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Abstract 
Strategy games provide a compelling testbed for developing human-like computer agents, with 
applications that extend beyond gaming into fields requiring adaptive and socially intelligent AI. In 
these games, players tend to enjoy and engage more deeply with AI opponents that not only 
provide a challenge but also behave in ways that resemble human thinking and decision-making. 
However, despite progress in developing such agents, there is still no standard approach for 
evaluating how human-like these opponents truly are—making it difficult to assess and improve 
their design. Here I show that strategy game opponents having more human-like game-level 
playstyles does not necessarily lead to them being more believable (perceived as human-like by 
human players). 
 
By developing a turn-based strategy game and evaluating Hierarchical Reinforcement Learning 
(HRL) agents of varying complexity, I assessed both their behavioural similarity to human players 
and how believable they were perceived to be by human players. This research introduces a new 
approach for understanding player behaviour using behaviour vectors composed of three high-
level metrics—Aggressiveness, Management, and Exploration—consistent with existing literature. 
These metrics are designed to be broadly applicable across strategy games, enabling consistent 
comparison between human and AI opponents, as well as across different games and agents. The 
findings demonstrate that while HRL agents can replicate human-like playstyles without using 
human training data, players judge human-likeness more on perceived intelligence and fairness. 
This suggests that creating truly human-like AI opponents requires not just replicating human 
game-level playstyles, but designing agents that align with players' expectations for intelligent and 
fair decision-making. 
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Abstract—Strategy games provide a compelling testbed for de-
veloping human-like computer agents, with applications that
extend beyond gaming into fields requiring adaptive and socially
intelligent AI. In these games, players tend to enjoy and engage
more deeply with AI opponents that not only provide a challenge
but also behave in ways that resemble human thinking and
decision-making. However, despite progress in developing such
agents, there is still no standard approach for evaluating how
human-like these opponents truly are—making it difficult to
assess and improve their design. Here I show that strategy game
opponents having more human-like game-level playstyles does
not necessarily lead to them being more believable (perceived as
human-like by human players).

By developing a turn-based strategy game and evaluating Hi-
erarchical Reinforcement Learning (HRL) agents of varying
complexity, I assessed both their behavioural similarity to human
players and how believable they were perceived to be by human
players. This research introduces a new approach for under-
standing player behaviour using behaviour vectors composed
of three high-level metrics—Aggressiveness, Management, and
Exploration—consistent with existing literature. These metrics
are designed to be broadly applicable across strategy games,
enabling consistent comparison between human and AI oppo-
nents, as well as across different games and agents. The findings
demonstrate that while HRL agents can replicate human-like
playstyles without using human training data, players judge
human-likeness more on perceived intelligence and fairness. This
suggests that creating truly human-like AI opponents requires
not just replicating human game-level playstyles, but designing
agents that align with players’ expectations for intelligent and
fair decision-making.

I Introduction
Research into creating human-like computer agents in strategy
games (e.g. StarCraft II, Sid Meier’s Civilization, Chess)
aims to enhance player engagement while also advancing
artificial intelligence by developing techniques applicable to
other domains that require human-like decision-making and
adaptability. By understanding and replicating human behavior
in virtual environments, this line of research can provide valu-
able insights into human psychology and social interactions.
The findings not only contribute to the gaming industry but
also have broader implications for fields that benefit from
human-like AI interactions.

Playing a strategy game against a human opponent is often
more enjoyable than facing an AI opponent. In strategy video
games, AI opponents are often used as substitutes for human
opponents, who may not always be available. Players find

the experience more engaging when an AI opponent is not
only competitive but also exhibits a wide range of human
behaviors [1, 2]. The ability of these AI opponents to display
human-like behaviors allows players to empathize with them
[3], enhancing the overall engagement [4]. Therefore, an ideal
strategy game opponent should be both competent enough to
provide a challenge and human-like enough for players to
understand and relate to the opponent’s perspective.

Although significant effort has gone into developing AI op-
ponents that appear human-like, there remains a lack of
consistent and reliable methods to evaluate whether these
agents actually exhibit human-like behavior. Without a proper
understanding of human behaviour, it is unclear whether
the advances in architecture and design truly contribute to
more human-like agents. A well-defined evaluation framework
would help future researchers with iterating their agents’
design for increased human-likeness. A consistent method of
evaluation will also make it easier to compare different agents
across different games. In order to make such an evaluation
framework, the following questions have to be answered.

How should player behaviour be quantified and validated to
guide the design of human-like agents in strategy games?

1) How should a strategy game and an Hierarchical
Reinforcement Learning (HRL) agent opponent in
that game be designed to allow for human-like
behaviour to be easily observed?

2) How can player behaviour in a strategy game be
quantified to allow for comparison between human
and AI opponents?

3) How does the degree of human-likeness and perceived
opponent traits affect believability in an AI opponent
and how does the believability affect player engage-
ment?

I attempted to solve these questions in this research by:

• Developing a simplified strategy game, that is easy to
learn and allows for diverse strategies, with two types of
AI opponents (based on Behaviour Trees and Hierarchical
Reinforcement Learning).

• Developing a quantitative metric for the game-level
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playstyle of a player, consistent with existing literature
on human playstyles, for measuring the difference in
behaviour between two populations, in this case humans
and bots.

• Collecting human play data and making participants
evaluate their opponents with surveys to find how the
game-level playstyle and qualitative metrics influence
the believability of an agent, and how that believability
affects engagement.

A. Related Work
To support the design choices and evaluation methods used in
this research, this section reviews previous research on how
human-likeness is evaluated, how believable agents are made,
and how player engagement is measured. It covers existing
approaches for evaluating human-likeness in agents, including
Turing tests, action-level comparisons, and behaviour metrics.
It also discusses common agent architectures like Behaviour
Trees and Hierarchical Reinforcement Learning, and examines
how engagement and opponent perception are measured.

1) Evaluating Human-Likeness
Most papers that create agents for games do not evaluate the
human-likeness of the created agents and instead only evaluate
the agents on their task performance (e.g. win rate), which is
sometimes compared to the task performance of humans, for
instance in [5].

A common approach to measuring human-likeness is move
match accuracy, which compares the decisions made by
humans and agents in the same game states. This method
requires a substantial number of humans and agents to have
encountered and acted from the same states. While this is
feasible in simple games with a limited number of distinct
states, it becomes particularly challenging in complex games,
where the vast action and state spaces drastically reduce the
likelihood of overlap between human and agent decisions.
As a result, there are often too few shared states to perform
meaningful comparisons. An exception to this is Chess (and
Go), where the abundance of human gameplay data means
that even positions several moves into a game may have
been encountered thousands of times. This makes such games
uniquely well-suited for evaluating the human-likeness of
agents using move match accuracy, as demonstrated in papers
like [6] and [7].

Aside from the enormous amount of human data required in
complex (strategy) games for this approach, this approach
evaluates decisions made on the lowest level (action-level)
and thus ignores higher level (strategic) decisions/behaviours.
Comparing decisions on the action-level could result in false
negatives, because two actions although different could belong
to the same strategy. Also, it could result in false positives,
when two actions although the same belong to different
strategies.

A different approach is to calculate metrics over the whole
game and compare the metrics of humans with those of
the agent. These behaviour metrics when concatenated into
a vector will be referred to as a behaviour vector. This
approach of comparing these behaviour metrics or behaviour
vectors seems to be quite common when evaluating the human-
likeness of AI opponents. I summarized existing research using
behaviour vectors for evaluating the human-likeness of AI
opponents in Table 1). This table shows that there is no
consistent naming for the behaviour metrics, no consistent
comparison distance metric and no consistent visualization
method. The only thing that a few of the papers do share,
is calling clusters of behaviour vectors playstyles.

Paper Name for the
scalar values

Comparison method Visualization
method

[8] Features Predictive model N/A
[9] Play logs K-means clustering PCA plot
[10] Phenotypes N/A Heatmap
[11] Metrics KL and JS divergence PCA plot (only

two metrics)
[12] Statistics Euclidean distance N/A
[13] Summary statis-

tics
Visual Each metric sep-

arately vs. turn
number

[14] N/A (Referred to
directly by name)

L1 distance N/A

TABLE I
COMPARISON OF METHODS USED IN LITERATURE THAT ANALYZE THE

HUMAN-LIKENESS OF AGENTS BASED ON SCALAR VALUES THAT
SUMMARIZE PLAYER BEHAVIOUR

Alternatively, AI opponents can be compared qualitatively
using Turing tests. A common method for comparing agents
with humans is through Turing tests. For instance in [15]
participants compare human gameplay with gameplay from
agents by looking at side-by-side videos. A limitation of this
approach is that iterating the design of the agent based on
these results is costly, because it requires participants for
each comparison. Another limitation is that the believability
found using the Turing tests is not transparant, it is not clear
what part of the behaviour is responsible for the participant’s
decision to judge a player as human-like or not human-like.
However, believability does offer insight into how closely an
AI opponent’s behaviour aligns with human expectations and
perceptions of natural gameplay. Therefore in this research,
believability is used to validate the playstyle profiling used to
determine human-likeness.

2) Agent Architecture
In order to make a proper comparison between the human
participants and the agents, the agent should be capable of
solving the game with some degree of success. Furthermore,
the agent should give the participant some challenge as an
opponent, to be able to see diverse human behaviour. Cur-
rently, games often use simplistic Behaviour Tree [16] or
Finite State Machine [17] agents due to development time and
computational constraints. Finite State Machines ”scale poorly
and are difficult to extend, adapt and reuse” [18]. Behaviour
trees are more adaptable, but implementing certain behaviours,
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such as those that respond to external events (like the player),
can be cumbersome [19].

Alternatively, computational cognitive models can be utilized,
whose main goal often is to accurately model human cognition
[20]. Therefore computational cognitive models are more
likely to provide more human-like behaviour than Behaviour
Trees and Finite State Machines, which ”describe predefined
missions with limited decision-making” [21]. Furthermore,
computational cognitive models describe the underlying pro-
cesses of cognition [20], instead of explicitly programming
behaviours like in Behaviour Trees and Finite State Machines
[19].

From the many potential computational cognitive model ar-
chitectures, I chose the Hierarchical Reinforcement Learning
(HRL) architecture, since it has a high potential to create a
competitive and human-like agent.

3) Engagement evaluation
A human opponent is more fun to play against, but does this
also make a human-like AI agent more fun to play against?
Measuring the level of engagement can be done with surveys
to directly ask participants how fun/engaging they found the
game to be. A study [22] surveyed players by both asking
whether they would like to continue playing and asking them
to pick cards with specific words on them to see why they
were engaged. However, the evaluation of engagement and
player perception of their opponent alongside a quantitative
human-likeness analysis is underrepresented in the research
into creating human-like opponents.

II Methodology
A. Game Features
The first objective of this research is to create a strategy game
that allows for human-like behaviour to be easily observed.
Firstly, why is a strategy game specifically suited for this?
Many game genres exist, but strategy games are among the
most cognitively demanding, requiring players to make both
short-term tactical decisions and long-term strategic plans [23],
making them a good testing ground for analyzing human
decision-making. Strategy games for research can differ in a
range of mechanics, such as cooperative [24] or competitive
[25], real-time [26] or turn-based gameplay [27], continuous
[5] or tile-based maps [28], and varying numbers of opponents,
among other design differences. In this research, a competitive
two-player turn-based tile-based strategy game was used, to
reduce the complexity for both the player and the AI opponent.

A strategy game that allows for human-like behaviour to be
easily observed in both the human and AI players has several
requirements. The game should be easy to learn quickly, as
the participants will only play a few games and will have
varying levels of experience with strategy games. The game
should also enable varied behaviour to ensures a fair compar-

ison between the AI and the player. In order to meet these
requirements, I made a game specifically for this research, a
screenshot for which can be seen in Figure 1.

When designing the game, it’s important to balance diverse
player behaviour with ease of learning. Complex mechanics
can provide many strategies but may be hard to learn quickly.
Simple mechanics, familiar from other strategy games, can be
easy to understand and still offer multiple possible strategies.
If the participants can learn the game quickly, they are more
likely to start playing the actual game, and they will have more
time for the actual experiment. Even if there are many possible
strategies, they should be balanced such that no single strategy
is too strong (degenerate strategy). If one strategy is clearly
better, both the AI and the player are likely to always use it,
which would undermine the validity of the comparison.

The primary objective of the game is to destroy the opponent’s
tower. Victory is achieved by being the first to destroy the
enemy’s tower. If neither tower is destroyed within 45 turns,
the player with the tower having the most health is declared
the winner, with player 2 winning in the event of a tie.

At the beginning of a game, players can select from four
distinct units to recruit, each with unique costs, strengths,
and weaknesses. The available units are the pikeman, archer,
knight, and battering ram. These units are part of a combat
triangle: pikemen are strong against knights, knights are strong
against archers, and archers are strong against pikemen. Addi-
tionally, all units are effective against the battering ram, which
in turn is particularly effective against towers. Players can have
a maximum of five units on the board simultaneously. Units
require gold for recruitment, which players earn each turn.
Additional gold can be acquired by controlling gold mines.

The towers are positioned on the left and right sides of the
board, with recruited units appearing in the player’s training
yards located behind the towers. The path between the two
towers is divided by a mountain range, creating two separate
routes to the towers. There is a gold collection point located
at both the top and bottom of the board.

B. Game Agent Design
For this research, three different agents were created to rep-
resent different approaches to the design of AI agents. The
first agent is used as a baseline and uses a behaviour tree like
structure to make decisions to be representative of how AI
opponents are traditionally made in games. The second agent
is an Hierarchical Reinforcement Learning (HRL) agent with
three layers. The third agent is an HRL agent with two layers.

In order to provide a more engaging experience I created
variants for each AI opponent type. The Baseline bot uses
a different seed in each game resulting in its attacks being
timed slightly differently and it using a different composition
of units. The HRL agents each use a different agent for each
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Fig. 1. A screenshot of the game

experiment game. These agents are trained in the same way,
but since the training process does not always converge to
the same solution, agents with different playstyles can be
created. The order of the different versions of the AI opponents
were chosen such that they are similar in behaviour, for
instance the variant participants play against in the first game
is an aggressive version for all three AI opponents. Since the
variants differ in the same way for the three AI opponents, the
AI opponents can be compared as a whole, without needing
to compare the individual variants with each other.

1) Baseline Bot
The Baseline Bot uses a fixed set of rules to make decisions.
Newly recruited units start with the defensive strategy. The
strategy of all units changes every 5-10 turns to a random
new strategy that is different from the old one. The potential
strategies are the same as for the HRL agent: defend, attack,
control the top gold collection point and control the bottom
gold collection point. Each turn each unit tries to move towards
their assigned strategy center point. However, if a unit is close
to an enemy unit or the enemy tower, it will attack the enemy
unit or tower that it will deal the most damage to.

2) HRL Agent with Three Layers
Hierarchical Reinforcement Learning (HRL) extends Rein-
forcement Learning (RL) and uses temporal and spatial ab-
stractions to allow for more efficient training in complex
environments [29]. HRL has been shown to potentially be a
good model of human decision-making since humans also use

an hierarchical approach to break down complex problems into
smaller problems they have solved before [30, 31]. HRL has
been used to solve complex (strategy) games like a version of
the game OverCooked [24], a MOBA [5], StarCraft [32] and
Montezuma’s Revenge [33] to name a few.

An RL agent optimizes a single policy to select primitive
actions, whereas HRL agents optimize multiple policies, each
corresponding to a different level of abstraction [31]. For the
terminology in this paper, the HRL agent is split into multiple
layers, where each layer can then also contain multiple agents,
one for each unit the player has. Since there are multiple agents
in each layer, this is a Multi Agent HRL (MAHRL) agent [34].
The layers are organized in a hierarchy, where the higher level
agents set objectives for the lower level agents. In this research,
some of the layers are more loosely coupled than is typical
for HRL.

HRL Adjustments In order to make the HRL agent perform
well on the game made for this research, several adjustments
were made to the typical HRL architecture. Firstly the ab-
stractions that were made by each layer are manually set.
The abstractions made in each layer of the HRL agent can
be seen in Table II. Where the power level reward is defined
by equation 1.
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power level =
n∑

i=0

unit gold costi
unit healthi

unit max healthi
+

player gold+50
player tower health − opponent tower health

tower max health
(1)

Layer Number
of agents

Responsi-
bility

Observation Reward

0 one for
each unit

unit strate-
gies

unit health and type,
distances to strategy
center points

power
level

1 1 when
a unit
can be
recruited

unit
recruitment

enemy unit types and
own strategy distribu-
tion

power
level

2 one for
each unit

unit targets current strategy and
target type, distance
and effectiveness

damage
to
target -
damage
to self

TABLE II
ABSTRACTIONS MADE FOR EACH LAYER OF THE HRL AGENT

A standard HRL agent has higher level agents make decisions
less frequently, so that the lower level agents can follow
through on the set objective. However, in this research, each
layer related to a unit decides a new action every turn. Except
for the layer that recruits the units, since this layer decides a
new action every time a unit can be recruited, so this can be
multiple times in a single turn, but also not at all in a certain
turn when there are not enough resources to recruit a unit, or
the maximum number of units is already recruited.

By having the higher level agents rethink their objective every
turn, the agent is more responsive to the opponents actions.
To prevent the higher layers from adding too much noise in
their decision making resulting in a lower level layer not being
able to follow through on the set objective since it changes too
quickly, the top layers only change their objective when the
confidence level for the new objective is significantly higher
than the confidence level for the old objective.

HRL Training Process The HRL agent is trained against the
Baseline bot using the Proximal Policy Optimization (PPO)
algorithm [35]. The HRL agent was implemented in Python
using the Ray library [36]. The learning rate was set at 1E−4,
the batch size was set at 256 and the neural network for each
layer consisted of two hidden layers of 128 nodes.

Each layer of the HRL agent needs the other layers to work
well in order to perform well. To start up the training process,
the layers are first trained bottom up on scenarios. In these
scenarios, the decisions made by the layers above the currently
trained layer are fixed to a randomized action. In the scenarios
for the layer 2 training, the game starts with a random number
of units at random positions on the board. For the layer 1 and
0 training, the game starts as it normally would (with no units
on the board).

After the bottom up training using the scenarios, the layers
are not necessarily aligned with each other. The bottom layers
have been trained on random scenarios, but have not been
trained on the actual situations that the higher layers will put
them in. So for the second training phase, these layers are
trained again bottom up, but without using scenarios, playing
the actual game.

3) HRL Agent with Two Layers
This agent is similar to the HRL agent with three layers,
but with the top layer removed. This agent is included to
investigate the impact of the number of layers in the agent
architecture on the human-likeness.

Since the top layer (layer 0) is removed, layer 2 (Table II)
now can choose between targets for all possible strategies,
instead of just the targets for the strategy set by layer 0. This
means that the agent is still capable of making the same exact
decisions, but the action space of two layers is combined into
one.

This agent uses the same training process as the one for the
HRL agent with three layers, but with the top layer removed.
The agent is trained bottom up on scenarios and then trained
on the actual game.

C. Human Behaviour and Engagement Analy-
sis

Similar to [9, 10, 11, 13, 14], I use gameplay summary
statistics (behaviour metrics) in order to compare the playstyle
of humans and AI players. In contrast with these papers, the
behaviour metrics I chose are consistent with literature [37]. I
then use these metrics to find differences in playstyle instead of
categorizing gameplay into predefined task-specific playstyles.
Furthermore, I also validated the chosen submetrics for the
behaviour metrics by using the fact that humans have individ-
ually consistent behaviour. Finally, I explain what questions
participants were asked to determine player engagement, AI
opponent traits and believability.

1) Behaviour Vector Construction
As stated in the introduction, one goal of the human-likeness
evaluation is to make it easier to compare agents across
different games. To facilitate this, the chosen behaviour metrics
were drawn from literature, which states that the player
types most likely to play strategy games are characterized
by the behaviour metrics of aggressiveness, management, and
exploration [37]. Where aggressiveness measures a player’s
tendency to attack and pursue offensive strategies, manage-
ment measures a player’s focus on defensive and resource
management strategies and exploration measures a player’s
time spent on exploring the game map.

The aggressiveness, management and exploration metrics are
used to construct a behaviour vector, which is representative
of the game-level playstyle of the player. These metrics are
made by combining several submetrics that each summarize
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a different part of the gameplay. The composition of the
behaviour metrics into submetrics is described in table III and
the way these are calculated is explained in the next section.

Aggressiveness
front movement Proportion of unit movements in the

forward direction (-30° to 30°)
fraction attacking Proportion of turns with at least one

unit has the attack strategy
1 - avg turns between attacks Average number of turns between at-

tack periods
Management
back movement Proportion of movements in the back-

ward direction (150° to 210°)
idle time Proportion of turns with no movement
n units defending Average number of units with the de-

fend strategy per turn
Exploration
side movement Proportion of movements in lateral di-

rections (all other angles)
n unique visited tiles Count of distinct tiles visited by a

player’s units
n units gcp Average number of units with GCP-

related strategies per turn

TABLE III
BEHAVIOUR METRIC COMPOSITION FROM SUBMETRICS THAT SUMMARIZE

GAMEPLAY ELEMENTS

2) Submetric Calculation
The calculation of these submetrics involves several data
processing steps:

Unit Path and Strategy Assignment Unit strategies are
inferred from their positions on the map:

1) Each unit’s full movement path is recorded from creation
to destruction.

2) The map is divided into defend (own Tower/Yard),
attack (enemy Tower), and GCP (top/bottom gold points)
zones.

3) Each turn, units are assigned a strategy based on their
current zone. If outside all zones, they retain their
previous strategy.

Afterwards, for each turn, the number of units following each
strategy are summed up to get the following metrics:

• n_units_defending: Average number of units per
turn in defend zones

• n_units_attacking: Average number of
units per turn in attack zones (used for the
calculation of fraction_attacking and
avg_turns_between_attacks)

• n_units_gcp: Average number of units per turn in
GCP zones

Movement Direction Analysis The movement direction met-
rics track how units move across the game map:

1) For each unit movement, the angle is calculated between
the previous and current position

2) Movements are categorized and counted into the metrics
shown below.

• front_movement: Proportion of movements in the
forward direction (-30° to 30°)

• back_movement: Proportion of movements in the
backward direction (150° to 210°)

• side_movement: Proportion of movements in lateral
directions (all other angles)

• idle_time: Proportion of turns with no movement

Spatial and Attack Pattern Analysis Additional metrics
capture spatial exploration and attack patterns:

• n_unique_visited_tiles: Count of distinct tiles
visited by a player’s units

• fraction_attacking: Proportion of turns with at
least one unit has the attack strategy

• avg_turns_between_attacks: Average number of
turns between attack periods

3) Normalization Process
The behaviour vector computation involves a multi-step nor-
malization process:

1) Individual submetric normalization: Each submetric is
normalized to a [0,1] range based on the observed
distribution in human player data. For inverted metrics
(like avg_turns_between_attacks where lower
values indicate higher aggressiveness), the normalized
value is subtracted from 1.

2) Composite metric calculation: Each primary metric is
calculated as the average of its normalized submetrics.

3) Final normalization: The resulting behaviour vector is
normalized so that the sum of its elements equals 1,
ensuring that all vectors are directly comparable in terms
of the relative proportions of behaviours.

4) Vector Comparison Methods
Several methods were employed to compare behaviour vectors
across game sessions and between players. These include sim-
ilarity metrics, consistency measures, and multivariate distance
calculations. Before further analysis, first for each game played
by the participants of the experiment a behaviour vector was
calculated. How the participants were recruited and what there
demographics are is described in section 7).
a) Cosine Similarity
Cosine similarity (equation 2) was used as the primary method
to compare individual behaviour vectors.

cosine similarity(⃗a, b⃗) =
a⃗ · b⃗
|⃗a||⃗b|

(2)

This metric measures the angle between two vectors and
is unaffected by their magnitudes. Since behaviour vectors
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may differ slightly in scale even after normalization, cosine
similarity emphasizes the relative proportions of behaviour
components rather than their absolute values. It is used instead
of the Euclidean distance in for instance the standard deviation
calculation shown in the next paragraph.
b) Behavioural Consistency
Players have neither perfectly consistent, nor perfectly random
behaviour, some will change the way they play, while others
keep playing in the same way [38]. Using this insight, the
previously described method of determining playstyles through
the behaviour vectors can be validated with human data by
comparing the consistency of the human behaviour vectors
throughout the game with random behaviour vectors. To eval-
uate the consistency of behaviour across multiple games for
each participant, a behavioural consistency score was defined,
which was not taken from prior research. It quantifies how
stable a participant’s behaviour is over time relative to the full
group of participants.

Let each behaviour vector have d dimensions. Given a set of
N behaviour vectors {v⃗1, v⃗2, . . . , v⃗N}, the standard deviation
of behaviour across those vectors is calculated as:

σ =
1

d

d∑
i=1

std
(
vi1, v

i
2, . . . , v

i
N

)
(3)

This formula is applied once for each player to compute
σplayer using all behaviour vectors of a single participant, and
once to compute σgroup using the behaviour vectors from all
participants.

The behavioural consistency score for a certain player is then
defined as:

consistency = 1−
σplayer

σgroup
(4)

A higher score indicates that the participant’s behaviour is
more consistent.
c) Behaviour Group Differences
To compare sets of behaviour vectors across different groups,
the Mahalanobis distance (dM ) [39] was used, shown in
equation 5. This multivariate distance metric accounts for
correlations between behaviour dimensions and provides a
scale-invariant measure of dissimilarity between distributions.

dM =
√
(x⃗− µ⃗)TΣ−1(x⃗− µ⃗) (5)

This distance was used to compare the distribution of be-
haviour vectors from the human participant group with those
from each of the three AI opponents, when they were playing
against the Baseline bot. For each group, a mean behaviour
vector µ⃗ and a covariance matrix Σ were computed, and

the Mahalanobis distance between group distributions was
calculated to determine how similar the playstyles of the AI
opponents were to those of the participants.

5) Responsiveness and Challenge Metrics
The previously described behaviour vector defines the game-
level playstyle used by the participant or AI opponent in a
single game. However, in order to reflect a part of the lower-
level behaviour, the responsiveness metric can be used, seen
in equation 6.

responsiveness =
# actual attacks

# potential attacks
(6)

Where the number of actual attacks is the number of attacks on
enemy units and the number of potential attacks is the maxi-
mum number of attacks on enemy units that was possible. The
number of actual attacks and potential attacks are determined
for each turn and then added up for a whole game, resulting
in a responsiveness value for the whole game. This metric is
interesting for analyzing behaviour because it measures part
of how the player interacts with their opponent, which is not
measured by the behaviour vector.

Another element that is not measured with the behaviour
vector is how well the players in the game are doing. The
degree of challenge is dividing the final power level by the
number of turns in the game, seen in equation 7.

challenge = −PT

T
(7)

Where T is the total number of turns, PT is the player’s power
level (equation 1) at the final turn T . If the player’s power level
at the end of the game is positive, the player has won and so
the challenge value will be negative. The faster the player has
won and the larger the margin of winning is, the lower the
challenge value. If the player has lost, the challenge value
will be positive. The faster the player has lost and the larger
the margin of losing is, the higher the challenge value.

6) Believability, Opponent Traits and Engagement Eval-
uation

Current research evaluates believability with either a first or
third person assessment, which is either binary or uses a scale
[40]. In this research, I opted for a first person assessment
where the player rates the believability of their opponent
using a Likert-scale. An extensive review of the research using
Likert-scale for measuring the believability of virtual agents
is performed in [41]. The first person assessment is more
representative of the end goal, making players believe they
are playing against a human. The Likert-scale allows for the
degree of believability to be measured for individual games,
whereas the binary assessment needs to be averaged over
multiple games to get a degree of believability for a certain
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AI opponent. The degree of believability is used to validate
that the previously described behaviour vectors capture a part
of human behaviour that is noticeable to humans themselves.

In order to evaluate the engagement of the participants and
where that engagement comes from, a survey was used. The
survey was designed to be answered after each game, so
that the change in engagement over time could be observed.
The survey consisted of the following statements, which the
participants were asked to rate on a 7-point Likert scale from
1 (strongly disagree) to 7 (strongly agree):

• ”I felt fully into the game and lost track of time”
• ”I played naturally without overthinking”
• ”The game made me feel excited or angry”
• ”The opponent played in a human-like way”
• ”The opponent played in a predictable way”
• ”The opponent was challenging to play against”
• ”The opponent’s moves felt smart and planned”
• ”The opponent changed its strategy based on how I

played”
• ”The opponent played in a fair way”

To compare the different AI opponents, the differences be-
tween the survey responses were analyzed using a mixed
effects model, shown in equation 8.

SurveyQuestioni ∼ Opponent + (1|Participant id) (8)

In this model, SurveyQuestioni represents the Likert-scale re-
sponse to the i-th survey statement. The variable Opponent is a
fixed effect indicating which AI opponent the participant faced
in that game (Baseline, HRL-2-layer, or HRL-3-layer). The
term (1|Participant id) specifies a random intercept for each
participant, which takes into account variability in measure-
ments for each participant. This mixed effects approach allows
the effects of different AI opponents to be assessed while
accounting for individual differences in survey responses.

7) Experiment Setup
Participants were recruited through social media with a small
description of the experiment and a link to the game, which
could be played in a browser. Participants were offered no
form of remuneration. When the participant first opens the
game, they are shown an interactive tutorial to teach them the
previously described mechanics. The tutorial should take less
than 5 minutes to complete, so they can quickly start with the
actual experiment. After completing the tutorial, participants
were asked to agree to the consent form and provide their age,
gender and game playing experience, which was evaluated on
a Likert scale from 1 to 7. All data was collected through
Google Firebase Realtime Database, allowing both for easy
data collection and the ability to host the AI opponent on a
server. This offloads the computation from the client and is

convenient because the AI opponent was written in Python,
whereas the game was made in Godot.

Each participant played 3 games, during which the moves of
both the participant and the AI opponent were recorded. After
completing each game, participants were required to fill out
a survey (section 6). The participants could face one of three
different AI opponents: the Baseline bot, the HRL agent with
three layers, or the HRL agent without the top layer (so two
layers). Each participant was randomly assigned to face the
same AI opponent for all 3 games.

In total, around 150 people opened the game, 54 people started
the first game, 45 people completed the first game and 27
people completed the full 3 games. Of the 45 participants that
completed the first game, 30 were men, 12 were women and
3 did not report their gender. The participants were between
18 and 68 years old, with a mean age of 35 years and a
standard deviation of 12.6. The average self-reported game
playing experience was 3.7 out of 7, with a standard deviation
of 1.6.

All analyses in this study include only data from participants
who completed all three games in the experiment, this was
necessary to make fair comparisons between groups. Each par-
ticipant played three games against the same AI opponent type,
but the AI opponent’s behaviour varied in a consistent way
from game to game. For instance, participants always played
the first game against an aggressive variant of their assigned
AI opponent type. If participants who dropped out early were
included, certain AI opponent types might be overrepresented
in specific game stages—such as the first, second, or third
game. This would introduce bias, as comparisons between
opponent types would reflect uneven exposure to their varying
behaviors rather than genuine differences in player responses.

Ethical approval for this study was granted by the Human
Research Ethics Committee (HREC) at Delft University of
Technology (Application Number 4774).

III Results
A. Game and Agent Design
In order to determine whether the HRL agent is capable of
learning to play the game, the win rate against the Baseline
bot is plotted against the iteration number (Figure 2), showing
that the HRL agent eventually learns to play the game well,
despite some setbacks. In Figure 2 the training results for the
three layered HRL agent that is used in the first game of the
experiment can be seen. The win rate is used instead of the
policy rewards, because the rewards for the layers differ.

The total training time for this agent was 1 hour and 27
minutes, which is quite fast, considering it was trained on
a mid-range processor (AMD Ryzen 7 5800X). However, I
had to train dozens of agents to get the 3 viable agents for
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Fig. 2. HRL-3-layer first game variant training results

HRL-2-layer and 3 viable agents for HRL-3-layer, since the
training process does not always converge to an agent that will
be competitive against human players. The HRL agents each
have a different variant for each experiment game, to match
the Baseline bot, which uses a different seed for each game.

Using the agent without using the last layer 0 training step
would have resulted in a better agent in hindsight.
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Fig. 3. Player learning across the three experiment games

In order to determine that participants learn to play the game
well, the average time taken per turn and win rate was
compared for each experiment game (Figure 3), showing that
players quickly learn to play the game. The initial sharp
decline in average time taken per turn after the first game and
the stabilization of it from the second game to the third and last
game suggests that the players still had to spend a lot of time
going through all the options they have each turn in the first
game. Whereas in the other games, the player quickly knows
what they can do according to the game rules and spend most

of their time moving their units and devising their strategy.

In order to validate the chosen behaviour metrics, the par-
ticipants’ behavioural consistency was compared to that of a
set of random behaviour vectors, showing that the behaviour
vector is capable of capturing enough of the behaviour that
behavioural consistency is observed. The random set of be-
haviour vectors was generated by setting each metric in each
behaviour vector to a random value between 0 and 1. This
random set of behaviour vectors had an average consistency
of 0.28, whereas the participants’ behaviour vector set had an
average consistency of 0.45, with a 95% confidence interval
of [0.34-0.55]. This shows that the behaviour metrics are free
enough of noise. It however does not prove that the behaviour
metrics encompass all of human behaviour variation.

It is possible that the player learning in the first game (Figure
3) increases the behavioural diversity and thus increases the
consistency value, but in spite of that, the participants are still
more consistent than the random case. The random case has its
consistency value significantly above 0 (0.28), this is a result
of there only being 3 games. For instance if the analysis was
done for 5 games, the consistency for the random case would
be 0.16. So for 3 games it is more difficult for consistent
behaviour to be significantly below the random baseline

Now that the behaviour vector methodology is validated to
capture a part of human behaviour, it can be used to compare
the behaviour of the three different agents the participants
played against.

B. Quantitative Human-likeness Analysis
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Fig. 4. Ternary plot comparing human participants with the Baseline bot

In order to determine whether the Baseline bot or the
HRL agent variants show more human-like behaviour, their
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Baseline HRL-2-layer HRL-3-layer
Mahalanobis
distance to
human data

3.001 0.635 0.915

TABLE IV
MAHALANOBIS DISTANCE BETWEEN AI OPPONENT BEHAVIOUR VECTOR

DISTRIBUTIONS

playstyle distributions were visually compared in Figures 4,
5 and quantitatively compared in Table IV using the Maha-
lanobis metric, showing that the HRL agents follow the human
behaviour distribution more closely than the Baseline bot does.

The metrics in the behaviour vector are summarized across the
whole game, so they are only capable of showing game-level
behaviours, like being more aggressive. Now I will look at
two other quantitative metrics, an action-level metric for how
the players respond to their opponents and a metric for how
challenging the game was, which are compared for the three
AI opponents in Table V.

The responsiveness and challenge of each bot is recorded when
it was playing against humans, with the standard deviation
after the average value. The Baseline and HRL-3-layer bots
are both statistically significantly more responsive than the

Humans Baseline HRL-2-layer HRL-3-layer
Responsive-
ness

0.78± 0.13 0.91± 0.06 0.78± 0.14 0.87± 0.07

Challenge - -0.44± 1.04 -0.62± 0.53 -0.29± 0.93

TABLE V
RESPONSIVENESS AND CHALLENGE QUANTITATIVE METRICS

participants (p <0.001), whereas the HRL-2-layer is not. The
Baseline bot is programmed to attack each time it can, so it
having the highest responsiveness is natural. The difference
in responsiveness of the HRL agents can be explained by
the reduction in potential targets that the three layered HRL
agent has due to the additional level of abstraction. The degree
of challenge (quantitative) experienced by the participants
was not significantly different between the three different AI
opponents.

C. Qualitative Believability Analysis
The answers to the survey questions were compared between
the AI opponents using the Mixed Effects model described
in equation 8. The statistically significant differences between
opponents are as follows: the HRL-2-layer agent is perceived
as more predictable than the HRL-3-layer agent (p<0.05),
with the average values for perceived predictability being
4.7 and 3.6 out of 7 for the HRL-2-layer and HRL-3-layer
agent, respectively. The HRL-2-layer agent is perceived as
more fair than the Baseline bot (p<0.05), with the average
values for perceived fairness being 4.1 and 5.4 out of 7 for
the Baseline and HRL-2-layer agent, respectively. The answers
to the predictable, challenge, strategic and adaptive questions,
where predictability is first transformed to 7-predictability,
can be combined into one intelligence value, since they are
strongly correlated with Pearson correlation coefficient values
between 0.5 and 0.8. When this perceived intelligence value
is compared for both HRL agents, the HRL-3-layer and HRL-
2-layer agents have average values of 4.1 and 3.3 out of
7 respectively. This difference is not statistically significant
with p = 0.1. The differences between HRL agents on the
predictable, challenge, strategic and adaptive questions are
always in favour of the three layered HRL agent, but also
not statistically significant.

In order to determine whether either HRL agent is more
engaging to play against than the Baseline bot, the average
of the answers to the engagement questions were compared
(the 3 left most questions in Figure 6), showing there is
no statistically significant difference between the three AI
opponents in how engaged the participants were.

One problem of determining the engagement this way is that
there is a large selection bias for participants that are already
engaged by the game. The data used for this comparison
includes only participants that have completed at least one
game. In order to reduce the selection bias, I used the first
game completion rates between the three AI opponents (Figure
7) as a measure of engagement, which means all participants
that have completed the tutorial are included, to show that
there is still not a significant difference in engagement between
the players that played against the Baseline bot and either of
the HRL agents. The hypothesis that the first game completion
rate of the combined group of players that played against either
of the HRL agents is greater than that of the group of players
that played against the Baseline bot is not quite significant at
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Fig. 7. Experiment completion rates by opponent with 95% confidence
intervals

p=0.06, even though the first game completion rate combined
for both HRL agents is 0.89 and 0.72 for the Baseline bot.

In order to determine whether a more believable agent leads
to a more engaging experience, a linear regression was done
between the surveyed believability and the average of the
three surveyed engagement questions (Figure 8), showing a
small, but significant correlation between believability and
engagement. Although there is a statistically significant (p
<0.01) correlation between the believability and engagement,
this correlation is weak given the R2 value of 0.128. This weak
correlation suggests that other factors are more important for
engagement.

I could not make any strong observations on the engagement
of the participants using the survey question answers on
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Fig. 8. Engagement versus perceived human-likeness (believability)

believability. Observing a part of the participants playing the
game, I saw that the most significant blockers for engagement
were not understanding the rules of the game and not having
a preference for the strategy game genre. These things could
be mitigated by letting only experienced players play the
game, but that would reduce the pool potential of participants
significantly.

In order to determine to what effect the perceived oppo-
nent traits (strategic, challenge, adaptiveness, predictability
and fairness) correlate with believability, a multiple linear
regression was performed, showing that there is a correlation
(adjusted R2 = 0.33) between them. First the answers for the
questions to the strategic, challenge, predictable and adaptive
were averaged into combined intelligence evaluation since they
were all significantly correlated with Pearson coefficient values

11



ranging from 0.5 to 0.8, resulting in multicollinearity during
the multiple linear regression if they were not combined.
The fairness value was kept separate because it was not
correlated with the values making up the intelligence value.
This intelligence value combined with the value from the
fairness question was used to predict the believability of
the AI opponents (answer to the human-likeness question)
using multiple linear regression. This resulted in a moderate
correlation with an adjusted R2 of 0.33 (p <0.001) and the
coefficients for intelligence and fairness being 0.594 and 0.361
respectively. These coefficients suggest that intelligence is
more important than fairness for believability, but both play a
role.

D. Correlating Quantitative and Qualitative
Metrics

In order to determine if the players judge the human-likeness
of the agents on their game-level playstyle, the standardized
distance from the opponent behaviour vector to the human
behaviour vector distribution was used to try to predict the
player’s answer on the human-likeness question for that op-
ponent, but this failed, showing that there is no correlation
between the two. The behaviour vector defines the game-
level playstyle of the AI opponent and this does not influence
the believability of the AI opponents. In the Methodology
I introduced two other quantitative metrics: responsiveness
(equation 6) and challenge (equation 7. In the next paragraph I
will show the results for the correlation between these metrics
and the participant survey responses.

Responsiveness is correlated with the perceived fairness (R2

= 0.11, p<0.01). All AI opponents that were rated below a
4 out of 7 for fairness had a responsiveness of more than
the human average of 0.78 (Table V). This suggests that for
these players, the AI opponent responding to their moves too
often was unfair. However, most of the AI opponents that had
a responsiveness higher than 0.78 were rated at or above a 4
out of 7 for fairness. Responsiveness is also correlated with the
perceived adaptiveness (R2 = 0.08, p<0.05). Both correlations
are weak, potentially because the responsiveness only captures
a small part of how the AI opponent interacts with the human
player, since it only tracks the number of attacks and not
how those attacks were performed. The quantitative challenge
metric is strongly correlated with perceived challenge (R2 =
0.42, p<0.0001), making it a good predictor for the perceived
challenge the human players experienced.

IV Discussion
In this research, I have created a 2-player strategy game and
three different AI opponents which human players played
against. I compared the human and AI players quantitatively
and qualitatively, showing that AI players that followed the
human game-level playstyles more closely were not perceived
by players as more believable. Instead, the believability of the
AI players was correlated with the perceived intelligence and

fairness of the agent.

The HRL agents are capable of producing human-like game-
level playstyles without training on human data. This emer-
gence of human-like behaviour is useful in the development of
AI opponents for games in development, because those games
have little to no human play data available. This result sets
this research apart from prior approaches that rely heavily on
imitation learning or behavior cloning [11, 12, 42].

Adaptations to the HRL architecture resulted in efficient
training and reasonably strong task-performance, although
human players still win against it 80% of the time. The
key adaptations are: re-evaluating decisions at every layer
on each turn, assigning a dedicated agent to each unit, and
allowing the recruitment agent to act only when recruitment
is possible. These adjustments distinguish my implementation
from standard HRL approaches, like [24], where only the
bottom layer makes a decision at every turn and the middle and
top layers make decisions every 4 and 48 turns respectively.
Using a dedicated agent for each unit was also done in [25].

I developed a behaviour vector based on three
metrics—Aggressiveness, Management and Explo-
ration—consistent with existing literature on player behaviour
in games [37]. This provides a consistent framework
for analyzing and comparing playstyles across different
games. By selecting appropriate submetrics for each metric,
researchers can adapt the behaviour vector to suit their own
game environments while maintaining compatibility with this
common structure. The validity of this behaviour vector can
be assessed using human player data, by comparing player
consistency against a random baseline, as outlined in Section
4). Prior research into playstyles did not use a consistent
framework, as can be seen in Table 1), and this prior research
also did not perform this validation.

Research combining both playstyle profiling and believability
analysis is currently underrepresented. Both fields of research
would benefit from including the other. Playstyle profiling with
the goal of having AI agents produce human-like behaviour
can use the believability analysis to confirm or reject the
assumption that more human-like playstyles results in more
believable agents. In this research, I showed that the par-
ticipants in the experiment did not rate HRL agents, whose
playstyle were more human-like, as more believable than the
Baseline bot. The validation of the playstyle comparison be-
tween humans and bots can be used to guide the determination
of playstyle. For instance in this research, the game level
playstyles were not validated, so I would focus on tactical
and action-level playstyles next. Believability analysis research
can benefit from playstyle profiling since it will allow for
narrowing down what parts of human behaviour in games are
most responsible for believability.
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A. Limitations
The number of participants that completed the full experiment
(27) was limited, as was the number of games each participant
played during the full experiment (3). Testing with more
participants for each AI opponent type could increase the
statistical power so that more conclusions can be drawn.
The completion rate comparison between the AI opponents
were quite different, but still not statistically significant. Some
questions on the traits of the opponent were answered quite
differently depending on the opponent, but also not statistically
significant.

Testing with more games per participant could reduce some of
learning effects. Moreover, the player consistency comparison
is stronger from around 5 games for each participant, since
then the random case will have a consistency score closer
to 0. Furthermore, there is just one engagement evaluation
point after each game, so due to recency bias, this engagement
evaluation will only say something about the last part of that
game.

The ternary diagram (Figures 4 and 5) shows game-level
strategies well, but does not have the capacity to show specific
tactical and action-level strategies, like for instance if the
player always attacks from a certain direction, or if a player
always has a very specific build order of units. In casual play,
as is the case for this experiment, the range of game-level
playstyles is diverse, but this could be different for competitive
play, where playstyles could be different in a more subtle way.

B. Future Work
The HRL agent designed in this research could be improved
by including an opponent model in the architecture to improve
the perceived adaptiveness of the agent by the players. For the
HRL agents designed in this research, the perceived adaptive-
ness was at or below 4 on a 7 point Likert-scale. Furthermore,
self-play can be used to improve the task performance, as
currently the HRL agent loses around 80 percent of the time
against human players.

I did not find a correlation between the believability of an AI
opponent and the human-likeness of its game-level playstyles.
What was not tested however, is whether playing against
an AI opponent with the same playstyle repeatedly is less
believable and engaging for the player than playing against
an AI opponent that follows a human-like and diverse set of
playstyles, with the AI opponent using a different playstyle
each game, as if the player plays against a different human
player each game.

Correlating the gameplay behaviour of the AI opponents and
their believability was not completed. I did find a quantitative
metric that was strongly correlated with the level of challenge
the participants said they experienced. I also found a metric for
responsiveness that was loosely correlated with the perceived
fairness and adaptiveness. Finding explainable quantitative

metrics that correlate strongly with each of the opponent traits
and with believability could help steer the design of the AI
opponents for the game the metrics were made for, and it
could also give insights into what players value in their AI
opponents in general. Ultimately, quantitative metrics could
replace qualitative metrics entirely, enabling imitation learning
without the need for human data.

V Conclusion
In this research, I developed a two-player turn-based strategy
game and evaluated three AI opponents, including two hier-
archical reinforcement learning (HRL) agents, to investigate
how to quantify human-like behavior. While the HRL agents
were able to exhibit game-level playstyles similar to human
players without being trained on human data, this similarity
did not translate to increased believability. Instead, perceived
intelligence and fairness were stronger predictors of believ-
ability. By combining qualitative and quantitative analyses,
I demonstrated how believability assessment can be used to
validate playstyle profiling.
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