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Abstract

In the last few decades, basic ideas of topology have completely transformed the pre-
diction of quantum transport phenomena. Following this trend, we go deeper into the
incorporation of modern mathematics into quantum material science focusing on geom-
etry. Here we investigate the relation between the geometrical type of the Fermi surface
and Anomalous and Spin Hall Effects. An index, Hy, quantifying the hyperbolic geometry
of the Fermi surface, shows a universal correlation (R? = 0.97) with the experimentally
measured intrinsic anomalous Hall conductivity, of 16 different compounds spanning a
wide variety of crystal, chemical, and electronic structure families, including those where
topological methods give R2 = 0.52. This raises a question about the predictive limits
of topological physics and its transformation into a wider study of bandstructures’ and
Fermi surfaces’ geometries and relating them to the quantum geometry theory of a more
general metric of eigenstates, opening horizon for the prediction of phenomena beyond
topological understanding.
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1 Introduction

Topological materials have garnered significant attention in recent years for their remarkable
electronic properties, which have opened new horizons in condensed matter physics and elec-
tronic device engineering [1]. Among other effects, they exhibit anomalous Hall effect (AHE),
i.e. additional orthogonal Hall current, which is unexpected from the classical electromag-
netic theory perspective. There are various contributions to the AHE, but in this work, we only
consider the intrinsic one, which is AHE generated by the internal magnetism combined with
the properties of the electronic eigenstates v, [2]. The accurate prediction of Anomalous
Hall Conductivity (AHC), quantifying AHE in materials, especially within the realm of topo-
logical materials, relies upon sophisticated computational methodologies. These methods are
rooted in the computation of Berry curvature Q(k), a fundamental concept in condensed mat-
ter physics that offers insights into the geometric phase acquired by electron wavefunctions
as they traverse the Brillouin zone. This enables accurate predictions of AHC by establish-
ing a clear connection between the topological properties of electronic bands and transport
phenomena as follows [2]:
e? d?k

— Fermi—Dirac
O-xy - K 57 (271_)2 Qxy(k)f (G(k)) (1)

Computational procedures to predict AHC typically commence with ab-initio density func-
tional theory (DFT) calculations. These calculations are followed by a projection into Wannier
functions, and subsequently, the computation of Berry curvature at each k-point in the Bril-
louin zone. The Kubo formula, which relies on Berry curvature and integrates over occupied
states in k-space, is then employed to predict the AHC [3]:
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While this approach has made significant strides in comprehending and forecasting the
AHC in topological materials, challenges persist in, e.g. algorithmizing the computational pro-
cedure or attaining a high degree of accuracy. The accuracy issues appeared even with simple
compounds: while for Co and Fe Berry curvature based predictions give reasonable errors
within 30% compared to the experiment, the Ni predictions have about 250% mismatch [4].
There are various reasons for that, but one could be that the current computational method
fundamentally does not take into account the possible coexistence of multiple unconnected sets
of bands, having one elementary band representation (EBR) at the Fermi level, as was recently
presented in topological quantum chemistry as multi-EBR bandstructures [5]. Another possi-
bility is that there are additional contributions to the AHC beyond those accounted for by the
Berry curvature. A more crucial factor for the numerical simulation of quantum effects like
AHE is a pressing need to streamline the computational complexity of these calculations to
enable high-throughput performance and online execution within materials databases.

A possible key avenue for achieving this computational streamlining can be found in con-
sideration of the Fermi surface (FS), representing the locus of states with the highest occupied
energy levels, which is fundamental in shaping electronic transport phenomena. However, a
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significant challenge arises in the fact that the topological connectivity described by the Berry
curvature is typically regarded as an intrinsic property of eigenstates and is not readily express-
ible solely through the distribution of eigenvalues. Nevertheless, an indirect link between the
Fermi surface shape and the topological properties of the eigenstates can be assumed. Since
the corresponding eigenvalues represent the action of the Hamiltonian on the eigenstates, i.e.
en(k) = H(y 1), when H behaves, for instance, as a homeomorphism, it preserves the topo-
logical properties [6], i.e. topological connectivity remains for {¢,(k)},, and thus it should
be reflected in the shape of the FS. However, a detailed analysis of the exact expressions for
the equivalents of the Berry connection and curvature on the space {¢,(k)}, x falls outside the
scope of this work. Instead, we focus on a preliminary qualitative exploration of the FS shape
in relation to anomalous quantum transport phenomena, utilizing the standard Riemannian
metric on {&,(k)}s.

In this context, our paper introduces a groundbreaking phenomenological Fermi surface
descriptor H related to the density of hyperbolic points on the Fermi surface, whose compu-
tation does not include any topological quantities, but only Fermi surface data. However, it
shows a higher match to the AHC compared to current methods and unlike them can be simply
integrated into material databases. This empirically developed index correlates extremely well
with experimentally measured values of intrinsic anomalous Hall conductivity (AHC) (R? =
0.97, whereas current methods gives just R> = 0.52). Hj is tested on 16 different real mate-
rials that broadly range from conventional ferromagnets to Weyl semimetals, including cases
like Ni and Co,MnAl, where the Berry phase approach (via the Kubo formalism) does not rep-
resent a complete picture of the transport. We found that 13 of the compounds have one EBR
FSs and that the limit of the AHC for a single EBR FS is ~1570 (Q.cm) ™. Two of the materials
examined here, CrPt; and Co,MnAl, have multi-EBR Fermi surfaces and subsequently break
the apparent AHC limit. We also find that the H matches predictions of the spin Hall conduc-
tivity (SHC) for Pt, Beta-W (W5W), and TaGas. The Hj index also enables an inexpensive and
rapid computational prediction of AHE/SHE materials and can be implemented with existing
density functional theory (DFT) methods and databases.

Our phenomenological research not only provides a valuable tool for practical applications
in the prediction of AHC, but also underscores limitations in conventional transport theories
and suggests possible directions for further theoretical exploration. In the following sections,
we outline the development and application of the description Hp, providing evidence of its
predictive capabilities and highlighting its potential impact on the field of topological materials
research and its technological applications.

2 Semiclassical dynamics and Fermi surface geometry

In our study, we rely on a semiclassical approach, which helps to understand how electrons
move when subjected to electric (E) and magnetic (B) fields. Applied fields generate dynamics
in the momentum space described by the following equation [7]:

d
a(hk)=—e(E+va) . 3

Since v in this equation is the electron’s velocity defined by v = %Ven(k), which is a normal
vector to the Fermi surface defined by ¢, (k) = Ep, the magnetic field generates dynamics on
the Fermi surface that lead to the existence of so-called cyclotron orbits around the FS in the
plane perpendicular to the applied field (see figure 1A, magnetic field in the x direction, orbits
indicated by the purple lines). Thus, the shape of the FS must influence the dynamic in the
magnetic field described by the equation 3 and, hence, it should affect transport properties.
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Figure 1: (color online):Local Fermi surface geometry and Fermi surface orbits in
a magnetic field. A. Three possible local geometric types (left to right): elliptic,
planar, and hyperbolic. For the hyperbolic case, the orbit’s projection onto the local
coordinate system (x7, x5) around the point of splitting orbits is shown on the right.
B. An example of a fully hyperbolic surface.

From that perspective the “shape” of the Fermi surface can be fundamentally classified only
into 3 types: elliptic, planar, and hyperbolic, representing positive, zero, and negative Gaussian
curvature of the surface correspondingly [8] (see figure 1). Cyclotron orbits are most com-
monly discussed in the context of convex closed FSs, which implies ellipticity from a geometric
standpoint. However, the presence of hyperbolic points on the FS is known to affect transport
properties in magnetic fields [9]. On the one hand, they may generate open orbits, leading
to high magnetoresistance [7,10,11]. On the other hand, they break the convexity of the FS,
which then also leads to non-trivial transport effects [12,13]. Typically studies investigate the
effect of a single hyperbolic point as in e.g. in the Lifschitz transition of convex-concave FS
through the critical point [14,15] or in the magnetic breakdown and quantum tunneling be-
tween orbits in topological semimetals [16]. Despite significant progress, capturing the impact
of the whole hyperbolic regions of the Fermi surface — areas consisting entirely of hyperbolic
points — on transport properties remains a big challenge, as we explain below.

To illustrate difficulties appearing with the hyperbolic surfaces, we consider closely equa-
tion 3, without an applied electric field, so it can be written as follows:

dp__° = Ve, (k
I ——?5, & =Ve, (k) xBeT(FS). @

These types of equations are known as dynamical systems and have been extensively stud-
ied. Equation 4 particularly, since the vector & lies within the tangent space of the Fermi
surface, Ti(FS), by construction, describes a geodesic flow, meaning motion along the short-
est path on the Fermi surface in the direction of £. For a sphere, geodesic lines are simple
cyclotron orbits (figure 1A, left). However, when a hyperbolic point is present, orbits become
more complex and self-intersecting. In this case, one direction is stable, where the orbit ap-
proaches the hyperbolic point, while the other is unstable, where it diverges, making both
escape directions equally probable and introducing uncertainty in the dynamics. If the vector
¢ aligns with the stable direction, the dynamics deviate from the expected cyclotron motion
and momentum scatter along the unstable direction (blue arrow in figure 1A, right) The for-
mation of orbits and dynamics near hyperbolic points have been thoroughly studied by A. Y.
Maltsev and S. P Novikov in e.g. [17].

Even individual momentum shifts at hyperbolic points can generate complex, chaotic or-
bits where momentum can scatter between orbits, as demonstrated in [18]. In the presence
of hyperbolic regions on the FS, the mixing of electron orbits becomes increasingly intricate
and unpredictable. In the extreme case of a fully hyperbolic Fermi surface, such as e.g. the
pseudosphere shown in figure 1B, it has been found that the geodesic flow exhibits ergodic
behavior [19]. This means that, over time, the orbits uniformly cover the entire hyperbolic sur-
face, and the dynamics become fully chaotic, rendering any individual orbit indistinguishable.
Such chaotic behavior presents a significant challenge to traditional transport theories.

4
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However, it is important to stress that ergodic dynamics have only been rigorously estab-
lished for systems exhibiting negative curvature all over the surface, a condition most likely not
met by the Fermi surfaces of real materials. Therefore, there might be a possibility of adjusting
conventional theories to include the effect of the hyperbolic dynamics. E.g. it is reasonable
to hypothesize that regions of negative curvature on the Fermi surface give rise to stochastic
dynamics, effectively acting as “black boxes” where momentum can unpredictably shift dur-
ing semiclassical dynamics by the “diameter” Dy of the hyperbolic region. While rigorously
quantifying this effect on transport remains challenging, we can formulate simple qualitative
phenomenological principles that influence its magnitude.

* The more hyperbolic regions, the stronger the effects of the stochastic momentum dy-
namics on transport.

* The more elliptic regions in between hyperbolic regions, the more stochastic dynamics
dissipate back to the semiclassical, and consequently contribute less to transport.

We emphasize that the same reasoning can be applied not only to the FS, but also to the
energy band and the dynamics governed by ‘fi—f = %Vsn(k). Consequently, non-trivial trans-
port in insulating and semiconducting materials can also be linked to the underlying geometry
and hyperbolic dynamics. In this case, however, since the band is a 3-dimensional manifold,
there are not only more geometric types, but the dynamics on such manifolds is an active area
of study. For example, the entropy formula for certain dynamical systems on them was discov-
ered only recently, which famously led to the proof of the Poincaré conjecture [20]. For now,
we aim to conduct a preliminary qualitative numerical study to provide compelling evidence that
justifies a more rigorous investigation into the geometric description of transport theories. From
that perspective, one of the most studied quantum effects is AHE, for which we can make a
comparison with the experimental results. We assume that described above hyperbolic scat-
tering of the semiclassical dynamics can result in an anomalous Hall current, similar to how
it appears under non-adiabatic evolution of eigenstates due to the Berry curvature, hypoth-
esizing that the presence of hyperbolic areas on the FS is implicitly governed by topological
connectivity. Building on the two phenomenological principles discussed earlier, we construct
an empirical measure to quantify the effect of hyperbolic dynamics on the Fermi surface.

3 Results

3.1 Hyperbolicity index H; and anomalous Hall conductivity (AHC)

To more rigorously quantify the correlation between hyperbolic regions on the FS and
AHE/SHE in a chosen direction we introduce the index of the concentration of the hyperbolic
areas of the FS, which we denote by Hy and define as the following:

Sa

hyp
HF - . (5)
Stot
Where Sfl‘yp = Z I,|sin a|AKk?, Sy, = Z |sin a| Ak2, a, is an angle between the tangent plane
FS

FS
to the FS and AHE plane, and I,, is the sign of the 82¢,/32k at the BZ boundary in the Hall

current direction. The angle between the tangent plane and the AHE plane indicates effect on
the direction of AHE, considering that AHE is maximum when the splitting of orbits happens
in the orthogonal to the applied field plane. As defined, Hy can have a maximum of “1”
which means that the entire FS would be hyperbolic, except for the points where the tangent
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Figure 2: (color online): A. Schematic image of the Hy calculation in the direction
of Hall measurement. B. Correlation graph of the predicted SHC values via the Kubo
formalism vs Hp, as defined in the text. C. Correlation graph top: experimentally
determined intrinsic AHC vs Hj for various 2D or layered materials ((1) identifies
layered structures). Bottom: experimentally determined intrinsic AHC vs predicted
values of AHC via the Kubo formalism.

plane is orthogonal to the AHE plane. Assuming that the shape of the FS reflects topological
connectivity, the summation is performed over all connected bands (i.e., one EBR bands) that
form the FS. This approach implicitly accounts for inter-band exchange by positing that the
dynamics governed by the semiclassical equation 3 occur across different bands within one
EBR.

We performed unperturbed DFT calculations of 16 compounds for which intrinsic AHC
values were rigorously experimentally determined [21-29], covering a variety of structural
families (perovskites, Heuslars, kagome lattices, FCC lattices, etc.) and topological classes
(Dirac/Weyl/Trivial metals and semimetals). Quantum anomalous Hall insulators and quan-
tum spin Hall insulators, however, cannot be included in our consideration as they don’t have
a Fermi surface and the influence of geometry needs to be considered differently. We com-
pared those experimental AHC values (mainly from [21]: its supplementary information table
S3) to our calculated Hy (taking care to align the directions of calculation with the directions
of measurement for each material in the various experiments). Since the Hy parameter is
currently defined for 2D conductance, where transport effects in the third dimension are neg-
ligibly small, we calculated H for thin films or layered crystal structures (indicated as (1) in
Figure 2), where the layers have enough separation, so the contribution of the third dimension
to the overall effect is relatively weak. In these cases, the AHE can reasonably be considered
quasi-2D and compared to the Hp.

The result, shown in figure 2, shows an extraordinary linear correlation of the concentra-
tion of hyperbolic areas of the FS with the experimentally measured AHC values of all com-
pounds, regardless of structural family or topological class, with an R? value of 0.97 ( figure
2c). Even though as defined Hy does not give any predicted value of AHC, the found slope
value of m = 1573 of the correlation can used as an empirical normalizing factor for the use
of Hj as a predictive descriptor of AHC so that 02#¢ = wH, w = 1573(Qcm) ™. For compar-

6
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ison, we also present a plot of the experimentally measured intrinsic AHC values versus the
calculated AHC values using the Kubo formalism (based on Berry curvature [4,21,24-28]) for
the same compounds (Figure 2d). The R? drops down to only 0.52, with a few exceptionally
inaccurate cases like Co,MnAl or Ni, where the error is large and the reason is still under
investigation [30]. Even without taking those two compounds into account, the R? from the
Kubo calculated AHCs only rises to 0.87; significantly worse than the H-dependence.

We made a similar calculation for SHE compounds, but due to a paucity of experimental
data, we are forced to plot the comparison of the Kubo predicted SHC values for Pt, WsW [3,31]
and TaGas (See figure 6 in supplement) at different Er-levels against their corresponding Hp
values in Figure 2b. This graph also shows a strong correlation of the concentration of hyper-
bolic areas with the Kubo calculated SHCs with an R? of about 0.95. Such an extraordinary
correlation with Berry curvature-based method would be highly unlikely if Hy was entirely
unrelated to the topological quantities. This numerical evidence suggests a potential for ex-
pressing transport dominated by the topology of eigenstates in terms of the band’s geometry,
supporting the hypothesis of a deeper connection between the two. Exploring their relation-
ship more rigorously could be a promising direction for future research. Interesting questions
would include finding theoretical expressions of the slope value in both graphs (Figure 2b and
2¢, top) and the y-axis offset in Figure 2b, as they may have fundamental meaning.

3.2 Correlation-based prediction of AHC: Multiple-EBR Fermi surface

From the correlation in figure 2, it can be seen that in the limit of Hy = 1, the intrinsic AHC
is expected to reach a maximum value of 1570 (Qcm)™! according to the slope of the linear
fit. However, there are two compounds (Co,MnAl and CrPt;) that have Hy and intrinsic AHCs
greater than these maxima. While at first this appears to be an inconsistency, the limit on Hj
can be broken if we take into account the EBR (elementary band representation) for the bands
forming FS. Recently it was shown that all bands can be grouped into sets that correspond to
distinct EBRs; topological semimetal behavior can be understood as a property of a partially
occupied set of such bands. Also, the non-quantized contribution to the AHE, as shown by
Haldane et al [32], is expected to be a pure Fermi surface property. Combining these two
ideas, a part of the FS that is comprised of multiple pockets created by the bands belonging to
a single EBR, can be considered distinctly from another part of the FS similarly corresponding
to the bands from another EBR.

In the common case where there is a continuous gap disconnecting sets of bands contribut-
ing to the FS, Hy can be calculated separately using formula 5 for parts of the surfaces arising
from distinct sets of bands (bands with differing EBRs), essentially dividing the bandstructure
into its connected components by their EBR, and subsequently summed together in order to
characterize the entire FS. This is exactly the case for Co,MnAl, CrPt; and KV3Sbs. For the
case of KV;Sbs, it can be seen that the contributions of the distinct EBRs are not cooperative,
resulting in a relatively low Hy of 0.14. However, for Co,MnAl and CrPt3, both have cooper-
ative contributions and correspondingly have Hy values larger than 1 as well as AHC values
larger than 1570 (Qcm)™t; but they still correlate extremely well with the overall trend in
Figure 2c.

Figure 3a showcases the detailed bandstructure for CrPt; with each distinct set of bands
colored (blue and yellow) with the continuous gap shaded in gray. The insets clarify the almost-
degeneracies near Gamma which are actually gapped. In the Berry curvature approach, the
states from the different EBRs are mixed in the total calculation in the Kubo formula. figure 3b
shows the energy dependent AHC calculated from the Kubo formalism as well as the energy
dependent AHC (using the AHC vs Hj correlation 0 = mH + 0, to convert Hj to a numerical
AHC value). The results from the two methods are qualitatively similar, but the Hj result has
a slightly better quantitative match to experiment.
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Figure 3: (color online): A. Bandstrucure of CrPt5. Blue and yellow colors repre-
sent two topologically disconnected (having different EBRs) sets of bands crossing
the Fermi level. These sets are disconnected by the continuous gap present between
them; i.e. true semimetallic behavior. B. Graph of energy resolved AHC predicted in
two different ways: red dashed line is the Kubo based prediction, black dashed line
stems from the linear correlation between H; and AHC calculated separately for FS
contributions from each set of bands, then summed together for total Hj.

4 Discussion and conclusion

Why does the Hy method appear to fare better than the Kubo approach for these materials
and properties? This is a wide area of future investigation, however, there are few important
considerations we elaborate on here. Firstly, the Hj has a different theoretical motivation and
can capture something beyond Berry curvature method, e.g. related to the quantum geometry
effects [33]. Besides that, the Kubo formalism looks at the Berry curvature in a point-wise
fashion without consideration of their connections to each other, and incorporates a fictitious
broadening parameter that does not fully capture finite temperature effects to the electronic
structure. Looking at independent points in momentum space means that if a particular point
of importance is missed (because of, for example, a very sharp feature or a too low resolution
k-mesh grid), its entire contribution is missed and the calculation can become inaccurate. This
is fundamentally different than the path-wise Hr method which looks at points and their con-
nections to each other because it is approximating trajectories. This is likely related to the Hj
plateaus (see figure 4) at relatively sparse K-meshes of ~30 x 30 x 30, unlike the typical >150
x 150 x 150 k-mesh grids used in the Kubo analyses (where the k-mesh must also increase for
tightening the broadening factor). Secondly, the H. calculations rely purely on the first prin-
ciples calculation of the Fermi Surface and not an interpolated/tight-binding representation
of the first principles calculation as in Kubo. This (i) eliminates the need for Wannier/tight-
binding Hamiltonians which loses the gauge invariance in the convergence process, and (ii)
Hp calculations are not restrained by the quality of the Wannier fit which are localized func-
tions that will always have trouble capturing the completely de-localized topological states
present in some systems. Finally, and perhaps most importantly, the Kubo formalism looks
at two-band intersections, not multiband intersections, meaning it ignores higher order inter-
sections that can also result in anomalous transport contribution. The H method inherently
looks at n-band intersections since it is a pure Fermi Surface analysis method and the Fermi
Surface (and its features) is made up of any number of bands crossing Ey.
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Figure 4: (color online): H; dependence of k-mesh density for Fe and Co,FeSi. y-
axis is the calculated total Hy, and the x-axis is k-points cubed.

When compared with the current Berry curvature driven method for AHE/SHE prediction
via the Kubo formalism, the Hj index is also, computationally, a much simpler metric as it
requires just basic DFT calculation without Wannier projection, and thus can carried out at a
significant reduction in time and cost. Importantly, this analysis method can easily be fully
automated and implemented into material databases, and can enable artificial intelligence
and machine learning based searches of large repositories of compounds for materials with
desirable traits for technological applications. For now the H index is still a relatively rough
estimation and also is limited to the cases of quasi 2D materials. However, the numerical
correlation of the AHE/SHE with Hj of R? = 0.97 proves that the concept of using geometric
classification is not just a “blue-sky” theoretical research effort; it has immediate applications
to outstanding questions in condensed matter physics.

Important future work includes exploring the full theoretical motivation of the method and
its relation to the topological transport theory. The graphs in Figure 2b and Figure 3b suggest
that hyperbolicity may result from the topological connectivity of the eigenstates. However, a
direct equivalence with the Berry curvature cannot be concluded. For instance, as seen in Fig-
ure 3b, Hy follows the general trend of Berry curvature-based values but smooths and averages
its peaks. This may imply that Hy reflects not only the Berry curvature but also a more gen-
eral metric that encompasses it, such as e.g. the Fubini-Study metric related to the quantum
geometry effects [33]. The Fermi surface (FS) analysis of Ni provides implicit confirmation
of this. Figure 5 shows the distribution of hyperbolic points on the FS, classified into two
distinct sets: smooth points (blue) and singular points (red), representing regions with low
and high mean curvature, respectively. This classification reveals the crucial role of different
hyperbolic point origins in the anomalous Hall effect (AHE). The singular points (red) most
likely originate from Dirac points, where the linear dispersion of the type II Dirac cones creates
sharp, cone-like cross-sections of the Fermi surface (see figure 7). These conical intersections
generate regions of high mean curvature because the Fermi surface must rapidly bend around
the singular geometry of the cone: near the Dirac point vertex, the surface transitions abruptly
from one cone face to another, creating localized regions where the principal curvatures are
large. This abrupt change in surface orientation around the Dirac cone vertices results in
high mean curvature, while formally remaining within the hyperbolic geometric class. If only
these Dirac-related contributions were considered, they would produce uncompensated con-
tributions from the valence band, leading to high total anomalous Hall conductivity (AHC).
However, the smooth hyperbolic points (blue) arise purely from the intrinsic hyperbolic ge-
ometry of the Fermi surface, unrelated to Dirac points, and exhibit lower mean curvature due
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Figure 5: (color online): Fermi surface of Ni: A. conduction band, B. valence band.
Blue represents hyperbolic points with low mean curvature (smooth), and red rep-
resents hyperbolic points with giant mean curvature (singular).

to the smoothness of the band dispersion around it. When both populations are included in
the AHC calculation, the blue points provide compensation that significantly reduces the to-
tal AHC, bringing the theoretical predictions into agreement with experimental observations.
While this mean curvature-based separation of hyperbolic points represents a non-rigorous es-
timate, it nonetheless provides reasonable insights into the origins of intrinsic AHC beyond the
conventional Berry curvature and Dirac point contributions. The analysis illustrates that “pure
geometric” hyperbolic points on the Fermi surface effectively facilitate tunneling between dif-
ferent FS regions, analogous to the inter-band exchange via Dirac points, thereby contributing
to the AHE.

This geometric duality suggests a natural connection to the quantum geometric tensor
(QGT) framework [33]. We propose that the QGT’s complementary aspects may reflect this
distinction: its imaginary part (Berry curvature) could encode momentum-space analog to
“magnetic field” arising from band singularities like the Dirac points, representing the rota-
tional aspects of the QGT, while its real part - related to the geodesic quantum distance on the
band - might capture the intrinsic 3D band geometry and represent momentum-space analog
to “electric field” related to the divergence properties of the QGT. For 3D energy bands, either
the real part or the full QGT could potentially relate to the Thurston geometric classification
of 3-manifolds, encoding the full geometrical “shape” of the band. We speculate that the hy-
perbolic features observed on the 2D Fermi surface - both the singular red points and smooth
blue regions - emerge as cross-sectional manifestations of this underlying 3D band geometry.
This quantum geometric perspective suggests that the compensating AHE contributions could
arise from the interplay between topological singularities and the way the 3D band’s geometry
shapes the Fermi surface cross-sections.
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In summary, we have introduced the idea of non-ergodicity of the FS orbits on the hyper-
bolic regions, which might result in the non-adiabatic evolution of the eigenstates and corre-
sponding transport effects. This concept has been applied to develop a simple index, Hp, for
quantifying the contribution of the concentration of hyperbolic areas, and showed a universal
correlation (R?® = 0.97) with experimentally measured intrinsic AHE values for 16 different
compounds spanning a wide variety of crystal, chemical, and electronic structure families. An
apparent maximum value, at Hy = 1, of 1570 (cm)~! was determined for materials with
an FS created by bands belonging to a single EBR; materials with multi-EBR FS’s can, and do,
break this limit as evidenced by CrPt; and Co,MnAl. Use of the H index allows direct calcula-
tion of the AHE/SHE at a much lower computational cost than current methods by eliminating
the need for Wannier projection and can be implemented with existing high throughput DFT
methods and databases. This work highlights the importance of, and opportunities laying
ahead for, developing a complete theory of geometrical understanding of electronic structure
manifolds beginning with Fermi surfaces. Also, these ideas can be extended to bosonic (e.g.
magnonic) band structures and their constant energy momentum surfaces as well. In analogy
to the broad impact that topological understanding of these structures had, a geometry incor-
porated in it may lead to a deeper understanding of at least electron transport and possibly
have far-reaching consequences in condensed matter physics.
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