

Delft University of Technology

Evidence-Based Software Portfolio Management

Huijgens, Hennie

DOI
10.4233/uuid:f8fa946a-0178-40e7-bf9c-b91962698481
Publication date
2018
Document Version
Final published version
Citation (APA)
Huijgens, H. (2018). Evidence-Based Software Portfolio Management. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:f8fa946a-0178-40e7-bf9c-b91962698481

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:f8fa946a-0178-40e7-bf9c-b91962698481
https://doi.org/10.4233/uuid:f8fa946a-0178-40e7-bf9c-b91962698481

EVIDENCE-BASED
SOFTWARE PORTFOLIO MANAGEMENT

EVIDENCE-BASED
SOFTWARE PORTFOLIO MANAGEMENT

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 16 Februari 2018 om 12:30 uur
door

Hennie HUIJGENS

Master of Science in Information Management - Universiteit van
Amsterdam

geboren te Alphen aan den Rijn, Nederland

Dit proefschrift is goedgekeurd door de promotors:
Prof. dr. A. van Deursen
Prof. dr. ir. D.M. van Solingen

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. Arie van Deursen Technische Universiteit Delft, promotor
Prof. dr. ir. Rini van Solingen Technische Universiteit Delft, promotor

Onafhankelijke leden:

Prof. dr. Egon Berghout Rijksuniversiteit Groningen
Prof. dr. ir. Marijn Janssen Technische Universiteit Delft
Prof. dr. Magne Jørgensen University of Oslo, Simula, Norway
Prof. dr. Emerson Murphy-Hill North Carolina State University, USA
Prof. dr. Claes Wohlin Blekinge Institute of Technology, Sweden

The work in this thesis has been carried out at the Delft University of
Technology, supported by Goverdson.

All photos published in this thesis are taken from Unsplash, licensed under
Creative Commons Zero. Cover photo by Derek Thomson on Unsplash.

IBSN 978-94-028-0932-9

This thesis is licensed under Creative Commons Attribution 4.0 International
(CC BY 4.0). You are free to share and adapt for any purpose, even commer-
cially. Under the following terms: You must give appropriate credit, provide
a link to the license, and indicate if changes were made. You may do so in any
reasonable manner, but not in any way that suggests the licensor endorses
you or your use. You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.
Author email: hennie@goverdson.nl

ROSALIND
A traveler. By my faith, you have great reason to
be sad. I fear you have sold your own lands to
see other men’s. Then to have seen much and to
have nothing is to have rich eyes and poor
hands.

JAQUES
Yes, I have gained my experience.

ROSALIND
And your experience makes you sad. I had rather
have a fool to make me merry than experience to
make me sad— and to travel for it, too.

As You Like It (1599), Shakespeare

I believe if there's any kind of God it wouldn't be
in any of us, not you or me but just this little
space in between. If there's any kind of magic in
this world it must be in the attempt of
understanding someone sharing something. I
know, it's almost impossible to succeed but who
cares really? The answer must be in the attempt.

Julie Delpy, in Before Sunrise (1995)

by Richard Linklater

VI

Acknowledgments vii

Acknowledgments

wo quotes kick off this thesis. In the first one Rosalind – one of Shake-
speare's most beloved heroines, an intelligent woman with a strong will
– complains to the hopeless melancholy, on the sidelines operating

Jaques how terrible it must be to have a lot of experience. Rosalind explains
Jaques that experience should make him sad, and that she prefers a fool to
make her merry.

How recognizable in my daily job as a software analytics specialist, where
one of my main activities consists of the collection and analysis of experiences
on software development activities, presented as evidence that supports fu-
ture decision-making. Am I Jaques, a professional outsider who delights in
being sad? Or do I, alike Rosalind, prefer a fool (or a tool) that makes me
happy?

Regardless of the choice Hans Jägers, professor emeritus at the University
of Amsterdam, plays the role of Duke Senior, the rightful ruler of the duke-
dom in which the play is set. In his role of Chairman of the Board of Examin-
ers of the Executive Master in Information Management from the University
of Amsterdam, that I finalized in 2010, he raised the question ‘Why are you
not going to do a PhD on this?’ I gave it some time to digest, and talked things
over with Isabel, my wife, after which I was left with the question ‘Yes, why
not?’

It took me some time to find a professor who dared to join me in the play,
but Rini van Solingen was the best opponent I could wish for, and soon Arie
van Deursen also joined, fascinated by the experience in the form of a rich set
of industry data that I had displayed as attributes on the stage. Rini and Arie,
thanks so much for your inspiring support, your professional guidance, and
the trust you have given me to find my way in a play without a boarded script.
Many thanks! You were the best companions I could think off.

T

viii

What I probably liked most during my PhD was the collaboration on paper
writing with some of the best fellow researchers in the field. In a way, they
helped me preparing this thesis after all. Thanks a lot, to you all.

Working within the inspiring and international environment of the Soft-
ware Engineering Research Group at the Delft University of Technology was
an unforgettable experience for me. Thank you all very much for the conver-
sations, the inspiring lunches and the occasional cocktail parties.

I realize that as a ‘practitioner at age’ I sometimes was an odd man out in
the research community, but I am well aware that precisely this mix of
seniority, practice and research, was a huge breeding ground for research
which I often could directly apply in an industrial context. I never could have
performed research in the way I did, without the ongoing support of the com-
panies that hired me as a consultant, and the colleagues and executives that
joined in the collection and analysis of software project data. Thank you so
much for your trust and generosity.

The second quote that I choose to illustrate the process of my PhD is more
recent. It is about the importance of the space between things. That’s where
the magic in this world is to be found, in the attempt of understanding some-
one sharing something. The answer must be in the attempt.

‘Just try’. That is what I learned from my darlings at home. Isabel told me
that she really enjoyed seeing me doing my PhD in such a cheerful, bright and
autonomous way. ‘What I liked most, was that you gave me the idea that doing
a PhD is a piece of cake,’ she said to me when I was almost done, and my son
Julian and my daughter Bloem could only agree with her.

I cannot think of a better way to look back on an inspiring and enjoyable
four years.

Thank you all for your support and love.

Hennie Huijgens
Amsterdam,
September, 2017

Table of Contents ix

Table of Contents

Acknowledgments .. vii

1. Introduction .. 1
1.1. Problems within software portfolio management........................... 3

1.1.1. Success and failure defined exclusively at a project level 3
1.1.2. Linking legacy evolution with new functionality 4
1.1.3. Pricing and estimation relies heavily on expert opinions 4
1.1.4. Cost and effort are used as equivalent...................................... 5
1.1.5. Value and Stakeholder Satisfaction only limited in scope 5

1.2. Research Goal and Research Questions .. 6
1.2.1. Success and Failure Factors for Software Projects 6
1.2.2. New Developments, Maintenance, and Legacy 6
1.2.3. Evidence-Based Pricing of Project Proposals 7
1.2.4. Cost and Effort in Measurement Repositories......................... 7
1.2.5. Stakeholder Satisfaction and Perceived Value 7

1.3. Research Method and Evaluation .. 8
1.3.1. An evidence-based approach with EBSE as an example 9
1.3.2. A holistic view at a company’s software portfolio 9
1.3.3. EBSPM as the proposed model ... 10
1.3.4. Evaluation of EBSPM through case studies and surveys 11

1.4. Thesis Outline .. 12
1.4.1. Origin of Chapters .. 13
1.4.2. Additional tests summarized in an addendum 15
1.4.3. Publications not included in the thesis 16

2. A Bird’s-eye view on EBSPM ... 19
2.1. Introduction ... 19
2.2. The EBSPM-model.. 20
2.3. Distinguishing good deliveries from bad ones 22

x

2.3.1. Functional Size as a Normalizer.. 22
2.3.2. The Cost Duration Matrix ... 22

2.4. The EBSPM Research Repository .. 25
2.4.1. The Core Software Delivery Metrics 26
2.4.2. Estimation Quality Factor ... 26
2.4.3. The Cost Duration Index ... 27
2.4.4. Stakeholder Satisfaction .. 27
2.4.5. Perceived Value .. 28
2.4.6. Software Delivery Keywords ... 29

2.5. The EBSPM Performance Dashboard .. 30
2.5.1. Selection Options ... 31
2.5.2. The Cost Duration Matrix as the Core of the Dashboard 32
2.5.3. The Key Performance Indicator Summary 32
2.5.4. Who should use the tool? And why? 32

2.6. A practical, evidence-based approach .. 33

3. On Good Practice and Bad Practice .. 37
3.1. Introduction ... 37

3.1.1. Research Objectives ... 38
3.1.2. Context ... 39

3.2. Research Design .. 39
3.2.1. Approach .. 39
3.2.2. Design ...40
3.2.3. The Research Repository ...40
3.2.4. Analysis Procedure .. 44

3.3. Execution ... 46
3.3.1. Distribution of the Sample .. 46

3.4. Analysis .. 46
3.4.1. Overall Performance Analysis ... 46
3.4.2. Mapping on the Cost Duration Matrix 49
3.4.3. Analysis of Project Keywords .. 50
3.4.4. Success Factors and Failure Factors 51

3.5. Evaluation .. 51
3.5.1. Factors Excluded from the Inventory 52
3.5.2. Factors Strongly Related to Good Practice 53
3.5.3. Factors Strongly Related to Bad Practice 55

Table of Contents xi

3.5.4. Factors Related to CoT and ToC ... 56
3.6. Discussion ... 56

3.6.1. Research on an Existing Repository 56
3.6.2. Uncertainties related to Software Metrics 57
3.6.3. Business Domain and Programming Language 57
3.6.4. Generalization.. 58

3.7. Related Work ... 58
3.8. Conclusions and Future Work... 61

3.8.1. Future Work ... 62
3.9. Acknowledgments ... 63
3.10. Addendum ... 63

3.10.1. Pairwise Correlation and P-value adjustment 63

4. The Cecil-Case: Managing Legacy Evolution ... 69
4.1. Introduction .. 69
4.2. Experimental Setup ... 71

4.2.1. Context .. 71
4.3. Research Questions ... 72

4.3.1. Data Collection Procedure .. 73
4.3.2. Quantitative Analysis .. 74
4.3.3. Qualitative Analysis ... 75

4.4. Quantitative Results ... 76
4.5. Results of the Interviews .. 80

4.5.1. Product owner is praised by many participants 81
4.5.2. Cecil focuses on small but fast deliveries 82
4.5.3. Role of Scrum master is not formalized in practice 82
4.5.4. Close cooperation within the Cecil team 83
4.5.5. The Product Backlog management tool 83
4.5.6. Improvement: Budget and Estimating is fuzzy 84
4.5.7. Improvement: Testing ... 84
4.5.8. Evolution of the process over time ... 85
4.5.9. Bad performance issues of the Divine system 85

4.6. Discussion ... 87
4.6.1. Threats to Validity ... 87
4.6.2. Scrum as a Distinguishing Factor ... 88
4.6.3. Impact / Implications ... 89

xii

4.7. Related Work ... 89
4.8. Conclusions and Future Work .. 91
4.9. Acknowledgments ... 92

5. Evidence-Based Pricing of Project Proposals ... 95
5.1. Introduction ... 95

5.1.1. Problem Statement .. 96
5.1.2. Research Objectives ... 97
5.1.3. Context ... 97

5.2. Related Work ... 98
5.3. Case Study Design ... 100

5.3.1. Theory ... 100
5.3.2. Research Questions ... 100
5.3.3. Case and Subject Selection .. 101
5.3.4. Data Collection procedures ... 102
5.3.5. Analysis Procedure .. 103
5.3.6. Model Validation Procedure ... 104

5.4. Results .. 106
5.4.1. Case and Subject descriptions ... 106

5.5. Results of the Qualitative Analysis ... 107
5.5.1. 88% want FSM-pricing as operational practice 110
5.5.2. FPA is appreciated by both parties 110
5.5.3. BelTel management: coverage needs improvement 111
5.5.4. IndSup-A development: reliability needs improvement 112
5.5.5. 84% experienced improved proposal transparency.............. 113

5.6. Results of the Quantitative Analysis ... 114
5.6.1. Project Duration per FP not in sync with peer groups 114
5.6.2. Small projects block improvement .. 115
5.6.3. Cost improves; yet, Duration does not 117

5.7. Discussion ... 117
5.7.1. Evaluation of Validity ... 119
5.7.2. Relation to Existing Evidence .. 119
5.7.3. Impact/Implications .. 120
5.7.4. Limitations ... 120

5.8. Conclusions and Future Work .. 120
5.8.1. Future Work .. 121

Table of Contents xiii

5.9. Acknowledgments .. 121

6. Effort versus Cost in Software Repositories .. 123
6.1. Introduction ...123
6.2. Research Approach ... 126

6.2.1. The EBSPM-repository ... 126
6.2.2. The ISBSG-repository .. 127
6.2.3. Analysis Procedure .. 129

6.3. Results ... 129
6.3.1. Linear Regression ... 131
6.3.2. Regression Trees.. 134
6.3.3. Mapping of the ISBSG-subset on the EBSPM-tool 135
6.3.4. Key Findings .. 136

6.4. Discussion .. 137
6.4.1. Implications ... 138
6.4.2. Threats to Validity ... 139

6.5. Related Work ... 140
6.5.1. Repositories for Benchmarking .. 140
6.5.2. Effort versus Cost ... 141

6.6. Conclusions ... 142
6.7. Acknowledgments ... 143

7. Stakeholder Satisfaction and Perceived Value 145
7.1. Introduction .. 146

7.1.1. Problem Statement .. 146
7.2. Background and Related Work .. 148
7.3. Research Design .. 150

7.3.1. BelTel .. 150
7.3.2. DutchCo .. 151
7.3.3. Challenges in Comparing both Companies 152
7.3.4. Metrics .. 153
7.3.5. Project Selection ... 156
7.3.6. Data Collection procedure ... 157
7.3.7. Analysis Procedure ... 159

7.4. Results .. 159
7.4.1. Description of the BelTel Projects ... 159
7.4.2. Description of the DutchCo projects 163

xiv

7.4.3. Results of plotting on the Cost Duration Matrix 166
7.4.4. Results of the tests for association .. 168
7.4.5. Results of the free format text analysis 175

7.5. Discussion .. 182
7.5.1. The Core Project Metrics ... 182
7.5.2. Stakeholder Satisfaction .. 186
7.5.3. Perceived Value .. 187
7.5.4. Estimation Quality for Duration ... 188
7.5.5. Success or failure: complex relations 188
7.5.6. Agile and Cost were not mentioned 188
7.5.7. Implications ... 190

7.6. Threats to Validity .. 191
7.6.1. Construct Validity ... 191
7.6.2. Internal Validity .. 191
7.6.3. External Validity .. 192
7.6.4. Study Reliability ... 192

7.7. Conclusions and Future Research .. 193
7.8. Acknowledgments ... 194

8. Conclusions .. 197
8.1. Contributions ... 197

8.1.1. A dynamic, agile EBSPM approach 197
8.1.2. An EBSPM-tool, a tool description and evaluation 198
8.1.3. An EBSPM research repository with 500 projects............... 199
8.1.4. Evaluation of the EBSPM-model in industry 199

8.2. The Research Questions Revisited ... 199
8.2.1. Success and Failure Factors for Software Projects 199
8.2.2. New Developments, Maintenance and Legacy..................... 201
8.2.3. Evidence-Based Pricing of Project Proposals 202
8.2.4. Cost and Effort in Measurement Repositories 202
8.2.5. Stakeholder Satisfaction and Perceived Value 203

8.3. Discussion ... 204
8.4. Threats to Validity ...205
8.5. A reflection on the empirical methods used 207

8.5.1. Case Studies ... 207
8.5.2. Surveys, electronic questionnaires, and interviews 208

Table of Contents xv

8.5.3. Data Analysis Studies .. 209
8.6. Implications .. 209

8.6.1. Implications for Research ... 210
8.6.2. Implications for Industry ...213
8.6.3. Implications for Education .. 215

8.7. Conclusions ... 216

List of Abbreviations .. 217

Samenvatting .. 219

Curriculum Vitae ... 223

References .. 225

xvi

Introduction 1

1. Introduction

his thesis addresses software projects; more specifically, it is about
comparing software projects among themselves. How can companies
learn from their good and bad projects as input for future software en-

gineering activities? What software projects can be seen as good practice, and
thus as an example for others? And what projects can be looked upon as bad
practice, and how should companies improve these? Yet, such a comparison
is not straightforward; when looking at the different software projects that
are undertaken in software companies, none are equal.

An unambiguous definition of the concept of a ‘project’ is difficult to find.
Nokes (2007) for example, considers a project as ‘a temporary endeavor de-
signed to produce a unique product, service or result with a defined beginning
and end (usually time-constrained, and often constrained by funding or de-
liverable) undertaken to meet unique goals and objectives, typically to bring
about beneficial change or added value’.

Although more or less formal projects, as stated above with a defined be-
ginning and end, are still to be found in many software companies, software
engineering practice did change rapidly since the start of the millennium
(Fitzgerald & Stol, 2015) (Boehm, 2006a) (Dingsøyr & Lassenius, 2016).

Software engineering nowadays is an ongoing process of development and
maintenance of software solutions, covering the lifecycle of a software system.
Because of this holistic, lifecycle-driven way of observing, projects can be
looked upon as a huge variety of approaches, varying from traditional water-
fall projects to iterative releases by DevOps-teams (Fitzgerald & Stol, 2015).
Software projects in such modern environments are often less formalized,
and might better be defined as software deliveries.

In order to accommodate the range from traditional, plan driven projects
to iterative, agile deliveries in our approach, we use Nokes’ definition (2007),
with the addition that software projects are performed in a variety of different

T

2 Chapter 1

ways, ranging from traditional plan-driven to iterative deliveries. Therefore,
within this thesis, we use the concepts of project and delivery as equivalent
expressions.

It is important for software companies to know which of their projects are
successful and which are not, and what are the backgrounds of success and
failure. Software is eating the world (Andreesen, 2011), and information tech-
nology is the largest production factor for many organizations (Verhoef,
2002). The software projects of the companies that we studied within the
scope of this thesis represent on a yearly basis between 10 and 300 million
Euros, and even larger information technology budgets are found in related
work (Verhoef, 2002). At the same time managing such huge spending on
software projects is challenging due to the fact that software has become so
complex and it evolves so quickly that we fail to keep it under control
(Huisman et al., 2016). Software companies spend a significant amount -
some up to seventy-five percent - of their IT budgets maintaining legacy
systems (Arnold & Braithwaite, 2015) (Gangadharan, Kuiper, Janssen, &
Luttighuis, 2013).

Knowing the characteristics of projects, especially in large and hybrid
portfolios, that usually in addition to newly built applications also include old
and complex legacy systems, is important to isolate good from bad practice
and to identify aspects for improvement. Good and bad practice can only be
distinguished by looking at the whole of a company's software projects. That
is why we argue that management at a portfolio level is important, where a
focus on cost, time, and quality seems obvious (Boehm, 1984) (Kan, 1995).

Where project management focusses mainly on doing projects right, pro-
ject portfolio management is focused on doing the right projects (Reyck, et
al., 2005). Analogies that build on financial-portfolio theory are not new
(McFarlan, 1981) (Dye & Pennypacker, 1999). More recent examples of this
analogy with a portfolio of financial assets, trying to improve the performance
of the portfolio by balancing risk and return are (Jeffery & Leliveld, 2004)
and (Verhoef, 2002). The latter argues that ‘the heart of security portfolio
management is to monitor, control, and optimize the security selection pro-
cess’, where he defines quantitative IT Portfolio management as ‘considering
the quantitative aspects of IT development, operations, maintenance, en-
hancements, and renovation for bespoke software systems’ (Verhoef, 2002).
(Reyck et al., 2005) consider project portfolio management as ‘the entire

Introduction 3

portfolio of projects a company is engaged in, in order to make decisions in
terms of which projects are to be given priority, and which projects are to be
added to or removed from the portfolio’.

Often software portfolio management is defined as considering aspects of
information technology development, operations, maintenance, enhance-
ment, and renovation for bespoke software systems, where the management
scope is limited to quantitative aspects, such as cost, time, and quality of esti-
mations (Boehm, 1984) (Kan, 1995).

Yet, are projects that cost relatively little and are quickly delivered more
valuable than more expensive ones that took relatively long? And are stake-
holders more satisfied when cost is low and time is short? Or are these rela-
tions more complicated?

To examine these questions, we follow in the context of this thesis the ex-
isting definition of Verhoef (2002), but we extend these with qualitative as-
pects, in addition to quantitative ones. We define software portfolio man-
agement as ‘to monitor, control, and optimize the quantitative aspects of IT
development, operations, maintenance, enhancements, and renovation for
bespoke software systems, in relation to the qualitative aspects stakeholder
satisfaction and delivered value’. However, several problems occur with con-
temporary software portfolio management, starting from cost, time, and
quality related issues to the determination of value and stakeholder satisfac-
tion.

1.1. Problems within software portfolio management

1.1.1. Success and failure defined exclusively at a project level

Problem 1: Success and failure are usually defined related to the estimated budget
and time of a project. They are not simple and unambiguous to define at a
portfolio level.

Often software companies define success or failure of their software projects
related to they were not delivered on time, within cost, and with all specified
functionality (International Standish Group, 1994). Supported by many
critical reviews of such an approach (Jørgensen & Moløkken-Østvold, 2006)
(Glass, 2006) (Eveleens & Verhoef, 2010), in this thesis we look at project
success and failure from a portfolio point of view.

4 Chapter 1

Based on strong correlations occurring between cost, duration, quality,
and size of software projects (Boehm, 1984) (El Emam & Günes Koru, 2008)
(Boehm, Abts & Chulani, 2000a) (Heemstra & Kusters, 1991) (Bhardwaj &
Rana, 2016), we examine whether the meaning of success and failure is to be
found in software portfolios as a whole, instead of in individual projects.

1.1.2. Linking legacy evolution with new functionality

Problem 2: Linking evolution of legacy systems with development of new
functionality is a challenge within portfolio management

Software portfolio management is about monitoring, controlling, and opti-
mizing the software engineering process within a specific software portfolio,
where such a portfolio exists from a variety of software related activities such
as adding, changing, and deleting software functionality, and maintaining
existing applications. Managing such existing applications, and especially
linking the development of new software with evolution of legacy systems is
a big challenge for many companies (Boehm, 2006b) (Deursen, Klint &
Verhoef, 1999). The effects of legacy and maintenance, including
accompanying delivery approaches, are not clear when looked upon from a
portfolio point of view.

1.1.3. Pricing and estimation relies heavily on expert opinions

Problem 3: Effort and cost estimation, and pricing of software deliveries rely
heavily on expert opinions and often are only to a limited extent transparent and
evidence-based.

While many studies can be found on estimating the cost (or effort) of software
deliveries (Jørgensen & Shepperd, 2007), only a handful exists about the
price thereof. For pricing purposes in a commercial context where software
delivery is partly performed by suppliers, most companies rely heavily on
expert judgment (Boehm, 1984) (Jørgensen, 2004). This is not always a suc-
cessful approach (Moløkken & Jørgensen, 2003), and software development
is often characterized by high cost and schedule overruns (Verhoef, 2002)
(Glass, 2002), despite a huge number of tools developed over time to support
project estimation (Boehm, 1984) (Abran, Silva, & Primera, 2002b) (Gencel
& Demirors, 2008) (IFPUG, 2009).

Introduction 5

Our observation in industry (at least in the companies that are subject of
this thesis) is that a purely statistical method – where pricing is solely based
on data analysis and not at expert opinions - is not used. Nevertheless, from
a portfolio point of view, statistics seem a natural tool to predict prices of
future software deliveries based on historic data of finalized deliveries in a
specific software company.

1.1.4. Cost and effort are used as equivalent

Problem 4: Effort and cost of software deliveries are often seen as equivalent. The
relation between both metrics seems complex and is difficult to understand.

Two additional problems with determining the concept of good and bad per-
formance of software projects are the non-availability of historic project data
in many software companies, and the confusing fact that cost and effort are
often looked upon as equivalent, e.g. (Radliński, 2011) (Jeffery, Ruhe, &
Wieczore, 2000) (Pendharkar & Rodger, 2009) (Czarnacka-Chrobot, 2009).
At the best, effort is assumed to be a good proxy for cost, where the emphasis
seems to be more on effort, and less on cost. Regarding the non-availability
of historic data it is striking that many generic benchmarks are available for
software projects (Jones, 2011) (Menzies & Zimmermann, 2013), but that cost
data is missing in most of them. And that seems strange. A software
company’s project portfolio is built from differently organized cost structures,
and many decision makers use cost as a major indicator for decisions.

1.1.5. Value and Stakeholder Satisfaction only limited in scope

Problem 5: The relation between stakeholder satisfaction and perceived value on
the one hand and software project performance in terms of time, cost, and quality
on the other is not clear and hinders efficient steering on value optimization
within software portfolio management.

Traditionally software portfolio management is about quantitative aspects
such as cost, time, and quality (Verhoef, 2002) (Boehm, 1984) (Kan, 1995).
How these relate to the backgrounds of success and failure of software deliv-
eries, especially regarding stakeholder satisfaction and value, remains often
unclear. Although quite some research has been performed on aspects of
value and software projects (Boehm, 2003) (Biffl, Aurum, Boehm, Erdogmus,

6 Chapter 1

& Grünbacher, 2006) (Faulk, Harmon, & Raffo, 2000)(Dingsøyr & Lassenius,
2016) (Agarwal & Rathod, 2006) (Bryde, 2005), most of these approaches
seem poorly adopted in industrial software project management settings,
although agile development approaches have a positive impact on the focus
on value as an important metric (Dingsøyr & Lassenius, 2016). Jørgensen
(2016) mentions that a focus on client benefits as a success criterion is
particularly important, because only weak correlations are found on other
dimensions, such as being on time and being on budget.

1.2. Research Goal and Research Questions

Based on the problems as described in the former Subsection, we define as
the goal for our research to help software companies understand how
software portfolios perform in terms of time, cost, quality, value creation, and
stakeholder satisfaction, to maximize the benefits of software deliveries. For
that purpose, we developed the following five research questions:

1.2.1. Success and Failure Factors for Software Projects

RQ1: What success factors and failure factors affect software project portfolio
performance?

The first research question is related to a set of core metrics of software de-
liveries (Kan, 1995), respectively size, cost, duration, and number of defects,
and elaborates on how they interrelate with each other. These four core met-
rics are used to build a model for comparison of software deliveries of all sorts
within one or more software project portfolio’s, and sets the basis for the
benchmarking approach that we use in the remaining research. The goal of
the first research question (RQ1) is to identify success factors and failure
factors that affect the performance of software project portfolios.

1.2.2. New Developments, Maintenance, and Legacy

RQ2: What actions can be taken to increase project performance when running a
software project portfolio with development of new functionality and
maintenance of legacy systems involved?

Introduction 7

The second research question (RQ2) relates to the application of the findings
of RQ1 when steering on improvement of the performance of a hybrid soft-
ware project portfolio, containing a mix of new development projects and
maintenance and enhancements on existing legacy systems. However, in this
research question we elaborate further on the specific effects related to evolu-
tion of legacy systems in a portfolio, and the relation between building new
functionality and enhancement and maintenance on existing (legacy) sys-
tems.

1.2.3. Evidence-Based Pricing of Project Proposals

RQ3: How can an empirical, evidence-based pricing approach for software
engineering, be used as a single instrument (without expert judgment), to create
cost transparency and cost and time improvements?

The third research question (RQ3) is set up to examine how to use a pricing
approach for project proposals in a distributed outsourcing context, based on
an empirical, evidence-based way to determine fixed prices of software pro-
jects. Our main goals were to investigate whether such an approach helps to
improve transparency and stakeholder satisfaction, and cost and duration
improvements.

1.2.4. Cost and Effort in Measurement Repositories

RQ4: How do data repositories compare on size, cost, effort, duration and number
of defects, and how can differences be explained?

Many software companies use benchmark repositories to support estimation
and pricing of their software projects. Research question number four (RQ4)
examines differences regarding cost and effort of software deliveries between
our EBSPM repository and the ISBSG repository, a commonly used source for
effort and cost prediction and benchmarking in industry.

1.2.5. Stakeholder Satisfaction and Perceived Value

RQ5: How do stakeholder satisfaction and perceived value relate to software
project performance?

Finally, the fifth research question (RQ5) involves stakeholder satisfaction
and perceived value in the equation, and examines overall correlations

8 Chapter 1

between all metrics involved in the EBSPM approach. The main goal behind
this research question is to examine whether good practice and bad practice,
as defined by RQ1, fits with the way stakeholders of projects (e.g. developers,
decision-makers, business executives, customers) experience project- and
portfolio performance.

Table 1.1 gives an overview of the research questions and how these ques-
tions map on the chapters in this thesis.

1.3. Research Method and Evaluation

Driven by our ambition to provide as much value as possible with our re-
search to software-intensive companies, we opt for a research method that
proposes a model that subsequently is evaluated through empirical studies,
such as case studies, and surveys (Wohlin et al., 2000). In our model, we
combined two aspects that largely determine our research setup, (1) an
evidence-based approach, and (2) a focus at a software company’s portfolio
of software deliveries.

Table 1.1: Mapping of Research Questions on the Chapters in this thesis.

Research Question Chapter: 3 4 5 6 7

RQ1: What success factors and failure factors affect
software project performance?

√ √

RQ2: What actions can be taken to increase project
performance when running a software project
portfolio with new developments and maintenance
of legacy systems involved?

√ √

RQ3: How can an empirical, evidence-based pricing
approach for software engineering, be used as a single
instrument (without expert judgment), to create cost
transparency and cost and time improvements?

 √

RQ4: How do data repositories compare on size, cost,
effort, duration and number of defects, and how can
differences be explained?

√ √ √

RQ5: How do stakeholder satisfaction and perceived
value relate to software project performance as
identified in RQ4?

√ √

Introduction 9

1.3.1. An evidence-based approach with EBSE as an example

For the approach that is presented in this thesis gratitude is owed to (Kitchen-
ham, Dybå, & Jørgensen, 2004), who presented a method to support the
structured and evidence-based decision-making in the field of software engi-
neering. Their Evidence-Based Software Engineering (EBSE) approach was
an inspiration on how to conceive a practical and experience-based method
for software companies to help them to better monitor and control their
software project portfolios.

In turn they derived their approach from Evidence-Based Medicine, a sim-
ilar method which was developed in the medical field, where medical re-
searchers found that failure to organize existing medical research did cost
lives, and that clinical judgement of experts compared unfavorably with the
results of systematic reviews (Kitchenham et al., 2004). Thinking from the
research question whether an evidence-based paradigm is feasible for
Software Engineering too, they started an analogy-based comparison in order
to provide the means by which present-day best evidence from research can
be integrated with best practices from industry and human values in the deci-
sion-making process regarding the development and maintenance of
software (Kitchenham et al., 2004).

1.3.2. A holistic view at a company’s software portfolio

Based on the large amounts spent by software companies each year to develop
new and maintain existing software systems, we argue that an evidence-based
approach should be in place to support decision-making on their software
activities. Many studies are to be found that guide decision makers on aspects
of time, cost, and quality of software projects, among others on software esti-
mation and benchmarking of software engineering activities. However, we
recognize two important developments in contemporary software devel-
opment, that require, in addition to EBSE, a new and complementary ap-
proach aimed at the decision-making on software projects.

Decision-making should be looked upon from a holistic perspective. Anal-
ysis of the finalized software projects in our research repository shows that
the included software companies spent each year between 10 and 300 million
Euros on software engineering, largely depending on their company size. We
observe large variations between software projects, in size, in time, in the

10 Chapter 1

number of defects, and especially in cost. Some projects perform outstanding,
and might be looked upon as good practice, yet others perform much worse,
and might be characterized as bad practice.

When evaluation focuses at the level of single projects, software compa-
nies cannot tell whether it performed better than average or worse than aver-
age. Learning from experience is difficult in that case. Based on the huge
differences in project performances that we found, we argue that the eco-
nomic aspects of software engineering should best be looked upon from a
holistic – thus a portfolio – point of view, instead from an individual – thus a
single project - one. In other words, when steering on project performance all
projects in scope of a company’s portfolio should be considered.

When decision makers use results of studies performed on data from other
companies, such as algorithms and prediction models, a major risk is in place
that company specific effects on the project performance might be excluded.
To mitigate this risk, we argue that software companies should best collect
their own historic project data, as a valuable source to support decision-mak-
ing on future software activities.

1.3.3. EBSPM as the proposed model

With these two principles in mind – evidence-based decision-making and a
focus on a company’s own software portfolio as a whole – we developed our
model, and named it Evidence-Based Software Portfolio Management or
EBSPM. EBSPM can be described as a model aimed at supporting decision
makers of software projects, based on analysis of the entire software project
portfolio of in the past completed projects in their own organization. EBSPM
builds on two starting points.

Firstly, software companies should always collect their own historic data,
instead of relying fully on cross-company datasets for estimation and bench-
mark purposes (Jeffery, Ruhe, & Wieczore, 2001) (Briand, Langley, &
Wieczorek, 2000) (Wieczorek & Ruhe, 2002) (Lokan & Mendes, 2006)
(Minku, Mendes, & Ferrucci, 2015) (Mendes, Lokan, Harrison, & Triggs,
2005) (Garre, Cuadrado, Sicilia, Charro, & Rodríguez, 2005) (Minku, 2016).
However, for companies that have limited projects, it might be a second best
option to compare their own historic data with external data sources, keeping
in mind that large differences might occur.

Introduction 11

Secondly, to understand the concepts of good and bad performance it is
important to study software portfolios as a whole. Besides projects that score
well regarding time, cost, and quality, also projects occur that score poorly on
those aspects. Knowing and understanding a good balance between all deliv-
eries in scope of a software portfolio is important when taking decisions.

To support these starting points, EBSPM is built around three key compo-
nents. The first is an approach to collect, analyze, and benchmark finalized
software deliveries, based on time, cost, quality, value-creation, and stake-
holder satisfaction. The second is a research repository holding historic data
from approximately 500 finalized software deliveries in different companies
and business domains. The final component is a performance dashboard that
visualizes successful software deliveries (also called good practice) and less
successful deliveries (also called bad practice) within a software portfolio.

1.3.4. Evaluation of EBSPM through case studies and surveys

The majority of our research has been applied in close cooperation with soft-
ware companies in industrial practice. To maximize the practical application
of our research in an industry context, we opt for an iterative approach with
short feedback loops. Such an approach makes it possible to align our re-
search goals tightly with the strategic and tactic goals of the companies that
participate and to change plans whenever this is needed for practical reasons.
We designed a series of small, practically oriented steps, which lead to results
which were directly useable in a practical context, and which could be incor-
porated to self-contained scientific publications. Each study was performed
according to an empirical strategy that fitted best to its practical context, to
ensure maximum alignment with the specific industry environment.

Table 1.2 gives an overview of the empirical strategies (Wohlin et al.,
2000) that were applied in the different studies, where each chapter repre-
sents one specific study. As can be seen the majority of studies are performed
as case study or a survey, or in many cases a combination of both. Two case
studies were single case studies and one was performed as a multiple case
study, performed in two different companies. All case studies combined both
quantitative and qualitative methods (Yin, 2008) (Runeson, Host, Rainer, &
Regnell, 2012).

As an instrument for qualitative research we made in three studies use of
electronic surveys to question stakeholders of finalized software projects

12 Chapter 1

about their experiences. In one study, this qualitative approach was supple-
mented with structured interviews with stakeholders.

Although all studies include a data analysis component, two studies, rep-
resented in Chapters 3 and 6, do not include a qualitative study, and can be
characterized as typical data analysis studies. In Chapter 3 we analyze an
existing repository that forms the basis for our EBSPM research repository
for causes behind success and failure of software projects (Huijgens, van
Solingen, & van Deursen, 2014c). In Chapter 6 we compare our EBSPM re-
search repository with a subset of projects from the ISBSG repository on the
relations between effort and cost of software projects (Huijgens, van Deursen,
Minku, & Lokan, 2017c).

Within the scope of this thesis no experiment, quasi-experiment, replica-
tion, or structured literature review was performed.

1.4. Thesis Outline

Each chapter in this thesis represents a study that was performed in close
cooperation with one of the four different software companies that partici-
pated in our research. The first two are both large Dutch banks – identified in
this thesis as Bank-A and Bank-B – with complex software project portfolios,
operating in the midst of an enterprise-wide transformation from a plan-
driven (waterfall) development approach towards an agile (Scrum) way of
working. The third is a midsized Belgian telecom company – identified in this
thesis as BelTel – moving from a plan-driven approach towards Scrum-teams,
together with a strategic transformation from a European main supplier to-
wards IndSup-A, an Indian supplier of development teams. The fourth is a

Table 1.2: Mapping of empirical strategies on the Chapters in this thesis.

Empirical strategy Chapter: 2 3 4 5 6 7 8

Survey Q/I Q Q

Case Study S S M

Experiment or replication

Data Analysis Study D D D D D

S = Single Case Study, M = Multiple Case Study, Q = Survey with Electronic Questionnaires,
I = Survey with Interviews, D = Data Analysis Study (Quantitative)

Introduction 13

relatively small Dutch Billing software company that runs globally distributed
development teams in close cooperation with IndSup-B, a Netherland’s-
based supplier that runs development teams in India, combined with an agile
(Scrum) way of working.

1.4.1. Origin of Chapters

In every individual chapter, a specific subject of EBSPM is addressed. Each
chapter in this thesis, except for the introduction of EBSPM in Chapter 2, and
the conclusions and future research in Chapter 8, is based on a peer-reviewed
publication at a conference or in a journal, and can thus be read in separation.
The author of this thesis is the first author of all publications, however, all
papers – except for a paper for a doctoral symposium and a tool description
that are combined into Chapter 2 – are written in close cooperation with oth-
ers.

Chapters 3 to 7 are all directly based on the published papers. We adjusted
the layout of the original papers to include them as chapters in this thesis. The
cost duration matrix, a central, and major part of the EBSPM-tool is de-
scribed in detail in Chapter 2. In order to improve the readability of this the-
sis, we shortened the descriptions of the matrix in the Chapters 3, 4, and 7,
and included a reference to the general description in Chapter 2. Further-
more, we adjusted the numbering of research questions to match them with
the chapter numbering; in case of only one research question in a chapter, we
did not number it.

Chapter 2: A birds-eye view on EBSPM

In Chapter 2 we briefly introduce EBSPM as a model to support experience-
driven portfolio management in software companies. The text in this chapter
is based on two publications: 1) Evidence-Based Software Portfolio Manage-
ment in the proceedings of the 2014 doctoral symposium of the 9th Inter-
national Symposium on Empirical Software Engineering and Measurement
(ESEM 2015) (Huijgens, 2015a), and 2) Evidence-based software portfolio
management: a tool description and evaluation in the 2016 proceedings of
the 20th International Conference on Evaluation and Assessment in Software
Engineering (EASE 2016) (Huijgens, 2016a).

Unlike all following chapters, we adapted the text of the original publica-
tions where applicable, to make Chapter 2 suitable as an introduction for

14 Chapter 1

readers who want to get a brief overview of the EBSPM-model and the accom-
panying EBSPM-tool.

Chapter 3: About Good Practice and Bad Practice

Chapter 3 appeared as How to build a good practice software project portfo-
lio? in the 2014 companion proceedings of the 36th International Conference
on Software Engineering (ICSE SEIP 2014) (Huijgens, van Solingen, & van
Deursen, 2014c). In this chapter, we describe how analysis of the initial data
set of 352 finalized software projects, led to an inventory of seven success
factors and nine failure factors for software deliveries.

Chapter 4: EBSPM in a legacy context

Chapter 4 highlights the application of EBSPM in a legacy context in industry.
We performed a mixed, retrospective case study with in-depth interviews
with stakeholders on a series of nine software releases and eight single once-
only releases, all performing on a single, legacy software system, in a West-
European telecom company. This chapter was published as Success factors
in managing legacy system evolution: a case study in the proceedings of the
38th International Conference on Software and Systems Process (ICSSP 2016)
(Huijgens, van Deursen, & van Solingen, 2016d).

Chapter 5: EBSPM as a basis for Project Pricing

In Chapter 5 we highlight a case study in a Belgian telecom company where
the results of linear regression models based on data from completed software
deliveries, were used for the preparation of fixed price project proposals in a
strategic, long term outsourcing context with an Indian supplier. This chapter
was published as Pricing via functional size: a case study of 77 outsourced
projects in the proceedings of the 9th International Symposium on Empirical
Software Engineering and Measurement (ESEM 2015) (Huijgens, Gousios, &
van Deursen, 2015c).

Chapter 6: A comparison of two Software Project Repositories

In Chapter 6 we examined the characteristics of the software delivery data
that we collected over time in the EBSPM repository. We compare the EBSPM
repository with a commonly used repository that is maintained by the Inter-
national Software Benchmarking Standards Group (ISBSG, 2014). This chap-
ter is published as Effort and Cost of Software Engineering: A Comparison
of Two Industrial Data Sets in the proceedings of the 21st International

Introduction 15

Conference on Evaluation and Assessment of Software Engineering (EASE
2017) (Huijgens, van Deursen, Minku, & Lokan, 2017c).

Chapter 7: Stakeholder Satisfaction and Perceived Value

Chapter 7 highlights the addition of two important metrics for agile software
delivery to the EBSPM framework, stakeholder satisfaction and perceived
value. In an extended case study in two different software companies we ex-
amine correlations between the metrics that we collected over time in our
EBSPM research repository. This chapter is published as The Effects of Per-
ceived Value and Stakeholder Satisfaction on Software Project Impact in the
journal Information and Software Technology (Huijgens, van Deursen, & van
Solingen, 2017d). This journal paper is an extended version of a best-paper
award winning publication at the 20th International Conference on Evalua-
tion and Assessment in Software Engineering (EASE) (Huijgens, van Deur-
sen, & van Solingen, 2016c).

Chapter 8: Conclusions

Finally, in Chapter 8 we inventory the contributions of our research. We dis-
cuss findings and threats to validity. We outline the implications for research,
the software engineering industry, and education, and finally we draw conclu-
sions based on the collections of chapters in the thesis.

1.4.2. Additional tests summarized in an addendum

Due to the basic principle that each chapter in this thesis - except for the
introduction of EBSPM in Chapter 2, and the conclusions and future research
in Chapter 8 - is based on a peer-reviewed publication at a conference or in a
journal, the thesis itself reflects the four-year history of its development. This
can especially be seen in the application of statistics in this thesis. Two main
aspects play a role here. Firstly, the level of knowledge of the author of this
thesis on software analytics, and more specifically the application of statistics
matured during this period. Secondly, the knowledge of software analytics
and the use of statistics within the discipline of software engineering research
itself developed to a higher level too.

As a result of this ongoing development, and inspired by new and some-
times improved insights into the statistical tests to be used for software
analytics, we challenged and improved the tests performed in some chapters.

16 Chapter 1

For this purpose we added an addendum at the end of Chapter 3 in which the
results of such improvements are summarized and briefly discussed.

1.4.3. Publications not included in the thesis

Additional publications by the author of this thesis that are not included in
this thesis are:
1. Measuring Best-in-Class Software Releases. Proceedings of the 23rd In-

ternational Workshop on Software Measurement and the 8th Internation-
al Conference on Software Process and Product Measurement (IWSM-
MENSURA 2013) (Huijgens & van Solingen, 2013a).

2. A replicated study on correlating agile team velocity measured in func-
tion and story points. Proceedings of the 5th International Workshop on
Emerging Trends in Software Metrics (WETSoM 2014) (Huijgens & van
Solingen, 2014a).

3. An exploratory study on automated derivation of functional size based
on code. Proceedings of the 38th International Conference on Software
and Systems Process (ICSSP 2015) (Huijgens, Bruntink, van Deursen,
van der Storm, & Vogelezang, 2015b).

4. Do estimators learn? On the effect of a positively skewed distribution of
effort data on software portfolio productivity. Proceedings of the 7th In-
ternational Workshop on Emerging Trends in Software Metrics (WET-
SoM 2016) (Huijgens & Vogelezang, 2016b).

5. An Exploratory Study on the Effects of Perceived Value and Stakeholder
Satisfaction on Software Projects at the 20th International Conference on
Evaluation and Assessment in Software Engineering (EASE 2016)
(Huijgens, van Deursen, & van Solingen, 2016c) (best-paper award).

6. Evidence-based software portfolio management: a tool description and
evaluation. Proceedings of the 20th International Conference on Evalua-
tion and Assessment in Software Engineering (EASE 2016) (Huijgens,
2016a).

7. Strong Agile Metrics: Mining Log Data to Determine Predictive Power
of Software Metrics for Continuous Delivery Teams. Proceedings of 11th
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE 2017, Industry track) (Huijgens, Lamping, Stevens, Rothen-
gatter, Romano, & Gousios, 2017b).

18 Chapter 1

A bird’s-eye view on EBSPM 19

2. A Bird’s-eye view on EBSPM

n this chapter, we outline an overall picture of the Evidence-Based Soft-
ware Portfolio Management (EBSPM) model and the accompanying tool.
EBSPM is intended to help software companies in steering their software

portfolios based on cost, duration, and defects on the one hand and quality
of estimations, stakeholder satisfaction, and perceived value on the other.
The research approach is based on instruments such as a cost duration ma-
trix, the identification of success and failure factors for software projects, and
the collection of data on finalized software projects from portfolios of differ-
ent companies in a research repository.

2.1. Introduction

The goal of evidence-based software portfolio management is to use project
data collected from the past to predict and monitor the success of other soft-
ware projects, now and in the future. In such a portfolio management per-
spective, measuring project size, project costs, project duration and post-
release defects is a common practice. Nevertheless, these core metrics only

I

This chapter is based on the publications Evidence-Based Software Portfo-
lio Management in the proceedings of the doctoral symposium of the 9th
International Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2015) (Huijgens, 2015), and Evidence-based software portfo-
lio management: a tool description and evaluation. Proceedings of the 20th
International Conference on Evaluation and Assessment in Software
Engineering (EASE 2016) (Huijgens, 2016). Where applicable adjustments
are made to create an overall introduction to EBSPM.

20 Chapter 2

tell a part of the story, and as such companies should be careful in steering
their software project portfolios on these data points alone.

It could, after all be possible that a specific project costing twice as much
as typical for its size would still be highly valuable to the organization. Per-
forming within time and cost constraints is important, but especially in envi-
ronments that use agile approaches additional goals enter the arena, such as
early delivery of valuable software and an increased focus on stakeholder
satisfaction.

Where many other studies use either a quantitative approach (e.g. analyze
core metrics) or a qualitative approach (e.g. perform surveys or interviews) to
analyze software projects, we combine both ways and look at a company’s
software project portfolio from a holistic point of view. The goal of our re-
search is to combine a quantitative, data-driven approach on analysis of final-
ized software project portfolios with a qualitative, survey-based approach to
identify factors related to project success and failure, in combination with an
approach to measure and analyze stakeholder satisfaction and perceived
value of software projects.

In this chapter, we outline an overall picture of the EBSPM-model and the
accompanying tool. To do so, we briefly describe its following main elements
as depicted in Table 2.1. In the case studies in the remaining chapters of this
thesis the aspects of EBSPM are outlined more in detail.

2.2. The EBSPM-model

The EBSPM-model is an empirical, evidence-based research approach to sys-
tematically analyze the software portfolio of software companies, to improve
their performance at a company level. EBSPM has been developed in close
cooperation with software companies (to be read as information-intensive
companies, such as banks, telecom companies, governmental organizations),
and it has been set-up in a way that fits as much as possible with practice.
Where appropriate case studies are used as the main instrument to address
research goals (Runeson et al. 2012) (Yin, 2008). Usually mixed studies are
performed: the study includes both quantitative and qualitative research on
the subject projects within a portfolio as a whole of a company or organiza-
tion. The focus is not to study single software projects as such, but instead to
look at the effects of all software projects that were performed over a period

A bird’s-eye view on EBSPM 21

of time in a portfolio as a whole. By doing so we target both good practice
projects and bad practice projects within a portfolio.

Where applicable electronic surveys among stakeholders of software de-
liveries are used to collect qualitative data, supplemented with non-struc-
tured interviews as techniques to challenge findings from the quantitative
analysis.

A precondition that limits the EBSPM-model is the fact that it supports
research performed in real, live organizational environments. Therefore the
model must not interfere with the daily operation of the studied software
projects. Surveys should impose limited burden on people, and analysis
should be useful for improvement purposes in daily operations.

In a way the EBSPM-model is set up as an iterative innovation process, or
learning cycle. Each iteration consists of collecting data of finalized software
deliveries, performing quantitative analysis and benchmarking the results on
the EBSPM research repository, and visualizing the outcomes in the EBSPM
performance dashboard after completion. The company in scope is assumed
to make changes in its software delivery process that might lead to
improvements. Based on the outcomes of the analysis new or adjusted
research goals are defined, and a new case study starts. In this way such a
series of case studies supports continuous innovation of a company’s software
delivery processes.

Table 2.1: Overview of the main instruments in the EBSPM-model.

EBSPM Instruments Description

The EBSPM Approach An empirical, evidence-based research approach
to analyze the performance of a company’s
software delivery portfolio.

The EBSPM Research Repository A data set containing data of finalized software
deliveries, from four different companies,
including Core Metrics, Stakeholder Satisfaction
and Perceived Value, and qualitative keywords
that characterize deliveries.

The EBSPM Performance Dashboard Analysis of good practice and bad practice in
large, company-wide portfolios of software
projects, including a cost duration matrix and a
summary of Key Performance Indicators.

22 Chapter 2

2.3. Distinguishing good deliveries from bad ones

The main element within the EBSPM-model is a so-called cost duration ma-
trix, that we developed to identify good software deliveries from bad ones.
Our premise regarding good and bad deliveries, is that we initially translate
success and failure of software projects from its core metrics (Kan, 1995):
cost, lead time, and number of defects. To be able to compare different soft-
ware projects with each other regarding these core metrics, we use functional
size (function points) as a normalizer.

2.3.1. Functional Size as a Normalizer

In the EBSPM approach functional size is measured in function points, ac-
cording to the IFPUG industry standard (IFPUG, 2009). Functional Size
Measurement (FSM) is an industry standard to measure size of software en-
gineering activities. It is based on Function Point Analysis (FPA), a method
designed by Albrecht in the 70s (Albrecht, 1979), to estimate size of software
delivery by means of user functionality. With ISO/ IEC 14143 as an umbrella
standard, five FSM methods are certified by ISO as an international standard.
Of these five FSM methods the ISO/IEC 20926:2009: IFPUG FSM method
(IFPUG, 2009) is used as an industry-wide standard. For this reason we opted
for this FSM method as a core metric within EBSPM. The strong positive cor-
relations that are known between functional size on the one hand and cost,
duration, and number of defects on the other (Boehm, 1984) (El Emam &
Günes Koru, 2008) (Boehm et al., 2000a) (Heemstra & Kusters, 1991)
(Bhardwaj & Rana, 2016), gave us the possibility to normalize different
software projects through function points. Due to that functional size made it
possible to objectively compare individual software deliveries to a larger
benchmark.

2.3.2. The Cost Duration Matrix

In Figure 2.2 a single cost duration matrix is shown, depicting all projects in
the repository. Each project is shown as a circle. The larger the circle, the
larger the project is (in function points), and the more red the project is, the
more defects per function point it contains. The more blue a project is, the
fewer defects per function point it contains. The color range changes from red
to blue with light-grey in the middle, indicating the average score for defects

A bird’s-eye view on EBSPM 23

per function point, measured over the repository as a whole. The position of
each project in the matrix represents the cost and duration deviation of the
project relative to the benchmark, expressed as percentages. The horizontal
and vertical 0%-lines represent zero deviation, i.e. projects that are exactly
consistent with the benchmark.

A project at (0%, 0%) would be one that behaves exactly in accordance
with the benchmark; a project at (-100%, -100%) would cost nothing and be
ready immediately; and a project at (+100%, +100%) would be twice as ex-
pensive and takes twice as long as expected from the benchmark.

As Figure 2.1 shows, deviations from the 0%-line on the positive side of
both duration and cost (indicating longer durations and higher cost) are huge.
The y-axis passes through up to 300%, while the x-axis even extends to more
than 1400%. This deviation is mainly caused by a limited number of outliers;
without only six outliers the x-axis extends up to 500% deviation.

Figure 2.2 shows the same cost duration matrix, with both the x-axis and
the y-axis cut-off at the 200%-lines. As can be seen, the projects in the
portfolio are divided rather evenly over four different areas, or as we call it

Figure 2.1: The cost duration matrix as the core element in the EBSPM-model.

24 Chapter 2

quadrants. As an example: some are relatively cheaper than the benchmark
would predict (right of the vertical 0%-cost bar), yet take longer than expected
(below the horizontal 0%-duration bar). The 0%-lines divide the cost dura-
tion matrix into four quadrants:
1. Good practice (top right); projects that score better than average for both

cost and duration.
2. Cost over time (bottom right); projects that score better than average for

cost, yet worse than average for duration.
3. Bad practice (bottom left); projects that score worse than average for

both cost and duration.
4. Time over cost (top left); projects that score better than average for

duration, yet worse than average for cost.

Keep in mind that the underlying nominator for all software projects in

the cost duration matrix is functional size, measured in function points (FPs).

 Figure 2.2: The cost duration matrix with cut-off axes.

Good Practice

Cost over Time Bad Practice

Time over Cost

A bird’s-eye view on EBSPM 25

Due to this we can compare the performance in terms of cost, duration, de-
fects found, satisfaction, and value of projects with different sizes with each
other.
Based on the EBSPM-model we developed a specific EBSPM-tool. The tool
offers two basic features, a research repository and a performance dashboard.
These initial features are described in the following Subsections.

2.4. The EBSPM Research Repository

All data that is collected within the scope of the EBSPM-model is stored in an
EBSPM research repository, holding the metrics as mentioned in Table 2.2.
For a period of seven years we collected performance data of finalized soft-
ware projects in industry, in close cooperation with a number of large banking
and telecom companies in the Netherlands and Belgium. Based on this we
built a research repository of core metrics data of more than 500 software
projects. In the remainder of this Subsection the metrics mentioned in Table
2.2 are discussed briefly. In the case studies in the remaining chapters of this

Table 2.2: Overview of the main metrics in the EBSPM Research Repository.

EBSPM Metrics Description

Core Software Delivery Metrics The four core metrics on software deliveries: size,
cost, duration, and number of defects.

Estimation Quality Factor (EQF) A measure of the deviation of a forecast to the actual
cost or duration; a forecasting metric that depicts
the quality of forecasts made during a project.

Cost Duration Index A measure of the relative position of a project within
the Cost Duration Matrix, represented as a number
between zero and one hundred.

Stakeholder Satisfaction A qualitative measure of the satisfaction of stake-
holders of a specific project on the way a project was
performed and with the results as delivered.

Perceived Value A qualitative measure of the perception of stake-
holders of a specific project on the amount of value
delivered.

Software Delivery Keywords A series of keywords that characterize a specific
software project.

26 Chapter 2

thesis these metrics are outlined more in detail. The EBSPM research
repository is available as open source via 4TU Centre for Research Data
(Huijgens, 2017a).

2.4.1. The Core Software Delivery Metrics

Within the scope of the EBSPM approach four core metrics are collected for
each software delivery in the EBSPM research repository: functional size,
cost, duration, and number of defects. The effect on strong positive correla-
tions between these metrics is well known from related work (Huijgens et al.,
2014b) (Boehm, 1984) (El Emam & Günes Koru, 2008) (Boehm et al., 2000a)
(Heemstra & Kusters, 1991) (Bhardwaj & Rana, 2016). Also the effect of
functional size as a risk factor has been described earlier. Smaller projects
tend to have lower cancellation rates (Rubinstein, 2007) (Sauer &
Cuthbertson, 2003). Smaller projects tend to perform better in terms of
quality, being on budget, and being on schedule (Rubinstein, 2007) (Sauer &
Cuthbertson, 2003) (Sonnekus & Labuschagne, 2004). Project size is found
to be an important risk factor for success (Barki, Rivard, & Talbot, 1993)
(Jiang & Klein, 2000) (Schmidt, Lyytinen, Cule , & Keil, 2001) (Zowghi &
Nurmuliani., 2002) (Heemstra & Kusters, 1989) (Chidambara & Senthil
Kumar, 2016).

Based on these four core metrics, three key performance indicators are
calculated: cost per function point, days per function point, and defects per
function point, using in each case the size in function points as weighting
factor.

A limitation with regard to the EBSPM-model is that in practice collection
of effort data of finalized software deliveries is not mandatory. Experience in
industry taught us that, especially in outsourcing cases, reliable effort data is
difficult to measure, if not impossible in many cases. In Chapter 6 of this
thesis we focus more in depth on the relation between cost and effort and on
the backgrounds of collecting both metrics.

2.4.2. Estimation Quality Factor

The estimation quality factor (EQF) is a measure of the deviation of a forecast
to the actual cost or duration. EQF is a forecasting metric that depicts the
quality of forecasts made during a project. The measure was defined by
DeMarco (1984). He defines EQF by:

A bird’s-eye view on EBSPM 27

𝐸𝐸𝐸𝐸𝐸𝐸 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑢𝑢𝑢𝑢𝑢𝑢𝐴𝐴𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑢𝑢𝐴𝐴𝑎𝑎 𝑣𝑣𝐴𝐴𝑎𝑎𝑢𝑢𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑏𝑏𝐴𝐴𝑎𝑎𝑏𝑏𝐴𝐴𝐴𝐴𝑢𝑢 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝑓𝑓𝑎𝑎 𝐴𝐴𝑢𝑢𝑢𝑢 𝐴𝐴𝑎𝑎𝑎𝑎𝑢𝑢𝐴𝐴𝑎𝑎 𝑣𝑣𝐴𝐴𝑎𝑎𝑢𝑢𝐴𝐴

We use the formulization proposed by Eveleens & Verhoef (2009). EQF
allows us to quantify the quality of forecasts. A low EQF value means that the
deviation of the forecasts to the actual cost or duration is large. EQF is
measured for both cost and duration. In Chapter 7 of this thesis we elaborate
the specific application of EQF for both cost and duration, and the correla-
tions with other metrics more in detail.

2.4.3. The Cost Duration Index

The cost duration index is a measure of the relative position of a project
within the cost duration matrix (see Subsection 2.5.2). The index is repre-
sented as a number between zero and one hundred. In practice most projects
score between 80 and 99. A high index corresponds to a good position in the
cost duration matrix. The index is based on the geometric mean of two
proportions comparing the actual value to the benchmark value. In Chapter
7 of this thesis the concept of cost duration index, including any correlations
with other metrics, is elaborated more in detail.

2.4.4. Stakeholder Satisfaction

Stakeholder satisfaction is a measure of the satisfaction of stakeholders of a
specific project with the way a project was performed and with the results as
delivered by that project. Stakeholder satisfaction is measured by asking
stakeholders of a specific project to rate their satisfaction on two aspects; the
way a project was performed (the project’s process), and with the results as
delivered by a project (the project’s result), for which we use questions with a
1 to 5 rating scale. We use electronic surveys to collect data on stakeholder
satisfaction. Surveys are sent after finalization of each software delivery to all
internal, and if applicable all external, stakeholders of deliveries: e.g. project
managers, developers, testers, product owners. Stakeholder satisfaction is in
our approach not weighted amongst stakeholders. In Chapter 7 of this thesis
the concept of stakeholder satisfaction, including any correlations with other
metrics, is elaborated more in detail.

28 Chapter 2

2.4.5. Perceived Value

Value of software projects is a complex metric to measure (Shepperd, 2014),
and studies are not specific on how they define value (Dingsøyr & Lassenius,
2016). It is difficult, if not impossible, to measure objectively and indisputably
the real value as delivered by software projects to customers of software
companies. Is real value about money and time as Beck says (Beck, 2000)?

Does it mean financial value, as in studies indicated by return on invest-
ment (ROI) (Solingen, 2004)? Or is real value measured by net promotor
score (NPS), as other studies indicate (Green, 2011) (Hofner, Mani, Nambiar,
& Apte, 2011) (Feyh & Petersen, 2013)? Such holistic measurements on value
are often difficult to make for a single project, and they cannot easily be re-
lated to single software projects, mainly because too many different factors
are of influence for such measurements.

To approach the real value, we measure perceived value as a quantitative
measure of the perception of stakeholders of each project. This is based on
the notion that in fact every measurement is an agreement on a measurement
procedure that sufficiently approaches the actual value (Solingen, 2004). We
measure perceived value alike stakeholder satisfaction in an electronic
survey among software delivery stakeholders. Perceived value is measured
for each stakeholder in a specific delivery, on four aspects: a company’s
customers, a company’s financials, a company’s internal process effective-
ness, and a company’s innovation.

We base the use of the four perspectives customer, financial, internal pro-
cess, and innovation on the Balanced Scorecard (Kaplan & Norton, 1995).
Based on the results per project of the four perceived value measures a per-
ceived value (overall) is calculated, with the number of measures as weigh-
ting factor (since answering each separate question on perceived value is not
mandatory, only in case a stakeholder mentions a value this is incorporated
in the calculation of an overall value, not counting the choice “Don’t know”).

Chapter 7 of this thesis gives a detailed view on perceived value, including
any correlations with other metrics.

A bird’s-eye view on EBSPM 29

2.4.6. Software Delivery Keywords

Besides the set of metrics described above the EBSPM research repository
contains a variety of keywords that characterize a software delivery in a spe-
cific way. Multiple keywords can be mapped on one delivery. When preparing
the overview of keywords we used a practice-driven approach to identify those
keywords, that were available within the different software companies that
were in scope of our research. We specifically looked at project characteris-
tics, reasons to start a project, release-based way of working, delivery ap-
proach specifics, and how teams were organized. The following keywords are
applicable:
1. Dependencies

1.1. Single-application;
1.2. Phased project (part of program);
1.3. Dependencies with other systems;

2. Reason behind project
2.1. Business driven;
2.2. Technology driven;
2.3. Rules & Regulations driven;
2.4. New technology, framework solution.

3. Project Specifics
3.1. Migration;
3.2. Legacy;
3.3. Security;
3.4. Pilot; Proof of Concept;
3.5. Bad relation with external supplier;

4. Package Solution
4.1. Package off-the-shelf;
4.2. Package with customization;

5. Team Specifics
5.1. Once-only project;
5.2. Fixed, experienced team;
5.3. Many team changes, inexperienced team;

6. Release Characterization
6.1. Release-based, mapped on one application;
6.2. Multi-application release;

30 Chapter 2

7. Delivery Approach
7.1. Steady heartbeat;

2.5. The EBSPM Performance Dashboard

The main element within the EBSPM-model to visualize the outcomes of
analysis on data from the EBSPM research repository is the EBSPM per-
formance dashboard. Figure 2.3 gives an overview of the dashboard, with a
selection made on projects only delivered in Bank-A (a large bank in the Neth-
erlands). In Figure 2.4 the dashboard is depicted with a selection of deliveries
that were developed in an agile (Scrum) way. As both figures show, three parts
can be distinguished in the dashboard:
1. On the left side a number of selection options;
2. In the center a cost duration matrix;
3. At the right side a summary of key performance indicators.

These three parts of the dashboard are described more in detail in the

following Subsections.

Figure 2.3: An example of the EBSPM performance dashboard, with a selection of
software deliveries in Bank-A (a large Dutch bank).

A bird’s-eye view on EBSPM 31

2.5.1. Selection Options

The EBSPM performance dashboard offers four (standard) selection options:
1. Organization: the repository holds data of four different software compa-

nies, two of which are a large bank in the Netherlands, one medium-sized
Belgian telecom company, and one small software company in The
Netherlands that offers Billing solutions to telecom companies in Europe.

2. Business domain: the repository contains data from several business
domains, such as Internet, Mobile, Payments, Mortgage, Data Ware-
house & BI, and Call Center Solutions).

3. Development method: the repository holds data that is collected from
projects with different development methods, such as plan-driven
(waterfall), RUP, and agile (Scrum).

4. Project name: a selection can be made based on a project name or a part
of such a name.

Figure 2.4: An example of the EBSPM performance dashboard, with a selection of
software deliveries that were developed in an agile (Scrum) way.

32 Chapter 2

Once a selection is made, the subset of projects in the repository within
the selection is shown in the cost duration matrix, and included in the calcu-
lation of key performance indicators. The overall performance of the portfolio
is furthermore summarized through the two red 'median' lines.

2.5.2. The Cost Duration Matrix as the Core of the Dashboard

The core of the EBSPM performance dashboard is the cost duration matrix,
that we developed to compare a (selected) subset of projects to the benchmark
(the content of the EBSPM research repository as a whole) (Huijgens et al.,
2014c) (Huijgens et al., 2015c) (see Subsection 2.3.2 for a detailed explana-
tion of the cost duration matrix).

2.5.3. The Key Performance Indicator Summary

At the right of the EBSPM performance dashboard (see Figure 2.3) a number
of key performance indicators, some additional performance indicators, and
summary metrics are indicated. At the top cost per FP, days per FP, and num-
ber of defects per FP are shown for both the EBSPM research repository as a
whole, and the selected subset.

As an example: Figure 2.3 shows that the cost per FP calculated over the
repository as a whole is 3636 Euro, while the cost per FP for the selected
subset of Bank-A is 3926 Euro. Keep in mind that we used project size as a
weighting factor, instead of number of projects.

In the right center part three metrics are shown that indicate stakeholder
satisfaction and perceived value. Stakeholder satisfaction is shown for two
aspects: process and result (the delivered product).

Below that, the sample size of both the repository as a whole, and the
selected subset are shown, and a number of average values for project size,
project cost, project duration, and number of defects.

2.5.4. Who should use the tool? And why?

The goal of the users of the EBSPM-tool is to twofold. Firstly, the tool enables
them to continuously analyze the performance of their software delivery
processes in terms of time, number of defects, and money. Selections for over-
time analysis are easily to be added, and the user cab drill down to business
domain level, organization level, or development method. The tool helps
users to understand questions such as:

A bird’s-eye view on EBSPM 33

“Is the performance of software deliveries in the payment domain of my
company improving over time?”

“Is it wise to use Scrum as a development approach? Or should I stick to a
traditional, plan-driven way of developing software?”

A second goal for the users of the EBSPM-tool is to use it as a source for
estimating new projects. The tool helps to understand performances, and
especially the bandwidths amongst projects within equal business domains,
development approaches, and other keywords. It helps users to understand
questions such as:

“Should this new project be estimated at a cost of 3 million euro, or is 1
million euro more realistic?”

“My supplier tells me that this project is going to cost me 500 K euro. Is
that a fair estimate?”

“The project manager is very satisfied because he finalized the project on
time and within the budget… Yet, the customers are very dissatisfied because
of many defects, and too high costs. Who is right?”

An evidence-based approach, such as EBSPM, might help software com-
panies to better understand their performances, and to answer questions like
the ones stated above.

2.6. A practical, evidence-based approach

We developed the EBSPM-model as an evidence-based, practical set of tools
to support software companies to actively steer at optimization of their
software delivery portfolio. In the next chapter we describe an EBSPM-tool
that we developed to support application of the model in a practical context.

In the Chapters 3 to 7 of this thesis we elaborate on a number of case stud-
ies, surveys, and data analysis studies in which we evaluated the EBSPM-
model in real cases in the software industry. We studied both large software
companies and smaller ones. In a large Dutch bank we collected cost, dura-
tion and defects data from software projects that finalized over a period of
five years, in order to understand what made projects successful, and what
leads to bad performances. Besides that we looked at the quality of project
estimations for both cost and duration.

In a medium sized telecom company in Belgium we studied data from fi-
nalized projects over a period of three years. We expanded our approach with

34 Chapter 2

additional metrics such as stakeholder satisfaction and perceived value, in
order to understand how these related to cost, duration, number of defects
and quality of project estimations. Besides that we studied in this company
the effects of a statistics-driven, empirical way to define fixed-price project
proposals in close cooperation with an Indian supplier that had a strategic,
long-term partnership with the Belgian telecom company.

Finally, we examined whether the effects that we found in both the bank-
ing and the telecom company, also applied to a much smaller Netherland’s-
based software company that delivers Billing solutions to telecom operators
in Europe. In this company the actual development activities where out-
sourced to a Dutch software company with development teams in India.

To give an impression of the way the EBSPM-approach matured: the
EBSPM research repository grew to more than 500 finalized software projects
of which data was collected. The repository represents a total of 291 million
Euros that was spent by four companies on development and maintenance of
their software projects.

Where the original EBSPM performance dashboard was built in MS Excel,
we developed a renewed dashboard by using the business intelligence solu-
tion Tableau, offering us better functionality for drill down to lower levels in
a company’s software project portfolio.

As we described, the EBSPM-model is built on the collection, analysis, and
benchmarking of a limited subset of metrics such as time, cost, defects,
functional size, estimation quality, stakeholder satisfaction, and perceived
value. An effect of this could be that the approach offers practitioners and
researchers a somewhat limited view at the reality of a company’s software
portfolio. Other aspects are simply not in scope, while they might be of great
importance to a company’s performance. Without compromising on the
quality of the following chapters, we recommend that those who read the re-
maining chapters of this thesis should keep this limitation in mind.

36 Chapter 3

On Good Practice and Bad Practice 37

3. On Good Practice and Bad Practice

ontext: What can we learn from historic data that is collected in three
software companies that on a daily basis had to cope with highly
complex project portfolios? Objective: In this chapter we analyze a

large dataset, containing 352 finalized software engineering projects, with the
goal to discover what factors affect software project performance, and what
actions can be taken to increase project performance when building a soft-
ware project portfolio. Method: The software projects were classified in four
quadrants of a cost duration matrix: analysis was performed on factors that
were strongly related to two of those quadrants, good practice and bad prac-
tice. A ranking was performed on the factors based on statistical significance.
Results: The chapter results in an inventory of ‘what factors should be em-
braced when building a project portfolio?’ (success factors), and ‘what factors
should be avoided when doing so?’ (failure factors). Conclusions: The major
contribution of this chapter is that it analyzes characteristics of best perform-
ers and worst performers in the dataset of software projects, resulting in 7
success factors, and 9 failure factors.

3.1. Introduction

Growing complexity faces many software engineering companies nowadays
with a portfolio- and project control capability that is lagging behind with
their high IT-expenditure. A trend towards rapid application development,

C

This chapter was published as How to build a good practice software project
portfolio? in the 2014 companion proceedings of the 36th International Con-
ference on Software Engineering (ICSE SEIP 2014) (Huijgens, van Solingen,
& van Deursen, 2014).

38 Chapter 3

acceleration of the pace of change in information technology, in organiza-
tions, in competitive countermeasures, and in the environment has caused
increasing frustration with heavyweight plans (Boehm, 2006a). An answer to
this challenge can be found in a need for instruments and techniques that
support transparency and orchestration of software engineering activities,
showing organizations what they can learn from their best performing
projects (good practice), and from their worst performing projects (bad prac-
tice). Especially in complex environments successful software engineering
requires companies to pay special attention to a learning capability that sup-
ports flexible portfolio- and project management to prevent from decreasing
productivity, increasing time-to-market, and low software quality (Tihinen,
Parviainen, Suomalainen, & Karhu, 2011).

However this problem seems hard to solve. Still many software develop-
ment organizations have enormous difficulties developing reliable effort esti-
mates that result in on-time and on-budget delivery of their software
products, (Moløkken & Jørgensen, 2003). Many companies have no or lim-
ited historic reference data on their software engineering activities available
(Dagnino, 2013). This limits existing solutions on software estimation to im-
mature and unreliable estimation techniques and hinders learning. An often-
heard goal of continuous improvement seems searching for the pot of gold at
the end of the rainbow.

What can we learn here from historic data that is collected in three soft-
ware engineering companies that on a daily basis had to cope with such highly
complex project portfolios?

3.1.1. Research Objectives

Within the scope of the implementation of several measurement programs as
part of process improvements, a large dataset containing 352 software
projects was collected in practice in three different companies during a time-
span of six years (2008 to 2013). We define the following research question:

RQ: What factors affect software project performance, and what actions can be
taken to increase project performance when building a software project portfolio?

On Good Practice and Bad Practice 39

3.1.2. Context

Data was collected on finalized software engineering projects within three
different companies. The companies – two large banks (in this chapter re-
ferred to as ‘Bank-A’ and ‘Bank-B’), and one telecom provider (referred to as
‘BelTel’) – were, with regard to their software engineering activities, compa-
rable to each other. The size of the software project portfolio of the banks was
considerably larger than that of the BelTel: The measured yearly throughput
of software projects for Bank-A was approximately 10,000 function points
(FPs) (IFPUG, 2009) (NESMA, 2004), for Bank-B this was approx. 8,000
FPs per year, and BelTel measured approx. 2,000 FPs per year. However, on
a business domain scale the software engineering activities were equal in
many ways. Software engineering was organized in projects or releases, dif-
ferent delivery models were adopted, and software engineering was
characterized by a variety of programming languages and business domains
(varying from business intelligence systems to mobile apps).

In all three companies a comparable and similar approach for measure-
ment and analysis of software projects was implemented during the data
collection period. A so-called learning-cycle was implemented: (1) finalized
software projects were measured, collected in a measurement repository, and
analyzed, (2) data of groups of finalized projects was analyzed on specific
trends and benchmarked with internal and external peer-groups, and (3) fi-
nally trends were incorporated in an estimation process for newly to be
started projects. With regard to step 1 of the learning cycle the measurement
repository included both quantitative project data (e.g. size, cost, effort,
duration, and defects) and qualitative project data (e.g. reasons named by the
project manager that could explain the projects’ performance).

In this chapter we subsequently discuss research design, execution, analy-
sis, interpretation, related work, and conclusions and future work.

3.2. Research Design

3.2.1. Approach

There may be a large gap between how different stakeholders, and research-
ers, define success and failure of software projects. Similarly to (Lindberg,
1999), we relate success and failure within this research to better or worse

40 Chapter 3

than average cost, effort, and duration performance. Although, where
(Lindberg, 1999) compares to industry, we posed to focus the study on iden-
tifying success and failure factors of the sample software projects themselves.
Every single project from the sample is compared with the average perfor-
mance of the whole repository. The idea behind this is that a focus at identify-
ing projects that performed better than average, and projects that performed
worse than average, might help companies to realize their ultimate goal of
continuous improvement. The refined research objectives of this study are to
identify factors that are instrumental in software project success or failure.
Following from that, we analyze actions that help to improve the performance
of such projects. In the scope of this study a performance-rating ‘better than
others’ must be read as better than the average performance of the whole
sample. ‘Worse than others’ must be read as worse than the average perfor-
mance of the whole sample.

3.2.2. Design

The strategy for this research can be defined as a data analysis project. We
did not study individual projects in our sample, but the primary author col-
lected and maintained the majority of the projects in the measurement repos-
itory. A minority of the projects was collected by third parties. Our goal was
to explore the performance of finalized software projects and identify key
success and failure factors in order to build a good practice project portfolio.
Our study proposition was twofold. First, we hypothesized that within the
repository good performers and bad performers can be distinguished in a
quantitative way. Second, we expected that the qualitative information in the
repository gives valuable, additional information on success and failure of the
projects and on software engineering projects in general.

3.2.3. The Research Repository

Table 3.1 gives an overview of the research repository, including the different
aspects that are analyzed in our research. All data in the repository was
collected before we started our research, and only with practical analysis
purposes in mind. All data is about finalized projects: the dataset does not
hold any data on prematurely stopped or failed projects. All projects are
related to solution delivery, i.e. an information system was modified or com-
pletely new designed. The dataset contains software engineering projects,

On Good Practice and Bad Practice 41

which in some cases contain an infrastructure component or an implementa-
tion of middleware: no full infrastructure or middleware projects are included
in the repository. With regard to our research, the dataset is where possible
and applicable, discussed with the measurement team that was responsible
for the collection. For the research described in this Section all available data
in the repository has been used; no deviations or outliers have been removed
from the dataset.

The repository contains both quantitative data (e.g. ratios on size, du-
ration, and cost), and qualitative data (e.g. applicable keywords). This data in
particular was collected due to its availability in the software companies
where research was performed. Due to these practical limitations for example
only a limited number of projects in the repository have effort data available,
since most companies involved did not collect (actual and estimated) effort
data of software projects.

The repository holds data of 352 software engineering projects carried out
in three companies during a period from 2008 to 2013. The projects
represent a total amount spent of 266M Euro. Project cost range from 12K
Euro to 6.8M Euro. The sum of function points across projects in the repos-
itory is 91,105 FPs; ranging from projects with a size of 5 FPs to 4,600 FPs.
The project duration ranges from 0.9 Months to 26.8 Months.

Qualitative data is recorded for the following research categories:
1. Business domain (BD);
2. Primary programming language (PPL);
3. Company (ORG);
4. Delivery model (DM);
5. Development class (DC);
6. Size category (SC), and;
7. Project keyword (PK).

Within these 7 research categories are in total 56 project factors invento-

ried in the repository (see Table 3.1 for an overview).
For all inventoried projects size is measured in Function Points (FPs).

Function Point Analysis (FPA) has been performed either by an expert mem-
ber of a measurement team or an external certified FPA-specialist, according
to ISO-standardized functional size measurement (FSM) methods (NESMA,
2004) (IFPUG, 2009).

42 Chapter 3

Table 3.1. Overview of the EBSPM Research Repository

Category Type Occurrence N Definition of Project Factors
Company ID
(ORG)

Nominal 3 352 Identification code of the company where a
project was performed; three companies
were applicable (nr. of occurrence between
brackets): Bank A (206), Bank-B (125),
BelTel (23).

Project ID Nominal 352 352 Identification code of a project.
Year of Go Live Ordinal 6 352 Year when a project was finalized; the

following years Go Live were applicable:
2008 (32), 2009 (59), 2010 (81), 2011 (131),
2012 (41), 2013 (10).

Business
Domain (BD)

Nominal 10 352 Customers business sector; the following
BD were applicable: Finance & Risk (54),
Internet & Mobile (54), Payments (50),
Client & Account Management (incl. CRM
systems) (46), Savings & Loans (40),
Organization (incl. HRM) (31), Call Centre
Solutions (21), Mortgages (21), Data
warehouse & BI (18), Front Office Solutions
(17).

Primary
Programming
Language
(PPL)

Nominal 21 352 Primary used programming language:
JAVA (154), .NET (59), COBOL (55),
ORACLE (29), SQL (9), 3GL (8, unknown
was what specific languages were
applicable here), Visual Basic (6), RPG (6),
FOCUS (5), PowerBuilder (5), PRISMA (4),
MAESTRO (3). In the analysis 4th
Generation (1), PL1 (1), JSP (1), C++ (1),
Clipper (1), Document (1), PL/SQL (1),
Siebel (1) and Package (1, unknown what
specific language was applicable) were
referred at as Other.

Delivery Model
(DM)

Nominal 2 352 Classification of the used delivery model;
two DM were applicable: Structured (e.g.
Waterfall) (307), and Agile (Scrum) (45).
One project reported as DM RUP is
included in the analysis of Structured.

Development
Class (DC)

Nominal 4 352 Classification of the development: New
development (173), Major enhancement
(25-75% new) (124), Minor enhancement
(5-25% new) (27), Conversion (28).

On Good Practice and Bad Practice 43

 Category
continued

Type Occurrence N Definition of Project Factors

Project Keyword
(KW)

Nominal 20 351 Characteristics on a specific project (multi-
ple keywords could be mapped on one pro-
ject, on one project no keyword was
mapped); the following keywords were
applicable: Single-application (270),
Business driven (150), Release-based (one
application) (144), Once-only project (122),
Phased project (part of program) (65),
Fixed, experienced team (62), Technology
driven (58), Steady heartbeat (49),
Dependencies with other systems (41),
Migration (35), Rules & Regulations driven
(33), Multi-application release (21), Many
team changes, inexperienced team (17),
Package with customization (16), Legacy
(15), Security (14), Pilot; Proof of Concept
(10), Bad relation with external supplier
(9), New technology, framework solution
(3), Package off-the-shelf (1).

Size (FP) Ratio - 352 Size of a project in Function Points (FPs).
Duration Ratio - 352 Duration of a project in Months; measured

from the start of Project Initiation to (tech-
nical) Go Live.

Cost Ratio - 352 Cost of a project in Euros; measured from
the start of Project Initiation to (technical)
Go Live.

Effort Ratio - 352 Effort spent in a project in Person Hours
(PHRs); measured from the start of Project
Initiation to (technical) Go Live.

Defects Ratio - 172 The number of errors or faults found in a
project from System Integration Test to
(technical) Go Live. Not for all projects de-
fects were administrated; for 172 projects
defects info was recorded in the repository.

*No occurrences are indicated for the 5 last measures in the inventory, since these are different
for every measured project.

44 Chapter 3

FPA was performed based on sets of final project documentation that usu-
ally were delivered by the project manager. All projects were collected and
analyzed according to the so-called SEI Core Metrics, a standard set of pro-
cess-based software engineering metrics (CMMI Product Team, 2010) (Kan,
1995). Project duration was measured in a number of months from the start
of the project initiation to technical Go Live.

Effort was measured in hours. Although measurement specialists that
were responsible for the data collection reported that data quality with regard
to effort was low, especially where (globally distributed) external suppliers
were involved in a project. Because of that we decided to use both effort and
cost data for analyzing purposes. Project cost – in this case all project related
cost excluding investments (e.g. software license costs) – were recorded in
euros in the measurement repository. Besides that for a limited set of projects
(N = 172) the number of defects was recorded: all pre-release bugs available
in the project administrations where included, post-release incidents where
not included.

3.2.4. Analysis Procedure

All software projects in the measurement repository are analyzed from a port-
folio point of view, meaning that we were interested in particular in the mu-
tual coherence between the measured projects. We perform the analysis of
the portfolio (the measurement repository) in four steps:

First, we analyze the overall average performance of all projects in the re-
pository with regard to project size, project cost, and project duration, meas-
ured in function points, euros, and months, respectively.

Subsequently, we analyze what projects performed as a good practice, and
what projects did perform as a bad practice. In the context of our research a
project is assessed as a good practice when the performance on both cost and
duration is better than the average cost and duration corrected for the ap-
plicable project size. A project is assessed as a bad practice when the perfor-
mance on both cost and duration is worse than the average cost and duration
again correct for the project size. To do so we classify the projects in a cost
duration matrix (see Figure 3.2). We challenge the project performance
exclusively against the performance of the whole sample (internal bench-
marking). We compare the outcome of our analysis with other studies in Sec-
tion 3.7 on Related Work.

On Good Practice and Bad Practice 45

Once all projects are classified in the cost duration matrix, we analyze how
the 56 project factors (as defined in Table 3.1) are related to the four quad-
rants of the matrix. This analysis results in a percentage based on number of
projects per quadrant for every project factor and a percentage based on cost
per quadrant for every factor. We assess the outcome of the analysis by cal-
culating the significance of both outcomes (a range of percentages per quad-
rant based on number of projects, versus a range of percentages per quadrant
based on project cost), by performing a chi-square test.

An example: for the Primary programming Language (PPL) ORACLE 29
projects are measured, of which 26 small releases (measured in cost and size)
score as a good practice. Although, when assessed based on project cost it
shows that 3 large projects (in size and cost) score as a bad practice. This
leads to an indistinct result that from a number of project point of view PPL
ORACLE scores high in good practice, and from a cost point of view it scores
high in bad practice. In the further analysis factors with these kinds of
indistinct outcomes will be excluded.

Finally, we identify factors that are strongly related for the composition of
software engineering project portfolios, by analyzing specific subsets per re-
search aspect. In other words: ‘What factors should be embraced when com-
posing a project portfolio?’ and ‘What factors should be avoided when doing
so?’ For this analysis we define a research aspect to be ‘strongly related’ when
the percentage good practice or bad practice was 50% or more.

Once an inventory of strongly related factors is finalized we test for each
of them whether it indeed affects the probability that a project ends up as a
good or bad practice. To that end, for each strongly related factor F, we gen-
erate a null and alternative hypothesis:
• H(F, 0): Factor F does not influence good (or bad) practice;

• H(F, 1): Factor F influences good (or bad) practice.
To test these hypotheses, we use the binomial distribution to estimate the

chance that our actual observation takes place under the null hypothesis, as
follows.

Let n be the total number of projects in the repository. Let prob(F, n) be
the proportion of projects for which F holds in n, and let k be the number of
good (bad) practice projects in which F holds. Then p is given by the binomial
distribution as follows:

46 Chapter 3

𝑝𝑝 = (𝑢𝑢 𝑓𝑓𝑣𝑣𝐴𝐴𝐴𝐴 𝑘𝑘) ∗ 𝑝𝑝𝐴𝐴𝑓𝑓𝑏𝑏(𝐸𝐸,𝑢𝑢)^𝑘𝑘(1 − 𝑝𝑝𝐴𝐴𝑓𝑓𝑏𝑏(𝐸𝐸,𝑢𝑢))^(𝑢𝑢 − 𝑘𝑘)

We reject the null hypothesis in favor of the alternative hypothesis if the
significance p is below 0.05.

3.3. Execution

3.3.1. Distribution of the Sample

The distribution of the dataset is described as a positively skewed distribu-
tion, or one whose elongated tail extends to the right end of the range. The
mean duration in the sample is 8.7 Months, while the median duration is 8.0
Months (min 0.9 Months, max 26.8 Months). The mean project cost is EUR
750,777, while the median project cost is EUR 459,150 (min EUR 12,233, max
EUR 6,802,466). The mean project size is 259 FPs; the median project size is
147 FPs (min 5 FPs, max 4,600 FPs).

Although due to the positively skewed distribution analysis based on the
median (instead of the mean) might be preferable (the expectation is that
outliers will interfere the outcome less), we use the mean in our analysis of
factors. After performing both analyses we found, except for some small dif-
ferences in numbers and percentages, no differences in the outcome of the
study (success and failure factors). We assume the Central Limit Theorem to
be applicable in this case.

3.4. Analysis

3.4.1. Overall Performance Analysis

We analyze the overall weighted average performance, with project size (FPs)
as weighting factor, of all projects in the repository with regard to project size,
project cost, and project duration. For this purpose we calculate three perfor-
mance indicators:
1. Cost per function point: expressed in cost per size unit (Euro/FP) and

size unit per hour (FP/HR);
2. Duration per function point: expressed in project calendar days per size

unit (Days/FP);

On Good Practice and Bad Practice 47

3. Number of defects per function point: expressed in quality of the process
per size unit (Defects/FP).

In Table 3.2 the values of these indicators are inventoried. In order to get

more insight in the effects of economy of scale, we divided the sample in four
size categories. The used bins, size categories of 200 FP each, all projects
larger than 600 FPs are considered large, are commonly used as a measure
for project size in two of the applicable companies. Table 3.2 gives an over-
view of the weighted average scores per size category within the measurement
repository with regard to the performance indicators.

As the table shows economy of scale does play an important role here: the
performance of the projects in the repository, measured in cost per FP, dura-
tion per FP, and number of defects per FP, is related to the size of a project.
The larger the project; the better the performance on average is in terms of
time, money, and quality. The table further shows that most projects in the
repository could be categorized as small projects (62% of the projects are
smaller than 200 FP).

The analysis shows a remarkable fact: while on the one hand medium sized
projects show the best performance in terms of time, money, and quality, on
the other hand companies give preference to build their portfolio on small or
small medium sized projects. An often witnessed adage that ‘small projects

Table 3.2. Average Performance per Size Category.

Performance Indicator SP SMP LMP LP Overall

Cost per FP (Euro/FP) 4,364 3,395 2,508 2,111 2,929

FP per Hour (FP/HR) 0.024 0.034 0.045 0.047 0.037

Duration per FP (Days/FP) 2.74 1.03 0.75 0.38 1.08

Number of Defects per FP 0.20 0.13 0.13 0.21 0.18

Percentage in Sample 62% 19% 10% 9% 100%

Explanation of abbreviations: SP = Small Projects (<200 FP); SMP = Small Medium Projects
(201-400 FP); LMP = Large Medium Projects (401-600 FP); LP = Large Projects (>601 FP);
PROD = Productivity in resp. Euros per FP and FP per hour; TTM = Time-to-Market in Days
per FP; PQ = Process Quality in Defects/ FP. The indicators are calculated as weighted average,
with Size as weighting factor (e.g. Cost (Euros) divided by Size (FP), instead of number of
projects as weighting factor.

48 Chapter 3

do not fail while large projects often do’ might play a role here. An interesting
side-effect of the observation is that nowadays software companies, in an
attempt to become more agile, tend to opt for small releases (however this is
not always the case: our sample holds two large Scrum releases of resp. 1,067
FPs and 4,600 FPs). Yet maybe active steering on economy of scale can be an
equally effective – or even more effective – improvement strategy for software
companies. We did not study this side-effect; however future research on the
background of economy of scale versus agile development methods might

Figure 3.1: Two plotter charts representing Size (FP) versus Duration (Months)
and Size (FP) versus Project Cost (Euros).

On Good Practice and Bad Practice 49

help software companies to find an optimum on project size when building a
portfolio.

3.4.2. Mapping on the Cost Duration Matrix

As a second step in the analysis all projects from the repository are classified
in the four quadrants of a cost duration matrix, by combining two plotter
charts:
1. A chart (top in Figure 3.1) where all projects from the repository (N =

352) are plotted in project size (FP) versus project duration (Months).
This plotter chart indicates what projects score below the average trend
line (M = 7.995, SD = 5.089, r2 = 0.21) with regard to project duration,
meaning the project duration is shorter than average, and what projects
score above the average trend line, meaning the project duration is longer
than average.

2. A chart (bottom in Figure 3.1) where all projects from the repository (N =
352) are plotted in project size (FP) versus project cost (Euros). This
plotter chart indicates what projects score below the average trend line

Figure 3.2: The cost duration matrix (see Subsection 2.3.2 for a detailed descrip-
tion of the model and its four quadrants).

50 Chapter 3

(M = 750777, SD = 1019949, r2 = 0.56) with regard to project cost, mean-
ing the project cost are less than average, and what projects score above
the average trend line, meaning the project cost are higher than average.

For each project the measure of deviation from the average trend line is

calculated and expressed in a percentage; negative when below the average
trend line, positive when above the trend line. Based on this percentage all
projects from the repository are plotted in a matrix, resulting in four quad-
rants. Each quadrant is characterized by the measure of negative or positive
deviation from the average trend (see Figure 3.2).

Table 3.3 gives an inventory of the most important performance indicators
with regard to the four cost duration quadrants. The table clearly indicates
that projects that score as good practice on average show the best productiv-
ity, time-to-market, and process quality of all four quadrants. And for bad
practices these performance indicators are the lowest of all four quadrants.
The cost of a FP is for example for a bad practice as much as four times higher
than the average cost for a FP of a good practice.

3.4.3. Analysis of Project Keywords

Once all projects have been classified in the Cost Duration Matrix, we analyze
how the 56 project keywords are related to the four quadrants of this matrix
(respective good practice, bad practice, cost over time, and time over cost).
Two different perspectives are analyzed: the distribution over the four
quadrants per number of projects and the distribution over the four quad-
rants based on project cost. In order to find significant differences between
the two perspectives (i.e. number of projects and project cost) we use the chi-
square test.

Table 3.3. Average performance per cost duration quadrant.

Performance Indicator Good Practice CoT ToC Bad Practice

Cost per FP (EUR/FP) 1,285 1,448 3,834 5,285

FP per Hour 0.082 0.064 0.028 0.021

Days per FP 0.64 0.92 0.75 1.77

Defects per FP 0.06 0.20 0.19 0.27

Number in Sample 114 55 51 131

On Good Practice and Bad Practice 51

After removal of non-significant results we base the interpretation at the
percentage number of projects per cost duration quadrant; resulting in an
average percentage per quadrant for all 56 research aspects. A summary of
the total analysis, including the result of the chi-square test, is established in
the appendix of the accompanying technical report (Huijgens et al., 2013b).

3.4.4. Success Factors and Failure Factors

As a fourth and last step we identify specific success factors and failure factors
for the composition of software engineering project portfolios, by analyzing
how the scores of the different research aspects relate to the cost duration
quadrants. We identify what aspects are strongly related (50% or more) to a
high percentage of good practice and what aspects are strongly related (50%
or more) to a high percentage of bad practice.

3.5. Evaluation

In this section we evaluate results and implications of the study. Analysis
results in an inventory of factors that are strongly related to a high percentage
of good practice (also referred at as success factors) and factors that are
strongly related to a high percentage of bad practice (failure factors). To
create better insight in the measure of modification of the factors, both suc-
cess and failure factors are classified into categories of factors that are IT-

Table 3.4. Overview of factors strongly related to Good Practice.

Project Factor % Good Practice N p

PPL Visual Basic 83 6 0.03

PPL FOCUS 80 5 0.06

KW Steady heartbeat 71 49 0.00

KW Fixed, experienced team 66 62 0.00

BD Data Warehouse & BI 61 18 0.02

PPL PowerBuilder 60 5 0.14

DM Agile (Scrum) 56 45 0.00

PPL SQL 56 9 0.10

BD Organization 52 31 0.02

KW Release-based (one application) 50 144 0.00

52 Chapter 3

organizational, business-organizational, and factors that are primarily tech-
nical.

In total 10 research aspects were found to be strongly related to good prac-
tice (success factors), and 13 research aspects strongly related to bad practice
(failure factors). Besides that we found 1 factor that is strongly related to a
high percentage of cost over time, and 2 factors that could be related to a high
percentage of time over cost.

3.5.1. Factors Excluded from the Inventory

In order to find significant differences between the two perspectives (i.e.
number of projects and project cost) we use the chi-square test. We have
found a number of significant differences between the two perspectives: 8 out
of 56 factors are excluded from the interpretation. One factor, KW Package
off-the-shelf (without customization), scores as related to a high percentage
of good practice; however only one such project was in the sample. With
regard to 6 factors we found a low significance between the percentages good
practice, cost over time, time over cost, and bad practice, measured on
number of projects and the percentages measured on project cost (χ2 of lower
than 5). These 6 excluded factors are:
• Primary programming language Oracle, χ2(1, N = 29) = 0.38, p < .01.

• Business domain Finance & Risk, χ2(1, N = 54) = 3.27, p < .01.
• Primary programming language RPG, χ2(1, N = 6) = 2.68, p = .18.

• Keyword Phased project, χ2(1, N = 65) = 4.26, p = .05.
• Development class Minor Enhancement, χ2(1, N = 27) = 2.78, p = .04.

• Primary programming language 3GL, χ2(1, N = 8) = 3.18, p = .19.

Two of these factors, Primary programming language ORACLE (86% good

practice based on number of projects) and Business domain Finance & Risk
(69% good practice based on number of projects) both score as factors that
are strongly related to a high percentage of good practice, for which a remark
is in place. Primary programming language ORACLE scores with a relation to
a high percentage of good practice when looked upon from number of pro-
jects (86%), however it also has a high percentage of bad practice when
looked upon from project cost (73%).

On Good Practice and Bad Practice 53

This effect is caused by the fact that a sample of 29 primary programming
language ORACLE projects is analyzed, including 26 very well performing
small releases belonging to two applications (Huijgens & van Solingen,
2013a). The other three medium sized Primary programming language
ORACLE projects did not perform well; two score as a bad practice, and one
scores in the time over cost quadrant, resulting in a low χ2-score. This also
affects the score for Business domain Finance & Risk, as all 26 good per-
forming projects are performed within this domain, including one medium
sized badly performing project that influences the score with regard to project
cost, again leading to a low χ2-value.

Finally, a factor that is excluded from the inventory is the category Primary
programming language Other: representing a collection of 9 primary pro-
gramming languages that were recorded for only one project each in the re-
pository.

3.5.2. Factors Strongly Related to Good Practice

We identified 10 factors that were strongly related to a high percentage of
good practice. After testing for statistical significance we found that of those
10 factors 7 satisfied the alternative hypothesis (H1) (see Figure 3.3).

Four factors of these 7 are tested to be strongly significant (p < 0.01) to
influencing project success (high probability to end up as a good practice),
and due to that can be specified as strongly significant success factors for
software projects (ranking based on probability of success):
1. Steady heartbeat;

Figure 3.3: Overview of success factors.

54 Chapter 3

2. Fixed, experienced team;
3. Agile (Scrum) ;
4. Release-based (one application) .

It is likely that these four strongly significant success factors are related to

each other, since release-based working, a steady heartbeat, and a fixed, expe-
rienced team, are in fact preconditions of an agile (Scrum) way of working.
However keep in mind that not all projects where factor 1, 2, or 4 was applica-
ble used an agile delivery model. In fact all types of projects can adopt these
success factors, without opting for a specific delivery model. The promising
idea behind these four success factors is that they all can be implemented rel-
atively easy and fast in any software engineering company: no big organiza-
tional or technical changes are needed to start working according to these
success factors. In a way an organization can decide to start working this way
by tomorrow.

Besides these four strongly significant success factors, we found out of the
group of 7 factors that were strongly related to good practice, 3 factors with a
significant probability (p < 0.05) to perform as a good practice (ranking
based on probability):
5. Business domain Data Warehouse & BI;
6. Business domain Organization;
7. Primary programming language Visual Basic.

One could argue that a difference is applicable with regard to the three

success factors above with the success factors 1 to 4 on the fact that (where 1
to 4 seems relatively easy to implement) 5 to 7 are more difficult to change. A
software company cannot simply change its business organization structure
overnight, and opting for another programming language asks for a more long
term approach.

As an example we do see implementations in practice where a company
actively builds its application portfolio on a limited number of programming
languages, however in many cases the reason behind such an improvement
strategy lies in steering on shortage versus availability of language-specific
developers (avoiding of high labor cost) instead of implementing continuous
performance improvement.

On Good Practice and Bad Practice 55

Although we found a strong significance for primary programming lan-
guage Visual Basic a remark is in place: 6 projects were analyzed of which 5
scored as good practice and one as cost over time. The projects took place in
two different companies and varied in size from 27 to 586 FPs.

3.5.3. Factors Strongly Related to Bad Practice

We identified 13 factors that were strongly related to a high percentage of bad
practice. After testing for statistical significance we found that of those 13
factors 9 satisfied the alternative hypothesis (H1) (see Figure 3.4). 4 Factors
of these 9 are tested to be strongly significant (p < 0.01) to influencing project
failure (high probability to end up as a bad practice), and due to that can be
specified as strongly significant failure factors for software projects (ranking
based on probability of failure):
1. Rules & regulations driven;
2. Dependencies with other systems;
3. Technology driven;
4. Once-only project.

An interesting relation can be assumed here between the strongly signifi-

cant success factor Release-based, and the strongly significant failure factor
Once-only project. Although our research does not show, we assume that
starting up a once-only project, including having to do things for the first

Figure 3.4: Overview of Failure Factors.

56 Chapter 3

time, and for one project only, leads to a high probability of ending in between
bad practice. On the other hand the repeating character of release-based
working, including the effect of learning on-the-job and creating an experi-
enced team, creates a high probability to end up as a good practice.

Next to these four strongly significant failure factors, we found that 5
factors from the group of strongly related to a high percentage of bad practice
showed a significant (p < 0.05) probability to perform as a bad practice
(ranking based on probability of failure):
5. Security;
6. Many team changes, inexperienced team;
7. Business domain Mortgages;
8. Migration;
9. Business domain Client & Account Management.

3.5.4. Factors Related to CoT and ToC

We did not find any factors that were strongly related to a high percentage of
cost over time (cost lower than average, duration longer than average) or time
over cost (cost higher than average, duration shorter than average) that
where significant (p < 0.05) for respectively cost over time or time over cost.

3.6. Discussion

In this section we discuss the most important limitations with regard to the
study.

3.6.1. Research on an Existing Repository

Owing to the fact that the data of software engineering projects that is used
for the research was collected in a practical setting and primary for practical
purposes (e.g. collect historic project data as a source for estimation and
benchmarking), this study must emphatically been seen as the result of analy-
sis that was performed on an existing measurement repository. As a conse-
quence of that we had to cope with the data that was available: no additional
data was to be collected at a later stage. The dataset only contained data of
finalized (successful) projects; no data of prematurely stopped or failed
projects was available. In particular for the identification of bad practices, the
study of failing projects will be relevant.

On Good Practice and Bad Practice 57

3.6.2. Uncertainties related to Software Metrics

A remark is in place with regard to uncertainty ranges and data collection
problems that exist in repositories of software metrics data. Variation ranges
of about ±15% between projects and organizations due to the counting rules
for data (Boehm & Sullivan, 2000b). Data collection problems such as
missing values, cost segmentation due to different counting methods, too
many factor levels, and not enough factors (Angelis, Stamelos, & Morisio,
2001).

Algorithmic estimation models based on historic project data (e.g. SLIM,
Function Points, COCOMO 2) do not model the factors affecting productivity
very well (Kemerer, 1987). All are examples of uncertainties that might apply
to our research data too, in spite of a great effort that was put in quality
assurance activities during data collection by the teams that helped building
our research repository.

However, a majority of the mentioned problems are related to estimation
based on algorithmic models derived from historic data, while this is not the
case in our research. We divided our research dataset in relatively large parts
(the four cost duration quadrants) and applied impact factors on two of
these. The uncertainties that do apply on algorithmic-based effort and sched-
ule estimation are not automatically applicable to our research too.

Looking at the research challenge raised by (Boehm & Sullivan, 2000b)
that “we need to learn how to think about and manage software development
as an investment activity, the goal of which is to create maximum value for
the resources invested” we feel that (unless any data collection problems and
uncertainties) the goal of our study to help enterprises build good practice
project portfolios is a step ahead towards solving that challenge.

3.6.3. Business Domain and Programming Language

Due to the upfront collection of project data, we could not exactly identify the
cause behind the fact that programming language Visual Basic and the
business domains Data Warehouse & BI and Organization turn out to be a
success factor, and that on the other hand business domains Client & Account
Management and Mortgages ended up to be a bad practice.

One might assume that in the three given companies the best people dealt
with Data Warehouse & BI and Organization projects, and that Visual Basic

58 Chapter 3

skills were stronger than other skills. And on the opposite, that within the
business domains Client & Account Management and Mortgages had to deal
with lower skilled resources.

However, it is more likely that Data Warehouse & BI, Organization and
Visual Basic project environments on average are less complex than others,
and due to that end up in the good practice quadrant more often. And that
Client & Account Management and Mortgages related project environments
on average are more complex than others (e.g. legacy, migration, and depend-
encies with other departments or domains play a relatively large role here).
Benchmarks, e.g. (ISBSG, 2014), do confirm this assumption.

3.6.4. Generalization

Analysis of the performance of the separate companies showed that Company
itself was not a distinguishing factor that could be strongly related to either a
high percentage of good practice or bad practice. We assume that the results
of our research generalize given this finding (depending on the extent to
which the three companies are representative), in combination with the fact
that our research included three different software companies.

3.7. Related Work

In the following, we discuss the contribution of our study in the context of
earlier research. Much has been written on identification of success and fail-
ure factors for software engineering, in many cases with reference to software
process improvement (SPI), a popular process-based approach to delivering
improvements in software products from the 80s (Hall, Rainer, & Baddoo,
2002).

(Reel, 1999) argues that in software, more “advanced” technologies are far
less critical to improving practice than five essential factors to managing a
successful software project: start on the right foot, maintain momentum,
track progress, make smart decisions, and institutionalize post-mortem anal-
yses.

Dybå (2005) did find strong support for SPI success to be positively
associated with business orientation, employee participation, concern for
measurement, and exploitation of existing knowledge, and partial support for

On Good Practice and Bad Practice 59

SPI success to be positively associated with involved leadership and explora-
tion of new knowledge. In another study Dybå (2003) showed that small or-
ganizations reported that they implement SPI elements as effectively as large
organizations, and in turn, achieve high organizational performance.

(Niazi et al., 2006) identified seven success factors for SPI: management
support, training, awareness, allocation of resources, staff involvement, expe-
rienced staff and defined SPI implementation methodology. Rainer and Hall
(2002) found four SPI success factors: reviews, standards and procedures,
training and mentoring, and experienced staff.

In the 90s more advanced process improvement models such as CMMI,
and ISO’s SPICE were introduced (Niazi et al., 2003), leading to supple-
mentary research on success and failure factors. (Stelzer & Mellis, 1998)
describe ten process oriented factors that affect organizational change in soft-
ware process improvement initiatives based on the CMM and ISO quality
standards.

(Niazi et al., 2003) inventoried three categories of critical success factors:
awareness, organizational, and support. A number of critical barriers were
identified (a.o. lack of resources, time pressure, inexperienced staff, organiza-
tional politics, and lack of formal methodology).

(Procaccino et al., 2002) found the most important factors for project
success to be the presence of a committed sponsor and the level of confidence
that the customers and users have in the project manager and development
team. (Charette, 2005) names twelve factors why software fails so often, how-
ever there is no clear link with the results from our research with regard to
these factors. The common idea in these papers is that success and failure
were interconnected with process-based activities: in other words, follow the
process and success will come. Looking at the results of our research, a close
link with process related research, often based on software projects
performed during the last two decennia of the former century, seems absent
due to the fact that we did not study this: no clearly process related (in terms
of SPI, CMMI, or ISO) factors were present in our list of project factors.

Recent research focusing on the factors that affect success and failure of
agile software engineering is more similar. This seems relevant, since more
than 80% of organizations now following an agile approach (Fitzgerald, et
al., 2013). (Solingen & Berghout, 1999) defined a stepwise approach to derive
metrics from a software company’s goal. (Chow et al., 2008) state that, ‘as

60 Chapter 3

long as an agile project picks a high-caliber team, practices rigorous agile
software engineering techniques and executes a correct agile-style delivery
strategy; the project could be likely to be successful’. Three other factors that
could be critical to certain success dimensions are a strict agile project man-
agement process, an agile-friendly team environment, and a strong customer
involvement. Although not stated in the same words a similarity with the
results from our research is noticeable here. On the other hand we did not
find evidence (possibly due to the fact that we did not examine this subject in
the scope of this study) that some assumed prerequisites for success of agile
projects such as strong executive support, strong sponsor commitment, ready
availability of physical agile facility, or agile-appropriate project types, are
actually critical factors for success.

(Misra et al., 2009) found nine factors that have statistically significant
relationship with success in adopting agile software development practices:
customer satisfaction, customer collaboration, customer commitment, deci-
sion time, corporate culture, control, personal characteristics, societal cul-
ture, and training and learning. No clear link with results from our research
is found here.

(Sutherland et al., 2007) studied best practices in a globally distributed
Scrum environment, with fixed, experienced agile teams, and comes up with,
as the paper states ’the most productive Java projects ever documented’.
Maybe stated differently, however, a match with our findings is obvious here.
Otherwise, the idea that agile is always linked to project success is not shared
by (Estler et al., 2012) stating that ‘choosing an agile rather than a structured
process does not appear to be a crucial decision for globally distributed pro-
jects.’

Our research indicates a relation between agile (Scrum) and economy of
scale (project size). (Boehm, 2006a) states that ‘the most widely adopted agile
method has been XP, whose major technical premise was that its combination
of customer collocation, short development increments, simple design, pair
programming, refactoring, and continuous integration would flatten the cost-
of change-vs.-time curve. However, data reported so far indicate that this flat-
tening does not take place for larger projects.’ Apparently the success of agile
does not hold for larger sized projects, something that matches an assump-
tion in our research, since no medium large or large projects were performed

On Good Practice and Bad Practice 61

based at an agile delivery method. The connection between agile (Scrum) and
project size is not clear yet and seems a challenge for future research.

A fascinating gap in related research turns up with relation to the finding
from our research that a programming language (Visual Basic) and specific
business domains (Data Warehouse & BI, Organization) are significant for
project success. It might be surprising that a view at improvement, focusing
at benchmarking the outcome of the software process, instead on the software
process itself, seems less represented in related work. (Jones, 1995) invento-
ries successful and unsuccessful project technologies, stating that unsuccess-
ful projects are related to a lack of measurement activities, and conversely,
successful projects are related to accurate measurement and analysis activi-
ties. (Jones, 2000) inventoried a large amount of business domain and pro-
gramming language specific effects on project performance. In the 90s he
performed extensive research on performance aspects related to domain-spe-
cific and language-specific software engineering, however since that not
many additional research on this area, and especially on the effects of agile
delivery models, seem to be performed.

Regarding our finding that rules & regulations driven projects are signifi-
cant for failure, such as high costs, long durations and low quality, Gong and
(Janssen, 2012) defined principles for creating flexibility and agility when im-
plementing new or revised policies into business processes. Besides that,
approaches such as lean government (Janssen & Estevez, 2013) and include
risk management in enterprise architectures (Janssen & Klievink, 2010)
might help to reduce risks with regard to rules & regulations driven projects.

(Premrai et al., 2005) investigated how software project productivity had
changed over time, finding that an improving trend was measured, however
less marked since 1990. The trend varied over companies and business sec-
tors, a finding that matches the result of our research with regard to differen-
tiation over business domains.

3.8. Conclusions and Future Work

We found 7 success factors for software projects: (1) Steady heartbeat, (2)
Fixed, experienced team, (3) Agile (Scrum), (4) Release-based (one applica-
tion), (5) Business domain Data Warehouse & BI, (6) Business domain
Organization, and (7) Primary programming language Visual Basic.

62 Chapter 3

We found 9 failure factors for software projects: (1) Rules & regulations
driven, (2) Dependencies with other systems, (3) Technology driven, (4)
Once-only project, (5) Security, (6) Many team changes, inexperienced team,
(7) Business domain Mortgages, (8) Business domain Client & Account
Management, and (9) Migration. Based on the findings we identify the
following guidelines for practice when aiming for a good practice project
portfolio:
1. Avoid bad practice by steering on limitation of inter-dependencies be-

tween projects and systems, stay away from unnecessary team changes,
and build teams where possible with experienced team-members.

2. Create good practice by actively steering on organizing software develop-
ment in a release-based way, set up fixed teams with experienced team-
members, implement a steady heartbeat, and go for an agile (Scrum)
delivery approach.

3. When setting up a once-only project within a software project portfolio,
pay special attention to standardization and limitation of procedures to
smoothen the projects progress, re-use of knowledge of other once-only
projects (Lessons Learned), and implementation of a learning cycle.

4. Implement a long- and medium term portfolio strategy, including a
learning capability, to avoid bad practice by limitation (where possible)
of projects that are characterized as technology driven, rules & regula-
tions driven, migration of data, and security issues.

3.8.1. Future Work

An interesting side-effect of the observation is that nowadays software
companies, in an attempt to become more agile, tend to opt for small releases.
Yet maybe active steering on economy of scale can be an equally effective –
or even more effective – improvement strategy for software companies. We
did not study this side-effect; however future research on the background of
economy of scale versus agile development methods might help software
companies to find an optimum on project size when building a portfolio.
Another aspect that was not covered in our research, yet might help compa-
nies to achieve continuous improvement, is whether the software companies
did really improve their performance over time. During the six year measure-
ment period many improvement actions were undertaken, yet how successful

On Good Practice and Bad Practice 63

were these actions in the end? Future research (on our dataset) might reveal
this.

3.9. Acknowledgments

We thank Hans Jägers, professor emeritus from the University of Amster-
dam, Rob de Munnik (QSM Europe), Bart Griffioen, Georgios Gousios,
Steven Raemaekers, and all other reviewers for their valuable contributions.

3.10. Addendum

Inspired by new and sometimes improved insights into the statistical tests to
be used for software analytics, we challenged the tests performed in the origi-
nal paper that was published in 2014. For this purpose we performed Spear-
man Rank Correlation tests for both the original subset of 352 projects that
were in scope of Chapter 3, and the latest version of the EBSPM research re-
pository (Huijgens, 2017a) with 498 projects in scope. Because we performed
a larger number of tests, we added multiple comparisons p-value adjustment,
to prevent from p-values less than 0.05 purely by chance, even if all null hy-
potheses are really true. For this purpose, we applied the Bonferroni
correction to control the familywise error rate. As a more powerful method
for adjusting the false discovery rate we applied the Benjamini-Hochberg
procedure.

Because the EBSPM research repository grew over the four-year period of
our study, we also applied both the correlation test and the p-value adjust-
ments on the total repository of 498 projects that we collected at the end of
the study period.

3.10.1. Pairwise Correlation and P-value adjustment

Table 3.5 shows a summary of the results of the tests regarding success factors
that are strongly significant with Good Practice, performed on the initial
subset of 352 projects as used within the scope of Chapter 3. When compared
to the original outcomes, as depicted in Figure 3.3, it shows that the outcome
in terms of project factors that are strongly significant for Good Practice
matches the original study. However, the ranking of the factors is slightly
different, and the factors Business Domain Organization and Programming

64 Chapter 3

Language Visual Basic are not in the results of the new tests, mainly due to
the additional p-value adjustments.

The results of the tests performed over the whole repository of 498 pro-
jects are summarized in Table 3.6. Except for the ranking of factors, no major
differences are to be found with the tests on the smaller initial subset of
projects. The plot in Figure 3.5 illustrates the different p-value adjustments
of the applied tests.

Table 3.7 summarizes the results of the tests regarding failure factors that
are strongly significant with Bad Practice, performed on the initial subset of

Table 3.5. Overview of Pairwise Correlation testing, with multiple comparisons p-
value adjustment related to Good Practice on the subset of 352 projects in scope of
Chapter 3 (only significant factors with an adjusted (BH) p-value < 0.01 are
shown).

Project Factor strongly
significant for Good Practice

Raw
p-value

Adjusted
Bonferroni

Adjusted
Benjamini-
Hochberg

Steady Heartbeat 8.956e-11 2.05988e-09 2.05988e-09

Fixed, experienced team 3.935e-10 9.05050e-09 4.525250e-09

Release-based 8.180e-10 1.88140e-08 6.271333e-09

Agile (Scrum) 2.806e-05 6.45380e-04 1.290760e-04

Single application 1.002e-04 2.30460e-03 3.84100e-04

Business Domain Data Warehouse & BI 9.442e-04 2.17166e-02 3.102371e-03

Table 3.6. Overview of Pairwise Correlation testing, with multiple comparisons p-
value adjustment related to Good Practice on all 489 projects in the EBSPM
research repository (only significant factors with an adjusted (BH) p-value < 0.01
are shown).

Project Factor strongly
significant for Good Practice

Raw
p-value

Adjusted
Bonferroni

Adjusted
Benjamini-
Hochberg

Release-based 6.352e-12 1.2704e-10 1.27040e-10

Steady Heartbeat 2.003e-08 4.0060e-07 2.00300e-07

Fixed, experienced team 6.270e-08 1.2540e-06 4.18000e-07

Single application 4.345e-06 8.6900e-05 2.17250e-05

Agile (Scrum) 1.281e-05 2.5620e-04 5.12400e-05

Business Domain Data Warehouse & BI 7.916e-05 1.82068e-03 3.034467e-04

On Good Practice and Bad Practice 65

352 projects as used within the scope of Chapter 3. When compared to the
original outcomes, as depicted in Figure 3.4, it shows that again no major
differences are found in the factors itself, only the ranking deviates at some
points. This also applies to the results of the tests over the whole repository
of 498 projects, as summarized in Table 3.8, although dependencies with oth-
er applications is not a significant failure factor in the repository as a whole

Figure 3.5: Plot of adjusted p-values after testing multiple comparisons related to
Good Practice for all 489 projects in the EBSPM research repository.

Table 3.7. Overview of Pairwise Correlation testing, with multiple comparisons p-
value adjustment related to Bad Practice on the subset of 352 projects in scope of
Chapter 3 (only significant factors with an adjusted (BH) p-value < 0.01 are
shown).

Project Factor strongly
significant for Bad Practice

Raw
p-value

Adjusted
Bonferroni

Adjusted
Benjamini-
Hochberg

Migration project 1.350e-04 3.37500e-03 6.154167e-04

Rules & Regulations driven project 1.350e-04 3.37500e-03 6.154167e-04

Once-only project 3.377e-04 3.69250e-03 6.154167e-04

Many team changes, unexperienced
team

3.513e-04 8.44250e-03 1.097812e-03

Dependencies with other applications 5.609e-04 8.78250e-03 1.097812e-03

Phased project 2.495e-03 6.23750e-02 5.670455e-03

Technology-driven project 3.227e-03 8.06750e-02 6.722917e-03

66 Chapter 3

anymore. Summarizing, the additional Pairwise Correlation tests that we
performed – including the p-value adjustments – confirm the findings in the
original 2014 study. Although differences occur in the ranking of success- and
failure factors, the factors itself are the same in both the original study and in
the additional tests. However, maybe linear regression testing would be a
better option, because this will also consider the effects of factors on each oth-
er.

Table 3.8. Overview of Pairwise Correlation testing, with multiple comparisons p-
value adjustment related to Bad Practice on all 489 projects in the EBSPM
research repository (only significant factors with an adjusted (BH) p-value < 0.01
are shown).

Project Factor strongly
significant for Bad Practice

Raw
p-value

Adjusted
Bonferroni

Adjusted
Benjamini-
Hochberg

Rules & Regulations driven project 4.874e-06 1.16976e-04 2.339520e-05

Migration project 3.025e-05 7.26000e-04 1.210000e-04

Many team changes, unexperienced
team

5.715e-05 1.37160e-03 1.959429e-04

Phased project 8.155e-05 1.79410e-03 2.30952e-04

Once-only project 8.850e-05 2.12400e-03 2.30952e-04

Technology-driven project 9.623e-05 2.30952e-03 2.30952e-04

68 Chapter 3

The Cecil-Case: Managing Legacy Evolution 69

4. The Cecil-Case: Managing Legacy Evolution

ontext: In this chapter, we attempt to understand what contributes to
a successful process for managing legacy system evolution. Objec-
tives: We provide an analysis of a number of key performance indica-

tors such as cost, duration, and defects. By normalizing through function
points, we furthermore compare to a larger benchmark. Method: To do so we
performed a mixed, retrospective case study on a series of nine software
releases and eight single once-only releases, all performing on a single, legacy
software system, in a West-European telecom company. We interviewed
eleven stakeholders that were closely involved in the subject software re-
leases. Results: As a result, we listed a number of observations from the
quantitative and qualitative analysis. Conclusions: We found that a release
process that performs above average on cost and duration satisfies stakehold-
ers through fast response and direct value, even when the reliability and avail-
ability of the actual system is weak.

4.1. Introduction

Managing legacy systems, and especially linking the building of new software
with evolution of legacy systems is a big challenge for many companies
(Boehm, 2006b) (Deursen et al., 1999). For this study we analyzed a series of
nine software releases (the Cecil releases), performed in a Belgian telecom
company (in the remaining of this chapter indicated as BelTel), that is

C

This chapter was published as Success factors in managing legacy system
evolution: a case study in the proceedings of the 38th International Confer-
ence on Software and Systems Process (ICSSP 2016) (Huijgens, van
Deursen, van Solingen, 2016d).

70 Chapter 4

characterized by highly satisfied stakeholders. This study aims at analyzing
software releases to only one system, that were conducted in different ways.
The Cecil releases are typically built from quick wins; fast and small enhance-
ments on a system by a single dedicated Scrum team. All releases were
performed on one Customer Relationship Management (CRM) system -
named the Divine system, which is a five-year-old legacy system that is
planned to be replaced because of ongoing reliability and availability prob-
lems.

While performing our case study, four things puzzled us. First, stakehold-
ers were largely satisfied with the deliveries of the Cecil team. Second, the
Cecil releases were assessed all to be ‘best-in-class’ in terms of cost, duration,
and defects found, when benchmarked against other software deliveries in
our research repository. Third, besides the Cecil releases another eight re-
leases were performed on the Divine legacy system, outside of the scope of
the Cecil team. And these were all assessed as not being ‘best-in-class’. And
finally, the Divine system itself was performing badly in terms of reliability
and availability.

The goal of this chapter is to understand what contributes to a successful
process for managing legacy system evolution. To reach this goal, we provide
an analysis of a number of key performance indicators such as cost, duration,
and defects. By normalizing through function points, we furthermore com-
pare to a larger benchmark. Furthermore, to understand in depth what con-
tributed to the success of the Cecil releases, we conduct in depth interviews
with eleven people close involved with Cecil.

The remainder of this chapter is organized in the following way: In Section
4.2 we outline the experimental setup for our case study. In Section 4.3 the
research approach that we apply is described. Sections 4.4 and 4.5 are about
the results of our study. In Section 4.6 we discuss the results, compare them
with state of the art and we discuss threats to validity. In Section 4.7 we
discuss related work. Finally, Section 4.8 includes conclusions.

The Cecil-Case: Managing Legacy Evolution 71

4.2. Experimental Setup

4.2.1. Context

We analyzed the Cecil releases and non-Cecil releases, performed over a pe-
riod of one year on a single software system in BelTel, a Belgian telecom com-
pany. We performed both quantitative and qualitative analysis, the latter by
performing open-ended, non-structured interviews with stakeholders on the
backgrounds of the success of the releases. Regarding confidentiality of data,
the names of companies, systems, releases, and people are made anonymous
in this study. To improve the readability of this study, we provide definitions
of four used acronyms:

Cecil releases

A series of nine software releases, Cecil releases, are performed release-based,
with a fixed team of six persons, with a steady heartbeat (Go Live every six
weeks), and a Scrum approach. Within the Cecil releases only small enhance-
ments are included; also in former years identified as CRM Quick Wins. These
quick wins are primarily GUI-driven and meant to solve process issues in the
Divine system that’s mainly used by agents (front-office employees of BelTel
that have contact with customers through various channels (e.g. telephone,
call centers, email, and chat). Driven by an attempt to speed up the software
delivery process, in 2014 a decision was made to setup a fixed team that was
budgeted only once each year. This means that a budget was approved for
capacity of the team for a whole year.

The Cecil release team consists of six people that all work fulltime for the
team. From BelTel itself these are a product owner and a business analyst,
from IndSup-A, BelTel’s main Indian supplier, three software developers, and
one tester from the main supplier that is responsible for user acceptance and
regression testing. Besides that, an enterprise architect is involved in design
activities on an ad hoc basis, and a release manager performs the integration
once ready for release.

Non-Cecil releases

Eight software releases on the Divine system that were performed once-only.
Contrary to the Cecil releases these releases are characterized by a new team
setup for every release, in advance governance and budget approval for each
release, plan-driven approach.

72 Chapter 4

The eight non-Cecil releases were performed as once-only releases, mean-
ing that a team was setup preceding every single release and closed down once
the release was finalized. Only few people within BelTel were still to be found
that joined in a non-Cecil release; of the interview participants mentioned in
Table 4.4 only P1, P5, P8, P9, and P11 were involved in any way in these re-
leases.

Divine system

The Customer Relationship Management (CRM) software system on which
both the Cecil releases and non-Cecil releases are performed. A complicating
factor in this study is the fact that the Divine system is a legacy system
(planned to be replaced) that faces severe reliability and availability issues.

BelTel

The Belgian telecom company where Cecil releases and non-Cecil releases are
performed. A repository with data of approximately 95 finalized software pro-
jects that is collected over time in BelTel is used in this study as a reference
for benchmarking purposes.

Within BelTel a company standard allows for eight pre-planned produc-
tion releases per year; each includes a number of projects and releases (from
Cecil, Divine, or other teams), that jointly move on to user acceptance testing
and integration into the production environment.

Following conventions in use at BelTel, we use the term release with two
different meanings. Release is used to indicate a specific software project that
is performed in a release-based way. In this chapter we use the term release
for those cases. Besides that, the term release is used to indicate a combined
set of projects and releases for integration into the production environment.
In this chapter we use the term production release if this is the case. Within
the BelTel practice, these production releases are deployed into the produc-
tion environment in yearly eight subsequent production releases; this applies
for both Cecil releases and non-Cecil releases too.

4.3. Research Questions

Based on this we defined the following research questions:

RQ4.1: To what extent can a release-based iterative process be successfully used to
manage the evolution of a legacy system?

The Cecil-Case: Managing Legacy Evolution 73

RQ4.2: To what extent play known factors a role in this success?

RQ4.3: What specific factors contributed to this successful way of managing
legacy system evolution?

The case study that we performed is a mixed study, it includes both quanti-
tative and qualitative research on the subject releases (Runeson et al. 2012)
(Yin, 2008). The analysis falls apart in two parts. First, we quantitatively
analyzed the Cecil and non-Cecil release data that we collected on a series of
releases over time and compare the outcomes with earlier research on best-
in-class software releases (Huijgens & van Solingen, 2013a). Second, we
conducted qualitative research by performing open-ended, non-structured
interviews with members of the release-teams, and internal customers of
BelTel, that made use of the deliverables of the Cecil team and the non-Cecil
teams.

4.3.1. Data Collection Procedure

For our research we used two types of data: data that was collected in the
period before we started our study, as part of the operational measurement
practice within BelTel, and data we collected specifically for our research. The
first consists of artifacts collected over time on these software releases, sup-
plemented with data from two releases that finalized in the two previous
years. Among others the following artifacts were available for our research:

• Quantitative data that was recorded in a measurement repository on both
the Cecil releases and the non-Cecil releases, holding measurements such
as size, cost, duration, number of defects, and planning data on cost and
duration.

• Performance dashboards and Project Close Reports on the finalized Cecil
releases and non-Cecil releases.

• Logged data in the tool that was used for backlog management (Scrum-
wise1), including User Stories, Story Points, an activity log, attached
documents, and comments on backlog items.

1 https://www.scrumwise.com

74 Chapter 4

• Technical design documents of the Cecil releases and non-Cecil releases,
usually prepared by members of the Cecil team or members of the once-
only non-Cecil releases teams

Besides collecting existing data within BelTel we performed interviews

with key stakeholders within BelTel that were involved in the Cecil releases.
The stakeholders were all involved in the operational practice of the Cecil
releases; the list of stakeholders is setup in close cooperation with the busi-
ness analyst and with the product owner. See Table 4.4 at page 81 for an
overview of interviewed stakeholders. All interviews were performed on a
one-to-one basis between the author of this thesis [interviewer] and one
specific stakeholder [interviewee], except for two interviews where two
interview participants were combined in one interview at request of the
participants. The interviews were based on the following questions, where
applicable sub questions are asked to reveal backgrounds or to clarify misun-
derstandings or indistinctness:
1. Can you give some backgrounds on your role in the Cecil releases and

non-Cecil releases?
2. What top-5 aspects did influence the releases in a positive way?
3. What top-5 issues need improvement?
4. In what way did the series of Cecil releases evolve over time (e.g. process

changes, changes in way of working, team changes, changes in roles)?
5. In what way did the Divine system evolve over time (e.g. new functional-

ity, enhancements, lifecycle of the system)?
6. Are there any other important things to mention?

4.3.2. Quantitative Analysis

In order to perform quantitative analysis on the collected data of Cecil- and
non-Cecil releases, we calculated three performance indicators and compared
the outcomes with those of our earlier published research paper on best-in-
class software releases (Huijgens & van Solingen, 2013a). We calculated the
following performance indicators:
1. Cost per FP: a weighted average of the summarized project cost in Euros

divided by the summarized project size in FPs (weighting factor is project
size).

The Cecil-Case: Managing Legacy Evolution 75

2. Duration per FP: a weighted average of the summarized project duration
in calendar days divided by the summarized project size in FPs (weighting
factor is project size).

3. Defects per FP: a weighted average of the summarized number of defects
found during each release divided by the summarized project size in FPs
(weighting factor is project size).

In order to quantify the measure of success and failure we used a Cost Du-

ration Matrix (see Subsection 2.3.2), a model developed in earlier research
(Huijgens et al., 2014c) that compares the performance of finalized software
projects in terms of cost, duration, and number of defects found during
development. We compared the performance and characterizations of the
Cecil releases with a series of 26 best-in-class software releases that were
performed in another company and that we described in earlier research
(Huijgens & van Solingen, 2013a). We did not incorporate this study as a
separate chapter in this thesis, because the outcomes were confirmed and
extended in a follow-up study that we performed and that is incorporated in
Chapter 3 of this thesis.

4.3.3. Qualitative Analysis

All interviews are recorded digitally and transcribed to text files. The text files
are analyzed by following a number of steps. First, we read the transcripts,
and made notes about first impressions. Subsequently, we coded relevant
pieces of the transcripts, by labelling relevant words, phrases, sentences, or
sections. When applicable, we decided that something is relevant for us be-
cause the interview participant explicitly states the importance, because it
surprises us, or because it is repeated in several places. Our aim was to look
for conceptualization and underlying patterns. Then we decided which codes
are the most important, and created categories by combining codes to logical
themes and drop less important ones. Categories were labeled, and we de-
cided which are the most relevant and how they are interconnected. We
described the connections between them. Finally, we discussed the impact
and implications of our observations, based on the results of the quantitative
and qualitative analysis. We used triangulating evidence from multiple
sources to obtain our final findings.

76 Chapter 4

4.4. Quantitative Results

Between April 2014 and May 2015 nine Cecil releases were performed (see
Table 4.1). Minimum release size was 37 FPs, maximum release size 128 FPs,
medium size was 64 FPs. Cost of the releases varied from 30K Euro to 110K
Euro, with a median of 63K Euro. Release duration took 2.76 to 8.81 months,
with a median of 6.11 months. Eight non-Cecil releases (see Table 4.2) were

Table 4.1. Overview of the collected metrics for the CECIL releases.

 Go Live
Date

Release
Size
(FPs)

Story
Points

#User
Stories

Release
Cost
(Euros)

Release
Duration
(Months)

Defects
(pre-
release)

CECIL 2014 R3 4-2014 111 na na 56,345 3.12 11

CECIL 2014 R4 5-2014 37 na na 45,769 2.76 5

CECIL 2014 R6 8-2014 64 31 (0) 16 (0) 30,367 4.60 2

CECIL 2014 R7 5-2014 80 64 (0) 17 (0) 73,134 5.49 8

CECIL 2014 R8 11-2014 40 37 (0) 6 (0) 58,154 7.56 7

CECIL 2015 R1 1-2015 46 62 (0) 12 (0) 84,464 6.11 19

CECIL 2015 R2 2-2015 109 87 (0) 18 (0) 62,768 7.43 7

CECIL 2015 R3 4-2015 128 73 (16) 23 (4) 62,964 8.81 16

CECIL 2015 R4 5-2015 63 44 (0) 8 (0) 110,000 6.11 10

Table 4.2. Overview of the collected metrics for the non-CECIL releases.

 Go Live
Date

Release
Size
(FPs)

Story
Points

#User
Stories

Release
Cost
(Euros)

Release
Duration
(Months)

Defects
(pre-
release)

Divine Quick Wins 2012 11-2012 81 na na 157,763 10.35 na

Divine Sales Orders 7-2013 110 na na 358,883 11.60 18

Divine Detailed Rep. 10-2013 80 na na 78,954 6.11 4

Divine Archival 12-2013 100 na na 364,549 6.97 18

Divine Quick Wins 2013 12-2013 32 na na 47,880 6.18 6

Divine Security 2-2014 61 na na 181,483 6.93 5

Divine SO Tracking Tool 7-2014 22 na na 69,761 9.20 7

Divine Stability Impr. 8-2014 8 na na 22,930 8.31 na

Divine Quick Wins 2012 11-2012 81 na na 157,763 10.35 na

The Cecil-Case: Managing Legacy Evolution 77

deployed. Minimum release size was 8 FPs; maximum size was 110 FPs. Cost
varied from 23 to 365 K Euro. Duration took between 6.11 and 11.6 months.

Table 4.3 gives an overview of a comparison between quantitative data of
collected within BelTel on the finalized Cecil releases and 26 best-in-class
software releases as analyzed in an earlier published research paper
(Huijgens & van Solingen, 2013a).

In order to benchmark the performance of Cecil releases and non-Cecil
releases in terms of cost, duration and number of defects against our research
repository holding 95 software releases that were performed within BelTel,
we used a model that we developed in earlier research; the Cost Duration
Matrix (Huijgens et al., 2014c). The model can be used to compare a portfolio
of releases to the benchmark, by means of a cost duration matrix, as shown
in Figure. 4.1 for the 17 releases in scope of this chapter. The EBSPM
Performance Dashboard, including the cost duration matrix is described in
detail in Subsection 2.5.

Figure. 4.1. Cost duration matrix of 95 finalized BELTEL releases with the CECIL
releases and non-CECIL releases mapped at it.

78 Chapter 4

Overall, the quantitative analysis tells us that all Cecil releases fall in the
good practice category when mapped on a cost duration matrix, which
means that all releases score better on Cost per FP and Duration per FP than
the average of BelTel projects. When compared with the 26 software releases
that were performed within another company (see Table 4.3), we observe that
Cecil releases are on average approximately two-and-a-half times larger in
size (FPs) than the best-in-class releases from earlier research (Huijgens &
van Solingen, 2013a). Because of this and thanks to economies of scale the
Cost per FP are approximately 10% to 20% lower. Duration per FP on the
contrary is comparable to the average score of the best-in-class releases from
(Huijgens & van Solingen, 2013a); average durations are longer, but the
larger average size in FPs compensates this.

Finally, the comparison shows that the number of Defects per FP of both
Cecil releases and non-Cecil releases is higher than that of the best-in-class
releases in (Huijgens & van Solingen, 2013a), indicating a lower process
quality. However, when benchmarked against our research repository Defects
per FP of all but one of both Cecil releases and non-Cecil releases is better
than the average score.

Observation 1: The performance of Cecil releases is, in terms of Duration per FP
equal to, and in terms of Cost per FP 10 to 20% better than that of the earlier
described best-in-class releases.

When Cecil releases are compared with the performance of non-Cecil
releases within BelTel that are performed on the same Divine system, it shows
that Cecil releases overall performed significantly better on both Duration
per FP and Cost per FP. As possible explanations for this we assume that the
additional startup time and cost needed for once-only releases, the learning
effort and knowledge gap of non-Cecil once-only release teams, the extra time
and cost for the proposal phase of a one-only release, and the overhead of
once-only releases over a long-term, fixed, and experienced Cecil team play
an important role. Besides that, we assume due to the type of requirements
that a number of the non-Cecil releases are more nonfunctional than Cecil
releases, leading to relatively less function points (non-functional require-
ments are not in scope of function point analysis).

The Cecil-Case: Managing Legacy Evolution 79

Observation 2: The performance of Cecil releases is in terms of Cost per FP and
Duration per FP, two to three times better than that of non-Cecil releases.

The quality of Cecil (0.13) and non-Cecil releases (0.14) in terms of Defects
per FP is not as good as that of the best-in-class releases (Huijgens & van
Solingen, 2013a), yet still within boundaries when compared to the overall
score of BelTel as a whole (0.12). No indications are to be found in the
quantitative figures that indicate too many defects during the development
process.

Observation 3: Process quality in terms of Defects per FP of Cecil releases and
non-Cecil releases is not as good as earlier described best-in-class releases from
the full benchmark, yet on average when compared with BelTel overall.

Besides the three performance indicators we also calculated two metrics
that give us an impression of the availability and reliability of the Divine sys-
tem, based on the tickets that were made on failures in the production envi-
ronment in the first two quarters of 2015. Based on 32 tickets the Mean Time
To Repair (MTTR) was 6:35, and the Mean Time Between Failure (MTBF)
was 107:12, indicating that on average once every 4.5 day a failure occurs that
lasts for on average 6.5 hours. The most worrying signal is that during repair

Table 4.3. Key Performance Indicator Comparison as earlier published in (Huijgens
& van Solingen, 2013a).

 CECIL
Releases

non-CECIL
releases

Best-in-Class
Releases
System A

Best-in-Class
Releases
System B

Number of Releases 9 8 13 13

Throughput (FPs) 678 494 415 349

Average Project Size (FPs) 75 62 32 27

Average Project Cost (Euros) 64,885 160,275 35,563 35,571

Average Project Duration (Months) 5.78 8.21 2.49 2.49

Average Number of Defects 9.44 9.67 na 1.23

Cost per FP (Euros) 861 2,595 1,114 1,325

Duration per FP (calendar days) 2.33 4.04 2.37 2.82

Defects per FP 0.13 0.14 na 0.05

80 Chapter 4

the Divine system usually is not available for end-users and only limited sales
can be performed by all shops of BelTel.

Observation 4: The reliability and availability of the Divine system is worryingly
bad and holds big risks for BelTel‘s business continuity.

Concerning the success factors we identified in earlier research (Huijgens
& van Solingen, 2013a), we observe that three of them also apply to Cecil: a
steady heartbeat, a fixed and experienced team, and release-based working
on a single application. However, the factor of Scrum software delivery needs
necessary differentiations.

The Cecil team certainly used a number of Scrum practices, such as a
product owner, product backlog prioritization, and a product backlog man-
agement tool (Scrumwise) as a core instrument for its communication. And
one may argue that although a product owner was distinguished, the availa-
bility and reliability of the Divine system was not included in this role, turning
it into an information analyst with a Scrum label. Besides that, typical Scrum
practices such as the role of the Scrum master and the daily standup meeting
were not formalized within the team. Because of that we hesitate to label the
Cecil releases as typically Scrum.

Observation 5: Three success factors identified in earlier research apply to Cecil
too: a steady heartbeat, a fixed and experienced team, and release-based working
on a single application. However, the Cecil releases cannot be defined as typical
Scrum.

For all non-Cecil releases we observe that only the factor release-based
working on a single application applies. There was no fixed team, experience
was not secured once releases were finalized, and a plan-driven (waterfall)
delivery approach was followed.

4.5. Results of the Interviews

In order to answer research question RQ4.2, ‘what other factors can be found
that influence release-based software delivery in a positive or negative way?’
we performed nine interviews with eleven stakeholders. Table 4.4 gives an
overview of the interview participants and their backgrounds. All interview-
ees are in one way or another involved in the Cecil releases, either as a user of

The Cecil-Case: Managing Legacy Evolution 81

the Divine system (business), as a member of the Cecil team, as a stakeholder
from IT release management, or as enterprise architect responsible for the
application landscape.

Overall the interviewees are more or less satisfied with the Cecil releases,
as illustrated by a statement of interviewee P2 who revealed that require-
ments in Cecil are cherished with a typical nickname ‘cecillekes’ [Belgian col-
loquial for 'sweet Cecilia'].

In the following Subsections we grouped aspects of observations from the
interviews in nine categories.

4.5.1. Product owner is praised by many participants

The role of the product owner, and more specifically the way this role is ful-
filled by the person in question, is in general highly appreciated; for stake-
holders from business and IT alike. Many interview participants mention this
as a first point when asked what aspects influenced the Cecil releases in a
positive way. Examples are that the Cecil releases run well (P2), and that the
Product Owner sets priorities within the backlog and determines the impact
on the system (P1).

Table 4.4. Overview of Interview Participants.

 Role Business / IT
P1 Business analyst CECIL releases and (part of) non-CECIL

releases
IT-department

P2
P3

Team leader Billing & Rating Support
Billing & Rating support agent

Business
Business

P4 Product owner CECIL releases Business

P5 Release manager IT-department

P6
P7

Consumer Care Mobile team leader
Consumer Care Mobile team leader

Business
Business

P8 Tester CECIL releases IT-department

P9 Team leader Roadmap & Release Management IT-department

P10 Shop Support & Channel Communication team leader Business

P11 Enterprise architect – former team leader CRM team (a.o.
DIVINE system and CECIL releases)

IT-department

Participants are depicted in one row when a combined interview took place (e.g. P2 and P3
were interviewed together).

82 Chapter 4

Observation 6: The role of the product owner and the specific personal fulfillment
of that role is appreciated highly by stakeholders from both business and IT.

4.5.2. Cecil focuses on small but fast deliveries

Many stakeholders, especially those from business, mention as a success as-
pect that the Cecil approach focusses on quick wins; delivering high value for
end-users (e.g. agents). Time-to-market is mentioned as a success factor (P5).
We assume that the focus on delivering small enhancements in a fast and
flexible way (P11, P1) is connected with this. Besides that, added value for the
end-users (shops) is created by fast delivery with limited numbers of errors
(P2).

‘The idea of the Cecil items comes from the users. They see a bug in the
system or a difficult process… I have to press this button twice or some-
thing… It is really based on ideas from the users. We discuss these ideas with
[product owner] and see what can be put on the list.’ (P3)

Observation 7: Cecil is about quick wins: small, fast deliveries of requirements
based on end-user problems.

A remark here can be made on the fact that the Cecil releases are applica-
ble to one single application, the Divine system. One interviewee (P1) men-
tioned this as a success factor; referring to the fact that Cecil releases are in-
dependent from other teams. This finding corresponds with an observation
from earlier research on two teams in a similar setting in another company
(Huijgens & van Solingen, 2013a).

4.5.3. Role of Scrum master is not formalized in practice

Contrary to that of the product owner, the role of the Scrum master is not
formalized in the Cecil team. Despite the fact that at the start of the Cecil
releases the team experimented with this role, it did not last in practice. In-
stead, the business analyst performs as an informal kind of coordinator in the
team (P1).

‘For me the most positive change was that [business analyst] joined the
team. She replaced the former business analyst and she did a fantastic good
job. She was just chasing IndSup-A, she was keen on getting feedback and
followed-up what was open.’ (P4)

The Cecil-Case: Managing Legacy Evolution 83

Observation 8: The role of the Scrum master is not formalized in the team, yet no
one seems to miss it.

4.5.4. Close cooperation within the Cecil team

Coordination within the Cecil team is an activity that is less formalized (e.g.
there is no one with the formal role of Scrum master, coordinator, or project
manager) yet the workflow seems to go smoothly with satisfied team mem-
bers (P1). The transparent way of working together, and the open communi-
cation were mentioned as success factors (P7). The team members knew each
other, lines were short, and the setting of the team was fixed and relatively
small (P4). One time per week, or in the beginning even twice, a status meet-
ing was organized (P1).

With regard to the fact that a part of the teamwork is done in India some
remarks were made, although we did not get the impression that this was a
large issue for the team itself. One Indian team member that works onsite acts
as the main contact for the onsite team and as single point of contact for the
offsite team members. Only small effects were observed here; handovers went
quite smoothly (P4).

‘An improvement was the replacement of [former developer from
IndSup-A] by [actual developer of IndSup-A]. The former was most of the
time in India and [actual developer of IndSup-A] is most of his time here
onsite. So that was more difficult. More conference calls, the sound was very
bad, I didn’t understand the language too good. Now we do not have fixed
meetings anymore. We just walk by when needed and if it’s convenient we
setup a meeting.’ (P4)

Observation 9: Coordination is less formalized. It is a team activity; the Cecil team
is a typical fixed and self-organizing team, although an onsite lead developer that
coordinates offsite Indian team members helps a lot.

4.5.5. The Product Backlog management tool

A success aspect that is closely connected to the good cooperation within the
team is the tool that is used for product backlog management: Scrumwise.
Many interviewees mention it as very satisfying (P4, P5, P7). Stakeholders
from business departments indicate that they use the tool for Kanban pur-
poses in their own departments too. The tool supports good communication

84 Chapter 4

and bundles everything real-time together. People see right-away that some-
one is doing something (P4). It improves interaction between team-members
and records all requirements and issues (5).

‘Scrumwise is a good tool because it helps the team members to align
activities. Everybody was available via the tool. How do we work? What are
the agreements? It really had advantages for that purpose I think.’ (P7)

Observation 10: The product backlog management tool Scrumwise positively
affected communication.

With regard to documentation some small remarks were made that indi-
cate that interviewees are satisfied with the level of technical design within
Cecil, but that things need to be improved. However, this was experienced
more as a general issue with regard to IndSup-A (P1). Remarks were mainly
regarding improvements on version control and technical design activities
(P7).

4.5.6. Improvement: Budget and Estimating is fuzzy

The budgeting process for the Cecil releases seems to be a bit fuzzy. Team
members lack knowledge on what the budget is and how it is prepared. It is
unclear how budgets are controlled and who is responsible for this (P4, P7).

With regard to estimation of new releases the same remark seems valid.
The team does not use Story Points for estimating, but relies on estimates
made by the developers of IndSup-A: during the planning process they
strongly advise on what requirements are in or out of a release (P4).

4.5.7. Improvement: Testing

Three parties are involved in testing. Build and integration testing is per-
formed by offshore testers of IndSup-A. UAT and regression testing is per-
formed by a tester within the Cecil team from an external supplier that is per-
forming company-wide test activities for BelTel. And finally testers from a
Billing and Rating Support team perform a production test (P2).

Although all interviewees were unanimously satisfied with the Cecil pro-
cess, some mention that testing can be improved, varying from smarter test-
ing to follow-up of tickets recorded during the testing activities. Improve-
ments were to be made in the somewhat informal, and laid-back approach on
follow-up of test-tickets by IndSup-A (P4).

The Cecil-Case: Managing Legacy Evolution 85

Yet, although some interviewees indicate that testing needs improvement,
some are quite satisfied about the quality as delivered by the Cecil releases.

‘If you compare Cecil with other projects then Cecil scores much better in
numbers of defects per test case. The pre-project period as delivering
requirements and test cases goes very smoothly. Also the requirements are
described very well.’ (P5)

Observation 11: Interviewees indicate that testing could be improved by smarter
testing and better follow-up of test-tickets by developers of the Indian supplier.

4.5.8. Evolution of the process over time

All interviewed stakeholders are positive to very positive on the Cecil releases
as they developed over time. Some interviewees even indicate that in case the
Divine system is replaced in future, the process of enhancements as per-
formed in the Cecil releases should be kept operational.

The team and its process is experienced as stable and people know where
to go with questions (P2), and it delivers small enhancements, but with high
impact for business stakeholders (P4). A remark is made on whether the
scope of the team should be enlarged to also larger enhancements too (includ-
ing requirements that were in scope of once only projects that acted on the
Divine system too (P7).

‘As far as we are concerned Cecil should go on like it is…’ (P3)

Observation 12: All interviewed stakeholders are satisfied about the Cecil way of
working and want to have it continued in future.

4.5.9. Bad performance issues of the Divine system

As described earlier in Section 4.2.1 the Divine system suffers from severe
problems with regard to availability and reliability. Many interviewees relate
to this by mentioning that the Divine system is a legacy system, at the end of
its lifecycle, mainly due to high costs for system upgrades by its original
supplier and due to the ongoing availability and reliability issues.

‘The serious stability problems of Divine are especially owing to database
administration and integration with the backend. Those are the two things
that need an architectural adjustment.’ (P11)

86 Chapter 4

‘The source of the performance problems is the fact that things are
interwoven. If one application goes down most of the time fifteen others go
down. Just replacing systems with the same functionality is only a good in-
vestment for the supplier and its partners. It’s technical debt. But I call it
also the blame game. We do a lot of system thinking instead of client think-
ing.’ (P7)

‘The reason that Divine is at the end of its lifetime is that we wanted to do
an upgrade, but the costs from the supplier of the system were very high.
The system is also not that young anymore. Together with the cost the
decision was taken to go for another system. In a way Divine is built as a
CRM system. Yet BelTel used it as a sales system with many customizations.
It was not originally meant for that, and that’s why there are many perfor-
mance problems nowadays.’ (P1)

‘Divine is not very stable, we have large performance issues. Loading
problems, or error messages. I think that’s the most important reason to go
to a new system. If you look at the high number of problems in the shops…
They are talking to a customer and press a button and then they have to wait
for two minutes… And all the Apache errors… The white screens when you
have to completely log off and start again…’ (P3)

Besides performance issues also the fact that the Divine system function-
ally evolved in a difficult to maintain solution for the business users is men-
tioned as a problem for the future.

‘Functionally Divine works as it works… we made things wrong our-
selves. We rebuilt things and Cecil could stick some plasters on some
wounds. But there is no ‘wow’ to make out of it anymore…’ (P4)

A decision is taken to replace the Divine system by a new product that will
be a package off-the-shelf solution with minimal customization and minimal
integration with backend systems.

‘In former times Divine went down every day. Things improved. But do
we have a proper CRM? No! That’s why the system is going to be replaced
in the coming six months. We are now looking at a new package solution
with as little connections to Provisioning and Billing systems to make the
dependencies as small as possible.’ (P11)

Yet, it is interesting to observe that stakeholders tend to judge the Cecil
releases and the Divine system as different things that are not interrelated.

The Cecil-Case: Managing Legacy Evolution 87

‘Cecil stands loose from the system that does not work. [Interviewer]: But
why are there no performance improvement issues on the Cecil backlog?
[Interviewee]: Well they tried all kind of things to improve the performance.
I do not think that’s going to be a quick win. A specialist came over from the
USA to see how he could solve things. If Cecil was planned to solve these
problems, then the management would already put performance things on
the backlog.’ (P2)

‘This morning we had a meeting were the operations manager opened
his heart on an issue last month, when Divine was down for one day due to
firewall issues, and because of that BelTel did not make any money for a
whole day. It is interesting why these non-functional aspects are not incor-
porated into Cecil. Apparently nobody thinks about this.’ (P5)

‘It is a classic problem within BelTel that Operations asks to be involved
in a project… But effectively they only react per email on questions. We look
at DevOps, but we are not even agile yet. What do you expect?’ (P11)

Maybe the most striking finding of our analysis, is the fact that it is possi-
ble to have stakeholders that are all quite satisfied with the process of releas-
ing a steady stream of enhancements over time, yet on the other hand they
have to struggle with a software system that is lacking in reliability and
availability.

Observation 13: A release process that performs better than average on cost and
duration, and on average on defects, can satisfy stakeholders in managing
changes on a badly performing software system.

4.6. Discussion

4.6.1. Threats to Validity

With regard to construct validity, the degree to which a test measures what it
claims to be measuring a remark is in place on Function Point Analysis. Func-
tional documentation is used to count FPs, holding the consequence that low
quality documentation could have led to low quality FPA. To mitigate this
risk, we thoroughly reviewed all sets on completeness and correctness, we
made use of two certified FPA specialists, and assured that all involved FPA
specialists are trained and experienced. To prevent from using low quality

88 Chapter 4

release data, we had all data reviewed by the product owner and the business
analyst and the financial controller of BelTel.

By normalizing all project data with the functional size in FPs we war-
ranted internal validity, the extent to which a causal conclusion is based on
our study. By doing so we could more objectively compare performances of
all releases in order to minimize systematic error. The effect of outliers is lim-
ited and the risk on bias is mitigated responsibly based on the diversity of
projects and business domains within BelTel, the number of software pro-
jects, and the fact that we measured and analyzed software project portfolios
as a whole in an empirical way.

To improve the internal validity of our study we performed a member
check with participants. Although this was done in an informal way, we tried
to improve the accuracy, credibility, validity, and transferability of the study
by reflecting both during the interview process, and at the conclusion of the
study, before results were presented and discussed with executive within the
company.

With regard to external validity, whether the study results can be general-
ized to settings outside the study, we argue that due to the limited scope of
our study, one specific series of releases in one company, it is too early to
generalize the outcomes. Since we looked at seventeen releases performed in
one company; the outcomes cannot be generalized to other environments
without precautions. A promising factor here is however, that we compare the
quantitative results of our study with results from existing research that we
performed on similar software releases in another company, leading to a gen-
eral expectation that the outcomes of our study might generalize to similar
release approaches and companies too and that factors such as a steady heart-
beat, release-based way of working mapped on a single application, and a
fixed and experienced team are common success generators for software en-
gineering.

4.6.2. Scrum as a Distinguishing Factor

Our research did not indicate that Scrum in itself is a distinguishing factor for
the success of the software releases, but that some specific elements of Scrum,
namely, the role of the product owner, a product backlog management tool,
and short iterations based on prioritized requirements that deliver high value
to end-users, are key elements that lead to release processes that outperform

The Cecil-Case: Managing Legacy Evolution 89

on cost and duration. The role of the Scrum master, daily standup-meetings,
planning and estimations in Story Points, and the concept of Sprint Reviews
were not adopted. As such, this setting should not be qualified as a Scrum
setting, but as a local agile implementation using some Scrum practices. Fur-
thermore, the fact that the Cecil team spends time on upfront tasks such as
writing a design document deviates from many agile approaches.

4.6.3. Impact / Implications

With regard to our first research question we conclude that the Cecil releases
corresponds to four of the five success factors mentioned in earlier research
(Huijgens & van Solingen, 2013a), a steady heartbeat (taking into account
that the duration of releases varied, but the release dates were preset
upfront), release-based working on a single application, and a fixed and
experienced team. The success factor Scrum did not fully correspond with the
subject Cecil releases, but a number of Scrum practices were in place. The
non-Cecil releases only correspond with one factor, namely release-based
working on a single application.

Analysis of the observations from the interviews, based on a grouping of
observations and connections in coherent categories, reveals three categories
with regard to the Cecil releases: the Cecil team, the Cecil release perfor-
mance, and the Divine system. Our study indicates that these categories ap-
parently can live together without close connections. The Cecil team itself
performs very well, stakeholders are quite satisfied, while the subject Divine
system performs poorly in terms of both reliability- and availability.

For future use the model that we used to benchmark the performance of
releases against our research repository, the cost duration matrix, should be
expanded with metrics on the performance of software systems after deploy-
ment in a production environment. In this way concepts such as good prac-
tice and bad practice will reflect the performance of software releases in a
more realistic way.

4.7. Related Work

Challenges with legacy systems as described in our case study are examined
in many related work. (Boehm, 2006b) for example, mentions legacy

90 Chapter 4

evolution as one of the major future challenges for systems and software de-
pendability processes. (Deursen et al., 1999) see “to try to bridge the gap
between research aimed at building new software and research aimed at
maintaining or renovating old software” as a large challenge.

A common idea of many research performed in the former millennium is
that success and failure are interconnected with process-based activities (Hall
et al., 2002). Reel, 1999) mentions five critical success factors in software
projects, such as start on the right foot, maintain momentum, track progress,
make smart decisions, and institutionalize post-mortem analyses.

(Niazi et al., 2006) identifies a large number of success factors for software
process improvement implementation in existing literature. (Rainer & Hall,
2002) surveyed practitioners and found factors such as reviews, standards
and procedures, training and mentoring, and experienced staff that practi-
tioners generally considered had a major impact on successfully implement-
ing SPI. Besides that, they found factors such as internal leadership, inspec-
tions, executive support and internal process ownership that the more mature
companies considered had a major impact on successfully implementing SPI.

(Stelzer & Mellis, 1998) mention ten success factors of organizational
change in software process improvement, a.o. management commitment and
support, staff involvement, and providing enhanced understanding.

More recent work emphasizes the success and failure factors of shorter
iterations due to an agile way of working. (Chow & Cao, 2008) surveyed agile
professionals on success in agile software projects, and came up with factors
such as delivery strategy, agile software engineering techniques, and team
capability. (Misra et al., 2009) found factors such as customer satisfaction,
customer collaboration, customer commitment, decision time, corporate
culture, control, personal characteristics, societal culture, and training and
learning.

(Sutherland et al., 2007) assessed hyper productivity in Scrum and men-
tions success factors such as team formation, Scrum meetings, sprints,
product specification, testing, configuration management, pair program-
ming, and measuring progress as typical for success.

(Meyer, 2014) identifies a number of contributions of the agile approach:
refactoring, short daily meetings that support good team communication,
identifying and removing impediments, and identification of sources of
waste. As “brilliant agile principles” he mentions short iterations, continuous

The Cecil-Case: Managing Legacy Evolution 91

integration, the close window rule (no functionality can be added during an
iteration), time boxing, the role of the product owner, an emphasis on
delivering working software, the notion of velocity, and associating a test with
every piece of functionality (Meyer, 2014). A remark on Meyer’s observation
on refactoring as a strong agile practice is that refactoring tools are seldom
used by developers (Murphy-Hill, Parni & Black, 2012).

4.8. Conclusions and Future Work

In this study, we addressed the problem of different ways of working for
evolving legacy software, which by definition resist change. The contributions
of this chapter are threefold. First, it gives a description of a case in which a
release-based, iterative process on a legacy system worked well, satisfying key
stakeholders despite the poor quality of the system itself. Second, it con-
firmed three success factors as identified in our earlier research as contribu-
tors to this success (Huijgens & van Solingen, 2013a):
1. A steady heartbeat;
2. A fixed and experienced team
3. A release-based way or working, mapped on a single system.

Third, we identified four additional success factors:

4. The role of the product owner and the personal interpretation of that role;
5. A focus on quick wins and small, fast deliveries of requirements based on

end-user problems;
6. The fact that the role of the Scrum master is not formalized, leading to a

self-organizing team with an onsite lead developer that coordinates
offsite Indian team members;

7. A specific product backlog management tool that positively influences
communication.

The research as presented opens prospects for future research. With re-
gard to our observation that the subject Cecil team applies less formalized
aspects of Scrum in its process, we conclude it is important to examine wheth-
er the findings from this study are applicable to teams that work according to
more formalized settings of Scrum too.

Finally, in interviews we heard stories about poor performance of the Di-
vine system. Since we considered this to be out-of-scope for this study we

92 Chapter 4

checked this finding only quantitatively. For future studies we will include
qualitative analysis of the underlying legacy system in our study too.

4.9. Acknowledgments

We thank BelTel for its generosity to allow us to use company data for our
research, and the members of the Cecil team, and other interviewed stake-
holders for their willingness and openness to share their experiences with us.

94 Chapter 5

Evidence-Based Pricing of Project Proposals 95

5. Evidence-Based Pricing of Project Proposals

ontext: A medium-sized west-European telecom company experi-
enced a worsening trend in performance, indicating that the organiza-
tion did not learn from history, in combination with much time and

energy spent on preparation and review of project proposals. Objectives: In
order to create more transparency in the supplier proposal process a pilot was
started on Functional Size Measurement pricing (FSM-pricing). Method: In
this chapter we evaluate the implementation of FSM-pricing in the software
engineering domain of the company, as an instrument useful in the context
of software management and supplier proposal pricing. Results: We analyzed
77 finalized software engineering projects, covering 14 million Euro project
cost and a project portfolio size of more than 5,000 function points. Conclu-
sion: We found that a statistical, evidence-based pricing approach for soft-
ware engineering, as a single instrument (without a connection with expert
judgment), can be used in the subject companies to create cost transparency
and performance management of software project portfolios.

5.1. Introduction

This story is about a company that experiences two problems in its software
engineering outsourcing. First, a worsening trend is seen in project cost per
function point, indicating that the organization does not learn from historic
projects. Second, much time and energy is spent on preparation and review

C

This chapter was published as Pricing via functional size: a case study of 77
outsourced projects in the proceedings of the 9th International Symposium
on Empirical Software Engineering and Measurement (ESEM) (Huijgens,
Gousios & van Deursen, 2015c).

96 Chapter 5

of fixed price project proposals. Our case study explores whether a new
project pricing method helps to solve these problems.

5.1.1. Problem Statement

To arrive at a price that is acceptable for both parties involved, most compa-
nies rely heavily on expert judgment (Jørgensen, 2004); where the advice of
knowledgeable staff is solicited (Boehm, 1984). Usually this is performed as a
bottom up approach, where component tasks are identified and sized and
then these individual estimates are aggregated to produce an overall estimate
(Boehm, 1984).

Yet, in practice effort and/or schedule overruns are business-as-usual
(Moløkken & Jørgensen, 2003), despite involvement of experts. Software
development is characterized by high cost and schedule overruns (Verhoef,
2002). Estimation errors are reported to be essential causes of poor manage-
ment, due to lack of a solid baseline of size (Glass, 2002).

An alternative method for software project estimation is based on algo-
rithmic cost models (COCOMO 2 is a well-known example) which take cost
drivers representing certain characteristics of the target system and the im-
plementation environment and use them to predict estimated effort (Boehm,
1984). In many of these statistical approaches size is assumed to be a key
factor to estimate project cost (Abran et al., 2002a) (Gencel & Demirors,
2008). Usually size of software engineering projects is measured with a
formal Functional Size Measurement (FSM) standard (IFPUG, 2009). FSM
is a method to measure the size of software engineering projects by means of
the functionality delivered to users (Gencel & Demirors, 2008), which lays
the foundation for a statistical method of project pricing based on functional
size. Advantages of such a statistical method are that this will help to improve
transparency of estimations and that it can be a good instrument to create
continuous improvement of project performance.

Although we did not find evidence in existing literature, our observation
in industry is that a purely statistical method is almost never used. If statisti-
cal analysis is used, this is usually supplementary to an expert judgment-
based approach (Jørgensen, 2004). And practice shows that in most cases the
expert opinion – in many cases supported by reasoning by analogy – is lead-
ing when it comes to decision-making (Heemstra, 1992).

Evidence-Based Pricing of Project Proposals 97

5.1.2. Research Objectives

The goal of this chapter is to examine whether a purely statistical approach to
pricing is effective in an outsourcing context. We define an approach to be
effective when a so-called win-win situation is achieved: meaning that both
involved parties are satisfied and project proposals are perceived to be trans-
parent for all stakeholders. The supplier delivers a service for a price that is
higher than the cost, and the customer gets higher value than the paid price.
In addition to that the outsourcing context asks for a long-term (5 year) rela-
tion. For this purpose we define three research questions:

RQ5.1: To what extent are both parties involved in the case study satisfied with
FSM-pricing?

RQ5.2: To what extent does FSM-pricing help to improve transparency of project
proposals?

RQ5.3: To what extent does FSM-pricing help to create cost and time
improvements?

5.1.3. Context

In order answer these research questions, we performed a case study on the
implementation and evaluation of FSM-pricing as a single instrument for
software management, in a telecom company in Belgium (in this thesis indi-
cated as BelTel), and the pricing approach agreed with its main Indian IT-
supplier (indicated as IndSup-A). We studied data collected from 77 software
projects that finalized during a period from 2012 to 2014. Moreover, we con-
ducted 25 interviews including structured as well as open-ended questions.
Our study is primarily descriptive, and not comparative in a sense that we
compare outcomes with other companies: we do not have data to see how
other pricing approaches might have worked. However, we do compare out-
comes over time within the same company. Yet, we provide a rigorous analy-
sis of what worked well, and what did not work well using FSM as an instru-
ment for pricing.

The innovation of our study is that we raise the question to what extent a
single, statistical, empirical approach to project estimation can reach the goal
of transparent project proposals and due to that, cost and time improve-
ments. The case study shows that FSM-pricing can successfully be used in the

98 Chapter 5

practice of BelTel and IndSup-A, as a statistical, evidence-based pricing ap-
proach for software engineering project proposals (RQ5.1), that FSM-pricing,
in both subject companies leads to an improved transparency of project
proposals and satisfied stakeholders (RQ5.2). Furthermore we found that
FSM-pricing in our case study does lead on short term to cost improvements,
but that no time improvements are realized within both subject companies:
average project duration shortens, but average project size gets smaller too
(RQ5.3). Due to the limited scope of the study it is too early to generalize the
above mentioned findings to other companies and suppliers of software pro-
jects, yet we believe the outcome can help software companies to setup trans-
parent and improving project pricing strategies.

We base the reporting structure of this case study on the linear-analytic
structure as described in (Runeson et al., 2012). In Section 5.2, we survey
earlier research on software pricing and discuss the background of FSM-
Pricing. In Section 5.3, we chalk out the case study design. In Sections 5.5 and
5.6 we present results and we evaluate validity. In Section 5.7 we discuss the
results and Section 5.8 includes conclusions and future work.

5.2. Related Work

When it comes to software pricing, two types of estimation techniques are
distinguished to discover the cost of producing a software system; experience-
based techniques such as expert judgment and algorithmic cost modeling
where cost is estimated as a mathematical function of product, project and
process attributes. A well-known example of the latter is Boehm’s COCOMO
2 (Boehm et al., 2000a); more methods based on algorithmic software cost
models with specific regression formula are widely used in industry, such as
the Putnam Model (Putnam & Meyers, 2003), and SEER-SEM (Fischman,
McRitchie, & Galorath, 2005).

Studies covered in a review by Moløkken and Jørgensen (2003) on Sur-
veys on Software Effort Estimation mention a variety of estimation aids;
such as work breakdown structure, Functional Size Measurement such as
Function Point Analysis (FPA) (Gencel & Demirors, 2008), parametric tools
(Lederer & Prasad, 1993), and qualitative methods (Bergeron & St-Arnaud,
1992).

Evidence-Based Pricing of Project Proposals 99

For a long time researchers and practitioners have been investigating the
use of statistics in software estimation. Since the 90s a limited number of
studies has been published on the subject of pricing of projects based on
statistics (Dekkers & Forselius, 2010) (Czarnacka-Chrobot, 2010). Despite all
models and practices actual software estimation seems difficult. (Moløkken
& Jørgensen, 2003) observe that 60-80% of the projects encounter effort
and/or schedule overruns. Estimation methods in most frequent use are
expert based: expert consultation, intuition and experience, and analogy.
Frequent use of expert judgment is advocated because of a lack of evidence
that formal estimation models lead to more accurate estimates (Moløkken &
Jørgensen, 2003).

Although research in the field of software engineering often shows conclu-
sion instability (where what is true for project one, does not hold for project
two) (Menzies & Shepperd, 2012), and expert judgement is common practice,
studies do emphasize pitfalls. (Jørgensen & Gruske, 2009) argue that
estimation professionals in many cases do not use lessons learned from
finalized projects. (Valerdi, 2011) mentions cognitive bias that can make
experts produce poor estimates. (Passos et al., 2011) show that many experts
generalize from their first estimates to future ones. Recent literature study on
agile metrics shows high popularity of velocity for effort estimates in
industrial agile teams (Kupiainen et al., 2015); yet, cost metrics and size
related metrics, and especially metrics related to pricing of projects, are not
mentioned. (Fink & Lichtenstein, 2014) address the gap between project size
(although measured here in cost and not in functional size) in the software
engineering literature and the attention it receives in software contracting
research. (Madachy et al., 2011) argue that due to impreciseness of general
software cost parameters such as size, effort distribution, and productivity
cost database better are segmented by domain.

(Abran et al., 2014) uses a FSM-based model to assess productivity and to
estimate new projects on fixed and partly variable costs. (Ramasubbu et al.,
2011) reveal complex tradeoffs in choosing configurational choices that are
optimized for productivity, quality, and profits. A discussion on model-based
versus judgment-based is described in (Benestad & Hannay, 2011), indicating
a substantial overlap between the two approaches, but also some mismatches.

We did not find studies that describe dedicated use of algorithmic cost
models in practice, without interference of expert-judgment based methods.

100 Chapter 5

Limited research is performed specifically on the topic of pricing software
projects. We have not found any studies that emphasize the use of FSM as a
single instrument for pricing. This is remarkable; several studies on FSM
stress that software size is a primary predictor of project effort and thus
project cost (Gencel & Demirors, 2008) (Abran, Silva, & Primera, 2002b).

5.3. Case Study Design

5.3.1. Theory

FSM and FPA

FSM is an industry standard to measure size of software engineering activi-
ties. Five FSM methods are certified by ISO as an international standard; in
our study IFPUG FPA (ISO 2003c) (IFPUG, 2009) is used. FSM origins from
FPA, designed by Albrecht (1979) to estimate size of software delivery by
means of user functionality. FSM is based on the complete set of functional
requirements of a software project. An extensive overview of FSM can be
found in (Gencel & Demirors, 2008).

FSM-pricing

FSM-pricing, as used in the context of this case study, is a method that we
developed for pricing of proposals for software projects to be performed
within BelTel, by IndSup-A. In order to define a fixed price for a project, first
FSM is performed to measure the functional size of a project, second the price
of the project is determined based on a power trend that is built on historic
data of finalized software projects. In our case study we only used historic
data of projects that were finalized within the practice of BelTel and IndSup-
A itself. The FSM-pricing method is explained more in detail in Subsection
5.3.5.

5.3.2. Research Questions

In the period prior to FSM-pricing become operational within BelTel, we dis-
covered two major disadvantages in the current expert-judgment-based esti-
mation approach through analysis of finalized software engineering projects.
First, BelTel showed a worsening trend in project cost per FP, indicating that
the organization did not learn from historic project data. Second, much time

Evidence-Based Pricing of Project Proposals 101

and energy was spent on preparation and review of fixed price project pro-
posals, leading to long project durations. To turn the tide on the worsening
cost and time performance, and to smoothen the proposal process, a decision
was made to change towards an empirical, evidence-based, and analytical way
of preparing fixed price project proposals. FSM-pricing was born, having two
goals, defined by BelTel’s management: 1) improve transparency of propo-
sals, and 2) create ongoing cost and time improvements of software delivery
due to the expected improved clarity in the delivery process (e.g. less dis-
cussion on cost and scope).

Based on this we defined three research questions, with the intention to
find out to what extent stakeholders involved in FSM-pricing are satisfied
about the method, to what extent the method helps to improve transparency
of project proposals, and to what extent cost and time improvements are real-
ized.

5.3.3. Case and Subject Selection

FSM-pricing, as described in this chapter, was implemented in the software
project department of BelTel, as part of a transformation program that in-
cludes a change from one large European IT-supplier to a large Indian IT-
company (IndSup-A) for the majority of its software engineering activities for
the Customer Relationship Management (CRM), Billing, and Data Ware-
house (DWH) applications. Besides the fact that a 5-year sourcing contract
was agreed between BelTel and IndSup-A, both companies were not in any
way - besides contractually - related. FSM-pricing aims to implement FSM
based on FPA (IFPUG, 2009) as an approach to improve the capability of the
company to challenge IndSup-A’s proposals for to-be-started software engi-
neering activities. All proposals were fixed-price; no extra time-material cost
were allowed unless the scope of a project (in FPs) was changed during the
delivery period.

Based on this organizational definition, and driven by the goal to investi-
gate a representative subset of mutually highly different software projects
within a company’s software portfolio as a whole, we decided to select all soft-
ware projects to be finalized during the period January 2014 to December
2014, within the business domains CRM, Billing, and DWH of BelTel, with
IndSup-A acting as the main supplier, to be subject of our case study. For
benchmarking purposes we used a subset of historic software projects that

102 Chapter 5

were finalized in the period 2012 to 2013, within the three business domains
of BelTel, yet performed by other external suppliers than IndSup-A.

5.3.4. Data Collection procedures

Data of all software projects that are collected are measured by a team of
BelTel, supported by measurement specialists of IndSup-A. The author of this
thesis was leading BelTel’s measurement team during the case study. As a
source for the project data we use the formal project administration. All
project data is reviewed by the applicable project manager and the financial
controller of BelTel, and adjusted where needed. We collect both quantitative
data (e.g. core metrics such as size, effort, cost, duration) and qualitative data
(e.g. project backgrounds, factors that influenced a project) in a measurement
repository. Projects cover a mix of the business domains CRM, Billing, and
DWH, project types (e.g. newly built systems, enhancements, off-the-shelf
packages), and project sizes (e.g. small enhancements, large once-only
projects). In all projects the design, build, and testing activities are performed
by one or more external suppliers. Most software projects are combined in
releases and delivered at one moment to the business organization; each year
eight releases are rolled out under guidance of a portfolio management team
of BelTel.

We collect data on finalized software engineering projects only; stopped
or failed projects are not included in our case study. We exclude projects that
are only about infrastructure, or that include only non-functional require-
ments (e.g. performance, security), because these were not to be counted in
FPs.

For all to-be-analyzed software engineering projects, we measure project
size in Function Points (FPs), according to FSM ISO/IEC 20926 guidelines
(IFPUG, 2009). FPA is performed by specialists either from a BelTel meas-
urement team (in the period that IndSup-A is not in scope as main supplier
yet), or by a IndSup-A measurement team (once IndSup-A is in scope as main
supplier they perform all FPAs). Every FPA is reviewed on correct utilization
of counting practices by an experienced IT-metrics expert who is also the
author of this thesis, and on correct interpretation of requirements by an
applicable subject matter expert of BelTel.

Evidence-Based Pricing of Project Proposals 103

5.3.5. Analysis Procedure

In order to test whether cost or time improvements are realized we calculate
the following performance indicators for each project (we opted for this set of
indicators because they were included in the standard set of KPIs within
BelTel and therefor to be expected as known by both parties management):
1. Project cost per FP: total project cost divided by the project size, ex-

pressed in Euros per FP;
2. Build & Test cost per FP: cost of the Build & Test phase divided by the

project size, in Euros per FP;
3. Project duration per FP: duration of the project from start of the Initia-

tion phase to technical go live divided by the project size, in Days per FP.
4. Build & Test duration per FP: duration of the Build & Test phase divided

by the project size, in Days per FP.

When in this study cost per FP or duration per FP is mentioned without

any prefix, the project version of each indicator is meant, instead of the Build
& Test version. For analysis purposes results of individual projects are aggre-
gated to company level, where project size (FPs) is used as weighting factor.
All data used in the analysis were shared and thoroughly reviewed by meas-
urement experts of both BelTel and IndSup-A.

Based on analysis of projects performed by IndSup-A, we calculated two
domain-specific baselines on build & test cost per FP; these were going to be
the trend lines for FSM-pricing. To create the baseline, we obtained the best
fit after conducting a log-log transform. After performing a power regression,
the resulting price calculation formula is:

𝑃𝑃𝐴𝐴𝑃𝑃𝑎𝑎𝐴𝐴 = 𝐴𝐴 ∗ (FP)β

The coefficients α and β may differ per application domain. In the portfolio
under study, we typically have β ≈ 0.75 (this value was based on analysis of
the two baselines created within BelTel). Note that this formula is in line with
COCOMO 2’s effort estimation formula (which uses KLOC instead of function
points) (Boehm et al., 2000a). We use simple regression on project size and
build & test cost with power fit. Our foundation of this argument is that such
a model facilitates greater analyzability and thus helps improving
transparency.

104 Chapter 5

For a statistics-based explanation we create a cross correlation table to de-
termine, and filter the strongly dependent variables in our sample out from
the regression model. We found that size and duration are all pair-wise highly
correlated; we rejected duration and only used size as a predictor for cost. See
the technical report for more details on statistics (Huijgens et al., 2014b).

We prepared two baselines: 1) CRM/Billing (R2 = 0.5621) and 2) DWH (R2
= 0.9048). CRM/Billing domain projects are combined in one baseline
because the analysis shows no large differences between projects from both
domains, many projects overlap domain borders, and because not enough
data were available for proper individual trend lines for both domains. A sep-
arate DWH baseline was setup because these projects show a different pat-
tern. See the technical report (Huijgens et al., 2014b) for plotter charts and
details on the setup of both baselines.

Based on both baselines a tool was set up for cost calculation in project
proposals by IndSup-A. For all to be started software projects the fixed price
is calculated with this tool. Once the size of a project is counted and reviewed,
the tool calculates the price for a project to be performed by IndSup-A based
on the applicable domain baseline.

Stakeholders from BelTel opted strongly for a single pricing approach (on-
ly based on statistics), because ongoing discussions on project estimates were
expected due to a variety of expert opinions if two approaches were to be used
simultaneously, and because of that longer project durations. To reassure
stakeholders of IndSup-A with doubts on this single method for supplier pro-
posal pricing, a six month’s FSM-pricing pilot was started. This pilot is the
subject of the case study that is discussed in this chapter. Quantitative
analysis is performed over the scope of the six-month pilot and the following
six months operational use of FSM-pricing.

5.3.6. Model Validation Procedure

In order to validate the FSM-pricing method we use a mixed methods meth-
odology, as we are examining a phenomenon with multiple (qualitative and
quantitative) tools. We perform a single-case, holistic case study that involves
two instruments; a survey consisting of open and closed questions, and a
quantitative analysis of actual project data. The survey is performed six
months after the start of the case study, the quantitative analysis is performed
at the end of the case study period of one year.

Evidence-Based Pricing of Project Proposals 105

To answer RQ5.1 (To what extent are both parties involved in the case
study satisfied with FSM-pricing?) and RQ5.2 (To what extent does FSM-
pricing help to improve transparency of project proposals?) we create a
combined 10-minute questionnaire survey. The survey topics and the survey
approach are determined in a number of preparation sessions between man-
agement representatives and the measurement experts of both BelTel and
IndSup-A. Our aim is to come up with a manageable set of topics that would
represent the pilot effectively. The survey consists of a number of closed ques-
tions; respondents are asked to rate these survey topics on a 5-point Likert
scale. Next to the 5-point scale for each of the survey topics a choice of “Don’t
Know” as an answer is an option. Besides that the survey contains three open
questions.

The survey starts with the collection of demographic information, and the
answering of two partially closed questions: “What company are you working
for?” and “What is your connection with FSM-pricing?” Both questions are
intended to find out any differences in satisfaction with FSM-pricing within
both the involved parties BelTel and IndSup-A, and between respondents
with different roles. A comprehensive overview of setup and respondent
statements in the survey can be found in the technical report (Huijgens et al.,
2014b).

To assess the experienced satisfaction with FSM-pricing we asked re-
spondents to answer the question “How satisfied are you with the follow-
ing?” respondents are asked to rate 14 survey topics. To find out whether
respondents feel that FSM-pricing needs to be continued a question is asked
to be answered with yes or no: “Should FSM-pricing be continued as an oper-
ational practice once the pilot is finalized?” To understand possible reasons
behind the closed questions we ask the stakeholders to answer three open
questions (max 3 answers are allowed):
1. What is going well during the FSM-pricing pilot that we want to continue?
2. What is not going well during the FSM-pricing pilot that we want to fix?

In order to assess the experienced transparency with regard to project pro-

posals we perform a survey with eight closed questions. The first seven (Q01
to Q07) are intended to find out how respondents experience the quality of
artifacts and processes with regard to FSM-pricing. As a response to the
question “How would you rate the quality of the following?” respondents are

106 Chapter 5

asked to rate these seven survey topics. Next to these questions three
additional questions (E01 to E03) are asked: “To what extent did you
experience a change on…?” respectively the transparency of proposals during
the FSM-pricing pilot, the project cost per FP measured in euros per FP and
the project duration per FP measured in days per FP.

RQ5.3 (To what extent does FSM-pricing help to create cost and time
improvements?) is answered by performing quantitative analysis of project
data. We analyze the performance of 77 finalized software engineering
projects. For our study we use data of three categories of software engineering
projects, all performed within BelTel:
1. Repository: data of historic projects in the period preceding FSM-pricing,

not performed by IndSup-A (n = 22);
2. Baseline: data of finalized projects performed by IndSup-A used to

prepare the FSM-pricing baseline (n = 16);
3. Pilot: data of finalized projects performed during the pilot that are in

scope of FSM-pricing (n = 10);
4. Operational: data of projects finalized during the six months following

the pilot (in scope of FSM-pricing) (n = 29).

In order to benchmark the outcomes of the qualitative analysis with indus-

try peer groups we use a research repository of 331 comparable projects from
other companies that we collected in earlier research (Huijgens et al., 2014c).
All compared peer group projects from this benchmark repository conducted
software engineering in business environments. Peer group projects were
measured, collected, and recorded in the same way as conducted in this case
study.

5.4. Results

5.4.1. Case and Subject descriptions

In this section we report results based on the three research questions of our
study. We sent 41 survey requests by email to 17 employees of BelTel and 24
employees of IndSup-A. We selected these stakeholders because they are all
involved in the FSM-pricing pilot. Twenty seven (27) surveys are returned, of
which 2 are assessed to be incomplete (respondents only noted that they knew
too little of the subject). 25 surveys are completed (completion rate 61%); the

Evidence-Based Pricing of Project Proposals 107

analysis in this study is based on these completed surveys only. Table 5.1
summarizes the backgrounds of the respondents that completed the survey.

Besides the results of the survey ratings we collected a large amount of
open ended text from our survey. The first open question “What is going well
during the FSM-pricing pilot that we want to continue?” resulted in 46
answers. The second open question “What is not going well during the FSM-
pricing pilot that we want to fix?” resulted in 47 answers. 44 Answers were
given to the question “What can we do to improve FSM-pricing?” In total
2,007 words were produced.

 In this section we label respondents as P1 through P25 and we include
results from the open text analysis where applicable. To analyze the free text
answers, we adopt the coding technique described by (Runeson et al., 2012).

We apply high level codes and medium level codes and count the fre-
quency of each code. A summary of the results of this analysis is shown in the
following Subsection.

5.5. Results of the Qualitative Analysis

As is common in case studies, answers on surveys contain a substantial
element of narrative. As these are representatives of the complexities and
contradictions of real life, we include a selection of statements made by the
survey respondents in the section on open ended text analysis in our study.
We try to include examples of respondent statements that apply to differences
as well as similarities.

Table 5.1: Backgrounds From Survey Respondents

Respondent background BelTel
n=11 (44%)

IndSup-A
n=14 (56%)

Overall IT-management 28% 29%

FPA Measurement Team 18% 14%

Portfolio Management 27% 0%

Data Warehouse Team 9% 14%

CRM/Billing Team 9% 36%

Other 9% 7%

108 Chapter 5

Table 5.2: Survey Results (left part of the table).

Nr Survey Topic (How satisfied are you with the following?) Mean Overall

S09 Function Point Analysis method (IFPUG, estimated count) 3.96

S02 FSM-pricing pilot period itself 3.87

S01 Preparation of the FSM-pricing pilot 3.75

S15 Overall FSM-pricing 3.72

S13 Advantages of FSM-pricing for BelTel 3.68

S07 Pricing table for DWH 3.50

S12 Proposal Process (with regard to FSM-pricing) 3.42

S04 Management Commitment on FSM-pricing 3.42

S14 Advantages of FSM-pricing for IndSup A 3.40

S03 Communication with regard to FSM-pricing 3.39

S06 Setup of the IndSup A Baseline 3.30

S08 Pricing table for CRM / Billing 3.28

S05 Reliability of the FSM-pricing 3.28

S11 Coverage of FSM-pricing 3.26

S10 Waiver procedure for Function Point Analysis (exclusions) 3.25

Nr Survey Topic (To what extent did you experience change on…?)

E01 Transparency of Proposals 3.88

E02 Project Cost per FP (Euros per FP) 3.33

E03 Project Duration per FP (Days per FP) 3.00

Nr Survey Topic (How would you rate the quality of the following?)

Q02 Function Point Analysis performed by IndSup A 3.83

Q03 Function Point Analysis Review by Company C 3.78

Q07 The Overall FSM-pricing method 3.64

Q06 The IndSup A Proposals based on FSM-pricing 3.52

Q05 The CRM / Billing Baseline used for FSM-pricing 3.47

Q01 Requirements delivered by Company C 3.44

Q04 The DWH Baseline used for FSM-pricing 3.43

Sorted by Mean Overall; higher is better.

Evidence-Based Pricing of Project Proposals 109

Survey Results (right part of the table)

Standard
Deviation

Mean
Company C

Mean
IndSup A

Effect Size Company
C / IndSup A

Effect Size Management
/ Development

0.81 4.00 3.92 0.08 0.11

0.55 3.91 3.83 0.08 -0.20

0.90 3.82 3.69 0.13 0.00

0.74 3.64 3.64 0.00 0.08

0.65 3.80 3.58 0.22 -0.30

0.73 3.86 3.22 0.63 0.15

0.88 3.70 3.21 0.49 0.06

0.83 3.64 3.23 0.41 0.25

0.68 3.29 3.46 -0.18 0.18

0.66 3.36 3.42 -0.05 0.22

0.93 3.55 3.08 0.46 0.13

0.83 3.57 3.09 0.48 0.22

0.94 3.55 3.07 0.47 0.09

0.92 2.70 3.69 -0.99 -0.45

1.03 3.00 3.46 -0.46 0.38

0.65 3.82 3.93 -0.11 0.36

0.70 3.40 3.29 0.11 0.17

0.76 2.78 3.15 -0.37 0.42

0.70 3.70 3.93 -0.23 -0.06

0.60 3.73 3.83 -0.11 -0.11

0.57 3.55 3.71 -0.17 -0.22

0.65 3.55 3.50 0.05 0.12

0.80 3.57 3.40 0.17 -0.05

0.65 3.45 3.43 0.03 -0.01

0.76 3.71 3.14 0.57 0.55

110 Chapter 5

 Table 5.2 summarizes the survey results. The two last columns show Effect
Size calculated as two measures: 1) for each survey topic the difference be-
tween the mean BelTel score and the mean IndSup-A score, and 2) for each
survey topic the difference between the mean Management score (all scores
of respondents with the profile Overall IT-management, FPA Measurement
Team, Portfolio Management, and Other) and Development (all scores of
respondents with the profile Data Warehouse Team, and CRM/Billing Team).
A negative Effect Size indicates BelTel / Management respondents are less
satisfied with a survey topic than IndSup-A / Development respondents. A
positive Effect Size indicates BelTel / Management respondents are more sat-
isfied with a survey topic than IndSup-A / Development respondents.

We found the following with regard to satisfaction with FSM-pricing based
on analysis of the survey results (Table 5.3 inventories an overview of the re-
sults from the qualitative analysis).

5.5.1. 88% want FSM-pricing as operational practice

On the question “Should FSM-pricing be continued as an operational practice
once the pilot is finalized?” 80% answered “Yes”; 8% answered “Ok, but with
improvement points (e.g. include effort of non-functional requirements”).

5.5.2. FPA is appreciated by both parties

Both BelTel and IndSup-A respondents appreciate the applied FPA method
(IFPUG, estimated counts); based upon the highest overall mean score of the
survey (3.96). Besides that both parties appreciate the quality of the function
point analyses that are performed by IndSup-A (3.78), and the reviews done
by BelTel (3.80).

 Qualitative analysis confirmed this finding. Many respondents consid-
ered the quality of the FPA high:

‘Good Function Point review by BelTel and IndSup-A FPA-teams before
proposal submission. (P10). Appreciate the way Function Point counting is
done by IndSup-A.’ (P23)

Many remarks made by respondents were related to requirements; which
makes sense since requirements usually are the basis for project proposals. A
noteworthy side-effect of FSM-pricing is that respondents experienced an
improvement of the requirement management process during the pilot.

Evidence-Based Pricing of Project Proposals 111

Most of the details are sorted out at the time of proposals. Earlier these
details were discussed in design phase. (P17)

‘The solution is looked into more detail in order to get the right Function
Points at the proposal stage itself. This helps in early detection of issues and
resolution.’ (P2)

This positive effect on requirements management might even be one of the
main reasons for FSM-pricing success.

5.5.3. BelTel management: coverage needs improvement

Coverage is about the number of projects in BelTel‘s IT-portfolio that is
subject of FSM-pricing. Based on a relatively low mean value for BelTel
(2.70), combined with an Effect Size of -0.99 between BelTel and IndSup-A,

Table 5.3: Summary of the Open Ended Text Analysis

Category Name / Medium Level Code

Interactions, communications, people

Improved proposal transparency

Improve knowledge of Function Point Analysis and FSM-pricing

Discussion on size when lower price is expected or on waivers

Organization, processes

Uniform, standard and simplified process

Too small projects; no focus on release-based working

Delay due to search for clarity and review

Improve pricing tables (e.g. benchmarking, more realistic figs.)

Promote release-based working based on size

Promote pricing tables based on applications (technology)

Measurements

Perform gap-analysis on FSM-price versus actual effort spent

Requirements

FSM-pricing does not cover non-functional requirements

Low reliability of FSM-pricing when compared to actual effort

Improved Requirement Management

Artifacts

Good quality of Function Point Analysis process and products

112 Chapter 5

we conclude that respondents from BelTel are more than average dissatisfied
about the coverage of FSM-pricing. An Effect Size of -0.45 between Manage-
ment and Development indicates that coverage is a management rather than
a developer concern.

We conjecture a connection with low rating of the waiver procedure by
BelTel respondents; this procedure allows IndSup-A to exclude a project from
FSM-pricing. A standard waiver is applied for infrastructure projects, config-
uration projects, and projects executed by other external suppliers. Also qual-
itative analysis revealed indications that ongoing discussions tend to be re-
lated with waiver requests:

Many ongoing discussions on waiver requests occur. (P20)

5.5.4. IndSup-A development: reliability needs improvement

In the context of FSM-pricing by reliability we mean whether respondents
experience the outcome of FSM-pricing to be in line with their own judgment.
IndSup-A developers seem dissatisfied with FSM-pricing where it comes to
reliability. Proposal process (Effect Size 0.49), both pricing tables (0.48 and
0.63), reliability of FSM-pricing (0.47), and setup of baselines (0.46) are all
rated low. We believe these are connected, but we did not find evidence for
this in our data.

Looking at this aspect further in the qualitative analysis shows a feeling of
disagreement between the outcome of FSM-pricing and effort-based esti-
mates. Many respondents, especially from IndSup-A, mention that FSM-pric-
ing does not cover Non-Functional Requirements and complexity (technol-
ogy).

‘FPA is not applicable to projects where more testing efforts are required
for less development changes.’ (P5)

‘All the projects do have different non-functional requirements or
technology; due to this the efforts differs.’ (P2)

‘The complexity of the changed code does not match with the amount of
functionality to be changed, causing a disparity.’ (P16)

We identified one specific measurement-related issue: the wish to perform
a gap-analysis to find any differences between FSM-pricing proposals and
actual effort spent in a project:

Evidence-Based Pricing of Project Proposals 113

‘To keep the counting simple we are considering all the requirements are
at average level; we may need to perform gap analysis if the requirements
mix is really averaging out on efforts.’ (P17)

‘Cross verification with actuals towards the end of project to revalidate
the estimates would be an improvement.’ (P7)

We identified a need for gap-analysis in order to identify differences
between (estimated) project cost and actual effort. We consider conducting
this gap-analysis as future research. With regard to the experienced transpar-
ency of project proposals we observed one major finding:

5.5.5. 84% experienced improved proposal transparency

Many respondents experienced an improvement of the transparency of pro-
ject proposals during the FSM-pricing pilot (72% said transparency im-
proved; 12% said greatly improved). Qualitative analysis confirmed this find-
ing. Respondents mention improved transparency as a positive outcome of
the FSM-pricing pilot:

‘A good point is that there is less discussion.’ (P8)
Some respondents see improved transparency as a driver for better re-

quirements or to solve disagreements between customer and supplier:
‘Instead of plain list of entities that we were maintaining in work-break-

down-structure entities, we now have clarity on what kind of functionality
is getting delivered.’ (P17)

‘Function points analysis sometimes is a constructive argument in case
of disagreement.’ (P20)

We observed the fact that FSM-pricing is experienced as a uniform,
simplified process is on top of respondents’ list:

‘FSM-pricing is a single point for the final estimation, answerable to all
stakeholders. The estimation review process becomes very simple. A
standardized process, which can be trusted from both vendor and client
stakeholders.’ (P24)

‘Uniformity in pricing approach as it does not depend on individual
components to derive their efforts.’ (P2)

‘Avoid delays and budget overruns as estimation can be done at an initial
stage against task-based.’ (P13)

114 Chapter 5

5.6. Results of the Quantitative Analysis

Data from three categories of 77 software engineering projects are used for
quantitative analysis of project data (resp. repository, baseline, and pilot). In
Table 5.4 we summarize the performance indicators for these three project
categories. The analysis resulted in the following findings:

5.6.1. Project Duration per FP not in sync with peer groups

Analysis of the performance of the software engineering projects of BelTel
shows that, although the project cost are in line with the prevailing market,
the organization suffers from project durations that are substantially longer
than those of peer groups in industry. An external benchmark against historic
data of 331 finalized software engineering projects (Huijgens et al. 2014c)
from different companies shows that a majority of the finalized projects of
BelTel are cost effective (average project cost per FP is 46% better than the
peer groups, see Figure 5.1), yet project durations are longer than the average
of the total research group: average project duration per FP is more than
twice that of the peer groups, see Table 5.5. This finding is applicable to all
four categories of software projects performed within BelTel in our research
repository, yet project duration per FP is worsening during the pilot.

We plot both all BelTel and peer group projects in a cost duration matrix
(see Figure 5.1) (Huijgens et al. 2014c) (see Subsection 2.3.2 for a description
of the cost duration matrix). This matrix shows for each project the measure
of deviation from the average trend line (average of peer group projects plus

Table 5.4: Performance over three Project Categories.

Performance Indicator Repository Baseline Pilot

Number of projects (n) 22 16 10

Average project Size (FP) 157 183 25

Project Cost per FP (EUR/FP) 2,651 1,485 2,560

Project Duration per FP (Days/FP) 2.35 1.58 7.17

Average project Duration (Months) 12,11 7,53 7,38

Performance Indicator Rp Bl Pi

Evidence-Based Pricing of Project Proposals 115

BelTel projects) expressed in a percentage; negative when below the average
trend line, positive when above the trend line.

The matrix is divided in four quadrants. Each quadrant is characterized by
the measure of negative or positive deviation from the average trend. When
analyzed it shows that 80% of the projects is assessed to have a longer than
average duration. 25% of the projects are in the bad practice quadrant; these
projects perform in both cost and duration worse than average. 55% ends up
in the quadrant cost over time; costs are less than average, yet project
duration takes longer than average. Due to these deviating percentages we
argue that Company A’s project duration per FP, measured in days per FP,
is not in sync with its peer groups; BelTel should improve its project duration
per FP in order to stay competitive in the market.

Our analysis is that the bad project duration per FP is caused by two prob-
lems. First, the combined release approach of BelTel causes waiting time
(waste) and unnecessary dependencies between projects. Second, average
project duration conform industry, yet combined with small average project
size cause a bad duration per FP as illustrated in the following.

5.6.2. Small projects block improvement

A finding with regard to project size is that from 2013-Q3 onwards substan-
tially more very small projects (e.g. with a project size less than 30 FPs) are
performed. We did not find any reason that could explain this reduction of

Table 5.5: Performance compared to Peer Groups

Performance Indicator Company C Peer Group Delta

Number of Projects (n) 26 331 n.a.

Average Project Size (FP) 126 261 -52%

Project Cost per FP (EUR/FP) 1,604 2,983 -46%

Average Project Cost (K Euro) 203K 780K -74%

Project Duration per FP (Days/FP) 2.20 1.04 112%

Average Project Duration (Months) 9,14 8.92 2%

Performance of Company in comparison with peer group projects from our research repository. Only
finalized projects that were performed by INDSUP A are incorporated.

116 Chapter 5

project size. Although smaller projects are from a cost point of view advanta-
geous for IndSup-A, portfolio managers of BelTel are responsible for the con-
struction of a specific release portfolio (a number of projects combined in one
release; to be delivered at one specific moment). The idea that small projects
from an economy-of-scale perspective should be combined is mentioned by
some respondents in the open ended text as well:

‘IndSup-A divides the offer in small pieces; we must have release based
funding to make use of economy-of-scale.’ (P8)

‘Too many small projects are negative for BelTel due to economy-of-scale
effects.’ (P3)

We observed that in 2014 the throughput (total delivered number FPs) is
approximately 29% lower than in the preceding years (see Table 5.6). One can
argue that the maybe rather rigid approach of FSM-pricing is not sufficiently

Figure 5.1: A cost duration matrix showing results of the quantitative analysis.

-100%

0%

100%

200%

300%

400%

500%
-100%0%100%200%300%

Peer Groups Repository Baseline Pilot Operational

%
 C

os
t D

ev
ia

tio
n

fro
m

 M
ea

n

Cost over Time

Bad Practice

Good
Practice

Time over Cost

% Duration Deviation from Mean

Evidence-Based Pricing of Project Proposals 117

encouraging for IndSup-A due to a somewhat single-sided focus on cost re-
duction. However, BelTel promotes the idea that delivery of more throughput
where applicable is desired. Looked upon from this side FSM-pricing under-
lines the delivery of more value for less money; and at the same time it re-
wards throughput enlarging by creating more turnover for the supplier.

5.6.3. Cost improves; yet, Duration does not

Looking at cost and duration over time (see Table 5.6) we find that cost per
FP (the cost per FP measured over the whole project lifecycle from initiation
to technical Go Live) improves by 21% in 2014 onwards compared to the years
before. However, duration per FP is not. Next to our finding that duration
per FP is substantially higher than that of the peer groups, no sustained
improvements with regard to project durations are seen when assessed over
time. Duration per FP shows a worsening trend. As discussed before the small
size of many projects and the amount of waste in projects plays an important
role here.

5.7. Discussion

Analysis with regard to RQ5.1 (To what extent are both parties involved in
the case study satisfied with FSM-pricing?) resulted in four findings. First,
88% of the respondents of our survey want FSM-pricing as an operational
practice once the FSM-pilot is finalized.

Table 5.6: Performance over time.

Performance Indicator 2012-2013 2014 Delta

Number of projects (n) 38 39 n.a.

Average project Size (FP) 168 68 -59%

Throughput (FP) 6,366 2,660 -29%1

Project Cost per FP (EUR/FP) 2,116 1,679 -21%

Project Duration per FP (Days/FP) 2.00 3.52 76%

Average project Duration (Months) 11,69 7,90 -25%

1 Throughput percentage is calculated based on extrapolation per year.

118 Chapter 5

Second, the applied method for FPA, including the counting itself as per-
formed by and IndSup-A and the review by BelTel, is appreciated highly by
both respondents of both parties.

Third, coverage of FSM-pricing with regard to BelTel’s IT-portfolio is ex-
perienced as to be improved, mainly by managers from BelTel. Additional
analysis of the measure of coverage of FSM-pricing with regard to the IT-
portfolio shows that at finalization of the FSM-pricing pilot 27% of all IT-
portfolio costs were calculated based on FSM-pricing. At the end of the opera-
tional period (end 2014) the coverage was improved to 52%. The remaining
45% is among others related to infrastructure (19%), support (17%), third
party projects (5%) and small innovations (3%).

Fourth, developers from IndSup-A are dissatisfied with the reliability of
FSM-pricing. The major reason for this seems to be that they experience little
possibilities to incorporate non-functional requirements and complexity in
project proposals. From a statistical point of view all projects are treated as
average, where non-functional requirements and related complexity are in-
corporated in both trend lines.

To finalize our discussion on RQ5.1; an additional positive signal with re-
gard to this is that after evaluation of the FSM-pricing pilot both BelTel and
IndSup-A agreed upon continuation of the approach as an operational prac-
tice.

With regard to RQ5.2 (To what extent does FSM-pricing help to improve
transparency of project proposals?) a noteworthy finding was that a large
majority (84%) of the respondents of the survey experienced that transpar-
ency of project proposals is improved during the FSM-pricing pilot. We ob-
served that the majority of discussions moved from effort (and price) estimate
to waiver requests and getting requirements ready for FPA. Noteworthy is
that FPA seems to have a positive effect on requirements management.

Looking at RQ5.3 (To what extent does FSM-pricing help to create cost
and time improvements?) quantitative analysis of the performance of the
BelTel projects taught us that Cost per FP improved during the study, where
Duration per FP is not improving over time: this even shows a deterioration.
This deterioration however seems to be caused by the fact that average project
size gets smaller during the study while average project durations improve
notably over time: average project duration in 2014 was even better than that
of peer groups in industry.

Evidence-Based Pricing of Project Proposals 119

5.7.1. Evaluation of Validity

Construct validity

With regard to the degree to which a test measures what it claims to be meas-
uring a remark is in place on FPA. We used functional documentation as a
source for FPA; a consequence is that low quality documentation could have
led to low quality FPAs, however, we thoroughly reviewed all sets on com-
pleteness and correctness. Two (2) out of four (4) FPA specialists were certi-
fied; yet, all involved FPA specialists were highly trained and experienced FP-
counters.

With regard to quality of data we argue that all project data was reviewed
by the applicable BelTel project manager, all data on project cost was
reviewed by the financial controller of BelTel, all project data was presented
to and discussed with BelTel management.

Internal validity

We warranted the extent to which a causal conclusion is based on our study,
by normalizing all project data with the functional size in FPs. In this way we
were able to objectively compare performances of all projects in order to
minimize systematic error. Based on the number of software projects, the
diversity of projects and business domains within BelTel, and the fact that we
measured and analyzed software project portfolios as a whole in an empirical
way we argue that the effect of outliers is limited and that the risk on bias is
mitigated responsibly.

External validity

Whether the study results can be generalized to settings outside the study, we
argue that due to the limited scope of the performed case study (one sourcing
company and one main supplier) it is too early to generalize the above men-
tioned findings to other companies and suppliers of software projects.

5.7.2. Relation to Existing Evidence

From our analysis of related work, it is clear that pricing in itself is a topic
that has received little attention from the research community. Yet pricing is
a topic of great practical value, which strongly affects the outcome (success or
failure) of a software development project. The many budget overruns re-
ported for such projects, may very well be more attributable to inadequate
pricing than to poor project execution.

120 Chapter 5

5.7.3. Impact/Implications

Our research shows that an evidence-based approach, in which historical data
on key performance indicators are used in combination with a simple (power)
regression, can lead to prices that are satisfactory to both suppliers and com-
missioning parties. It emphasizes a holistic approach, in which pricing is con-
sidered for the full IT portfolio of an organization, in combination with a sup-
plier in an outsourcing relation. A major prerequisite for this approach is the
availability of historical project data. This implies that the approach is only
applicable to organizations willing and capable to aim for a long term solu-
tion.

The need for historical project data is likely also one of the causes why
pricing has received limited attention in the research community; few re-
searchers have access to such data. A way out of this dilemma may be opening
up performance data for government-funded projects, making them available
for researchers. Besides bringing new research insights, this might also help
governments to reach more adequate prices for their IT projects.

5.7.4. Limitations

The reader should consider several limitations when interpreting our results.
First, the survey has limited generalizability due to the limitation of respond-
ents to 25 stakeholders. Determination of survey topics was done by members
of both measurement teams, limited by the length of the survey (10-minutes).
Further, the results of the ratings within the survey have to be looked upon
with low significance in mind. We did not ask respondents to connect their
open ended text data with the answers given in the rating part of the survey.

Second, we conducted the study only within BelTel and IndSup-A, so the
results may not generalize elsewhere. Since we did not find any other study
on a comparable single, statistical pricing approach, we cannot predict what
the outcome of our method will be in other companies.

Third, our study focused on transparency of proposals and cost and dura-
tion improvement. The respondents might have been influenced by this focus
and emphasize these aspects in their answers.

5.8. Conclusions and Future Work

The key contributions of this chapter are:

Evidence-Based Pricing of Project Proposals 121

RQ5.1: We demonstrate that FSM-pricing is successfully used in practice
of BelTel and IndSup-A, as a statistical, evidence-based pricing approach for
software project proposals.

RQ5.2: We show that using FSM-pricing as a single instrument, without
intervention of expert judgment-based opinions, leads in BelTel and IndSup-
A to an improved transparency of project proposals and satisfied stakeholders
from both the customer and the supplier.

RQ5.3: We demonstrate that FSM-pricing does lead to cost improvement
within BelTel and IndSup-A. Cost per FP shows to be in line with external
peer groups. Duration per FP on the contrary is too high when benchmarked
externally and shows a deteriorating trend, probably caused by the fact that
average project size gets smaller over time.

5.8.1. Future Work

The research presented opens up a number of avenues for further research.
From a benchmarking perspective, our current approach distinguishes be-
tween data-warehousing and CRM/Billing projects. Further research is need-
ed to come up with general guidelines on how to group projects into suffi-
ciently cohesive units to permit adequate pricing. Another concern that arose
from our case study is dealing with non-functional requirements such as secu-
rity or infrastructure.

Delivery of smaller software projects in equal project durations seems to
result in a lower Duration per FP; however, its needs to be researched whether
the amount of value delivered by a project influences such performance per-
ception. With regard to including non-functional requirements it might be
interesting to perform future research on possibilities to use IFPUG SNAP
(Software Non-functional Assessment Process) besides FPA. Approaches like
COCOMO 2 introduce factors to compensate for such project characteristics,
but whether this works well in combination with the purely statistical
approach investigated in the present chapter calls for additional research.

5.9. Acknowledgments

We thank both BelTel and IndSup-A for their generosity to agree on using
project and survey data for our study. Furthermore we thank Philippe
Kruchten, Frank Vogelezang, Kim Herzig for their valuable feedback.

122 Chapter 5

Effort versus Cost in Software Repositories 123

6. Effort versus Cost in Software Repositories

ontext: The research literature on software development projects usu-
ally assumes that effort is a good proxy for cost. Practice, however,
suggests that there are circumstances in which costs and effort should

be distinguished. Objectives: We determine similarities and differences be-
tween size, effort, cost, duration, and number of defects of software projects.
Method: We compare two established repositories (ISBSG and EBSPM) com-
prising almost 700 projects from industry. Results: We demonstrate a (log)-
linear relation between cost on the one hand, and size, duration and number
of defects on the other. This justifies conducting linear regression for cost. We
establish that ISBSG is substantially different from EBSPM, in terms of cost
(cheaper) and duration (faster), and the relation between cost and effort. We
show that while in ISBSG effort is the most important cost factor, this is not
the case in other repositories, such as EBSPM in which size is the dominant
factor. Conclusion: Practitioners and researchers alike should be cautious
when drawing conclusions from a single repository.

6.1. Introduction

A good understanding of the cost of software development, that is the real
cost that companies pay for their software development activities, is im-
portant for business to make better decisions (Šmite, Calefato, & Wohlin,

C

This chapter was published as Effort versus Cost in Software Development:
A Comparison of Two Industrial Data Sets in the ACM Proceedings of the
21th International Conference on Evaluation and Assessment in Software
Engineering (EASE 2017) (Huijgens, van Deursen, Minku, & Lokan, 2017c).

124 Chapter 6

2015) (Petersen, 2011). Two issues arise with regard to cost of software pro-
jects.

First, cost and effort are often looked upon as equivalent. At the best effort
is assumed to be a good proxy for cost, where the emphasis seems to be more
on effort, and less on cost. Frequently studies are found that claim to be about
cost estimation, yet the study itself analyzes effort as the main subject, e.g.
(Radliński, 2011) (Jeffery et al., 2000) (Pendharkar et al., 2009) (Czarnacka
et al., 2009). To judge the evidence of cost-savings in global software
engineering, (Šmite et al., 2015) reviewed more than five hundred articles on
global software engineering, and found that only fourteen articles presented
evidence of cost-savings (Šmite et al., 2015).

Second, many benchmarks are available for software projects. Jones
(2011) mentions no-less than twenty-five sources of software benchmarks.
(Menzies & Zimmermann, 2013) inventoried thirteen repositories of software
engineering data. Yet, cost data are missing in most of them. One might
expect that the idea of cost as an important factor for evidence-based steering
on software engineering activities, combined with the availability of many
sources for benchmarking, would lead to substantial knowledge about effi-
ciency in terms of cost.

Yet, in practice this is not the case. To illustrate this, a recent study of
(Bala & Abran, 2016) on how to deal with missing data in the repository that
is maintained by the International Software Benchmark Standards Group
(ISBSG, 2014), does not mention cost once, while a large part of the study is
about effort related issues.

A systematic review of software development cost estimation studies by
(Jørgensen & Shepperd, 2007) states that the “main cost driver in software
development projects is typically the effort and we, in line with the majority
of other researchers in this field, use the terms cost and effort interchangeably
in this paper.” Existing literature assumes that cost and effort are the ‘same
thing’. However, from interactions with industry, we believe the relation be-
tween both metrics is not that simple. The collection of these metrics needs
to be done in different ways, each with their own difficulties. Furthermore,
both metrics may be affected by different variables, such as country, inflation,
and commercial aspects. While cost data might be reliable from an accounting
viewpoint, they might include different actual data across projects phases. In

Effort versus Cost in Software Repositories 125

order to emphasize the importance of cost, especially top-level decision mak-
ers highly value cost transparency, as we found in a study on pricing of
software projects (Huijgens et al., 2015c). To explore the differences and
commonalities between cost and effort, we use two large software
repositories; the EBSPM repository (Huijgens, 2017a) and the ISBSG
repository (ISBSG, 2014), with the objective of gaining insights into the
usefulness of historic effort and cost data for benchmarking and cost estima-
tion purposes. This is one of the first studies in which EBSPM is used in
comparison with other benchmark datasets. We perform our analysis as an
exploratory study based on two data sets.

Therefore, our datasets and results may not generalize. Our objectives are
to (1) determine the similarities and differences between cost and effort, (2)
determine whether these make cost modelling a substantially different
problem from effort modelling, and (3) discuss potential reasons for the dif-
ferences. We address the following research question:

RQ: How do the EBSPM-repository and the ISBSG-repository compare with
regard to the size, effort, cost, duration, and number of defects of software
projects?

When building the EBSPM-repository we experienced that effort and cost
are not the same, mainly due to complex interactions with industry. A soft-
ware company’s project portfolio is usually built from differently organized
cost structures. Simple structures like effort times hourly tariff are mixed with
many other factors such as upfront agreed fixed price activities, delivery
strategies such as agile (Scrum) where teams are budgeted for a period of one
year or longer, sourcing strategies with globally distributed teams, and many
more. Due to this the theory that cost can simply be calculated out of effort
based on hourly rates is spurious, and does not hold for many software pro-
jects in industry.

We experienced in practice, that many decision makers in industry use
cost as a major indicator for their decisions, and not effort as such. The inter-
actions mentioned above make us believe that effort is not a simple proxy for
cost, and that both metrics should be looked upon in research as an autono-
mous subject.

This chapter is structured as follows. In Section 6.2 we describe our re-
search approach. Section 6.3 is about the results of our research. In Section

126 Chapter 6

6.4 we discuss the outcomes and implications and threats to validity. In
Section 6.5 we link these with related work. Finally, in Section 6.6 we describe
conclusions.

6.2. Research Approach

For this exploratory study we apply a qualitative and a quantitative approach.
We discuss differences between cost and effort, based on our previous inter-
actions with industry, and we analyze correlations between cost and effort
based on a subset of the ISBSG-repository. We create cost models based on
two data sets; a subset of the ISBSG-repository and the EBSPM-repository,
and we investigate whether typical results, such as influence of size and differ-
ences between data sets, obtained by the literature on software effort
estimation also hold for cost.

We test whether both repositories are different from each other and in
what degree they are fit for use to build a prediction model for effort and for
cost. In particular we examine what independent variables are relevant for
predicting cost. In both cases we look for the best fit; meaning that for each
dataset different prediction models can apply. Furthermore, we evaluate the
performance of both repositories from the perspective of a full software port-
folio, by analyzing specific samples of software project data against the con-
tent of the EBSPM-repository (Huijgens, 2017a). Finally, we look for causes
that might explain our findings, by studying existing literature on the subject
of effort and cost of software projects.

6.2.1. The EBSPM-repository

The EBSPM-repository is a collection of data from approximately five hun-
dred finalized software projects. Data is collected by specialized measurement
teams within three different companies (banking and telecom) in The Nether-
lands and Belgium. Data is available for projects of different business do-
mains. The functional size of all projects is measured in function points by
specialized function point analysts. We focus on size, effort, cost, duration,
and defects, which are all present in this data set, although effort is only
collected for a limited number of 22 out of 488 projects. All software projects
have been performed and measured in the period of nine years from 2008 to
2016. An important feature of the EBSPM-repository is that it contains data

Effort versus Cost in Software Repositories 127

of a company’s software portfolio as a whole, representing a variety of pro-
jects, business domains, delivery approaches, and sourcing strategies.

Where other repositories – like ISBSG – focus on projects as such, EBSPM
focus on portfolios instead. This enables us to analyze good practice versus
bad practice projects from a portfolio point of view (Huijgens et al., 2014c).
In order to reduce effects of inflation we calculate all Euro values in the
EBSPM-repository that we used for our study to the 2015 value, based on the
calculation tables of the International Institute of Social History2. Table 6.1
shows descriptive statistics of the EBSPM-repository. The repository and the
accompanying tool are described in more detail in a separate tool description
(Huijgens, 2016a).

6.2.2. The ISBSG-repository

ISBSG is a repository collected by the International Software Benchmark
Standards Group (ISBSG) (ISBSG, 2014), that is licensed to software compa-
nies that wish to use their tools for estimation and benchmarking purposes
(for researchers ISBSG data is available free of charge). For the purpose of
this study we use ISBSG version D&E Corporate Release 17 April 2013
(ISBSG, 2014). The full ISBSG-repository consists of 6010 projects; we select
those projects for which there is data on cost, size, and duration:

2 http://www.iisg.nl/hpw/calculate.php

Table 6.1. Descriptive Statistics of the EBSPM Project Data.

n = 488 Size (FPs) Cost (Euros) Effort
(Hours)

Duration
(Months)

Nr. of Defects

Minimum 4.00 329 31 0.90 0.00

First Quartile 38.25 71684 99 5.39 6.75

Median 115.50 293166 807 8.41 20.50

Mean 216.07 637935 3202 8.96 70.09

Third Quartile 248.75 740559 2391 11.09 55.25

Maximum 4600.00 7523527 22096 26.84 1586.00

Skewness 6.26 3.68 466 NAs 0.96 222 NAs

NAs indicate fields with no data available for effort and number of defects; due to this skewness
could not be calculated. We emphasize that due to 466 NAs with regard to Effort only 22
projects are included in the calculations on Effort.

128 Chapter 6

1. We exclude all projects with no size recorded (Functional Size is empty).
2. We solely include projects that are counted in function points (values

“IFPUG 4+”, or “NESMA” in Count Approach).
3. We exclude all other projects. We exclude projects with no cost recorded

(Total Project Cost is empty).
4. We exclude projects with no project duration recorded (project elapsed

time is empty).
5. Finally, we exclude all projects that were executed before the year 2000

(year of project), in order to limit the subset of projects to periods close
to those in the EBSPM research repository.

After filtering, a subset of 172 projects is available for further comparison

of effort and cost in the EBSPM-repository. In order to normalize all project
cost in the subset, we convert the data in Project Cost to Euros based on
historical exchange rates as denoted by trading company Oanda3. To do so we
select the 1st of January of the applicable Year of Project in ISBSG as begin-
date and the 31st of December of the Year of Project from ISBSG as end-date.
Alike the EBSPM-repository we finally calculate all Euro values to the 2015
value, in order to reduce any effects of inflation.

Table 6.2 gives an overview of descriptive statistics of the ISBSG-subset
that we used in this study. An comprehensive overview of the ISBSG dataset

3 http://www.oanda.com/currency/average.

Table 6.2. Descriptive statistics of the ISBSG project data.

n = 172 Size (FPs) Cost (Euros) Effort
(Hours)

Duration
(Months)

Nr. of
Defects

Minimum 11.00 1627 183 1.00 0.00

First Quartile 40.50 23873 497 4.00 7,00

Median 125.00 68974 1445 10.00 13.00

Mean 307.40 180813 3890 11.31 98.85

Third Quartile 296.00 215861 3760 17.60 25.00

Maximum 10571.00 1915823 70035 54.00 2395.00

Skewness 9.90 2.96 5.80 1.02 (79 NAs)

Effort versus Cost in Software Repositories 129

that we used, including the calculated cost data, is to be found in a technical
report (Huijgens et al., 2016c).

6.2.3. Analysis Procedure

We perform a series of statistical tests to examine whether both repositories
are significantly different. We perform Wilcoxon rank sum tests to compare
differences between size, cost, effort, duration, and number of defects, and
differences per size. To check for normality, we perform Shapiro tests and
analyze histograms. To examine the prediction power of both datasets we use
linear regression, stepwise linear regression, and CART trees, the latter as
suggested in Nisbet et al. (2009). For linear regression, we also eliminate
influential observations based on Cook's distance. Besides that, we compare
both repositories by mapping the project data of the ISBSG subset on the cost
duration matrix in the EBSPM-tool (Huijgens, 2016a), analyzing the follow-
ing performance indicators:
1. Cost per function point (FP): the weighted average cost (in Euros) per FP,

where size (FP) is the weighting factor, instead of number of projects.
2. Duration per FP: the weighted average duration (in calendar days) that it

took to deliver a FP.
3. Number of defects per FP: the weighted average defects (from system

integration test to technical go live) per FP.

We compare the performance of projects in the EBSPM-repository as a

whole with ISBSG data. Within the scope of this study we do not look at com-
pany-specific causes; we look at 650 projects, and assume that company
specific causes are not significant for common trends, as indicated in previous
research (Huijgens et al., 2014c). Company-specific factors do not necessarily
give us homogeneous information about aspects like country or sourcing
strategy, because companies may be spread through different countries, their
projects may be heterogeneous in terms of sourcing strategy.

6.3. Results

In order to examine the fitness of both repositories to build a prediction
model for effort and cost, we performed a series of statistical tests. A detailed
overview of the results of these tests is included in a technical report

130 Chapter 6

(Huijgens et al., 2016c). In this section we provide a summary of the most
relevant outcomes.

In accordance with what is known from related work (Radliński, 2011)
(ISBSG, Jones, & Reifer Consultants) (Huijgens & Vogelezang, 2016), we
found that size, cost, and to a lesser extent duration, in both datasets were not
normally distributed, indicated by a relatively high score for skewness (see
Table 6.1 and Table 6.2). Boxplots of both repositories (see Figure 6.1)
confirm this observation. We also checked for normality by performing
Normality Shapiro tests. These result in violations for all numerical variables
(all p-values were smaller than 2.4e-10; see the technical report (Huijgens et
al., 2016c). To examine differences between both datasets we performed Wil-
coxon ranked sum tests with Holm-Bonferroni corrections to compare overall
differences, and differences per size (see Table 6.3). P-values indicate that
overall cost and cost per size are significantly different, whereas the other
metrics are not significantly different.

Figure 6.1 Boxplots showing the differences between the projects in the EBSPM-
repository and the ISBSG-subset.

Effort versus Cost in Software Repositories 131

6.3.1. Linear Regression

In order to further examine differences between both datasets, we use residu-
als versus fits and QQ plots to examine the points with values that are sub-
stantially larger than the rest. We perform several tests in order to examine
which model fits best based on both datasets. As the data are not normal, we
apply a log transformation, as recommended in the literature (Foss, Stensrud,
Kitchenham, & Myrtveit, 2003).

A subset of the plots is shown in Figure 6.2; indicating the differences
between the EBSPM-repository and the ISBSG-subset. The upper left plot
(EBSPM) and the upper right plot (ISBSG) give an idea of whether the
relationship between dependent and independent variables is linear. When
the red lines are horizontal, the relationship is likely to be linear. The plots
indicate that for both EBSPM and ISBSG the relationship deviate a bit from
linearity, but these are small. Some violations to homoscedasticity (homoge-
neity of variance) are indicated, especially for ISBSG, as indicated by the plot
at the bottom right.

Both QQ-plots at the bottom left (EBSPM) and bottom right (ISBSG) indi-
cate fairly normal residuals for EBSPM. However, for ISBSG, the distribution
seems less normal; indicating that linear regression is less adequate for
ISBSG than for EBSPM. Application of backward stepwise linear regression

Table 6.3. Results from the Wilcoxon rank sum tests comparing EBSPM and ISBSG.

 Median
EBSPM

Median
ISBSG

W p-value

Size 115.50 125.00 39063 0.1539

Cost 293166 68974 60446 0.0000*

Effort 807 1445 1369 0.0351

Duration 8.41 10.00 36768 0.0128

Number of Defects 20.50 13.00 13441 0.2592

Cost / Size 2684 602 72157 0.0000*

Effort / Size NA 13.13 1668 0.3674

Duration / Size 2.09 1.62 46123 0.0650

Number of Defects / Size 0.18 0.31 11024 0.0974

The highlighted and with an asterix marked rows indicate statistically significant difference
when applying Holm-Bonferroni corrections based on 7 comparisons, at the overall level of
significance of 0.05; due to this correction Effort and Duration are not assessed significantly
different.

132 Chapter 6

results in a similar fit as linear regression. We determined highly influential
observations based on Cook's distance and the stepwise model (Bollen &
Jackman, 1990); removing these in the stepwise model had no effect (see
Table 6.4).

In Table 6.4 we show how much improvement in fit (multiple R-squared)
we gain by using log, even though log is not always making things normal. We
use linear (not stepwise) regression, so that we can know the estimate of the

Figure 6.2. Comparison between Residuals and Fitted Values of the EBSPM-reposi-
tory (top left) and the ISBSG-subset (top right), and QQ-plots of the EBSPM-
repository (bottom left) and the ISBSG-subset (bottom right). The plots are gener-
ated on log(Size), log(Duration), and Number of Defects. Highly influential obser-
vations are removed from both datasets before the plots where generated. In all
plots no log is applied for Number of Defects.

Effort versus Cost in Software Repositories 133

slope and result of the statistical tests of the hypothesis that the slope equals
zero, with respect to all independent variables.

Note that effort is not included in the models; in terms of linear regression,
excluding effort leads to a better R-squared (0.9029), than including effort
(0.7159).

Our results indicate that for EBSPM adding effort does not help with linear
regression. Fitting a linear model, with log transformation, where highly in-
fluential observations are removed before the model was generated, shows
that in the EBSPM-repository size, duration, and number of defects are sig-
nificantly related to cost (see Table 6.5). This confirms common knowledge
from related work that size is a strong predictor of cost. In addition, it shows
that for EBSPM duration and number of defects are strong predictors for cost
too.

A similar test on the ISBSG-subset, shows that size and effort are relevant
factors; however, duration and number of defects are not. A warning is in

Table 6.4. Improvements in fit (Multiple R-squared).

 EBSPM ISBSG

Linear regression, without log 0.7663 0.1416

Linear regression, with log 0.7012 0.6815

Linear regression, no influential observations 0.8123 0.9029

Linear regression, with additional factors1 0.8839 0.9226

1For EBSPM the factors Organization, Business Domain, Development Approach, and Year Go
Live were added. For ISBSG the factor Development Type was added. Effort was not included
in any of the models above.

Table 6.5. Results of fitting a linear model.

 EBSPM ISBSG

 Estimate Star-rate Estimate Star-rate

(Intercept) 8.11367 *** 5.53994 ***

Log(Size) 0.58485 *** 0.36232 **

Log(Duration) 0.35923 *** 0.04552

Log(Effort) NA NA 0.44362 **

Number of Defects 0.28517 *** 0.09518

Results of fitting a linear model, with log transformation in R. Highly influential observations are removed
before the model was generated.

134 Chapter 6

place here; these results might be influenced by the fact that for EBSPM not
enough effort data was available to fit a linear model (see the NAs in Table
6.5).

6.3.2. Regression Trees

Given the potential violations to the assumptions of linear regression (espe-
cially when using ISBSG), we created regression trees for both EBSPM and
ISBSG, to see if they agree with our conclusions on linear regression. When
examining the regression tree based on the EBSPM-repository (see Figure
6.3, left), we observe that size is the root node. This indicates that this is the
most important attribute for predicting cost. Duration appears for the first
time at the third level of the tree, indicating that duration is less important
than size, but still relevant for predicting cost. Number of defects does not
appear in the regression tree; it is considered as irrelevant for predicting cost.
Examining the regression tree of the ISBSG-subset (see Figure 6.3, right), we
find that cost and effort do have a strong relationship, as suggested in existing
literature. Duration and number of defects are absent, indicating that these
are not relevant for the purpose of estimating cost for ISBSG.

By aggregating the findings obtained by linear regression and regression
trees, we can make the following observations. For EBSPM, both size and du-
ration are very relevant, with size being more relevant than duration. This is
reflected both in the linear regression and regression tree. Number of defects
are less important and may or may not be relevant, given their smaller coeffi-
cient in linear regression and absence in the regression tree. For ISBSG, size

Figure 6.3. Regression Trees based on the EBSPM-repository (left) and the ISBSG-
subset (right). In the EBSPM dataset not enough effort data was available to
perform a regression tree with effort included.

Effort versus Cost in Software Repositories 135

and effort are relevant and duration and number of defects are not. This is
reflected in the linear regression and partly in the regression tree.

6.3.3. Mapping of the ISBSG-subset on the EBSPM-tool

To visualize performance in terms of size, cost, duration, and defects, we
mapped the subset of 172 ISBSG projects on the content of the EBSPM-
repository, by using the EBSPM-tool (Huijgens, 2016) (see Figure 6.4). To
analyze the overall performance of both repositories, we calculated three
performance indicators (see Table 6.6).

Overall average duration per FP as measured in the EBSPM-repository
(5.53) does not match ISBSG duration per FP (6.74), but differences are
relatively small. The trendline for duration of the ISBSG-subset (the horizon-
tal red line) is 23% below the EBSPM-trend (the horizontal dotted line), in-
dicating that ISBSG projects on average took 23% longer to finalize than the

Figure 6.4. The cost duration matrix in the EBSPM-tool showing a sample of 172
projects from the ISBSG repository, plotted against 488 projects from the EBSPM
research repository. The analysis indicates that the ISBSG-projects performed on
average 80% cheaper, but 23% slower than the projects in the EBSPM-repository.
This figure was also used in a description of the EBSPM-tool (Huijgens, 2016).

Project Name
All

ORG
Banking A
Banking B
Beltel
ISBSG

Division
Billing
Call Center Solutions
Client and Account Management
Data Warehouse & BI
Finance & Risk
Front Office Solutions
Internet & Mobile
Mortgages

Development Method
Plan-driven
RUP
Scrum

0,00 1,00
Defects per FP

Size (FP)
1

1.000

2.000

≥ 3.000
-100%0%100%200%300%

% Cost Deviation

0%

100%

200%

% Duration Deviation

Sample -80%

Sample 23%

Cost Duration Matrix

Cost (EUR) per FP (Sample)

Cost (EUR) per FP (All)

Days per FP (Sample)

Days per FP (All)

Defects per FP (Sample)

Defects per FP (All) 0,35

0,40

5,55

6,74

3.643

795

Key Performance Indicators

Perceived Value

Stakeholder Satisfaction (Process)

Stakeholder Satisfaction (Product)

Additional Performance Indicators

Sample

Average Size (FPs)

Average Cost (EUR)

Average Duration (Months)

Average Number of Defects 99

11,31

148.370

307

172

Summary of Metrics

136 Chapter 6

EBSPM ones. On quality no differences occur, as both datasets show a weigh-
ted average of 0.35 number of defects per FP. The median number of defects
is statistically similar according to the Wilcoxon tests.

Yet, differences on cost are huge. Average Cost per FP in the EBSPM re-
search repository is 3,630 Euros, while the ISBSG repository shows an aver-
age of 795 cost per FP. The ISBSG trendline in Figure 6.4 (the vertical red
line) is as much as 80% to the right of the EBSPM-trend (the vertical dotted
line), indicating that ISBSG projects were 80% cheaper in terms of cost per
FP than EBSPM ones.

With regard to project size (in function points) we observe that on average
ISBSG projects show a size of 307 FPs, where the EBSPM projects show an
average size of 216 FPs. However, these differences in size do not explain the
huge difference in cost in both datasets. This is confirmed by the Wilcoxon
Ranked Sum Tests with Holm-Bonferroni corrections, which reveal no signif-
icant differences in size between EBSPM and ISBSG.

6.3.4. Key Findings

Looking at our research question:

RQ: How do the EBSPM-repository and the ISBSG-repository compare with
regard to the size, effort, cost, duration, and number of defects of software
projects?

we determine the following key findings in this study:
1. We demonstrate a (log)-linear relation between cost on the one hand, and

size, duration and number of defects on the other (as illustrated in Figure
6.2). This justifies conducting linear regression for cost.

Table 6.6. Overview of Performance Indicators.

 EBSPM ISBSG

Observations 488 172

Cost (Euros) per FP 3,630 795

Duration (Calendar Days) per FP 5.53 6.74

Number of Defects per FP 0.35 0.35

All performance indicators are calculated as weighted average, with size as weighting factor (instead of
number of projects).

Effort versus Cost in Software Repositories 137

2. We establish that ISBSG is substantially different from, e.g., EBSPM, in
terms of cost (cheaper) and duration (slower), and the relation between
cost and effort. This implies that practitioners and researchers alike
should be cautious when drawing conclusions from a single repository.

3. We show that while in ISBSG effort is the most important cost factor, this
is not the case in other repositories, such as EBSPM in which size is the
dominant factor.

6.4. Discussion

The main questions that arise from the analysis that we performed, is whether
the large differences that we found in cost, and the fact that duration and
number of defects are of influence to cost in the EBSPM-repository, and not
in the ISBSG-subset, can be explained in any way?

Our analysis shows that the EBSPM-repository and the ISBSG-subset are
significantly different with regard to cost of finalized projects. Looking at the
significant differences in the EBSPM-repository between different compa-
nies, as shown in the boxplots in Figure 6.1, we tend to agree with the idea
that building a dedicated repository of historic projects (a single-company
model) helps companies to make better predictions of new projects and to
improve benchmarking and analysis of ongoing and finalized projects. Also
the idea of clustering fits with our experience that some business domains
(e.g. data warehouse) show cost patterns that deviate from general ones, and
therefore need to be looked upon in a specific way.

Based on the outcomes of our comparison, we argue that, effort and cost
are interrelated, at least in the ISBSG-subset that we studied. However, when
plotted over time both metrics seem to show a more complex relationship (see
the technical report (Huijgens et al., 2016c) for a figure on development of
project metrics over time). Besides the common idea that cost reflects effort
times hourly tariff, many other factors play a role here: e.g. market issues,
productivity changes over time, and sourcing strategies. However, no major
cost per FP changes are to be found in ISBSG data when looked upon over
time. What strikes in our study, however, is the remarkable difference in
average weighted cost per FP between both studied repositories, as depicted
in Table 6.6; in the ISBSG-subset development of one function point cost on

138 Chapter 6

average 795 euro, while in the EBSPM-repository 3630 euros are needed to
do so.

The big differences that we found between project cost in both repositories
could not be explained based on size, duration and number of defects of the
software projects. Unfortunately, no relevant effort data was available in the
EBSPM research repository, so we cannot conclude anything about that. In
earlier research (Huijgens et al., 2014c) we found indications that might be of
influence to cost of projects, such as software delivery strategies (agile and
release-based, steady heartbeat, fixed teams) and specific business domains.

Unfortunately, the ISBSG descriptions do not tell us much about these as-
pects. A key factor in the comparison of both repositories might be different
labor costs in different countries. EBSPM projects come from the Netherlands
and Belgium, however a significant part of the projects is performed in coop-
eration with suppliers in other countries (e.g. India). ISBSG projects come
from a wide range of countries, including some whose IT industry is based on
labor costs being low. Since ISBSG does not normally release data about the
country in which a project was performed, it is hard for users of ISBSG cost
data to take this into account. However, when the total cost of the ISBSG pro-
jects in the subset that we used are divided by the total effort, this results in
an average hourly rate of 43.01 Euro. A complicating factor here might be that
in the ISBSG repository, total project effort is a mandatory field (Déry &
Abran, 2005), where cost is not. In the EBSPM-repository; cost is mandatory,
mainly due to the recurring difficulties that the measurement teams involved
in EBSPM experienced in collecting reliable effort data in practice.

One major aspect that we assume to be key in this comparison, is that in
the EBSPM-approach a software portfolio as a whole of each company is
measured, e.g. the good and the bad projects. The ISBSG-approach focuses at
single projects, and therefor might not reflect a company’s portfolio perfor-
mance in a holistic way.

6.4.1. Implications

Taking into account that collecting reliable effort in industry is difficult, and
that we found substantial differences between both studied datasets, we point
out that researchers and practitioners should take great care to understand
the data they are using when making estimates. A remark with regard to using
repositories for prediction purposes, is that not only the adequacy of different

Effort versus Cost in Software Repositories 139

predictive models for each dataset varies, but also the most relevant inde-
pendent variables. This is in line with previous research on effort estimation
(Minku & Yao, 2013). Care must also be taken when using data from one
repository to predict projects for companies not represented in the repository.
As we show, projects from different repositories can be considerably differ-
ent. In particular, we observe that the two repositories had projects with
similar duration and number of defects (independent variables), but different
costs: relevancy filtering and locality-based approaches, which have been
achieving promising results for cross-company effort estimation (Turhan &
Mendes, 2014) (Kocaguneli, Menzies, & Mendes, 2015), might not work well
for predicting cost.

6.4.2. Threats to Validity

Our study focuses on differences between size, cost, duration, and number of
defects in both repositories. All other factors, such as organization, business
unit, primary programming language, development approach, or develop-
ment type are not included in the analysis. We are aware of the fact that in-
cluding different factors might influence the outcome of the analysis, yet we
would like to argue in our favor that overall both repositories are a repre-
sentative subset of any company’s software project portfolio. Statistical tests
showed no evidence that organization or business domain was of significant
influence for cost prediction, where size, duration and numbers of defects
actually were. As a remark we mention that related work shows that a rela-
tionship between cost and business domain is applicable in the EBSPM-
repository (Huijgens et al., 2014c), and with effort in the ISBSG repository
(Lokan, Wright, Hill, & Stringer, 2001).

Two important limitations might be of influence to our study. Only a small
part of the software projects in the ISBSG-repository includes cost data; a
subset of 172 out of 6010 projects (3%) was applicable for our analysis. On the
contrary, only a small part of the EBSPM-repository holds effort data; 22 out
of 488 projects (4.5%). We emphasize that our findings are not to be general-
ized without any restrictions to other software repositories. In order to assure
the quality of Function Point counting in the ISBSG-subset; the subset only
contains projects with an Unadjusted Function Point Rating ‘A’ (the unad-
justed FP was assessed as being sound with nothing being identified that

140 Chapter 6

might affect its integrity) or ‘B’ (the unadjusted function point count appears
sound, but integrity cannot be assured as a single figure was provided).

With regard to quality assurance of the EBSPM-repository: projects were
measured by experienced, often certified measurement specialists. Project
data was based on formal project administrations and reviewed by stakehold-
ers (e.g. project managers, product owners, finance departments, project
support). All projects were reviewed thoroughly by the first author of this
study before they were included in the EBSPM-repository. We used the de-
fault parameters from the CART package in R to build regression trees.

Finally, we emphasize that we used – where possible – a relevant and ex-
tended subset of statistical tests to analyze both repositories. Our goal was to
link evidence found from one test to confirming results from other tests too.

6.5. Related Work

6.5.1. Repositories for Benchmarking

Our findings are not all new. Related work confirms large differences between
both within-company and cross-company repositories. Much research is per-
formed on whether organizations should use cross-company datasets for
estimation and benchmark purposes or whether they should collect their own
historic data (Jeffery et al., 2001) (Briand et al., 2000) (Wieczorek & Ruhe,
2002) (Lokan & Mendes, 2006) (Minku et al., 2015) (Mendes et al., 2005).
The outcomes of studies are mixed.

(Garre et al., 2005) emphasize that “in the case of large project databases
with data coming from heterogeneous sources, a single mathematical model
cannot properly capture the diverse nature of the projects”. Apparently, other
benchmark sources are important. Also the usually “large disparity of their
instances” lead to problems (Garre et al., 2005). Many researchers have now
a better awareness that single companies can themselves have heterogeneous
projects. As a consequence, the community has started to question the useful-
ness of the distinction between the terms ‘cross’ and ‘within’ (Minku, 2016).

(Abran et al., 2002a) mention a lack of historical data in many companies,
as a solution they propose a simulation using the ISBSG-repository. (Lokan
et al., 2001) position ISBSG as a ‘low cost initial determination of an organiza-
tion’s industry position and its comparative strengths and weaknesses’.
(Fernández-Diego et al., 2014) inventoried the use of the ISBSG-repository

Effort versus Cost in Software Repositories 141

by performing a systematic mapping review on 129 research papers. They
found that in 70,5% of the studies prediction of effort is the main focus. In
55% of the papers ISBSG is used as the only support.

(Oligny et al., 2000) propose a duration prediction model that is based on
ISBSG data, that can deliver a ‘first order’ estimate to project managers.
(Lokan et al., 2001) state that “ISBSG does not claim that the repository
represents the whole industry; rather, it believes that the repository only
represents the best software companies” (Lokan et al., 2001). (Cheikhi &
Abran, 2013) mention the ISBSG repository and Promise as the two ongoing
repositories of software projects in the SE community, both lacking
structured documentation, which hinders researchers to identify the datasets
that are suitable for their purposes. (Déry & Abran, 2005) mention that “a key
challenge in data analysis using the ISBSG repository (…) is to assess the
consistency of the effort data collected”.

6.5.2. Effort versus Cost

Effort and cost are in many studies used as equivalent; usually cost is men-
tioned, where actually effort is meant. An example is the definition by
(Buglione & Ebert, 2011): “An estimate is a quantitative assessment of a fu-
ture endeavor’s likely cost or outcome”. (Petersen, 2011) argues that both are
an important decision criterion for companies. A recent study on productivity
in agile software development (Shah et al., 2015) mentions cost as one of nine
highly-related productivity dimensions, although the original study by (Melo
et al., 2011) of two agile teams revealed that most team members did not share
the same understanding of productivity. As a consequence of the blurred
distinction between effort and cost, the latter is for a major part missing in
studies on project performance. (Radliński, 2011) gives an overview of varia-
bles used in analysis within the ISBSG repository, yet cost is not mentioned.
When cost actually is mentioned, it often is as equivalent to or a derivative of
effort, see for example (Pendharkar & Rodger, 2009), (Czarnacka-Chrobot,
2009), and (Jeffery et al., 2000). (Deng & MacDonell, 2008) propose an
approach based on justified normalization of functional size, to challenge
questions among researchers about the quality and completeness in the
ISBSG-repository.

Both the EBSPM-repository and the ISBSG-subset use functional size
(Function Points) as metric to normalize the projects in their repositories.

142 Chapter 6

Our study shows that in both repositories Size is strongly significant for Cost
of software projects, an effect well known from other related work (Gencel &
Demirors, 2008). This emphasizes the importance of including functional
size in any form in a software project repository. It might even be an
important next step to automate the counting of functional size, although
recent research indicated that stakeholders on functional size measurement
do not see a direct need for this (Huijgens et al., 2015b). However, we assume
that this opinion might be slightly tainted by self-interest.

Although we used regression analysis for our study a warning is in place:
(Jørgensen & Kitchenham, 2012) argue that violations of essential regression
model assumptions in research studies to a large extent may explain disagree-
ment among researchers on economy of scale effects or diseconomy of scale
effects with regard to size and effort. Randomized controlled experiments
with fixed software sizes and random allocation of development of software
of different sizes, and the use of more in-depth of analyses of software projects
might help here (Jørgensen & Kitchenham, 2012). (Radliński, 2011) exam-
ined how various project factors in ISBSG are related with the number of de-
fects, finding that there are few factors significantly influencing this aspect of
software quality. Such results might suggest that software quality depends
rather on a wider set of factors (Radliński, 2011). This confirms what we found
with regard to number of defects in the ISBSG-subset. Finally, no scientific
studies are published that examine the link between effort and cost of soft-
ware projects based on real industry data.

6.6. Conclusions

We compared two industrial yet publicly available software project reposito-
ries, the EBSPM-repository and a subset of the ISBSG-repository, in order to
analyze differences with regard to Cost, Size, Duration, and Number of De-
fects. We determined suitability of some key variables (Size, Duration and
Number of Defects) of both data sets for the purpose of cost prediction. We
identified three key findings:
1. We demonstrate a (log)-linear relation between cost on the one hand, and

size, duration and number of defects on the other. This justifies conduct-
ing linear regression for cost.

Effort versus Cost in Software Repositories 143

2. We establish that ISBSG is substantially different from, e.g., EBSPM, in
terms of cost (cheaper) and duration (faster), and the relation between
cost and effort. This implies that practitioners and researchers alike
should be cautious when drawing conclusions from a single repository.

3. We show that while in ISBSG effort is the most important cost factor, this
is not the case in other repositories, such as EBSPM in which size is the
dominant factor.

We showed that effort and cost of software projects in the ISBSG-subset

are interrelated, although results might be influenced by definitional issues
with regard to cost and because we examined a subset of only 3% of the
ISBSG-repository. We argue that, supported by the importance of both effort
and cost data for decision makers in industry, effort and cost should be
treated as different metrics in research.

6.7. Acknowledgments

Our thanks to Tableau for allowing us to use their business intelligence solu-
tion to build the EBSPM-tool and ISBSG for allowing us to use their repos-
itory for research purposes.

144 Chapter 6

Stakeholder Satisfaction and Perceived Value 145

7. Stakeholder Satisfaction and Perceived Value

ontext: In this chapter we present a multiple case study on the insights
of software organizations into stakeholder satisfaction and (percei-
ved) value of their software projects. Our study is based on the notion

that quantifying and qualifying project size, cost, duration, defects, and
estimation accuracy needs to be done in relation with stakeholder satisfac-
tion and perceived value. Objectives: We contrast project metrics such as
cost, duration, number of defects and estimation accuracy with stakeholder
satisfaction and perceived value. Method: In order to find out whether our
approach is practically feasible in an industrial setting, we performed two
case studies; one in a Belgian telecom company and the other in a Dutch
software company. Results: In this study we evaluate 22 software projects
that were delivered during one release in the Belgian telecom company, and
4 additional large software releases (representing an extension of 174% in
project size) that were delivered in a Dutch software company. Eighty-three
(83) key stakeholders of two companies provide stakeholder satisfaction and
perceived value measurements in 133 completed surveys. Conclusions: We
conclude that a focus on shortening overall project duration, and improving
communication and team collaboration on intermediate progress is likely to
have a positive impact on stakeholder satisfaction and perceived value. Our
study does not provide any evidence that steering on costs helped to improve
these.

C

This chapter was published as The Effects of Perceived Value and Stake-
holder Satisfaction on Software Project Impact in Information and Soft-
ware Technology (Elsevier 2017) (Huijgens, van Deursen, & van Solingen,
2017d).

146 Chapter 7

7.1. Introduction

An often cited result of the Standish CHAOS research (International Standish
Group, 1994) is that 70% of all software projects are problematic. Standish
defines these as so-called ‘challenged projects’, meaning they were not deliv-
ered on time, within cost, and with all specified functionality (Jørgensen &
Moløkken-Østvold, 2006).

This is in a certain way along the lines of what we found when studying a
series of 22 finalized software projects in a Belgian telecom company. We
found that the average cost overrun was 28% (ranging from -41% to 248%),
and that the average duration overrun was 70% (ranging from 9% to 168%).
There was only one single project that performed within a 10% cost and
duration overrun boundary. As such, these projects were challenged if we
adopt the way Standish defines success and failure; being the extent in which
a project conforms to its original plan.

However, did all the other 21 projects fail? Is it fair to say that a project
with cost overrun is a failure? Is it reasonable to say that a project that per-
formed completely according to plan, but delivered software that no one uses,
is a success?

7.1.1. Problem Statement

Supported by many critical reviews of the Standish criteria (Jørgensen &
Moløkken-Østvold, 2006) (Glass, 2006) (Eveleens & Verhoef, 2010), we
define success and failure in this paper from a different angle, trying to
include the balance between value and cost into the equation. In previous
research we defined success and failure in terms of cost, duration and number
of defects of a software project (Huijgens et al., 2014c) (Huijgens et al., 2015c)
(Huijgens et al., 2016c). Looking at the outcomes of this we consider that a
project that is late and over budget – and thus in terms of our study bad
practice, or in other words unsuccessful – yet returns high value according to
its stakeholders, may still be called successful, because of the fact that it
delivers high value.

By analyzing project metrics such as cost, duration, defects, and size of the
projects in connection with stakeholder satisfaction, perceived value and
quality of estimations, we show that stakeholders define success and failure

Stakeholder Satisfaction and Perceived Value 147

of a project different from solely measuring cost and duration overrun. Espe-
cially in domains where value is more important than predictability, e.g. agile
ways of working, a limited view on conformance to planning, seems illogical.
Due to the fact that measuring the real – delivered – value of software deliver-
ies is difficult, we focus in this chapter specifically on perceived value. The
underlying idea is that, since finding evidence in the bottom-line financial
administration is hard, if not impossible, the best we can do is involve stake-
holders for a qualitative indication of value. However, as this is strongly
dependent on the individual and the contextual setting (what is valuable in
one setting might not be valuable in another, or what one stakeholder consid-
ers to be of no value can be of high value to another stakeholder), we use the
term perceived value. We understand that this is a way to measure value that
is limited in its external and construct validity. However, this approach may
help in finding early ways of indicating value (Gilb & Finzi, 1988).

In this chapter, we analyze a set of projects conducted at a Belgian telecom
company (referred to in this thesis as BelTel) and a Dutch software company
(referred at in this thesis as DutchCo) that provides billing software products
and services (also largely to the telecom domain). We propose the following
research question:

RQ: How do stakeholder satisfaction and perceived value relate to cost, duration,
defects, size and estimation accuracy of software projects?

In answering this question, we make the following contributions:
1. We propose a light-weight value measurement technique based on post-

release interviews.
2. We provide data on 26 industrial projects for which 83 key stakeholders

provide stakeholder satisfaction and perceived value measurements in
133 completed surveys.

3. We contrast the resulting perceived value and stakeholder satisfaction
statements with collected data on costs, duration, defects, size and esti-
mation accuracy and look for links between them.

This chapter is an extended journal version of an earlier published paper

at the 20th International Conference on Evaluation and Assessment in
Software Engineering (EASE 2016) (Huijgens et al., 2016c). Compared to the
original paper the new contributions can be summarized as follows:

148 Chapter 7

• We replicated the research performed in our original study in another
company: DutchCo, a Dutch software company, specialized in delivering
billing solutions to European telecom operators.

• Within DutchCo, we examined four (4) large software releases, represent-
ing an extension of 174% in project size. We collected detailed size, cost,
duration, and defects data from all releases. We performed electronic
surveys on stakeholder satisfaction and perceived value among thirty
(30) stakeholders within the DutchCo organization and IndSup-B, its
provider of India-based development teams.

The remainder of this chapter is structured as follows. In Section 7.2 re-

lated work and the background of the model that we use for analysis purposes
are described. Section 7.3 outlines the research design. The results of the
study are described in Section 7.4. We discuss the results in Section 7.5, and
finally, in Section 7.6 we make conclusions and outline future work.

7.2. Background and Related Work

Many studies include critical reviews of the Standish CHAOS Report
(Jørgensen & Moløkken-Østvold, 2006) (Glass, 2006) (Eveleens & Verhoef,
2010) (Moløkken & Jørgensen, 2003) (El Emam & Günes Koru, 2008) (Dybå
et al., 2005) (Glass, 2005) (Sutherland et al., 2007). The Standish Group
reported in their 1994 CHAOS report that the average cost overrun of soft-
ware projects was as high as 189%. (Jørgensen & Moløkken-Østvold, 2006)
conclude that this figure is probably much too high to represent typical
software projects in the 1990s and that a continued use of that figure as a
reference point for estimation accuracy may lead to poor decision-making
and hinder progress in estimation practices (Jørgensen & Moløkken-Østvold,
2006). (Glass, 2006) states that objective research study findings do not, in
general, support those Standish conclusions.

Where in our research we measure value as perceived by stakeholders on
four business related subjects, many different measures are used to identify
value, and a clear and uniform definition is no question yet. (Pekki, 2016)
defines stakeholder value as the “usefulness of offering SPI to its key
beneficiaries, so they are fully involved into SPI activities which increases the
success of those activities”. (Beck, 2000) indicates that value is about money

Stakeholder Satisfaction and Perceived Value 149

and time, by saying we “need to make our software economically more
valuable by spending money more slowly, earning revenue more quickly and
increasing the probably productive lifespan of our project”. (Dingsøyr &
Lassenius, 2016) answer the question “What is value”? by saying that “the
improvement trends are not specific on how they define value”. They come
up with the argument that, ”proponents of agile development would argue
that a development team needs to learn what external stakeholders value
during a development project”. In a way this matches our idea that besides
internal stakeholders, especially external stakeholders should be involved in
the value discussion.

(Atkinson, 1999) argues that besides time, cost and quality, often referred
at as the iron triangle, also stakeholder benefits should be taken into the
equation. Besides that, he mentions the effect that quality is “an emergent
property of people’s different attitudes and beliefs, which often change over
the development life-cycle of a project”.

Estimate the value of software is probably as challenging as predicting the
cost of software (Shepperd, 2014). (Strand & Karlsen, 2014) suggested to
estimate value in the form of “benefit points”, as a kind of equivalent to story
points. (Cheng et al., 2016) describe an architecture-based approach to dis-
cover value of software engineering by using big data techniques. Although
quite some research has been performed in the area of value estimation
(Boehm, 2003) (Biffl et al., 2006) (Faulk et al., 2000), and success criteria for
software projects (Agarwal & Rathod, 2006) (Bryde, 2005), most of these
approaches seem poorly adopted in industrial software project management
settings. A good sign however, is that an increased focus on value in improve-
ment is seen in software development, mainly driven by agile development
approaches (Dingsøyr & Lassenius, 2016).

 (Jørgensen, 2016) performed a survey among software professionals in
Norway on the characteristics of projects with success in delivering client
benefits. He mentions that a focus on client benefits as a success criterion is
particularly important, because only weak correlations are found on other
dimensions, such as “being on time” and “being on budget”. Besides that, he
mentions that the traditional success factor “having the specified functional-
ity” may even be in conflict with success in delivering client benefits.

150 Chapter 7

7.3. Research Design

The goal of this study is to understand the underlying reasons of stakeholder
satisfaction and value of software projects. To achieve this, we contrast pro-
ject metrics such as cost, duration, number of defects and estimation accuracy
with stakeholder satisfaction and perceived value. We argue this will help to
better understand the backgrounds of software projects as a guide for build-
ing future software portfolios.

As explained in the introduction, the Standish criteria (International
Standish Group, 1994) states that success and failure are related to the quality
of project estimates. In order to explore alternatives, we test for association
between paired samples, using Pearson’s product moment correlation coeffi-
cient and resulting p-values in case our data is normally distributed or
Spearman Rank Correlation when the data is not normally distributed. To
mitigate the risk that we find coincidental correlations we perform an explor-
atory study that confronts correlated metrics with findings from qualitative
results from analysis of the free format text from the surveys.

We performed a multiple case study in two different companies: BelTel, a
Belgian telecom company, and DutchCo, a Dutch software company that de-
livers billing solutions to European telecom operators. In the following two
Subsections we describe the industrial context of how both companies are in-
cluded in our research.

7.3.1. BelTel

BelTel is a Belgian telecom company that can be characterized as a typical
mid-sized information-intensive company with a mature software delivery
organization that offers a mix of delivery approaches, ranging from plan-
driven to agile (Scrum) (Schwaber & Sutherland, 2011). For the majority of
its software development activities BelTel has a strategic, long-term contract
with one large Indian supplier, referred to in this thesis as IndSup-A. Projects
relate to different business domains (e.g. Internet, Mobile Apps, Data ware-
house, Billing, Customer Relationship Management).

During the past three years, BelTel has adopted a metrics program to col-
lect data on size, cost, duration, the number of defects, and the estimation
accuracy of finalized software projects. This data has been used to analyze
project performance at BelTel, to benchmark project performance, and to

Stakeholder Satisfaction and Perceived Value 151

continuously improve the software delivery process within BelTel. In October
2015, BelTel changed its strategic focus from cost-based (steering on effi-
ciency and operational excellence) to value maximization and shortening
time-to-market. To facilitate this, BelTel has collected additional data, ad-
dressing business value and customer satisfaction.

In the present chapter, we compare these with the data on costs and dura-
tion that were also collected, in order to better understand the relationships
between various project success indicators. Development projects at BelTel
are conducted independently, yet are grouped for deployment into so-called
releases. Once a project passes its system test it is promoted to a release,
which typically contains multiple projects. Releases are further tested and
deployed as a whole. Within BelTel eight subsequent releases are performed
each year. In this chapter, we study data from 22 projects coming from four
different releases.

7.3.2. DutchCo

DutchCo is a Netherland’s-based software company that offers billing solu-
tions to a large variety of European telecom companies. Within this market
DutchCo is a European market leader.

Unlike BelTel, DutchCo does not structure its work into projects. All soft-
ware development activities are organized into four large market releases
each year. Driven by the desire of its customers to limit the number of deploy-
ments, DutchCo implements only four market releases a year. As a result,
these four releases are usually quite large in size. Where BelTel thus imple-
ments eight releases a year, each of which consist of a large number of small
and medium-sized projects, DutchCo performs only four large releases, which
are composed of many small user stories.

To build and test its software, DutchCo makes use of several development
teams in India (Šmite & van Solingen, 2016). These teams are supplied and
supported by IndSup-B, a Dutch consultancy company, specializing in agile
software delivery. Activities such as preparation of releases, design, quality
assurance, and overall management are performed by members of an onsite,
Netherland’s-based team of DutchCo itself.

Based on the results of previous research within the organization, Dutch-
Co pays considerable attention to communication between the different
members of a development team. There is a virtual contact window that is

152 Chapter 7

constantly open to allow team members in different locations to contact col-
leagues, and substantial effort is put into reciprocal visits to the team sites.

All teams within DutchCo – including the development teams of IndSup-
B in India – work according to the Scrum approach (Schwaber & Sutherland,
2011). An enterprise backlog and sprint backlogs are maintained in Jira, two-
weekly sprints are performed, results are demonstrated to business stake-
holders, and bi-weekly retrospectives are performed. As such the DutchCo
market releases contain a combination of about 6 to 7 (bi-weekly) Sprint
deliveries. As these Sprints do deliver working tested software, one could also
call these releases. However, as these are only deployed in an acceptance test
environment and not to the market, we use the term ‘market release’ for those
four releases each year.

The DutchCo teams are organized in a component-based way. One data-
base-team (DB) is based in The Netherlands. Two teams are based in India;
one portal and asset management-team of nine people (POR and AM), and
one reporting-team (AR) of also nine people.

Table 7.1 summarizes the release approaches of both companies. BelTel
runs single projects that are combined eight times per year for user ac-
ceptance testing and deployment. In the DutchCo case no projects are to be
found; user stories are combined in releases that are deployed every three
months.

7.3.3. Challenges in Comparing both Companies

Looking at the large differences in the project size, staff count, budgets, geo-
graphic location of team and customer demands we recognized major chal-
lenges in comparing software projects performed in a telecom company with
a software company. To remedy this, we used a tool that we designed to
address this challenge (Huijgens, 2016a). In previous research we built a
model, the so-called cost duration matrix (see Subsection 2.3.2 for an expla-
nation), based on the consideration that project size, project cost, project
duration and the number of defects detected during a software project are
interrelated with each other (Huijgens et al., 2014c) (Huijgens et al., 2015c)
(Huijgens et al., 2016c). The model takes a project's size, measured in
function points (FPs) (IFPUG, 2009), as starting point and as a source for
normalization that makes it possible to compare software projects with
different settings. The model compares the actual costs normalized to a

Stakeholder Satisfaction and Perceived Value 153

function point (in Euros per FP) and duration (in days per FP) for a project
of this size to benchmarked data, taken from a set of 492 finalized software
projects in the financial and telecom application domains. This is done using
two power regressions conducted on the 492 projects, permitting the
computation of the 'expected' cost and duration of a project of a given size
(measured in function points) (Huijgens et al., 2014c) (Huijgens et al., 2015c).

7.3.4. Metrics

In this Subsection we describe and explain the major metrics that are col-
lected and analyzed for the subject projects.

Project Metrics

Four project metrics are collected on each project that is subject of the case
study: project cost (in Euros), project duration (in months), and the number
of defects found during the project. Project size is measured in function
points, according to the IFPUG industry standard (IFPUG, 2009). Based on
this, we determine the cost per function point, days per function point, and
defects per function point, using in each case the size in function points as
weighting factor.

Estimation Quality Factor

The estimation quality factor (EQF) is a measure of the deviation of a forecast
to the actual cost or duration. EQF is a forecasting metric that depicts the
quality of forecasts made during a project. The measure was defined by
(DeMarco, 1984). He defines EQF by:

Table 7.1. Summary of Release Approaches

 BELTEL (N = 4) DUTCHCO (N = 1)

Frequency of Release 6 weeks
(8 releases per year)

3 months
(4 releases per year)

Scope of Release Collection of projects from
different Business Domains
(a mix of Scrum and plan-
driven)

Collection of User Stories
performed by 4 Scrum-teams
(of which 3 offshore in India)

Average Size of Release 444 Function Points 776 Function Points

Average Cost of Release 2,190 K Euro 512 K Euro

154 Chapter 7

𝐸𝐸𝐸𝐸𝐸𝐸 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑢𝑢𝑢𝑢𝑢𝑢𝐴𝐴𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑢𝑢𝐴𝐴𝑎𝑎 𝑣𝑣𝐴𝐴𝑎𝑎𝑢𝑢𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑏𝑏𝐴𝐴𝑎𝑎𝑏𝑏𝐴𝐴𝐴𝐴𝑢𝑢 𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝑓𝑓𝑎𝑎 𝐴𝐴𝑢𝑢𝑢𝑢 𝐴𝐴𝑎𝑎𝑎𝑎𝑢𝑢𝐴𝐴𝑎𝑎 𝑣𝑣𝐴𝐴𝑎𝑎𝑢𝑢𝐴𝐴

We use the formalization proposed by (Eveleens & Verhoef, 2009). We

reiterate and correct the definition given there. Let a be the actual value (a >
0), ta the time the actual is known and e(t) the value of the forecast at time t
(0 ≤ t ≤ ta) in the project. Then, the EQF is represented by (Eveleens &
Verhoef, 2009):

𝐸𝐸𝐸𝐸𝐸𝐸 =
∫ 𝐴𝐴 d𝑎𝑎𝑡𝑡𝑎𝑎
0

∫ |𝐴𝐴 − 𝐴𝐴(𝑎𝑎)|d𝑎𝑎𝑡𝑡𝑎𝑎
0

=
∫ 1 d𝑎𝑎𝑡𝑡𝑎𝑎
0

∫ |1 − 𝐴𝐴(𝑎𝑎)/ 𝐴𝐴|d𝑎𝑎𝑡𝑡𝑎𝑎
0

 .

EQF allows us to quantify the quality of forecasts. A low EQF value means

that the deviation of the forecasts to the actual cost or duration is large. EQF
is measured for both cost and duration.

Cost Duration Index

The cost duration index is a measure of the relative position of a project
within the cost duration matrix (see Figure 7.2). The index is represented as
a number between zero and one hundred. In practice most projects score
between 80 and 99. A high index corresponds to a good position in the cost
duration matrix (best is top-right in the good practice quadrant). The index
is based on the geometric mean of two proportions comparing the actual
value to the benchmark value:

𝑝𝑝 = � 𝐴𝐴𝑎𝑎𝑎𝑎𝑢𝑢𝐴𝐴𝑎𝑎 𝐷𝐷𝑢𝑢𝐴𝐴𝐴𝐴𝑎𝑎𝑃𝑃𝑓𝑓𝑢𝑢
𝐵𝐵𝐴𝐴𝑢𝑢𝑎𝑎ℎ𝑚𝑚𝐴𝐴𝐴𝐴𝑘𝑘 𝐷𝐷𝑢𝑢𝐴𝐴𝐴𝐴𝑎𝑎𝑃𝑃𝑓𝑓𝑢𝑢

∗
𝐴𝐴𝑎𝑎𝑎𝑎𝑢𝑢𝐴𝐴𝑎𝑎 𝐶𝐶𝑓𝑓𝑓𝑓𝑎𝑎

𝐵𝐵𝐴𝐴𝑢𝑢𝑎𝑎ℎ𝑚𝑚𝐴𝐴𝐴𝐴𝑘𝑘 𝐶𝐶𝑓𝑓𝑓𝑓𝑎𝑎

We subsequently normalize this p to a value ranging from 0-100 with 100

being best via:

Stakeholder Satisfaction and Perceived Value 155

𝐶𝐶𝑓𝑓𝑓𝑓𝑎𝑎 𝐷𝐷𝑢𝑢𝐴𝐴𝐴𝐴𝑎𝑎𝑃𝑃𝑓𝑓𝑢𝑢 𝐼𝐼𝑢𝑢𝑢𝑢𝐴𝐴𝐼𝐼 =
(𝑝𝑝max− 𝑝𝑝)

(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚)
∗ 100

Stakeholder Satisfaction

Human satisfaction is a complex concept, involving many components such
as physical, emotional, mental, social, and cultural factors (Wu, Naqibuddin,
& Fleisher, 2001) (Pascoe, 1983). From behavioral science and consumerism
multiple theories have emerged on psychometrically validated surveys on
satisfaction (e.g. (Auquier, et al., 2005) (Atkinson, et al., 2004)). Although
extended handbooks are available on the setup of a satisfaction survey
(Hayes, 1998), we opted for a lean survey setup. The main reason to do so was
a requirement from BelTel executives to make the survey as short as possible
in order to minimize disturbance to the daily work for employees. An im-
portant argument for this requirement was the fact that the survey was
implemented as a fixed part within the release process, meaning that some
staff members had to fill it out several times during the release process (e.g.
release managers that where involved in more projects that were included in
one release filled out a separate survey for each individual project), or within
every release (e.g. team members of Scrum-teams). We assume that this light-
weight requirement will apply for other companies too and therefore is a pre-
condition for a successful metric.

Stakeholder satisfaction is a measure of the satisfaction of stakeholders of
a specific project with the way a project was performed and with the results
as delivered by that project. Stakeholder satisfaction is measured by asking
stakeholders of a specific project to rate their satisfaction on two aspects; the
way a project was performed (the project’s process), and with the results as
delivered by a project (the project’s result), for which we use questions with a
1 to 5 rating scale.

In both BelTel and DutchCo surveys were answered by internal stakehold-
ers of projects: e.g. project managers, developers, testers, product owners. In
case external stakeholders were included, these were working for BelTel or
DutchCo as client or business analyst for a specific project. Due to the fact
that BelTel did not want to involve external (real) customers in the study no
external stakeholders in the meaning of end-users of a projects’ deliverables
were involved in the surveys.

156 Chapter 7

Perceived Value

Value of software projects is a complex metric to measure (Shepperd, 2014),
and studies are not specific on how they define value (Dingsøyr & Lassenius,
2016). It is difficult, if not impossible, to measure objectively and indisputable
the real value as delivered by software projects to customers of BelTel and
DutchCo. Is real value about money? Does it mean financial value, as in stud-
ies indicated by Return Of Investment (ROI) (Solingen, 2004)? Or is real
value measured by net promotor score (NPS), as other studies indicate
(Green, 2011) (Hofner et al., 2011) (Feyh & Petersen, 2013)? Such holistic
measurements on value are often difficult to make for a single project, and
they cannot easily be related to single software projects, mainly because too
many different factors are of influence for such measurements.

To approximate the real value, we measure perceived value as a qualita-
tive measure of the perception of stakeholders of each project. This is based
on the notion that in fact every measurement is an agreement on a measure-
ment procedure that sufficiently approaches the actual value (Solingen,
2004).

Perceived value is measured for each stakeholder in a specific project, on
four aspects: BelTel’s or DutchCo’s customers, BelTel or DutchCo’s financials,
BelTel or DutchCo’s internal process effectiveness, and BelTel or DutchCo’s
innovation. We base the use of the four perspectives customer, financial, in-
ternal process, and innovation on the Balanced Scorecard (Kaplan & Norton,
1995). Based on the results per project of the four perceived value measures
a perceived value (overall) is calculated, with the number of measures (not
counting the choice “Don’t know”) as weighting factor.

7.3.5. Project Selection

Because we are particularly interested in data of finalized projects, all metrics
are measured once a release is finalized, since only then we know the actual
cost and duration of projects. Since we want to measure the effects of stake-
holder satisfaction and perceived value on a software portfolio as a whole, we
did not make any selection in the subset of projects within each release,
except for the fact that we only selected projects that delivered software
functionality (the projects could be counted in function points). Projects that
do not include any software component (e.g. infrastructure projects or config-
uration projects) are excluded from our study.

Stakeholder Satisfaction and Perceived Value 157

7.3.6. Data Collection procedure

Collection of quantitative data

Within BelTel, a major part of the data collection for our case study was
performed within the measurement capability that was already operational
within the software department of the organization. Data collection on pro-
ject cost, project duration, number of defects, project size, and calculation of
both estimation quality factor metrics was performed by members of a
measurement team that was supported (for performing function point counts
(IFPUG, 2009)) by measurement staff of IndSub-A, BelTel‘s main Indian sup-
plier.

Different artifacts were used as a source for function point counting, de-
pending from the availability per project (e.g. sets of functional documenta-
tion, user stories recorded in one of the Scrum backlog tools, architectural
documents, project documentation, user manuals, or wireframes). All project
data was stored in a measurement repository that was provided for our study.
The lead author of the study was part of the BelTel‘s measurement team.

In the DutchCo case, a dedicated research project was performed in order
to collect and analyze data of software releases. The lead author of this paper
performed the size calculations in retrospect for DutchCo. Due to this, it was
possible to replicate the study that we performed within BelTel in exactly the
same way in the DutchCo organization. All quantitative data was defined and
collected in the same way. Function points were counted according to the
same counting rules as used within BelTel (IFPUG, 2009). As a source for
function point counting the user stories as recorded in the Scrum backlog tool
were used.

Driven by the observations in our original study on correlations between
project cost and number of defects on one hand, and stakeholder satisfaction
on the other, we decided to collect data from finalized software releases with-
in DutchCo in a more detailed way: cost data was categorized into a limited
number of cost categories (e.g. design, build, test, deploy, management over-
all, quality assurance), and defect data was collected per defect severity (e.g.
blocking, critical, high, medium, low).

Collection of qualitative (survey) data

Besides the project data that was collected as an operational practice, we
collected data on stakeholder satisfaction and perceived value. To do so we

158 Chapter 7

conducted a questionnaire with stakeholders from BelTel, and later from
DutchCo. The list of stakeholders was prepared in cooperation with the pro-
ject managers of the applicable software projects, and consists of a mix of
business and IT representatives that were involved in the subject projects. We
asked the participants, who are stakeholders of a specific software project
within a release, to rate their satisfaction with the way the project was per-
formed and to rate their perception of the value that was added by the project.
Besides ratings on a 1-5 rating scale we asked the participants to add free
format text as an explanation of their perceptions. The questionnaire consists
of five questions:
1. What was your role in project Project_Name?
2. How satisfied are you with the way project Project_Name was per-

formed (the project’s process)? (1-5 rating scale);
3. How satisfied are you with the results of project Project_Name (the re-

sults as delivered by the project)? (1-5 rating scale);
4. How would you rate the delivered value of project Project_Name to the

following aspects? (1-5 rating scale, with ‘Don’t know’ as an option; this
choice was excluded from further analysis).

a. BelTel’s Customers (Value in terms of delivered to customers of
BelTel);

b. BelTel’s Financial (Value in terms of financial revenue for
BelTel);

c. BelTel’s Internal Processes (Value in terms of improvement and
/ or proper performance of BelTel‘s internal processes);

d. BelTel’s Innovation (Value in terms of innovation of BelTel’s
products or services delivered to its customers)?

5. Are there any additional comments or suggestions you’d like us to know
about this project? (Free format text).

With regard to question 4: the additional information (between brackets)

was shown to the participants when hovering with a mouse pointer over a
question mark next to the text of each of the four aspects. Within DutchCo we
applied the same electronic survey for stakeholders of the finalized software
releases, including team members from the IndSup-B teams located in India.

Stakeholder Satisfaction and Perceived Value 159

7.3.7. Analysis Procedure

To explore potential relationships between the collected metrics, we tested
for association between paired samples. Because all sample data is not nor-
mally distributed (see Table 7.3 for details on skewness and kurtosis and the
boxplots in Figure 7.1), we used a Spearman rank correlation coefficient test
for this purpose. In order to understand the underlying principles that can
explain the outcomes of the quantitative analysis, we studied the free format
text from the surveys.

Following (Hopkins, 2000), we prevent from Type I errors, e.g. finding a
correlation by chance, simply because multiple comparisons are performed
on the same dataset, by performing Bonferroni corrections on all p-values.
We used an alpha of 0.05/26 (the number of projects in scope of this study),
meaning that we assume all p-values above 0.0019 as not significant (Hop-
kins, 2000). Based on (Rumsey, 2016), we consider a significant correlation
higher than 0.3 (or lower than −0.3) to be moderate, a significant correlation
score higher than 0.5 (or lower than −0.5) to be strong, and a significant
correlation above 0.9 (or lower than -0.9) to be very strong.

To compare the outcomes of the quantitative analysis of the project met-
rics with the survey we coded the free format text that resulted from the
surveys that were performed within BelTel and DutchCo. We use the tool
Qualyzer4 for this purpose. We applied open coding, breaking down the sur-
vey data into first level concepts and second-level categories. Coding was
performed by the author of this thesis, and reviewed by the other authors of
the original research paper.

7.4. Results

7.4.1. Description of the BelTel Projects

Within the scope of our study we evaluated four software releases within
BelTel, covering a total of 22 software projects. Table 7.2 gives a brief descrip-
tion of each project, where the numbering of the projects indicates in which

4 http://qualyzer.bitbucket.org

160 Chapter 7

release each project was finalized and in which company a project or release
was performed (e.g. BelTel 6.4 is a BelTel project that finalized in Release 6).

The software projects in scope represent a varied outline of BelTel‘s soft-
ware project portfolio. It includes projects of different business domains,
sizes, cost patterns, durations, and delivery approaches. Some projects are
typically once-only, with teams that were put together for the purpose of one
project only. Others are part of subsequent iterations within a release struc-
ture with a steady heartbeat and a fixed, experienced team. Sixteen projects
are characterized as plan-driven, while six followed a more agile (Scrum)

Table 7.2. The BELTEL projects in scope of the case study.

Project ID Project Description

BelTel 3.1 Rules- and regulations driven small Billing project

BelTel 3.2 Implementation of a control on a Billing application

BelTel 3.3 Release-based enhancements on CRM-application (Scrum)

BelTel 3.4 New campaign management tool (3rd part of a program)

BelTel 3.5 Release-based enhancements on a mobile App (Scrum)

BelTel 4.1 Enhancements on a Billing application

BelTel 4.2 Release-based enhancements on CRM-application (Scrum)

BelTel 4.3 Frontend project: Connect Google Play

BelTel 4.4 Rules & Regulations enhancement: fee for customers

BelTel 5.1 Release-based enhancements on CRM-application (Scrum)

BelTel 5.2 New campaign management tool (4th part of a program)

BelTel 5.3 Data warehouse 4 sprints of an iteration (Scrum)

BelTel 6.1 Enhancement to integrate payment by credit-card-aliases

BelTel 6.2 Enhancement to implement Apple Store code

BelTel 6.3 Release-based enhancements on CRM-application (Scrum)

BelTel 6.4 Adapt a procedure on an online platform

BelTel 6.5 E-invoice for a subset of customers in a Billing system

BelTel 6.6 Easy Script for cleanup of master MSISDN

BelTel 6.7 Rules & Regulations project on a Billing application

BelTel 6.8 Frontend enhancement: Shopper user interface e-services

BelTel 6.9 Once-only migration project

BelTel 6.10 New Order Management System (part of program, Scrum)

Stakeholder Satisfaction and Perceived Value 161

delivery approach, however a formal Scrum-by-the-book approach was not in
place (i.e. sprints where performed, a backlog was managed and prioritized
in a backlog tool, a product owner was in place, however no retrospectives
were performed, no Scrum master was in place).

All projects were performed separately. Yet from the User Acceptance
Testing onwards they were combined as a release deployed into BelTel‘s pro-
duction environment. Looking at the total cost of a release, on average 60%
was spent on software projects. The remaining cost were spent on infrastruc-
ture projects, small innovations, and configuration projects, and as such do
not fit into the cost duration matrix approach. These projects are out-of-
scope for this case study.

Table 7.3 gives an overview of the descriptive statistics of the BelTel pro-
jects involved in the case study. As the table shows, the software projects in
scope of the BelTel study are all relatively small in size, when compared to the
projects in our research repository, ranging from 4 to 4600 Function Points
(FPs): project size ranges from 12 FPs to 324 FPs, with a median of 39 FPs.
To examine differences between the BelTel projects in scope of this study with
our research repository as a whole, holding data of 492 software projects from

Table 7.3. Descriptive statistics of the BELTEL project data.

 Cost
Duration

Index

Project Cost
(EUR)

Project
Duration
(Months)

Project Size
(FPs)

Number of
Defects

Minimum 86.92 8,000 4.96 12 1

First Quartile 93.27 44,001 8.37 25 3

Median 97.28 66,209 10.18 39 9

Third

98.57 118,876 11.73 126 23

Maximum 99.78 296,000 19.03 324 223

Mean 95.90 99,615 10.20 79 29

Skewness -1.03 1.27 0.78 1.71 3.19

Kurtosis 0.06 0.77 1.43 2.71 10.89

St. Deviation 3.51 78,209 3.22 82 55

Project data (n = 22).

162 Chapter 7

four different companies, we performed Wilcoxon ranked sum tests with Bon-
ferroni corrections to compare overall differences, and differences per size
(see Table 7.4).

If the data were sampled from a population with the median of the re-
search repository, one would expect the sum of signed ranks (in the table re-
ported as W) to be relatively small. The comparison shows that BelTel signifi-
cantly differs from the other projects in the repository on project cost, as well
on days per FP. On all other metrics no significance was found in the test.
With regard to project cost we see this effect also in the boxplots in Figure 7.1;
BelTel clearly shows overall lower cost for its projects compared to the other
companies in our research repository. Although not confirmed by the statisti-
cal tests, a similar effect can be seen for project size; the boxplots indicate that
overall project size for BelTel projects is smaller than that of the other compa-
nies. An explanation for differences in the outcomes of statistical tests and
the boxplots in Figure 7.1 might be that the first only includes the 22 BelTel
projects that are in scope of this study, while the second includes all 157 BelTel
projects from our research repository.

Besides project metrics, we collected data of the BelTel projects on stake-
holder satisfaction and perceived value by sending an online questionnaire
to applicable stakeholders of each software project once the technical go live
was performed. The overall completion rate of all surveys within BelTel was

Table 7.4. Results from a Wilcoxon rank sum comparison of BELTEL releases (n = 22)
with peer groups (n = 492).

 Median BelTel Median peer group W p-value

Project Size 39 116 7148 0.0108

Project Cost 66,209 278,156 8003 0.0001

Project

10.18 8.41 4008 0.0394

Number of

9 72 2989 0.1028

Cost per FP 1612 2520 6952 0.0239

Days per FP 7.85 2.08 3058 0.0006

Defects per FP 0.22 0.16 2280 0.6621

The in light grey highlighted rows indicate statistically significant difference when applying Bonferroni
corrections based on 22 comparisons, at the overall level of significance of 0.05 (we assumed all p-values
above 0.0023 as not significant).

Stakeholder Satisfaction and Perceived Value 163

69%. Over a period of four releases 103 surveys were completed by 53 individ-
ual respondents. One respondent could answer surveys for different projects
in one release, or repeated surveys for a series of iterative projects over differ-
ent releases.

7.4.2. Description of the DutchCo projects

Within the scope of our study we examined four DutchCo releases, all built
from a large number of user stories. Table 7.5 gives a brief description of each
release, where the numbering of the releases indicates in which company a
release was performed; e.g. DutchCo 5.1 AM is a DutchCo release that was
applicable to the asset management (AM) component of its billing solution.

Unlike BelTel, where the software portfolio includes a mix of projects of
various business domains, delivery models and governance structures, the
portfolio of DutchCo is more heterogeneous in nature. DutchCo implements
only four releases each year to its customers. Due to that, these releases are

Figure 7.1. Boxplots of resp. project size, project cost, project duration, and number
of defects of four organizations that are incorporated in our research repository of
492 projects. The boxplots indicate that DUTCHCO projects significantly deviate on
project size and number of defects from projects from other companies in our
research repository, and not as such on project cost and project duration.

164 Chapter 7

usually quite large in size. All DutchCo releases relate to the same business
domain, namely the billing solution it provides to its customers. However, it
occurs that different sets of functionality are delivered to customers, due to
differences in requirements.

DutchCo‘s user stories are maintained in its backlog management tool,
and continuously bundled in sprint backlogs. As a result, the governance
structure of DutchCo is relatively simple. There are no projects, and there is
a limited budget and planning activity. DutchCo has adopted a Scrum ap-
proach. Scrum teams are organized by functional component (e.g. Portal,
Asset Management, Reporting, and Database). A large part of the Scrum
teams is working from India, managed by IndSup-B.

Table 7.6 gives an overview of the descriptive statistics of the four DutchCo
releases involved in this extended case study. The DutchCo subset exists of
four releases, two relatively smaller ones (although still as large as BelTel’s
largest projects), and two large ones. As can be seen in Figure 7.2 and in Table
7.6 above, the two oldest DutchCo projects (DutchCo 5.1 - POR and DutchCo
5.1 – AM), are smallest in size (resp. 277 and 335 FPs). However, both are
comparable to the largest projects from the BelTel case. The two newest
DutchCo releases are relatively large, compared to the projects in the BelTel
subset: DutchCo 5.2 is 1233 FPs in size, and DutchCo 5.3 is 1261 FPs in size.
Apparently driven by a schedule of four deployments per year, combined with
a tendency to bundle the user stories of all functional components of its sys-
tem, DutchCo releases tend to grow relatively large.

We performed a Wilcoxon rank sum comparison with Bonferroni correc-
tions between the DutchCo subset and our research repository as a whole,

Table 7.5. The DUTCHCO projects in scope of the case study.

Project ID Project Description

DutchCo 5.1 AM Release containing asset management (AM) user stories.

DutchCo 5.1 POR Release containing portal (POR) user stories.

DutchCo 5.2 Release applicable on DutchCo’s general billing solution.

DutchCo 5.3 Release applicable on user stories for customer VF/BK.

All project data of DutchCo is to be found in a technical report (Huijgens et al., 2017e).

Stakeholder Satisfaction and Perceived Value 165

holding data of 492 software projects from four different companies, to com-
pare overall differences, and differences per size (see Table 7.7 and Figure
7.1). The comparison shows that DutchCo significantly differs from the other
projects in the repository on project size, as well on cost per FP and days per
FP. On all other metrics no significance was found in the test.

We observe two findings here. Firstly, DutchCo releases have on average a
larger size than other projects in our repository, which is good. This leads to
a positive effect, from benchmarking purposes; due to the larger size of
DutchCo releases also cost per FP and days per FP are better than the values
of the other companies in our research repository.

Although no statistical evidence is found for any differences between the
number of defects of both distributions (see Table 7.7), the boxplot view in
Figure 7.1 indicates that besides project size, DutchCo also deviates from its
peer groups on number of defects. Based on this we assume that a good score
on project size might be counterbalanced here by a bad score on number of
defects.

Besides project metrics as described above, we collected data on stake-
holder satisfaction and perceived value by sending an online survey to appli-
cable stakeholders of each software release once the technical go live was per-
formed. For this purpose, we used the same electronic survey that was used

Table 7.6. Descriptive statistics of the DUTCHCO project data.

 Cost
Duration

Index
Project Cost

(EUR)

Project
Duration
(Months)

Project Size
(FPs)

Number of
Defects

Minimum 95.03 125,827 3.78 277 15

First Quartile 96.12 192,040 5.90 321 78

Median 96.81 514,486 7.71 784 131

Third

97.41 835,343 9.18 1240 219

Maximum 98.22 896,788 10.29 1261 386

Mean 96.72 512,987 7.37 777 166

Skewness -0.147 -0.002 -0.209 -0.003 0.434

Kurtosis -1.952 -2.404 -2.054 -2.432 -1.865

St. Deviation 1.33 399,020 2.832 543 158

Project data (n = 4).

166 Chapter 7

before within BelTel. The overall completion rate of all surveys within Dutch-
Co was 71%. Thirty (30) surveys were completed by 30 individual respondents
of both DutchCo and IndSup-B. Due to the fact that the three first releases
were measured relatively long after finalization of each release, only for the
latest DutchCo release an electronic survey was performed.

7.4.3. Results of plotting on the Cost Duration Matrix

We used the model that we developed in previous research to compare a
portfolio of projects to the benchmark, by means of a cost duration matrix,
as shown in Figure 7.2 for the 26 projects under study in this chapter. A
detailed description of the cost duration matrix can be found in Section 2.3.2.

As can be seen from the figure, most of the 26 projects in the portfolio are
cheaper than the benchmark would predict (right of the 0%-cost bar), yet take
longer than expected (below the 0%-duration bar). The 0%-lines divide the
cost duration matrix into four quadrants:

1. Good practice (top right): projects that score better than average for both

cost and duration. In Figure 7.2, there are six projects in this quadrant, of
which three of BelTel (5.3, 4.2, and 3.5) and three of DutchCo (5.1 - AM,
5.2, and 5.3).

Table 7.7. Results from a Wilcoxon rank sum comparison of DUTCHCO releases (n =
4) with peer groups (n = 492).

 Median DutchCo Median peer group W p-value

Project Size 784 116 219 0.0074

Project Cost 514,486 278,156 808 0.5387

Project Duration 7.71 8.41 1135 0.5981

Number of Defects 131 72 240 0.0564

Cost per FP 686 2520 1791 0.0047

Days per FP 0.28 2.08 1789 0.0048

Defects per FP 0.22 0.16 565 0.8762

The in light grey highlighted rows indicate statistically significant difference when applying Bonferroni
corrections based on 4 comparisons, at the overall level of significance of 0.05 (we assumed all p-values
above 0.0125 as not significant).

Stakeholder Satisfaction and Perceived Value 167

2. Cost over time (bottom right): projects that score better than average for
cost, yet worse than average for duration. This is where the majority of
projects are in Figure 7.2.

3. Bad practice (bottom left): projects that score worse than average for
both cost and duration. In Figure 7.2, there are four projects in this quad-
rant, all from BelTel.

4. Time over cost (top left): projects that score better than average for
duration, yet worse than average for cost. In Figure 7.2, there are no pro-
jects in this quadrant.

The overall performance of the portfolio is furthermore summarized

through the two red 'median' lines: On average, projects in the subject portfo-
lio take 34% more time than expected from the benchmark, yet are 51%

Figure 7.2. A cost duration matrix showing the 22 BELTEL and 4 DUTCHCO projects
that are subject of the study.

168 Chapter 7

cheaper. The cost duration matrix provides a tool to compare two project
portfolios in terms of project cost and project duration. Our comparisons are
based on the benchmark of 492 projects from the finance and telecom in-
dustries, described in more detail in (Huijgens et al., 2014c) (Huijgens et al.,
2015c). The benchmark of 492 projects contain 157 previous projects from
BelTel, and 4 previous ones from DutchCo, making it a suitable benchmark
to compare the new additional 26 projects against.

7.4.4. Results of the tests for association

To identify potential relationships between the different metrics that we col-
lected we performed a series of tests on paired samples of each metric, by
using Spearman rank correlation coefficient. Because for only one DutchCo
release data on stakeholder satisfaction and perceived value was measured
(for only the latest release a survey was performed), we decided to test for
associations on the BelTel and DutchCo dataset as a whole.

The results of these tests are shown in Table 7.8. The table is setup in the
form of a matrix that pairs sets of two metrics. For each pair the correlation
coefficient is shown, including (between brackets) the associated p-value. A
color indicates significant correlation: dark grey indicates a strong (positive
or negative) linear relationship, bright grey indicates a moderate linear rela-
tionship, light grey indicates a weak linear relationship. Results of the tests
for association on the BelTel projects only can be found in Table 3 of the origi-
nal research paper (Huijgens et al., 2016c).

We counteracted the problem of multiple comparisons by performing a
Bonferroni correction. We compared each individual p-value to its Bonferroni
critical value, (i/m)Q, where i is the rank, m is the total number of tests, and
Q is the false discovery rate. We used 0.10 as false discovery rate, according
to (McDonald, 2016). The largest p-value that has p<(i/m)Q is significant,
and all of the p-values smaller than it are also significant, even the ones that
aren't less than their Bonferroni critical value. A color indicates samples that
are correlated: dark grey indicates a very strong (positive or negative) linear
relationship (correlation coefficient higher than 0.70), moderate grey
indicates a strong linear relationship (correlation coefficient between 0.50
and 0.70). Significant samples with a correlation coefficient lower than 0.50
are indicated in light grey.

Stakeholder Satisfaction and Perceived Value 169

However, a remark on the way we interpreted the results in Table 7.8 is in
place. If results relating to the previous BelTel analysis agree with the results
including the DutchCo data, we assume that both organizations are exhibiting
similar results. If the results are completely different when the DutchCo re-
sults are included, we conclude that the companies are behaving differently,
and that further research is needed to establish whether the new combined
results are valid.

A second warning is in place with regard to some of the metrics we use. As
it is dubious practice to correlate metrics that have a functional relationship
between them (e.g. cost per FP and days per FP), as likely spurious correla-
tions are found (Jørgensen, Halkjelsvik, & Kitchenham, 2012), we do not val-
id any findings with regard to these metrics as reliable. Analysis of the
statistical tests for association between paired samples as depicted in Table
7.8 results in the following observations.

Observation 1: Strong positive correlations are found between project size, project
cost, and number of defects.

In the first column of Table 7.8, it can be seen that project size, measured
in function points, is strongly associated with project cost and number of
defects. This effect is known from related studies (Huijgens et al., 2014c)
(Boehm, 1984) and as such not a surprise in our research. The second column
shows that also among themselves project cost and number of defects are
strongly interrelated. However, where in many other organizations a clear
correlation is found between project size and project duration, both BelTel
and DutchCo show an atypical pattern. Project size and project duration are
not related in any way.

This is the case when both BelTel and DutchCo are analyzed in a combined
way, like inventoried in Table 7.8 and plotted in Figure 7.3, but also when
examined separated they both show this effect (DutchCo shows a p-value of
0.9167 and a correlation coefficient of -0.2, the fact that only 4 releases are
included in this analysis makes this test rather unreliable.

In order to examine whether this effect is only linked to the set of 26 pro-
jects in scope, or whether this effect goes for BelTel as a whole, we perform
the test also with the BelTel projects that are not included in this chapter, yet
available in our repository.

170 Chapter 7

 Table 7.8. Matrix with test results of association between paired samples, using
Spearmans’s rank correlation coefficient.

 Pr
oj

ec
t S

iz
e

Pr
oj

ec
t C

os
t

Pr
oj

ec
t D

ur
at

io
n

N
um

be
r

of
 D

ef
ec

ts

C
os

t p
er

 F
P

D
ay

s
pe

r
FP

D
ef

ec
ts

 p
er

 F
P

C
os

t D
ur

at
io

n
In

de
x

Project Cost 0.81
(0.000

Project Duration -0.13
(0.53)

0.09
(0.65)

Number of Defects 0.68
(0.000

0.70
(0.000

-0.22
(0.32)

Cost per FP -0.70
(0.000

-0.19
(0.35)

0.35
(0.08)

-0.36
(0.10)

Days per FP -0.96
(0.01)

-0.72
(0.000

0.35
(0.08)

-0.66
(0.001)

0.73
(0.000

Defects per FP -0.14
(0.54)

0.10
(0.67)

0.05
(0.83)

0.59
(0.004

0.39
(0.07)

0.15
(0.50)

Cost Duration Index 0.09
(0.66)

-0.03
(0.88)

-0.01
(0.95)

0.18
(0.43)

-0.24
(0.22)

-0.06
(0.76)

0.03
(0.89)

Stakeholder Satisfaction (Process) 0.02
(0.93)

-0.26
(0.24)

-0.44
(0.04)

-0.30
(0.23)

-0.36
(0.10)

-0.21
(0.34)

-0.50
(0.04)

0.01
(0.97)

Stakeholder Satisfaction (Result) -0.00
(0.99)

-0.16
(0.48)

-0.47
(0.03)

-0.07
(0.78)

-0.27
(0.22)

-0.21
(0.35)

-0.23
(0.35)

-0.04
(0.86)

Perceived Value (Overall) 0.32
(0.15)

0.07
(0.75)

-0.10
(0.68)

0.04
(0.89)

-0.34
(0.13)

-0.37
(0.10)

-0.20
(0.44)

0.04
(0.86)

Perceived Value (Customer) 0.34
(0.13)

0.10
(0.68)

-0.09
(0.69)

0.06
(0.82)

-0.35
(0.12)

-0.38
(0.09)

-0.20
(0.43)

0.04
(0.85)

Perceived Value (Process) 0.26
(0.26)

0.01
(0.98)

-0.03
(0.89)

-0.06
(0.82)

-0.27
(0.24)

-0.29
(0.20)

-0.15
(0.56)

0.06
(0.78)

Perceived Value (Financial) 0.32
(0.15)

0.07
(0.75)

-0.10
(0.68)

0.04
(0.89)

-0.34
(0.13)

-0.37
(0.10)

-0.20
(0.44)

0.04
(0.86)

Perceived Value (Innovation) 0.34
(0.13)

0.10
(0.68)

-0.09
(0.69)

0.06
(0.82)

-0.35
(0.12)

-0.38
(0.09)

-0.20
(0.43)

0.04
(0.85)

Estimation Quality Factor (Cost) -0.08
(0.78)

0.02
(0.98)

-0.03
(0.92)

-0.32
(0.37)

0.11
(0.74)

-0.03
(0.93)

-0.28
(0.43)

0.13
(0.68)

Estimation Quality Factor (Duration) -0.36
(0.10)

-0.43
(0.05)

-0.30
(0.01)

-0.18
(0.45)

0.16
(0.48)

-0.23
(0.31)

0.00
(0.99)

-0.25
(0.26)

The table above shows results from a test of association between paired samples of the 26
software projects from both case studies, using Spearman’s rank correlation coefficient. Due to
the fact that the DUTCHCO case contained a limited number of four projects, we performed the
association tests over the total set of 26 projects from both BELTEL and DUTCHCO. The overview
shows for each test the correlation coefficient and between brackets the p-value.

Stakeholder Satisfaction and Perceived Value 171

 Table 7.8. Continued.

 St
ak

eh
ol

de
r

Sa
ti

sf
ac

ti
on

 (P
ro

ce
ss

)

St
ak

eh
ol

de
r

Sa
ti

sf
ac

ti
on

 (R
es

ul
t)

Pe
rc

ei
ve

d
V

al
ue

 (O
ve

ra
ll)

Pe
rc

ei
ve

d
V

al
ue

 (C
us

to
m

er
)

Pe
rc

ei
ve

d
V

al
ue

 (P
ro

ce
ss

)

Pe
rc

ei
ve

d
V

al
ue

 (F
in

an
ci

al
)

Pe
rc

ei
ve

d
V

al
ue

 (I
nn

ov
at

io
n)

E
st

im
at

io
n

Q
ua

lit
y

Fa
ct

or
 (C

os
t)

Project Cost

Project Duration

Number of Defects

Cost per FP

Days per FP

Defects per FP

Cost Duration Index

Stakeholder Satisfaction (Process)

Stakeholder Satisfaction (Result) 0.72
(0.0

Perceived Value (Overall) 0.09
(0.71)

0.24
(0.30)

Perceived Value (Customer) 0.07
(0.77)

0.23
(0.31)

0.99
(0.000

Perceived Value (Process) 0.10
(0.66)

0.20
(0.37)

0.98
(0.000

0.96
(0.000

Perceived Value (Financial) 0.09
(0.71)

0.24
(0.30)

1.00
(0.000

1.00
(0.000

0.98
(0.000

Perceived Value (Innovation) 0.07
(0.77)

0.23
(0.31)

0.99
(0.000

1.00
(0.000

0.94
(0.000

0.99
(0.000

Estimation Quality Factor (Cost) -0.02
(0.96)

0.16
(0.62)

-0.23
(0.51)

-0.23
(0.51)

-0.23
(0.50)

-0.23
(0.51)

-0.23
(0.51)

Estimation Quality Factor (Duration) 0.35
(0.12)

0.20
(0.38)

-0.32
(0.16)

-0.35
(0.13)

-0.28
(0.24)

-0.32
(0.16)

-0.36
(0.13)

-0.35
(0.26)

A color indicates samples that are correlated: dark grey indicates a very strong (positive or
negative) linear relationship (correlation coefficient higher than 0.70), moderate grey indicates
a strong linear relationship (correlation coefficient between 0.50 and 0.70). Significant samples
with a correlation coefficient lower than 0.50 are indicated in light grey.

172 Chapter 7

A test with all 157 BelTel projects included shows a p-value of 0.002, and a
correlation coefficient of 0.24, indicating that also in this case no correlation
between size and duration is found. This outcome supports our observation
that regardless the size of a project the duration is typically ten months. This
is confirmed by a relatively low standard deviation for BelTel’s project dura-
tion (see Table 7.3).

In spite of this atypical effect with regard to project duration, in the fifth
row a strong correlation can be seen between days per FP and cost per FP.
Besides that we observe a relation between days per FP and project size and
project cost. However, due to the functional relationship between both met-
rics we do not valid these findings as reliable (Jørgensen, Halkjelsvik, &
Kitchenham, 2012).

Observation 2: Stakeholder satisfaction for both process and result are strongly
interrelated to each other. Stakeholder satisfaction relates negatively with project
duration.

Row nine of Table 7.8 shows that an observation that was found in our orig-
inal study (Huijgens et al., 2016c) with regard to stakeholder satisfaction,
remains intact. Both satisfaction ratings for process and product correlate
strongly with each other. The fact that the same results are found for BelTel
alone, and also when the DutchCo data is added provides evidence that the
observation applies to both companies and may represent a more general

Figure 7.3. Plot of project duration versus project size; BELTEL projects are indicated
in open dots, DUTCHCO in closed dots.

Stakeholder Satisfaction and Perceived Value 173

observation that high satisfaction ratings on process link with high ratings on
the delivered product. However, the weak correlation between project
duration and costs per FP and days per FP was not visible in the BelTel data
and has only occurred with the addition of the DutchCo data. This suggest the
effect is due to the DutchCo data (based on a single large release) and calling
for more research to investigate whether the effect is real.

Column three shows that project duration has a moderate negative rela-
tion with stakeholder satisfaction for both process and result. Longer project
durations tend to lead to lower satisfaction rates. Furthermore project du-
ration relates weakly with cost per FP and days per FP, indicating that longer
project durations lead to higher cost per FP and a higher number of days per
FP. However, due to the functional relationship between both metrics we do
not valid these findings as reliable (Jørgensen, Halkjelsvik, & Kitchenham,
2012).

Two observations are related to perceived value. A weak positive linear
relationship between project size and perceived value (overall), as shown in
our original study, is found here too, indicating that perceived value is higher
for larger projects (in function points). Furthermore, several of the perceived
value metrics shows weak negative relations with cost per FP and days per
FP, indicating that lower cost and duration per FP links with higher scores on
perceived value. This effect is much reduced compared with the original
study with BelTel data only (Huijgens et al., 2016c), suggesting that it is a
BelTel phenomenon.

A major limitation here is, that the DutchCo project for which perceived
value and stakeholder satisfaction is measured, is significantly larger in size
than all other BelTel projects. Figure 7.4, with on the X-axis the project size
in function points, and on the Y-axis the overall perceived value rating of
each project, clearly shows that a good comparison in fact is not yet possible
in this context; more data is needed, especially from relatively larger projects.
An additional remark on this phenomenon is that it may be that the correla-
tions would have been weaker for BelTel in the original paper if that analysis
had been based on a more robust correlation coefficient.

We observe a striking correlation between all mutually perceived value
measurements. We assume that the four aspects are measuring the same con-
struct, or that the answers to those items were influenced in the same way.
This effect was not measured this strongly with BelTel data only. We assume

174 Chapter 7

the effect found now is an artefact of adding DutchCo data. Due to the fact
that the results are unstable, we do not value these outcomes to high though.
Other observations with regard to perceived value, as mentioned in our origi-
nal paper (Huijgens et al., 2016c), seem to have vanished in this study. After
adding the DutchCo data to the comparison, no relations with another project
metric are observed.

A comparison of the results of the test for association which listed only
BelTel results - see Table 3 in the original study (Huijgens et al., 2016c), with
the results of the test in which both BelTel as DutchCo projects are included
(see Table 7.8) - shows that the latter shows a clearer and more coherent pat-
tern. Where the original, BelTel only, table shows a rather scattered pattern,
the actual results focus on the three observations mentioned above.

Especially the statistical power of function points as a measure for project
size stands out. Besides that, we found indications for a positive relationship
between both stakeholder satisfaction measures, and between stakeholder
satisfaction for results and project duration. We did not find direct evidence
for strong relations between perceived value. However, we do have expecta-
tions with regard to this for future research due to a very strong interconnec-
tion between the four perceived value measures. In the next Subsection we
challenge our observations by linking them to the free format text that re-
sulted from the surveys that are performed at closure of each release.

Figure 7.4. Plot of perceived value overall versus project size; BELTEL projects are
indicated in open dots, DUTCHCO in closed dots.

Stakeholder Satisfaction and Perceived Value 175

Observation 3: Weak correlations are found between estimation quality factor for
duration on the one hand and project duration and stakeholder satisfaction on the
other.

A final observation that results from the quantitative analysis is about the
quality of estimations with regard to project duration (see the bottom hori-
zontal row in Table 7.8). When compared to the initial BelTel study, the only
consistent observations are the negative correlation between EQF (duration)
and project duration and the positive correlation between stakeholder satis-
faction and EQF (duration). The first correlation suggests that shorter pro-
jects are less well estimated with regard to duration. However, this effect was
not visible in the analysis of the BelTel data, so must be due to the DutchCo
data. The second suggests that stakeholders like accurate duration estimates,
although in the initial study stakeholders were satisfied about the result,
while after adding data stakeholders were satisfied about the process.

7.4.5. Results of the free format text analysis

In order to compare the outcomes of the quantitative analysis of the project
metrics with the survey we coded the free format text that resulted from the
surveys that were performed within BelTel and DutchCo. See Table 7.9 and
Table 7.10 for the outcomes of the coding of BelTel and DutchCo free format
text data. Both tables are ordered on the number of times a code was applied
in the comments. We discovered seven main themes: In the following
Subsections we discuss these main themes, where we combined connected
coding aspects into one theme. A subset of comments given by participants
from the surveys is included in the following Subsections, indicated by the
letter “B” (for BelTel) or “D” (for DutchCo) followed by a participant number.

Quality, Deployment and Testing (A1, A3, A7)

The first thing that strikes us when looking at the results of the coding process
is that aspects with regard to quality are high on the list of items that apply to
the stakeholders. Most remarks were about good quality, however, a number
had to do with low quality issues of deliverables.

A large number of negative comments given in the survey was related to
the deployment of projects within a release into BelTel’s or DutchCo’s produc-
tion environment. Most had to do with issues that occurred during this
process (e.g. problems with environments or incidents in production that

176 Chapter 7

needed to be fixed, repeated rollback of releases, improvements to be made
in the deployment process, and in solving issues.

An explanation for the fact that many issues occur after going technically
live is that BelTel uses the first week (or sometimes a longer period) to test
deployments in the production environment. Usually projects are not com-
mercially live during that period. Comments with regard to testing are often
related to these deployment issues. Also here we find a majority of comments

Table 7.9. Results of the analysis of free format text of the BELTEL survey.

 Points of attention for satisfaction and value Count

A1 Quality (good quality 27, bad quality 12) 39

A2 Communication (good communication 21, bad communication
17)

38

A3 Deployment (issues with implementation 19, issues in production
9, bad or delayed implementation 9)

37

A4 Requirements (requirements not clear 15, good requirements 9,
requirements creep 5, bad documentation or design problems 4)

33

A5 Stakeholders (satisfied stakeholders 29, low stakeholder
involvement 3, unsatisfied stakeholders 1)

33

A6 Duration (good estimation of duration; in-time delivery 16, bad
estimation of duration 7)

23

A7 Testing (good testing or good test environment 8, problems with
testing 9, delayed testing 3

20

A8 Process (smooth, lean, or mature process 11, (agile) process
needs improvement 3, bad process 2, process not according to
standards 2)

18

A9 Project Management (scope problems 10, good project
management 3, scope delivered 3)

16

A10 Agile Development (good product owner 4, good backlog
management tool 2, use of tools unclear 1, agile process needs
improvement 1, traditional release in agile process 1)

14

A11 Supplier Management (issues with supplier 11, good relation with
supplier 1, bad alignment between parties 1)

13

A12 Team Aspects (good team spirit 7, team not fixed 1) 8

A13 Release Management (bad alignment project and release 6,
release delayed 1)

7

A14 Value Aspects (good value 2, issues with value 4) 6

A15 Cost Aspects (within time and budget) 1

Table is sorted on Count.

Stakeholder Satisfaction and Perceived Value 177

that are related to issues with test environments and the test process itself,
for example:

‘A lot of discussion on how we need to test...’ (B39).
‘There were some defects in production’ (D30).
We note that deployment itself is not mentioned by any of DutchCo’s

stakeholders. Maybe an explanation for this is the fact that (unlike the BelTel
approach with centralized deployment by a separate release team) DutchCo
teams are themselves responsible for deployment of solutions. Summarizing,
for both BelTel and DutchCo a generic observation applies on quality:

Table 7.10. Results of the analysis of free format text of the DUTCHCO survey.

 Points of attention for satisfaction and value Count

A7 Testing (issues and defects late in the release 10, testing to be
improved 8, improve acceptance criteria 3, large number of
defects 2)

23

A14 Value Aspects (innovative solution, yet customer specific 15,
many new features, good business value for the customer 7)

22

A4 Requirements (changes in scope and unclear features 9, hidden
business rules as cause for problems 9, improve application 3)

21

A5 Stakeholders (satisfied stakeholders 3, customer driven 17) 20

A2 Communication (good communication between teams 5, to be
improved communication between teams 3, better
communication with customer 5)

16

A6 Duration (time pressure at the end of a release 11, strict timelines
2)

13

A8 Process (the internal process needs improvement, but people
notice the company is changing for the good too 10, no proper
process in place 2)

12

A1 Quality (satisfaction about the delivered results 8) 8

A12 Team Aspects (cooperation between teams, team performance,
high pressure on team 7)

7

A9 Project Management (poor communication about scope of a
release 5)

5

A15 Cost Aspects (profit made 1, paid by customer, yet generic 1) 2

A10 Agile Development 1

A3 Deployment 0

A11 Supplier Management 0

A13 Release Management 0

Table is sorted on Count.

178 Chapter 7

Observation 4: Satisfied stakeholders tend to emphasize good quality, while
dissatisfied stakeholders say testing and deployment need improvements.

Communication (A2)

The second most mentioned point on the stakeholder’s list in both studied
companies is about communication. A number of remarks have to do with
good communication between parties. A remarkable finding within BelTel
was that positive remarks all were related to external suppliers in the frontend
development of website and app development, and not with the main
strategic supplier IndSup-A. In the DutchCo case many positive remarks on
commination had to do with team aspects, such as:

‘Improvements in the cooperation between teams. A lot of work done in
a short amount of time’ (D02).

However, not all is well with communication. Besides the many positive
remarks, there are also suggestions for improvement, sometimes related to
the agile process:

‘Communication and involvement for agile items is limited to the bare
minimum, so the added value of release management is not really big here.
The whole agile process is still pretty blurry to most of its stakeholders, so
this definitely needs to be improved’ (B48).

In the DutchCo case many of the negative responds on communication
where about bad communication between teams. Overall, a generic observa-
tion can be made on communication:

Observation 5: Satisfied stakeholders emphasize good communication.
Dissatisfied stakeholders say communication needs to be improved.

Requirements (A4)

Most of the comments related to requirements were about unclear require-
ments that hinder a project’s progress, such as:

‘Interpretation from requirements can be different and cause issues at
testing phase’ (B40).

A limited number of comments were made on bad documentation, design
problems and requirements creep, but also some comments were made on
the availability of good requirements.

Stakeholder Satisfaction and Perceived Value 179

In the specific DutchCo case several remarks were made on unclear or
hidden business rules as a cause for problems. Yet, a generic observation can
be made with regard to requirements in both studied companies:

Observation 6: Dissatisfied stakeholders emphasize unclear requirements, bad
documentation, hidden business rules, and requirements creep.

Stakeholder Satisfaction and Duration (A5, A6)

Many of the comments related to stakeholder aspects were about satisfied
stakeholders. Most comments had to do with the quality of delivery and the
time-to-market of delivery. Project duration and time-to-market was men-
tioned by many participants, where most comments are about on-time deliv-
ery. In the BelTel case the following observation applied:

Observation 7: Satisfied stakeholders comment about good quality of duration
estimates. Dissatisfied stakeholders comment about long duration and schedule
overrun.

In the specific DutchCo case many respondents indicate they are satisfied
with the product that was delivered to DutchCo’s customer, as for example
stated by D01:

‘Despite the time constraints a decent product was delivered’.
With regard to this some respondents mentioned the inclusion of the cus-

tomer as a positive factor, as stated by D10:
‘I am satisfied about the fact that we included the customer and got their

feedback, which resulted in a better product’.
However, with regard to Project Duration a number of DutchCo respond-

ents mention a high time pressure, especially towards the end of the release,
leading to issues and defects in the last stages. As D13 says it:

‘Time issues caused several problems’.
Although duration was mentioned by stakeholders from DutchCo, they did

this from the perspective of time pressure at the end of the release. In the
DutchCo case no estimations were prepared with regard to duration. How-
ever, in the original BelTel study we found that satisfied stakeholders com-
ment about good quality of duration estimates, where dissatisfied stakehold-
ers comment about long duration and schedule overrun. In the DutchCo
study we found one additional observation with regard to time pressure:

180 Chapter 7

Observation 8: Time pressure towards the end of a release leads to more defects.

Agile, Value, and Process (A10, A14, A8)

A more agile delivery process is one of the key innovations that are imple-
mented within the software delivery organization of BelTel, as well in the
DutchCo case. Knowing this we argue that the low number of comments re-
lated to this aspect by BelTel stakeholders (14) does not reflect the strategic
choice of BelTel for a new delivery approach, including the investments made
in coaching and implementing tools that support an agile way or working.
Eight (8) comments were positive about the quality of the product owner and
the backlog management tool in use.

However, some comments were related to the agile process itself that
needed improvement, as stated for example by B48:

‘The whole agile process is still pretty blurry to most of its stakeholders
so this definitely needs to be improved’.

For an organization that made delivery of value a strategic innovation
remarkably few comments were made on value aspects. Two were about good
value being delivered, while most had to do with the lack of value, such as:

‘No real feeling on the benefit of this project’ (B45).
With regard to process aspects a limited number of comments were about

needs for improvement, such as speeding up things and working in a more
structured way. However, about as many comments were related to a lean and
flexible process.

In the specific DutchCo case we observed that from the viewpoint of inno-
vation stakeholders overall seem to be quite happy with the delivered result,
although some respondents mention the fact that the release was only appli-
cable to one specific customer, as for example stated by D21:

‘This was a big step in innovation, which would help us move further old
applications to new technology stack’ (D21).

Some stakeholders mention that not only the delivered product is
innovative, but also the applied internal process:

‘New technology used, new groundwork for new applications has been
set. New way of working also (introduction of design street, and QA-depart-
ment)‘ (D10).

Stakeholder Satisfaction and Perceived Value 181

Observation 9: Satisfied stakeholders emphasize the delivery of good value to the
customer.

However strongly related to remarks on to be improved internal
communication, stakeholders feel that DutchCo’s internal process should be
improved, although people see things changing for the good too, as for
example mentioned by D01:

‘The new structure of the company sort of has evolved on a better level’.
Although value certainly was addressed by DutchCo’s stakeholders, no

comments were made related to the agile delivery approach. Where in the
specific BelTel case an observation applied that the low number of comments
related to agile processes does not reflect the company’s strategic choice for a
new delivery approach, we argue that the DutchCo omission is only partially
comparable with the BelTel study; DutchCo stakeholders simply do not talk
about agile because it is their only delivery approach. Thus, we adjust the
BelTel observation to the following generic one:

Observation 10: ‘Agile’ itself is not always a point of discussion in companies, even
when they are agile.

Supplier Management (A11)

A number of comments were about issues with suppliers, where also BelTel’s
main supplier IndSup-A was mentioned several times, such as by B14:

‘Very long delays and complete lack of knowledge and initiatives from
Indsup’.

In the DutchCo case no specific comments were found that related to
supplier management. In a way this is not surprising, since besides the Ind-
Sub-B teams no external parties are applicable within DutchCo.

Cost

A remarkable observation is that only once a comment is made related to cost
of projects in the BelTel study:

‘Implementation as per time, budget, and quality’ (B38).
No comments were made about the estimation accuracy with regard to

project cost. The aspect of cost was mentioned only twice by DutchCo stake-
holders.

‘We got paid quite a sum of money for this and I think we made some
profit’ (D10).

182 Chapter 7

‘Solution was completely paid by customer where we can use this
functionality as generic functionality in our own solution’ (D03).

Although the backgrounds may be different, like BelTel cost seems not a
big issue for DutchCo stakeholders:

Observation 11. Cost is mentioned by only one project stakeholder.

A warning is in place regarding interpreting frequency as importance. But
frequency can also just mean salience; it's what was on participants' minds
when we ask about it. So here, it may not be that cost is unimportant, it may
be that few people thought to mention it.

7.5. Discussion

In order to validate the outcome of the quantitative analysis with the outcome
of the qualitative analysis, we compared the observations from both analyses,
as depicted in Table 7.11. We grouped the data into four themes that corre-
spond to the horizontal rows in Table 7.8 that logically belong together: the
core project metrics (project size, project cost, project duration, and number
of defects), stakeholder satisfaction, perceived value, and the quality of du-
ration estimations.

7.5.1. The Core Project Metrics

The strong positive correlations that we found between project size on the one
hand and project cost, project duration, and number of defects (observation
1), confirm what is already known from related work (Huijgens et al. 2014c)
(Boehm, 1984) (El Emam & Günes Koru, 2008) (Boehm et al., 2000a)
(Heemstra & Kusters, 1991) (Bhardwaj & Rana, 2016). From this point of
view, project size, measured in function points, can be considered as a very
strong predictor of both cost and process quality.

Also the effect of project size as a risk factor is described earlier. Smaller
projects tend to have lower cancellation rates (Rubinstein, 2007) (Sauer &
Cuthbertson, 2003). Smaller projects tend to perform better in terms of
quality, being on budget, and being on schedule (Rubinstein, 2007) (Sauer &
Cuthbertson, 2003) (Sonnekus et al., 2004).

Project size is found to be an important risk factor for success (Barki,
Rivard, & Talbot, 1993) (Jiang & Klein, 2000) (Schmidt et al., 2001) ((Zowghi

Stakeholder Satisfaction and Perceived Value 183

& Nurmuliani, 2002) (Heemstra & Kusters, 1989) (Chidambara et al., 2016).
Note, however, that the literature does not match results from our study with
regard to an economy-of-scale effect that larger projects in size are good, for
cost per FP and days per FP (see Subsection 7.4.3). We argue that for most
projects a trade-off is applicable between cost and duration on the one side,
and risk on the other.

Despite the strong correlation, the use in practice of function points to
measure project size suffers from shortcomings, such as additional training
needed, subjective determination of complexity, and not considering the
development environment (Singh et al., 2016).

In order to emphasize the effect of functional size (function points) as a
normalizer we give an example related to the cheapest of all BELTEL projects
versus the most expensive one. Project BelTel 6.3, a small (16 FPs) release-
based enhancement on a CRM-application that was per-formed in a Scrum
way as depicted above represents the minimum cost of 8,000 euro. This
project scores good in the cost duration matrix in Figure 7.2, and shows the
highest score of all for stakeholder satisfaction for both process and result.

To put things in perspective, the maximum cost of 296,000 euro is linked
to Project BelTel 6.10, an implementation of a part of a new order manage-
ment system. Yet, also this project scores on the upper side in the cost over
time quadrant, mainly due to a high number of function points that are
delivered; 324 FPs. This project also scores well for both stakeholder satisfac-
tion and perceived value. We note that both projects were performed in a
Scrum way as depicted above.

With regard to the strong correlations that we found between project size
and other core project metrics such as project cost, project duration, and
number of defects, it might be important to consider that project size was
measured in function points, in a manual counting process. As described in
the data collection approach, different artifacts were used as a source for
function point counting, depending on the availability per project (e.g. sets of
functional documentation, user stories recorded in one of the Scrum backlog
tools, architectural documents, project documentation, user manuals, or
wireframes). Manual counting was performed by different members of
measurement teams of both companies, and reviewed by another member, to
ensure proper use and interpretation of counting guidelines (IFPUG, 2009).
In agile environments, where usually no upfront artifacts such as functional

184 Chapter 7

and technical design documents are prepared, counting functional size can be
challenging. However, we experienced in practice in both companies that
descriptions of user stories in backlog tools together with additional in-
formation such as wireframes, where suitable to perform a reliable function

Table 7.11. Summary of observations and implications for practice and research.

Themes Observations from the quantitative analysis

The Core Project Metrics Strong positive correlations are found
between Project Size, Project Cost, and
Number of Defects (observation 1).

Stakeholder Satisfaction Stakeholder Satisfaction for both process
and result are strongly interrelated to each
other. (observation 2).
Stakeholder Satisfaction relates negatively
with Project Duration (observation 2).

Perceived Value Although the different Perceived Value
measures interrelate strongly with each
other, we cannot draw general conclusions
from this (observation 3).
Weak correlations are found between
Perceived Value and Project Size, Cost per
FP, and Days per FP, we cannot draw
general conclusions from this BELTEL
phenomenon (observation 3).

Estimation Quality for Project Duration Weak correlations are found between
Estimation Quality Factor for Duration and
Project Duration, and Stakeholder
Satisfaction (observation 4).

Stakeholder Satisfaction and Perceived Value 185

point count. In all cases so-called estimated Function Point counts were per-
formed.

To automate the data collection process where possible, we strongly felt a
need for some form of automated function point count, if possible based on

Table 7.11. Continued, right side of the table.

Observations from the qualitative analysis Implications for practice and research

Cost does not seem an important issue for project
stakeholders (observation 12).
Time pressure towards the end of a release leads
to more defects (observation 9) (DUTCHCO).

The strong correlations between Project Size on
the one hand, and Project Cost, Project Duration,
and Number of Defects on the other are
confirmed by related work (Boehm, Software
Engineering Economics, 1984) (Huijgens, van
Solingen, & van Deursen, 2014) (El Emam &
Günes Koru, 2008) (Boehm, Abts, & Chulani,
2000) (Heemstra & Kusters, 1991) (Bhardwaj &
Rana, 2016).

Satisfied stakeholders emphasize good quality
(observation 5), good communication
(observation 6), and good quality of duration
estimations (observation 8).
Dissatisfied stakeholders state that testing and
deployment needs improvement (observation 5),
they emphasize unclear requirements, bad
documentation, hidden business rules, and
requirements creep (observation 7), they say
communication needs to be improved
(observation 6), and they comment about long
duration and schedule overrun (observation 8).

Additional research is needed to identify how
good quality of deliverables, good
communication, and reliable estimations for
duration can be controlled in practice in order to
create satisfied stakeholders.
Additional research is needed to identify how
issues with testing and deployment, unclear
requirements, hidden business rules, bad
communication, and schedule overrun can be
controlled in order to mitigate stakeholder
dissatisfaction.

Satisfied stakeholders emphasize the delivery of
good value to the customer (observation 10)
(DUTCHCO).
‘Agile’ itself is not always a point of discussion in
companies, even when they are agile (observation
11).

Additional research is needed (especially on
medium and big sized projects) to validate
whether larger projects tend to lead to higher
perceived value scores.
If this effect is true, functional size might be a
potential indicator for value, that can be used in
practice by Product Owners to prioritize
(enterprise) backlogs.

Satisfied stakeholders emphasize good quality of
duration estimations (observation 8).
Dissatisfied stakeholders comment about long
duration and schedule overrun (observation 8).
Time pressure towards the end of a release leads
to more defects (observation 9) (DUTCHCO).

Much research is performed on Effort Estimation
of software projects, yet very limited research is
performed on the effects of the quality of
Duration Estimation, because the outcomes of
this study indicate correlations with both
stakeholder satisfaction and perceived value.

186 Chapter 7

the code itself. However, a follow-up exploratory study of 336 functional size
measurement specialists that was performed based on this hypothesis did
showed that overall automated functional size measurement was considered
as important, but also difficult to realize (Huijgens et al., 2015b).

7.5.2. Stakeholder Satisfaction

Observation 2, indicates a moderate correlation between stakeholder satis-
faction for both process and result and project duration. We found a moder-
ate relation between stakeholder satisfaction for estimation quality factor
(duration) too. This indicates that stakeholder satisfaction is related to inter-
action and being informed, yet also with conformance to planning and esti-
mation of the delivery date. A strategy of ‘no last minute surprises’ as such
helps better to increase stakeholder satisfaction, as well as giving attention
to improvement of estimation and planning practices would.

Satisfaction of stakeholders with the development process and with the
development outcome was studied before by Ferreira and Cohen (2008).
They found “strong positive effects of agile practice (iterative development,
continuous integration, collective ownership, test-driven design, and feed-
back) on stakeholder satisfaction with both development process and the pro-
ject outcome”. A relation between stakeholder satisfaction and with agile soft-
ware development in an Indian context was found by Nazir et al. (2016).

Many participants mentioned communication to be important, while good
communication is mentioned by satisfied stakeholders, and bad communica-
tion by dissatisfied ones. Approximately half of the comments were about
good communication, such as good alignment between parties, good collabo-
ration, and short feedback loops. The other half mention communication to
be improved, such as provide information on processes and innovations (e.g.
agile delivery), ongoing discussions, and miscommunication with suppliers.
Unclear requirements, bad documentation, requirements creep, and bad
quality of test and deployment resources are perceived by dissatisfied stake-
holders as causes for bad quality of deliverables.

However, a warning is in place here: we notice that many positive com-
ments on communication within BelTel also are linked to two specific Product
Owners. We did not focus our research on roles within the subject projects,
but this suggests that the fulfillment of a role by a specific person may be of
greater influence on stakeholder satisfaction and perceived value than the

Stakeholder Satisfaction and Perceived Value 187

subject delivery model. Note that this resonates with the first line of the Agile
Manifesto: “Individuals and Interactions over Processes and Tools” (Beck, et
al., 2001).

Contrary to the findings in our original study, we did not find evidence for
correlations of stakeholder satisfaction with number of defects. However, in
the qualitative analysis we do find many comments that are in one way or
another related to those aspects. Quality of the deliverables (both good quality
and to be improved quality), in combination with testing aspects and deploy-
ment into the production environment, is commonly mentioned in comments
by all participants.

7.5.3. Perceived Value

We assume that the relative absence of comments that are related to the ongo-
ing innovation of implementing a more agile delivery process within BelTel,
in combination with the limited focus on value might be of importance here
(observation 10). The low interest in agile innovation among BelTel’s stake-
holders in a way reflects our findings in the quantitative analysis too. No sig-
nificant relation is found between perceived value and any other project met-
ric of software project deliverables. However, the limited number of projects
in scope of this study, combined with the diversity in project sizes (with many
small and only one large project) can be a reason for replicating our study
with more data in future.

Furthermore, what strikes with regard to the value measures are the al-
most perfect correlation coefficients (from 0.94 to 0.99) with p-value < 0.001
that we found between all four perceived value measures mutually. This is
not a good sign when designing scales. It might imply that the four aspects,
derived from well-known research on Kaplan and Norton’s Balanced Score-
card (Kaplan & Norton, 1995), are measuring the same construct, or that the
answers to those items were influenced in the same way. Besides that a
warning is in place here with regard to functional relations between the
perceived Value metrics. As it is dubious practice to correlate metrics that
have a functional relationship between them, as likely spurious correlations
are found (Jørgensen, Halkjelsvik, & Kitchenham, 2012), we do not consider
the findings on interrelated perceived value metrics as reliable.

188 Chapter 7

7.5.4. Estimation Quality for Duration

The comments given in the surveys confirm the more or less company specific
observations with regard to project duration. Stakeholders of projects are
satisfied when delivery of results is in-time, where we assume this relates to
good quality of duration estimates. However, it needs to be said that the
words estimate or estimation are never used in the comments. Dissatisfaction
of stakeholders is often linked with too late delivery and long project dura-
tions (long waiting time).

In the DutchCo case we do not find direct evidence for this, although time
pressure towards the end of a release, causing issues and defects at a late stage
in the release, are mentioned as a source for problems by many respondents.

7.5.5. Success or failure: complex relations

Looking at the seventh row and eight column in Table 7.8, the test results of
association between paired samples, it strikes that no correlation is found at
all between cost duration index and any of the other samples. Apparently no
relation exists between the position of a project in our cost duration matrix
and the measure of stakeholder satisfaction and perceived value of that pro-
ject.

Based on this we conclude that success and failure apparently are more
complex than cost, duration and defects only: stakeholders can be satisfied
or have the perception of much value delivered, even when a project is in the
so-called bad practice quadrant.

We suspect, based partly on recent ongoing research, that the limitation
in the current study to internal stakeholders of projects can play a limiting
role here. For external stakeholders, usually the customers of the software
organizations that actually pay for the software and use it in practice, cost,
duration and number of errors seem to be an important factor for success or
failure. Besides that we suspect that perceived value needs to be measured on
a lower level than a project (e.g. at user story or at epic level). We argue that
additional research is needed to unfold these complex relations.

7.5.6. Agile and Cost were not mentioned

Except for the last four themes that resulted from the quantitative and quali-
tative analyses, we found two issues that were not mentioned in the text free

Stakeholder Satisfaction and Perceived Value 189

format of the surveys, and that were not found in the tests for association be-
tween paired samples.

Firstly, we found a low number of comments in both studies, that are re-
lated to the concept of agile itself. A number of observations that were appli-
cable for BelTel did not apply to DutchCo, and the other way around. No
evidence was found within DutchCo on the relation between satisfied stake-
holders and good quality of estimates. DutchCo does not produce estimates
as such for its software delivery activities.

Like BelTel, within DutchCo no specific remarks were made about the
agility of its process. However, an agile development approach within
DutchCo is widely assumed as the only form of process, no other approaches
(e.g. plan-driven) are applicable. Thus, we assume that no comments were
made about this just because it is ‘business as usual’. However, as stated
before frequency, needs not to be interpreted as importance.

Besides the development method used, we assume that also differences in
test and deployment (e.g. release) approaches of both software companies
influence the portfolio performances. The fact that DutchCo collects all of its
features in large three-monthly releases, while BelTel runs a variety of soft-
ware projects sequentially with eight combined releases per year, should be
taken into account when comparing the performances of both companies.

A second finding was the fact that cost seems not an important issue for
stakeholders within both BelTel and DutchCo. Only one comment by a BelTel
stakeholder is made related to this. This finding applies to DutchCo too; not
much attention is given in the comments on cost either. We think that this
might be caused by the effect that in more or less agile organizations, the focus
tends to shift from time and cost driven controlling towards scope and value
driven steering. Agile teams tend to stay in place for longer periods, and
budgeting often needs to be done only once a year, instead of many times per
year in a pre-project phase in plan-driven organizations.

In a way this is not a large surprise in the DutchCo organization, since de-
velopment teams are fixed and stay together for long periods of time. Due to
this cost is just a derivative of effort spent by these teams. No budget estima-
tions upfront are applicable in the DutchCo organization. Although this can-
not be understood in a way that DutchCo is not interested in cost at all;
DutchCo’s management team is highly interested in cost reduction based on

190 Chapter 7

the effects of shortening learning curves (Šmite & van Solingen, 2016) and
efficiency improvements based on outsourcing approaches.

7.5.7. Implications

The outcomes of both our case studies might not simply be generalized to
other environments. We identify a number of take-away-messages that apply
to research and practice in other software companies too.

The first one relates to the from related work already known strong corre-
lations between project size on the one hand, and project cost, project dura-
tion, and number of defects on the other, indicating the power of project size
(measured in function points) as an indicator for cost, duration, and quality.

However, a link with agile development is poorly covered in research
(Huijgens et al., 2015b), and in practice many agile software companies tend
to see (manual) counting of functional size as waste. We argue that also agile
practitioners and researchers should rethink and embrace project size.

Secondly, we argue on the one hand that good quality of deliverables, good
communication, and reliable estimations for duration can be used to increase
stakeholder satisfaction, and on the other that issues with testing and deploy-
ment, unclear requirements, hidden business rules, bad communication, and
schedule overrun increase stakeholder dissatisfaction, and should therefore
be mitigated when possible. Assuming that agile development methods might
play a role here, additional research is needed to identify the backgrounds
and ways to control these findings in a practical context.

Thirdly, we recognize a need for additional research (especially on me-
dium and large sized projects) to validate whether larger projects tend to lead
to higher perceived value scores. We think that measuring perceived value
on a lower level than a software project, e.g. on user stories or epics, might
result in other outcomes. If a strong positive effect is found in future, func-
tional size might be a potential indicator for value, that can be used in practice
by Product Owners to prioritize (enterprise) backlogs.

Finally, a fourth take-away-message relates to a need for additional re-
search in a practical context on the effects of the quality of duration estima-
tion, because the outcomes of this study indicate correlations with both stake-
holder satisfaction and perceived value. Good quality estimation of a pro-
ject’s delivery date seems very important for stakeholders, and relates to the
perception of value that is delivered.

Stakeholder Satisfaction and Perceived Value 191

7.6. Threats to Validity

7.6.1. Construct Validity

With regard to construct validity constraints we emphasize that we asked
stakeholders for perceptions on satisfaction and value. Perceptions are not
the same as actual measurements, which is especially the case for our value
measurements. We prefer to measure the real business value as delivered by
each software project. However, two problems occur with regard to this.

Holistic measurements on value are often difficult to make for a single
project (e.g. return on investment and net present value). Besides that, such
measures (e.g. net promotor score) cannot easily be related to software
projects, mainly because too many different factors are of influence for such
measurements.

As explained in Subsection 7.5.2, two limitations are in place with regard
to the setup of our electronic survey. Adopting any of the existing validated
measurement instruments on customer / stakeholder satisfaction, which are
available from the behavioral science, and economics and management the-
ory, might be helpful for continuation of the survey in future research.

Secondly, the almost perfect correlations between the four aspects of per-
ceived value indicate that the aspects are measuring the same construct, or
that the answers to those items were influenced in the same way. We argue
that it would be good to adjust the survey with regard to these aspects for
future research.

7.6.2. Internal Validity

A threat to internal validity that we acknowledge is the fact that ‘fishing for p-
values’ might hold a risk that some of the correlations we find are a coinci-
dence. We limited this effect by making Bonferroni corrections for all p-
values that we used in the multiple comparisons (see Table 7.8). Furthermore,
the number of parameters in our model is too low to perform a reliable
generalized linear model test with multiple data points. To prevent from sys-
tematic error we perform an exploratory test in which we do test for p-values,
yet we confront these with findings of the qualitative analysis.

In order to minimize systematic error with regard to subjectiveness of
stakeholders in their survey answers, we included representatives from both

192 Chapter 7

IT and business that were involved in any way in a subject project. We consid-
ered to also include participants (from the organizations involved) that did
not know the subject projects in the assessment of perceived value. However,
the study was performed in an operational context within BelTel and subse-
quently DutchCo. Answering surveys, subsequent a release, was implemented
as an operational capability. When designing the study we considered that it
was undesirable to interfere with stakeholders more than necessary in their
operational activities, and not to engage them in surveys related to projects
in which they did not participate.

Another attempt we made to prevent from bias, was to perform anony-
mous surveys, although one can argue that based on specific roles a lack of
anonymity could introduce potential bias. In order to reduce bias due to am-
biguity of survey answers with regard to the four aspects of value (customer,
internal process, financial, and innovation) we applied additional text on the
survey that was shown when participants hovered over a question mark
linked to each question.

A limitation is in place regarding the summarized themes in Table 7.9 and
Table 7.10; the included key concepts are defined loosely on free text concepts
provided by respondents in which they later were categorized.

7.6.3. External Validity

Concerning external validity, the extent to which the results of our study can
be generalized to other companies than BelTel and DutchCo is difficult to
answer because we performed multiple case studies in these two specific
companies. Not all findings that occurred in the BelTel case were found in the
DutchCo case too. Especially because our findings relate to specific situations,
maturity, and development approaches we argue that a one-on-one generali-
zation to other companies is not valid. Instead we argue that evidence-based
software engineering (Dybå, Kitchenham, & Jorgensen, 2005) in a way we
performed for this study within both BelTel and DutchCo is a precondition
for mature improvement within other companies too.

7.6.4. Study Reliability

A threat related to the study’s reliability lies in the fact that the lead author of
this paper was a member of the measurement team within BelTel, and carried
out the functional size measurements within DutchCo. However, we tried to

Stakeholder Satisfaction and Perceived Value 193

prevent from bias by ensuring that the BelTel measurement team and Dutch-
Co measurement expert are independent and objective in their collection of
data. Moreover, the size measurements were made before the analyses were
made and performed along the functional size measurement procedures that
are repeatable independently from the actual measurement expert (IFPUG,
2009).

A link that we did not study, but that is mentioned in other studies, is the
relation between stakeholder satisfaction and requirements (Pitangueira et
al., 2016) (Maciel & Barros, 2016) and documentation (Díaz-Pace et al.,
2016).

7.7. Conclusions and Future Research

The outcomes of our multiple case study indicate, that “within time and cost”
does not automatically lead to satisfied stakeholders. A focus on shortening
overall project duration, and good communication (e.g. no last minute sur-
prises) and optimal collaboration between teams, has a positive effect on
satisfaction of stakeholders.

On the other hand, too late delivery and long project durations, and many
defects dissatisfy them. Our study does not provide any evidence that steering
on costs helped to improve the satisfaction of stakeholders.

A novelty in the results of our study is that we linked perceived value to
a set of project metrics, among others functional size of projects. As an answer
to our research question –

RQ: How do stakeholder satisfaction and perceived value relate to cost, duration,
defects, size and estimation accuracy of software projects?

we found the following five take-away-messages:
1. Stakeholder satisfaction can be improved by steering on good quality,

good communication, and good quality of duration estimations. Satisfied
stakeholders emphasize the delivery of good value to the customer.

2. Stakeholder satisfaction goes down when issues occur with testing and
deployment, unclear requirements, bad documentation, hidden business
rules, and requirements creep, when communication is bad, and in case
of long project duration and schedule overrun.

194 Chapter 7

3. Perceived value did not correlate with project size, cost per FP, and days
per FP, indicating that functional size is not an indicator for value, how-
ever more research is needed to confirm this finding, since the original
study indicates otherwise.

4. We identified two themes that did not apply to stakeholders or value:
‘Agile’ itself is not always a point of discussion in companies, even when
they are agile, and project cost seems not an important issue for stake-
holders.

5. The study also confirmed an effect known from related work: project size
strongly correlates with the other core project metrics project cost, pro-
ject duration, and number of defects.

Our final question is how we and others build on the main findings of this

study. We see the following four aspects to be important for further research:
• How can good quality of deliverables, good communication, and reliable

estimations for duration be controlled to create satisfied stakeholders?
• How can issues with testing and deployment, unclear requirements,

hidden business rules, bad communication, and schedule overrun be
controlled to mitigate stakeholder dissatisfaction?

• Do larger projects (measured in functional size) lead to higher perceived
value scores?

• How can quality of project duration estimations be used to improve
stakeholder satisfaction and perceived value?

7.8. Acknowledgments

We thank BelTel, DutchCo, and both IndSup-A and IndSup-B for their
generosity to allow us to use company data in our research, and all survey
respondents for their help on sharing their ideas on improvement of software
projects with us. We thank Tableau for allowing us to use their BI solution to
build our performance dashboard.

196 Chapter 9

Conclusions 197

8. Conclusions

n this concluding chapter, we recapitulate the contributions of our study
over time, we summarize our research questions, we discuss the findings
and describe threats to validity. Finally, we describe the implications of

our research for industry, research, and education, and we draw conclusions.

8.1. Contributions

The main contribution of this research can be summarized as a model for Evi-
dence-Based Software Portfolio Management that is evaluated in four case
studies with surveys included in a real-life context in industry and three data
analysis studies on subsets of industry data.

Although the contribution must be assessed as a coherent set of compo-
nents, four self-contained components can be recognized. The first compo-
nent is (1) an approach for collecting, analyzing, and benchmarking historic
industry data on software deliveries. The second (2) an accompanying
EBSPM-tool for doing so in practice. The third (3) an EBSPM research reposi-
tory for benchmarking purposes. Besides that, we (4) evaluated the model in
a number of diverse case studies and surveys in real-life situations in an
industry context. By doing so, we demonstrated the strengths and limitations
of the approach in practice.

These four self-contained components are described in more detail in the
following Subsections.

8.1.1. A dynamic, agile EBSPM approach

The first contribution, a part of the EBSPM-model that we built prior to the
evaluation in industry, is the evidence-based approach for software portfolio
management. The approach describes how EBSPM is applied in a real-life
industrial context, what metrics are included in the model, and how these

I

198 Chapter 8

metrics are collected, analyzed, and benchmarked against – subsets of – other
software projects in the EBSPM research repository. As our research indi-
cates, the approach – especially where it concerns the metrics included in the
model – is not a static component. The EBSPM approach is to be character-
ized as dynamic and agile. However, the core of EBSPM is an objectified view
on the core metrics: cost, time, and quality. In our approach, we built a cost
duration matrix, based on functional size as a normalizer. This core can be
situationally extended with additional metrics.

A good example of this dynamic, agile character of the EBSPM approach
is the subset of different metrics that we used to measure perceived value.
Based on the observations related to success- and failure factors as described
in Chapter 3, and mentioned by interviewed stakeholders in the Cecil-Case in
Chapter 4, we developed an initial set of four metrics to measure perceived
value. Our goal was to examine whether projects ending up in the bad prac-
tice quadrant of the cost duration matrix could be assessed by stakeholders
as delivering a high amount of value. For this purpose, we defined in Chapter
7 a subset of four metrics for perceived value, based on Kaplan and Norton’s
Balanced Scorecard (Kaplan & Norton, 1995). Finally, we found that these
four metrics were apparently measuring the same construct, or that answers
given by stakeholders on these metrics influenced each other in a way. We
assumed that measuring perceived value at a project or a delivery level is
simply a too high, abstract level. We suggested that in future research
perceived value should better be measured at an epic or even at a user story
level. This example, in our view, clearly shows how a metric evolves over time,
based on findings from evaluations of our model in an industry context.

8.1.2. An EBSPM-tool, a tool description and evaluation

With the performance dashboard and the cost duration matrix as a core in-
strument we developed an EBSPM-tool, including a tool description and a
tool evaluation as described in Chapter 3. The EBSPM tool includes a perfor-
mance dashboard, based on a cost duration matrix. The matrix divides a
software company’s project portfolio into four specific quadrants and recog-
nized bad practice and good practice. Based on this we determined – as de-
scribed in Chapter 4 – seven success factors for software projects, and nine
failure factors.

Conclusions 199

8.1.3. An EBSPM research repository with 500 projects

The EBSPM-tool nowadays holds an EBSPM research repository with data of
more than 500 finalized software projects from different business domains,
different companies, and different delivery strategies. The repository is de-
scribed more in detail in Chapter 3. The repository is recorded as open source
at the 4TU Centre for Research Data (Huijgens, 2017a), and available for re-
searchers and practitioners for replications and other research purposes.

8.1.4. Evaluation of the EBSPM-model in industry

Finally, an important contribution of this dissertation is to be found in the
different case studies, surveys, and data analysis studies that we performed
in industry to verify our findings in the quantitative analysis on our EBSPM
research repository data.

In Chapter 4 we gave a description of a case study, including electronic
surveys and interviews, in which a release-based, iterative process on a legacy
system worked well, satisfying key stakeholders, despite a poor quality of the
system itself.

In Chapter 5 we described a case study with surveys on specific use of an
evidence-based approach for upfront pricing of project proposals in a globally
distributed context.

In Chapter 7 we described a multiple case study, including surveys, with-
in two different companies on the relations between stakeholder satisfaction
and perceived value and software delivery performance.

In Chapter 3 and 6 we documented data analysis on subsets of historic
data of software projects that we collected over time in four different software
companies.

8.2. The Research Questions Revisited

As a basis for conclusions about this thesis we recapitulate our five research
questions.

8.2.1. Success and Failure Factors for Software Projects

Our first research question is about factors that might influence the success
or failure of software projects.

200 Chapter 8

RQ1: What success factors and failure factors affect software project
performance?

We found four strongly significant success factors for software projects: a
steady heartbeat, fixed and experienced team, agile (Scrum), and release-
based working mapped on a single application.

We identified seven failure factors for software projects: rules & regula-
tions driven, dependencies with other systems, technology driven, once-only
projects (projects that are terminated after termination, including removal of
the project team), security related projects, many team changes and an inex-
perienced team, and migration projects.

Based on these findings we identified actions, when aiming for a good
practice project portfolio. First, software companies should avoid bad prac-
tice by steering at limitation of inter-dependencies between projects and sys-
tems, stay away from unnecessary team changes, and build teams where
possible with experienced team-members. To create good practice software
companies should steer actively on organizing software development in a
release-based way, set up fixed teams with experienced team-members, im-
plement a steady heartbeat, and go for an agile (Scrum) delivery approach
where applicable.

Once-only projects should be avoided whenever possible. Keeping soft-
ware engineering teams together for a longer period, and more subsequent
deliveries leads significantly to good practice, while once-only projects are
linked with bad practice. However, when keeping teams together is not an
option, companies should pay special attention to standardization and limita-
tion of procedures to smoothen the project’s progress, re-use of knowledge of
other once-only projects, and implementation of a learning cycle. A good tool
in such a situation is to implement the preparation of lessons learned once
projects are closed as a mandatory practice.

Finally, companies should implement a long- and medium term portfolio
strategy, including a learning capability, to avoid bad practice by limiting
(where possible) projects that are characterized as technology driven, rules &
regulations driven, migration of data, and security issues.

Conclusions 201

8.2.2. New Developments, Maintenance and Legacy

Our second research question addresses whether the findings about success
and failure factors for software deliveries also apply to legacy applications
where maintenance, enhancements, and reliability and availability are at
stake, and what actions can be taken to increase the performance in such con-
texts.

RQ2: What actions can be taken to increase project performance when running a
software project portfolio with new developments and maintenance of legacy
systems involved?

For this purpose, we addressed the problem of different ways of working
for evolving legacy software, which resist change. Our study confirmed three
success factors that were earlier identified in research question RQ1: a steady
heartbeat, a fixed and experienced team, and a release-based way or working,
mapped on a single system.

Besides that, four additional success factors were identified. First, the role
of the product owner and the personal interpretation of that role. Second, a
focus on quick wins and small, fast deliveries of requirements based on end-
user problems. Thirdly, if the role of the Scrum master is not formalized, then
this leads to a self-organizing team, with an onsite lead developer that coordi-
nates offsite team members. And finally, we found that the use of a specific
product backlog management tool positively influences communication.

Converting these factors found to concrete actions, cannot be done univer-
sally, and must be completed depending on the environment. We illustrate
that by means of examples we found in our research.

Based on our findings we argue that in a situation with new development
in combination with enhancements on a legacy system, companies should
best apply Scrum as the development approach. A light-version of Scrum,
with a self-organizing team, might be a good option in such cases.

Although not deeply examined in our study, it might be a good idea to
build one backlog of all user stories acting on a legacy system, instead of solv-
ing difficult performance-related requirements in separate once-only pro-
jects. The performance of a team might get worse when also such non-func-
tional requirements are included in the backlog, but we assume that the

202 Chapter 8

overall performance of all projects will be better due to effects of release-
based working, one experienced team, and a short feedback loop to end-users.

8.2.3. Evidence-Based Pricing of Project Proposals

Our third research question addresses whether statistics-based pricing of up-
front prepared project proposals satisfies both the customer and the supplier
party in a globally distributed software engineering context, and whether
such an approach helps to create cost and time improvements.

RQ3: How can an empirical, evidence-based pricing approach for software
engineering, be used as a single instrument (without expert judgment), to create
cost transparency and cost and time improvements?

Concerning this research question, we demonstrated how an evidence-
based approach can be successfully used in practice as a tool for pricing of
project proposals. This method of pricing as a single instrument, without
intervention of expert judgment-based opinions, leaded in the companies in
our case study to an improved transparency of project proposals and satisfied
stakeholders from both the customer and the supplier.

On the positive side, the applied pricing method did lead to significant cost
improvements. Duration on the contrary was longer than the peer groups in
our benchmark and showed a deteriorating trend, probably caused by the fact
that average project size got smaller over time.

8.2.4. Cost and Effort in Measurement Repositories

Our fourth research question compares aspects of project cost and effort be-
tween our EBSPM research repository and a commonly used benchmark
repository from the International Software Benchmark Standards Group
(ISBSG).

RQ4: How do the EBSPM-repository and the ISBSG-repository compare on size,
cost, effort, duration and number of defects, and how can differences be
explained?

We compared two industrial, yet publicly available software project repos-
itories, the EBSPM-repository and a subset of the ISBSG-repository, to ana-
lyze differences regarding project cost, project size, project duration, and

Conclusions 203

number of defects. We determined suitability of some key variables (size,
duration and number of defects) of both data sets for cost prediction.

We demonstrated a (log)-linear relation between project cost on the one
hand, and project size, project duration and number of defects on the other.
This justifies conducting linear regression for cost. Besides that, we estab-
lished that ISBSG is substantially different from, e.g., EBSPM, in terms of
project cost (cheaper) and project duration (faster), and the relation between
cost and effort. This implies that practitioners and researchers alike should
be cautious when drawing conclusions from a single repository.

Finally, we showed that while in ISBSG effort is the most important cost
factor, this is not the case in other repositories, such as EBSPM in which size
is the dominant factor.

Based on our findings we argue that, supported by the importance of both
effort and cost data for decision makers in industry, effort and cost should be
treated as different metrics in research.

8.2.5. Stakeholder Satisfaction and Perceived Value

For our fifth research question, we included two qualitative aspects, stake-
holder satisfaction and perceived value, into the equation.

RQ5: How do stakeholder satisfaction and perceived value relate to software
project performance?

Outcomes of our multiple case study indicate that “within time and cost”
does not automatically lead to satisfied stakeholders. A focus on shortening
overall project duration, and good communication and optimal collaboration
between teams, has a distinct positive effect on satisfaction of stakeholders.
On the other hand, too late delivery and long project durations, and many
defects dissatisfy them. Our study does not provide any evidence that steering
on costs helped to improve the satisfaction of stakeholders. A novelty in the
results of our study is that we linked perceived value to a set of project met-
rics, among others functional size of projects.

204 Chapter 8

8.3. Discussion

Interest in the field of software analytics has grown rapidly in both the re-
search and business sectors (Menzies & Zimmermann, 2013). This disserta-
tion addresses steering software project portfolios based on analysis of such
data. Yet, where we struggled with the manual collection of software delivery
data and challenges in acceptance by stakeholders due to this, nowadays
many software companies tend to move towards automated pipelines with
toolsets that log data continuously. Automated mining and analysis of data
within the log files of these tools quickly becomes a reality. Therefore, we
expect these developments to have a positive impact on the further growth of
software analytics as a topic in research and in industry.

Although the EBSPM-model as described in this thesis is built on manual
collection of software deliveries, we think that further development in the di-
rection of an automated way of collecting, analyzing, and visualizing software
portfolio metrics is a logical next step. One of the main lessons learned from
our study is that software companies should collect their own data of finalized
deliveries to analyze effects that are typically for their own organization,
instead of relying on repositories with data of other companies. Furthermore,
the study gave us insight in the backgrounds of success and failure within
software project portfolios, and the relations between core metrics such as
time, cost, and quality on the one hand and stakeholder satisfaction and
perceived value on the other.

Yet, at the same time there are many things we do not know about
software portfolio management. One aspect stands out when overlooking the
results of our study and reflecting with progress in research and in industry:
the aspect of value (measuring the benefits of software deliveries). RQ5
relates to how perceived value relates to software project performance. For
this purpose, we studied the effects of perceived value on functional size, cost,
time, quality, and stakeholder satisfaction. One of the things that we were
curious about was whether we would find correlations between functional
size and perceived value. This would confirm that the EBSPM model – since
this is based at functional size as a normalizer – would be a good predictor of
deliveries with high benefits in terms of perceived value.

Although we found promising, but somewhat weak correlations between
perceived value and stakeholder satisfaction on the one hand, and time, cost,

Conclusions 205

and quality on the other, we assume that especially perceived value needs to
be measured at a lower level, such as user story or epic to find better results
in correlation tests. However, a limitation is in place here. Value is influenced
by speed and attention too, and in our case in a way a subjective measure.
Therefore, maybe other factors might influence value perception when meas-
ured at a lower level too.

8.4. Threats to Validity

Construct Validity

Regarding the degree to which a test measures what it claims to be measuring
a remark is in place on the manual collection of data, and especially on
function point analysis (FPA). However, we tried to mitigate risk regarding
collected data by building in several checks and balances in our approach. All
project data was reviewed with the applicable project manager, with applica-
ble release manager(s), and with (business) executives. All cost related data
was also reviewed by the financial controllers of the applicable software com-
panies.

We used functional documentation as a source for FPA; a consequence is
that low quality documentation could have led to low quality FPAs, however,
we thoroughly reviewed all sets on completeness and correctness.

The fact that we used electronic surveys to ask stakeholders of software
deliveries for perceptions on satisfaction and value, can be looked upon as a
threat to construct validity. We realize that perceptions are different from real
measurements, and we certainly prefer to measure real business value.
However, as described earlier holistic measurements on value are often diffi-
cult to make for a single delivery, and such measures cannot easily be related
to individual software deliveries, due to complexity of influencing factors. We
tried to mitigate the effect of subjectivity of stakeholders by including repre-
sentatives from both IT and business in our surveys, and by implementing the
surveys as an operational capability. All surveys were performed in an anony-
mous way.

Internal Validity

By normalizing all project data with the functional size in FPs we warranted
internal validity, the extent to which a causal conclusion is based on our

206 Chapter 8

study. This enabled objective comparison of delivery performances and mini-
mizes systematic error.

A threat to internal validity that we acknowledge is the fact that ‘fishing
for p-values’ might hold a risk that some of the correlations we found are a
coincidence. We limited this effect by making statistical corrections were ap-
plicable.

In the collection of data of finalized projects, we asked project managers,
Scrum-masters, or product owners to provide us with relevant project or
delivery data. We also asked stakeholders to provide us with the applicable
delivery approach, where we used ‘plan-driven’ for projects that were
reported to be performed in a waterfall kind of way. Deliveries that were
performed in an agile way were marked as ‘Scrum’ in our repository. We
realize that many hybrid forms or lighter forms of Scrum could be applicable
too. The actual implementation of the delivery methodology is not studied in
detail in our research.

External Validity

Concerning external validity, the extent to which the results of our study can
be generalized to other companies than assessed in our study, we argue that
our different case studies and their findings relate to specific situations,
maturity, and development approaches in different software companies, and
therefore cannot be generalized without much reluctance to other companies.

Also, findings in our study on huge differences between software project
repositories indicate that generalization of our findings is not a good ap-
proach for software companies that want to use our results. Our best advice
would be to start collecting and analyzing data of own finalized software deliv-
eries, by making use of our collection and analysis methods.

Study Reliability

Finally, a threat related to the study’s reliability lies in the fact that the author
of this thesis was personally involved as a software analytics consultant in all
case studies and data analysis activities.

However, we tried to avoid as much bias as possible by objectively looking
at the collected deliveries and by ensuring that all data was peer reviewed by
other members of the measurement teams and by stakeholders such as finan-
cial controllers, project managers, and release managers too. Peer review of
collected data of finalized projects was in all case studies implemented as a

Conclusions 207

mandatory quality assurance step in the measurement and analysis process.
The involvement as a consultant in practice might even be a prerequisite for
obtaining this kind of data, since it must provide value for the companies
concerned.

All data that we used within the scope of this thesis for quantitative analy-
sis is available for researchers and practitioners through the 4TU Centre for
Research Data (Huijgens, 2017a).

8.5. A reflection on the empirical methods used

Looking back over a period of four years of research on software project port-
folio performance improvements in practice, we feel it is valuable to discuss
the experiences with the research methods used by us. As explained in the
introduction on our research method and the evaluation in industry practice
in Chapter 1, we made use of an empirical approach, where we proposed a
model, that we subsequently evaluated through empirical studies in an indus-
trial context, in our case with case studies and surveys. Besides that, we per-
formed three data analysis studies on the historic dataset collected in the
EBSPM research repository.

8.5.1. Case Studies

We performed four case studies in typical industry settings. Three of them
being single case studies, one was a multiple case study that was performed
in two different companies. We performed all case studies in an iterative way,
meaning that we designed each study as a logical follow-up of earlier per-
formed ones. Although our main focus from the start was on ‘how to measure
value and satisfaction?’, the requirements of each separate study were largely
determined by the practical context. We designed all case studies according
to theory on case studies (Wohlin, et al., 2000) (Yin, 2008) (Runeson et al.,
2012). Yet, a challenge was that in the setup and conducting of the case
studies we were driven by continuously changing strategies within the
companies where the studies were conducted. This forced us to opt for a
flexible setup of our case studies. In a way, one might argue that we performed
some form of action research instead of case studies by-the-book.

We would like to emphasize that this phrase "changing strategies" might
seem to imply being-out-of-control or indecisiveness, but that was not the

208 Chapter 8

case. The applicable companies where continuously in ongoing transfor-
mations of their software delivery teams. One company was transforming
towards a new, long-term strategic alliance with an Indian external supplier.
All applicable companies were amid implementing new ways of working,
often agile (Scrum) or DevOps. And all companies had clearly made a con-
scious choice to organize their software delivery in an agile and iterative way.
As the Agile Manifesto (Beck, et al., 2001) says it; they were responding to
change over following a plan.

Based on our observations in practice, we assume it would be useful for
the software engineering research community to further study the back-
grounds of conducting case studies in a practical situation with a continuously
changing context. In a way this is already observed by (Runeson et al., 2012),
where they refer to (Benbasat et al., 1987) mentioning the lack of experi-
mental control. We feel that additional guidelines for researchers in practice
- applying to modern development approaches - would be helpful. We believe
that alike development of software solutions in industry, the pursuit of a
steady heartbeat, two-weekly sprints, prioritizing a backlog, and organizing
demos and retrospectives, can contribute significantly to a greater probability
of successful case studies performed in industry.

8.5.2. Surveys, electronic questionnaires, and interviews

Within the scope of our research we performed electronic surveys in three
studies. In one study, the electronic surveys were completed with a series of
structured interviews with project stakeholders. Although we expected to
encounter resistance among the project stakeholders when filling in elec-
tronic questionnaires, this has not been the case in practice.

We assume that the fact that we implemented the electronic question-
naires from the start as an operational practice right after finalizing a release,
helped a lot here. People that were involved in a release – such as software
developers, testers, release managers, project managers, product owners, and
Scrum-masters - soon became accustomed to receiving a questionnaire for
the completion of a project for each project that was released to production.

However, a trend that we observed was that as software organizations
grow more into automation and continuous delivery, the amount of surveys

Conclusions 209

increases drastically. Mature software companies tend to implement continu-
ous experiments, especially regarding customer experience in frontend envi-
ronments such as Internet and mobile apps.

Based on our observations in practice we assume that software companies
more and more need to find a balance between mining their continuous deliv-
ery systems for data, instead of surveying stakeholders in delivery teams and
collecting qualitative data through electronic surveys, to prevent survey fa-
tigue.

We think that a final remark regarding structured interviews is in place.
In one of the case studies - described in Chapter 5 - we have also conducted
interviews with involved stakeholders in a series of releases on a legacy appli-
cation in addition to electronic questionnaires. We observed that especially
conducting interviews with directly involved can greatly contribute to a better
understanding of the backgrounds of software deliveries. This is underlined
by the fact that the particular case study is the only one in this thesis that has
been given a specific name that is being cherished by all the parties involved:
the Cecil-case.

8.5.3. Data Analysis Studies

Within the scope of our research three data analysis studies were performed.
In the first analysis study – captured in Chapter 4 – we analyzed our initial
subset of finalized software projects from the EBSPM research repository for
success- and failure factors. In this study, we did not formally design the
collection of all data upfront, resulting in the fact that we had to do the analy-
sis with the set of metrics as collected. In the second analysis, we compared
the projects in our EBSPM research data set with a subset of projects from
the ISBSG repository. In both studies data quality played a decisive role. Map-
ping both studies on a formal standard for software metrics, such as ISO/IEC
25023 (Nakai et al., 2016), might help to solve data quality issues in future.

8.6. Implications

In this concluding section, we describe the implications of our findings for
successively three aspects of our research practice: research, industry, and
education.

210 Chapter 8

8.6.1. Implications for Research

Outlining a look at follow-up research in the near future in the field of soft-
ware economics, we elaborate a little deeper on four emerging aspects in
software economics research that we believe to be of great importance for
valorization to the software industry.

Software analytics with industry involvement

In ongoing work that we perform in close cooperation with ING Bank, we
examine whether our model can be applied in a continuous delivery environ-
ment in a software company with worldwide more than 300 teams, that per-
forms more than 2500 deployments to production each month on more than
750 different applications (Huijgens et al., 2017b). We performed an explora-
tory case study that focuses on the classification based on predictive power of
software metrics, in which we analyzed log data derived from two initial
sources within this pipeline.

If this exploratory study explains something unequivocally, it is that auto-
mation is an undeniable necessity for software analytics. The scale of teams
delivering ongoing software solutions becomes that large, that manual collec-
tion of data – as we did within the scope of this thesis – is not a futureproof
option for many software companies. Based on the outcomes of our explora-
tory study, we argue that mining data from the logs of tools within the delivery
pipelines, combined with advanced statistical analysis of the log data, to iden-
tify metrics that correlate strongly might be an interesting way forward for
software analytics.

Based on the relative low amount of related work about automation of
software analytics we have the impression that the research community lags
the developments in industry about continuous delivery and automation of
pipelines and the use of software analytics to support decision-making.
Where many software companies are already implementing solutions for au-
tomation, or start to think about these, researchers seem to have difficulties
setting up collaborations with industry on data collecting for research pur-
poses.

We regard this disadvantage in research communities in this area as a
major threat to future research into the backgrounds of continuous delivery
and automation of software development pipelines. Subjects such as software
analytics in a continuous delivery context should be on top of the agenda of

Conclusions 211

contemporary software engineering researchers, to eliminate the backlog that
is currently there.

Automation of dynamic dashboards for decision-making

Where in the example in the former Subsection the aspect of automation and
building a performance dashboard itself is not within the scope of the analy-
sis, we expect that automation is one of the main requirements in future re-
search and technical solutions that focus on enabling software analytics in
software companies.

The ultimate goal of our analysis is to explore good practice and bad prac-
tice, as we described in Chapter 3 of this thesis; e.g. ‘good’ deliveries (being
better than average within the scope of a software delivery team) and ‘bad’
deliveries (being worse than average within the scope of a team) (Huijgens et
al., 2014c). By doing so we expect to identify success factors that help software
delivery teams to create better deliveries in future releases, and failure factors
that help teams to prevent from ‘bad’ deliveries.

Driven by the ongoing objective within software companies to automate
the delivery pipeline, we expect that automation will also be a major require-
ment for software analytics components within such pipelines. An emerging
challenge for software measurement is the fact that software analytics solu-
tions should be as far as possible automated too, to be successfully applicable
in industry.

Functional Size Measurement threatens to disappear from the metrics palette

An additional challenge as a result from this strive towards automation might
be the quest for a useful, and powerful normalizer for software deliveries. In
this thesis, we use functional size measurement (FSM), in our case IFPUG
Function Points (IFPUG, 2009), to compare performances of different soft-
ware deliveries. However, we expect that due to the threat of automation FSM
threatens to disappear from the software metrics palette due to its manual
processing, and due to its somewhat old-fashioned and subjective imago
among software engineering stakeholders.

Functional size in its actual form, a commonly used industry standard that
measures the scope of software deliveries, and that we assess in the EBSPM
approach to be a significantly strong metric with excellent properties for nor-
malizing software deliveries, simply does not fit in a highly automated contin-

212 Chapter 8

uous delivery pipeline approach. Yet, at the same time the strongest correla-
tions are to be found between size related measurements and cost, duration,
and number of defects, as we showed in our research (Huijgens et al., 2014c)
(Huijgens et al., 2017d).

A potentially interesting solution to this FSM problem might be compres-
sion to measure the amount of new functionality or changes in software qual-
ity as demonstrated by (Raemaekers et al., 2015).

We argue that automation of FSM in whatever form, is unmistakable
needed in software companies that mature in an agile way of working. Re-
markably enough FSM stakeholders from industry and research do recognize
the need for automation. A vast majority (87%) of 336 FSM stakeholders that
answered a survey that we performed in 2016 on the importance of automated
FSM based on code (Huijgens et al., 2015b) considers FSM to be an important
tool for decision-making. 42% Of the respondents says automated FSM based
on code is important, although many are uncertain (neutral) about this. A
clear majority of respondents (50%) expects it to be difficult, while many are
neutral on the question whether this idea will be difficult.

Based on the survey outcomes, we speculate that a solution for automated
FSM that focusses on program code can help both FSM experts and decision
makers. Such a solution can help in agile and highly automated delivery envi-
ronments. Due to the assumed difficulties of automation of FSM based on
code – the difference between a functional and a technical view, and the diver-
sity in programming languages – we think that a focus within the research
community on translation from technical programming code towards func-
tional counting rules might be of importance. We assume that close coopera-
tion with FSM communities on this topic will be valuable for translation
towards industry (Huijgens et al., 2015b).

Integrating value and stakeholder satisfaction

In its ultimate form, the ideas as described above can lead to a fully automated
software analytics solution that can be implemented in a software company’s
continuous delivery pipeline. In such a scenario, a model alike the cost dura-
tion matrix might form the core element of a dynamic performance dash-
board. Based on ongoing analysis of log data of the tools from this pipeline,
the dashboard focuses on strong metrics; metrics that have strong prediction
power on to be started and ongoing software deliveries.

Conclusions 213

Yet, compared to the research as described in this thesis one important set
of metrics is still missing in such a scenario. Qualitative metrics such as stake-
holder satisfaction and perceived value are not stored in any of the tools
within the pipeline, and therefore are not included in the analysis underneath
the automated dashboard. Driven by the importance of such qualitative met-
rics to understand the causes behind a software company’s performance as
depicted in quantitative metrics, we argue that an automated solution should
include a subset of both quantitative and qualitative metrics. There is a need
for non-process metrics that are not in scope of automated process tools, and
that should be collected through qualitative analysis such as electronic sur-
veys or interviews and text analysis.

As the ultimate goal, we imagine a fully automated software analytics solu-
tion that can easily be ‘plugged in’ into a software company’s continuous de-
livery pipeline, combined with regular electronic surveys and interview ses-
sions to understand the causes behind a company’s performance as depicted
in quantitative performance indicators. To get there, substantial additional
research is required on ways to automatically create performance dashboards
that have sufficient learning ability to help software companies to realize
actual innovation. We need to better understand what metrics really help to
create improvement, and what metrics can be ignored, and how qualitative
metrics can help us to understand the reasoning behind change.

8.6.2. Implications for Industry

Although we positioned EBSPM, alike EBSE, as an empirical study in the field
of software economics, we felt from the start that especially in the software
industry some challenges were applicable.

Data Collection Issues

A first hurdle that we had to take had to do with the way data was collected.
At the start of the study, we already had access to a dataset of 352 completed
projects from three large software organizations. While this ensured that we
could quickly start with the analysis of the project data, and we had to spent
relatively little time on data collection, this meant that we had to do with the
information we had at that time. For most of the projects in the dataset no
additional data could be collected, since the projects were finalized and dis-
charged.

214 Chapter 8

During the study, we added more software projects to this initial dataset,
building up to a research repository of more than 500 finalized software pro-
jects in four different companies.

A major drawback regarding the practical method of data collection was,
that we regularly had to deal with challenges related to data quality. An exam-
ple of such issues is the limited availability of effort data, especially in globally
distributed environments. Due to this, we decided to focus our study on cost
data, instead of effort data. The main rationale for this decision was, that we
experienced that decision makers in practice generally seem to base their
decisions on costs, and to a much lesser extent on effort.

Preliminary results with collecting data from the logs of tools in the auto-
mated pipeline in a continuous delivery organization taught us that automa-
tion as such is not going to solve these data quality issues. Silo-behavior by
team members that ‘own’ tools in a pipeline, and badly linked data between
different tools in a pipeline cause new challenges for software analytics. Yet,
we assume that automation makes that once such problems are solved, a ma-
ture solution can set a standard for future use.

Huge diversity in development aspects

Because of the emphasis in our research on the entire software project portfo-
lio of organizations, diversity in our research repository was huge. The dataset
held data from once-only projects to release-based deliveries, from delivery
approaches such as plan-driven (waterfall) to agile (Scrum), with many hy-
brid in-betweens, from in-house performed projects to all varieties of sourc-
ing (offshore, outsourcing, globally distributed development teams), a mix of
business domains (e.g. internet and mobile apps, data warehouse and busi-
ness intelligence solutions, legacy payment systems, client management ap-
plications), and a huge variety of programming languages. An important prin-
ciple of our study was to develop an approach that could handle this large
variety of development issues.
 An important implication for industry regarding this observation is, that
it makes sense for software companies to consider these when planning new
projects. Estimation practices can be highly influenced by differences in busi-
ness domains and delivery approaches. Companies would benefit when they
collect historic data from their own projects, instead of relying on external
benchmark sources.

Conclusions 215

Driven by application in industry

A third challenge is about valorization. The practical application of the results
of the study into the daily practice of software organizations that participated,
largely determined the chosen approaches and methods. To address this chal-
lenge, we organized the study in an industry-oriented way: where possible we
opted for a case study as the appropriate method to perform research. An
important reason to do so was the fact that the author of this thesis performed
the Ph.D. besides his daily job as a software analytics consultant. For all case
studies that are included in our research we worked in close cooperation with
software companies that hired the author to help them improve their software
delivery processes.
 An aspect that we did not study in this thesis, but that might play an im-
portant role in the success of our approach, is the extent to which our empiri-
cal findings can be disseminated in industry. Practitioners are positive to-
wards software engineering research (Lo, Nagappan, & Zimmermann, 2015).
Yet, at the same time they have very strong beliefs that are primarily formed
based on personal experience, rather than on findings in empirical research,
and that these beliefs do not necessarily correspond with actual evidence
(Devanbu, Zimmermann, & Bird, 2016). Maybe aspects of game development
can play an important role in future research on this topic (Murphy-Hill,
Zimmerman & Nagappan, 2014).
 This implies that software companies can benefit from setting up research
in a way that fits their context. For example software companies could sup-
port employees to perform a part-time Ph.D. besides their daily job. Another
example is to incorporate staff in ongoing research activities, so that research
fits more closely with the daily practice of software engineers.

Steering on ‘within time and budget’ does not help to really improve

The outcomes of our multiple case study indicate, that “within time and cost”
does not automatically lead to satisfied stakeholders. Based on the outcomes
of our study we argue that executives that define project success as ‘finishing
within budget and time’ are blinkered, and therefore neglect to really improve
their companies’ performance.

8.6.3. Implications for Education

Looking at the implications of our findings for education, we argue that espe-
cially the trends on automation of delivery pipelines, and the focus at building

216 Chapter 8

automated solutions for software analytics should be addressed to students
in the domain of software engineering too. As in industry and research, soft-
ware analytics also seems to be lagging as a subject of education. The first
focus in education is at the ‘core’ subjects of software engineering – design,
build, test, deploy, architecture – and software analytics comes in scope once
these are matured. A risk that comes with this approach is that setting up
proper education about software analytics comes too late for industry to be of
real use, and specialists in industry will setup their own education channels
for this purpose.

Furthermore, we assume that the success- and failure factors that we iden-
tified in our research should be taught to students.

8.7. Conclusions

Looking back at our research period the question can be raised ‘What do we
know now, what we not yet knew when we started our study?’

We developed an approach, including an accompanying tool that can suc-
cessfully be used in industry to benchmark the performance of a company’s
software portfolio and that helps analyzing a company’s performance in terms
of time, cost, quality, stakeholder satisfaction, and perceived value. The data
that we collected in our repository gave us a deeper insight into the factors
that are related with success and failure of software projects, from a portfolio
management point of view.

We learned, among others by comparing the characteristics of our reposi-
tory with other large repositories that it is wise for software companies to
collect and analyze their own historic software portfolio data, because cross-
company large differences in performance are found. We obtained a better
understanding of the differences and equalities between effort and cost of
software deliveries. Additionally, we studied the effects of pricing of software
deliveries, giving us a better insight into ways to support decision-making.

Based on the results of ongoing research, we expect that automation of the
measurement and analysis process, based on statistics to calculate strong
relationships, is a direction in which the analysis of software portfolio (soft-
ware analytics) is the to develop strongly in the coming years.

List of Abbreviations 217

List of Abbreviations

AFP Automated Function Points, a standard based on the IFPUG
method (Object Management Group (OMG), 2014) that was de-
veloped by the Object Management Group (OMG).

COSMIC Common Software Measurement International Consortium,
started in 1998, that developed an advanced, open-source method
of measuring a functional size of software, as defined in ISO/ IEC
19761:2011: COSMIC FSM method (COSMIC, 2011).

EBSE Evidence-Based Software Engineering, an approach concerned
with determining what works, when and where, in terms of
software engineering practice, tools and standards, inspired by
the evidence-based paradigm as employed in clinical medicine,
adapting the evidence-based practices to meet the rather different
characteristics of Software Engineering, and the consequences
that these characteristics have for empirical studies (Kitchenham,
Dybå, & Jørgensen, 2004).

EBSPM Evidence-Based Software Portfolio Management.
ISBSG International Software Benchmarking Standards Group: a not-

for profit organization, founded in 1997 by a group of national
software metrics associations, that aims to promote the use of IT
industry data to improve software processes and products.

IFPUG International Function Point User Group, a non-profit, member-
governed organization founded in 1986, that owns Function Point
Analysis (FPA) as defined in ISO standard 20296:2009 which
specifies the definitions, rules and steps for applying the IFPUG's
functional size measurement (FSM) method (IFPUG, 2009).

FP Function Point, a unit of measurement that expresses the quantity
of user functionality of an information system (as a product or as

218

a project). Function points are used to compute a functional size
measurement (FSM) of software.

FPA Function Point Analysis, designed by Albrecht in 1979 (Albrecht,
1979) to estimate size of software delivery by means of user func-
tionality.

FSM Functional Size Measurement, is an industry standard to measure
size of software engineering activities. With ISO/ IEC 14143 as an
umbrella standard, five FSM methods are certified by ISO as an
international standard:
1. ISO/IEC 19761:2011: COSMIC FSM method (COSMIC, 2011);
2. ISO/IEC 20926:2009: IFPUG FSM method (IFPUG, 2009);
3. ISO/IEC 20968:2002: MkII FPA FSM method (UKSMA,

2002);
4. ISO/IEC 24570:2005: Nesma FSM method version 2.1

(Nesma, 2005);
5. ISO/IEC 29881:2010: FiSMA FSM method version 1.1 (FiSMA,

2010).
Nesma Netherlands Software Metrics user Association, a non-profit,

member-governed Netherland’s-based organization founded in
1989, that owns Function Point Analysis (FPA) as defined in ISO
standard 24570:2005: Nesma FSM method version 2.1 (Nesma,
2005).

OMG Object Management Group, an international, open membership,
not-for-profit technology standards consortium, founded in 1989,
that developed a standard on Automated Function Points (AFP)
based on the IFPUG method (Object Management Group (OMG),
2014).

SLR Structured Literature Review, a tool developed by Kitchenham et
al. (Kitchenham, Dybå, & Jørgensen, 2004) within their EBSE-
approach, to inventory research studies according to an explicit
and reproducible method.

SP Story Point, a roughly estimate by experience and analogue of the
relative ‘size and complexity’ of each user story compared to other
user stories in the same project. Story Points are used to deter-
mine velocity of Scrum-teams.

Samenvatting 219

Samenvatting

Softwarebedrijven, zoals banken, verzekeraars, telecombedrijven en over-
heidsorganisaties, geven jaarlijks tientallen tot soms honderden miljoenen
euro’s uit aan het maken van nieuwe software en onderhouden van bestaande
(legacy) systemen. Daarbij lopen die bedrijven tegen een aantal problemen
op. Zo is het niet gemakkelijk om te bepalen welke softwareprojecten nu suc-
cesvol zijn en welke juist niet, en wat daarvan dan de redenen zijn. Dit speelt
met name een rol in grote en hybride software portfolio’s waarin naast nieuw-
gebouwde applicaties vaak ook oude en complexe legacy systemen voorko-
men.

Een ander probleem is dat veelal naar bestede uren (effort) en kosten
wordt gekeken alsof die equivalent aan elkaar zijn. Veel onderzoekers stellen
dat kosten van softwareprojecten eenvoudig af te leiden zijn van de bestede
uren. Maar in de praktijk blijkt dit niet waar te zijn, en zeker wanneer je kijkt
naar de prijs die betaald wordt voor softwareprojecten, dan zie je dat die vaak
niet transparant is en niet gebaseerd op een deugdelijke onderbouwing.

Kosten, doorlooptijd en kwaliteit – ook wel de core metrics genoemd –
zeggen niet alles. We weten niet goed hoe die core metrics zich verhouden tot
tevredenheid (stakeholder satisfaction) en de opgeleverde waarde van pro-
jecten. Zijn projecten die relatief weinig kosten en snel worden opgeleverd
ook waardevol? Of ligt dat toch ingewikkelder?

En een laatste probleem gaat over de toenemende behoefte in het bedrijfs-
leven aan manieren om te meten en te analyseren die de toenemende graad
van automatisering en software analytics ondersteunen.

Als een antwoord op die problemen hebben we in het kader van ons
onderzoek een model ontwikkeld; Evidence-Based Software Portfolio Ma-
nagement (EBSPM). EBSPM is gericht op het helpen van softwarebedrijven
om meer en beter inzicht te krijgen in de prestaties van software engineering
projecten in hun portfolio. De aanpak bestaat uit drie onderdelen. Het eerste

220

onderdeel is een beschrijving van de manier waarop we data verzamelen,
analyseren en vergelijken met andere soortgelijke projecten. Het tweede is
een dataset waarin we alle informatie die we verzamelen van afgeronde
softwareprojecten op een eenduidige manier vastleggen; de EBSPM research
repository. En het laatste onderdeel is een performance dashboard waarin
we de prestaties van een softwarebedrijf of een subset van projecten vergelij-
ken (benchmarken) met die van anderen.

Omdat we ons onderzoek hebben uitgevoerd in nauwe samenwerking met
software bedrijven hebben we ervoor gekozen om voor dat onderzoek weten-
schappelijke methodes te kiezen die zoveel mogelijk aansluiten bij die nauwe
band tussen wetenschap en praktijk. In dit proefschrift zijn hoofdstuk 3 tot
en met 9 ongewijzigde weergaven van al eerder gepubliceerde wetenschappe-
lijke artikelen. En een groot deel van die publicaties is gebaseerd op een prak-
tijkstudie (case study) in combinatie met elektronische vragenlijsten (sur-
veys) en in één geval ook gestructureerde interviews.

Eén van de onderzoeksvragen die we in ons onderzoek stelden gaat over
factoren die succes en falen van softwareprojecten in een portfolio kunnen
verklaren. We vonden vier factoren die in sterke mate bepalend waren voor
succesvolle softwareprojecten; een vast terugkerend oplevermoment (steady
heartbeat), een releasematige manier van werken, agile (Scrum) als ontwik-
kelmethode en een vast en ervaren team. We vonden daarnaast ook factoren
die daarentegen juist kenmerkend waren voor slecht presterende software-
projecten, zoals projecten voor wet- en regelgeving, afhankelijkheden van
andere systemen of projecten, projecten waarin gebruik wordt gemaakt van
nieuwe technologie en teams met veel wijzigingen en veel onervaren teamle-
den.

Verder hebben we gekeken naar de verschillen tussen de bestede uren in
softwareprojecten (effort) en de kosten daarvan. We ontdekten dat bestede
uren en kosten weliswaar aan elkaar gerelateerd zijn, maar dat die relatie
complex is en dat kosten niet altijd eenduidig kunnen worden berekend op
basis van bestede uren alleen. We vonden grote verschillen tussen de presta-
ties in termen van tijd, geld en kwaliteit van verschillende organisaties én
tussen verschillende business domeinen. We adviseren organisaties daarom
altijd hun eigen historische gegevens van afgeronde softwareprojecten te
verzamelen en niet zondermeer te vertrouwen op gegevens van andere bedrij-
ven of openbaar beschikbare onderzoeksgegevensbestanden.

Samenvatting 221

Naast de prestatiekenmerken als tijd, geld en kwaliteit hebben wij onder-
zocht wat de effecten zijn van tevredenheid van mensen die bij een software-
project betrokken zijn, zoals projectleiders, teamleden en release managers,
en de toegevoegde waarde die een project oplevert. Hiervoor ontwikkelden
wij twee specifieke metrieken; stakeholder satisfaction en perceived value.
Ons onderzoek laat zien dat projecten die binnen budget en op tijd (volgens
de geplande kosten en opleverdatum) presteren niet automatisch leiden tot
tevreden stakeholders. Vooral een focus op een korte doorlooptijd, goede
communicatie en optimale samenwerking binnen een project leidt tot meer
tevreden betrokkenen. Later dan gepland opleveren, een lange doorlooptijd
en veel fouten zijn factoren die juist leiden tot ontevreden betrokkenen.

Op basis van de uitkomsten van lopend onderzoek, verwachten wij dat
automatiseren van het meet- en analyseproces waarbij op basis van statistiek
dergelijke sterke relaties worden berekend een richting is waarin het analyse-
ren van software portfolio’s (software analytics) zich de komende jaren sterk
zal ontwikkelen.

Curriculum Vitae 223

Curriculum Vitae

Hennie Huijgens was born on November 11th 1957 in Alphen aan den Rijn,
The Netherlands. He lives in Amsterdam, The Netherlands, is married and
has two children.

Education

2013 - 2018 (Part-time) PhD at Delft University of Technology (TU Delft);
Evidence-Based Software Portfolio Management.

2008 - 2011 MSc in Information Management, University of Amsterdam.
1984 - 1986 Academy of Art in Amsterdam, the Netherlands (1e degree

teaching art and art history).
1979 - 1984 Teacher education VL/VU in Amsterdam, the Netherlands

(2e degree teaching art).
1975 - 1979 Graphical Technical School in Amsterdam, the Netherlands.

Working Experience

2007 - present Goverdson (own company); Software Analytics Specialist.
2005 - 2007 Amsterdam University of Applied Science; Senior Account

Manager IT & Facilities.
2002 - 2005 PinkRoccade Atribit; Project Manager / Senior Consultant.
1998 - 2002 PinkRoccade Finance; IT Consultant.
1993 - 1998 PinkRoccade Finance; IT Professional.
1987 - 1993 Fokker Aircraft; IT Professional.
1986 - 1987 Fokker Aircraft; Console Operator.

References 225

References

Abran, A., Dumke, R., Desharnais, J., Ndyaje, I., & Kolbe, C. (2002a). A strategy for a credible &

auditable estimation process using the ISBSG International Data Repository. IWSM.
Abran, A., Silva, I., & Primera, L. (2002b). Field studies using functional size measurement in

building estimation models for software maintenance. Journal of Software Mainte-
nenance and Evolution: Research and Practice, 14 (John Wiley & Sons, Ltd.), 31-64.

Abran, A., Desharnais, J.-M., Zarour, M., & Demırörs, O. (2014). Productivity based software
estimation model: an economics perspective and an empirical study. 9th International
Conference on Software Engineering Advances–ICSEA.

Agarwal, N., & Rathod, U. (2006). Defining ‘success’ for software projects: An exploratory
revelation. International journal of project management, 24(4), 358-370.

Albrecht, A. (1979). Measuring Application Development Productivity. Joint Share Guide, and
IBM Application Development Symposium 14-17 October 1979, (pp. P.83-92).
Monterey, California.

Andreesen, M. Why Software is Eating the World. The Wall Street Journal. August 20, 2011.
Angelis, L., Stamelos, I., & Morisio, M. (2001). Building a Software Cost Estimation Model Based

on Categorical Data. IEEE Seventh International Software Metrics Symposium
(METRICS). London, UK.

Arnold, M., & Braithwaite, T. (2015, June 18). Banks’ ageing IT systems buckle under strain.
Financial Times.

Atkinson, M., Sinha , A., Hass, S., Colman, S., Kumar, R., Brod, M., & Rowland, C. (2004). Valida-
tion of a general measure of treatment satisfaction, the Treatment Satisfaction Ques-
tionnaire for Medication (TSQM), using a national panel study of chronic disease.
Health and Quality of Life Outcomes, 2(12). doi:DOI: 10.1186/1477-7525-2-12

Atkinson, R. (1999). Project management: cost, time and quality, two best guesses and a
phenomenon, its time to accept other success criteria. International journal of project
management, 17(6), 337-342.

Auquier, P., Pernoud, N., Bruder, N., Simeoni, M., Auffray, J., Colavolpe, C., & Sapin, C. (2005).
Development and Validation of a Perioperative Satisfaction Questionnaire. Clinical
Science, Anesthesiology 6(102), 1116-1123.

Bala, A., & Abran, A. (2016). Use of the Multiple Imputation Strategy to Deal with Missing Data
in the ISBSG Repository. Journal of Information Technology & Software
Engineering, 6(1), 1-12.

226

Barki, H., Rivard, S., & Talbot, J. (1993). Toward an assessment of software development risk.
Journal of Management Information Systems, 10, 203-223.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Addison-Wesley.
Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler, M., & Kern, J.

(2001). Manifesto for Agile Software Development. Retrieved from www.agile-
manifesto.org

Benestad, H., & Hannay, J. (2011). A comparison of model-based and judgment-based release
planning in incremental software projects. Proceedings of the 33rd International
Conference on Software Engineering. ACM.

Bensabat, I., Goldstein, D., & Mead, M. (1987). The case research strategy in studies of infor-
mation systems. MIS Q, 11(3). doi:10.2307/248684

Bergeron, F., & St-Arnaud, J.-Y. (1992). Estimation of information systems development efforts:
a pilot study. Information & Management, 22(Elsevier), 239-254.

Bhardwaj, M., & Rana, A. (2016). Key Software Metrics and its Impact on each other for Software
Development Projects. ACM SIGSOFT Software Engineering Notes, 41(1), 1-4.

Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., & Grünbacher, P. (2006). Value-Based Software
Engineering. Berlin Heidelberg: Springer.

Boehm, B., (1984). Software Engineering Economics. IEEE Transactions on Software
Engineering, 10(1), 7-19.

Boehm, B., Abts, C., & Chulani, S. (2000a). Software development cost estimation approaches -
A Survey. Annals of Software Engineering, 10, 177-205.

Boehm, B., & Sullivan, K. (2000b). Software Economics: A Roadmap. ACM Future of Sofware
Engineering. Limerick, Ireland.

Boehm, B., (2003). Value-Based Software Engineering. ACM SIGSOFT Software Engineering
Notes, 28(2), 1-12.

Boehm, B., (2006a). A View of 20th and 21st Century Software Engineering. IEEE International
Conference on Software Engineering (ICSE). Shanghai, Ghina.

Boehm, B., (2006b). Some future trends and implications for systems and software engineering
processes. Systems Engineering, 9(1), 1-19.

Bollen, K., & Jackman, R. (1990). Regression Diagnostics: An Expository Treatment of Outliers
and Influential Cases. In J. Fox, & J. Long, Modern Methods of Data Analysis (ISBN
0-8039-3366-5 ed., pp. 257–91). Newbury Park, CA: Sage.

Briand, L., Langley, T., & Wieczorek, I. (2000). A replicated assessment and comparison of com-
mon software cost modeling techniques. ACM Proceedings of the 22nd International
Conference on Software Engineering.

Bryde, D. (2005). Methods for managing different perspectives of project success. British
Journal of Management, 16(2), 119-131.

Buglione, L., & Ebert, C. (2011). Estimation tools and techniques. IEEE Software, 28(3), 91-94.
Charette, R. N. (2005). Why Software Fails. IEEE Computing / Software, September, 1-9.
Cheikhi, L., & Abran, A. (2013). Promise and ISBSG Software Engineering Data Repositories: A

Survey. Joint Conference of the International Workshop on Software Measurement
and the 2013 Eighth International Conference on Software Process and Product
Measurement (IWSM-MENSURA). Ankara, Turkey.

References 227

Chen, H.-M., Kazman, R., Garbajosa, J., & Gonzalez, E. (2016). Toward big data value
engineering for innovation. ACM Proceedings of the 2nd International Workshop on
BIG Data Software Engineering.

Chidambara, R., & Senthil Kumar, M. (2016). Contribution of risk assessment techniques in
effort estimation of software development process. PARIPEX-Indian Journal of
Research, 5(4).

Chow, T., & Cao, D.-B. (2008). A survey study of critical success factors in agile software projects.
The Journal of Systems and Software, 81, 961-971.

CMMI Product Team. (2010). CMMI for Development, Version 1.3. Hanscom: Carnegie Mellon.
COSMIC. (2011). COSMIC-FFP: ISO/IEC 19761:2011 - Software engineering. A functional size

measurement method. London: Common Software Measurement International
Consortium (COSMIC).

Czarnacka-Chrobot, B. (2009). The role of benchmarking data in the software development and
enhancement projects effort planning. Proceedings of the 2009 conference on New
Trends in Software Methodologies, Tools and Techniques.

Czarnacka-Chrobot, B. (2010). Rational pricing of business software systems on the basis of
functional size measurement: a case study from Poland. Proceedings 7th Software
Measurement European Forum (SMEF). Rome, Italy.

Dagnino, A. (2013). Estimating Software-Intensive Projects in the Absence of Historical Data.
IEEE - International Conference on Software Engineering (ICSE). San Francisco, CA,
USA.

Dekkers, C., & Forselius, P. (2010). Scope Management: 12 Steps for ICT Program Recovery.
CROSSTALK The Journal of Defense Software Engineering, January / February, 16-
21.

DeMarco, T. (1984). An algorithm for sizing software products. ACM SIGMETRICS Performance
Evaluation Review, 12(2), 13-22.

Deng, K., & MacDonell, S. (2008). Maximising data retention from the ISBSG repository.
Proceedings of the twelfth International Conference on Evaluation and Assesment of
Software Engineering (EASE).

Déry, D., & Abran, A. (2005). Investigation of the effort data consistency in the ISBSG repository.
Proceedings of the 15th Intern. Workshop on Software Measurement.

Deursen, A. van, Klint, P., & Verhoef, C. (1999). Research issues in the renovation of legacy
systems. Springer Berlin Heidelberg.

Devanbu, P., Zimmermann, T., & Bird, C. (2016). Belief & evidence in empirical software engi-
neering. Proceedings of the 38th international conference on software engineering.
ACM.

Díaz-Pace, J., Villavicencio , C., Schiaffino, S., & Nicoletti, M. (2016). Producing Just Enough
Documentation: An Optimization Approach Applied to the Software Architecture
Domain. Journal on Data Semantics, 5(1), 37-53.

Dingsøyr, T., & Lassenius, C. (2016). Emerging themes in agile software development: Introduc-
tion to the special section on continuous value delivery. Information and Software
Technology, 77, 56-60.

Dybå, T. (2003). Factors of Software Process Improvement Success in Small and Large
Organizations: an Emperical Study in the Scandinavian Context. ESEC/FSE. Helsinki,
Finland.

228

Dybå, T. (2005). An Empirical Investigation of the Key Factors for Success in Software Process
Improvement. IEEE Transactions on Software Engineering, 31(5), 410-424.

Dybå, T., Kitchenham, B. A., & Jorgensen, M. (2005). Evidence-based software engineering for
practitioners. Software, IEEE, 22(1), 58-65.

Dye, L., & Pennypacker, J. (1999). Project Portfolio Management: Selecting and Prioritizing
Projects for Competitive Advantage. West Chester, Pennsylvania: Center for Business
Practices.

El Emam, K., & Günes Koru, A. (2008). A replicated survey of IT software project failures. IEEE
software, 25(5), 84-90.

Estler, H., Nordio, M., Furia, C. A., Meyer, B., & Scheider, J. (2012). Agile vs. Structured
Distributed Software Development: A Case Study. IEEE Seventh International
Conference on Global Software Engineering (ICGSE). Porto Allegre, Brasil.

Eveleens, L., & Verhoef, C. (2009). Quantifying IT forecast quality. Science of computer pro-
gramming, 74(11), 934-988.

Eveleens , L., & Verhoef, C. (2010). The rise and fall of the chaos report figures. IEEE software,
27(1), 30-36.

Faulk, S., Harmon, D., & Raffo, D. (2000). Value-Based Software Engineering (VBSE): A Value-
Driven Approach to Product-Line Engineering. First International Conference on
Software Product-Line Engineering.

Fernández-Diego, M., & González-Ladrón-de-Guevara, F. (2014). Potential and limitations of the
ISBSG dataset in enhancing software engineering research: A mapping review.
Information and Software Technology, 56(6), 527-544.

Ferreira, C., & Cohen, J. (2008). Agile systems development and stakeholder satisfaction: a
South African empirical study. ACM Proceedings of the 2008 annual research
conference of the South African Institute of Computer Scientists and Information
Technologists on IT research in developing countries.

Feyh, M., & Petersen, K. (2013). Lean software development measures and indicators-a
systematic mapping study. Lean Enterprise Software and Systems, 32-47.

Fink, L., & Lichtenstein, Y. (2014). Why project size matters for contract choice in software
development outsourcing. ACM SIGMIS Database, 45(3), 54-71.

Fischman, L., McRitchie, K., & Galorath, D. (2005). Inside SEER-SEM. Crosstalk - The Journal
of Defense Software Engineering, April, 26-28.

FiSMA. (2010). FiSMA FSM: ISO/IEC 29881 - Information technology – Software and systems
engineering – FiSMA 1.1 functional size measurement method. Helsinki: Finnish
Software Metrics User Association (FiSMA).

Fitzgerald, B., Stol, K., O'Sullivan, R., & O'Brien, D. (2013). Scaling agile methods to regulated
environments: An industry case study. 35th International Conference on Software
Engineering (ICSE). IEEE.

Fitzgerald, B., & Stol, K., (2015). Continuous software engineering: A roadmap and agenda.
Journal of Systems and Software, July(Elsevier), 1-14.

Foss, T., Stensrud, E., Kitchenham, B., & Myrtveit, I. (2003). A Simulation Study of the Model
Evaluation Criterion MMRE. IEEE Transactions on Software Engineering, 29(11),
985-995.

Gangadharan, G., Kuiper, E., Janssen, M., & Luttighuis, P. (2013). IT Innovation Squeeze:
Propositions and a Methodology for Deciding to Continue or Decommission Legacy

References 229

Systems, Grand Successes and Failures in IT. Public and Private Sectors,
International Federation of Information Processing, 481–494 .

Garre, M., Cuadrado, J., Sicilia, M., Charro, M., & Rodríguez, D. (2005). Segmented parametric
software estimation models: Using the em algorithm with the isbsg 8 database.
Information Technology Interfaces.

Gencel, C., & Demirors, O. (2008). Functional Size Measurement Revisited. ACM Transactions
on Software Engineering and Methodology, 17(3), 15:1-15:36.

Gilb, T., & Finzi, S. (1988). Principles of software engineering management (Vol. 11). Reading,
MA: Addison-Wesley.

Glass. (2002). Facts and Fallacies of Software Engineering. Addison Wesley.
Glass. (2005). IT Failure Rates-70% or 10-15%?. IEEE Software, 22(3), 110-112.
Glass. (2006). The Standish Report: Does It Really Describe a Software Crisis? Communications

of the ACM, 49(8), 15-16.
Gong, Y., & Janssen, M. (2012). From policy implementation to business process management:

Principles for creating flexibility and agility. Government Information Quarterly, 29,
61-71.

Green, P. (2011). Measuring the impact of scrum on product development at adobe systems.
IEEE 44th Hawaii International Conference on System Sciences (HICSS).

Hall, T., Rainer, A., & Baddoo, N. (2002). Implementing Software Process Improvement: An
Empirical Study. Software Process Improvement and Practice, 7, 3-15.

Hayes, B. (1998). Measuring customer satisfaction: Survey design, use, and statistical analysis
methods. ASQ Quality Press.

Heemstra, F., & Kusters, R. (1989). Controlling Software Development Costs: A Field Study.
International Conference on Organisation and Information Systems. Bled,
Yugoslavia.

Heemstra, F., & Kusters, R. (1991). Function point analysis: Evaluation of a software cost
estimation model. European Journal of Information Systems, 1(4), 223-237.

Heemstra, F. (1992). Software cost estimation. Information and Software Technology, 34(10),
627 - 639.

Hofner, G., Mani, V., Nambiar, R., & Apte, M. (2011). Fostering a high-performance culture in
offshore software engineering teams using balanced scorecards and project
scorecards. IEEE Sixth International Conference on Global Software Engineering.

Hopkins, W. (2000). A new view of statistics. Internet Society for Sport Science.
Huijgens, H., & van Solingen, R. (2013a). Measuring Best-in-Class Software Releases. IWSM-

MENSURA 2013 Joint Conference of the 23rd International Workshop on Software
Measurement and the 2013 Eighth International Conference on Software Process
and Product Measurement(IEEE), 137-146.

Huijgens, H., van Solingen, R., & van Deursen, A., (2013b). How To Build a Good Practice
Software Project Portfolio - Technical Report TUD-SERG-2013-019. Delft, The
Netherlands: Delft University of Technology.

Huijgens, H., & van Solingen, R. (2014a). A replicated study on correlating agile team velocity
measured in function and story points. Proceedings of the 5th International
Workshop on Emerging Trends in Software Metrics (WETSoM).

230

Huijgens, H., Gousios, G., & van Deursen, A. (2014b). Pricing via Functional Size: A Case Study
of 77 Outsourced Projects - Technical Report TUD-SERG-2014-012. Delft, The
Netherlands: Delft University of Technology.

Huijgens, H., van Solingen, R., & van Deursen, A. (2014c). How To Build a Good Practice
Software Project Portfolio? ICSE Companion 2014 Companion Proceedings of the
36th International Conference on Software Engineering (SEIP), IEEE, 64-73.

Huijgens, H. (2015a). Evidence-Based Software Portfolio Management. Doctoral Symposium of
the 2015 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM).

Huijgens, H., Bruntink, M., van Deursen, A., van der Storm, T., & Vogelezang, F. (2015b). An
Exploratory Study on Automated Derivation of Functional Size based on Code. ACM
Proceedings of the International Conference on Software and Systems Process
(ICSSP) (pp. 56-65). Austin, Texas, USA: Delft University of Technology.

Huijgens, H., Gousios, G., & van Deursen, A. (2015c). Pricing via Functional Size - A Case Study
of a Company’s Portfolio of 77 Outsourced Projects. ACM/IEEE 9th International
Symposium on Empirical Software Engineering and Measurement (ESEM). Beijing,
China.

Huijgens, H. (2016a). Evidence-Based Software Portfolio Management: A Tool Description and
Evaluation. ACM Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering. Limerick, Ireland.

Huijgens, H., & Vogelezang, F. (2016b). Do Estimators Learn? On the Effect of a Positively
Skewed Distribution of Effort Data on Software Project Productivity. ACM
Proceedings of the 7th International Workshop on Emerging Trends in Software
Metrics (WETSoM) (pp. 8-14). Austin, Texas, USA: Delft University of Technology.

Huijgens, H., van Deursen, A., & van Solingen, R. (2016c). An Exploratory Study on the Effects
of Perceived Value and Stakeholder Satisfaction on Software Projects. Proceedings of
the 20th International Conference on Evaluation and Assessment in Software
Engineering (EASE). Limerick, Ireland.

Huijgens, H., van Deursen, A., Minku, L., & Lokan, C. (2016c). Effort and Cost of Software
Engineering: A Comparison of Two Industrial Data Sets - Technical Report TUD-
SERG-2016-017. Software Engineering Research Group (SERG), Delft University of
Technology.

Huijgens, H., van Deursen, A., & van Solingen, R. (2016d). Success Factors in Managing Legacy
System Evolution: A Case Study. IEEE/ACM Proceedings of the International
Conference on Software and System Processes (ICSSP). Austin, TX, USA.

Huijgens, H. (2017a). EBSPM Research Repository. 4TU.ResearchData. Delft University of
Technology; https://data.4tu.nl/; DOI 10.4121/uuid:42fd1be1-325f-47a4-ba39-
31af35ca7f75.

Huijgens, H., Lamping, R., Stevens, D., Rothengatter, H., Romano, D., & Gousios, G. (2017b).
Strong Agile Metrics: Mining Log Data to Determine Predictive Power of Software
Metrics for Continuous Delivery Teams. ACM Prcodeedings of the 11th joint meeting
of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). Paderborn,
Germany.

References 231

Huijgens, H., van Deursen, A., Minku, L., & Lokan, C. (2017c). Effort and Cost of Software
Engineering: A Comparison of Two Industrial Data Sets. ACM 21st International
Conference on Evaluation and assessment (EASE). Karlskrona, Sweden.

Huijgens, H., van Deursen, A., & van Solingen, R. (2017d). The Effects of Perceived Value and
Stakeholder Satisfaction on Software Project Impact. Information and Software
Technology.

Huijgens, H., van Deursen, A., & van Solingen, R. (2017e). TUD-SERG-2017-001 - The Effects of
Perceived Value and Stakeholder Satisfaction on Software Project Impact - Technical
Report. Delft University of Technology.

Huisman, M., Bos, H., Brinkkemper, S., van Deursen, A., Groote, J., Lago, P., & Visser, E. (2016).
Software that meets its Intent. International Symposium on Leveraging Applications
of Formal Methods. Springer International Publishing.

IFPUG. (2009). IFPUG FSM Method: ISO/IEC 20926 - Software and systems engineering –
Software measurement – IFPUG functional size measurement method. New York:
International Function Point User Group (IFPUG).

International Standish Group. (1994). The Chaos Report.
ISBSG. (2014). International Software Benchmarking Standards Group. Retrieved from

http://www.isbsg.org/
ISBSG, Jones, C., & Reifer Consultants. (n.d.). The Impact of Software Size on Productivity.

ISBSG.
Janssen, M., & Klievink, B. (2010). ICT-project failure in public administration: The need to

include risk management in enterprise architectures. Proceedings of the 11th Annual
International Conference on Digital Government Research on Public Administration
Online: Challenges and Opportunities. Digital Government Society of North America.

Janssen, M., & Estevez, E. (2013). Lean government and platform-based governance - Doing
more with less. Government Information Quarterly, 30, 1-8.

Jeffery, M., & Leliveld, I. (2004). Best practices in IT portfolio management. Sloan Management
Review, 45(3).

Jeffery, R., Ruhe, M., & Wieczore, I. (2000). A comparative study of two software development
cost modeling techniques using multi-organizational and company-specific data.
Information and software technology, 42(14), 1009-1016.

Jeffery, R., Ruhe, M., & Wieczore, I. (2001). Using public domain metrics to estimate software
development effort. IEEE Seventh International Software Metrics Symposium
(METRICS).

Jiang, J., & Klein, G. (2000). Software development risks to project effectiveness. Journal of
Systems and Software, 52(1), 3-10.

Jones, C. (1995). Patterns of large software systems: failure and success. Computer, 86-87.
Jones, C. (2000). Software, Assessments, Benchmarks, and Best Practices. New York: Addison

Wesley Longman.
Jones, C. (2011). Sources of Software Benchmarks. Capers Jones & Associates.
Jørgensen, M. (2004). A review of studies on expert estimation of software development effort.

The Journal of Systems and Software, 70(IEEE), 37-60.
Jørgensen, M., & Moløkken-Østvold, K. (2006). How large are software cost overruns? A review

of the 1994 CHAOS report. Information and Software Technology, 48(4), 297-301.

232

Jørgensen, M., & Shepperd, M. (2007). A Systematic Review of Software Development Cost
Estimation Studies. IEEE Transactions on Software Engineering, 33(1), 33-53.

Jørgensen, M., & Gruschke, T. M. (2009). The impact of lessons-learned sessions on effort
estimation and uncertainty assessments. IEEE Transactions on Software Engineer-
ing, 35(3), 368-383.

Jørgensen, M., Halkjelsvik, T., & Kitchenham, B. (2012). How does project size affect cost
estimation error? Statistical artifacts and methodological challenges. International
Journal of Project Management, 30, 839-849.

Jørgensen, M., & Kitchenham, B. (2012). Interpretation problems related to the use of regression
models to decide on economy of scale in software development. Journal of Systems
and Software, 85(11), 2494-2503.

Jørgensen, M. (2016). A survey on the characteristics of projects with success in delivering client
benefits. Information and Software Technology, 78, 83-94.

Kan, S. (1995). Metrics and Models in Software Quality Engineering. Reading, Massachusetts:
Addison Wesley Longman.

Kaplan, R., & Norton, D. (1995). Putting the balanced scorecard to work.
Kemerer, C. (1987). An Empirical Validation of Software Cost Estimation Models. Communica-

tions of the ACM, 30(5), 416-429.
Kitchenham, B. A., Dybå, T., & Jørgensen, M. (2004). Evidence-based software engineering. Pro-

ceedings of the 26th international conference on software engineering, IEEE
Computer Society.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, P., Turner, M., Niazi, M., & Linkman, S.
(2010). Systematic literature reviews in software engineering–a tertiary study.
Information and Software Technology, 52(8), 792-805.

Kocaguneli, E., Menzies, T., & Mendes, E. (2015). Transfer learning in effort estimation.
Empirical Software Engineering, 20(3), 813-843.

Kupiainen, E., Mäntylä, M., & Itkonen, J. (2015). Using metrics in Agile and Lean Software
Development–A systematic literature review of industrial studies. Information and
Software Technology, 62, 143-163.

Lederer, A., & Prasad, J. (1993). Information systems software cost estimating: a current
assessment. Journal of Information Technology, 8(Palgrave Macmillan), 22-33.

Lindberg, K. R. (1999). Software developer perceptions about software project failure: a case
study. Elsevier - The Journal of Systems and Software, 49, 177-192.

Lo, D., Nagappan, N., & Zimmermann, T. (2015). How practitioners perceive the relevance of
software engineering research. Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). ACM.

Lokan, C., Wright, T., Hill, P., & Stringer, M. (2001). Organizational benchmarking using the
ISBSG data repository. IEEE Software, 18(5), 26-32.

Lokan, C., & Mendes, E. (2006). Cross-company and single-company effort models using the
ISBSG database: a further replicated study. Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering.

Maciel, R., & Barros, M. (2016). Risk-Aware Multi-stakeholder Next Release Planning Using
Multi-objective Optimization. 22nd International Working Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ).

References 233

Madachy, R., Rosa, W., Boehm, B., Clark, B., & Tan, T. (2011). Us dod application domain
empirical software cost analysis. IEEE International Symposium onEmpirical
Software Engineering and Measurement (ESEM).

McDonald, J. (n.d.). Handbook of Biological Statistics. Retrieved 11 2016, from http://
www.biostathandbook.com/multiplecomparisons.html

McFarlan, F. (1981, September-October). Portfolio Approach to Information Systems. Harvard
Business Review, 59, 142-150.

Melo, C., Cruzes, D., Kon, F., & Conradi, R. (2011). Agile team perceptions of productivity factors.
IEEE Agile Conference (AGILE).

Mendes, E., Lokan, C., Harrison, R., & Triggs, C. (2005). A replicated comparison of cross-
company and within-company effort estimation models using the ISBSG database.
IEEE 11th IEEE International Symposium on Software Metrics.

Menzies, T., & Shepperd, M. (2012). Special issue on repeatable results in software engineering
prediction. Empirical Software Engineering, 17(1), 1-17.

Menzies, T., & Zimmermann, T. (2013). Software Analytics: So What? IEEE Software, July /
August, 31-37.

Meyer, B. (2014). Agile!: The Good, the Hype and the Ugly. Springer Science & Business Media.
Minku, L., & Yao, X. (2013). Ensembles and Locality: Insight on Improving Software Effort

Estimation. Information and Software Technology, Special Issue on Best Papers from
PROMISE 2011, 55(5), 1512-1528.

Minku, L., Mendes, E., & Ferrucci, F. (2015). How to make best Use of Cross-Company Data for
Web Effort Estimation? ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM) .

Minku. (2016). On the Terms Within- and Cross-Company in Software Effort Estimation. ACM
Proceedings of the The 12th International Conference on Predictive Models and Data
Analytics in Software Engineering.

Misra, S., Kumar, V., & Kumar, U. (2009). Identifying some important success factors in adopt-
ing agile software development practices. The Journal of Systems and Software, 82,
1869-1890.

Moløkken, K., & Jørgensen, M. (2003). A Review of Surveys on Software Effort Estimation. IEEE
- Proceedings of ISESE - International Symposium on Empirical Software
Engineering, 223-230.

Murphy-Hill, E., Parnin, C., & Black, A.P. (2012). How We Refactor, and How We Know It. IEEE
Transactions on Software Engineering, 5-18, vol. 38, No. 1.

Murphy-Hill, E., Zimmermann, T. & Nagappan, N. (2014). Cowboys, ankle sprains, and keepers
of quality: How is video game development different from software development?
ACM - Proceedings of the 36th International Conference on Software Engineering
(ICSE), 1-11, Hyderabad, India.

Nakai, H., Tsuda, N., Honda, K., Washizaki, H., & Fukazawa, Y. (2016). Initial framework for
software quality evaluation based on iso/iec 25022 and iso/iec 25023. International
Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE.

Nazir, N., Hasteer, N., & Bansal, A. (2016). A survey on agile practices in the Indian IT industry.
IEEE 6th International Conference-Cloud System and Big Data Engineering
(Confluence).

234

NESMA. (2004). NESMA functional size measurement method conform ISO/IEC 24570,
version 2.2. Netherlands Software Measurement User Association (NESMA).

NESMA. (2005). Nesma functional size measurement method conform ISO/IEC 24570, version
2.1. Netherlands Software Measurement User Association (NESMA).

Niazi, M., Wilson, D., & Zowghi, D. (2003). A maturity model for the implementation of software
process improvement: an empirical study. The Journal of Systems and Software.

Niazi, M., Wilson, D., & Zowghi, D. (2006). Critical Success Factors for Software Process
Improvement Implementation: An Empirical Study. Software Process Improvement
and Practice, 11, 193-211.

Nisbet, R., Miner, G., & Elder IV, J. (2009). Handbook of Statistical Analysis and Data Mining
Applications. Academic Press.

Nokes, S. (2007). The Definitive Guide to Project Management (Vol. 2nd Edition). London:
Financial Times / Prentice Hall. doi:ISBN 978-0-273-71097-4

Object Management Group (OMG). (2014). Automated Function Points (AFP). Formal/2014-01-
03 - Version 1.0.

Oligny, S., Bourque, P., Abran, A., & Fournier, B. (2000). Exploring the relation between effort
and duration in software engineering projects. Proceedings of the World Computer
Congress, (pp. 175-178).

Pascoe, G. (1983). Patient satisfaction in primary health care: A literature review and analysis.
Eval Prog Planning, 6, 185-201.

Passos, C., Braun, A., Cruzes, D., & Mendonca, M. (2011). Analyzing the impact of beliefs in
software project practices. IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM).

Pekki, J. (2016). How the Company Manages Critical Success Factors in Software Process
Improvement Initiatives: Pilot Case-Study in Finnish Software Company." European
Conference on Software Process Improvement. Springer International Publishing,
2016. European Conference on Software Process Improvement. Springer Interna-
tional Publishing.

Pendharkar, P., & Rodger, J. (2009). The relationship between software development team size
and software development cost. Communications of the ACM, 52(1), 141-144.

Petersen, K. (2011). Measuring and predicting software productivity: A systematic map and
review. Information and Software Technology, 53(4), 317-343.

Pitangueira, A., Tonella, P., Susi, A., Maciel, R., & Barros, M. (2016). Risk-Aware Multi-
stakeholder Next Release Planning Using Multi-objective Optimization. International
Working Conference on Requirements Engineering: Foundation for Software
Quality. Springer International Publishing.

Premrai, R., Shepperd, M., Kitchenham, B., & Forselius, P. (2005). An Empirical Analysis of
Software Productivity Over Time. IEEE International Symposium Software Metrics.
Como, Italy.

Procaccino, J., Verner, J., & Overmyer, S. (2002). Case Study: Factors for Early Prediction of
Software Success & Failure. Elsevier - Information and Software Technology, 44(1),
53-62.

Putnam, L., & Meyers, W. (2003). Five Core Metrics, The Intelligence Behind Succesfull Soft-
ware Management. New York: Dorset House Publishing.

References 235

Radliński, Ł. (2011). Factors of Software Quality–Analysis of Extended ISBSG Dataset. Founda-
tions of Computing and Decision Studies, 36(3-4), 293-313.

Raemaekers, S., van Deursen, A., & Visser, J. (2015). Origin, Impact and Cost of Interface
Instability (doctoral thesis). doi:doi:10.4233/uuid:dbb70852-e06b-40f7-b872-
60047f962dbc

Rainer, A., & Hall, T. (2002). Key success factors for implementing software process
improvement: a maturity-based analysis. Journal of Systems and Software, 62(2), 71-
84.

Ramasubbu, N., & Balan, R. (2012). Overcoming the challenges in cost estimation for distributed
software projects. Proceedings of the 34th International Conference on Software
Engineering. IEEE.

Ramasubbu, N., Cataldo, M., Balan, R., & Herbsleb, J. (2011). Configuring global software teams:
a multi-company analysis of project productivity, quality, and profits. Proceedings of
the 33rd international conference on Software engineering. ACM.

Reel, J. (1999). Critical Success Factors in Software Projects. IEEE Software, May-June, 18-23.
Reyck, B. d., Grushka-Cockayne, Y., Lockett, M., Calderini, S., Moura, M., & Sloper, A. (2005).

The impact of project portfolio management on information technology projects.
International Journal of Project Management, 23(7), 524-537.

Rubinstein, D. (2007). Standish group report: There’s less development chaos today. Software
Development Times, 1.

Rumsey, D.J. (2016). How to Interpret a Correlation Coefficient r. Statistics For Dummies, 2nd
Edition. http://www.dummies.com/education/math/statistics/how-to-interpret-a-
correlation-coefficient-r/

Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case Study Research in Software
Engineering; Guidelines and Examples. Hoboken, New Jersey. USA: John Wily &
Sons.

Sauer, C., & Cuthbertson, C. (2003). The State of IT Project Management in the UK 2002–2003.
Computer Weekly, April.

Schmidt, R., Lyytinen, K., Cule , P., & Keil, M. (2001). Identifying software project risks: An
international Delphi study. Journal of management information systems, 17(4), 5-36.

Schwaber, K., & Sutherland, J. (2011). The Scrum Guide. (Scrum Alliance 21) Retrieved from
www.scrumguides.org

Shah , S., Papatheocharous, E., & Nyfjord, J. (2015). Measuring productivity in agile software
development process: a scoping study. ACM Proceedings of the 2015 International
Conference on Software and System Process (ICSSP).

Shepperd, M. (2014). Cost prediction and software project management. In Software Project
Management in a Changing World (pp. 51–71). Springer.

Singh, B., Punhani, A., & Misra, A. (2016). Integrated Approach of Software Project Size
Estimation. International Journal of Software Engineering and Its Applications,
10(2), 45-64.

Šmite, D., Calefato, F., & Wohlin, C. (2015). Cost-Savings in Global Software Engineering:
Where's the Evidence. IEEE Software, 32(4), 26-32.

Šmite, D., & van Solingen, R. (2016, Sept-Oct). What's the True Hourly Cost of Offshoring? IEEE
Software, 33(5), 60-70.

236

Solingen, R. van (2004). Measuring the ROI of software process improvement. IEEE Software,
21(3), 32-38.

Solingen, R. van & Berghout, E. (1999). The Goal/Question/Metric Method: a practical guide
for quality improvement of software development. McGraw-Hill.

Sonnekus, R., & Labuschagne, L. (2004). Establishing the Relationship between IT Project
Management Maturity and IT Project Success in a South African Context,” Proc. 2004.
PMSA Global Knowledge Conf., Project Management South Africa, 183-192.

Stelzer, D., & Mellis, W. (1998). Success Factors of Organizational Change in Software Process
Improvement. Software Process Improvement and Practice, 4, 227-250.

Strand, K., & Karlsen, K. (2014). Agile Contracting and Execution. PROMIS.
Sutherland, J., Viktorov, A., Blount, J., & Puntikov, N. (2007). Distributed Scrum: Agile Project

Management with Outsourced Development Teams. 40th International Conference
on System Sciences. Hawaii.

Tihinen, M., Parviainen, P., Suomalainen, T., & Karhu, K. (2011). ABB Experiences of Boosting
Controlling and Monitoring Activities in Collaborative Production. 6th IEEE
International Conference on Global Software Engineering (ICGSE). Helsinki.

Turhan, B., & Mendes, E. (2014). A comparison of cross- versus single- company effort prediction
models for web projects. Euromicro Conference on Software Engineering and
Advanced Applications. Verona, Italy.

UKSMA. (2002). Mk II Function Point Analysis: ISO/IEC 20968 - Software engineering – Ml
II Function Point Analysis – Counting Practices Manual. London: UK Software
Metrics Association (UKSMA).

Valerdi, R. (2011). Convergence of expert opinion via the wideband delphi method: An
application in cost estimation models. Incose International Symposium. Denver, USA.

Verhoef, C. (2002). Quantitative IT Portfolio Management. Elsevier - Science of Computer
Programming, 45(1), 1-96.

Wieczorek, I., & Ruhe, M. (2002). How valuable is company-specific data compared to multi-
company data for software cost estimation? IEEE Proceedings of the Eighth IEEE
Symposium on Software Metrics.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslen, A. (2000).
Experimentation in Software Engineering. Heidelberg: Springer.

Wu, C., Naqibuddin, M., & Fleisher, L. (2001). Measurement of patient satisfaction as an
outcome of regional anesthesia and analgesia: A systematic review. Reg Anesth Pain
Med, 26, 196-208.

Yin, R. (2008). Case Study Research - Design and Methods. Los Angelos, USA: Sage
Publications.

Zowghi, D., & Nurmuliani., N. (2002). A study of the impact of requirements volatility on
software project performance. IEEE Ninth Asia-Pacific Software Engineering
Conference,.

	Acknowledgments
	1. Introduction
	1.1. Problems within software portfolio management
	1.1.1. Success and failure defined exclusively at a project level
	1.1.2. Linking legacy evolution with new functionality
	1.1.3. Pricing and estimation relies heavily on expert opinions
	1.1.4. Cost and effort are used as equivalent
	1.1.5. Value and Stakeholder Satisfaction only limited in scope

	1.2. Research Goal and Research Questions
	1.2.1. Success and Failure Factors for Software Projects
	1.2.2. New Developments, Maintenance, and Legacy
	1.2.3. Evidence-Based Pricing of Project Proposals
	1.2.4. Cost and Effort in Measurement Repositories
	1.2.5. Stakeholder Satisfaction and Perceived Value

	1.3. Research Method and Evaluation
	1.3.1. An evidence-based approach with EBSE as an example
	1.3.2. A holistic view at a company’s software portfolio
	1.3.3. EBSPM as the proposed model
	1.3.4. Evaluation of EBSPM through case studies and surveys

	1.4. Thesis Outline
	1.4.1. Origin of Chapters
	Chapter 2: A birds-eye view on EBSPM
	Chapter 3: About Good Practice and Bad Practice
	Chapter 4: EBSPM in a legacy context
	Chapter 5: EBSPM as a basis for Project Pricing
	Chapter 6: A comparison of two Software Project Repositories
	Chapter 7: Stakeholder Satisfaction and Perceived Value
	Chapter 8: Conclusions

	1.4.2. Additional tests summarized in an addendum
	1.4.3. Publications not included in the thesis

	2. A Bird’s-eye view on EBSPM
	1.
	2.
	2.
	2.1. Introduction
	2.2. The EBSPM-model
	2.3. Distinguishing good deliveries from bad ones
	2.3.1. Functional Size as a Normalizer
	2.3.2. The Cost Duration Matrix

	2.4. The EBSPM Research Repository
	2.4.1. The Core Software Delivery Metrics
	2.4.2. Estimation Quality Factor
	2.4.3. The Cost Duration Index
	2.4.4. Stakeholder Satisfaction
	2.4.5. Perceived Value
	2.4.6. Software Delivery Keywords

	2.5. The EBSPM Performance Dashboard
	2.5.1. Selection Options
	2.5.2. The Cost Duration Matrix as the Core of the Dashboard
	2.5.3. The Key Performance Indicator Summary
	2.5.4. Who should use the tool? And why?

	2.6. A practical, evidence-based approach

	3. On Good Practice and Bad Practice
	3.1. Introduction
	3.1.1. Research Objectives
	3.1.2. Context

	3.2. Research Design
	3.2.1. Approach
	3.2.2. Design
	3.2.3. The Research Repository
	3.2.4. Analysis Procedure

	3.3. Execution
	3.3.1. Distribution of the Sample

	3.4. Analysis
	3.4.1. Overall Performance Analysis
	3.4.2. Mapping on the Cost Duration Matrix
	3.4.3. Analysis of Project Keywords
	3.4.4. Success Factors and Failure Factors

	3.5. Evaluation
	3.5.1. Factors Excluded from the Inventory
	3.5.2. Factors Strongly Related to Good Practice
	3.5.3. Factors Strongly Related to Bad Practice
	3.5.4. Factors Related to CoT and ToC

	3.6. Discussion
	3.6.1. Research on an Existing Repository
	3.6.2. Uncertainties related to Software Metrics
	3.6.3. Business Domain and Programming Language
	3.6.4. Generalization

	3.7. Related Work
	3.8. Conclusions and Future Work
	3.8.1. Future Work

	3.9. Acknowledgments
	3.10. Addendum
	3.10.1. Pairwise Correlation and P-value adjustment

	4. The Cecil-Case: Managing Legacy Evolution
	4.1. Introduction
	4.2. Experimental Setup
	4.2.1. Context
	Cecil releases
	Non-Cecil releases
	Divine system
	BelTel

	4.3. Research Questions
	4.3.1. Data Collection Procedure
	4.3.2. Quantitative Analysis
	4.3.3. Qualitative Analysis

	4.4. Quantitative Results
	4.5. Results of the Interviews
	4.5.1. Product owner is praised by many participants
	4.5.2. Cecil focuses on small but fast deliveries
	4.5.3. Role of Scrum master is not formalized in practice
	4.5.4. Close cooperation within the Cecil team
	4.5.5. The Product Backlog management tool
	4.5.6. Improvement: Budget and Estimating is fuzzy
	4.5.7. Improvement: Testing
	4.5.8. Evolution of the process over time
	4.5.9. Bad performance issues of the Divine system

	4.6. Discussion
	4.6.1. Threats to Validity
	4.6.2. Scrum as a Distinguishing Factor
	4.6.3. Impact / Implications

	4.7. Related Work
	4.8. Conclusions and Future Work
	4.9. Acknowledgments

	5. Evidence-Based Pricing of Project Proposals
	5.1. Introduction
	5.1.1. Problem Statement
	5.1.2. Research Objectives
	5.1.3. Context

	5.2. Related Work
	5.3. Case Study Design
	5.3.1. Theory
	FSM and FPA
	FSM-pricing

	5.3.2. Research Questions
	5.3.3. Case and Subject Selection
	5.3.4. Data Collection procedures
	5.3.5. Analysis Procedure
	5.3.6. Model Validation Procedure

	5.4. Results
	5.4.1. Case and Subject descriptions

	5.5. Results of the Qualitative Analysis
	5.5.1. 88% want FSM-pricing as operational practice
	5.5.2. FPA is appreciated by both parties
	5.5.3. BelTel management: coverage needs improvement
	5.5.4. IndSup-A development: reliability needs improvement
	5.5.5. 84% experienced improved proposal transparency

	5.6. Results of the Quantitative Analysis
	5.6.1. Project Duration per FP not in sync with peer groups
	5.6.2. Small projects block improvement
	5.6.3. Cost improves; yet, Duration does not

	5.7. Discussion
	5.7.1. Evaluation of Validity
	Construct validity
	Internal validity
	External validity

	5.7.2. Relation to Existing Evidence
	5.7.3. Impact/Implications
	5.7.4. Limitations

	5.8. Conclusions and Future Work
	5.8.1. Future Work

	5.9. Acknowledgments

	6. Effort versus Cost in Software Repositories
	6.1. Introduction
	6.2. Research Approach
	6.2.1. The EBSPM-repository
	6.2.2. The ISBSG-repository
	6.2.3. Analysis Procedure

	6.3. Results
	6.3.1. Linear Regression
	6.3.2. Regression Trees
	6.3.3. Mapping of the ISBSG-subset on the EBSPM-tool
	6.3.4. Key Findings

	6.4. Discussion
	6.4.1. Implications
	6.4.2. Threats to Validity

	6.5. Related Work
	6.5.1. Repositories for Benchmarking
	6.5.2. Effort versus Cost

	6.6. Conclusions
	6.7. Acknowledgments

	7. Stakeholder Satisfaction and Perceived Value
	7.1. Introduction
	7.1.1. Problem Statement

	7.2. Background and Related Work
	7.3. Research Design
	7.3.1. BelTel
	7.3.2. DutchCo
	7.3.3. Challenges in Comparing both Companies
	7.3.4. Metrics
	Project Metrics
	Estimation Quality Factor
	Cost Duration Index
	Stakeholder Satisfaction
	Perceived Value

	7.3.5. Project Selection
	7.3.6. Data Collection procedure
	Collection of quantitative data
	Collection of qualitative (survey) data

	7.3.7. Analysis Procedure

	7.4. Results
	7.4.1. Description of the BelTel Projects
	7.4.2. Description of the DutchCo projects
	7.4.3. Results of plotting on the Cost Duration Matrix
	7.4.4. Results of the tests for association
	7.4.5. Results of the free format text analysis
	Quality, Deployment and Testing (A1, A3, A7)
	Communication (A2)
	Requirements (A4)
	Stakeholder Satisfaction and Duration (A5, A6)
	Agile, Value, and Process (A10, A14, A8)
	Supplier Management (A11)
	Cost

	7.5. Discussion
	7.5.1. The Core Project Metrics
	7.5.2. Stakeholder Satisfaction
	7.5.3. Perceived Value
	7.5.4. Estimation Quality for Duration
	7.5.5. Success or failure: complex relations
	7.5.6. Agile and Cost were not mentioned
	7.5.7. Implications

	7.6. Threats to Validity
	7.6.1. Construct Validity
	7.6.2. Internal Validity
	7.6.3. External Validity
	7.6.4. Study Reliability

	7.7. Conclusions and Future Research
	7.8. Acknowledgments

	8. Conclusions
	8.1. Contributions
	8.1.1. A dynamic, agile EBSPM approach
	8.1.2. An EBSPM-tool, a tool description and evaluation
	8.1.3. An EBSPM research repository with 500 projects
	8.1.4. Evaluation of the EBSPM-model in industry

	8.2. The Research Questions Revisited
	8.2.1. Success and Failure Factors for Software Projects
	8.2.2. New Developments, Maintenance and Legacy
	8.2.3. Evidence-Based Pricing of Project Proposals
	8.2.4. Cost and Effort in Measurement Repositories
	8.2.5. Stakeholder Satisfaction and Perceived Value

	8.3. Discussion
	8.4. Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Study Reliability

	8.5. A reflection on the empirical methods used
	8.5.1. Case Studies
	8.5.2. Surveys, electronic questionnaires, and interviews
	8.5.3. Data Analysis Studies

	8.6. Implications
	8.6.1. Implications for Research
	Software analytics with industry involvement
	Automation of dynamic dashboards for decision-making
	Functional Size Measurement threatens to disappear from the metrics palette
	Integrating value and stakeholder satisfaction

	8.6.2. Implications for Industry
	Data Collection Issues
	Huge diversity in development aspects
	Driven by application in industry
	Steering on ‘within time and budget’ does not help to really improve

	8.6.3. Implications for Education

	8.7. Conclusions

	List of Abbreviations
	Samenvatting
	Curriculum Vitae
	References

