the mouse genome. C) Performance of 6-
taxa laurasiatheria PhastCons conservation score on the pig test set. D) SIFT
performance on missense causing SNVs in the pig test set.

These observations are in strong accordance with the earlier reported observations for the mCADD
model for mouse (reproduced in Figure 2b) [19], which was proven useful to identify truly
deleterious mutations found in the Mutagenetix [42] data base, lifted from ClinVar [43] and others
[19]. For all investigated SNV subsets, PhastCons [28] conservation scores based on the Ensembl
6-taxa laurasiatheria [32] displayed the same pattern across all subsets, but performed worse than
pCADD (Figure 2c). We used 6-taxa laurasiatheria PhastCons scores because, overall, they
performed best on different subsets of the held-out test set (see Additional file 3: Figure S1). A
similar difference in performance was observed when the performance of pCADD on missense
mutations was compared to that of SIFT (Figure 2d), which indicates the added value of pCADD
over conventional approaches of identifying potential candidates.

3.4.3. Selecting candidate SNVs based on their total score and on their

relative rank in the surrounding region is meaningful

When we assessed examples of known causal SNVs (Table 2), they were enriched in the upper
percentile of pCADD scores and were likely to be picked up as potential. The exception is
3:43952776T>G, one of two variants located in close proximity to a splice-site. In particular, it is
located in an intron sequence, 4 bp upstream of an annotated splice site. Variants, which are
located 1- and 2-bp upstream of the splice site have pCADD scores that range from 20.90 to
21.93, whereas the remaining variants in the same intron sequence have on average a pCADD
score of ~2.96. Only 13 (out of 3450) other potential SNVs in that intron have a higher pCADD
score. This puts the 3:43952776T>G SNV into the 99.6th percentile of the intron sequence in
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Table 2: Five well-known examples of causal SNVs with different effects on phenotype
and their pCADD scores. The pCADD scores and percentiles both indicate their rank
among all potential SNVs in the pig genome.

Genomic Substi | pCADD | Percentile | Gene Effect Citati
location tution on
6:146829589 G>A 22.868 99.5 LEPR missense: affects productive, [44]

fatness and meat quality traits
in different genetic

backgrounds
1:265347265 A>G 17.198 98.1 NR6A1 missense: affects number [45]
vertebrae
17:57932233 A>C 23.322 99.5 PCK1 missense: causal mutation [46]

associated to intramuscular fat
content, backfat thickness and
meat quality in pigs
7:31281804 G>A 21.589 99.3 PPARD missense: affects ear size, fat [47]
metabolism, skin and cartilage
development

12:38922102 G>A 21.848 99.3 TADA2A splice-donor: lethal recessives [48]
3:43952776 T>G 10.144 90.3 POLR1B | splice-region: lethal recessives [48]
6:54880241 T>C 28.767 99.9 PNKP missense: lethal recessives [48]

which it is located. None of the 13 potentially higher scored variants were observed in our
population of 384 pigs, which makes 3:43952776T>G the highest scored SNV in that region.

3.4.4. The third position of a codon is scored lower than the first two

To assess further if the model assigns different scores to sites with differing biological importance
genome-wide, we tested whether the three positions in a codon are scored differently. Based on
the fraction of non-synonymous mutations for each codon position, the second position should
receive the highest score, followed by the first and third positions (see Additional file 3: Figure S2).
To test this, we examined codons of genes that have only one known transcript, to avoid
interference, which is expected by overlapping transcripts.

The table displays the counts of significant p-values between the three different positions in a
codon. The columns indicate the positions that are tested to have higher pCADD scores than the
positions in the rows. The numbers indicate how often the null hypothesis was rejected in 10,942
conducted tests.

Table 3: Bonferroni corrected one tailed Mann-Whitney U tests were conducted to test if
pCADD values are significantly larger in one codon position relative to another. The table
displays the counts of significant p-values between the three different positions in a
codon. The columns indicate the positions that are tested to be larger than the positions
in the rows. The numbers indicate how often the null hypothesis was rejected in 10,942
conducted tests.

Smaller \ larger 1st 2nd 3rd
ist NA 3066 189
2nd 766 NA 340
3rd 8830 8901 NA

Table 3 shows the number of significant tests when comparing the pCADD scores between two
codon positions, across a gene, with each other (Bonferroni corrected, one-tailed Mann-Whitney U-
tests). Among the 10,942 genes that were selected for this test, we found that the second codon
position has a significantly higher pCADD score than the third for 8901 genes, and that the first
codon position has a significantly higher pCADD score than the third for 8830 genes. Only for 3066
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Figure 6: Histogram of pCADD score distribution of (pre-)miRNA transcripts and their
surrounding up- and downstream regions. Vertical lines indicate the mean values of each
distribution with a mean of 9.987 for miRNA and 7.205 for Up&Down. The One-tailed
Mann-Whitney U-test between both distributions returned a p-value of 0.0 and a ROC-
AUC of 0.613 in favour of miRNA over the Up&Down stream regions.

genes, did the second codon position score significantly higher than the first, while for 766 genes it
was the opposite. Taken together, these results agree with our expectation, and indicate that
pCADD scores do reflect deleteriousness. This was further confirmed by comparing the effect sizes,
measured as ROC-AUC of the pairwise comparisons of codon positions (see Additional file 3: Figure
S3).

3.4.5. miRNA regions are scored differently from those of neighbouring
regions

We investigated whether pCADD scores are higher for functional non-coding sequences than for
non-functional sequences up- and downstream. Variants in annotated (pre-)miRNA regions have
significantly higher pCADD scores (p-value=0.0, one-tailed Mann-Whitney U test; ROC-
AUC=0.613) than sites in up- and downstream regions (average pCADD scores of ~10 vs. ~7.2)
(Figure 3). This difference is largely due to an abundance of (pre-)miRNAs with pCADD scores
around ~21 and a relatively smaller number of variants with a low score. For 164 miRNAs (~56%),
the pCADD scores were significantly higher than those of the neighbouring regions (Bonferroni
corrected, one-tailed Mann-Whitney U test).

3.4.6. Among the introns of a transcript, the first one has the highest score

Chorev et al. [49] showed that regulatory elements are enriched in the first few introns of a
transcript and that their number decreases with increasing intron position. Consequently, we
expected to see decreasing pCADD scores with increasing intron position. To test this, we
annotated every position in the intron region with the highest pCADD score for that position and
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Figure 7: pCADD scores per intron compared to all other introns, for the first 20 introns.
The blue bar indicates the number of introns tested against the intron of interest, the red
bar shows how many of these tests resulted in an adjusted p-value < 0.05 (scale on the
left axis). With increasing intron position, the number of tests that can be conducted
decreases (with the number of transcripts that have at least that many introns). The
black line represents the normalised number of significantly enriched introns,
normalized by the number of conducted tests per intron position (scale on the right
axis).

calculated how often the scores in a particular intron are significantly higher than those across all
other introns in the same transcript (Bonferroni corrected one-tailed Mann-Whitney U test). The
results clearly show that introns closer to the transcription start site of a gene have higher pCADD
scores (Figure 4), which provide evidence for their biological relevance.

3.4.7. Among all tested tissues, pCADD scores for salivary glands and
neuronal tissue specific genes are the lowest and highest,
respectively.

Next, we investigated whether genes considered to be housekeeping genes have different (higher)
pCADD scores than genes specifically expressed in certain tissues. The underlying assumption is
that a mutation in a gene expressed in all tissue types has a much broader potential deleterious
effect. We compared pCADD and PhyloP scores of genes specific for 16 tissues and also compared
them (Bonferroni corrected one-tailed Mann-Whitney U test; ROC-AUC) to scores of a set of genes
considered as housekeeping genes, i.e. expressed approximately equally in all tissues [40]. Based
on pCADD scores, housekeeping genes had significantly higher scores for 12 of the 16 tissues
examined (Table 4). Genes in three brain-derived tissues—cerebellum, eye, neuronal tissue—and in
muscle tissue (smooth and skeletal) have on average a higher pCADD score than housekeeping
genes. A ROC-AUC of 0.5 is the expected performance if the pCADD scores are randomly assigned
to the genes of each set. This means that the larger the absolute difference is from 0.5, the clearer
is the signal supporting that one set is larger than the other. We compared all tissue gene sets to
housekeeping genes, this means that when the ROC-AUC is smaller than 0.5, the pCADD scores of
the tissue associated gene set are generally larger than those of the housekeeping one and vice
versa. In all the comparisons, the total effect size was small and did not differ from 0.5 by more
than 0.122 (dermal tissue). The four tissues that displayed higher pCADD scores than
housekeeping genes have in common that their cells do not divide anymore once they are fully
differentiated. Mutations in these tissues may have a larger effect than in tissues with a high rate
of cell division due to the inability of the tissue to replace cells, which leads to scarring and
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eventually tissue failure. Thus, genes specific to these four tissues are more likely conserved than
those specific to other tissues, resulting in overall higher pCADD scores. This is supported by the
analysis with conservation scores (Table 4), which showed that these genes were more conserved
than the housekeeping genes. Tissues such as dermal and salivary gland show the lowest pCADD
scores and high rates of cell division. These tissues are likely more tolerant to germline mutations
since they must adapt to changes in diet and climate, thus their tissue-specific genes have a higher
variability, resulting in lower pCADD scores.

Table 4: Test results between tissue specific gene sets and house-keeping genes. We
tested if tissue specific genes are significantly lower scored than house-keeping, using
pCADD and PhyloP scores (25-taxa mammalian alignment). The ROC-AUC scores display
the likelihood that a random sample from the scores of the house-keeping genes is
larger than one from the scores of tissue specific genes.

pCADD p-value | pCADD ROC-AUC PhyloP p-value PhyloP ROC-
. i . . AUC (house-
Tissue (tissue < (house-keeping | (tissue < house- K .
house-keeping) vs tissue) keeping) eeping vs
tissue)
All tissues 2x101 0.5 1 0.467
Blood 3x107122 0.512 1 0.481
Cartilidge- 3x10°3 0.511 1 0.453
tendon
Cerebellum 1 0.48 1 0.487
Dermal 0 0.622 0 0.681
Epithelial 0 0.538 1x10°2° 0.515
Eye 1 0.475 1 0.456
Kidney 2x10°100 0.515 1 0.468
Liver 1x107>4 0.51 9x101 0.49
Lung 6x108 0.506 1x102 0.503
Musculature 1 0.491 1 0.468
Neuronal 1 0.443 1 0.4
Pancreas 1x10-310 0.558 3x10-8! 0.559
Placenta 1x107145 0.529 1 0.469
Salivary-gland 7x10748 0.519 1 0.478
Testis 0 0.558 1 0.478
Vasculature 0 0.558 1 0.454

3.4.8. Differentiation between functional and non-functional sequences is
greater with pCADD than conservation scores

Conservation scores are often used to evaluate the potential importance of sequences and to
evaluate if a particular candidate SNV may have a deleterious effect. They are also useful to put
our own results into perspective and assess conventional sequence prioritisation methods.

Similar to the section "miRNA regions are scored differently from those of neighbouring regions”,
we annotated the pre-miRNAs and their associated up- and downstream regions with PhyloP
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conservation scores (based on 25-taxa mammalian alignment) and performed the same analysis by
computing significance tests to check if miRNA sequences have higher pCADD scores than those in
their neighbouring regions. We chose 25-taxa PhyloP scores because these have the largest
coverage of the pig genome among all conservation scores used in this study (see Additional file 2:
Table S4). The results are in Additional file 3: Figure S4 and are very similar to those from the
analysis using pCADD scores, with an almost identical p-value close to 0 (1e—225) and a ROC-AUC
value of 0.595, which indicates a slightly worse separation between both classes of sequences than
when using pCADD.

Likewise, we evaluated the intron positions relative to each other using the same PhyloP
conservation scores to annotate intron sequences. The results in Additional file 3: Figure S5 show a
similar pattern of decreasing importance with increasing intron position as observed when the
introns are annotated with pCADD scores. Major differences between the analysis using pCADD and
conservation scores is that the total number of introns, which can be annotated with conservation
scores is smaller, resulting in 81,743 fewer tests compared with pCADD. Furthermore, the ratio
between the total number of tests and the number of tests with an adjusted significant p-value is
smaller when conservation scores are used, which indicates that conservation scores are less
discriminative between different intron positions.

We annotated tissue-specific and housekeeping genes with PhyloP conservation scores to
investigate whether the differentiation between both sets of genic regions followed the same
pattern. Twelve tissue-specific gene sets displayed significantly lower pCADD scores than
housekeeping genes, whereas only four tissues had a significantly lower conservation score. The
larger total differences in ROC-AUC scores obtained by using PhyloP scores compared to pCADD
scores indicate that the variations between tissue gene sets are larger when using PhyloP.

The worse performance of PhyloP scores to distinguish between pre-miRNA and surrounding
regions is supported by the lower ratio of significant tests in the intron analysis, which indicates
that PhyloP scores have less specificity for functional elements than pCADD scores.

3.4.9. Predicted intergenic SNVs with high pCADD scores are often
associated with IncRNA and may indicate missing annotations

To examine the utility of pCADD scores for the prioritization of SNVs, we investigated whether they
can help in the identification of intergenic candidate SNVs that segregate between two closely
related Large White pig breeding populations. We scored intergenic SNVs that were unique for
either of these pig populations by multiplying their pCADD score with the allele frequency and
selected the top 20 highest scored SNVs for each population. Since the pCADD model is based on
the Ensembl pig annotations [50] (Ensembl gene annotation update e!90 Sscrofall.l), we
matched the selected 40 SNVs with NCBI's pig gene build [51] to determine whether the model
captures non-annotated genomic features. We found that 16 of the 40 SNVs are located within a
(NCBI) coding region (one example shown in Figure 5) and six SNVs overlap with a (NCBI) long
non-coding RNA (Table 5).
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Figure 8: There are three different potential nucleotide substitutions at each position in
the genome, each with their own predicted pCADD score. To visualize them in JBrowser
[52] we created tracks for the maximum, median and minimum scores at each position.
The fourth track is displaying the standard deviation among the three scores to identify
more easily sites of variable deleteriousness. The yellow vertical bar is located at
position 5:14463457, indicating the site of the top scoring SNV in Table 5. This SNV is
considered intergenic according to the Ensembl gene build but located within a IncRNA
according to the NCBI genebuild. A) NCBI gene build track, showing the genomic region
belonging to IncRNA LOC102160723. B,C,D) the maximum, median and minimum pCADD
scores for each position in the displayed region. E) The standard deviation of pCADD
scores at each position.
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Table 5: Top 40 SNVs according to pCADD*AIt:Frq, which are presumably intergenic
according to the Ensembl Sus scrofa gene build, annotated with NCBI. When no NCBI gene
annotation was found they were mapped to hg38 and the Human Ensembl gene build was
used. Blue: SNVs that are intergenic in the three gene builds, yet found in regions with
conserved synteny. Red: SNVs located in a region unannotated in any gene build.

Chr Pos Ref:Frq Alt:Frq pCADD | pCADD*AIt:Frq | NCBI- Human-
gene Ensembl-
build gene

build
5 14463457 T:0.014 C:0.986 26.559 26.185 IncRNA
10 | 45490687 G:0.007 T:0.993 24.175 24.000 RSU1
9 88698813 C:0.021 G:0.979 24.433 23.909 INncRNA
6 | 149549021 T:0.007 C:0.993 23.714 23.544
18 | 30883512 G:0.045 A:0.955 24.211 23.111 IncRNA
14 | 102653354 A:0.007 G:0.993 23.216 23.052 IncRNA
3 35533299 C:0.029 T:0.971 23.729 23.041 RBFOX1
8 16080284 T:0.021 G:0.979 23.540 23.035 KCNIP4
8 16090742 A:0.007 C:0.993 23.188 23.0248 KCNIP4
9 88631400 T:0.037 C:0.963 23.855 22.978 INncRNA
13 11996804 A:0.068 G:0.932 24.518 22.846 miscRNA
8 16069085 C:0.014 T:0.986 23.148 22.817 KCNIP4
1 | 270976051 G:0.057 A:0.943 24.148 22.768

12 10080096 C:0.029 T:0.971 23.417 22.738

15 | 134154371 G:0.028 A:0.972 23.388 22.729

17 15317464 T:0.035 C:0.965 23.437 22.611

8 16126909 T:0.145 G:0.855 26.331 22.515 KCNIP4

14 | 102708028 T:0.007 C:0.993 22.622 22.463 INncRNA
17 8460314 T:0.007 A:0.993 22.607 22.448 FAT1

3 2721065 C:0.016 T:0.984 22.794 22.438 SDK1

8 2274651 T:0.006 C:0.994 24.861 24.721 IncRNA

14 | 41547002 T:0.006 C:0.994 24.651 24.511 MYO1H

9 88656584 T:0.023 C:0.977 24.606 24.047 INncRNA
13 | 145274213 A:0.031 G:0.969 24.336 23.576 ZBTB20

5 14463352 A:0.006 G:0.994 23.526 23.393 IncRNA

2 135162568 A:0.011 C:0.989 23.305 23.043

13 | 196634107 A:0.011 C:0.989 23.190 22.930 INncRNA

13 | 203405436 G:0.006 A:0.994 23.046 22.917

17 15317464 T:0.022 C:0.978 23.436 22.910

13 | 203404345 T:0.017 G:0.983 23.239 22.842

18 4227731 C:0.006 A:0.994 22.839 22.710

13 | 203405428 T:0.006 G:0.994 22.663 22.535

13 | 145279451 A:0.019 G:0.981 22.960 22.512 ZBTB20

15 | 134347171 T:0.006 G:0.994 22.633 22.506

5 25295998 A:0.011 G:0.989 22.731 22.476 IncRNA

15 | 134154371 G:0.040 A:0.960 23.387 22.457

18 | 42017803 T:0.017 G:0.983 22.811 22.427

15 | 134347189 G:0.006 C:0.994 22.471 22.345

8 16126909 T:0.152 G:0.848 26.331 22.337 KCNIP4
14 | 138794865 A:0.006 G:0.994 22.411 22.285 INncRNA

In addition, we mapped the genomic locations of the candidate SNVs to the human assembly
GRCh38.p12 and Ensembl gene builds, which revealed nine additional genic regions that consisted
of six IncRNAs, one region considered as a miscRNA and two genes. For all 40 SNVs, synteny of the
surrounding genes was conserved except for 18:4227731C>A. The relatively large number of
prioritized SNVs that overlap with IncRNAs can be explained in two ways. First, there might be a
considerable number of missing annotations in the gene builds that we used because the RNA-seq
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databases are incomplete and are the basis for INncRNA annotations. Second, although the IncRNA
functions are conserved due to islands of strong conserved regions [53], the architecture of their
sequences experience constant restructuring and weak sequence conservation across species [53],
[54].

The highest scored SNVs (in terms of pCADD score multiplied by alternative allele frequency) for
which no genic annotation was found (6:149549021T>C) (Table 5), is located in an island with
high pCADD scores within a region that contains several of such small islands (see Additional file 3:
Figure S6). This region starts with a highly H3K27Ac acetylated region, which indicates an
enhancer site. Such a pattern is uncommon for intergenic regions and could indicate a missing
annotation in the gene builds used in our study.

3.5. Discussion

We used a method that provides scores for the prioritization of SNVs with respect to their putative
deleteriousness, from which we derived functional relevance for the genomes of pig. The method is
based on the creation of a set of derived variants from an inferred common ancestor sequence that
can be assumed to be depleted in deleterious variants and a set of simulated variants that are
likely to be enriched in variants with a deleterious effect. It is important to note that while it is
reasonable to assume that the proxy benign/neutral are truly benign/neutral variants, the
simulated putative deleterious variants may also encompass a relatively large proportion of actually
neutral variants.

Founder effects in pig populations may lead to the accumulation of functional variants, with both
benign and deleterious variants receiving a relatively high pCADD score. This means that pCADD
scores are useful to prioritize SNVs of interest, but that assessing deleteriousness may need
additional information or experiments. For example, the missense variant 1:265347265A>G
(pCADD:21.848), which is responsible for an increased number of vertebrae and can be considered
benign given current breeding goals, and the deleterious lethal recessive splice variant
12:38922102G>A, have similar pCADD scores (pCADD: 17.198) (Table 2).

We evaluated the generated pCADD scores on a held-out test set and reported performances on
different genomic subsets, which we compared to results of our previous study on mouse. Due to
the nature of the procedure, the test performance can only indicate if the training algorithm has
picked up patterns of features that are predictive for the simulated variants and if the performance
varies with the genomic region. It has to be emphasized that only performance trends can be
meaningfully compared between the different mCADD/pCADD models due to the different datasets
used for computation. In spite of the large number of neutral variants, which is expected in both
sets of variants, the performance seems to indicate that patterns to differentiate between the
derived and simulated datasets have been picked up and can be used to evaluate variants and
regions based on their potential interest.

The performance of pCADD scores to discriminate between simulated and derived variants in the
test set increased as the number of features increased, depending on the genomic regions in which
they are embedded. The consequence is that missense mutations are the best classified, although
the most interesting application of pCADD is to annotate non-coding and intergenic variants, for
which a plethora of functional candidates exist but there are only a few methods for further
prioritization. As shown for the splice-region variant 3:43952776T>G, the ranking of a variant
relative to its neighbouring sequence in the same sequence category (introns, exons, intergenic,
etc.) can provide information that helps to prioritize such variants.
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Furthermore, we used PHRED-like scores to rate different sequences with known biological
function. We compared the scores for the three positions in a codon and found that less redundant
positions achieve higher pCADD scores. Moreover, regulatory sequences could be clearly
distinguished from their neighbouring regions (i.e. high scores in miRNAs). In addition, our model
supports the higher frequency of regulatory elements in the first few introns of a transcript, and
thus has the potential of scoring not only individual SNVs but also of using a summary score per
site to annotate entire regions to identify potential sub-regions of interest. This is a clear
advantage compared to alternative methods to evaluate non-coding sequences, such as
conservation scores, which may not be available for the entirety of the genome. This was the case
in the analysis of intron sequences, for which more than 80,000 fewer tests could be conducted
due to missing conservation scores. Using pCADD, candidate regions in which annotations are
potentially missing can be identified. For example, no annotation was found for the
6:149549021T>C SNV, even though pCADD scores were within a range typical for exons and
displayed patterns of islands of high importance (see Additional file 3: Figure S6), which is more
compatible with coding regions than with intergenic regions. Ensembl gene annotations rely
strongly on transcript data from public databases, which implies that incomplete databases may
lead to missing gene annotations. This is especially the case for species that are less well studied
than model organisms or humans. In addition, if the genes in question are not ubiquitously
expressed, they can be absent from the data of the sequenced tissue. The same is true for genes,
the expression of which depends on developmental-, disease- or physiological state, as is the case
for many IncRNAs [54].

We compared genes specific for 16 different tissues against (presumed) housekeeping genes [40].
Our assumption was that the ubiquitously and generally more highly expressed housekeeping
genes [55] should have globally higher scores than tissue-specific genes. Although the absolute
effect size was small, significantly higher scores were attributed to genes specific to cerebellum,
eye, neuronal and muscle tissue. Brain-derived tissues (cerebellum, eye, neuronal tissue), in
particular, displayed the largest effect sizes. On the one hand, brain tissue has experienced major
development changes during the time period between 535 and 310 Mya ago, i.e. increased
expression and gain of functions of paralogs of brain-specific genes [56], [57]. Since then and
during the entire mammalian development, the expression of paralogs of brain-specific genes is
lower than that observed in other tissues [57], which indicates the fine balancing that acts to keep
the brain functional. This emphasizes the extreme importance of brain-specific genes for survival
and probably their low tolerance to mutations, compared to housekeeping genes. On the other
hand, dermal tissue (epithelium) is one of the most ancient tissues in the evolution of metazoans
and has highly conserved developmental pathways, which include genes that are involved in the
adaptation to specific environmental changes and have overall lower pCADD scores than
housekeeping genes.

Among the most important features for the pCADD model are conservation scores. They are
annotated for large fractions of the genome (see Additional file 2: Table S4), and thus they heavily
influence training. This is supported by our investigation of various tissues, which showed that
particularly high scores were assigned to expected strongly conserved regions. Deleterious effects
that are not captured by sequence conservation, such as changes in the epigenome or in relatively
variable regions, are expected to have lower scores. This becomes problematic when the species of
interest has experienced recent genetic bottlenecks and has been subjected to very strong
selection, which change the species’ genotype, as is the case for domesticated species. In this
case, the patterns observed from evolutionary changes may not be accurate to evaluate recent
changes. However, not all the regions in the genome are subject to substitution, neither in natural
nor in domesticated environments. There are exceptions to this rule, such as the reported
missense mutations in Table 2, which are causal for a change in the humber of vertebrae, ear size,
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meat quality and fat content, and have high scores, which support the use of pCADD for variant
prioritization.

3.6. Conclusions

The CADD approach is widely used in humans [13]-[18] and, based on our findings, it seems to be
a suitable approach for pig (and other non-human species). Variants that distinguish populations
can be ranked with respect to their pCADD score and allele frequency to find potential candidates
for phenotypes expressed in the studied populations. pCADD could become a valuable tool in pig
breeding and conservation. It can be used to score variants with a potential negative effect in
small-sized endangered local pig breeds, but also help prioritize high-impact variants in genomic
prediction to further enhance genomic selection.

3.7. Declarations / Statements

3.7.1. Availability of data and material

pCADD scores, partitioned per chromosome, compressed via bgzip and tabix indexed for fast
access, can be downloaded following this link (~5-1 GB):
http://www.biocinformatics.nl/pCADD/indexed pPHRED-scores/

To create tracks for genome browsers we provide the maximum, median, minimum, and standard
deviation summaries of each site, partitioned per chromosome. All files are compressed with bgzip
and tabix indexed and can be downloaded following this link (~1.7 GB to ~350mb):
http://www.bioinformatics.nl/pCADD/indexed pPHRED-summary-scores/

Scripts and data to recreate the figures in this article can be downloaded from the following link:
https://git.wur.nl/gross016/pcadd-scripts-data
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This research was funded by the TTW-Breed4Food Partnership, project number 14283: From
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https://gsejournal.biomedcentral.com/articles/10.1186/s12711-020-0528-9

3.8.1. Annotation pre-processing

To train the pCADD model, SNVs from the generated training set were annotated with features
assembled from various genomic annotations. The set of putative benign SNVs (derived alleles)
represent mutations that are directed back in time while simulated variants are orientated forward
in time. Therefore, annotations that are sensitive to these differences have to be swapped in the
set of derived variants. Namely, the nucleotide reference and alternative columns (Ref, Alt), the
amino acid substitutions (nAA, 0AA) and the variant effect consequence predictions made by the
ENSEMBL Variant Effect Predictor v91.3 for the labels STOP Gained and STOP Lost).

Not all SNVs were be able to be annotated with all genomic annotations, therefore missing values
were imputed either by fixed values (such as 0.5, 1.0 or 0, False, UD) or by the mean of the SNVs
in the simulated set. False was used for boolean values, UD (undefined) for factors. To deal with
factors, all columns containing factor data were OneHotEncoded. This means factor data columns
were replaced by as many columns with binary values as unique factors in these columns. In
addition to the imputation, indicator columns were added to the data set which contain a 1 if a
particular annotation is defined for a SNV or a 0 in the cases in which they do not. These genomic
annotations for which indicator columns were created are: cDNApos, CDSpos, protPos, SIFTval,
Grantham and Dst2SplType ACCEPTOR & Dst2SplType DONOR. The last two annotations are
already OneHotEncoded data columns.

The annotations minDistTSS and minDistTSE were capped at 10000 and log transformed. The VEP
consequences were summarized into 14 categories/factors (Table 2) and if there are multiple
consequences per SNV, the category was chosen, following the order in Table 2.

Further, combinations of annotations were created. Namely, all possible combinations of Ref and
Alt categories, generating an annotation for each possible nucleotide substitution. The same was
done for nAA and o0AA. Added to that, combinations of the 14 different VEP consequence
summaries were formed with the following annotations: cDNApos, CDSpos, Dst2Splice, GerpS,
GerpN, IPhCons_noPig, mPhCons_noPig, verPhCons_noPig, IPhyloP_noPig, ~mPhyloP_noPig,
verPhyloP_noPig, minDistTSS, minDistTSE, cDNApos, CDSpos, protPos, relcDNApos , relCDSpos ,
relprotPos , dnaHelT, dnaMGW, dnaProT, dnaProT.

Before model training, all data columns were scaled by dividing each value by their column
standard deviation.
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3.8.2. Supplementary Tables

Table S1: Overview of genomic annotations which build the basis for features used to
train the pCADD model. Overview and short description of genomic annotations and their

imputed values in the case of missing data.

::‘rll)r;?tatlon g,a;: ‘I’:]z:ted Annotation description

Ref factor Reference allele

Alt factor Observed allele

isTv bool 0.5 Is transversion?

Consequence factor VEP Consequence summaries

GC num 0.414 Percent GC in a window of +/- 75bp

CpG num 0.023 Percent CpG in a window of +/- 75bp

motifECount int 0.0 Total number of overlapping motifs

. Is the position considered highly informative for

motifEHIPos bool False an oveFr)Iapping motif by VEPg Y

motifEScoreChng | nhum 0.0 VEP score change for the overlapping motif site
Domain annotation inferred from VEP annotation

Domain factor ub (ncoils, tmhmm, sigp, lcompl, ndomain = "other
named domain")

Dst2Splice int 0.0 Distar_1celt<_) splic_e site in 20bp; positive: exonic,
negative: intronic

Dst2SplType factor ub Closest splice site is ACCEPTOR or DONOR

0AA factor ub Amino acid of observed variant

nAA factor ub Reference amino acid

Grantham int 0.0 Grantham score: 0AA,nAA

SIFTcat factor ub SIFT category of change

SIFTval num 0.0 SIFT score

cDNApos int 0.0 Base position from transcription start

relcDNApos num 0.0 Relative position in transcript

CDSpos int 0.0 Base position from coding start

relCDSpos num 0.0 Relative position in coding sequence

protPos int 0.0 Amino acid position from coding start

relProtPos num 0.0 Relative position in protein codon

dnaRoll num 0.255 Predicted local DNA structure effect on dnaRoll

dnaProT num 0.518 Predicted local DNA structure effect on dnaProT

dnaMGW num 0.0365 Predicted local DNA structure effect on dnaMGW

dnaHelT num -0.102 Predicted local DNA structure effect on dnaHelT

GerpS num -0.805 Rejected Substitution' score defined by GERP++

GerpN num 1.384 Neutral evolution score defined by GERP++

GerpRS num 0.0 Gerp element score

GerpRSpval num 1.0 Gerp element p-Value

IPhCons._noPig num 0.143 gi-gtr;ma-Laurasiatheria PhastCons score (excl.

mPhCons_noPig num 0.135 25-taxa-Mammalian PhastCons score (excl. pig)

verPhCons_noPig | num 0.126 100-taxa-Vertebrate PhastCons score (excl. pig)

IPhyloP_noPig num 0.078 6-taxa-Laurasiatheria PhyloP score (excl. pig)

mPhyloP_noPig num 0.106 25-taxa-Mammalian PhyloP score (excl. pig)

verPhyloP_noPig | num 0.294 100-taxa-Vertebrate PhyloP score (excl. pig)

minDistTSS int 10000000 (D_Ii_sstg)nce to closest Transcribed Sequence Start

mMinDistTSE int 10000000 (D_Ii_sst%nce to closest Transcribed Sequence End
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Table S2: Overview of the pig populations used in this study.
List of pigs whose high frequency SNPs were added to the
set of the putative benign (derived) variants to generate the
training set. SNPs were called based on whole genome

sequence data.
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Number of individuals

Race/Breed

Angler Sattelschwein

Berkshire

British Saddleback

Bunte Bentheimer

Calabrese

Cassertana

Chato Murciano

Chinese Wild boar

Cinta Senese

Duroc

Gloucester Old Spot

Hampshire

Japanese Wild boar

Jiangquhai

Jinhua

Landrace

Large Black

Large White

Leping_spotted

Linderodsvinn

Mangalica

Meishan

Middle White

Negro Iberico

Nera Siciliana

Pietrain

Retinto

Synthetic

Tamworth

Thai domesticated pig

Thai Wild boar

Wannan spotted

European Wild boar

Xiang pig

Zang pig

w w = = (o} N I Ul
-bl—ll\)\,NNNNOOUJUJHUJNO\]NN\,NwNwHonNOON\JI—lNNNN

NA

56



3.8 - Appendix - Supplementary Data

Table S3: VEP consequences summaries.

VEP consequences summarized to 14

categories. If multiple annotations exist for the same variant, the consequence is
selected according to the displayed hierarchy, starting at 1 and ending at 14.

Hierarchy Abbreviation VEP Consequence Summary
1 SG Stop Gained
2 Cs Canonical Splice
3 NS Non-Synonymous
4 SN Synonymous
5 SL STOP Lost
6 S Splice Site
7 us 5-UTR
8 U3 3’-UTR
9 IG Intergenic
10 NC Noncoding-change
11 I Intronic
12 UP Upstream
13 DN Downstream
14 0] Unknown

Table S4: Conservation score coverage of the pig genome. Coverage of the pig genome
for the conservation scores used in the pCADD model (Supplementary Table 1). Y-
chromosome, mitochondrial and unplaced scaffolds were excluded in pCADD and the

conservation score calculations.

Conservation score Nr. of positions Fraction of the total
genome
6-taxa-Laurasiatheria PhyloP score (excl. pig) 1,777,718,741 0.71
25-taxa-Mammalian PhyloP score (excl. pig) 1,978,673,774 0.79
100-taxa-Vertebrate PhyloP score (excl. pig) 1,367,857,535 0.55
GERP 1,043,440,638 0.42
6-taxa-Laurasiatheria PhastCons score (excl. pig) 1,777,718,741 0.71
25-taxa-Mammalian PhastCons score (excl. pig) 1,978,669,505 0.79
100-taxa-Vertebrate PhastCons score (excl. pig) 1,390,499,379 0.56
Golden Path Sscrofalil.1 2,501,912,388
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3.8.3. Supplementary figures
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Figure S1: Prediction performances of six conservation scores on test sets, representing
different regions of the genome for which different number of features are available. I:
Whole test set; II: Intergenic SNVs; III: Transcribed SNVs; IV: SNVs in intron, 5’ & 3’
UTRs; V: Coding SNVs; VI: SNVs causing synonymous mutations; VII SNVs causing
missense mutations.
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Figure S2: Codon redundancy displayed in the JBrowser genome browser using pCADD
scores.The third position in a codon is more redundant than either of the other two
positions. This is reflected in the scores, here an example of the end of the 2nd exon of
MACC1. MACCL1 is located on the reverse strand.

58



3.8 - Appendix - Supplementary Data

[ ROC-AUC 3-1
500 =1 ROC-AUC 3-2
[ ROC-AUC 2-1
400
2 300
C
3
o
o
200
100
0.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ROC-AUC

Figure S3: Effect sizes measured as ROC-AUC between the difference of pCADD scores of
the three codon sites for all transcripts. The pCADD scores for the third and second
codon positions differ generally the most (mean of ~0.232), thus their effect sizes have
the largest absolute distance to 0.5. A ROC-AUC of 0.5 would indicate that no set of
scores is larger than the other. The score indicates that the third position has a generally
lower pCADD scores than the second position. The effect sizes of pCADD scores between
the third and first codon positions (mean ROC-AUC ~0.277) also indicate that the third
position is generally evaluated to be less deleterious than the first. In contrast, effect
sizes between the second and first codon position are on average larger than 0.5 (mean
of ~0.554) with the second codon position having a generally higher pCADD score than
the first, which confirms that the second codon position is the most consequential when
mutated. The effect sizes between the third and second codon positions as well as the
third and first codon positions are more dispersed than between the second and first
codon positions, probably due to the relatively larger variance in impact of a change at
the third position than at the other two positions.
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Figure S4: Histogram of conservation score distribution of (pre-)miRNA
transcripts and their surrounding up- and downstream regions. Vertical
lines indicate the mean values of each distribution with a mean of 0.382
for miRNA and 0.211 for Up&Down. The one-tailed Mann-Whitney U-test
between both distributions returned a p-value of 1e-225 and a CLES of
59.549%. The conservation score used to annotate the transcripts and their
surrounding regions are the 25-taxa-Mammalian PhyloP score shown in
Supplementary Table 4.
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Figure S5: Comparison of the 25-taxa-Mammalian PhyloP scores per intron compared to
all other introns, for the first 20 introns. The blue bar indicates the number of introns
tested against the intron of interest, the red bar how many of these tests resulted in an
adjusted p-value < 0.05 (scale on the left axis). As the intron position increases, the
number of tests that can be conducted decreases (with the number of transcripts that
have at least that many introns). In black, the normalised number of significantly
enriched introns, normalized by the number of conducted tests per intron position (scale
on the right axis).
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Figure S6: pCADD scores show a pattern of high scores in a presumably intergenic
region. The yellow bar is indicating the location of the SNV 6:149549021T>C. It is
embedded in a presumably intergenic region without any gene annotations in the pig
genebuild of Ensembl and NCBI and the Ensembl genebuild of human when mapped to
the human genome. The region is spiked with islands of high pPHRED scores, untypical
for intergenic regions, and starts with an active enhancer region (peaks in H3K27Ac,
data not part of this manuscript). The region 5’ of the enhancer site is displaying
patterns as expected for intergenic regions.
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4.1 - Abstract

4.1. Abstract

The genotype-phenotype link is a major research topic in the life sciences but remains highly
complex to disentangle. Part of the complexity arises from the polygenicity of phenotypes, in which
many (interacting) genes contribute to the observed phenotype. Genome wide association studies
have been instrumental to associate genomic markers to important phenotypes. However, despite
the vast increase of molecular data (e.g. whole genome sequences), pinpointing the causal variant
underlying a phenotype of interest is still a major challenge, especially due to high levels of linkage
disequilibrium.

In this study, we present a method to prioritize genomic variation underlying traits of interest from
genome wide association studies in pigs. First, we select all sequence variants associated with the
trait. Subsequently, we prioritize variation by utilizing and integrating predicted variant impact
scores, gene expression data, epigenetic marks for promotor and enhancer identification, and
associated phenotypes in other (well-studied) mammalian species. The power of the approach
heavily relies on variant impact scores, for which we used pCADD, a tool which can assign scores to
any variant in the genome including those in non-coding regions. Using our methodology, we are
able to substantially narrow down the list of potential causal candidates from any association
result. We demonstrate the efficacy of the tool by reporting known and novel causal variants, of
which many affect (non-coding) regulatory sequences associated with important phenotypes in
pigs.

This study provides an approach to pinpoint likely causal variation and genes underlying important
phenotypes in pigs, accelerating the discovery of new causal variants that could be directly
implemented to improve selection. Finally, we report several pathways and molecular mechanisms
affecting important phenotypes in pigs, that can be transferred to human phenotypes.

4.2. Background

Closing the gap between genotype and phenotype is a major goal in many life sciences, but
remains extremely challenging [1]. Part of the complexity arises from the polygenicity of
phenotypes, in which many (interacting) loci contribute to the observed phenotype. Genome wide
association studies (GWAS) have been instrumental to associate genomic markers to important
phenotypes reported as quantitative trait loci (QTL), and to get a better grip on the biology of the
traits [2]. However, the resolution of GWAS is limited by the correlation between neighbouring
markers in linkage disequilibrium (LD). Hence, unravelling the molecular drivers underlying
phenotypes of interest requires the identification of the actual causal variants [3], which often
reside in the noncoding regions of the genome, in particular in predicted transcriptional regulatory
regions [4].

In human genetics, a combination of statistical fine-mapping methods and expression QTL (eQTL)
studies are used to further narrow down the list of candidate causal variants [5]. Further functional
annotation, facilitated by large consortium efforts like the Encyclopedia of DNA Elements(ENCODE)
[6], is used to prioritize variants based on likelihood of affecting a regulatory region, affecting gene
expression. Despite this effort, identifying the causal variant remains difficult, partly because of the
fundamental complexity of phenotype-genotype relations, in which also the environment plays an
important role.

Also, in livestock, economically important phenotypes are typically determined by a very large set
of variants each explaining a small fraction of the phenotypic variation. However, for many traits
there are also some QTLs explaining a larger fraction (>1%) of the variation. For such larger QTLs
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it is of interest to identify the underlying causal variation. Due to intense selection, the effective
population size (Ne) of most livestock populations is small [7]. This often leads to extended LD,
comprising up to millions of base pairs (Mb) in length, especially in regions with low recombination
rates [8]. High LD yields an additional layer of complexity to fine-map GWAS results in livestock
populations, and the use of crossbreeding to break down the LD is a costly, labour-intensive and
time-consuming procedure to fine map the QTL region. On the contrary, livestock populations are
less confounded by population stratification (i.e. ancestry differences between cases and controls),
which can be a major factor in human GWAS studies [9].

Similar to human, further functional genomic information could help to prioritize the variants
underlying the phenotypes of interest in livestock [10]. However, in pigs, the level of functional
genomics information is limited. Fortunately, recent advances have been achieved in pigs by the
publication of the pig Combined Annotation-Dependent Depletion (pCADD) tool [11], providing
impact scores of any nucleotide substitution in the pig genome. CADD was developed to score
variants with respect to their putative deleteriousness to prioritize potentially causal variants in
genetic studies [12]. This tool is frequently used to score variants in human GWAS studies [5].
Subsequently, other species-specific CADD tools were developed [13]. The tool scores the
deleteriousness (or functional impact) of single nucleotide variants (SNPs) and is built on many
layers of annotations including sequence context, conservation scores, gene expression data, non-
synonymous mutation scores, and epigenomic data, if available for the investigated species. The
pCADD scores are the -10log10 of the relative rank of the investigated SNP among all possible
SNPs in the Sus scrofa reference genome, giving the predicted 90% least impactful SNPs a pCADD
score between 0-10, the least 99% a score between 0-20, et cetera.

Pig populations have been under a long-term biological experiment by animal breeders that use
genomic selection to constantly improve their stock [14]. In general, genomic selection uses a
variant panel on a chip to associate regions in the genome with important traits. This variant panel
is distributed across the genome and allows within-population genetic variation to be captured
[15]. However, genomic selection uses the genome as a “black box"”, as the SNPs on the chip are
mostly not causal, but genetically linked to the actual causal variants and genes [16]. Therefore,
the efficacy of genomic selection can be substantially improved by adding new genetic markers
comprising the actual causal variation [17], providing insight in the exact molecular drivers
involved in the selection.

The objective of this study is to bridge the genotype-phenotype gap in pig populations by
pinpointing causal variants that are selected by genomic selection. More specifically, we will
demonstrate that pCADD scores can be used to identify causal variants underlying GWAS peaks
and QTLs. Being able to identify causal variants will have major implications for genomic selection
and provides insights into the molecular biology and pathways affecting important phenotypes in
pigs, that can be transferred to human phenotypes.

4.3. Results

4.3.1. Genome wide association studies in four elite pig populations
reveal many QTLs affecting production, reproduction, and health

We analysed large scale genotype and phenotype data in four purebred pig populations: two boar
breeds of Duroc and Synthetic origin, and two sow breeds of Landrace and Large White origin. In
pigs, selection takes place on the purebred populations, while the final production animals are
derived from three-way crosses. First, crossbred sows are created from populations selected for
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high reproductivity and mothering abilities, which are subsequently crossed with a population
especially selected for meat production traits. The examined traits can be grouped in three classes:
(1) traits focussing on carcass and meat quality, including backfat, intramuscular fat, and growth;
(2) reproduction traits, mainly focussing on litter size, number of liveborn, survival, and mothering
abilities; and (3) health and welfare traits including disease resistance, osteochondrosis, umbilical
hernia, and other conformation traits. A total of 129,336 animals with 552,000 imputed SNPs were
subjected to a GWAS analysis for 83 traits. The analysis revealed a large set of QTL regions with a
genome-wide association significance threshold of -log10(p)>6.0, and significant associations were
observed for the majority of examined traits. The ‘lead” SNP that showed the strongest association
signal is used as a starting point for further analysis.

4.3.2. A pipeline for integrating pCADD scores and functional information
to rank sequence variants

4.3.2.1. pCADD evaluates all possible substitutions from the Sscrofall.1 pig reference

genome
Our approach first relies on the lead SNP from a significant GWAS peak to extract sequence
variants that are in high LD (r2>0.7). The whole-genome sequence variants are extracted from a
total of 428 animals (Duroc: 101, Synthetic: 71, Landrace: 167, Large White: 89), sequenced to an
average depth of 11.82. Next, we assigned pCADD scores to each sequence variant in high-LD with
the lead SNP, to prioritize them on their likely impact. The sequence variants were assigned to a
functional class using the Ensembl Variant Effect Predictor (VEP, release 98) [18]. The distribution
of the pCADD scores for a set of variants depends on their functional class, and non-coding
variants have on average lower scores compared to coding variants. The quantiles and further class
statistics for the pCADD scores are presented in Table S1. In addition, three liver histone
modification datasets were used (for modifications H3K27Ac and H3K4me3) to mark variation
overlapping with regulatory sequences, including likely active promoter and enhancer elements in
pig liver tissue [19].

4.3.2.2. Phenotype and pathway information provides further evidence of gene causality
Functional annotations, including pathways and gene-ontology information for the examined pig
genes associated with the top-ranked variants, were extracted from the Uniprot database [20].
Moreover, we extracted associated phenotypes from orthologous genes from the Ensembl database
for human (Homo sapiens), mouse (Mus musculus), and rat (Rattus norvegicus). The phenotypes
are mainly based on (disease) association studies in human, and gene-knockouts in mouse and rat
[21]. A complete overview of the pipeline is presented in Figure 1.

65



4.3 - Results

s . Manhattan plot
GWAS I
(Trait + genotypes) .
.ng Plink 1.9
Population WGS data Sequence variants
in LD with lead SNP
Rank variants on
pCADD score var T ocaoD [0
A 30.21 1
T : B 12.22] 0.88
[ Annotate with

§ L H3K27Ac and c 317) 092
§ o H3K4me3
Orthologous gene phenotypes

Annotate with . : 5
Wi Candidate causal . m

expression data _
(eQTL) gene/variant(s)

Figure 1: Pipeline overview. The pipeline takes the result of a GWAS as input (lead SNP)
and identifies SNPs from WGS data that are in high LD with the lead SNP. Subsequently,
the variants are prioritizes based on impact scores (pCADD), open chromatin information
(liver), and gene expression (if available). The pipeline outputs a final list of candidate
causal variants for each trait of interest, ranked on its likely importance.

4.3.2.3. Gene expression information allows identification of possible expression

quantitative trait loci

The combination of genotype and gene expression data provides an additional layer of evidence to
find causal variation, as differences in expression of genes can be associated with a variant
(expression quantitative trait loci; eQTL). In this study we use 59 RNA-sequenced samples [22]
from Landrace (n=34) and Duroc (n=25) to test for differential expression between the genotype
classes (homozygous reference, heterozygous, homozygous alternative) to associate the
expression of genes with the genotypes. The samples were sequenced from testis tissue, further
details about the sequenced samples and alignment depth are provided in Table S2. The
combination of epigenomic marks (liver) and gene-expression data (testis) can, on top of the
pCADD scores, facilitate in the discovery of functional variants.

66



4.3 - Results

67

3 Ha
- ggﬂﬁ g N
. [++] sugé - - ] —
T eeee y—
= g
H
.. p—
9 . £ = -
- . 2 H ~
- - ,h, ~
= . R
. . ~
n e EN
- g
- LI g §
z
< PR El
- R AT W @
~
1 . o
L
m -
] . . .
o
ot o - S
= P N
1l e —
: - se s 'l:‘g ~N
. - . LS -~
—
t oreee i e B
. lo 5
-cae O . E]
+ AR )
* . -, = ©
n
o Lo ..:\“ 2 n
- ol s‘o'..‘\ ~N ‘.E
; A 53 =%
3 o ool Y c
2 £ - o =t . o
o 3 . EAE S 5 s
: - ; 2
- . * * L
S . ool Jew el o o
= = o ° & g 8
H (] s Ltep o ov
~ ~E
-lom . ~ o
c
3 s S
m— . o U]
Y
©
.
<
! 2
: . =
*ln . % * ot o
‘ « w-
- P I
< cta o
’ ® ..
-! - .:..- - g
ce v ey ; ‘., Q
-w o
m I T P, x .'P.'.".o.:?':‘ ............... -
.. . '.=‘..o.‘~
- . d
. . .f'o-. ., ..-
"
LIPS o et
. T &
1 % g
. e
. by -
.
.’
b o ]
ety [ Lo
..
. W o
s S 2
4 .
, ~
oo *
oo
o "o o o n o n o n <)
@ N ~N ~ — —
<L (anjep-d) 01607 m sa2103s agydd

Figure 2: A) Manhattan plot for drip loss in Duroc showing a strong
QTL on chromosome 15:121Mb. Only SNPs with a -logio(p) > 2 are
plotted. B) Plot showing all sequence variants in high LD (red) with
the lead SNP (blue), including the variants that are already on the
chip (black), and the candidate causal variant (green). The bottom
of the figure shows the gene annotation and location of the
candidate causal variant, according to the Ensembl pig build v.98.
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4.3.3. Accelerated discovery of potential causal variants from GWAS
results

To demonstrate the utility of our approach we first analysed several QTL regions with known causal
variants reported in literature. This list includes a missense mutation in MC4R affecting production
traits [23], a promoter variant affecting number of teats in the VRTN gene [24], and a missense
mutation affecting meat quality in PRKAG3 [25]. The method returned the causal variant as top
ranked for both the MC4R missense mutation (Text S1, Figure S1) and the VRTN promoter variant
(Text S2, Figure S2), despite the fact that hundreds of variants were found in LD with the lead
SNP.

The mutation identified by Milan [25] does not segregate in our sequenced animals, however, we
identified another missense variant (15:9.120865869C>T) in the PRKAG3 gene likely affecting
meat quality in both boar breeds (Figure 2), as described by Uimari et al. 2014 [26]. The causal
missense variant is highlighted in green, and the lead SNP in the GWAS results in blue in Figure 2B.
The variant substitutes glutamic acid for lysine (ENSSSCP00000030896:p.Glu47Lys) and is
segregating at a frequency of approximately 20%, and 36% in Synthetic and Duroc, respectively.
PRKAG3 regulates several intracellular pathways, including glycogen storage [27]. The specific
isoform (ENSSSCT00000036402.2) affected by the Glu47Lys missense mutation has a role in the
metabolic plasticity of fast-glycolytic muscle and is primarily expressed in white skeletal muscle
fibers [28]. Gain of function mutations in the PRKAG3 gene have been correlated with increased
glycogen content in skeletal muscle in pig, negatively affecting meat quality [29]. The Lys47
variant likely causes a gain-of-function of the 5'-AMP-activated protein kinase subunit gamma-3
enzyme, resulting in increased glycogen content causing lower water holding capacity resulting in
low meat quality.
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Figure 3: A) Manhattan plot for backfat in Duroc showing a strong QTL on chromosome
7:30Mb. Only SNPs with a -logio(p) > 2 are plotted. B) Plot showing all sequence
variants in high LD (red) with the lead SNP (blue), including the variants that are already
on the chip (black), and the candidate causal variant (green). The bottom of the figure
shows the gene annotation and location of the candidate causal variant, according to the
Ensembl pig build v.98.

4.3.4. Large scale analysis reveals several novel variants with pleiotropic
effects on important phenotypes

4.3.4.1. Promoter variants in the HMGA1 and HMGAZ genes affect fat deposition and
growth in pigs

A strong QTL on chromosome 7 affects backfat, intramuscular fat, growth, feed intake and loin
depth in Duroc (Figure 3A). The lead SNP in the GWAS result is located at position 7:30,116,227
with a -logl0(p) > 20 for backfat, feed consumption, and intramuscular fat (Figure S4). The
analysis returns 485 variants in high LD with the lead SNP (Figure 3B). The two variants with the
highest pCADD scores are annotated upstream of the HMGA1 gene, 566 bp apart (Figure 3B). Both
mutations are in the promoter region of the HMGA1 gene, supported by signals on the H3K4me3
and H3K27Ac histone marks (Figure S5). The A allele, segregating at 36% allele frequency, is
associated with less backfat, faster growth, but also smaller loin and decreased intramuscular fat.
We evaluated the expression of the HMGA1 gene in twenty samples for which both genotype and
gene expression, as normalized fragments per kilobase per million (FPKM), were available within
the three genotype classes GG, AG, and AA. The A allele causes increased expression of the gene
in an additive manner (P=0.041, Figure S6) and suggests that increased expression of the HMGA1
gene positively affects backfat and growth, but decreases intramuscular fat. In addition, we find
two variants affecting the promoter region of the HMGA2 gene, to be associated with less backfat
in the Synthetic breed (Table 1). Both HMGA1 and HMGAZ2, part of the High Mobility Group A gene
family, are well-known genes to affect growth and stature in pigs [30]-[32], but no causal variant
has been reported thus far. Our results suggest that the causal variants for both genes are
regulatory.
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1 G-263595807-T missense NO A252D 20.05 2 COPS4 Duroc + NS - NS NS [34]
6 A-145977262-T intron NO - 14.63 1 SGIP1 Large White NS NS - NS NS [58]
12 C-44684331-G missense NO G131R 25.81 1 steaeA Synthetic NS NS + NS NS [34]
9 C-17077403-A 5'UTR YES - 8.45 7 PRCP Synthetic NS NS = NS NS [57]
5 A-83681067-G intron YES - 12.1 9 NR1H4 Synthetic NS NS - NS NS [56]
2 G-15310202-A 3'UTR NO - 21.38 1 NR1H3 Synthetic NS NS - NS NS [55]
7 A-11391274-G intron NO - 9.72 1 JARID2 Duroc NS + NS NS NS [54]
6 A-146830209-G intron NO - 11.88 1 LEPR Duroc NS + NS NS NS [53]
15 C-117292901-A missense NO G1693C 24.75 1 ABCA12 Large White NS + NS NS NS [52]
4 A-88412353-C intron NO - 18.99 1 NOS1AP Large White NS + NS NS NS [51]
2 C-41019232-T upstream NO - 3.91 9 SAA3 Large White NS + NS NS NS [50]
2 T-103610859-C missense NO L335S 21.45 1 LNPEP Synthetic NS + NS NS NS [49]
14 G-128748846-A 5'UTR YES - 15.53 7 CACUL1 Synthetic NS = NS NS NS [48]
3 C-94863278-A 5'UTR YES - 16.11 7 PRKCE Landrace = NS NS NS NS [47]
13 A-195332161-G intron YES - 6.13 26 SOD1 Duroc - NS NS NS NS [46]
11 T-20619202-C 3'UTR NO - 18.46 1 HTR2A Duroc = NS NS NS NS [45]
5 G-65814519-A missense NO V850l 23.1 1 AKAP3 Duroc + NS NS NS NS [44]
2 A-144841051-C intron NO ; 10.65 2 NR3c1 | Synthetic, Large + + NS NS Ns | [a3]
18 T-10098558-C intron NO - 16.41 1 HIPK2 Synthetic - - NS NS NS [42]
8 A-102781174-G missense NO M165V 21.27 1 QRFPR Synthetic NS NS NS NS - [41]
7 A-97614602-C | upstream NO - 11.95 2 VRTN buroc, Landrace, NS NS NS NS + 124]
15 A-46758359-G intron YES - 11.73 4 SORBS2 Synthetic NS NS NS - NS -

14 T-107058908-C intron YES - 24.5 1 SORBS1 Synthetic NS NS NS - NS [40]
9 G-758928-A missense NO A773T 21.92 1 TRIM66 Synthetic NS NS NS - NS [39]
13 G-173634576-A upstream YES - 15.68 1 GBE1 Synthetic NS NS NS + NS [38]
9 C-9329652-T missense NO P419S 20.91 3 NEU3 Synthetic NS NS NS - NS [37]
2 C-96202720-T intron NO - 17.86 2 MEF2C Synthetic NS NS NS - NS [36]
1 C-127921686-T missense NO G1904S 23.03 1 MAP1A Synthetic NS NS NS - NS [35]
6 C-67433001-T intron YES - 11.87 2 KLHL21 Landrace NS NS NS + NS [34]
15 C-120865869-T missense NO E47K 26.37 1 PRKAG3 Synthetic, Duroc NS NS NS - NS [26]
5 T-30187091-C upstream NO - 19.44 2 HMGA2 Synthetic - NS NS NS NS [32]
7 G-30318881-A upstream YES - 14.96 1 HMGA1 Duroc - - + + NS [30]
1 G-160773437-A missense NO D298N 27.47 1 MC4R Synthetic, Duroc - NS + NS NS [23]
1 G-120074006-A missense NO T386M 30.27 1 SCG3 Synthetic - + NS - NS [33]
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Figure 4: A) Manhattan plot for backfat in the Synthetic breed showing a strong
QTL on chromosome 1:116Mb. Only SNPs with a -logio(p) > 2 are plotted. B) Plot
showing all sequence variants in high LD (red) with the lead SNP (blue), including
the variants that are already on the chip (black), and the candidate causal variant
(green). The bottom of the figure shows the gene annotation and location of the
candidate causal variant, according to the Ensembl pig build v.98.
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Figure 5: Manhattan plot for drip loss in the Synthetic breed. The figure shows significant
loci and likely causal genes identified.

4.3.4.2. A novel missense mutation in SCG3 likely to affect backfat and growth rate

A strong QTL on chromosome 1 affects backfat, intramuscular fat, and drip loss in the Synthetic
breed (Figure 4A). The lead SNP in the GWAS result is located at position 1:115,884,118. The
analysis returns 874 variants in high LD with the lead SNP. The SNP with the highest pCADD score
(1:9.120074006G>A), a single missense variant affecting the SCG3 gene is identified as the likely
culprit (Figure 4B). The variant substitutes a threonine for a methionine at position 386 in the
Secretogranin-III protein (ENSSSCP00000044507:p.Met386Thr). The Met