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Abstract 

Navigation errors (missed, wrong, and risky turns) reflect cognitive failures that remain 
insu;iciently understood in in-vehicle navigation. This thesis examines how level of map 
guidance detail and cognitive distraction shape these errors through the lens of situation 
awareness. In a 2×2 within-subjects simulator study (N=40), drivers completed four urban routes 
under Road-level versus Lane-level Navigation (LLN) guidance, with and without an auditory 2-
back task. The study was conducted in collaboration with TomTom N.V., leveraging a simulator 
and eye-tracking system replicating their navigation application to investigate these e;ects. 
Multimodal data were collected, including vehicle control, eye movements, secondary task 
performance, and subjective workload and user experience ratings. Observed navigation errors 
were mapped to perception, interpretation, or decision-making failures in cognitive processes. 

LLN significantly reduced interpretation failures and wrong turns, contributing to a 40% reduction 
in total errors. It also reallocated attention toward the navigation display, as shown by more 
frequent and longer glances and broader scanning, without degrading vehicle control. Distraction 
robustly elevated workload and reduced road monitoring, but session-level error rates remained 
unchanged. Interaction analyses showed that distraction attenuated LLN’s attention-shift e;ects, 
while LLN mitigated some distraction costs in road monitoring; certain control benefits, however, 
reversed under load. Driver experience moderated outcomes: experienced drivers benefited 
consistently from LLN, with fewer errors and lower workload, while less experienced drivers 
reported higher workload and a tendency toward more missed turns. 

Together, these findings demonstrate how navigation errors can be systematically mapped to 
underlying cognitive failures and reveal how level of map guidance detail and distraction 
influence these processes, providing a foundation for more context-aware navigation support. 
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1. Introduction 

Driving is a complex cognitive task that requires continuous attention, spatial awareness, and 
dynamic interaction with the driving environment. While substantial research has been devoted 
to understanding driving errors that directly contribute to crashes (Khattak et al., 2021), there is a 
class of errors related to wayfinding that remains insu;iciently explored (Burns, 1998). These are 
known as "navigation errors", which include behaviors such as making wrong turns and missing 
exits  (Ege et al., 2011a). Unlike errors in vehicle control or operation, navigation errors are rooted 
in situational awareness, the comprehension of navigation cues, and decision-making under 
time constraints. 

Despite the lack of direct statistics linking navigation errors to crashes, existing simulator studies 
have demonstrated the di;iculties in wayfinding were associated with impaired driving 
performance and increased crash rates (Wood et al., 2009). Navigation errors can also precipitate 
dangerous compensatory behaviors, such as abrupt lane changes or sudden braking when a 
driver is about to miss an exit, substantially increasing the risk of collisions (Ucar et al., 2023). 
Therefore, addressing navigation errors is critical for enhancing wayfinding performance and 
overall road safety. Importantly, in-vehicle navigation system design can either mitigate or 
increase such errors. For example, a survey of in-car GPS users revealed that 82% had received 
ine;icient route guidance, with 37% encountering dangerous inaccuracies (Forbes & Burnett, 
2008). By contrast, design factors such as optimized prompt timing have been shown to improve 
driving performance and reduce navigation errors (Zhang et al., 2024).  

While prior research has largely treated navigation errors as simple metrics for evaluating system 
usability or driver performance, few studies have systematically investigated the cognitive 
mechanisms underlying navigation errors. This study aims to fill this gap by focusing on two 
critical but insu;iciently understood factors. First, although cognitive distraction is a known 
contributor to driving accidents (National Center for Statistics and Analysis, 2025), its specific 
impact on the cognitive processes of wayfinding is not well explored (Engström et al., 2017; 
Strayer et al., 2015). Second, lane-level navigation (LLN) is an emerging feature in in-vehicle 
navigation system that is worth examination. LLN provides guidance at the individual lane level, 
o;ering lane information about vehicle positioning, route visualization, and potentially real-time 
tra;ic or restriction data (Winkler & Soleimani, 2025; Lee et al., 2015; Song et al., 2017). While 
LLN is expected to improve user experience and road safety by providing more detailed driving 
context, the implication of its human-machine interface (HMI) needs further evaluation. 
Specifically, how detailed visual information of LLN a;ects navigational performance, visual 
attention and cognitive load, remains a significant research gap. This issue is especially 
important as a navigation system itself  is a source of distraction: in 2017, 2,732 fatalities were 
caused as a result of in-vehicle distractions other than cellphone use (Yared et al., 2020). 
Understanding how LLN interacts with distraction is therefore a critical question for future 
research. 

This study was conducted in collaboration with TomTom N.V., a navigation and geolocation 
technology company with interest in enhancing navigation experiences and safety through 
intelligent maps. TomTom is currently rolling LLN as a product feature in their navigation products. 
Given this context, this study systematically investigates the interplay between the level of map 
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guidance detail and cognitive distraction and to uncover how these two factors influence the 
underlying cognitive failures that precipitate navigation errors. 

In this study, we evaluated and compared the two levels of map guidance (Basic road-level 
navigation and enhanced lane-level navigation) under the same navigation system user interface 
framework. As shown in Fig.1, road-level navigation presents a map with a lower zoom-level, 
showing a big picture of a planned route while lane-level guidance presents a map with a higher 
zoom-level, showing lane information under more detailed route context. Notably, lane-level 
guidance maintains the same low zoom-level as road-level guidance by default, but 
automatically zooms in to lane-level when approaching the intersections. The design of the UI is 
a replication of TomTom’s Automotive Navigation Application (Navigation SDK for Automotive, 
n.d.) and styling of map is a modification of TomTom’s premium 3D map display. The camera 
behaviors are detailed by section 4.2. 

 

 

Fig. 1 Two levels of map guidance: Basic road-level navigation (left) and Enhanced lane-level 
navigation (right) 

 

To conduct this research, we employed a driving simulator study combined with eye-tracking 
technology to observe and analyze driver behavior. The simulator provides a safe, controlled 
environment to replicate real-world driving scenarios (Meuleners & Fraser, 2015), while the eye-
tracking data allows us to investigate drivers' visual attention and cognitive processes (Liu et al., 
2024). This multi-modal approach not only enables us to observe errors at the behavioral level 
but also provides insights into the underlying cognitive mechanisms responsible for these errors, 
such as failures in perceiving a navigation cue, misinterpreting its meaning, decision-making 
processes that allow for timely and safe maneuver. The simulator cockpit and the driving task 
simulation software, both developed by the UX Team, are located at TomTom's Amsterdam o;ice 
and have been adapted for the purposes of this study. 

The findings of this study hold the potential to inform the design of safer, more e;ective and 
intuitive in-vehicle navigation systems. By addressing the gap in insu;icient understanding of 
navigation errors and their cognitive mechanisms, along with emerging contributing factors like 
LLN, this research aims to enhance driving safety and advance human-machine interface design. 
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2. Background 

2.1 Defining and Classifying Navigation Errors 

While “driving errors” such as inadequate surveillance, speeding, and improper maneuvers have 
received considerable attention in past studies (Khattak et al., 2021; Papantoniou et al., 2019), 
the concept of “navigation errors” has not been consistently defined across the literature. Existing 
studies adopt varied, context-specific definitions, typically describing behaviors such as “taking 
a wrong turn,” “missing a turn,” or “following the wrong route” (C.-T. Lin et al., 2010; Yared et al., 
2020; L. Yang et al., 2021). Unlike driving errors, navigation errors are associated with failures in 
wayfinding, spatial awareness, or the interpretation and response to navigation instructions 
(Burns, 1998; Ucar et al., 2023).  

This study defines navigation errors conceptually as deviations from a planned route while 
following navigation (Morris et al., 2024). Operationally, we classify these errors into three 
categories: (1) missing a turn or exit, (2) taking an incorrect turn or exit (Ege et al., 2011a; C.-T. Lin 
et al., 2010; Burns, 1998), and (3) making a risky corrective turn, such as an abrupt maneuver to 
avoid or correct a potential error (Morris et al., 2024; Ucar et al., 2023). Risky turns can be viewed 
as compensatory behaviors triggered when drivers attempt to avert missed or wrong turns, as 
well as incorrect judgement and decision in forcing a turn despite insu;icient time or space. Such 
actions have been linked to severe and fatal crashes (Ucar et al., 2023). Furthermore, both missed 
turns and wrong turns can negatively a;ect driving safety, e;iciency and vehicle control stability 
(Zhang et al., 2024). 

 

 

Fig. 2 Visualization of 3 types of navigation errors: Blue routes show intended maneuvers and 
red routes show actual maneuvers that lead to navigation errors 

  

2.2. A Theoretical Framework for Cognitive Failures in Driving 

To understand how and why navigation errors occur, this study is grounded in Endsley’s model of 
Situation Awareness (SA), a framework well-suited to this purpose (M. R. Endsley, 1999). SA is 
defined as "the perception of the elements in the environment within a volume of time and space, 
the comprehension of their meaning, and the projection of their status in the near future" (M. R. 
Endsley, 1988). The model delineates three hierarchical levels of cognitive processing that are 
crucial for e;ective performance in dynamic and complex environments like driving. Failures in 
SA can be categorized according to these three levels, providing a structured approach to 
analyzing operator errors. 



 8 

Under the context of driving with a navigation interface, we adapted three levels of SA failures in 
Endsley’s model into a taxonomy of cognitive failures, which directly led to the navigation errors 
observed in our experiment. 

(1) Level 1: Perception Failure. This corresponds to failures in the initial stage of SA, where 
an individual fails to perceive crucial information from their environment. In driving 
scenario, this is where the driver fails to notice or become aware of a navigation 
instruction. The underlying causes can be diverse, ranging from a failure to monitor the 
navigation display due to distraction or limited attention (C.-T. Lin et al., 2010), to 
navigation cues being hard to detect (Burns, 1998), to a misperception of the cue, or a 
memory loss that causes a correctly perceived instruction to be forgotten (Bian et al., 
2021). 

(2) Level 2: Interpretation Failure. This level relates to failures in comprehending the 
significance of perceived information. This is where the driver observes a navigation 
instruction but fails to correctly process or understand its meaning within the current 
driving context. Such failures might stem from a lack of a mental model where the driver 
does not understand the navigation cues (L. Yang et al., 2021), or the use of an incorrect 
mental model where the driver misinterprets the cue of a complex intersection (Morris et 
al., 2024). It can also occur when drivers rely on past driving experience or habitual 
responses rather than the immediate navigation cues, such as wrongly applying familiar 
route patterns to a new situation. 

(3) Level 3: Decision-making Failure. The highest level of SA involves projecting the future 
state of the environment to make timely and e;ective decisions. Here, the driver correctly 
perceives and interprets the navigation cue but fails to execute the appropriate maneuver 
safely or e;ectively. This can be caused by a failure to project the time and steps required 
for a safe lane change (Ucar et al., 2023), or by an over-projection of current trends, such 
as failing to decelerate appropriately before a turn, leading to risky last-second actions. 

By mapping observable driving and gaze behaviors to this three-level framework, this study aims 
to diagnose the underlying cognitive breakdowns that precipitate them. 

 

2.3 Factors Influencing Navigation Errors 

Previous research has identified several key factors that contribute to the occurrence of 
navigation errors. One important aspect of factors relates to the design of navigation systems. 
The timing and content of navigation instruction critically influence driver performance. Early or 
delayed prompts impair e;iciency and safety, while tailored messages enhance preparedness 
and reduce cognitive load (L. Yang et al., 2021). Map display size impacts distraction and driving 
performance, with larger screens reducing navigation errors (Yared et al., 2020) and sub-windows 
improving guidance as well increasing visual demands. No significant di;erences were found 
between 2D and 3D e-maps, though poorly designed 3D maps can lead to more frequent glances. 
(C.-T. Lin et al., 2010). Beyond visual information, human–machine interface (HMI) modalities 
such as haptic feedback also influence performance. For example, vibrotactile cues in steering 
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delivered through the steering wheel reduce cognitive load and navigation errors, especially in 
noisy environments (Ege et al., 2011a). 

Roadway complexity also strongly a;ects wayfinding performance. Drivers encounter elevated 
cognitive load at complex intersections such as J-turns (Morris et al., 2024), F-type intersections 
(L. Yang et al., 2021), and multi-exit expressways (Bian et al., 2021), leading to navigation errors 
and risky maneuvers (Jalayer et al., 2016). Similarly, navigation errors are more frequent in urban 
areas than rural areas, with the same GPS display (Yared et al., 2020). 

Individual driver characteristics significantly shape vulnerability to navigation errors. Older 
drivers (Bryden et al., 2023; Forbes & Burnett, 2008; Read et al., 2011) and drivers with cognitive 
impairments, such as Parkinson's disease (Uc et al., 2007) are more likely to commit more 
navigation errors due to declines and cognitive and visual function. More years of driving 
experience were found associated with improved driving safety for young drivers (Yared et al., 
2020) while navigational expertise associated with better wayfinding performance in unfamiliar 
environments(Woollett & Maguire, 2010). Distraction also plays a critical role: engaging in 
secondary tasks, including cell phone use or passenger interaction, diverts attention from the 
primary driving task and increases navigation errors (Papantoniou et al., 2019). 

Building on this foundation, this study focuses on two factors that may contribute to navigation 
errors during driving: cognitive distraction and lane-level navigation (LLN) display. Cognitive 
distraction is well known to impair driving performance and road safety, yet its specific e;ect on 
the cognitive processes of wayfinding remains less understood. LLN, in turn, represents a growing 
trend in navigation system design, o;ering granular, lane-specific guidance that promises to 
enhance wayfinding and user experience. However, little is known about the human–machine 
interaction implications of LLN on standard in-vehicle displays, particularly when drivers are 
operating under elevated cognitive load. To address these research gaps, this study 
systematically investigates how these two factors interact to influence the underlying cognitive 
failures that lead to navigation errors, with the goal of informing the design of safer and more 
e;ective navigation systems. 

Beyond these two primary variables, exploratory analyses also examine the potential influence 
of driving experience (Section 6.5) and intersection complexity (Section 6.6.2) on cognitive 
processes related to navigation errors. 

 

2.4 In-Vehicle Navigation Systems 

2.4.1 Navigation Guidance 

In-vehicle navigation systems have become ubiquitous, yet their design significantly impacts 
driver safety and performance (L. Yang et al., 2021). Ine;icient interfaces can lead to navigation 
errors, such as missed turns, particularly at complex intersections(Suzuki & Moriya, 2024). 
Research indicates that factors like display size are critical, with smaller screens correlating with 
a higher number and longer duration of errors due to increased time needed to retrieve 
information  (Yared et al., 2020). Likewise, the timing and content of prompts are crucial; 
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instructions that are delivered too early, too late, or are di;icult to understand can negatively 
a;ect driving e;iciency and stability (L. Yang et al., 2021).  

The modality used to deliver guidance has an important e;ect on the drivers. Visual displays, 
such as 2D or 3D maps, carry a significant "visual cost," requiring drivers to shift their gaze from 
the road. This can compromise attention and vehicle control (P.-C. Lin & Chen, 2013). In contrast, 
auditory (voice-guided) instructions generally impose a lower cognitive workload and are 
considered safer, as they reduce visual demand (Zhong et al., 2024). However, their e;ectiveness 
can decrease with complexity, as compound auditory instructions can interfere with driving 
performance (Suzuki & Moriya, 2024). While many systems are multimodal (combining visual and 
auditory outputs), emerging research also explores tactile and gesture-based interfaces to 
further reduce cognitive load. 

A central issue with navigation system use is driver distraction, as secondary task like wayfinding 
might divert attention away from driving task (Bryden et al., 2023). Visual-manual interactions are 
a major safety concern, significantly increasing crash risk by causing drivers to take their eyes o; 
the road (Zhong et al., 2024). The duration of these glances is a key predictor of risk, with looks 
away from the road longer than 1.6 seconds being strongly associated with crashes or near-
crashes (Zhong et al., 2024). When the cognitive demands imposed by the system exceed the 
driver's processing capacity, it can lead to cognitive overload, resulting in slower reaction times 
and impaired vehicle handling. 

Given the significant and well-documented safety risks associated with visual distraction from 
in-vehicle displays, this study deliberately focuses exclusively on the visual modality. By isolating 
the visual modality, the research can conduct a controlled investigation into how di;erent levels 
of visual information detail (road-level vs. lane-level) impact cognitive failures and driving 
performance. Therefore, other modalities, such as auditory or haptic feedback, are considered 
out of the scope of this study. 

 

2.4.2 Lane-Level Navigation 

Lane-level navigation represents a significant advancement over traditional road-level guidance, 
providing drivers with precise instructions about which lane to be in for upcoming maneuvers. Its 
core functionality involves determining lane changes or departures based on real-time route 
information, road properties, driving lane details, and precise vehicle positioning (Lee et al., 2015). 
Visualization of such lane guidance can be a highly e;icient way to provide navigation 
instructions, particularly in situations where being in the wrong lane can lead to negative 
consequences such as missed turns or dangerous late merges. This level of detail is critical for 
the development of Advanced Driver-Assistance Systems (ADAS) and autonomous vehicles, as it 
enables safer and more e;icient path planning, particularly in complex urban environments and 
at challenging intersections (Zheng et al., 2019). 

The foundation of lane-level navigation lies in High-Definition (HD) maps, which model the road 
network with decimeter-level accuracy (Betaille & Toledo-Moreo, 2010). A substantial body of 
research has focused on the creation and maintenance of these maps, developing sophisticated 
techniques for generating lane-level geometry from various sensors and ensuring the data 
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remains up to date. By contrast, research into the Human–Machine Interface (HMI) for LLN is less 
developed. Existing work has predominantly focused on Augmented Reality (AR) Heads-Up 
Displays (HUDs), which integrate guidance directly into the driver’s forward view (Bauerfeind et 
al., 2021). Studies in this area suggest that AR HUDs can reduce cognitive load, improve response 
times, and increase driver confidence by making lane-specific instructions more intuitive and 
reducing the mental e;ort required to translate abstract guidance into real-world action. 

However, detailed visual guidance can also compromise lane-keeping and road safety when 
presented on displays that require drivers to glance away from the road. Interacting with console-
mounted navigation systems has been shown to increase visual distraction, reduce forward-road 
glance time, and degrade lane-keeping performance, as indicated by greater lane position 
variability (Kun et al., 2009). 

This presents a critical research gap: most vehicles in use today still rely on standard console-
mounted or personal navigation displays rather than AR HUDs, yet the e;ect of providing detailed 
LLN information on such secondary screens remains poorly understood. This interface paradigm 
introduces a trade-o;. On the one hand, LLN has the potential to improve wayfinding e;iciency 
and reduce navigation errors by o;ering clearer, lane-specific guidance. On the other hand, the 
costs of increased visual distraction from more frequent or longer glances away from the road 
may o;set these benefits. 

Therefore, this study investigates the impact of lane-level navigation presented on a standard 
navigation screen, exploring its influence on cognitive failures and driving performance. 
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3. Methodology 

3.1 Cognitive Distraction and N-back Task 

To investigate the e;ects of cognitive distraction, this study required a secondary task that could 
reliably manipulate cognitive load without interfering with the primary driving task's visual or 
behavioral demands. The n-back task was selected for this purpose due to its established 
e;ectiveness and validity in cognitive and driving research. The task is a continuous working 
memory task: participants are presented with a sequence of stimuli (e.g., numbers) and must 
indicate whether the current stimulus matches the one presented 'n' items earlier. By 
systematically varying the value of 'n', the task diverts processing and storage resources from the 
working memory system, allowing for controlled manipulation of cognitive load. 

The n-back task's validity as a tool for inducing cognitive load in drivers is supported by a robust 
body of literature. Early research established the auditory n-back task as an e;ective method for 
elevating cognitive workload and measuring its e;ects on driver physiology, attention, and 
performance (Mehler et al., 2011). Its distracting e;ects have been shown to manifest in 
degraded vehicle control, such as impaired speed management in curves (Fu et al., 2019), and in 
altered gaze behavior (S. Yang et al., 2018). A subsequent meta-analysis by von Janczewski et al. 
(2021), confirmed that the n-back task has a "substantial e;ect on cognitive workload while 
driving," making it a suitable and powerful method for inducing and studying driver distraction. 

A key advantage of the n-back task is its ability to isolate cognitive distraction. By implementing 
an auditory version with tactile responses (steering wheel buttons), as was done in this study, 
visual and manual interference with the primary driving task is minimized (Nilsson et al., 2018). 
Furthermore, the n-back task provides a direct, objective measure of a driver's cognitive state. 
Performance metrics such as accuracy and response time serve as reliable indicators of 
processing e;iciency and the cognitive resources available to the driver (Strayer et al., 2015). 
High performance suggests su;icient capacity to manage multitask loads(S. Yang et al., 2022), 
whereas low performance indicates heightened cognitive workload and impaired processing 
e;iciency (Strayer et al., 2015). 

It is important to interpret these performance metrics within the context of a dual task driving 
scenario. The cognitive control hypothesis (Engström et al., 2017) provides a useful framework, 
suggesting that cognitive load selectively impairs tasks that require active cognitive control while 
leaving more automatic behaviors una;ected. In this study, this implies that a driver's 
performance on the n-back task reflects not only the cognitive load imposed by the task itself but 
also the driver's strategic allocation of mental resources. A decline in n-back performance may 
therefore represent a deliberate shedding of the secondary task to preserve capacity for the 
primary driving task. 

 

3.2 Driving Simulators in Driving Behavior Research 

Driving simulators are valuable tools in driving research because they provide a safe, controlled 
environment to study situations that would be too dangerous or impractical on the road 
(Meuleners & Fraser, 2015). This control allows researchers to create repeatable experimental 
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conditions to test driver behavior, including tra;ic, distractions and in-vehicle systems (Knapper 
et al., 2015). 

A key concern is the validity of simulator findings in comparison with real-world driving. Research 
distinguishes between two types: Absolute validity means that measures like speed are identical 
to on-road driving. Relative validity means that the patterns of behavior are the same, such as 
distraction causes similar e;ects in both the simulator and reality (Knapper et al., 2015), which 
is adopted for this study. The degree to which a simulator emulates real-world driving is known as 
fidelity, including physical, visual, and motion dimensions. The simulator used in this study is 
considered low fidelity, based on the classification by Wynne et al. (2019), featuring a fixed base, 
limited screen view but realistic physical controls. However, research has shown that the 
relationship between fidelity and study validity is not always direct; the simulator's capabilities 
must simply be appropriate for the research questions. 

Specifically for navigation research, simulators show promising but mixed results. Studies have 
successfully used them to replicate real-world wayfinding errors, such as taking a wrong turn, 
demonstrating their relative validity for such tasks (Knapper et al., 2015). However, another study 
indicates that simulators may not always predict a driver's specific orientational performance, 
due to lower orientation demands in simulated tasks than in the real world (Faschina et al., 2021). 
Therefore, while simulators are a powerful methodology for this study, the task design was 
developed to ensure high navigational demands, and the findings must be interpreted with these 
considerations in mind. 

 

3.3 The Use of Eye-Tracking in Driving Studies 

Eye-tracking is an essential tool in driving research as it o;ers an objective, quantitative window 
into a driver's visual attention and cognitive processes (Liu et al., 2024), providing significant 
potential to enhance driving safety, assess workload, and evaluate driving behavior (Zang & Liu, 
2012). Based on the "eye-mind hypothesis," which posits a strong link between where a person is 
looking and what they are thinking about (Cabrall et al., 2018), eye-tracking allows researchers to 
infer a driver's focus of attention and information gathering strategies. Eye-tracking metrics 
analyzed in this study is guided by ISO 15007:2020 (International Organization for Standardization 
(ISO), 2020): 

Fixation (100-2000 ms): When the eyes pause to process information, with longer durations 
indicating more complex cognitive processing. 

Saccades (20-100 ms duration, 1-5° amplitude): Rapid movements between fixations, with 
larger amplitudes indicating broader visual scanning. 

Glance (500ms-3000s): Temporal maintaining of visual gaze within an area of interest (AOI), 
which may include multiple fixations and saccades. Glance duration over 2 seconds is 
considered dangerous for driving. 

Pupil dilation (2-8 mm diameter): Can indicate changes in cognitive load, with larger pupils 
suggesting increased mental eOort. 
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Blink rate (0.1-0.5 blinks/sec, normal blink ≤300 ms): Normally decreases under high 
cognitive load as attention is focused on the task. 

In driving studies, these metrics are often measured in relation to specific AOIs and then widely 
used to understand driver attention and cognitive processes. For example, fixations reflect the 
amount of information processed from AOI and are critical for anticipating upcoming turns and 
guiding driving actions (Castro, 2009). Dwell time, defined as the cumulative time spent fixating 
on an AOI, serves as a marker of attention distribution across di;erent AOIs (Ayiei, 2020). 
Saccades, the rapid eye movements between di;erent AOIs, help maintain correct fixation while 
driving (Guidetti et al., 2019). Blink rate, blink duration and pupil dilation are commonly used as 
indicators of cognitive load, with changes reflecting variations in mental e;ort (Yuen et al., 2021). 
Eye-tracking data can further evaluate the usability of in-vehicle systems (Baldisserotto et al., 
2023), and even predict driver maneuvers like turns or lane changes. 

For this study, eye-tracking is indispensable for moving beyond classifying what navigation errors 
occur to understanding why and how they occur. However, interpreting this data is complex, as 
eye-tracking measures overt visual attention but does not directly reveal cognitive processing 
(Ahlström et al., 2021). For instance, a driver fixating on the navigation display does not guarantee 
they understood the instruction (Chen, 2024). To overcome this limitation, this study integrates 
eye-tracking metrics with driving performance data (e.g., steering angle, speed; (Pan et al., 2022)) 
and subjective workload measures like NASA-TLX (Nakayama et al., 2024), a practice supported 
by the literature. This data fusion is critical for mapping observable behaviors to the theoretical 
framework of cognitive failures (Ringhand et al., 2022). For example: 

- A perception failure may be inferred if a driver fails to fixate on the navigation display prior 
to an intersection. 

- An interpretation failure may be identified when a driver fixates on the navigation 
guidance but still executes an incorrect maneuver. 

- A decision-making failure may be evidenced by late or rapid glances to the display, 
indicating a failure to project and plan the maneuver in time. 

By triangulating gaze patterns, vehicle data, and subjective reports, this study can draw more 
reliable conclusions about the driver's cognitive processes (Ahlström et al., 2021). This multi-
modal analysis allows the study to directly test its hypotheses. For instance, gaze concentration, 
a known e;ect of cognitive load, can be measured to see if it causes more perception failures 
(Ringhand et al., 2022). This detailed understanding of driver behavior provides a basis for 
designing safer, more intuitive navigation interfaces and creates opportunities for future systems 
that could predict and mitigate navigation errors before they happen. 
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4. Navigation System Prototype 

4.1 Navigation User Interface (UI) 

The user interface used in the study is a replication of TomTom’s established product, navigation 
UI embedded in Navigation SDK (Navigation SDK for Automotive, n.d.), which serves as a baseline 
for evaluating the e;ects of two levels of map guidance. As is shown in Fig3, the UI is divided into 
several functional areas: 

1. Manual interaction buttons (left column, right column and bottom bar): These buttons 
are designed for advanced in-vehicle entertainment features, such as listening to music. 
However, they are non-interactive in this study and are retained solely for the purpose of 
simulating a realistic environment. 

2. Route overview (bottom left): This area is intended to inform the drivers of the current 
time, distance to destination and estimated arrival time. In this study, only a placeholder 
is included, as all routes are relatively short. 

3. Navigation header (top left): This section provides information regarding the next 
maneuver, including an icon representing the upcoming action (e.g., left turn, right turn, 
U-turn); the distance to the next maneuver; the name of the street to be entered. This 
feature is enabled for the study. 

 

 
Fig. 3 User interface of navigation app employed by the study 

 

4.2 Map Visualization 

Map visualization, as the primary focus of this study, occupies most of the screen, where we 
replicated TomTom’s premium map display using Unity. The map features 3D renderings of 
buildings on map, aimed at providing better representation of the real world and improving drivers’ 
understanding of an environment (Gardony et al., 2022). 

In this study, we evaluated and compared two levels of map guidance within the same map 
visualization style and navigation UI framework. Enhanced road-level navigation provides an 
overarching view of the route, which is crucial for overall situational awareness. In contrast, lane-
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level navigation o;ers detailed lane information as drivers approach intersections, addressing 
the specific demands of complex maneuvers. The camera behaviors of the map display are 
guided by TomTom’s general specifications: 

1. Road-level Navigation: This mode features a lower zoom level across the route (zoom 
level 0 represents the whole world, with increased zoom level showing	closer views of the 
environment), providing a broader perspective. Between 125 and 100 meters prior to a 
maneuver, the camera tilts upward,	transitioning the display from a bird’s-eye view to a 
more angled, forward-looking view as shown in Fig4(b). Between 75 and 50 meters prior 
to a maneuver, the camera zooms in slightly while maintaining a road-level visualization 
as illustrated in Fig4(c). The tilt angle further increases during this phase. After the turn, 
the camera reverts to its default view, as shown in Fig4(a), unless the distance to the next 
turn is smaller than 125 meters; in this case, the view remains active. 

 

 

Fig. 4 Camera behavior changes under road-level guidance: (a) 150m prior to a maneuver;(b) 
125m prior to a maneuver; (c) 50m prior to a maneuver 

 

2. Lane-level Navigation: This mode incorporates a higher zoom level when approaching 
intersections, providing detailed lane information. Between 125 and 100 meters prior to 
a maneuver, the camera gradually zooms in to a closer, lane-level perspective, as 
illustrated in Fig5(b). In this view, the tilt angle remains constant, and the system provides 
lane-specific guidance by highlighting the appropriate lane for the upcoming maneuver 
and rendering key road markings on the map display. After the turn, the camera reverts to 
its default road-level view, as shown in Fig5(a), unless the distance to the next turn is 
smaller than 125 meters; in this case, the lane-level view remains active. 

 

 

Fig. 5 Camera behavior changes under lane-level guidance: (a) 125m prior to a maneuver; (b) 
50m prior to a maneuver 
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It’s expected that in complex urban environments with more frequent and complex intersections, 
detailed lane level information will enhance interpretation of the map and thus improve 
navigation performance. To investigate this hypothesis further, it is important to note that the 
navigation system prototyped in this study provides visual cues only, with no auditory guidance. 
This design choice emphasizes the study's objective, which is to understand visual attention 
under the two levels of map guidance. 
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5. Study 

5.1 Research Questions 

This study was guided by two primary research questions and a set of corresponding hypotheses. 

RQ 1: How can navigation errors (missed turns, wrong turns, risky turns) be classified and 
mapped to underlying cognitive processing failures such as perception, interpretation, or 
decision-making failures? 

This exploratory question aimed to build a conceptual mapping based on the following 
theoretical assumptions, which define the cognitive failures of interest: 

Perception Failure: The driver failed to notice or become aware of the navigation 
instruction. We hypothesize this is the primary cause of missed turns. 

Interpretation Failure: The driver noticed the instruction but failed to correctly process 
or understand its meaning. We hypothesize this is the primary cause of wrong turns. 

Decision-making Failure: The driver understood the cue but responded too late or 
executed a risky maneuver. This is expected to be associated with risky turns. 

RQ 2: How do cognitive distraction and the level of map guidance detail (road-level or lane-
level) at urban intersections influence the occurrence of these cognitive processing failures 
and associated navigation errors? 

This question is addressed through the following hypotheses: 

H1: Drivers under cognitive distraction will experience more perception failures, leading 
to a higher frequency of missed turns, compared to drivers without distraction. 

H2: Lane-level navigation guidance at intersections will decrease interpretation failures, 
leading to fewer wrong turns, compared to road-level guidance, particularly in complex 
intersection scenarios. 

H3: Lane-level navigation guidance at intersections will decrease decision-making 
failures, leading to fewer risky turns, compared to road-level guidance, particularly in 
complex intersection scenarios. 

H4: Lane-level guidance will partially mitigate the negative e;ects of cognitive distraction 
by reducing interpretation failures and decision-making failures but will not significantly 
reduce perception failures caused by distraction. 

 

5.2 Experimental Design 

The study employed a 2 (Cognitive Distraction: Present vs. Absent) × 2 (Level of Map Guidance 
Detail: Road-level vs. Lane-level) within-subjects design. Each participant experienced all four 
experimental conditions. The order of conditions was counterbalanced across participants to 
control learning and fatigue e;ects. 
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Independent Variables: 

1. Cognitive Distraction: This was manipulated using an auditory 2-back task (Present) 
versus no secondary task (Absent). 

2. Level of Map Guidance Detail: This was manipulated by providing either standard Road-
level guidance all the way or enhanced Lane-level guidance at intersections. 

Dependent Variables: 

- Navigation Errors: Classified as missed turns, wrong turns, and risky turns based on 
driving behavior (Ege et al., 2011b; Morris et al., 2024; Read et al., 2011).  

- Cognitive Failures: Classified as perception failure, interpretation failure, and decision-
making failure. Inferred from participant self-reports, and supported by eye-tracking data 
(e.g., fixations on navigation display) and driving behavior (Ahlström et al., 2021; M. R. 
Endsley, 1999). 

- Gaze Behavior: Eye-tracking data was processed to extract key metrics related to visual 
attention and cognitive load, including fixation, saccades, blinks, and pupil dilation (Zang 
& Liu, 2012; Kapitaniak et al., 2015; Yared et al., 2020). 

- Driving Behavior: Including vehicle speed, steering angle, brake and accelerator pedal 
behavior, lane deviation (Bian et al., 2021; Dalton et al., 2013; Suzuki & Moriya, 2024). 

- Subjective Workload: Measured using the NASA-TLX questionnaire (Nakayama et al., 
2024; Wen et al., 2024; Zhong et al., 2024). 

- User Experience: Measured using the User Experience Questionnaire (UEQ). 

 

5.3 Participants 

A total of 40 participants (31 males, 9 females) were recruited from TomTom employees without 
prior knowledge of this study. The age of participants ranged from 18 to 64 years, with the majority 
(82.5%) falling between 25 and 44 years old. All participants held a valid driver's license for an 
average of 12.31 years (SD = 7.97 years) and had normal or corrected-to-normal vision. 

To examine the role of driving experience, participants were categorized into two groups: more 
experienced drivers (n = 23), who reported driving at least once per week, and less experienced 
drivers (n = 17), who drove less frequently. This classification followed the similar criteria used in 
previous study (Inagaki et al., 2020; Nobukawa et al., 2021). Additionally, 18 participants had prior 
experience with driving simulators or racing games, while 22 had no such experience. 

 

5.4 Apparatus 

The experiment was conducted in an o;ice setting with consistent lighting, using a fixed-base 
driving simulator with the following components: 

Physical Cockpit and Displays: The simulator cockpit is constructed with car interior 
and a metal frame that did not include view-obstructing elements like A-pillars. It featured 
an adjustable driver's seat (base height 50 cm) to accommodate di;erent participants. 
Participants were seated at approximately 175 cm from the forward road view displayed 
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on a 65-inch NEC C651Q screen (3840×2160 at 30 Hz, 16:9, HDMI). A secondary 15.6-
inch ASUS MB16AC screen (1920×1080 at 60 Hz, 16:9, DisplayLink USB) displaying the 
navigation view was positioned 10 cm to the right of the steering wheel, mimicking the 
standard central stack display in cars. This placement resulted in a viewing distance of 
approximately 75 cm from the participant’s eyes to the navigation screen.  

 

 

Fig. 6 Physical set up of the driving simulator 

 

Simulation Software: The driving simulation was developed in Unity 6000.0.23f1 (Unity, 
2024) and built for Windows 11 Enterprise 64-bit (build 26100) using the DirectX 12 
graphics backend on an NVIDIA GeForce RTX 3080 GPU (10 GB VRAM) with an Intel Core 
i9-10900 CPU and 64 GB RAM. The software rendered a high-fidelity 3D scenario that 
represented a realistic urban environment, as illustrated in Fig7. The city environment was 
originally developed by UX designers at TomTom and further adapted for this study by the 
researchers. Besides an urban environment, the road view screen also includes (1) 
rearview mirror, following the approach of Morris et al.  (2024); (2) current vehicle speed 
value that turns red outside the range of 20–60 km/h, with similar approach utilized in C.-
T. Lin et al. (2007) and Ma & Kaber as was incorporated in (2010); (3) a 5-minute timer to 
suggest the driver to drive with proper speed. These features are designed to help 
participants maintain proper driving speeds in the city environment. 

Navigation displays were rendered using the same scene but with di;erent camera 
behaviors and visualization styles, as described in Section 4.2. Driving data were logged 
using custom C# scripts within the Unity project. 



 21 

 

Fig. 7 Screenshot of the road view screen 

 

Driving Controls: A Fanatec steering system was used to capture steering, acceleration, 
and braking inputs. The setup included a ClubSport Steering Wheel Classic 2 V2 mounted 
on a ClubSport Universal Hub V2 with Button Module Endurance, connected to a Fanatec 
wheelbase; the Fanatec PC driver was v8.20.0005.0600. Firmware versions: Wheel Base 
Motor Firmware 1.0.3.2, Wheel Base Firmware 1.5.0.1, Wireless Quick Release Firmware 
6.0.1.1 (all up to date). The pedal set was CSL Pedals. Any of the 12 buttons on the 
steering wheel, as shown in Fig.9, could be used to respond in the n-back task. 

Eye-Tracker: A Pupil Labs Neon wearable, glasses-based eye-tracker (Baumann & 
Dierkes, 2023) was used to record binocular gaze at 200 Hz. Data were captured using the 
Neon Companion app (2.9.8-prod) running on a OnePlus 8T (Android 11). The Neon 
module firmware was v24.8 with pipeline v2.8.0. The eye-tracker was calibrated prior to 
each session following the manufacturer’s procedure. 

 

5.5 Task and Stimuli 

Participants drove four predefined routes in a simulated urban environment based on real map 
data from Detroit, USA, to ensure unfamiliarity. Each route was approximately 1.8 km long (approx. 
4 minutes driving time) and included 12 intersections requiring a maneuver (left, right, or U-turn). 
Several of these intersections were designed with higher complexity to induce navigation errors. 
See Appendix1 for detailed route information.  
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Fig. 8 Four routes tested in the study 

 

The route design followed established protocols in driving simulator research. Route length and 
duration (1.6–2.0 km; 3–4 minutes) are commonly used in urban driving studies (Papantoniou et 
al., 2019; Ringhand et al., 2022), balancing ecological validity with experimental control while 
minimizing fatigue. Similarly, the use of 12 intersections (∼1 every 150 m) provided su;icient 
opportunities to observe navigation behavior without overwhelming participants, aligning with 
prior studies that employed 5–10 intersections per route (Ringhand et al., 2022; Schoemig et al., 
2018). 

The simulated environment included standard road markings such as lane divisions, crosswalks, 
and turning arrows on the road surface. However, to focus the driver's task on interpreting the 
navigation system, certain real-world elements were deliberately omitted. There was no same-
direction tra;ic, no pedestrians crossing the driver’s path, and all tra;ic lights were set to green. 
Vertical tra;ic signs for lane guidance were also removed, and participants were not required to 
use turn signals. While reducing the simulation's ecological validity, these choices were made to 
isolate the cognitive tasks of interest and increase the likelihood of navigation errors directly 
related to the on-screen navigation guidance. 

During the cognitive distraction conditions, an auditory 2-back task was performed concurrently 
with the driving task. Participants listened to a sequence of spoken digits, presented at a 
consistent interval of 3 seconds, and were instructed to press buttons on the steering wheel when 
the current digit matched the digit presented two digits earlier in the sequence. Participants could 
use any of the 12 buttons on the steering wheel to report a match. 
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Fig. 9 A participant is pressing a button on the steering wheel (left); steering wheel utilized in the 
study (right) 

 

The task was algorithmically controlled to maintain a consistent level of cognitive load. The 
stimulus sequence was structured to have an overall target match frequency of approximately 
30%. To prevent pattern recognition and maintain engagement, the sequence was constrained to 
a maximum of two consecutive matches and six consecutive non-matches. Participant 
responses were logged and classified as hits, false alarms, or misses to provide performance 
metrics for the secondary task. 

To isolate the e;ects of the independent variables while maintaining a baseline of realism, the 
driving environment was highly controlled. The weather was consistently clear and sunny, and all 
roads were flat. To increase immersion, non-conflicting vehicles were present on parallel roads 
and pedestrians were visible on sidewalks, but neither would ever intersect the participant's path. 
All tra;ic lights encountered by the participant were green. The auditory environment consisted 
of low-volume vehicle engine and movement sounds, supplemented by the spoken digits of the 
2-back task during distraction conditions. 

 

5.6 Procedure 

Participants first received a briefing, provided informed consent, and completed a demographics 
questionnaire. After calibration of eye, a short practice drive was conducted to familiarize the 
participant with the simulator, the two levels of map guidance detail, and the 2-back task. 

Each participant then completed four experimental drives. To mitigate order e;ects from both 
route sequence and experimental conditions, Latin square design was applied. The 40 
participants were divided into eight groups of five, with each group following a unique sequence. 
The 40 participants were divided into eight groups of five, with each group assigned a unique drive 
sequence. This design ensured that every pairing of route (A, B, C, D) and condition (1–4) was 
experienced by 10 participants, balancing potential route-specific influences across the dataset. 

Condition 1: No distraction with Road-level guidance 
Condition 2: No distraction with Lane-level guidance 
Condition 3: Distraction with Road-level guidance 
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Condition 4: Distraction with Lane-level guidance 
 

Table 1 Grouping of participants for experiments 

Group 1st Round 2nd Round 3rd Round 4th Round 
1 Route A, Condition 1 Route B, Condition 2 Route C, Condition 3 Route D, Condition 4 
2 Route B, Condition 3 Route C, Condition 4 Route D, Condition 1 Route A, Condition 2 
3 Route C, Condition 1 Route D, Condition 2 Route A, Condition 3 Route B, Condition 4 
4 Route D, Condition 3 Route A, Condition 4 Route B, Condition 1 Route C, Condition 2 
5 Route A, Condition 2 Route B, Condition 3 Route C, Condition 4 Route D, Condition 1 
6 Route B, Condition 4 Route C, Condition 1 Route D, Condition 2 Route A, Condition 3 
7 Route C, Condition 2 Route D, Condition 3 Route A, Condition 4 Route B, Condition 1 
8 Route D, Condition 4 Route A, Condition 1 Route B, Condition 2 Route C, Condition 3 

 

This Latin square design systematically varies the presentation order of the Cognitive Distraction 
condition across four patterns (e.g., NNYY, YYNN, NYYN, YNNY). However, it is a recognized 
limitation that the Level of Map Guidance Detail condition was presented in a strictly alternating 
sequence for all participants (RLRL or LRLR). While this ensures that lane-level and road-level 
displays appear equally often in early and late trials, it does not control for potential order e;ects 
that could arise from this specific alternating pattern (e.g., RRLL was not tested). This trade-o; 
was accepted to prioritize the robust counterbalancing of route-condition pairings within the 
logistical constraints of the study. 

After each drive, participants completed the NASA-TLX and UEQ questionnaires and were asked 
to recall any errors they made and explain the reasons for them. After all the driving sessions, 
participants are prompted to talk about their experience on the two di;erent navigation displays 
and the general driving simulation. 

 

 

Fig. 10 Workflow of the experiment 
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5.7 Data Processing 

Multiple data streams were recorded and synchronized for comprehensive post-session analysis. 
The Unity-based simulation logged driving behavior data and N-back task performance to local 
files. The Pupil Labs Neon eye-tracker simultaneously recorded gaze data and a video of the 
participant's field of view. Screen recordings of both the road view and navigation view were also 
captured as a backup and for qualitative review. Finally, subjective data from the NASA-TLX, UEQ, 
and post-drive interviews were collected manually by the researcher. This serves as the basis of 
following data processing work. 

 

5.7.1 Labelling of Navigation Errors 

Across all 160 sessions, 64 navigation errors were identified and labelled based on driving 
behavior as follows:  

16 Missed Turns: The driver drove past the intersection without any attempt to make a 
turn. 

32 Wrong Turns: The driver made a turn at an incorrect location, either before or after the 
correct intersection. This category also includes instances where a driver turned into the 
wrong way on a divided road, as the study focuses on navigational awareness over driving 
violations. 

16 Risky Turns: The driver nearly missed a turn or made a wrong one but corrected it with 
a late and abrupt maneuver that was considered risky. 

Additionally, two risky turn errors were excluded due to a system bug that caused the map to 
rotate when the driver fixated on it, thereby introducing technical artifacts unrelated to the 
cognitive processes being examined. 

 

5.7.2 Labelling of Cognitive Failures 

The 64 navigation errors were manually coded with cognitive failures, supported by post-drive 
interviews, driving behavior and gaze data, based on the following guidelines: 

Perception Failure: The driver failed to notice the upcoming turn, or to gather su;icient 
visual information from the navigation display before making an error. This was identified 
by a critically low number of fixations (typically 0-2 fixations, while 3.77 on average for 
correct turns) and low fixation durations (74.39ms for perception failures on average, 
127.04ms for correct turns). 

Interpretation Failure: The driver was aware of the turn but misunderstood the 
navigation cues or failed to match the map to reality. This was identified in cases where a 
su;icient number of fixations were made on the navigation screen (4.29 fixations on 
average), indicating the driver was aware of the upcoming turn, yet still performed an 
incorrect maneuver. 
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Decision-Making Failure: The driver correctly perceived and interpreted the instruction 
too late and then misjudged the risk of correcting the potential error, resulting in an unsafe 
maneuver. 

In certain instances, distinguishing between perception failure and interpretation failure was 
challenging, particularly under missed turns and wrong turns. For example, consider a case 
where a driver made a wrong turn after a single fixation on the navigation screen 100 meters 
before the intersection. This behavior suggests a combination of perception failure (insu;icient 
fixation failed to gather enough information) and interpretation failure (misprocessing the limited 
information available), which collectively resulted in the navigation error. In cases like this, both 
perception failure and interpretation failure are labelled. In addition, all risky turns were primarily 
caused by perception or interpretation failures during the initial cognitive process, followed by 
decision-making failures during the risky maneuver. 

 

5.7.3 Main EEect Analyses 

The analysis of navigation error rates and subjective measures utilized the complete dataset of 
160 sessions (40 participants × 4 conditions). However, for the continuous analysis of driving 
behavior and eye-tracking metrics, a data quality screening was performed. Due to technical 
issues such as logging failures or poor eye-tracker calibration, this resulted in the exclusion of 
some sessions. Consequently, the driving behavior analysis was conducted on 151 sessions, and 
the eye-tracking analysis was based on 145 sessions. Furthermore, to ensure these continuous 
analyses were not biased by the abnormal behaviors surrounding navigation errors, time 
windows corresponding to these error events (spanning from 80m before to 40m after the 
intersection) were excluded from the driving and gaze datasets.  

Di;erent statistical models were selected to analyze the main e;ects of cognitive distraction and 
level of map guidance detail on di;erent dependent variables, tailoring to the specific statistical 
properties of each dataset. 

1. Navigation Error Rate: These variables are count-based with extreme zero-inflation (65–
99%) and sparse, non-parametric distributions. To reduce bias and avoid assumptions of 
normality, we collapsed the data into two conditions (“Distraction vs. No Distraction” and 
“LLN vs. No LLN”) and applied Wilcoxon signed-rank tests for paired comparisons 
(Wilcoxon, 1945). This non-parametric approach is robust against non-normality and 
zero-inflation. A limitation is that collapsing data reduces granularity and mask 
interaction e;ects. 

2. Subjective Measures (NASA-TLX, UEQ): These scales are ordinal in nature. When data 
violated normality assumptions, we used Aligned Rank Transform (ART) ANOVA to retain 
factorial interpretability while respecting the ordinal scale (Wobbrock et al., 2011). When 
normality was satisfied, we applied repeated measures ANOVA (RM-ANOVA), which 
provides familiar e;ect size estimates and straightforward interpretability (Scott E. 
Maxwell et al., 2018). 

3. Eye-Tracking Data: These are continuous variables subject to strong inter-individual 
variability and occasional missing data. To address this, we used linear mixed-e;ects 
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models (LMM) when normality assumptions were met (Pinheiro & Bates, 2000), and 
generalized linear mixed models (GLMM) when they were not (Andrew Gelman & Jennifer 
Hill, 2007). Mixed models allow the inclusion of random e;ects, improving generalizability 
and reducing bias from individual di;erences.  

4. Driving Behavior Data: These continuous outcomes also varied considerably across 
individuals, with some variables showing normality and others not. Following the same 
rationale as with eye-tracking data, LMMs and GLMMs were utilized accordingly. 
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6. Results 

6.1 Classification of Navigation Errors and Cognitive Failures (RQ1) 

The 64 identified errors were linked to 85 instances of cognitive failure. Interpretation failures 
were the most frequent (55 cases), followed by decision-making failure (16 cases) and perception 
failure (14 cases). Specifically, interpretation failures were the primary cause of wrong turns, 
while both perception and interpretation failures contributed equally to missed turns. Risky turns 
were directly linked to decision-making failures, although interpretation failures also played a 
major role in their occurrence.  

 

 

Fig. 11 Map of Cognitive Failures and Navigation Errors 

 

Specifically, missed turn errors were attributed to both perception failure (8 cases) and 
interpretation failure (9 cases). 

Perception Failure Example: The driver did not pay attention to the map, as evidenced 
by an absence of fixations on the navigation screen and no sign of decelerating until it was 
too late. 

Interpretation Failure Example: The driver was aware of the upcoming turn (indicated by 
multiple fixations on the navigation screen starting 100 meters before the intersection) 
but was distracted and failed to make the turn at the correct time. In two special cases, 
when lane-level navigation (LLN) was present, the driver misinterpreted the distance 
displayed on the map, believing the turn had not yet arrived. 
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Fig. 12 Late fixations on map (30m before intersection) led to a missed turn 

 

Wrong turn errors were primarily caused by interpretation failure (32 cases), though perception 
failure (4 cases) was also identified in specific cases. 

Interpretation Failure Example: At a challenging intersection where two right-turn paths 
were presented, a participant took the wrong path by mismatching the map with reality. 
As the participant explained, “I thought it was a more curved turn when I looked at the 
map, but when I looked at the road, I wasn’t very sure.” 

Perception Failure Example: Another participant claimed to have failed to notice the 
presence of two paths altogether, stating, “I didn’t notice another path on the map.” 

 

 

Fig. 13 Misinterpretation (fixation on the wrong path) led to a wrong turn 

 

Risky turn errors can be understood in two stages: 

Stage 1: Perception failure (2 cases) or interpretation failure (14 cases) led to potential 
navigation errors, following patterns observed in missed turns and wrong turns. 

Stage 2: The driver correctly perceived and understood the navigation instruction at the 
last moment and attempted to correct their earlier errors. At this point, the driver may 
have already entered the intersection (potential missed turn) or steered into the wrong 
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direction (potential wrong turn), requiring abrupt braking or steering adjustments. This 
behavior reflects decision-making failure (16 cases) during risky maneuvers. 

 

 

Fig. 14 Abrupt steering behavior at the middle of intersection 

 

Having established this classification framework for navigation errors and their underlying 
cognitive failures, the following sections address the second research question (RQ2) by 
examining how these outcomes are influenced by the experimental conditions. 

 

6.2 The EWect of Cognitive Distraction (H1) 

The first hypothesis (H1) predicted that cognitive distraction would increase perception failures 
and missed turns. This hypothesis was not supported by the error data. However, the distraction 
task robustly increased cognitive load, as evidenced by subjective, behavioral, and gaze metrics. 

Navigation Errors and Cognitive Failures: The Wilcoxon signed-rank test showed no 
significant eOect of the 2-back task distraction on the rate of perception failures (Z = 0.0, p = 
1.0) or missed turns (Z = -0.420, p = 0.675). Similarly, no significant eOects were found for other 
error types or cognitive failures. 

 

Table 2 Distraction e\ects on navigation error and cognitive failure rates (Wilcoxon signed-rank 
test, n = 40 participants) E\ect size r = Z/√N. Significance: * p < .05, ** p < .01, *** p < .001 
Direction (Increased/Decreased) is inferred from the descriptive statistics (median/mean) 

Dependent Variable Z p-value Sig. r EAect Size Direction 

Missed Turns -0.420 .675  -.066 negligible Decreased 

Wrong Turns -0.410 .682  -.065 negligible Increased 

Risky Turns -0.054 .957  -.009 negligible ~No change 

Perception Failures 0.000 1.000  .000 negligible ~No change 

Interpretation Failures -0.173 .862  -.027 negligible Decreased 
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Decision-Making Failures -0.054 .957  -.009 negligible ~No change 

Total Errors -0.102 .919  -.016 negligible ~No change 

 
 

Subjective Workload: In sharp contrast, distraction had a powerful eOect on subjective 
workload. A repeated measures ANOVA on the overall NASA-TLX score (calculated as the 
average of all its sub-measures) showed a strong main eOect of distraction (F (1, 38) = 91.55, 
p < .001, ges = 0.58). This was confirmed by strong significant eOects on all the subscales, 
tested by parametric ART ANOVA. 

 

Table 3 E\ects of Distraction and LLN on NASA-TLX overall score (repeated-measures ANOVA, n 
= 39 participants). Results shown as F, df, p-value, and e\ect size (ges). Direction is inferred 

from descriptive means 

Dependent 
Variable Predictors F Df p-value Sig. EAect Size 

(ges) Direction 

NASA TLX Overall 
Score 

Distraction 91.55 1 1.15e-11 *** 0.579 Increased 

LLN 0.19 1 0.663  0.0050 Increased 

Distraction × LLN 1.79 1 0.188  0.0451 Decreased 

 
 

Table 4 Distraction e\ects on NASA-TLX subscales (aligned rank transform ANOVA, n = 39 
participants). Results shown as F, df, p-value, and e\ect size (rank-biserial). Direction is inferred 

from descriptive means 

Dependent Variable F Df p-value Sig. EAect Size (r) Direction 

Mental Demand 184.57 1, 114 < 2e-16 *** 0.740 Increased 

Physical Demand 32.00 1, 114 1.163e-07 *** 0.323 Increased 

Temporal Demand 75.61 1, 114 2.969e-14 *** 0.582 Increased 

Performance 70.97 1, 114 1.242e-13 *** 0.528 Decreased 

EAort 88.54 1, 114 6.613e-16 *** 0.603 Increased 

Frustration 92.01 1, 114 2.481e-16 *** 0.553 Increased 

 
 

Driving Behavior: Drivers under 2-back tasks showed decreased throttle input (from 0.118 to 
0.115; χ²(1) = 5.12, p = 0.024), throttle variability (from 0.099 to 0.093; χ²(1) = 6.07, p = 0.014) 
and acceleration variability (from 3.69 to 3.38; χ²(1) = 6.85, p = 0.009), indicating more 
conservative driving under cognitive load. Speed variability also showed a marginal decrease 
(from 11.48 to 10.95 km/h; χ² (1) = 2.85, p = 0.091). 
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Table 5 Distraction e\ects on driving behavior metrics (GLMM/LMM, n = 40 participants, 151 
observations). Results shown as model coe\icients (β), χ², df, p-value, and 95% CI 

Dependent Variable χ² Df p-value Sig. Estimate (β) 95% CI 

Acceleration variability 
(m/s²) 6.85 1 0.009 ** -0.22 [-0.38, -0.06] 

Throttle variability 6.07 1 0.014 * -0.07 [-0.13, -0.02] 

Mean throttle input 5.12 1 0.024 * -0.04 [-0.08, -0.01] 

Speed variability (km/h) 2.85 1 0.091 . -0.54 [-1.17, 0.09] 

 
 

Gaze Behavior: Gaze patterns also changed significantly, showing several typical patterns of 
increased cognitive load: increased pupil diameter (from 3.90 to 4.01mm; χ²(1) = 42.19, p 
< .001) , longer saccade duration (from 73.79 to 89.81ms; χ²(1) = 68.507, p < .001), and more 
concentrated fixations on both road and navigation screens that is indicated by decreased 
fixation position variance on navigation screen. In this study, fixation position variance is the 
mean of x and y coordinate variances across all fixations within an AOI, indicating how 
scattered or focused the gaze pattern is. 

Counter to the typical gaze-centering eOect of cognitive load, distraction also led to an overall 
increase in saccade amplitude (from 11.5° to 13.3°; χ² (1) = 63.08, p < .001) and velocity (from 
2565 to 2833 pixel/s; χ² (1) = 73.71, p < .001) across all recorded eye movements. This likely 
reflects the additional visual demands of the n-back task, which required participants to 
glance towards the steering wheel buttons for the n-back task (see Section 6.6.1).  

Distraction significantly decreased fixation rates on road (from 1.38 to 1.21 fixations/sec; χ² 
(1) = 47.28, p < .001) and time spent fixating on road (from 62.40% to 56.64%; χ² (1) = 25.10, p 
< .001), suggesting visual attention shifted away from primary driving task. Total number of 
glance count on navigation screen showed a marginally significant increase (from 45.62 to 
47.73; χ² (1) = 3.91, p = 0.048), indicating more frequent visual scan needed under distraction.  

 

Table 6 Distraction e\ects on eye-tracking metrics (GLMM/LMM, n = 37 participants, 145 
observations). Results shown as model coe\icients (β), χ², df, p-value, and 95% CI 

Metrics Dependent Variable χ² Df p-value Sig. Estimate (β) 95% CI 

Navigation 
Screen 

AOI 
Metrics 

Navigation fixation 
position variance 5.93 1 0.015 * -0.16 [-0.29, -0.03] 

Navigation glance 
count 3.91 1 0.048 * 4.21 [0.04, 8.38] 

Navigation gaze 
position variance 3.61 1 0.058 . -0.1 [-0.21, 0.00] 

Road 
Screen 

AOI 
Metrics 

Time fixating on road 
(%) 25.10 1 < .001 *** -6.77 [-9.47, -4.08] 

Road fixations count 
percent (%) ¹ 55.42 1 < .001 *** -8.98 [-11.34, -6.61] 
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Road gaze count percent 
(%) ² 33.28 1 < .001 *** -7.45 [-9.98, -4.92] 

Road fixation rate 
(fixations/s) 47.28 1 < .001 *** -0.15 [-0.19, -0.11] 

Road gaze rate (gaze 
points/s) 24.73 1 < .001 *** -13.71 [-19.11, -8.31] 

Road fixation position 
variance 31.97 1 < .001 *** -0.003 [-0.004, -0.002] 

Road gaze position 
variance 32.66 1 < .001 *** -0.003 [-0.004, -0.002] 

Other 
Metrics 

Glance ratio road vs nav ¹ 5.54 1 0.019 * -0.22 [-0.40, -0.04] 

Avg pupil diameter 
(mm) 42.19 1 < .001 *** 0.11 [0.08, 0.15] 

Pupil diameter 
variability (SD, mm) 93.34 1 < .001 *** 0.07 [0.05, 0.08] 

Blink rate (blinks/s) 67.32 1 < .001 *** 0.40 [0.31, 0.50] 

Avg saccade duration 
(ms) 63.08 1 < .001 *** 2.34 [1.76, 2.91] 

Avg saccade velocity 
(pixels/s) ² 73.71 1 < .001 *** 315.65 [243.59, 387.72] 

Avg saccade amplitude 
(°) ¹ 6.66 1 0.01 ** -1.08 [-1.90, -0.26] 

 
¹This main e+ect is qualified by a significant interaction e+ect (p < .05) detailed in Section 6.4 

²This main e+ect is qualified by a marginal interaction e+ect (.05 < p < .10) detailed in Section 6.4 

 

6.3 The EWect of Level of Map Guidance Detail (H2 & H3) 

The second and third hypotheses predicted that lane-level navigation (LLN) would reduce 
interpretation and decision-making failures, thereby reducing wrong turns (H2) and risky turns 
(H3). The data provided strong support for H2, trending yet not significant evidence for H3. 
Generally, LLN showed some positive e;ects on vehicle control and user experiences, yet its 
e;ects on gaze behavior is more complex. 

Navigation Errors and Cognitive Failures: The Wilcoxon signed-rank test revealed that LLN 
significantly reduced interpretation failures (from 3.8% to 2.0% of turns; Z = -2.317, p = 0.021) 
and consistently the frequency of wrong turns (from 2.2% to 1.1% of turns; Z = -2.132, p = 
0.033). Overall, the total number of navigation errors was significantly lower in the LLN 
condition, decreasing from 4.2% (40 total errors) to 2.5% (24 total errors) of turns (Z = -2.049, 
p = 0.040). The predicted reduction in decision-making failures and risky turns (H3) was not 
statistically significant, though a trend was observable (p = 0.085). 

 

Table 7 Lane-level navigation (LLN) e\ects on navigation error and cognitive failure rates 
(Wilcoxon signed-rank test, n = 40 participants). Direction (Increased/Decreased) is inferred 

from the descriptive statistics (median/mean) 

Dependent Variable Z p-value Sig. r EAect Size Direction 
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Missed Turns -0.632 .527  -.100 small Increased 

Wrong Turns -2.132 .033 * -.337 medium Decreased 

Risky Turns -1.721 .085  -.272 small Decreased 

Perception Failures -0.540 .589 . -.085 negligible Decreased 

Interpretation Failures -2.317 .021 * -.366 medium Decreased 

Decision-Making Failures -1.721 .085 . -.272 small Decreased 

Total Errors -2.049 .040 * -.324 medium Decreased 

 
 

User Experience: The ART ANOVA showed that users subjectively preferred LLN, rating it as 
more Supportive, Exciting, Interesting, Inventive, and Leading Edge, which led to significantly 
higher overall Attractiveness (p = 0.010) calculated as the average of all UEQ sub-measures 
and Hedonic quality (p < .001) calculated as the average of the dimensions exciting, 
interesting, inventive, and leading-edge. 

 

Table 8 LLN e\ects on User Experience Questionnaire (UEQ) metrics (aligned rank transform 
ANOVA, n = 40 participants). Results shown as F, df, p-value, and e\ect size (η²). Bold entries 

highlight significant LLN e\ects. Direction is inferred from descriptive means 

Dependent Variable F Df p-value Sig. EAect Size (η²) Direction 

Supportive 4.48 1, 117 0.036 * 0.0369 Increased 

Easy 0.55 1, 117 0.462  0.0046 Increased 

EZicient 1.70 1, 117 0.195  0.0143 Increased 

Clear 2.26 1, 117 0.135  0.0190 Increased 

Exciting 26.77 1, 117 9.588e-07 *** 0.1862 Increased 

Interesting 12.92 1, 117 0.000478 *** 0.0994 Increased 

Inventive 27.88 1, 117 6.032e-07 *** 0.1924 Increased 

Leading Edge 11.04 1, 117 0.001188 ** 0.0863 Increased 

UEQ Attractiveness 6.94 1, 117 0.009594 ** 0.0560 Increased 

UEQ Pragmatic 3.18 1, 117 0.077 . 0.0264 Increased 

UEQ Hedonic 27.48 1, 117 7.135e-07 *** 0.1902 Increased 

 

Driving Behavior: The only significant e;ect of LLN on driving performance was a 
reduction in the duration of driving in the wrong way designated for oncoming tra;ic (from 
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3.20s to 3.02s for non-zero trials; χ² (1) = 4.84, p = 0.028), indicating better situational 
awareness. 

 

Table 9 LLN e\ects on driving behavior metrics (GLMM/LMM, n = 40 participants, 151 
observations). Results shown as model coe\icients (β), χ², df, p-value, and 95% CI 

Dependent Variable χ² Df p-value Sig. Estimate (β) 95% CI 

Wrong way driving duration (s) 4.84 1 0.028 * -0.635 [-1.20, -0.07] 

 
 

Gaze Behavior: The main eOect of LLN was a clear re-allocation of visual attention from the 
road to the navigation display. The most robust finding was a significant decrease in the time 
fixating on the road (from 60.48 to 58.67%; χ² (1) = 4.81, p = 0.028). This is further evidenced 
by increased gaze rate (from 9.84 to 12.38 gaze points/s; χ² (1) = 19.26, p < .001) on navigation 
screen and decreased gaze rate on road (from 125.36 to 121.22 gaze points/s; χ² (1) = 6.01, p 
= 0.014). These findings suggest a trade-oO where the detailed LLN display consistently drew 
more visual attention at the expense of road monitoring. 

Total number of glances on the navigation screen increased significantly (from 44.55 to 48.79 
glances; χ² (1) = 9.31, p = 0.002), and the average duration of each glance also increased 
(from 306.58 to 338.22 ms; χ² (1) = 8.49, p = 0.004). In this study, glance duration is defined as 
the time from when the gaze shifts toward an area of interest (AOI) until it moves away. Such 
pattern indicates that drivers not only checked the navigation display more frequently but also 
spent longer processing information during each glance. 

In addition, significant increases in navigation fixation position variance (from 0.009 to 0.011; 
χ² (1) = 8.94, p = 0.003) and gaze position variance (from 0.011 to 0.013; χ² (1) = 15.86, p < 
0.001) suggest more dispersed visual scanning patterns on the navigation screen. These 
indicates that drivers may need to scan a wider area of the navigation interface to locate 
relevant information. 

LLN also had a significant main eOect on saccade metrics, increasing both the average 
saccade amplitude (from 12.26° to 12.52°; χ² (1) = 8.18, p = 0.004) and velocity (from 2680 to 
2712 pixels/s; χ² (1) = 4.75, p = 0.029). However, both main eOects were qualified by significant 
or marginal interactions with distraction. 

 

Table 10 LLN e\ects on eye-tracking metrics (GLMM/LMM, n = 37 participants, 145 
observations). Results shown as model coe\icients (β), χ², df, p-value, and 95% CI 

Metrics Dependent Variable χ² Df p-value Sig. Estimate (β) 95% CI 

Navigation 
Screen 

AOI 
Metrics 

Navigation percent time fixating 
(%) ² 24.75 1 < .001 *** 0.38 [0.23, 0.53] 

Navigation glance count 9.31 1 0.002 ** 6.43 [2.30, 10.57] 

Navigation avg glance duration 
(ms) 8.49 1 0.004 ** 0.14 [0.04, 0.23] 
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Navigation avg fixation 
duration (ms) 8.47 1 0.004 ** 0.1 [0.03, 0.18] 

Navigation fixation rate 
(fixations/s) ² 22.04 1 < .001 *** 0.08 [0.04, 0.11] 

Navigation gaze rate (gaze 
points/s) 19.26 1 < .001 *** 0.31 [0.17, 0.45] 

Navigation fixations count 
percent (%) ² 22.73 1 < .001 *** 3.45 [2.03, 4.87] 

Navigation gaze count percent 
(%) 19.23 1 < .001 *** 0.3 [0.16, 0.43] 

Navigation fixation position 
variance 8.94 1 0.003 ** 0.19 [0.07, 0.32] 

Navigation gaze position 
variance 15.86 1 < .001 *** 0.21 [0.11, 0.31] 

Road 
Screen 

AOI 
Metrics 

Road percent time fixating (%) 4.81 1 0.028 * -2.94 [-5.57, -0.31] 

Road fixation rate (fixations/s) 4.97 1 0.026 * -0.05 [-0.09, -0.01] 

Road gaze rate (gaze points/s) 6.01 1 0.014 * -6.7 [-12.06, -1.34] 

Road fixations count percent (%) 
¹ 19.64 1 < .001 *** -5.3 [-7.64, -2.95] 

Road gaze count percent (%) ² 10.62 1 0.001 ** -4.17 [-6.68, -1.66] 

Other 
Metrics 

Glance ratio road vs nav ¹ 23.74 1 < .001 *** -0.45 [-0.63, -0.27] 

Avg saccade amplitude (°) ¹ 8.18 1 0.004 ** 0.83 [0.26, 1.41] 

Avg saccade velocity (pixels/s) ² 4.75 1 0.029 * 79.39 [7.97, 150.81] 

 

¹This main e+ect is qualified by a significant interaction e+ect (p < .05) detailed in Section 6.4 
²This main e+ect is qualified by a marginal interaction e+ect (.05 < p < .10) detailed in Section 6.4 

 

6.4 Interaction EWects (H4) 

The fourth hypothesis (H4) predicted that LLN would mitigate the negative e;ects of distraction. 
No such mitigating interaction was found on navigation errors. Instead, the interaction e;ects 
observed in gaze and driving behavior suggest that the detailed LLN display changed how 
cognitive distraction a;ected performance. 

Navigation Errors and Cognitive Failures: A GLMM model test showed no significant 
interaction eOects between cognitive distraction and level of map guidance detail in the error 
data. 

Driving Behavior: A significant interaction eOect was found for wrong way duration (χ²(1) = 
6.09, p = 0.014), where LLN's eOect on navigation errors reversed under distraction: LLN 
reduced wrong way duration without distraction (from 3.68s to 1.95s, non-zero trials) but 
increased it with distraction (from 2.81s to 3.86s, non-zero trials). Additionally, there was a 
marginally significant interaction eOects for sudden steering changes (χ² (1) = 3.38, p = 0.066). 
While LLN was associated with fewer sudden steering inputs without distraction (175.1 
without LLN, 173.1 with LLN), this benefit was reversed under cognitive load with much 
stronger eOect (176.6 without LLN, 184.0 with LLN). 
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Table 11 LLN × Distraction interaction e\ects on driving behavior metrics (GLMM/LMM, n = 40 
participants, 151 observations). Results shown as interaction coe\icients (β), χ², df, p-value, 

and 95% CI 

Dependent Variable χ² Df p-value Sig. Estimate (β) 95% CI Direction 

Wrong way driving 
duration (s) 6.09 1 0.014 * 0.96 [0.20, 1.71] 

Distraction reverses LLN's eZect, 
from decreasing to increasing 

duration 

Sudden steering changes 
(count) 3.38 1 0.066 . 0.05 [-0.00, 0.11] 

Distraction reverses LLN's eZect, 
from decreasing to increasing 

changes 

 
 

Gaze Behavior: Several significant eOects and trends toward significance were observed, 
indicating that distraction and mutually impede each other's impact on gaze behaviors. For 
example, LLN significantly reversed amplitude increase under distraction (from +0.8 to -0.2; 
χ² (1) = 6. 66, p = 0.010) and mitigates the reduction in fixation counts on the road (from -5.3 
to -1.1; χ² (1) = 6. 01, p = 0.014) under distraction. Conversely, distraction significantly reduces 
LLN’s eOect on glance ratio (from -0.45 to -0.14; χ² (1) = 5. 42, p = 0.020). This is further 
supported by distraction’s marginally significant eOect on attenuating the increase in fixation 
rate, percentage of fixation count, and time spent fixating on navigation screen, all of which 
are significantly influenced by LLN. These findings suggest that the increased attention to 
navigation associated with LLN may be diminished under cognitive load, while the decreased 
attention to road resulting from distraction can be mitigated by LLN. 

 

Table 12 LLN × Distraction interaction e\ects on eye-tracking metrics (GLMM/LMM, n = 37 
participants, 145 observations). Results shown as interaction coe\icients (β), χ², df, p-value, 

and 95% CI 

Dependent Variable χ² Df p-value Sig. Estimate (β) 95% CI Direction 

Avg saccade 
amplitude (°) 6.66 1 0.010 ** -1.08 [-1.90, -0.26] LLN reverses amplitude 

increase under distraction 

Avg saccade velocity 
(pixels/s) 3.22 1 0.073 . -93.7 [-196.10, 8.70] LLN reverses velocity 

increase under distraction 

Glance ratio road vs 
nav 5.42 1 0.020 * 0.31 [0.05, 0.57] Distraction reduces LLN's 

eZect on glance ratio 

Road fixations count 
percent (%) 6.01 1 0.014 * 4.2 [0.84, 7.56] LLN mitigates distraction's 

eZect on road fixation count 

Road gaze count 
percent (%) 3.08 1 0.079 . 3.22 [-0.38, 6.81] LLN mitigates distraction's 

eZect on road gaze count 

Navigation percent 
time fixating (%) 3.79 1 0.051 . -0.21 [-0.43, 0.00] Distraction reduces LLN's 

eZect on percent time fixating  

Navigation fixation 
rate (fixations/s) 3.48 1 0.062 . -0.04 [-0.09, 0.00] Distraction reduces LLN's 

eZect on fixation rate 

Navigation fixations 
count percent (%) 3.37 1 0.066 . -1.9 [-3.94, 0.13] Distraction reduces LLN's 

eZect on fixation count 
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6.5 Driving Experience as Factor 

For exploratory analysis, the sample was divided into two groups based on self-reported driving 
frequency: "Less experienced" (drive less than once a week, N=17) and "More experienced" (drive 
at least once a week, N=23). 

6.5.1 Subgroup Analysis: Experience-Dependent EEects of LLN and Distraction 

To further investigate the role of driving experience and address potential e;ect masking in the 
combined analysis, we conducted subgroup analyses by running separate statistical models for 
"Less experienced" and "More experienced" driver groups using the same statistical models as 
combined analysis. 

Navigation Errors and Cognitive Failures: The benefits of LLN were almost exclusively 
observed in the More Experience group. They showed a significant reduction in Interpretation 
Failures (from 4.2% to 1.3%; Z = -2.724, p = 0.006), Wrong Turns (from 2.4% to 0.5%; Z = -2.673, 
p = 0.008), and Total Errors (from 4.9% to 1.8%; Z = -2.686, p = 0.007) when using LLN. No 
significant beneficial eOect was found for the Less Experience group. However, a negative 
trend was found in the Less Experienced group, where LLN was associated with an increase 
in Missed Turns (from 0.2% to 1.2% of turns; Z= -2.000, p=0.046). 

 
Table 13 LLN e\ects on navigation error and cognitive failure rates in the more experienced 
group (Wilcoxon signed-rank test, n = 23 participants). Direction (Increased/Decreased) is 

inferred from the descriptive statistics (median/mean) 

Dependent Variable Z p-value Sig. r EAect Size Direction 

Missed Turns -0.816 .414  -.170 small Decreased 

Wrong Turns -2.673 .008 ** -.557 large Decreased 

Risky Turns -1.179 .238  -.246 small Decreased 

Perception Failures -1.406 .160  -.293 small Decreased 

Interpretation Failures -2.724 .006 ** -.568 large Decreased 

Decision-Making Failures -1.179 .238  -.246 small Decreased 

Total Errors -2.686 .007 ** -.560 large Decreased 

 

 

Table 14 LLN e\ects on navigation error and cognitive failure rates in the less experienced group 
(Wilcoxon signed-rank test, n = 17 participants). Direction (Increased/Decreased) is inferred 

from the descriptive statistics (median/mean) 

Dependent Variable Z p-value Sig. r EAect Size Direction 

Missed Turns -2.000 .046 * -.485 medium Increased 

Wrong Turns 0.000 1.000  .000 negligible ~No change 
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Risky Turns -1.342 .180  -.325 medium Decreased 

Perception Failures -1.732 .083 . -.420 medium Increased 

Interpretation Failures -0.263 .793  -.064 negligible Decreased 

Decision-Making Failures -1.342 .180  -.325 medium Decreased 

Total Errors -0.258 .796  -.063 negligible Increased 

 
 

User Experience: Subgroup analysis showed LLN's consistent eOect on hedonic measures 
(Inventive, Exciting). Additionally, LLN's eOect on pragmatic measures (calculated as the 
average of the dimensions supportive, easy, eOicient, and clear) were found exclusively for 
more experienced drivers, who reported it as supportive (F=5.23, p=0.025) and clear (F=4.46, 
p=0.038). 

Subjective Workload: Subgroup analysis showed LLN reduced the eOort needed in tasks 
(F=4.74, p=0.033) and overall subjective workload (from 9.49 to 9.06, F=, 4.06, p=0.056) for 
More Experience group In contrast, there's a significant eOect found in increasing the overall 
subjective workload for Less Experience group (from 8.79 to 9.62, F=5.94, p=0.028). 

 
Table 15 LLN e\ects on UEQ metrics and NASA-TLX E\ort score in the more experienced group 
(aligned rank transform ANOVA, n = 23 participants). Results shown as F, df, p-value, and e\ect 

size (rank-biserial). Direction is inferred from descriptive means 

Dependent Variable F Df p-value Sig. EAect Size (r) Direction 

Supportive 5.23 1, 66 0.025 * 0.154 Increased 

Clear 4.46 1, 66 0.038 * 0.179 Increased 

Exciting 11.92 1, 66 0.001 *** 0.262 Increased 

Inventive 7.61 1, 66 0.008 ** 0.259 Increased 

UEQ Attractiveness 9.48 1, 66 0.003 ** 0.249 Increased 

UEQ Pragmatic 8.79 1, 66 0.004 ** 0.203 Increased 

EAort 4.74 1, 66 0.033 * 0.147 Decreased 

 

Table 16 LLN e\ects on UEQ metric Hedonic and NASA-TLX overall score in the more 
experienced group (repeated-measures ANOVA, n = 23 participants). Results shown as F, df, p-

value, and e\ect size (ges). Direction is inferred from descriptive means 

Dependent Variable F Df p-value Sig. EAect Size 
(ges) Direction 

UEQ Hedonic 7.50 1, 22 0.012 * 0.0001 Increased 

NASA TLX Overall 
Score 5.94 1, 15 0.027 * 0.048 Decreased 
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Table 17 LLN e\ects on NASA-TLX overall score in the less experienced group (aligned rank 
transform ANOVA, n = 17 participants). Results shown as F, df, p-value, and e\ect size (rank-

biserial). Direction is inferred from descriptive means 

Dependent Variable F Df p-value Sig. EAect Size (r) Direction 

Exciting 13.97 1, 48 <0.001 *** 0.328 Increased 

Interesting 7.84 1, 48 0.007 ** 0.234 Increased 

Inventive 23.28 1, 48 <0.001 *** 0.373 Increased 

Leading Edge 10.43 1, 48 0.002 ** 0.304 Increased 

UEQ Hedonic 21.52 1, 48 <0.001 *** 0.372 Increased 

 

Table 18 LLN e\ects on NASA-TLX metrics in the less experienced group (repeated-measures, n 
= 16 participants). Results shown as F, df, p-value, and e\ect size (η²). Direction is inferred from 

descriptive means 

Dependent Variable F Df p-value Sig. EAect Size 
(ges) Direction 

NASA TLX Overall 
Score 5.94 1, 15 0.0277 * 0.195 Increased 

EAort 3.67 1, 15 0.0747 . 0.053 Increased 

 

Gaze Behavior: Both experience groups demonstrated similar patterns of attention 
reallocation from road to navigation display. However, for more experienced drivers, most of 
relevant metrics exhibited interaction eOects with distraction. For example, distraction 
significantly reduces LLN’s eOect on increasing fixation count percentage (χ² (1) = 5.56, p 
= 0.018) and time spent fixating on navigation display (χ² (1) = 6.93, p = 0.008). This suggests 
that more experienced drivers have more flexibility in attention management that adapt to 
distracted conditions. In contrast, such strategic adaptation was not observed in less 
experienced drivers. Less experienced drivers showed more pronounced LLN eOects 
on navigation attention metrics, accompanied by significantly greater reductions in road 
monitoring. 

Furthermore, LLN significantly increased average glance duration (from 297.12 to 328.23ms; 
χ² (1) = 8.87, p = 0.003) and fixation duration (from 135.40 to 149.83ms; χ² (1) = 8.86, p = 0.003) 
exclusively in the more experienced group, indicating diOerent information processing 
strategies.  In addition, both groups showed significant increases in fixation and gaze position 
variance on the navigation screen under LLN, suggesting similar visual scanning patterns with 
broader search areas. 

Table 19 LLN e\ects on eye-tracking metrics in the more experienced group (GLMM/LMM, n = 
22 participants, 87 observations). Results shown as model coe\icients (β), χ², df, p-value, and 

95% CI 

Metrics Dependent Variable χ² Df p-value Sig. Estimate (β) 95% CI 
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Navigation 
Screen 

AOI 
Metrics 

Navigation gaze rate (gaze 
points/s) 15.27 1 < .001 *** 3.99 [1.99, 6.00] 

Navigation fixation rate 
(fixations/s) ¹ 19.56 1 < .001 *** 0.1 [0.05, 0.14] 

Navigation percent time 
fixating (%) ¹ 24.00 1 < .001 *** 0.48 [0.29, 0.67] 

Navigation glance count ² 7.22 1 0.007 ** 7.68 [2.08, 13.28] 

Navigation fixations count 
percent (%) ¹ 19.36 1 < .001 *** 4.25 [2.35, 6.14] 

Navigation gaze count percent 
(%) ² 15.78 1 < .001 *** 0.35 [0.18, 0.52] 

Navigation avg glance 
duration (ms) 8.87 1 0.003 ** 0.19 [0.07, 0.32] 

Navigation avg fixation 
duration (ms) 8.86 1 0.003 ** 20.08 [6.86, 33.30] 

Navigation fixation position 
variance 4.03 1 0.045 * 0.17 [0.00, 0.34] 

Navigation gaze position 
variance 6.94 1 0.008 ** 0.19 [0.05, 0.33] 

Road 
Screen 

AOI 
Metrics 

Road fixations count percent 
(%) ¹ 10.08 1 0.002 ** -5.32 [-8.60, -2.03] 

Road gaze count percent (%) 4.05 1 0.044 * -3.68 [-7.27, -0.10] 

Other 
Metrics 

Glance ratio road vs nav ¹ 21.2 1 < .001 *** -0.53 [-0.75, -0.30] 

Avg saccade amplitude (°) ¹ 5.61 1 0.018 * 0.96 [0.17, 1.75] 

Avg saccade velocity (pixels/s) 
² 3.26 1 0.071 . 93.26 [-7.96, 194.48] 

 
¹This main e+ect is qualified by a significant interaction e+ect (p < .05). 

²This main e+ect is qualified by a marginal interaction e+ect (.05 < p < .10). 
 

Table 20 LLN e\ects on eye-tracking metrics in the less experienced group (GLMM/LMM, n = 15 
participants, 58 observations). Results shown as model coe\icients (β), χ², df, p-value, and 95% 

CI 

Metrics Dependent Variable χ² Df p-value Sig. Estimate (β) 95% CI 

Navigation 
Screen 

AOI 
Metrics 

Time fixating on Navigation 
(%) 3.28 1 0.07 . 0.87 [-0.07, 1.82] 

Navigation fixation rate 
(fixations/s) 3.77 1 0.052 . 0.05 [-0.00, 0.09] 

Navigation gaze rate (gaze 
points/s) 3.38 1 0.066 . 1.95 [-0.13, 4.02] 

Navigation fixations count 
percent (%) 4.5 1 0.034 * 0.16 [0.01, 0.31] 

Navigation gaze count 
percent (%) 5.02 1 0.025 * 1.2 [0.15, 2.25] 

Navigation fixation position 
variance 6.45 1 0.011 * 0.23 [0.05, 0.41] 

 Navigation gaze position 
variance 11.27 1 < .001 *** 0.25 [0.10, 0.40] 

Road 
Screen 

Road percent time fixating 
(%) ¹ 11.27 1 < .001 *** -6.85 [-10.84, -2.85] 
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AOI 
Metrics 

Road fixation rate 
(fixations/s) 5.18 1 0.023 * -0.09 [-0.16, -0.01] 

Road gaze rate 
(gaze points/s) ¹ 13.76 1 < .001 *** -14.62 [-22.34, -6.89] 

Road fixations count percent 
(%) 10.24 1 0.001 ** -0.08 [-0.13, -0.03] 

Road gaze count percent (%) 8.27 1 0.004 ** -4.89 [-8.22, -1.56] 

Other 
Metrics 

Glance ratio road vs nav 5.19 1 0.023 * -0.34 [-0.63, -0.05] 

Blink rate (blinks/s) 2.93 1 0.087 . 0.04 [-0.01, 0.09] 

 

¹This main e+ect is qualified by a significant interaction e+ect (p < .05). 
 

6.5.2 Three-Way Interaction Analysis: How Experience Influences LLN and Distraction 
EEects 

To explore whether driver experience influenced the e;ectiveness of lane-level navigation, we 
employed the same models for each dependent variable, but with driving experience as a 
between-subject factor. 

Subjective Measures: Both groups reported a significantly higher workload under cognitive 
distraction. However, their workload perception of LLN diOered markedly. The More 
Experienced group showed decreased workload with LLN (lower temporal demand, eOort, 
and NASA TLX overall load score), while the Less Experienced group showed increased 
workload with LLN (higher scores on these same measures). This suggests that detailed lane-
level navigation provides cognitive benefits for experienced drivers but may be overwhelming 
for less experienced drivers. In contrast, both groups showed similar subjective preferences 
for LLN across hedonic dimensions (e.g., Exciting, Interesting, Inventive), indicating that user 
experience ratings were consistent regardless of experience level. 

 

Table 21 LLN × Experience interaction e\ects on workload variables (aligned rank transform 
ANOVA, n = 39 participants). Results shown as F, df, p-value, and e\ect size (η²). Direction is 

inferred from descriptive means, showing the opposing e\ect of LLN on each experience group 

Dependent Variable F Df p-value Sig. EAect Size (η²) Direction (Less Exp.) Direction (More Exp.) 

Temporal Demand 4.53 1, 111 0.0356 * 0.039 Increased Decreased 

EAort 8.39 1, 111 0.0046 ** 0.070 Increased Decreased 

NASA TLX Overall 
Score 10.95 1, 37 0.0021 ** 0.228 Increased Decreased 

 
 

Gaze Behavior: Although not statistically significant, driving experience, that is reflected by 
driving frequency, showed trends towards significance on several gaze metrics. More 
experienced drivers exhibited higher gaze position variance on the navigation screen (0.012 vs 
0.011; χ² (1) = 3.19, p = 0.074), suggesting a broader visual scanning strategy. They also 



 43 

demonstrated shorter fixation duration (449.43 vs 514.48ms; χ² (1) = 3.20, p = 0.074) and spent 
less percentage of time fixating on road (58.67 vs 60.94%; χ² (1) = 2.85, p = 0.091), indicating 
less eOort required for road monitoring. 

 

Table 22 Experience group main e\ects on eye-tracking metrics (GLMM/LMM, n = 37 
participants, 145 observations). Results shown as model coe\icients (β), χ², df, p-value, and 

95% CI 

Dependent Variable χ² Df p-value Sig. Estimate (β) 95% CI Direction 

Navigation gaze position 
variance 3.19 1 0.074 . 0.21 [-0.02, 0.44] More experienced show 

higher variance 

Road avg fixation duration (ms) 3.20 1 0.074 . -65.41 [-137.07, 6.24] More experienced show 
shorter fixations 

Road percent time fixating (%) ¹ 2.85 1 0.091 . -5 [-10.81, 0.81] More experienced show 
lower fixation 

 
¹This main e+ect is qualified by a significant interaction e+ect (p < .05). 
 

Several significant and marginally significant three-way interactions emerged between LLN, 
distraction, and experience. More experienced drivers showed stronger cognitive load 
responses to distraction, with significantly higher pupil diameter variability (χ² (1) = 7.09, p = 
0.008) and more concentrated fixation patterns on navigation displays (χ² (1) = 4.99, p = 0.025). 
LLN's attention-reallocating eOects were consistently weaker for more experienced drivers, 
as evidenced by significant LLN × Experience interactions for time fixating on road (χ² (1) = 
5.97, p = 0.015) and road gaze rate (χ² (1) = 5.88, p = 0.015). Under distraction, the group 
diOerences in LLN's eOects on navigation attention metrics tended to shrink, as shown by 
marginal three-way interactions for navigation percent time fixating (χ² (1) = 3.28, p = 0.070) 
and navigation fixation rate (χ² (1) = 2.94, p = 0.086). 

 

Table 23 LLN × Distraction × Experience interaction e\ects on eye-tracking metrics 
(GLMM/LMM, n = 37 participants, 145 observations). Results shown as interaction coe\icients 

(β), χ², df, p-value, and 95% CI 

Dependent Variable Predictor(s) χ² Df p-value Sig. Estimate (β) 95% CI Direction 

Pupil diameter 
variability (SD, mm) 

Distraction × 
Experience 7.09 1 0.008 ** 0.04 [0.01, 0.06] Distraction's eZect is 

stronger for More Exp. 

Navigation fixation 
position variance 

Distraction × 
Experience 4.99 1 0.025 * -0.29 [-0.54, -0.04] Distraction's eZect is 

stronger for More Exp. 

Road gaze rate (gaze 
points/s) 

LLN × 
Experience 5.88 1 0.015 * 13.31 [2.55, 24.08] LLN's eZect is weaker 

for More Exp. 

Time fixating on road 
(%) 

LLN × 
Experience 5.97 1 0.015 * 6.57 [1.30, 11.84] LLN's eZect is weaker 

for More Exp. 

LLN × 
Distraction × 
Experience 

2.9 1 0.089 . -6.59 [-14.18, 0.99] 
With distraction, the 
group diZerence in 
LLN’s eZect shrinks 

Navigation percent time 
fixating (%) 

LLN × 
Distraction × 
Experience 

3.28 1 0.07 . -0.4 [-0.83, 0.03] 
With distraction, the 
group diZerence in 
LLN’s eZect shrinks 
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Navigation Fixation rate 
(fixations/s) 

LLN × 
Distraction × 
Experience 

2.94 1 0.086 . -0.08 [-0.17, 0.01] 
With distraction, the 
group diZerence in 
LLN’s eZect shrinks 

Navigation avg glance 
duration (ms) 

LLN × 
Distraction × 
Experience 

2.76 1 0.096 . -0.22 [-0.49, 0.04] 
With distraction, the 
group diZerence in 
LLN’s eZect shrinks 

Avg saccade velocity 
(pixels/s) 

Distraction × 
Experience 3.34 1 0.068 . 135.81 [-9.87, 281.48] Distraction's eZect is 

stronger for More Exp. 

Blink rate (blinks/s) Distraction × 
Experience 3.27 1 0.07 . 0.17 [-0.01, 0.36] Distraction's eZect is 

stronger for More Exp. 

 

6.6 Turn- by-Turn Analysis 

6.6.1 Turn-by-Turn Performance Cognitive Load Dynamics 

To investigate the transient e;ects of cognitive load obscured by session-level aggregation, we 
conducted two granular, turn-by-turn analyses. 

First, an event-related analysis compared n-back accuracy within standardized 50m–20m 
windows surrounding navigation error events versus correctly executed turns. As is shown in 
Fig.15, this within-subject comparison revealed that in the moments preceding a navigation error, 
n-back accuracy was significantly lower than before a correct turn (32.8% vs. 54.0%; p = 0.047, d 
= 0.54). Accuracy declined even more sharply immediately following the error (16.2% vs. 55.6%; 
p = 0.003, d = 1.13). 

Second, a contingent performance analysis examined the relationship between momentary n-
back performance and navigational success across all turns. Turns were categorized into tertiles 
(low, mid, high) based on each participant's relative n-back accuracy. Although not statistically 
significant (p = 0.0668), a strong trend emerged: turns where a participant's n-back accuracy was 
in their lowest tertile were associated with the highest navigation error rate (7.1%), compared with 
turns in the middle (3.9%) and highest tertiles (1.0%). 

 

Fig. 15 N-back Accuracy by Turn Type (Correct/Errored) and Distance to the Turn (50m before/ 
20m after) 
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Together, these exploratory findings indicate that while drivers can compensate for cognitive load 
overall, acute and transient periods of cognitive overload are strongly associated with navigation 
errors at critical moments. 

6.6.2 The Role of Intersection Complexity 

To further explore factors influencing navigation errors, an exploratory analysis was conducted 
on the role of intersection complexity. Intersections were categorized into three levels: Low (41 
intersections), Mid (5 intersections), and High (2 intersections) based on error rates at the 
intersections: on average 1.3% at low-complexity intersections, 9.0% at mid-complexity and 31.2% 
at high-complexity intersections. 

Lane-Level Navigation (LLN)'s e;ectiveness in reducing errors appeared to be moderated by 
complexity. The analysis of error rate reduction showed that the benefit of LLN was minimal at 
low-complexity intersections (-0.6 percentage points), moderate at mid-complexity (-6.0 
percentage points), and most pronounced at high-complexity intersections (-12.5 percentage 
points). However, these di;erences were not statistically significant (p > 0.05 for all complexity 
levels), likely due to the limited sample size, especially the high-complexity intersections with 
only 80 cases. These findings, while not conclusive, strongly suggest that the benefits of detailed 
guidance systems like LLN are more obvious in the most challenging scenarios. This highlights a 
valuable direction for future research with larger datasets to statistically confirm this interaction. 

 

 

Fig. 16 Error Counts by Intersection Complexity (left), and LLN E\ects on Navigation Error Rates 
by Error Type and Intersection Complexity (right) 
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7. Discussion 

7.1 The Unexpectedly Low Impact of Cognitive Distraction 

Contrary to H1, the auditory 2-back task did not significantly increase perception failures or 
missed turns across the drive, despite robust increases in subjective workload (Tables 2-4). More 
conservative driving behavior, such as decreased throttle input and reduced acceleration 
variability, suggests that participants compensated for increased cognitive demands by 
strategically prioritizing the primary task (Table 5). 

Gaze data provides a more complex picture (Table 6). Increased pupil diameter and concentrated 
gaze behaviors are consistent with elevated cognitive load (Palinko et al., 2010; Ringhand et al., 
2022). However, saccades were observed to become larger and faster, against typical pattern 
under distraction (Yuen et al., 2021). This pattern has also been reported by Savage et al. (2020), 
who found faster saccade peak velocities under high secondary cognitive task demand.  In our 
study, another likely explanation is methodological. Drivers were asked to press buttons on the 
steering wheel, which as well diverts their visual attention. This explains both the larger glances 
caused by the driver looking down at the buttons and the reduced fixation time on the navigation 
and road displays, suggesting impaired situational awareness. 

At the turn level, however, clear cognitive load e;ects emerged, as detailed in our event-related 
analysis (Section 6.6.1). The analysis of standardized 50m–20m windows around navigation 
errors showed substantial drops in n-back accuracy. Before errors, accuracy was markedly 
reduced, indicating increased load and limited cognitive resources. Accuracy declined further 
after errors, consistent with drivers disengaging from the secondary task to recover and reorient. 
These dynamics strongly suggest that participants strategically shed the n-back task to preserve 
driving performance, which is a known phenomenon in distraction research (Engström et al., 
2017; Kidd et al., 2016; Öztürk et al., 2023). 

Our contingent performance analysis (Section 6.6.1) reinforced this interpretation. Although not 
statistically significant (p = 0.0668), turns with the lowest relative n-back accuracy showed the 
highest error rate (7.1%) compared with middle (3.9%) and highest accuracy (1.0%). This 
indicates that aggregated performance measures may mask e;ects of cognitive load during 
critical navigation moments. This aligns with findings by Niezgoda et al. (2015): driving metrics 
such as speed and steering deviations may lack sensitivity to distinguish between varying levels 
of cognitive workload in realistic driving scenarios. 

Finally, the characteristics of our simulated environment likely moderated overall e;ects. As Fu 
et al. (2019) observed, distraction-related impairments become most evident in complex and 
demanding contexts. The simplified driving tasks used in the study lacked demanding scenarios, 
which may explain why error rates remained comparable to the no-distraction condition despite 
clear signs of cognitive load at the turn level. 
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7.2 LLN’s EWectiveness in Reducing Navigation Errors 

The central finding of this research is the significant main e;ect of lane-level navigation (LLN) in 
reducing interpretation failures and wrong turns, which contributed to an overall reduction in total 
navigation errors (Table 7). Interpretation failures accounted for 65% (55 out of 85) of cognitive 
errors, underscoring the critical role of LLN in mitigating these errors and improving navigation 
performance. Qualitative data indicates that participants frequently experienced confusion at 
complex intersections, misjudged turning distances, or struggled to connect the abstract map 
with the real-world scene (Jalayer et al., 2016; Morris et al., 2024). By providing detailed visual 
instructions that highlight the exact lane for a maneuver, the LLN appears to address this core 
problem. The finding aligned with study of Lin et al. (2010) where they found sub-window on 
navigation display decreases navigation errors by 50% by highlighting upcoming intersection in a 
larger scale. 

LLN also demonstrated notable e;ects in reducing decision-making failures and risky turns, 
partially supporting H3. This relationship is likely indirect, as risky turns typically arise from late 
corrections following a moment of confusion or interpretation di;iculty (14 out of 16 cases). By 
improving the clarity of navigation information, LLN allows for earlier and more confident 
situation awareness. This gives drivers more time to prepare and execute maneuvers smoothly, 
reducing the likelihood of the risky, last-second actions (Ucar et al., 2023). As evidence, LLN 
showed positive e;ects on driving performance by reducing wrong way driving duration (Table 9), 
suggesting better navigation performance without compromising vehicle control. 

Gaze behaviors revealed that LLN significantly reallocates attention from road to navigation 
screen (Table10). Descriptive statistics showed that this change remained within an acceptable 
range: the proportion of time spent fixating on the road decreased from 60.48% to 58.67%, 
whereas fixations on the navigation screen increased from 3.88% to 5.06%. Drivers using LLN 
also exhibited a di;erent information processing strategy, with more frequent longer fixations on 
the navigation display for information search, suggesting increased visual demand from 
navigation (Yared et al., 2024). Importantly, increased attention to LLN was not detrimental as 
enhanced focus on the navigation screen provides drivers with more opportunities to understand 
the map and thus help reduce interpretation failures. Prior research confirms that necessary 
glances away from the road can enhance situational awareness (Kircher et al., 2020), which in 
this study translated to improved navigational performance and shorter wrong-way durations. 
Additionally, gaze data revealed slightly more dispersed visual scanning (fixation position 
variance increased from 0.009 to 0.011), likely due to the closer view of the map in LLN requiring 
wider scanning for the same turn. 

Finally, LLN significantly enhanced subjective user experience across multiple dimensions (Table 
8). Participants rated LLN as more exciting, interesting, inventive, and leading-edge, resulting in 
higher overall attractiveness and hedonic quality. 

 

7.3 The Interplay of Distraction and Level of Map Guidance Detail 

Due to the limitations of the Wilcoxon signed-rank test, interaction e;ects could not be assessed. 
Therefore, a supplemental GLMM analysis was conducted to examine interaction e;ects 
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between distraction and the level of map detail guidance. This analysis revealed no significant 
e;ects on any of the navigation error rate measures, indicating LLN’s benefits on navigation 
performance are largely consistent regardless of distraction. 

In contrast, significant interactions emerged in driving behavior and gaze data (Tables 11–12). For 
driving behavior, wrong-way duration showed a significant interaction, where LLN reduced 
duration without distraction but increased it under distraction. Similarly, sudden steering 
changes showed a marginal interaction, suggesting LLN’s control benefits may diminish under 
cognitive load. 

For gaze behavior, LLN mitigated distraction’s negative impact on road monitoring, reflected in 
interaction e;ects on road fixation and gaze count percent. Conversely, distraction attenuated 
LLN’s attention-reallocation toward the navigation screen. Saccade dynamics also interacted: 
LLN reversed the distraction-related increase in saccade amplitude and showed a marginal 
reduction in saccade velocity increases. Together, these results indicate that while LLN 
consistently improves navigation performance, its e;ects on vehicle control and attention 
allocation are context-dependent under cognitive load, mitigating some distraction costs (road 
monitoring) while in certain cases, reversing control benefits (wrong way duration and sudden 
steering). 

 

7.4 LLN’s EWect on DiWerent Experience Groups 

Subgroup analyses consistently showed that more experienced drivers benefited most from LLN. 
For this group, LLN reduced wrong turns, interpretation failures, and total navigation errors 
(Tables 13), while it had no significant positive e;ect for less experienced drivers. In contrast, LLN 
tended to increase missed turns and perception failures among less experienced drivers (Table 
14). This di;erence is reflected in subjective measures. Less experienced drivers reported higher 
overall workload and greater e;ort when using LLN (Table 18), while more experienced drivers 
experienced reduced workload (Table 16) and found LLN significantly clearer and more 
supportive in addition to hedonic benefits (Table 15). 

Gaze behavior further clarified these e;ects. Both experience groups shifted attention from the 
road to the navigation screen, but di;erences emerged in cognitive flexibility. For more 
experienced drivers, attentional metrics showed an interaction between distraction and LLN 
(Table 19): under distraction, the LLN-induced increase in attention to the navigation screen was 
reduced. This indicates their strategic adaptation to engage with LLN when undistracted and to 
reallocate cognitive resources when needed. Less experienced drivers, however, showed more 
rigid attentional allocation, with reduced road monitoring under LLN (Table 20), suggesting that 
LLN may impose excessive cognitive demands for them. Baseline data confirmed this: less 
experienced drivers spent 3.9% more time fixating on the road and were more a;ected by LLN-
induced attention shifts (2.3× larger reduction in road fixation) than more experienced drivers. 

For more experienced drivers, LLN increased glance duration on the navigation screen, 
suggesting adoption of a di;erent information processing strategy with deeper engagement in 
visual information. Less experienced drivers did not adopt this strategy. LLN also increased 
fixation position variance on the navigation screen for both groups, reflecting broader visual 
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scanning, and this e;ect was more pronounced in less experienced drivers. However, at baseline, 
more experienced drivers naturally exhibited broader gaze patterns than less experienced drivers, 
suggesting that driving experience supports flexible attention allocation (Inagaki et al., 2020). 

These results highlight that driver experience can strongly influences how LLN are used and 
perceived. Navigation interfaces should therefore consider di;erences in experience and 
cognitive capacity, supporting more e;ective attention allocation and information processing for 
diverse driver populations. For example, LLN could be provided as an optional feature that users 
can toggle on or o; according to their preferences. 

 

7.5 Limitations and Future Work 

This study has several limitations that should be considered when interpreting the findings. First, 
the use of a low fidelity driving simulator with fixed motion base restricted the evaluation of lateral 
position measures (e.g., lane position, lane change), which are critical for understanding the 
e;ect of LLN on vehicle control and safety. The simulator's limited field of view and absence of 
peripheral vision may also have a;ected drivers' situational awareness and decision-making 
processes. However, the state-of-the-art simulator provided a controlled environment where 
navigation errors could be systematically induced and measured. This would not be feasible to 
achieve safely and ethically in real-world driving conditions. 

Second, the study excluded several real-world navigation challenges, such as surrounding tra;ic, 
pedestrians, tra;ic signals, and environmental conditions, potentially simplifying the cognitive 
demands of navigation. However, this controlled setting was necessary to isolate the 
cognitive processes underlying navigation errors and to focus on the e;ects of the study’s 
independent variables without the confounding influence of external factors. In addition, 
navigation errors categories (e.g., turning from or into the wrong lane, turning into the wrong 
direction on undivided roads) were excluded, as they were primarily influenced by limited haptic 
feedback and steering control challenges, rather than issues with navigational awareness. These 
exclusions, however, enabled focused analysis the most frequent and safety-critical navigation 
errors that LLN has potential to address. 

Third, the study only examined the visual aspects of LLN. Auditory guidance, as an essential 
component of in-vehicle navigation, was deliberately excluded to isolate visual e;ects. 

Looking forward, future research should validate these findings in higher-fidelity simulators or on-
road studies to enhance ecological validity. Comparative studies are also needed to examine 
pure visual LLN guidance with multimodal approaches that combine auditory and visual cues. 
Further investigations should refine specific design elements of LLN, such as the optimal zoom 
level, timing of presentation, and intersection selection criteria, to maximize e;ectiveness. 
Additionally, our subgroup findings highlight the need for developing adaptive systems that tailor 
navigational information to di;erent levels of driver experience and cognitive load. Importantly, 
HMI research should address the trade-o;s between the navigational benefits and attentional 
costs of detailed navigation displays, aiming to design systems that are not only user-friendly but 
also prioritize safety. 
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8. Conclusion 

This study systematically investigated the cognitive mechanisms underlying navigation errors 
and the e;ectiveness of lane-level navigation (LLN) in mitigating them. Through a comprehensive 
analysis of 64 navigation errors across 160 driving sessions, we developed a framework mapping 
observable navigation error to perception, interpretation, and decision-making failures. Our 
findings demonstrate that LLN significantly reduces interpretation failures and wrong turns, 
contributing to an overall 40% reduction in total navigation errors. Cognitive distraction increased 
workload and altered gaze behavior, which sometimes reduced LLN’s e;ectiveness. However, 
these changes did not consistently lead to higher navigation error rates. 

Crucially, these benefits were not uniform. Experienced drivers gained substantial navigation 
performance improvements and reported cognitive workload when using LLN. However, less 
experienced drivers experienced increased workload with limited benefits, highlighting the 
importance of considering driver experience in navigation system design.  

Together, these findings advance understanding of the cognitive processes underlying navigation 
errors and provide evidence that LLN can improve performance under certain conditions. They 
also underscore the importance of designing adaptive navigation interfaces that tailor complexity 
to driver experience and situational demands, balancing navigational support with attentional 
costs.  
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Appendices 

Appendix A: Driving Routes 

Route A spans 1.8 km, with 7 right turns and 5 left turns. Intersection A2 features two closed 
paths and intersection A5 features multiple roads intersected, which are designed to induce 
more navigation errors. 

              
https://www.google.nl/maps/dir/42.332027,-83.0527741/42.3365553,-83.0539089/@42.3335151,-83.0581646,1510m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-
83.0532923!2d42.3340935!3s0x883b2d36c33659d9:0xb6f1bfa13ca5cc1!3m4!1m2!1d-83.0507964!2d42.334108!3s0x883b2d31164ea405:0xb3e143ce79b80b33!3m4!1m2!1d-
83.0552264!2d42.3348934!3s0x883b2d3666cef7e7:0x15342ae9e159266e!3m4!1m2!1d-83.0579918!2d42.3354108!3s0x883b2d49e3ed3f6f:0xca9eba2dc02d00cd!3m4!1m2!1d-
83.0561088!2d42.3369352!3s0x883b2d35c220903d:0x8b8143185f89471!1m0!2m3!6e0!7e2!8j1746227100!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDcxNi4wIKXMDSoASAFQAw%3D%3D 

    

Route B spans 1.9 km, with 7 right turns and 5 left turns. Intersection B5 and B9 feature multiple 
roads intersected, which are designed to induce more navigation errors. 

           
https://www.google.nl/maps/dir/42.3357612,-83.0537679/42.3316761,-83.0513659/@42.3334828,-83.0525302,16.99z/data=!4m34!4m33!1m30!3m4!1m2!1d-
83.052317!2d42.3362849!3s0x883b2d33f8eef611:0xfba62cf4a91e09c4!3m4!1m2!1d-83.0500484!2d42.3346118!3s0x883b2d310b8cd80b:0x983ed682448677d0!3m4!1m2!1d-
83.0476371!2d42.3345753!3s0x883b2d31e667994d:0xbd4b95b58d6d997!3m4!1m2!1d-83.0470707!2d42.331929!3s0x883b2d3026bc00bf:0xe2c61f40c9bf8d86!3m4!1m2!1d-
83.0491774!2d42.3311226!3s0x883b2d307ae9ae73:0x468b60b84231d635!3m4!1m2!1d-
83.050803!2d42.3315964!3s0x883b2d30985747bb:0x8b43432b7732a860!1m0!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D 

https://www.google.nl/maps/dir/42.332027,-83.0527741/42.3365553,-83.0539089/@42.3335151,-83.0581646,1510m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0532923!2d42.3340935!3s0x883b2d36c33659d9:0xb6f1bfa13ca5cc1!3m4!1m2!1d-83.0507964!2d42.334108!3s0x883b2d31164ea405:0xb3e143ce79b80b33!3m4!1m2!1d-83.0552264!2d42.3348934!3s0x883b2d3666cef7e7:0x15342ae9e159266e!3m4!1m2!1d-83.0579918!2d42.3354108!3s0x883b2d49e3ed3f6f:0xca9eba2dc02d00cd!3m4!1m2!1d-83.0561088!2d42.3369352!3s0x883b2d35c220903d:0x8b8143185f89471!1m0!2m3!6e0!7e2!8j1746227100!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDcxNi4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.332027,-83.0527741/42.3365553,-83.0539089/@42.3335151,-83.0581646,1510m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0532923!2d42.3340935!3s0x883b2d36c33659d9:0xb6f1bfa13ca5cc1!3m4!1m2!1d-83.0507964!2d42.334108!3s0x883b2d31164ea405:0xb3e143ce79b80b33!3m4!1m2!1d-83.0552264!2d42.3348934!3s0x883b2d3666cef7e7:0x15342ae9e159266e!3m4!1m2!1d-83.0579918!2d42.3354108!3s0x883b2d49e3ed3f6f:0xca9eba2dc02d00cd!3m4!1m2!1d-83.0561088!2d42.3369352!3s0x883b2d35c220903d:0x8b8143185f89471!1m0!2m3!6e0!7e2!8j1746227100!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDcxNi4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.332027,-83.0527741/42.3365553,-83.0539089/@42.3335151,-83.0581646,1510m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0532923!2d42.3340935!3s0x883b2d36c33659d9:0xb6f1bfa13ca5cc1!3m4!1m2!1d-83.0507964!2d42.334108!3s0x883b2d31164ea405:0xb3e143ce79b80b33!3m4!1m2!1d-83.0552264!2d42.3348934!3s0x883b2d3666cef7e7:0x15342ae9e159266e!3m4!1m2!1d-83.0579918!2d42.3354108!3s0x883b2d49e3ed3f6f:0xca9eba2dc02d00cd!3m4!1m2!1d-83.0561088!2d42.3369352!3s0x883b2d35c220903d:0x8b8143185f89471!1m0!2m3!6e0!7e2!8j1746227100!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDcxNi4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.332027,-83.0527741/42.3365553,-83.0539089/@42.3335151,-83.0581646,1510m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0532923!2d42.3340935!3s0x883b2d36c33659d9:0xb6f1bfa13ca5cc1!3m4!1m2!1d-83.0507964!2d42.334108!3s0x883b2d31164ea405:0xb3e143ce79b80b33!3m4!1m2!1d-83.0552264!2d42.3348934!3s0x883b2d3666cef7e7:0x15342ae9e159266e!3m4!1m2!1d-83.0579918!2d42.3354108!3s0x883b2d49e3ed3f6f:0xca9eba2dc02d00cd!3m4!1m2!1d-83.0561088!2d42.3369352!3s0x883b2d35c220903d:0x8b8143185f89471!1m0!2m3!6e0!7e2!8j1746227100!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDcxNi4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3357612,-83.0537679/42.3316761,-83.0513659/@42.3334828,-83.0525302,16.99z/data=!4m34!4m33!1m30!3m4!1m2!1d-83.052317!2d42.3362849!3s0x883b2d33f8eef611:0xfba62cf4a91e09c4!3m4!1m2!1d-83.0500484!2d42.3346118!3s0x883b2d310b8cd80b:0x983ed682448677d0!3m4!1m2!1d-83.0476371!2d42.3345753!3s0x883b2d31e667994d:0xbd4b95b58d6d997!3m4!1m2!1d-83.0470707!2d42.331929!3s0x883b2d3026bc00bf:0xe2c61f40c9bf8d86!3m4!1m2!1d-83.0491774!2d42.3311226!3s0x883b2d307ae9ae73:0x468b60b84231d635!3m4!1m2!1d-83.050803!2d42.3315964!3s0x883b2d30985747bb:0x8b43432b7732a860!1m0!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3357612,-83.0537679/42.3316761,-83.0513659/@42.3334828,-83.0525302,16.99z/data=!4m34!4m33!1m30!3m4!1m2!1d-83.052317!2d42.3362849!3s0x883b2d33f8eef611:0xfba62cf4a91e09c4!3m4!1m2!1d-83.0500484!2d42.3346118!3s0x883b2d310b8cd80b:0x983ed682448677d0!3m4!1m2!1d-83.0476371!2d42.3345753!3s0x883b2d31e667994d:0xbd4b95b58d6d997!3m4!1m2!1d-83.0470707!2d42.331929!3s0x883b2d3026bc00bf:0xe2c61f40c9bf8d86!3m4!1m2!1d-83.0491774!2d42.3311226!3s0x883b2d307ae9ae73:0x468b60b84231d635!3m4!1m2!1d-83.050803!2d42.3315964!3s0x883b2d30985747bb:0x8b43432b7732a860!1m0!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3357612,-83.0537679/42.3316761,-83.0513659/@42.3334828,-83.0525302,16.99z/data=!4m34!4m33!1m30!3m4!1m2!1d-83.052317!2d42.3362849!3s0x883b2d33f8eef611:0xfba62cf4a91e09c4!3m4!1m2!1d-83.0500484!2d42.3346118!3s0x883b2d310b8cd80b:0x983ed682448677d0!3m4!1m2!1d-83.0476371!2d42.3345753!3s0x883b2d31e667994d:0xbd4b95b58d6d997!3m4!1m2!1d-83.0470707!2d42.331929!3s0x883b2d3026bc00bf:0xe2c61f40c9bf8d86!3m4!1m2!1d-83.0491774!2d42.3311226!3s0x883b2d307ae9ae73:0x468b60b84231d635!3m4!1m2!1d-83.050803!2d42.3315964!3s0x883b2d30985747bb:0x8b43432b7732a860!1m0!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3357612,-83.0537679/42.3316761,-83.0513659/@42.3334828,-83.0525302,16.99z/data=!4m34!4m33!1m30!3m4!1m2!1d-83.052317!2d42.3362849!3s0x883b2d33f8eef611:0xfba62cf4a91e09c4!3m4!1m2!1d-83.0500484!2d42.3346118!3s0x883b2d310b8cd80b:0x983ed682448677d0!3m4!1m2!1d-83.0476371!2d42.3345753!3s0x883b2d31e667994d:0xbd4b95b58d6d997!3m4!1m2!1d-83.0470707!2d42.331929!3s0x883b2d3026bc00bf:0xe2c61f40c9bf8d86!3m4!1m2!1d-83.0491774!2d42.3311226!3s0x883b2d307ae9ae73:0x468b60b84231d635!3m4!1m2!1d-83.050803!2d42.3315964!3s0x883b2d30985747bb:0x8b43432b7732a860!1m0!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3357612,-83.0537679/42.3316761,-83.0513659/@42.3334828,-83.0525302,16.99z/data=!4m34!4m33!1m30!3m4!1m2!1d-83.052317!2d42.3362849!3s0x883b2d33f8eef611:0xfba62cf4a91e09c4!3m4!1m2!1d-83.0500484!2d42.3346118!3s0x883b2d310b8cd80b:0x983ed682448677d0!3m4!1m2!1d-83.0476371!2d42.3345753!3s0x883b2d31e667994d:0xbd4b95b58d6d997!3m4!1m2!1d-83.0470707!2d42.331929!3s0x883b2d3026bc00bf:0xe2c61f40c9bf8d86!3m4!1m2!1d-83.0491774!2d42.3311226!3s0x883b2d307ae9ae73:0x468b60b84231d635!3m4!1m2!1d-83.050803!2d42.3315964!3s0x883b2d30985747bb:0x8b43432b7732a860!1m0!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
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Route C spans 1.8 km, with 6 right turns, 5 left turns and 1 U-turn. Intersection C2 and C10 
feature multiple closed paths, which are designed to induce more navigation errors. 

          
https://www.google.nl/maps/dir/42.3332698,-83.0452856/42.3388473,-83.0505041/@42.3361914,-83.0492403,17.07z/data=!4m23!4m22!1m15!3m4!1m2!1d-
83.047006!2d42.3354048!3s0x883b2d2df8d28a0f:0xf38bd5902d4F2b8!3m4!1m2!1d-
83.0485974!2d42.3353295!3s0x883b2d322083dced:0x169d2eced61c8940!3m4!1m2!1d-
83.0480981!2d42.3369142!3s0x883b2d324102fc25:0xdb2606c192ed188c!1m0!2m3!6e0!7e2!8j1749457800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAF
QAw%3D%3D 

 

Route D spans 1.7 km, with 4 right turns, 7 left turns and 1 U-turn. Intersection D1 features two 
closed paths and intersection D10 features multiple roads intersected, which are designed to 
induce more navigation errors. 

 
https://www.google.nl/maps/dir/42.3317154,-83.0437393/42.3308925,-83.0508466/@42.3321336,-83.0488817,994m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-
83.0446023!2d42.3315047!3s0x883b2d2f98df59d5:0x9afb11197f9e777c!3m4!1m2!1d-83.0441787!2d42.3314162!3s0x883b2d2f9efa82fd:0xb9f9cbd44223b14c!3m4!1m2!1d-
83.0429734!2d42.333334!3s0x883b2d2ee7d78879:0x5ebe82a7e72a6f34!3m4!1m2!1d-
83.0470701!2d42.3309181!3s0x883b2d3002ddc927:0x22e389a06e4e490b!3m4!1m2!1d-
83.0499372!2d42.3316728!3s0x883b2d308bfb4181:0x80295edaf6d821fd!1m0!2m3!6e0!7e2!8j1746154800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYyMy4yIKXMDSoASAFQ
Aw%3D%3D 

https://www.google.nl/maps/dir/42.3332698,-83.0452856/42.3388473,-83.0505041/@42.3361914,-83.0492403,17.07z/data=!4m23!4m22!1m15!3m4!1m2!1d-83.047006!2d42.3354048!3s0x883b2d2df8d28a0f:0xf38bd5902d4ff2b8!3m4!1m2!1d-83.0485974!2d42.3353295!3s0x883b2d322083dced:0x169d2eced61c8940!3m4!1m2!1d-83.0480981!2d42.3369142!3s0x883b2d324102fc25:0xdb2606c192ed188c!1m0!2m3!6e0!7e2!8j1749457800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3332698,-83.0452856/42.3388473,-83.0505041/@42.3361914,-83.0492403,17.07z/data=!4m23!4m22!1m15!3m4!1m2!1d-83.047006!2d42.3354048!3s0x883b2d2df8d28a0f:0xf38bd5902d4ff2b8!3m4!1m2!1d-83.0485974!2d42.3353295!3s0x883b2d322083dced:0x169d2eced61c8940!3m4!1m2!1d-83.0480981!2d42.3369142!3s0x883b2d324102fc25:0xdb2606c192ed188c!1m0!2m3!6e0!7e2!8j1749457800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3332698,-83.0452856/42.3388473,-83.0505041/@42.3361914,-83.0492403,17.07z/data=!4m23!4m22!1m15!3m4!1m2!1d-83.047006!2d42.3354048!3s0x883b2d2df8d28a0f:0xf38bd5902d4ff2b8!3m4!1m2!1d-83.0485974!2d42.3353295!3s0x883b2d322083dced:0x169d2eced61c8940!3m4!1m2!1d-83.0480981!2d42.3369142!3s0x883b2d324102fc25:0xdb2606c192ed188c!1m0!2m3!6e0!7e2!8j1749457800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3332698,-83.0452856/42.3388473,-83.0505041/@42.3361914,-83.0492403,17.07z/data=!4m23!4m22!1m15!3m4!1m2!1d-83.047006!2d42.3354048!3s0x883b2d2df8d28a0f:0xf38bd5902d4ff2b8!3m4!1m2!1d-83.0485974!2d42.3353295!3s0x883b2d322083dced:0x169d2eced61c8940!3m4!1m2!1d-83.0480981!2d42.3369142!3s0x883b2d324102fc25:0xdb2606c192ed188c!1m0!2m3!6e0!7e2!8j1749457800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3332698,-83.0452856/42.3388473,-83.0505041/@42.3361914,-83.0492403,17.07z/data=!4m23!4m22!1m15!3m4!1m2!1d-83.047006!2d42.3354048!3s0x883b2d2df8d28a0f:0xf38bd5902d4ff2b8!3m4!1m2!1d-83.0485974!2d42.3353295!3s0x883b2d322083dced:0x169d2eced61c8940!3m4!1m2!1d-83.0480981!2d42.3369142!3s0x883b2d324102fc25:0xdb2606c192ed188c!1m0!2m3!6e0!7e2!8j1749457800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYxMS4wIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3317154,-83.0437393/42.3308925,-83.0508466/@42.3321336,-83.0488817,994m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0446023!2d42.3315047!3s0x883b2d2f98df59d5:0x9afb11197f9e777c!3m4!1m2!1d-83.0441787!2d42.3314162!3s0x883b2d2f9efa82fd:0xb9f9cbd44223b14c!3m4!1m2!1d-83.0429734!2d42.333334!3s0x883b2d2ee7d78879:0x5ebe82a7e72a6f34!3m4!1m2!1d-83.0470701!2d42.3309181!3s0x883b2d3002ddc927:0x22e389a06e4e490b!3m4!1m2!1d-83.0499372!2d42.3316728!3s0x883b2d308bfb4181:0x80295edaf6d821fd!1m0!2m3!6e0!7e2!8j1746154800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYyMy4yIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3317154,-83.0437393/42.3308925,-83.0508466/@42.3321336,-83.0488817,994m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0446023!2d42.3315047!3s0x883b2d2f98df59d5:0x9afb11197f9e777c!3m4!1m2!1d-83.0441787!2d42.3314162!3s0x883b2d2f9efa82fd:0xb9f9cbd44223b14c!3m4!1m2!1d-83.0429734!2d42.333334!3s0x883b2d2ee7d78879:0x5ebe82a7e72a6f34!3m4!1m2!1d-83.0470701!2d42.3309181!3s0x883b2d3002ddc927:0x22e389a06e4e490b!3m4!1m2!1d-83.0499372!2d42.3316728!3s0x883b2d308bfb4181:0x80295edaf6d821fd!1m0!2m3!6e0!7e2!8j1746154800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYyMy4yIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3317154,-83.0437393/42.3308925,-83.0508466/@42.3321336,-83.0488817,994m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0446023!2d42.3315047!3s0x883b2d2f98df59d5:0x9afb11197f9e777c!3m4!1m2!1d-83.0441787!2d42.3314162!3s0x883b2d2f9efa82fd:0xb9f9cbd44223b14c!3m4!1m2!1d-83.0429734!2d42.333334!3s0x883b2d2ee7d78879:0x5ebe82a7e72a6f34!3m4!1m2!1d-83.0470701!2d42.3309181!3s0x883b2d3002ddc927:0x22e389a06e4e490b!3m4!1m2!1d-83.0499372!2d42.3316728!3s0x883b2d308bfb4181:0x80295edaf6d821fd!1m0!2m3!6e0!7e2!8j1746154800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYyMy4yIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3317154,-83.0437393/42.3308925,-83.0508466/@42.3321336,-83.0488817,994m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0446023!2d42.3315047!3s0x883b2d2f98df59d5:0x9afb11197f9e777c!3m4!1m2!1d-83.0441787!2d42.3314162!3s0x883b2d2f9efa82fd:0xb9f9cbd44223b14c!3m4!1m2!1d-83.0429734!2d42.333334!3s0x883b2d2ee7d78879:0x5ebe82a7e72a6f34!3m4!1m2!1d-83.0470701!2d42.3309181!3s0x883b2d3002ddc927:0x22e389a06e4e490b!3m4!1m2!1d-83.0499372!2d42.3316728!3s0x883b2d308bfb4181:0x80295edaf6d821fd!1m0!2m3!6e0!7e2!8j1746154800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYyMy4yIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3317154,-83.0437393/42.3308925,-83.0508466/@42.3321336,-83.0488817,994m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0446023!2d42.3315047!3s0x883b2d2f98df59d5:0x9afb11197f9e777c!3m4!1m2!1d-83.0441787!2d42.3314162!3s0x883b2d2f9efa82fd:0xb9f9cbd44223b14c!3m4!1m2!1d-83.0429734!2d42.333334!3s0x883b2d2ee7d78879:0x5ebe82a7e72a6f34!3m4!1m2!1d-83.0470701!2d42.3309181!3s0x883b2d3002ddc927:0x22e389a06e4e490b!3m4!1m2!1d-83.0499372!2d42.3316728!3s0x883b2d308bfb4181:0x80295edaf6d821fd!1m0!2m3!6e0!7e2!8j1746154800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYyMy4yIKXMDSoASAFQAw%3D%3D
https://www.google.nl/maps/dir/42.3317154,-83.0437393/42.3308925,-83.0508466/@42.3321336,-83.0488817,994m/data=!3m1!1e3!4m33!4m32!1m25!3m4!1m2!1d-83.0446023!2d42.3315047!3s0x883b2d2f98df59d5:0x9afb11197f9e777c!3m4!1m2!1d-83.0441787!2d42.3314162!3s0x883b2d2f9efa82fd:0xb9f9cbd44223b14c!3m4!1m2!1d-83.0429734!2d42.333334!3s0x883b2d2ee7d78879:0x5ebe82a7e72a6f34!3m4!1m2!1d-83.0470701!2d42.3309181!3s0x883b2d3002ddc927:0x22e389a06e4e490b!3m4!1m2!1d-83.0499372!2d42.3316728!3s0x883b2d308bfb4181:0x80295edaf6d821fd!1m0!2m3!6e0!7e2!8j1746154800!3e0?hl=en&entry=ttu&g_ep=EgoyMDI1MDYyMy4yIKXMDSoASAFQAw%3D%3D
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Appendix B: Informed Consent Form 

Study Title: Eye-tracking to understand Navigation Behaviors  

Researcher: Xuerong Cai, MSc Student, TU Delft Faculty of Industrial Design Engineering 
Collaborating Organization: TomTom B.V. 

 

You are being invited to participate in a research study titled Eye-tracking to understand 
Navigation Behaviors. This study is being done by Xuerong Cai from the TU Delft, in 
collaboration with TomTom. 

The purpose of this research study is to investigate how diYerent types of navigation display, 
and the presence of cognitive distractions influence navigation behaviour and decision-
making while driving. Your participation will take approximately 30 minutes. The data will be 
used for scientific publications, master’s thesis evaluation, presentations, and potentially to 
inform future navigation interface development by TomTom. 

We will be asking you to drive in a simulator equipped with a navigation display and eye-tracking 
device, follow turn-by-turn instructions, and complete occasional cognitive tasks (2-back test), 
as well as fill out short questionnaires about your experience after each simulated route. 

As with any online activity the risk of a breach is always possible. To the best of our ability your 
answers in this study will remain confidential. All collected data will be de-identified and 
anonymized, stored on secure encrypted servers at TU Delft, and access to raw data will be 
restricted to the research team. As part of TU Delft’s Open Science commitment, certain de-
identified datasets—including eye-tracking recordings and simulator logs—will be made 
publicly available in institutional repository or paper publication. No personally identifiable 
information will be included in any publicly shared dataset. 

Your participation in this study is entirely voluntary, and you can withdraw at any time. You are 
free to omit any questions. Note that once anonymized data is aggregated into group results, it 
will no longer be possible to remove your specific data. 

 

 

 

 

 



 60 

 

 PLEASE TICK THE APPROPRIATE BOXES Yes No 

A: GENERAL AGREEMENT – RESEARCH GOALS, PARTICPANT TASKS AND 
VOLUNTARY PARTICIPATION 

  

1. I have read and understood the study information dated [DD/MM/YYYY], or it has been 
read to me. I have been able to ask questions about the study and my questions have been 
answered to my satisfaction.  

☐ ☐ 

2. I consent voluntarily to be a participant in this study and understand that I can refuse to 
answer questions, and I can withdraw from the study at any time, without having to give a 
reason. I understand that I may request the deletion of my data up to 21 calendar days 
after my session. I will be reminded of this deadline by email after participation. After this 
21-day period, my data will be anonymized and/or aggregated, and it will no longer be 
possible to identify or remove my individual data from the dataset. 

☐ ☐ 

3. I understand that taking part in the study involves: driving in a simulator, while my eye 
movements and driving performance are recorded; wearing an eye-tracker (Pupil Labs 
Neon); responding to brief cognitive tasks (2-back); and completing short self-report 
questionnaires (NASA-TLX, UEQ, and error reflection). 

☐ ☐ 

4. I understand that the study will end when I have completed all four simulated driving 
conditions, lasting approximately 30 minutes in total. 

  

B: POTENTIAL RISKS OF PARTICIPATING (INCLUDING DATA PROTECTION)   

5. I understand that potential risks include mild visual fatigue or discomfort from the 
simulator or eye-tracker, which can be mitigated by taking breaks or stopping the session. 

☐ ☐ 

6. I understand that taking part in the study also involves collecting specific personally 
identifiable information (PII): email contact for scheduling (not linked to data) and 
personally identifiable research data (PIRD): eye movement recordings, simulator video 
recordings. There is a minimal risk of identity re-identification, which will be mitigated 
through strict data management. 

☐ ☐ 

7. I understand that the following steps will be taken to minimize the threat of a data 
breach: pseudonymization, encrypted file storage, restricted access to raw recordings, 
and de-identification of all data before analysis. 

☐ ☐ 

8. I understand that personal information collected about me that can identify me, such as 
my email or visual data, will not be shared beyond the research team. 

☐ ☐ 

9. I understand that the identifiable personal data I provide will be destroyed: at the end of 
the study after final analysis and publication, or no later than 12 months after data 
collection is complete. 

☐ ☐ 

C: RESEARCH PUBLICATION, DISSEMINATION AND APPLICATION   
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 PLEASE TICK THE APPROPRIATE BOXES Yes No 

10. I understand that after the research study the de-identified information I provide will be 
used for: scientific journal publications, Master’s thesis defense, conference 
presentations, and may inform interface or product development by TomTom. 

☐ ☐ 

11. I agree that my responses, views or other input can be quoted anonymously in research 
outputs. 

☐ ☐ 

D: (LONGTERM) DATA STORAGE, ACCESS AND REUSE   

12. I give permission for the de-identified eye-tracking data, driving behaviour logs, 
simulator video recordings, and questionnaire responses that I provide to be archived in 
TU Delft’s open-access research data repository, and used in public thesis publications, 
academic presentations, and future research and teaching. 

☐ ☐ 

13. I understand that access to this repository is open to the public, in accordance with TU 
Delft’s Open Science policy. No personally identifiable information will be shared, and all 
data will be de-identified before being made accessible. 

☐ ☐ 

 

 

 
Signatures 

 

__________________________              _________________________ ________  

Name of participant [printed]  Signature   Date 

 

                  

I, as researcher, have accurately read out the information sheet to the potential participant 
and, to the best of my ability, ensured that the participant understands to what they are 
freely consenting. 

 

_Xuerong Cai______________  __________________         _02-05-2025____  

Researcher name [printed]  Signature                 Date 
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Appendix C: NASA-LTX Questionnaire 

How do you feel about the driving task completed just now? 

Answer by a scale from 1 (Very Low) to 21 (Very High) 

- How mentally demanding was the task? 
- How physically demanding was the task? 
- How hurried or rushed was the pace of the task? 
- How successful were you in accomplishing what you were asked to do? 
- How hard did you have to work to accomplish your level of performance? 
- How insecure, discouraged, irritated, stressed and annoyed were you? 

 

Appendix D: User Experience Questionnaire 

How do you feel about the navigation system during the driving session? 

Answer by a scale from 1 (Negative) to 7 (Positive) 

- Obstructive/Supportive 
- Complicated/Easy 
- Ine;icient/E;icient 
- Confusing/Clear 
- Boring/Exciting 
- Not interesting/Interesting 
- Conventional/Inventive 
- Usual/Leading Edge 

 

Appendix E: Error Report Questionnaire 

1. Can you recall making any mistakes following the planned route during this drive? 
- Yes, I missed a turn 
- Yes, I made a wrong turn 
- Yes, I made a risky/ abrupt turn 
- Yes, I drove on wrong way 
- Yes, something else (please specify) 
- No 
2. What do you think caused the mistake? 
- I didn’t notice the upcoming intersection or turning instruction 
- I misunderstood the turning instruction 
- I understood everything but acted too late or wrongly 
- I’m not used to driving in the simulator 
- Other reason (please specify) 
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Appendix F: Eye-Tracking Metrics 

Eye-tracking data was recorded using a Pupil Labs Neon wearable eye-tracker at 200 Hz and 
processed using Pupil Labs software and custom Python scripts. The following metrics were 
calculated: 

General Event Identification 

Fixations, Saccades, and Blinks: These events were identified from raw gaze data using the 
default algorithms and parameters within the Pupil Labs software. 

Areas of Interest (AOIs): Gaze data was mapped to two primary AOIs: the navigation screen 
and the forward road view. 

Fixation Metrics (per AOI) 

Fixation Rate (fixations/s): The number of fixations occurring per second within an AOI. 

Percent Time Fixating (%): The percentage of the total session time that the participant 
spent fixating within an AOI. 

Average Fixation Duration (ms): The mean duration of individual fixations within an AOI. 

Fixation Position Variance (normalized): The mean variance of normalized X and Y fixation 
coordinates on an AOI, indicating the spread of visual attention. 

Fixation Count Percent (%): The percentage of fixations within an AOI among all the 
fixations during a session. 

Saccade Metrics 

Saccade Rate (saccades/s): The total number of saccades per second. 

Average Saccade Duration (ms): The mean duration of a saccade. 

Average Saccade Amplitude (degrees): The mean angular distance covered by a saccade. 

Average Saccade Velocity (pixels/s): The mean velocity of saccades. 

Gaze & Glance Metrics 

Gaze Rate (gaze points/s): The number of raw gaze points recorded per second within an 
AOI. 

Glance Ratio (ratio): The ratio of total time spent fixating on the road versus the navigation 
display (Time fixating on road (%) / Time fixating on navigation (%)). 

Pupil and Blink Metrics 

Blink Rate (blinks/s): The number of blinks detected per second. 

Average Pupil Diameter (mm): The mean pupil diameter, averaged from both eyes, as an 
indicator of cognitive load. 

Pupil Diameter SD (mm): The standard deviation of the pupil diameter. 
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Appendix G: Driving Behavior Metrics 

Driving data was logged by the Unity simulation and processed using custom Python scripts. 
The following metrics were calculated: 

Vehicle Control 

Mean Speed (kph) and Speed SD (kph): The mean and standard deviation of driving speed 
(SpeedKph). 

Mean Throttle and Throttle SD (unitless): The mean and standard deviation of throttle input 
(Throttle). 

Mean Acceleration (m/s²) and Acceleration SD (m/s²): The mean and standard deviation of 
acceleration (Acceleration). 

Lane keeping 

Standard Deviation of Lane Position (SDLP) (meters): The standard deviation of the 
LaneDeviation data, a measure of weaving. 

Mean Lane Deviation (meters): The mean of the absolute LaneDeviation values from the 
lane center. 

Max Absolute Lane Deviation (meters): The maximum absolute deviation from the lane 
center. 

Steering Behavior 

Steering SD (unitless): The standard deviation of the raw steering wheel input (SteerInput). 

Steering Reversal Rate (reversals/min): The frequency of corrective steering adjustments, 
calculated as the number of steering direction changes per minute. 

Sudden Steering Changes (count): The number of instances where the absolute change in 
steering input between consecutive frames exceeded the session's 95th percentile for that 
value. 

Safety & Error Events 

Braking Count (count): The number of data frames where the brake pedal was engaged 
(Brake > 0). 

Wrong Way Duration (seconds): The total time spent in lanes flagged as wrong way (lane 
meant for opposite traOic). 
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