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Abstract
In this report a new approach to (forensic) handwriting analysis is presented;
score-based likelihood ratio (SLR) systems are employed and their quality of
performance is studied.

Forensic handwriting analysis is an important part of a forensic investigation
which can be used when there are threatening letters, hold-up notes, ransom
letters, etc. involved. It can also be used in fraud investigations.
The handwriting analysis, as it is performed now, is in general done by cer-
tified forensic document examiners. One of the drawbacks of analyzing in
this manner is that there is no expression for the degree of uncertainty of the
statement that two writings have the same writer. The analysis is also time
consuming and the uniqueness of characteristics is not taken into account.
For the handwriting analysis of this research, SLR systems will be employed.
This approach has already been proven to be useful for forensic analyses. These
systems do not have the three drawbacks that the traditional approach has.
Furthermore, the SLR systems are objective, transparent and their behavior
is known. However, they only take a small part of the available information
into account and examining their accuracy is complicated. SLRs are best used
in combination with the (subjective) opinion of forensic examiners.

The handwriting samples of 800 writers (three documents each) are consid-
ered. After the letter combinations “er” are extracted, the characteristics are
entered into a user interface for each document which makes the analysis more
time efficient. The likelihood ratio (LR) is, given two mutually exclusive hy-
potheses, the ratio of the probabilities of the evidence. However, because the
LR is difficult to compute when the number of variables is large, score-based
likelihood ratios (SLRs) are utilized. SLRs use score functions which are a
measure for how similar two writings are and they transform multidimensional
data to one dimensional data. The SLR expresses the degree of uncertainty
that a hypothesis is true. The common source problem is considered due to the
unavailability of suspect specific data. So, it is tested if two writings from un-
known writers originate from the same unknown writer. For this research four
score functions are considered; Overlap (does not take uniqueness of matching
and mismatching values into account), Goodall3 (takes uniqueness of match-
ing values (not mismatching ones) into account), Burnaby (takes uniqueness of
mismatching values (not matching ones) into account) and Anderberg (takes
uniqueness of matching and mismatching values into account). This results
in four SLR systems that are evaluated based on three performance charac-
teristics; the leave-one-out method, 95% bootstrap interval and misleading
evidence. Score 2 (Goodall3) performs the best based on the perfor-
mance characteristics (then score 1 (Overlap), then score 4 (Anderberg)
and score 3 (Burnaby) (tied for third place)). If an SLR system is required
that performs the best based on the leave-one-out method (so one that has the
greatest discriminating power), score 1 has to be used. If a system is required
that performs the best based on the 95% bootstrap confidence interval (so
one that has the highest precision) and on misleading evidence (so one that
produces the least number of SLRs that support false hypotheses), score 2 has
to be used. Thus, what score function (either score 1 or 2) is chosen
for the SLR system depends on the desired qualities of the system.
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List of variables

LR The likelihood ratio

SLR The score-based likelihood ratio

xu1 Piece of handwriting from unknown writer 1 (in common source problem)

xu1 Piece of handwriting from unknown writer 2 (in common source problem)

xu Piece of handwriting from an unknown writer (in specific source prob-
lem)

xs Piece of handwriting from a known specific writer (in specific source
problem)

H1 The hypothesis that the handwriting with unknown source and the hand-
writing with known source are from the same person (prosecution hy-
pothesis)

H2 The hypothesis that the handwriting with unknown source and the hand-
writing with known source are from different people (defence hypothesis)

x The handwriting with known source

y The handwriting with unknown source

P (x, y) The joint probability function of x and y

I The relevant background information

s(x, y) The (similarity) score (that is a measure for how similar known (x) and
unknown source (y) are to each other)

P (s(x, y)) The probability function of the (similarity) score

x The set of features of a handwriting with a known source ([x1, . . . , xn])

xi The ith feature of the handwriting with known source which can take
exactly one of the ni values (in {x1i , . . . , x

ni
i })

y The set of features of a handwriting with an unknown source ([y1, . . . , yn])

yi The ith feature of the handwriting with unknown source which can take
exactly one of the ni values (in {y1i , . . . , y

ni
i })

si(xi, yi) The (similarity) score of xi and yi

wi The weight assigned to the ith feature of the handwriting
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n The total number of characteristics

fi(xi) The number of times the ith feature takes the value xi in the data set

N The number of data points

Ai The set of all possible values (of size ni) that the ith feature can take

ni The number of possible values that the ith feature can take

f(x) The probability density function of the random variable X

S1 The similarity scores given H1

S2 The similarity scores given H2

n1 The number of similarity scores given H1 (so the size of S1) (this defini-
tion is only used in subsections 6.3.2 and 6.3.4)

n2 The number of similarity scores given H2 (so the size of S2) (this defini-
tion is only used in subsections 6.3.2 and 6.3.4)

Ω The logarithm with base 10 of the prior odds

P (s|H1) The probabilities of the same source scores

P (s|H2) The probabilities of the different source scores

These variables will mainly be used in the formulas of appendix A.
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Chapter 1

Introduction

On March 1 1932, an intruder kidnapped the sleeping newborn Charles Lind-
bergh, Jr. and two months later the baby’s body was found dead. However, a
ransom note was left on the window of the bedroom which is shown in figure
1.1.

Figure 1.1: This figure shows the ransom note left in the bedroom of infant
Charles Lindbergh, Jr. by the intruder. [15]

Richard Hauptmann was arrested based on other evidence, but over the course
of Hauptmann’s trial eight handwriting experts testified; they said that the
ransom note and samples of Hauptmann’s handwriting showed a lot of resem-
blance. Four years after the kidnapping, in 1936, Hauptmann was convicted
of capital murder and was sentenced to death.

So, in the instance of this criminal case (and many more), the (forensic) anal-
ysis of handwriting leads to an essential piece of evidence. [15]

Forensic handwriting analysis is an important part of a forensic investigation
which can be used when there are threatening letters, hold-up notes, ransom
letters, etc. involved. [9] For this analysis two types of writing are compared
based on handwriting characteristics in order to determine if they are written
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by the same person or not. [6]
Note that this handwriting analysis can be done in the case of other investiga-
tions than forensic ones as well. Most often these are fraud investigations;
wills, contracts, seals, bank checks, handwritten documents, identification
cards, etc. can all be examined in this way. Even when there is suspicion
of signature forgery, this analysis can be applied. [9]

There are two ways to perform a handwriting analysis. The handwriting
analysis as it is done now, so the more traditional way, is described first.
After this, it is explained how the handwriting analysis will be done in this
research.
The handwriting analysis, as it is performed right now, is in general done by
certified forensic document examiners. [9] First, suspects are asked to write
the same text multiple times. Because, although writing is consciously done,
repeatedly writing the same words happens almost automatically. In that case
the handwriting is individual and unique and therefore can be subjected to
a forensic analysis. Key characteristics that the forensic document examiners
take into account, when doing this handwriting analysis, are:

• Letter formations: How the letters are written in terms of strokes. (How
many strokes are used? Is there a continuous stroke or are there multiple
strokes that form the letters?)

• Line quality : How the writing instrument (for example a pen or pencil)
is used. (Features such as pen pressure, speed, number and places of
pen lifts, rhythm and writing skill)

• Alignment : How the letters are aligned. (Do they all lie on the same
baseline?)

• Arrangement of the writing : How the letters are arranged. (How much
space is between the letters and words? What are the proportions of the
letters? How big are the margins?)

If two writings show a lot of similarities based on these characteristics, there
is a high probability that they are written by the same person. [6]
For the handwriting analysis that will be done in this report, score-based
likelihood ratio (SLR) systems will be employed. This approach has already
been proven to be useful for forensic analyses in other research (this was, for
example, described by Leegwater et al. [14] and Tang et al. [27]).

One of the benefits of analyzing in the traditional manner, is that every piece
of handwriting is compared to the handwriting that has been found (at a crime
scene for example) with great attention to detail.
However, this is also drawback since it is very time consuming. Furthermore,
every piece of handwriting is compared to one another; only when it is known
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to what extent every writing matches the found writing compared to other
writings, it is possible to conclude which handwriting matches with the found
writing “the most” (so which has the most similarities with the found writing
based on the characteristics). This is time consuming as well.
Moreover, this way of performing the analysis does not take the uniqueness of
some characteristics into account. For example; say that the found handwrit-
ing and that of a suspect both contain “z’s” with a stroke in the middle (so it
is written as “--z”). Then that characteristic leads to a higher likelihood that
they have the same writer, if no other person in the world writes the “z” in
that way compared to if half of the population writes it in that way. So, the
more unique a characteristic is that appears in two writings, the higher the
likelihood is that these are written by the same individual. For the same rea-
son, when fingerprints, which are highly unique for every person, match, there
is a very high likelihood that they have originated from the same individual.
Lastly, this analysis leads to a categorical conclusion: a decision of identifica-
tion (two writings have the same writer), a decision of exclusion (two writings
have a different writer) or an inconclusive statement. This last conclusion is
the case when the writing that has been found does not have enough features
for comparison or when there are features that are similar (between the writ-
ing that has been found and that of the suspect), but these are insufficient for
a decision of identification or exclusion (for example when a lot of people have
these features in their writing). A problem in using the categorical conclu-
sions, is that the inconclusive statement only reveals that there is an amount
of uncertainty. It does not express the degree of uncertainty. [14]

In this report, systems will be designed that compare handwriting and that
do not have these three drawbacks; they are less time consuming, they take
the uniqueness of characteristics into account and they give an insight into the
degree of uncertainty of the statement that two writings have the same writer.
However, the approach of this report also has drawbacks; SLR systems only
take a small part of the available information into account and examining the
accuracy and performance of SLR systems is complicated. More information
on the drawbacks can be found in the Discussion.

Figure 1.2 shows the steps of the procedure of the handwriting comparison
system of this report. These steps will be further explained in the following
chapters.
Chapter 2 contains a literature review that explains some of the fundamental
parts of the analysis of this research. Furthermore, it will describe how an
expression can be found for the degree of uncertainty (of the statement that
two writings have the same writer) by using the SLR (score-based likelihood
ratio). So, it will present a solution to one of the three drawbacks that were
stated above. A solution to the second drawback (the analysis is time con-
suming) is given in chapter 3 by introducing a user interface. This chapter
will also explain how the data (that consists out of handwriting samples) is
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transformed in such a way that it can be used for the handwriting analysis
of this research and it will define the characteristics of the handwriting. So
it will focus on the first three boxes of figure 1.2. Chapter 4 solves the third
drawback; it describes how the analysis of this research takes the uniqueness
of characteristics into account. For this, four different analysis systems are
constructed (fourth and fifth box in figure 1.2). The results of these systems
are shown in chapter 5. The systems are evaluated in chapter 6 based on
the leave-one-out method (cross validation), the 95% bootstrap intervals and
the rates of misleading evidence (sixth box in figure 1.2). The system that
performs the best, based on these three performance characteristics, will be
considered the “best” handwriting analysis system.

Figure 1.2: This figure shows the steps of the procedure of the handwriting
comparison system of this report.

Throughout the report, the variables in the List of variables will be used.
In the appendices, at the end of the report, among other matters, the formulas,
detailed calculations and codes (Python and R) can be found.
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Chapter 2

Literature Review

A drawback of the current approach to handwriting comparison, is that the
inconclusive statement does not express a degree of uncertainty. In this chapter
a solution to this problem will be described using LRs and SLRs.
Section 2.1 will explain what LRs and SLRs are, section 2.2 will give the
definitions of the common source and specific source problems, section 2.3 will
describe the way to calculate the LR and SLR and section 2.4 will demonstrate
how to calculate the LR and SLR specifically for handwriting.

2.1 What are LRs and SLRs?

The likelihood ratio (LR) is, given two mutually exclusive hypotheses, the ratio
of the probabilities of the evidence. For example, these two hypotheses could
be those of the decision of identification and of the decision of exclusion. So, in
the case of handwriting comparison, if one source is unknown (for example a
handwriting that has been found at the crime scene) and one source is known
(for example the handwriting of a suspect), then the formula for the LR is
given by:

LR =
Probability to have this instance of u, k source when they are the same

Probability to have this instance of u, k source when they are different

with u, k: unknown and known.

So, in this way, there is an expression for the degree of uncertainty that a
hypothesis is true. Namely the LR. (Note that if LR > 1 there is a higher
likelihood that u, k source are the same and if LR < 1 there is a higher
likelihood that u, k source are different.)

The Dutch Forensic Institute (NFI) uses the LR to report the strength of
evidence of fingerprints, speaker recognition and weapons and ammunition.
[13] Other institutes over the world use LRs to express a degree of uncertainty
in the evidence as well. [14]

However, the distributions of the probabilities in the formula (of the LR) above
are computationally and statistically infeasible when the number of variables
is large. [27] For example, the features of fingerprints are multidimensional,
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therefore it is hard to find their distribution. [14] In other words: it is difficult
to figure out to what extent two fingerprints are similar without some sort
of simplification of these prints. The same holds for the distributions of the
characteristics of handwriting (which are multidimensional as well).

A solution to this problem is to use score-based likelihood ratios (SLRs). SLRs
use score functions that transform multidimensional data to one dimensional
data. This score function is a measure for how similar unknown and known
source are to each other. So, only the distributions of the scores when sources
are the same and those of the scores when sources are different are required to
calculate the SLR. In this way, distributions of one dimensional data (which
are less complicated to compute) need to be found instead of those of multi-
dimensional data (as for the LR).
For example, the NFI calculates scores for fingerprints with AFIS (automated
fingerprint identification system). AFIS indicates to what extent fingerprints
are alike by assigning a score after comparing the location and orientation of
the ridges of the found fingerprint (unknown source) to all known fingerprints.
[14]
In general, the formula for the SLR is given by:

SLR =
Probability to have this score when sources are the same

Probability to have this score when sources are different

In 2017 the NFI published a table (in [19]) that contains the verbal expressions
connected to LR (and SLR) values. This table is shown in figure 2.1.

Figure 2.1: This figure shows the verbal expressions connected to LR (and
SLR) values. [19]

Using this table, LRs (and SLRs) can be reported in a verbal context which
is useful in court. For example if the LR of two pieces of handwriting is equal
to 8, one could say:

“The information found by comparing the two pieces of handwriting is 8 times
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more probable if they come from the same writer than if they come from dif-
ferent writers.”

The verbal expression that can be used in court is:

“The information found by comparing the two pieces of handwriting is slightly
more probable if they come from the same writer than if they come from dif-
ferent writers.”

Now it is possible to express the degree of uncertainty of the statement that
two writings (unknown and known source) have the same writer.
However, it is important to note two things;

1. Because the score function transforms multidimensional data to one di-
mensional data, information is lost. [27] For example, in the case of fin-
gerprints; multiple fingerprints can have the same AFIS score (so they
are similar to another fingerprint to the same degree) while not being
the same fingerprints.

2. As described by Leegwater et al. [14], because of this information loss
and other reasons, LRs and SLRs are best used in combination with the
(subjective) opinion of forensic examiners. This way, it is possible to
benefit from both the objectivity and transparency of the LR (and SLR)
systems and from the knowledge and expertise of forensic examiners
(who take more information into account than the LR and SLR systems).

What the common source and specific source problems are will be explained
in the next section and how the LR and SLR are generally calculated will be
explained in section 2.3. Section 2.4 will describe a way to find the LR and
SLR when the sources are handwriting.

2.2 Common source and specific source problems

With the help of the LR and SLR, the hypotheses of two problems can be
tested. Namely, the common source problem and the specific source problem
as developed and specified in [21] and [22].
In the case of the common source problem, it is tested if two pieces of evidence
xu1 and xu2 (both with an unknown source) originate from the same unknown
source. So, it is not investigated who the unknown source is. The hypotheses
of the common source problem, in the case that the pieces of evidence are
handwriting, are;

H1: The pieces of handwriting (xu1, xu2) from unknown writers originate from
the same unknown writer,

H2: The pieces of handwriting (xu1, xu2) from unknown writers originate from
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two different unknown writers.

In the case of the specific source problem, it is tested if a piece of evidence xu
(with an unknown source) originates from a known specific suspected source
xs. The hypotheses of the specific source problem, in the case that the pieces
of evidence are handwriting, are;

H1: The piece of handwriting (xu) from an unknown writer and the piece of
handwriting from a known specific writer (xs) originate from the same known
specific writer,

H2: The piece of handwriting (xu) from an unknown writer does not originate
from the known specific writer (xs), but from an alternative writer.

Which of the two problems should be used in forensic science, is still being
researched.
In the case of an ongoing investigation, the common source problem is more
appropriate. So for example when one wants to investigate if two pieces of
handwriting from different crime scenes originate from the same source. In
court the specific source problem is more appropriate, since in that case it is
of interest whether the piece of handwriting originates from the suspect.
Furthermore, for the common source problem one background population data
set is needed. This data set is required for the specific source problem as well,
but this problem also needs a specific source data set. However, obtaining this
specific source data set is complicated. For example, in an ongoing investiga-
tion the suspect, so the specific writer, can change their handwriting or can be
uncooperative. Therefore, most of the time, there is not enough handwriting
available to create the specific source data set and thus the LR or SLR cannot
be used for the specific source problem. So, the common source problem is
more suitable when data is limited. For this reason, only the common source
problem is considered in this report. [23]

2.3 Calculation of LRs and SLRs

In section 2.1, it was explained that the LR is an expression for the degree of
uncertainty that a hypothesis is true. However, since LRs are computationally
and statistically infeasible when the number of variables are large, the SLR is
used. This SLR uses a score function to transform multidimensional data to
one dimensional data and is therefore less complicated to compute.
This section will elaborate on how the LR and SLR are calculated when
the sources are writings, but the formulas can be generalized for all kinds
of sources. The notation as described in [14] is used.

As mentioned in section 2.1, the LR is, given two mutually exclusive hypothe-
ses, the ratio of the probabilities of the evidence. In the case where the sources
are handwriting, the following hypotheses are used:
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H1: The handwriting with unknown source and the handwriting with known
source are from the same person,

H2: The handwriting with unknown source and the handwriting with known
source are from different people.

Here the writing with unknown source is, for example, found at the crime
scene and the writing with known source could be of a suspect. Note that
these two hypotheses are mutually exclusive; if one is false, the other must be
true (and vice versa) (so they cannot both be true or both be false).
Hypotheses H1 and H2 are sometimes also called the prosecution hypothesis
and the defence hypothesis, respectively, since they are the hypotheses that
the prosecutor and defendant want to prove to be true in the courtroom. [8]

2.3.1 Calculation of LR

The formula for the LR given in section 2.1 was:

LR =
Probability to have this instance of u, k source when they are the same

Probability to have this instance of u, k source when they are different

with u, k: unknown and known.

This can now be rewritten into:

LR(x, y) =
P (x, y | H1, I)

P (x, y | H2, I)
(2.1)

with:
x = The handwriting with known source
y = The handwriting with unknown source
P (x, y) = The joint probability function of x and y
H1, H2 = The hypotheses (as defined before)
I = The relevant background information

Relevant background information (I) could be additional information about
the case or the sources. In the case where the sources are writings, informa-
tion that could be added to I is the uniqueness of a characteristic, the number
of characteristics, if the suspects are left- or right-handed and additional in-
formation about the found writing. Adding this information to I is called
conditioning or anchoring. However, as mentioned (for fingerprints) in [14],
conditioning with respect to the writing with unknown source is impossible
and conditioning with respect to the writing with known source is impracti-
cal. So, in this report, no further information relevant to the writing is added
to I. (However, in chapter 4 score functions will be proposed that take the
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uniqueness of characteristics into account.)

2.3.2 Calculation of SLR

The formula for the SLR given in section 2.1 was:

SLR =
Probability to have this score when sources are the same

Probability to have this score when sources are different

Which can be rewritten into:

SLR(x, y) =
P (s(x, y) | H1, I)

P (s(x, y) | H2, I)
(2.2)

Where the notation is the same as for the formula of the LR, but with:
s(x, y) = The (similarity) score (that is a measure for how similar known (x)
and unknown source (y) are to each other)
P (s(x, y)) = The probability function of the (similarity) score

As described by Morrison et al. [17], scores should take both the similarity
and the typicality of the evidence into account (anchored approach). Here typ-
icality means that the same and different source scores of the suspect should
be used and not those of the general population (so this is the specific source
problem as described in section 2.2). In the case of sources that are handwrit-
ing, this means that, for the numerator, the characteristics of the suspect’s
writing are required. For the denominator, the characteristics of the writing of
the general population compared to those of the suspect are needed. However,
as explained in section 2.2, this data (of the suspect) is unavailable. Therefore
the nonanchored approach is applied; scores only take similarity into account
(and not typicality). So, for the calculation of the SLR, hypotheses are used
that consider the general population instead of a specific suspect (so this is
the common source problem as described in section 2.2). This means that the
SLR is an expression for the degree of uncertainty that a hypothesis is true
for the general population, not a specific suspect in the case. [14]

2.3.3 Calculation of posterior odds

Now, when the SLR is multiplied with the prior odds (the ratio of the prob-
abilities of H1 and H2 beforehand) the posterior odds are obtained (the ratio
of the probabilities of H1 and H2 afterwards, so it can be based on other
information in the case and on the score). Therefore:

Posterior Odds = SLR · Prior Odds (2.3)
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Which can be rewritten into:

Posterior Odds = SLR · Prior Odds =
P (s(x, y) | H1, I)

P (s(x, y) | H2, I)
· P (H1 | I)
P (H2 | I)

(2.4)

So:

Posterior Odds =
P (s(x, y) | H1, I)

P (s(x, y) | H2, I)
· P (H1 | I)/P (s(x, y))

P (H2 | I)/P (s(x, y))

Now, using Bayes’ Theorem, that states that P (A | B) = P (B|A)·P (A)
P (B) [10],

gives:

Posterior Odds =
P (H1 | s(x, y), I)
P (H2 | s(x, y), I)

(2.5)

Lastly, combining equations (2.4) and (2.5), gives:

P (H1 | s(x, y), I)
P (H2 | s(x, y), I)

=
P (s(x, y) | H1, I)

P (s(x, y) | H2, I)
· P (H1 | I)
P (H2 | I)

(2.6)

So, the posterior odds is the ratio of the probabilities of H1 and H2 given a
score and relevant background information.

2.4 LR and SLR for multinomial features

This section will describe a way to find the LR and SLR specifically when the
sources are handwriting.
Handwriting, just like a fingerprint, has distinct features. Examples of these
features are: alignment of the letters with respect to a baseline, the space
between letters, proportions of the letters, etc.
These features can be binary; handwriting either has these feature or it does
not (so it can take on two values). For example; (in general) words are either
written in cursive or in print.
Features can also be multinomial (sometimes also called categorical); a feature
can take on multiple values. For example; the height of the cross of the staff of
the letter “t” (it can be in the middle, in the upper part or in the lower part).
Note that a multinomial feature can also take on two values and therefore it
can be a binomial feature as well. In this section, it will be explained how the
LR and SLR are calculated for handwriting with multinomial features.

The notation as described in [27] is used. So, let x = [x1, . . . , xn] be the set of
features of a handwriting. xi is one feature of the handwriting which can take

18



exactly one of the ni values. So, xi is exactly one element in {x1i , . . . , x
ni
i }.

Figure 2.2 shows an example; the features of the writing of “th” that were given
by forensic document examiners [18] are shown. The table in figure 2.3 shows
the features (xi) of this example and the values they can take ({x1i , . . . , x

ni
i }).

“NSP” means “no set pattern”.
So, in this example, there are six different features which means that n = 6.
x1 (height relationship of t to h) can be exactly one of four different values;
x11 (t even with h), x21 (t shorter than h), x31 (t taller than h) or x41 (NSP). So,
n1 = 4. In the same way; n2 = 4, n3 = 3, n4 = 4, n5 = 4 and n6 = 5. [27]

Figure 2.2: This figure shows the features of the writing of “th” that were
given by forensic document examiners. [27]

Figure 2.3: This figure shows a table with the features (xi) of the example
and the values they can take ({x1i , . . . , x

ni
i }). “NSP” means “no set pattern”.

[27]
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In the previous section, the formulas for the LR (equation (2.1)) and the SLR
(equation (2.2)) were given. They are repeated below.

LR(x, y) =
P (x, y | H1, I)

P (x, y | H2, I)

SLR(x, y) =
P (s(x, y) | H1, I)

P (s(x, y) | H2, I)

Now, let the handwriting with known source (x) and the handwriting with
unknown source (y) have multinomial features. That is; let x = [x1, . . . , xn] be
the set of features of a handwriting with a known source and let y = [y1, . . . , yn]
be the set of features of a handwriting with an unknown source. xi is one
feature of the handwriting with known source which can take exactly one of
the ni values and yi is one feature of the handwriting with unknown source
which can take exactly one of the ni values. (So, both sources have the same
amount of features which can take on the same values.) The features are
chosen (by the forensic document examiners) in such a way that it can be
assumed that they are independent of one another.
The probabilities in the formula of the LR above are calculated by taking all of
the characteristics xi and yi (of x and y respectively) into account. The SLR
is calculated with a similarity score function s(x, y) that takes the similarity
scores of each xi and yi into account. This can be done in multiple ways. An
example of such a score function is:

s(x, y) =

n∑
i=1

wi · si(xi, yi)

Where;
xi = The ith feature of the handwriting with known source
yi = The ith feature of the handwriting with unknown source
si(xi, yi) = The (similarity) score of xi and yi
wi = The weight assigned to the ith feature of the handwriting
n = The total number of characteristics [2]

This formula will be further explained in chapter 4. In that chapter the for-
mulas for wi and si(xi, yi) will be given as well.

Figure 2.4 shows how the SLR is calculated from handwriting data. Therefore,
it serves as a summary of this chapter. So, the background population hand-
writing data is used to calculate the same source and different source scores
with the help of a score function that transforms characteristics to scores. A
graph with the parametrizations of the distributions of the same source and
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different source scores is created (with the score on the x-axis and the proba-
bility on the y-axis). The SLR is obtained when the probabilities of the same
source scores in this graph are divided by the probabilities of the different
source scores. When, in the common source problem, unknown handwriting
data is found at crime scenes, the test score can be calculated with the help
of the score function. The SLR of this unknown handwriting data is acquired
when the probability of the same source score corresponding to the test score
is divided by the probability of the different source score corresponding to the
test score.

Figure 2.4: This figure shows how the SLR is calculated from handwriting
data. Therefore, it serves as a summary of this chapter.

In this report a different letter combination (than “th”) will be used to com-
pare handwriting, but it will still follow this method of calculation for four
different score functions. [2] contains several score functions that can be em-
ployed for sources with multinomial features. Overlap, Goodall3, Burnaby and
Anderberg will be applied in this report and in chapter 4 it will be explained
how these scores are calculated. The resulting SLR systems will be discussed
in chapter 5. Furthermore, the evaluation of the quality of performance of the
four SLR systems will be done in the same way as in [14] (the SLR system that
performs the best according to this evaluation, will be considered the “best”
SLR system). More on this in chapter 6.

In this chapter, one of the three problems of the current approach to handwrit-
ing comparison was solved; first there was not an expression for the degree of
uncertainty that a hypothesis is true, but now there is. Namely, the SLR. In
the next two chapters the other two problems (the analysis is time consuming
and does not take uniqueness into account) are solved by introducing a user
interface and by applying certain kinds of score functions.
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Chapter 3

Methods: Data preparation

In this chapter, the data of handwriting (for which the SLR systems will be
constructed) is determined. But, in order to calculate the SLR, the data is
required to be of a specific kind. This chapter will also describe how the
data is prepared in such a way that in the following chapters the SLR can be
calculated without having to transform the data first. Lastly, in the previous
chapter the first problem of the current approach to handwriting comparison,
was solved; an expression for the degree of uncertainty that a hypothesis is
true was given. In this chapter the second problem will be solved; the analysis
will become less time consuming.

The data preparation is done by following the steps of the procedure of data
preparation as given in [25]. That is;

1. Handwriting Samples: The collection of samples of handwriting data is
determined (section 3.1).

2. Letter Combination: The letter combination, that is extracted from the
samples and will be used to calculate the SLR, is determined (section
3.2).

3. Characteristics: The characteristics of the letter combination are deter-
mined. This is done in the same manner as for “th” in figures 2.2 and
2.3 (section 3.3).

4. Extraction of Snippets: Snippets of samples (of handwriting) are ex-
tracted that contain the letter combination of interest (section 3.4).

5. User Interface: A user interface will be created in order to make the
analysis more time efficient (so it will solve the second problem) (section
3.5).

6. Ground-truthing : By utilizing the user interface, values are assigned for
each of the characteristics such that the data can be used to calculate
the SLR. This step completes the data transformation (section 3.6).
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3.1 Determination of handwriting samples

Samples of handwriting data are collected from the CEDAR data set. CEDAR
is the Center of Excellence for Document Analysis and Recognition at the
University at Buffalo [3]. The data set can be found in [4] under “CEDAR-
LETTER” and it contains writing samples from over 1500 individuals (in the
United States). For this, a piece of text, which contains every letter of the
English alphabet at least once, was written by each individual three times
(because repeatedly writing the same words happens almost automatically).
The piece of text that was used can be found in appendix B. This appendix
also contains a handwritten sample of the text provided by a writer.

For this report, the first 800 (of 1500) writers (of the CEDAR data set) were
considered. This was done in order to accelerate the research while still taking
more than half of the data into account. More on this in the Discussion.
As mentioned before, every writer has three corresponding written documents.
All three will be taken into account for every writer.
Figure 3.1 shows which documents are compared to each other in order to
obtain the same source and different source scores with the common source
problem. The comparison of the documents with unknown sources xu1 and
xu2 (as in this common source problem) is shown as well.
So, for the same source scores, all three documents of every writer have to be
compared with one another (see figure 3.1). This results in three same source
scores per writer; a score for documents 1 and 2, a score for documents 1 and
3 and a score for documents 2 and 3. So, in total there are 800 ·3 = 2400 same
source scores.
Note that, for example, the score for documents 1 and 2 is the same as the
score for documents 2 and 1. Taking these other scores into account as well
would result in 2400 · 2 = 800 · 6 = 4800 same source scores. This would not
change the SLR models, since each of the 2400 scores would occur twice in
this case and because the parametrization, that is used to obtain the SLR
models, is performed on the histograms which use probabilities. However,
using a data set of 2400, instead of 4800 same source scores, saves time when
doing computations in R. This is why the smaller data set of 2400 same source
scores was chosen for this research.
For the different source scores, each of the documents of the first writer are
compared with the other 800 · 3− 3 = 2397 documents (all the documents of
the other writers) (see figure 3.1). So, the three documents of the first writer
have 3 · 2397 = 7191 different source scores. For the second writer, each of the
documents are compared with the other 800 ·3−3−3 = 2394 documents. This
is the case, because the different source scores of the documents of the first
and second writer were already computed when comparing the documents of
the first writer with those of the other writers. This results in 3 · 2394 = 7182
different source scores for the three documents of the second writer. Repeating
this process for the other writers results in 3·2397+3·2394+3·2391+· · ·+3·3+
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3·0 = 3·3+· · ·+3·2391+3·2394+3·2397 =
∑799

i=1 3·(3i) =
∑799

i=1 9i = 2, 876, 400
different source scores in total.
Note that, for example, the score for document 1 of writer 1 and document 1
of writer 2 is the same as the score for document 1 of writer 2 and document
1 of writer 1. Taking these other scores into account as well would result
in 2, 876, 400 · 2 = 2400 · 2397 = 5, 752, 800 different source scores. But,
as explained before for the same source scores, this would not change the
SLR models. However, using a data set of 2,876,400, instead of 5,752,800
different source scores, saves time when doing computations in R. This is why
the smaller data set of 2,876,400 different source scores was chosen for this
research.
The documents with unknown sources xu1 and xu2 (as in the common source
problem) only need to be compared with each other (see figure 3.1). This
results in one test score (where the test score is defined as in figure 2.4).

Figure 3.1: This figure shows which documents are compared to each other
in order to obtain the same source and different source scores (with the

common source problem and with unknown sources xu1 and xu2).

Note that the scores of each of the documents are calculated, not the scores
of the writers; the degree of similarity between two documents needs to be
found, not the degree of similarity between the three documents of one writer
and the three documents of another.
More information about these scores can be found in chapters 4 and 5.

24



3.2 Determination of the letter combination

In section 2.4 the handwriting was compared based on the characteristics of
the letter combination “th”. In this report, the bigram “er” will be used. Here
a bigram is the combination of two letters. [7]
The letter combination “er” was chosen, because, if only the bigrams that do
not span across consecutive words are taken into account, it is the second most
frequent occurring letter pair in the English language (See figure 3.2) and the
third most frequent occurring one in the Dutch language (See figure 3.3). This
way, the SLR systems created in this report can be used for documents that
are written in English or in Dutch.
In the next section the characteristics of the letter combination “er” will be
described.

Figure 3.2: This figure shows the most frequent occurring letter pairs in the
English language per 2000 letters (that do not span across consecutive

words). “er” is the second most frequent. [25]

Figure 3.3: This figure shows the most frequent occurring letter pairs in the
Dutch language per 10,000 bigrams. “<” represents a space. “er” is the
third most frequent (that does not span across consecutive words).[5]
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3.3 Determination of the characteristics

In section 2.4, the characteristics of the bigram “th” were given by forensic
document examiners. However, there is no data available on what these ex-
aminers classify as the characteristics of the letter combination “er”. That
is why the characteristics of “er” were obtained by looking at those of “th”
(as described in section 2.4) and by looking at the CEDAR data base. The
characteristics are chosen in such a way that it can be assumed that they are
independent of one another (for the reason that was explained in section 2.4).
Figure 3.4 shows the features of the writing of “er”. The table in figure 3.5
shows the features (xi) of this bigram and the values they can take ({x1i , . . . , x

ni
i }).

Again “NSP” means “no set pattern”.
The feature x2 (Shape of “r”) might be difficult to visualize. For that reason
appendix C contains examples out of the CEDAR data set of the different
kinds of shapes (so examples of {x12, x22 . . . , x52}, because x62 is the case if the
feature is “NSP”).
The bigram “er” has 4 · 6 · 4 · 4 · 3 · 4 · 4 · 5 = 92, 160 possible combinations of
characteristics (for this calculation the number of values that each of the eight
characteristics can take are multiplied).

Figure 3.4: This figure shows the features of the writing of “er”.
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Figure 3.5: This figure shows a table with the features (xi) of “er” and the
values they can take ({x1i , . . . , x

ni
i }). “NSP” means “no set pattern”.
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3.4 Extraction of snippets

Figure 3.6 shows the seventeen locations of “er” (in the written documents)
which are underlined in green.

Figure 3.6: This figure shows the seventeen locations of “er” (in the written
documents) (this is document 1 of writer 1) which are underlined in green.

These snippets were extracted from the document and merged into one image
by the use of [12]. This is done such that all of the snippets of “er” can be
analyzed at the same time.
The result of this for the seventeen snippets of “er” of document 1 of writer
1, is shown in figure 3.7.
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Figure 3.7: This figure shows the seventeen snippets of “er” of document 1 of
writer 1 merged into one image.

The next section will discuss the construction of a user interface that will make
the analysis more time efficient and that uses images like figure 3.7.

3.5 Creation of a user interface

In order to analyze the writing of every document in a time efficient manner,
a user interface was created. This was done by using the images that were
described in the previous section. Figure 3.8 shows what this looks like.
The Python code, that was used in order to create this user interface, can be
found in appendices D.1 (the creation of the option menus) and D.2 (displaying
the bigrams).
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Figure 3.8: This figure shows what the user interface (that is used to analyze
the writing of every document) looks like.

Every characteristic still needs to be entered into the computer by hand. How-
ever, this is an improvement in terms of time efficiency from the current ap-
proach to handwriting comparison; now every document needs to be analyzed
once instead of once to compare with the unknown source and then once to
compare with every other document to obtain the degree of similarity. Besides,
with the user interface, only the characteristics need to be entered into the
computer by hand; the computer compares the documents. This means that,
now, two of the three problems are solved; this analysis has an expression for
the degree of uncertainty that a hypothesis is true and the analysis is less time
consuming.

The next section will explain, by utilizing the user interface, what values are
assigned for each of the characteristics such that the data can be used to
calculate the SLR.
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3.6 Ground-truthing the letter combination

The user interface of the previous section is utilized; for every document of ev-
ery writer the characteristics are entered into the computer by using the option
menus. This information is then transformed into a binary vector (a vector
that only has entries “1” or “0”). For example; if the feature x1 (height rela-
tionship of “e” to “r”) (with options {“e” even with “r”, “e” shorter than “r”,
“e” taller than “r”,NSP}) takes the value “e” even with “r”, then the x1 bi-
nary vector becomes [1, 0, 0, 0]. This vector is then entered into an Excel file.
The result for the first two writers is shown in figure 3.9. The Python code
used for this transformation can be found in appendix D.1.

Figure 3.9: This figure shows the table of the vectors of the eight
characteristics for the first two writers. The number after “W” is the number

of the writer and the number after “D” is the document number.

The transformation from characteristics into binary vectors is necessary in
order to calculate the scores that are described in the next chapter. This is
the case because, for the calculation of these scores, it is required to know
if xi = yi or xi ̸= yi for every i (where xi is a feature of the handwriting
with known source and yi is that of the handwriting with unknown source).
It is less complicated to know when this equality or inequality holds if binary
vectors are used (instead of just the characteristics); every entry of the vector
xi and yi need to be the same to have an equality, otherwise xi ̸= yi. So, for
example; [1, 0, 0, 0] = [1, 0, 0, 0] and [1, 0, 0, 0] ̸= [0, 1, 0, 0].

This step completes the data transformation. The next chapter will explain
how the SLR systems are constructed.
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Chapter 4

Methods: Construction of SLR
systems

This chapter will describe the four different scores that are used to construct
four SLR systems. Three of these systems take the uniqueness of the charac-
teristics of the handwriting into account. This means that the third problem
of the current approach to handwriting comparison is solved in this chapter.

As explained in chapter 2, by [2];

s(x, y) =

n∑
i=1

wi · si(xi, yi) (4.1)

Where;
xi = The ith feature of the handwriting with known source
yi = The ith feature of the handwriting with unknown source
si(xi, yi) = The (similarity) score of xi and yi
wi = The weight assigned to the ith feature of the handwriting
n = The total number of characteristics (in this report equal to 8)

The following four sections (sections 4.1 to 4.4) will discuss one score each for
which the formulas of si(xi, yi) and wi in equation (4.1) will be given.

4.1 SLR construction with score 1: Overlap

si(xi, yi) =

{
1 if xi = yi

0 otherwise

And wi =
1
n = 1

8 .

So, the “overlap” score counts the number of characteristics that match be-
tween known source x and unknown source y and divides it by the total number
of characteristics n (so 8). si(xi, yi) (and therefore also s(x, y)) has range [0, 1]
where s(x, y) ∈ {0, 18 ,

2
8 ,

3
8 ,

4
8 ,

5
8 ,

6
8 ,

7
8 , 1}. [2]
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The “overlap” score is the least complicated score of the four and the next
three scores are all extensions of this one. It is expected that those three will
outperform the first score, because they take the uniqueness of the character-
istics into account and the “overlap” score does not. More on this in chapter
6.

4.2 SLR construction with score 2: Goodall3

The “Goodall 3” score assigns higher scores if the matching values are unique.
The formulas are;

si(xi, yi) =

{
1− p2i (xi) if xi = yi

0 otherwise

And wi =
1
n = 1

8 .

Here;

p2i (xi) =
fi(xi) · (fi(xi)− 1)

N · (N − 1)

With;
fi(xi) = The number of times the ith feature takes the value xi in the data
set
N = The number of data points (in this report equal to 800 · 3 = 2400)

si(xi, yi) takes the minimum value when, for every data point, the ith feature
takes the value xi. So, when xi is the only value for the ith feature. Then
fi(xi) = N , so p2i (xi) = fi(xi)·(fi(xi)−1)

N ·(N−1) = N ·(N−1)
N ·(N−1) = 1 which means that

si(xi, yi) = 1− 1 = 0.
si(xi, yi) takes the maximum value when x and y are the only two data points
for which the ith feature takes the value xi. In that case fi(xi) = 2, so

p2i (xi) =
2·(2−1)
N ·(N−1) = 2

N ·(N−1) . This means that si(xi, yi) = 1 − 2
N ·(N−1) . Note

that if there is only one data point x for which the ith feature takes the value
xi, there is no y for which xi = yi. Therefore si(xi, yi) = 0.
So, it can be concluded that si(xi, yi) (and therefore also s(x, y) (for which
si(xi, yi) is summed over i and divided by 8)) has range [0, 1− 2

N ·(N−1) ] ≈ [0, 1]

(for N = 2400 in this report).[2]
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4.3 SLR construction with score 3: Burnaby

The “Burnaby” score assigns lower scores if the values that do not match
are unique. If the values that do not match are common, so not unique, a
higher score is assigned. Matching values receive a score of 1 regardless of
their uniqueness.

si(xi, yi) =


1 if xi = yi∑

q∈Ai

2log(1−p̂i(q))

log
p̂i(xi)p̂i(yi)

(1−p̂i(xi))(1−p̂i(yi))
+

∑
q∈Ai

2log(1−p̂i(q))
otherwise

And wi =
1
n = 1

8 .

Here;

p̂i(xi) =
fi(xi)

N

With;
Ai = The set of possible values (of size ni) that the ith feature can take
fi(xi) and N are the same as in section 4.2.

si(xi, yi) takes the minimum value when, the ith feature has N possible val-
ues it can take (that all occur exactly once). Then, for all data points

xi, fi(xi) = 1, so p̂i(xi) = 1
N which means that log p̂i(xi)p̂i(yi)

(1−p̂i(xi))(1−p̂i(yi))
=

log
1
N
· 1
N

(1− 1
N
)(1− 1

N
)
= log

1
N
· 1
N

(N−1
N

)(N−1
N

)
= log

(
1

N2

)
(

(N−1)2

N2

) = log((N −1)−2) = −2log(N −

1). So, si(xi, yi) =

∑
q∈Ai

2log(1−p̂i(q))

−2log(N−1)+
∑

q∈Ai

2log(1−p̂i(q))
=

2
∑

q∈Ai

log(1− 1
N
)

−2log(N−1)+2
∑

q∈Ai

log(1− 1
N
)
=

∑
q∈Ai

log(1− 1
N
)

−log(N−1)+
∑

q∈Ai

log(1− 1
N
)
=

N log(1− 1
N
)

N log(1− 1
N
)−log(N−1)

(because the ith feature has N

possible values it can take, so Ai has size N).
If xi ̸= yi, si(xi, yi) takes the maximum value when, for every data point, the
ith feature only takes the value xi or yi with equal probability. So, when xi and
yi are the only values for the ith feature (that occur with equal probability).

In that case fi(xi) = fi(yi) =
N
2 , so p̂i(xi) = p̂i(yi) =

(N
2 )
N = 1

2 . This means

that log p̂i(xi)p̂i(yi)
(1−p̂i(xi))(1−p̂i(yi))

= log
1
2
· 1
2

(1− 1
2
)(1− 1

2
)
= log

( 1
4)
( 1
4)

= log(1) = 0. Therefore,

si(xi, yi) =

∑
q∈Ai

2log(1−p̂i(q))

0+
∑

q∈Ai
2log(1−p̂i(q))

= 1. Note that if xi = yi, si(xi, yi) = 1 as

well.

34



So, it can be concluded that si(xi, yi) (and therefore also s(x, y) (for which

si(xi, yi) is summed over i and divided by 8)) has range [
N log(1− 1

N
)

N log(1− 1
N
)−log(N−1)

, 1] ≈
[0.1139, 1] (for N = 2400 in this report).[2]

4.4 SLR construction with score 4: Anderberg

In [1], Anderberg argues that matching values that are unique indicate a lot
of similarity and should therefore receive a higher weight. In the same way,
values that do not match and are unique indicate that they are distinct and
should receive a lower weight. So, the “Anderberg” score assigns higher scores
if the matching values are unique and lower scores if the values that do not
match are unique.
This score is calculated with a function for s(x, y) (it cannot be written in the
form of functions for si(xi, yi) and wi in equation (4.1)).

s(x, y) =

∑
i∈{1≤i≤n:xi=yi}

(
1

p̂i(xi)

)2
2

ni(ni+1)∑
i∈{1≤i≤n:xi=yi}

(
1

p̂i(xi)

)2
2

ni(ni+1) +
∑

i∈{1≤i≤n:xi ̸=yi}

(
1

2p̂i(xi)p̂i(yi)

)2
2

ni(ni+1)

Here;
ni = The number of possible values that the ith feature can take
p̂i(xi) and p̂i(yi) are the same as in section 4.3.

s(x, y) takes the minimum value when known source x and unknown source
y have no matching values for any of the n = 8 features. Then {1 ≤ i ≤ n :

xi = yi} is empty, so
∑

i∈{1≤i≤n:xi=yi}

(
1

p̂i(xi)

)2
2

ni(ni+1) = 0. This means that

s(x, y) = 0

0+
∑

i∈{1≤i≤n:xi ̸=yi}

(
1

2p̂i(xi)p̂i(yi)

)2
2

ni(ni+1)

= 0.

s(x, y) takes the maximum value when known source x and unknown source
y have matching values for all of the n = 8 features. In that case {1 ≤ i ≤ n :

xi ̸= yi} is empty, so
∑

i∈{1≤i≤n:xi ̸=yi}

(
1

2p̂i(xi)p̂i(yi)

)2
2

ni(ni+1) = 0. This means

that s(x, y) =

∑
i∈{1≤i≤n:xi=yi}

(
1

p̂i(xi)

)2
2

ni(ni+1)∑
i∈{1≤i≤n:xi=yi}

(
1

p̂i(xi)

)2
2

ni(ni+1)
+0

= 1.

So, it can be concluded that s(x, y) has range [0, 1].[2]

It is expected that the “Anderberg” score will outperform the other scores,
because it takes the uniqueness of characteristics into account for values that
match and for values that do not match. More on this in chapter 6.

35



Note that now all of the three problems of the current approach to handwrit-
ing comparison are solved; the method of this report is more time efficient (by
utilizing a user interface), it has an expression for the degree of uncertainty
that a hypothesis is true (by using the SLR) and the uniqueness of character-
istics is taken into account (by using score 2 (Goodall3), 3 (Burnaby) and 4
(Anderberg)).

Substituting the formulas for si(xi, yi) and wi into equation (4.1) (for scores
1, 2 and 3) gives the s(x, y). Doing this for all the documents of all the
writers gives, for each of the four score functions, 2400 same source scores and
2,876,400 different source scores (as calculated in section 3.1). By using “R”,
the probability distributions of these scores can be found and thus the four
SLRs can be calculated with equation (2.2). This will be done in the next
chapter.
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Chapter 5

Results of the SLR systems

Figure 5.1 shows the steps of the procedure of the handwriting comparison
system of this report (which was also shown at the beginning of the report).
After the documents of 800 writers of the CEDAR data set are obtained, the
letter combinations “er” are extracted with which the subset of the data is
created. Next, the characteristics of the letter combinations are entered into
the user interface for each document. After this, the four scores (Overlap,
Goodall3, Burnaby and Anderberg) can be calculated for the same source and
different source documents and with these scores the four SLR systems can be
obtained. In this chapter the same source scores, different source scores and
SLRs will be calculated and discussed for each of the four scores (as described
in the previous chapter). Each section (sections 5.1 to 5.4) considers one score.
The SLR systems of all of the scores will be compared in section 5.5 and the
evaluation of the SLR systems will be done in the next chapter.
The “R” code, that was used to calculate the scores and to create the graphs
of this chapter, can be found in appendix E.

Figure 5.1: This figure shows the steps of the procedure of the handwriting
comparison system of this report.

5.1 SLR results with score 1: Overlap

5.1.1 Results same source scores (score 1)

After calculating the 2400 same source scores, a histogram of the same source
scores (of score 1) is created. Figure 5.2 shows that histogram.
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Figure 5.2: This figure shows the histogram of the same source scores of
score 1 (Overlap).

Probabilities can be placed on the y-axis instead of frequencies. Figure 5.3
shows the histogram of the probabilities of the same source scores of score 1
(Overlap) and parametrization with the Weibull distribution. The Weibull
distribution was chosen with the help of “R” and the parameters of the distri-
bution (scale = 6.8677993 and shape = 0.8874142) were found using maximum
likelihood estimation. The Q-Q plot of the theoretical quantiles (Weibull dis-
tribution) and the empirical quantiles (distribution of the same source scores)
is shown in figure 5.4. The quantiles of both distributions are (approximately)
on the same line.
Appendix F.1 contains more information on the decision of choosing theWeibull
distribution for parametrization.
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Figure 5.3: This figure shows the histogram of the probabilities of the same
source scores of score 1 (Overlap) (in green) and parametrization with the

Weibull distribution (in red).

Figure 5.4: This figure shows the Q-Q plot of the theoretical quantiles
(Weibull distribution) and the empirical quantiles (distribution of the same

source scores).
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5.1.2 Results different source scores (score 1)

After calculating the 2,876,400 different source scores, a histogram of the prob-
abilities of the different source scores of score 1 (Overlap) and parametrization
with the normal distribution was created. Figure 5.5 shows that histogram.
The normal distribution was chosen with the help of “R” and the parame-
ters of the distribution (mean = 0.5254443 and variance = 0.2164346) were
found using maximum likelihood estimation. The Q-Q plot of the theoreti-
cal quantiles (normal distribution) and the empirical quantiles (distribution
of the different source scores) is shown in figure 5.6. The quantiles of both
distributions are (approximately) on the same line.
Appendix F.2 contains more information on the decision of choosing the nor-
mal distribution for parametrization.

Figure 5.5: This figure shows the histogram of the probabilities of the
different source scores of score 1 (Overlap) (in green) and parametrization

with the normal distribution (in red).
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Figure 5.6: This figure shows the Q-Q plot of the theoretical quantiles
(normal distribution) and the empirical quantiles (distribution of the

different source scores).

Note that for the “overlap” score it is more complicated to find a parametriza-
tion with a distribution, since there are only eight possible scores (see section
4.1).

5.1.3 Results SLR (score 1)

Figure 5.7 shows the parametrization of the same source scores and different
source scores of score 1. Dividing the parametrization of the same source
scores by that of the different source ones, gives the SLR (by equation (2.2)).
Figure 5.8 shows the score-based likelihood ratio (SLR) as a function of score 1.
However, from a score of 0 to about 0.5, the SLR is close to zero. Therefore,
it was decided to change the y-axis to a logarithmic scale (with a base of
10). Figure 5.9 shows the log10 score-based likelihood ratio (log10(SLR)) as a
function of score 1.
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Figure 5.7: This figure shows the parametrization of the same source scores
(solid green line) and different source scores (dashed green line) of score 1

(Overlap).

Figure 5.8: This figure shows the score-based likelihood ratio (SLR) as a
function of score 1 (Overlap) (in green). The dashed black line represents an

SLR value of 1.
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Figure 5.9: This figure shows the log10 score-based likelihood ratio
(log10(SLR)) as a function of score 1 (Overlap) (in green). The dashed black

line represents an SLR value of 1 (so a log10(SLR) value of 0).

5.2 SLR results with score 2: Goodall3

5.2.1 Results same source scores (score 2)

After calculating the same source scores, a histogram of the probabilities of
the same source scores of score 2 (Goodall3) and parametrization with the
normal distribution was created. Figure 5.10 shows that histogram. Again,
the normal distribution was chosen with the help of “R” and the parameters of
the distribution (mean = 0.5033672 and variance = 0.1380562) were found us-
ing maximum likelihood estimation. The Q-Q plot of the theoretical quantiles
(normal distribution) and the empirical quantiles (distribution of the same
source scores) is shown in figure 5.11. The quantiles of both distributions are
(approximately) on the same line.
Appendix F.3 contains more information on the decision of choosing the nor-
mal distribution for parametrization.
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Figure 5.10: This figure shows the histogram of the probabilities of the same
source scores of score 2 (Goodall3) (in green) and parametrization with the

normal distribution (in red).

Figure 5.11: This figure shows the Q-Q plot of the theoretical quantiles
(normal distribution) and the empirical quantiles (distribution of the same

source scores).

Note that the score with the highest probability (of the parametrization of
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the same source scores) is higher for score 1 than for score 2. This is the
case, because a lot of the documents have the same characteristics. Therefore,
most of the documents do not have characteristics that are unique, so the
“Goodall3” score is lower for most of the documents (see section 4.2) than the
“overlap” score.

5.2.2 Results different source scores (score 2)

After calculating the different source scores, a histogram of the probabilities
of the different source scores of score 2 (Goodall3) and parametrization with
the normal distribution was created. Figure 5.12 shows that histogram. The
normal distribution was chosen with the help of “R” and the parameters of the
distribution (mean = 0.2583087 and variance = 0.1412754) were found using
maximum likelihood estimation. The Q-Q plot of the theoretical quantiles
(normal distribution) and the empirical quantiles (distribution of the different
source scores) is shown in figure 5.13. The quantiles of both distributions are
(approximately) on the same line.
Appendix F.4 contains more information on the decision of choosing the nor-
mal distribution for parametrization.

Figure 5.12: This figure shows the histogram of the probabilities of the
different source scores of score 2 (Goodall3) (in green) and parametrization

with the normal distribution (in red).
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Figure 5.13: This figure shows the Q-Q plot of the theoretical quantiles
(normal distribution) and the empirical quantiles (distribution of the

different source scores).

For the same reason as before (that was explained in the previous subsection),
the score with the highest probability (of the parametrization of the different
source scores) is higher for score 1 than for score 2.

5.2.3 Results SLR (score 2)

Figure 5.14 shows the parametrization of the same source scores and different
source scores of score 2. Again, dividing the parametrization of the same source
scores by that of the different source ones, gives the score-based likelihood ratio
(SLR) which is shown in figure 5.15 as a function of score 2. However, from a
score of 0 to about 0.18, the SLR is close to zero. Furthermore, the SLR seems
to increase exponentially. Therefore, it was decided to change the y-axis to a
logarithmic scale (with a base of 10). Figure 5.16 shows the log10 score-based
likelihood ratio (log10(SLR)) as a function of score 2.
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Figure 5.14: This figure shows the parametrization of the same source scores
(solid green line) and different source scores (dashed green line) of score 2

(Goodall3).

Figure 5.15: This figure shows the score-based likelihood ratio (SLR) as a
function of score 2 (Goodall3) (in green). The dashed black line represents

an SLR value of 1.
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Figure 5.16: This figure shows the log10 score-based likelihood ratio
(log10(SLR)) as a function of score 2 (Goodall3) (in green). The dashed
black line represents an SLR value of 1 (so a log10(SLR) value of 0).

5.3 SLR results with score 3: Burnaby

5.3.1 Results same source scores (score 3)

After calculating the same source scores, a histogram of the probabilities of
the same source scores of score 3 (Burnaby) and parametrization with the
Weibull distribution was created. Figure 5.17 shows that histogram. Since no
scores smaller than 0.6 occur, the histogram was magnified. The result can be
seen in figure 5.18.
Again, the Weibull distribution was chosen with the help of “R” and the pa-
rameters of the distribution (scale = 24.8003921 and shape = 0.9682415) were
found using maximum likelihood estimation. The Q-Q plot of the theoretical
quantiles (Weibull distribution) and the empirical quantiles (distribution of
the same source scores) is shown in figure 5.19. The quantiles of both distri-
butions are (approximately) on the same line.
Appendix F.5 contains more information on the decision of choosing theWeibull
distribution for parametrization.
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Figure 5.17: This figure shows the histogram of the probabilities of the same
source scores of score 3 (Burnaby) (in green) and parametrization with the

Weibull distribution (in red).

Figure 5.18: This figure shows the magnified histogram of the probabilities
of the same source scores of score 3 (Burnaby) (in green) and

parametrization with the Weibull distribution (in red).
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Figure 5.19: This figure shows the Q-Q plot of the theoretical quantiles
(Weibull distribution) and the empirical quantiles (distribution of the same

source scores).

Note that the score with the highest probability (of the parametrization of
the same source scores) is higher for score 3 than for scores 1 and 2. This is
the case, because, with the “Burnaby” score, matching characteristics receive
a score of 1 and characteristics that do not match get a higher score if the
characteristics are common (so not unique) (see section 4.3). A lot of the
documents have the same characteristics. Therefore, most of the documents
do not have characteristics that are unique, so the “Burnaby” score is higher
for most of the documents than the “overlap” and “Goodall3” scores.

5.3.2 Results different source scores (score 3)

After calculating the different source scores, a histogram (figure 5.20) of the
probabilities of the different source scores of score 3 (Burnaby) and parametriza-
tion with the normal distribution was created. Since no scores smaller than
0.5 occur, the histogram was magnified. The result can be seen in figure 5.21.
The normal distribution was chosen with the help of “R” and the parame-
ters of the distribution (mean = 0.85762356 and variance = 0.07077304) were
found using maximum likelihood estimation. The Q-Q plot of the theoreti-
cal quantiles (normal distribution) and the empirical quantiles (distribution
of different source scores) is shown in figure 5.22. The quantiles of both dis-
tributions are (approximately) on the same line.
Appendix F.6 contains more information on the decision of choosing the nor-
mal distribution for parametrization.
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Figure 5.20: This figure shows the histogram of the probabilities of the
different source scores of score 3 (Burnaby) (in green) and parametrization

with the normal distribution (in red).

Figure 5.21: This figure shows the magnified histogram of the probabilities
of the different source scores of score 3 (Burnaby) (in green) and

parametrization with the normal distribution (in red).
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Figure 5.22: This figure shows the Q-Q plot of the theoretical quantiles
(normal distribution) and the empirical quantiles (distribution of the

different source scores).

5.3.3 Results SLR (score 3)

Figure 5.23 shows the parametrization of the same source scores and differ-
ent source scores of score 3. Again, dividing the parametrization of the same
source scores by that of the different source ones, gives the score-based like-
lihood ratio (SLR) which is shown in figure 5.24 as a function of score 3.
However, from a score of 0 to about 0.05 and of 0.55 to 0.8, the SLR is close to
zero. Furthermore, the SLR seems to increase exponentially. Therefore, it was
decided to change the y-axis to a logarithmic scale (with a base of 10). Figure
5.25 shows the log10 score-based likelihood ratio (log10(SLR)) as a function of
score 3.
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Figure 5.23: This figure shows the parametrization of the same source scores
(solid green line) and different source scores (dashed green line) of score 3

(Burnaby).

Figure 5.24: This figure shows the score-based likelihood ratio (SLR) as a
function of score 3 (Burnaby) (in green). The dashed black line represents an

SLR value of 1.
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Figure 5.25: This figure shows the log10 score-based likelihood ratio
(log10(SLR)) as a function of score 3 (Burnaby) (in green). The dashed black

line represents an SLR value of 1 (so a log10(SLR) value of 0).

In figures 5.24 and 5.25, it can be seen that the SLR is greater than 1 (so
the log10(SLR) is greater than 0), when the score is greater than 0.9 or when
the score is between the 0.05 and 0.45. This means that, for those values, the
parametrization of the same source scores is greater than that of the different
source scores. For all other values the parametrization of the same source
scores is smaller than that of the different source scores. This switch, in which
parametrization is greater, can be seen (for scores between 0 and 0.5) in figure
5.26; it shows the magnified parametrization of figure 5.23.
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Figure 5.26: This figure shows the magnified parametrization of the same
source scores (solid green line) and different source scores (dashed green line)

of score 3 (Burnaby).

Figure 5.24 shows that a score of 0.2 has a higher SLR than a score of 0.6.
So, a score of 0.2 indicates that the sources are more similar than a score
of 0.6. This is impossible, because the score itself is already a measure for
the similarity. Therefore, the SLR function (and thus also the log10(SLR)
function) should be an increasing function of the score. Most likely this is not
the case for score 3, because the Weibull (of same source scores) and normal
distribution (of different source scores) behave too differently in the tails.
Therefore, the decision was made to fit the second best distribution to the
same source scores; the gamma distribution (see appendix F.5). Figure 5.27
shows the histogram of the probabilities of the same source scores of score 3
(Burnaby) and parametrization with the gamma distribution. The parameters
of the distribution (shape = 294.0646 and scale = 310.9852) were found using
maximum likelihood estimation. Furthermore, since no scores smaller than
0.6 occur, the histogram was magnified. The result can be seen in figure 5.28.
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Figure 5.27: This figure shows the histogram of the probabilities of the same
source scores of score 3 (Burnaby) (in green) and parametrization with the

gamma distribution (in red).

Figure 5.28: This figure shows the magnified histogram of the probabilities
of the same source scores of score 3 (Burnaby) (in green) and

parametrization with the gamma distribution (in red).
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Using the gamma distribution for the parametrization of the same source
scores, figure 5.29 shows the parametrization of the same source scores and
different source scores of score 3. Again, dividing the parametrization of the
same source scores by that of the different source ones, gives the score-based
likelihood ratio (SLR) which is shown in figure 5.30 as a function of score 3.
However, from a score of 0 to about 0.8, the SLR is close to zero. Therefore,
it was decided to change the y-axis to a logarithmic scale (with a base of
10). Figure 5.31 shows the log10 score-based likelihood ratio (log10(SLR)) as
a function of score 3. In that figure, it can be seen that the log10(SLR) is
relatively small for scores between 0 and 0.8. Most likely this is because none
of the documents had a score lower than 0.6. Therefore, it is more complicated
to find a distribution that fits these scores. This results in very small SLRs.

Figure 5.29: This figure shows the parametrization of the same source scores
(solid green line) and different source scores (dashed green line) of score 3

(Burnaby).
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Figure 5.30: This figure shows the score-based likelihood ratio (SLR) as a
function of score 3 (Burnaby) (in green). The dashed black line represents an

SLR value of 1.

Figure 5.31: This figure shows the log10 score-based likelihood ratio
(log10(SLR)) as a function of score 3 (Burnaby) (in green). The dashed black

line represents an SLR value of 1 (so a log10(SLR) value of 0).
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5.4 SLR results with score 4: Anderberg

5.4.1 Results same source scores (score 4)

After calculating the same source scores, a histogram of the probabilities of the
same source scores of score 4 (Anderberg) and parametrization with the beta
distribution was created. Figure 5.32 shows that histogram. Again, the beta
distribution was chosen with the help of “R” and the parameters of the dis-
tribution (shape alpha = 1.7348483 and shape beta = 0.3720472) were found
using maximum likelihood estimation. The Q-Q plot of the theoretical quan-
tiles (beta distribution) and the empirical quantiles (distribution of the same
source scores) is shown in figure 5.33. The quantiles of both distributions are
(approximately) on the same line.
Appendix F.7 contains more information on the decision of choosing the beta
distribution for parametrization.

Figure 5.32: This figure shows the histogram of the probabilities of the same
source scores of score 4 (Anderberg) (in green) and parametrization with the

beta distribution (in red).
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Figure 5.33: This figure shows the Q-Q plot of the theoretical quantiles (beta
distribution) and the empirical quantiles (distribution of the same source

scores).

Note that a score of 1 occurs the most for score 4 (with a probability of 0.5) in
comparison to scores 1, 2 and 3. This is the case, because, if two documents
are from the same source, most of the time they only have characteristics that
match. In section 4.4 it was explained that, in that case, the “Anderberg”
score is equal to 1.

5.4.2 Results different source scores (score 4)

After calculating the different source scores, a histogram of the probabilities
of the different source scores of score 4 (Anderberg) and parametrization with
the beta distribution was created. Figure 5.34 shows that histogram. Again,
the beta distribution was chosen with the help of “R” and the parameters of
the distribution (shape alpha = 0.9371025 and shape beta = 1.1337795) were
found using maximum likelihood estimation. The Q-Q plot of the theoretical
quantiles (beta distribution) and the empirical quantiles (distribution of the
different source scores) is shown in figure 5.35. The quantiles of both distri-
butions are (approximately) on the same line.
Appendix F.8 contains more information on the decision of choosing the beta
distribution for parametrization.
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Figure 5.34: This figure shows the histogram of the probabilities of the
different source scores of score 4 (Anderberg) (in green) and parametrization

with the beta distribution (in red).

Figure 5.35: This figure shows the Q-Q plot of the theoretical quantiles (beta
distribution) and the empirical quantiles (distribution of the different source

scores).
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5.4.3 Results SLR (score 4)

Figure 5.36 shows the parametrization of the same source scores and different
source scores of score 4. Again, dividing the parametrization of the same source
scores by that of the different source ones, gives the score-based likelihood ratio
(SLR) which is shown in figure 5.37 as a function of score 4. However, from a
score of 0 to about 0.15, the SLR is close to zero. Furthermore, the SLR seems
to increase exponentially. Therefore, it was decided to change the y-axis to a
logarithmic scale (with a base of 10). Figure 5.38 shows the log10 score-based
likelihood ratio (log10(SLR)) as a function of score 4.

Figure 5.36: This figure shows the parametrization of the same source scores
(solid green line) and different source scores (dashed green line) of score 4

(Anderberg).
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Figure 5.37: This figure shows the score-based likelihood ratio (SLR) as a
function of score 4 (Anderberg) (in green). The dashed black line represents

an SLR value of 1.

Figure 5.38: This figure shows the log10 score-based likelihood ratio
(log10(SLR)) as a function of score 4 (Anderberg) (in green). The dashed

black line represents an SLR value of 1 (so a log10(SLR) value of 0).
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5.5 Results SLRs (all scores)

Figures 5.39 and 5.40 show the score-based likelihood ratios (SLRs) and the
log10 score-based likelihood ratios (log10(SLR)) (respectively) as functions of
all scores.
For example, if two documents have a “Burnaby” score of 0.8, the SLR (so
log10(SLR)) is lower than if two documents have an “Anderberg”, “Overlap”
or “Goodall3” score (from smallest to greatest corresponding SLR) of 0.8.

Figure 5.39: This figure shows the score-based likelihood ratios (SLRs) as
functions of all scores. The dashed black line represents an SLR value of 1.
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Figure 5.40: This figure shows the log10 score-based likelihood ratios
(log10(SLR)) as functions of all scores. The dashed black line represents an

SLR value of 1 (so a log10(SLR) value of 0).

As mentioned in chapter 2, if SLR > 1, there is a higher likelihood that
the two documents have the same writer and, if SLR < 1, there is a higher
likelihood that the two documents have a different writer. This concept will
be used in the next chapter and that is why, in the SLR graphs of this chapter,
a line was plotted that represents an SLR value of 1 (so a log10(SLR) value
of 0). Figures 5.39 and 5.40 also show that score 3 (Burnaby) requires the
highest similarity score (compared to the other SLR systems) in order to have
SLR > 1 (so log10(SLR) > 0). After this score 4 (Anderberg) requires the
highest similarity score, then score 1 (Overlap) and score 2 (Goodall3) requires
the lowest similarity score.

In the next chapter the four SLR systems, that were obtained in this chapter,
will be evaluated based on their quality of performance. The SLR system that
performs the best according to this evaluation, will considered be the “best”
SLR system.
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Chapter 6

Evaluation of the quality of per-
formance of SLR systems

Since the LR (which is approximated by the SLR) is unknown, the SLR sys-
tems cannot be compared to the LR system. Therefore, examining the accu-
racy and performance of SLR systems is complicated. [14]. However, their
behavior can be investigated; in this chapter, the SLR systems of the previous
chapter are evaluated in the same way as in [14]. This means that a leave-one-
out method (cross-validation) is performed (section 6.1) and the 95% SLR
bootstrap confidence intervals are calculated (section 6.2). Lastly, the mis-
leading evidence is quantified (section 6.3). The SLR system that performs
the best, based on these three performance characteristics, will be considered
the “best” SLR system. For this, every SLR system is ranked (from 1 to 4)
for each of the performance characteristics, then the sum of these rankings
over all of the performance characteristics is taken. This sum can range from
1 · 3 = 3 to 4 · 3 = 12. The SLR system with the lowest sum of rankings, is
considered the “best” SLR system.

6.1 Using the leave-one-out method (cross-validation)

In order to examine the distributions of the SLR systems (for the same source
and different source comparisons), the leave-one-out method (or cross valida-
tion) is used. This means that for each of the 2400 documents, the parametriza-
tion (as described in the previous chapter) was performed using all data except
the data connected with that specific document, that is, using all data except
the same source and different source scores of that document. This results in
2400 same source SLRs and 2,876,400 different source SLRs (see section 3.1).
Note that, since each parametrization is done without taking the scores of one
specific document into account, the calculation of each of the SLR systems
was performed based on a dataset independent of the scores of this document.
[14]

Figures 6.1 and 6.2 show the boxplots of the log10(SLR) of same source and
different source comparisons (respectively) for the four different score systems
using the leave-one-out method (cross-validation). The five horizontal lines
in each of the boxplots represent the maximum, third quartile, median, first
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quartile and minimum (from top to bottom).

Figure 6.1: This figure shows the boxplots of the log10(SLR) of same source
comparisons for the scores using the leave-one-out method (cross-validation).

The horizontal dashed black line represents a log10(SLR) value of 0.

Figure 6.2: This figure shows the boxplots of the log10(SLR) of different
source comparisons for the scores using the leave-one-out method

(cross-validation). The horizontal dashed black line represents a log10(SLR)
value of 0.

67



First, the boxplots in the two figures are analyzed. After this, the systems
are ranked based on the distance between the boxplots of the same source
and different source comparisons; the larger the distance, the higher the dis-
criminating power. The discriminating power can be defined as the ability
of the SLR system to differentiate between the two hypothesis H1 and H2.
So, the higher the discriminating power, the stronger the evidence that the
system forms (see figure 2.1 that displays the verbal expressions connected to
the SLR), thus the better the SLR system performs. In summary, the larger
the distance between the boxplots of the same source and different source
comparisons, the better the SLR system performs.

By looking at figure 6.1, it appears that score 1 has the highest median
log10(SLR) (then score 2, then score 3 and score 4 has the lowest median).
All medians lie above a log10(SLR) value of 0 which means that it is more
likely that the sources of the documents are the same. This makes sense for
the same source scores. The entire boxplot (without the whiskers) lies above
0 for scores 1, 2 and 3. Score 2 is the only score to have whiskers on both sides
of the boxplot and score 4 has the longest whisker (then score 2, then score 3
and score 1 has the shortest whisker). The box lengths (interquartile ranges)
show how the data is dispersed; a longer box means more dispersed data. So
score 4 has the most dispersed data (then score 2, then score 1 and score 3
has the least dispersed data). Score 1 appears to be negatively skewed (left
skewed), score 2 appears to be symmetrical and scores 3 and 4 appear to be
positively skewed (right skewed).[16] Note that score 4 has no outliers (so it
has no unusual observations that are far removed from the other values of the
data). [20] Score 1 has the least number of outliers (after score 4), then score
2 and score 3 has the most outliers. Score 2 is the only score that has outliers
on both sides of the boxplot. Furthermore, the number of outliers below the
boxplot is a measure for the misleading evidence of the same source scores.
Here misleading evidence occurs if SLR < 1 (so log10(SLR) < 0) given H1.
Thus, if the SLR indicates that there is a higher likelihood that two sources
are different given that the sources are the same. More on this in section 6.3.
Score 4 has no outliers, so it has no outliers below the boxplot. Score 1 has
the least number of outliers below the boxplot (after score 4), then score 2
and score 3 has the most outliers below the boxplot. [16]

Looking at figure 6.2, it appears that score 4 has the highest median log10(SLR)
(then score 2, then score 3 and score 1 has the lowest median). All medians
lie below a log10(SLR) value of 0 which means that it is more likely that the
sources of the documents are different. This makes sense for the different
source scores. The entire boxplot (without the whiskers) lies below 0 for all
of the four scores as well. All of the scores have whiskers on both sides of the
boxplot and score 3 has the longest whiskers (then score 2, then score 1 and
score 4 has the shortest whiskers). Note that the whiskers are longer for the
different source comparisons (in figure 6.2) than for the same source compar-

68



isons (in figure 6.1). This makes sense, because the same source documents,
compared to the different source ones, are more alike, therefore have similar
scores, and thus have less scattered data. Score 3 has the most dispersed data
(judging by the box lengths as explained before) (then score 2, then score 1
and score 4 has the least dispersed data). Score 3 appears to be negatively
skewed (left skewed) and scores 1, 2 and 4 appear to be fairly symmetrical.
[16] Note that score 3 has no outliers (so it has no unusual observations that
are far removed from the other values of the data). [20] Score 1 has the least
number of outliers (after score 3) (only one outlier), then score 2 and score
4 has the most outliers. Score 4 is the only score that has outliers on both
sides of the boxplot. Furthermore, the number of outliers above the boxplot
is a measure for the misleading evidence of the different source scores. Here
misleading evidence occurs if SLR > 1 (so log10(SLR) > 0) given H2. Thus,
if the SLR indicates that there is a higher likelihood that two sources are the
same given that the sources are different. More on this in section 6.3. Score
3 has no outliers, so it has no outliers above the boxplot. Score 1 also has no
outliers above the boxplot. Score 4 has the least number of outliers above the
boxplot (after scores 1 and 3) and score 2 has the most. [16]

Based on the leave-one-out method (cross-validation) and judging by the dis-
tance between the boxplots of the same source and different source compar-
isons, score 1 (Overlap) performs the best since it has the greatest discriminat-
ing power (because the distance between the boxplots is the greatest). After
that, from best to worst; score 3 (Burnaby), score 2 (Goodall3) and score 4
(Anderberg).

The R code, that was used to carry out the leave-one-out method (cross-
validation) in this section, can be found in appendix G.1.

6.2 Calculating the 95% SLR bootstrap confidence
intervals

The process of acquiring the SLR systems has a sampling uncertainty, because
the CEDAR database consists of random samples of handwriting. This un-
certainty can be quantified by using the bootstrap technique.
For this, a sample of size 2400 of the 2400 same source scores is drawn with re-
placement (so the same score can be drawn multiple times). This means that a
new sample of scores givenH1 is acquired. After this, for each of the 2400 boot-
strapped same source scores, a sample of size 2397 of the 2397 different source
scores (belonging to that bootstrapped same source score) is drawn (with re-
placement). This way, a new sample of scores given H2 is acquired. Both of
these new samples combined gives a data set of size 2400 · 2397 = 5, 752, 800
which is twice the size of the original data set (namely 2,876,400). After this,
the new likelihood ratio function is determined in the same way as in chapter
5.
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Note that the size of the new data set is irrelevant since each of the 2,876,400
scores occurs twice in this set and because the parametrization is performed
on histograms which use probabilities. This was explained in section 3.1.
This sampling process is repeated 50 times which results in 50 SLRs for each
score.
From the SLRs, the bootstrap confidence interval is derived which quantifies
the sampling uncertainty; the larger the interval, the lower the precision of the
SLR system. [14] In this report, the 95% bootstrap confidence intervals are
calculated. These intervals imply that, if 100 different samples (of scores) are
taken and for each sample the 95% bootstrap confidence interval is calculated,
then (approximately) 95 of the 100 confidence intervals will contain the true
mean value (of the scores) (µ). [26]
Note that the more the sampling process is repeated, the more accurate the
resulting bootstrap interval. However, in order to accelerate the calculation,
it was repeated 50 times. More on this in the Discussion.

Figures 6.3, 6.4, 6.5 and 6.6 show the medians (50% points) of the SLR boot-
strap results with the boundaries of the 95% SLR bootstrap intervals of the
four SLR systems.

Figure 6.3: This figure shows the median (50% point) of the SLR bootstrap
results with the boundaries of the 95% SLR bootstrap interval of score 1

(Overlap).
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Figure 6.4: This figure shows the median (50% point) of the SLR bootstrap
results with the boundaries of the 95% SLR bootstrap interval of score 2

(Goodall3).

Figure 6.5: This figure shows the median (50% point) of the SLR bootstrap
results with the boundaries of the 95% SLR bootstrap interval of score 3

(Burnaby).
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Figure 6.6: This figure shows the median (50% point) of the SLR bootstrap
results with the boundaries of the 95% SLR bootstrap interval of score 4

(Anderberg).

When evaluating figures 6.3, 6.4, 6.5 and 6.6, it is evident that ranking the
SLR systems based on the widths of the bootstrap intervals is complicated.
Therefore the average widths and maximum widths of these intervals are cal-
culated and ranked. Figure 6.7 shows the table of the average and maximum
widths of the bootstrap intervals for the four different SLR systems. The sums
of the average and maximum widths of the intervals are shown as well. Note
that, for score 3 (Burnaby) the average and maximum width (and therefore
also their sum) are infinity. This can also be seen in figure 6.5, since the width
of the bootstrap interval tends to infinity when the score tends to 0.
From figure 6.7, it can be seen that score 4 has the lowest average width of
the 95% bootstrap interval (so this score performs the best in this case). After
this score 2 has the lowest average width, then score 1 and score 3 has the
highest average width of the 95% bootstrap interval. Furthermore, it can be
seen that score 2 has the lowest maximum width of the 95% bootstrap interval
(so this score performs the best in this case). After this score 4 has the lowest
maximum width, then score 1 and score 3 has the highest maximum width of
the 95% bootstrap interval. This ranking is shown in the table of figure 6.8.
The cells outlined in red have the highest ranking.
The summed widths (of the average and maximum widths) are ranked as well
(which is also shown in the table of figure 6.8). This is done because, for
example, scores 2 and 4 have the same sum of rankings (of 3), but score 2 has
a lower summed width than score 4. So, using these summed widths, it can
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be said that score 2 has the smallest bootstrap interval and thus is the most
precise SLR system (so this score performs the best in this case). After this
score 4 has the smallest one, then score 1 and score 3 has the largest bootstrap
interval and thus is the least precise SLR system. This ranking is later used
for the comparison of the SLR systems.

Figure 6.7: This figure shows the table of the average widths and maximum
widths of the bootstrap intervals for the four different SLR systems (the

sums of the widths are shown as well).

Figure 6.8: This figure shows the table of the rankings of the average widths
and maximum widths of the bootstrap intervals (with the sum and ranking

of summed widths). Cells outlined in red have the highest ranking.

The R code, that was used to calculate the 95% bootstrap confidence intervals
in this section, can be found in appendix G.2.

6.3 Quantifying the misleading evidence

In order to quantify the misleading evidence, the percentages of misleading
evidence are calculated in subsection 6.3.1. Furthermore, the indications of
strength of evidence (in subsection 6.3.2) and the expected values (in subsec-
tion 6.3.3) are calculated as well. Lastly, in subsection 6.3.4, the ECE plots
are obtained. Each one of these four performance characteristics are ranked,
then the sum of these rankings over all of the performance characteristics is
taken. The SLR system with the lowest sum of rankings, is considered to be
the “best” SLR system based on misleading evidence only.
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6.3.1 Calculating the percentages of misleading evidence

As mentioned in chapter 2, if SLR > 1 there is a higher likelihood that two
sources are the same and if SLR < 1 there is a higher likelihood that two
sources are different. However, every properly working SLR system will also
create SLRs that support the false hypothesis. This means that there is an
SLR > 1 given H2 (the hypothesis that states that the sources are different)
or that there is an SLR < 1 given H1 (the hypothesis that states that the
sources are the same). These SLRs, that support the false hypotheses, are
called misleading evidence. Note that, if for an SLR system the SLR is always
equal to 1, it is not called misleading evidence. Furthermore, other thresholds
for misleading evidence can be applied as well. For example, a threshold that
depends on the strength of (misleading) evidence can be used (more on this
in section 6.3.2). [24] However, since in general a threshold of one is applied,
that threshold will be used in this research as well. Lastly, as mentioned in
chapter 2, SLRs are best used in combination with the (subjective) opinion of
forensic examiners. So, the rate of misleading evidence is only a performance
measure of the SLR system. [14]

The table in figure 6.9 shows the rates of misleading evidence for the four
different SLR systems (same and different source and the average). For the
same source scores, score 3 has the lowest rate of misleading evidence (so this
score performs the best in this case). After this score 1 has the lowest rate,
then score 2 and score 4 has the highest rate of misleading evidence. For the
different source scores, score 4 has the lowest rate of misleading evidence (so
this score performs the best in this case). After this score 2 has the lowest
rate, then score 1 and score 3 has the highest rate of misleading evidence. This
ranking is shown in the table of figure 6.10. The cells outlined in red have the
highest ranking.
It appears that, if a score function has a low rate of misleading evidence for the
same source scores, it has a high rate of misleading evidence for the different
source scores (and vice versa). This can also be seen in the column of the sum
of the rankings in the table of figure 6.10; all score functions have a sum of
rankings of 5. Therefore, the average percentages of misleading evidence are
ranked as well (which is also shown in the table of figure 6.10). So, score 2
has the lowest average rate of misleading evidence (so this score performs the
best in this case). After this score 1 has the lowest average rate, then score 4
and score 3 has the highest average rate of misleading evidence. This ranking
is later used for the comparison of the SLR systems.
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Figure 6.9: This figure shows the table of the rates of misleading evidence for
the four different SLR systems (same and different source and the average).

Figure 6.10: This figure shows the table of the rankings of percentages of
misleading evidence for same and different source (with the sum and ranking

of average percentages). Cells outlined in red have the highest ranking.

6.3.2 Calculating the indications of the strength of misleading
evidence

The tables in figures 6.11, 6.12, 6.13 and 6.14 show the percentages of SLRs
in ten intervals (for the same source and different source scores) for the four
SLR systems. This is an indication of the strength of misleading evidence
toward false hypotheses; if the misleading SLRs are not far from an SLR of
1, the strength of misleading evidence is lower (which is beneficial). [14] In
order to calculate the percentages of SLRs in the intervals for the same source
and different source scores, n1 = 2400 and n2 = 2, 876, 400 observations were
considered respectively (see chapter 3). Here n1 and n2 are the numbers of
similarity scores given H1 and H2 respectively. Note that these are different
definitions for ni than given previously. Also note that, if the percentages of
misleading evidence of figures 6.11, 6.12, 6.13 and 6.14 are summed (so the
percentages in columns “< 1/10, 000” to “[1/10; 1)” for same source scores
and the percentages in columns “[1; 10)” to “≥ 10, 000” for different source
scores), the percentages of figure 6.9 are obtained.
In order to discover which SLR system has misleading SLRs that are the clos-
est to an SLR of 1, a transformation of the data in the four tables is required.
This is done as follows. The further an interval (which contains a percentage
of misleading SLRs that is greater than 0) is from 1, the higher the factor
with which the percentage in that interval is multiplied to obtain the trans-
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formed percentage. For example, in the case of same source scores, misleading
evidence toward false hypotheses occurs if SLR < 1. So, if a percentage
of misleading SLRs (that is greater than 0) lies in [ 1

10 ; 1), the transformed
percentage is equal to 1 multiplied by the percentage in the interval. If a
percentage of misleading SLRs (that is greater than 0) lies in (−∞; 1

10,000),
the transformed percentage is equal to 5 multiplied by the percentage in the
interval, since it is 5 intervals “away” from 1. For example, if 0.1 percent of
the SLRs lie in the interval (−∞; 1

10,000), then the transformed percentage is
equal to 5 ·0.1 = 0.5. If percentages of misleading SLRs (that are greater than
0) lie in multiple intervals (for example in [ 110 ; 1) and (−∞; 1

10,000) for same
source), the transformed percentages are summed. Note that, in the case of
different source scores, misleading evidence toward false hypotheses occurs if
SLR > 1. So, if a percentage of misleading SLRs (that is greater than 0) lies in
[1; 10), the transformed percentage is equal to 1 multiplied by the percentage
in the interval. If it lies in [10, 000;∞), the transformed percentage is equal
to 5 multiplied by the percentage in the interval.
The table in figure 6.15 shows the transformed percentages of the misleading
SLRs in the intervals for same and different source (with the average trans-
formed percentages). These transformed percentages are used to rank the
strength of misleading evidence.

Figure 6.11: This figure shows the percentages of SLRs in ten intervals (for
the same source and different source scores) for score 1 (Overlap). This is
an indication of the strength of misleading evidence toward false hypotheses.
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Figure 6.12: This figure shows the percentages of SLRs in ten intervals (for
the same source and different source scores) for score 2 (Goodall3). This is
an indication of the strength of misleading evidence toward false hypotheses.

Figure 6.13: This figure shows the percentages of SLRs in ten intervals (for
the same source and different source scores) for score 3 (Burnaby). This is
an indication of the strength of misleading evidence toward false hypotheses.
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Figure 6.14: This figure shows the percentages of SLRs in ten intervals (for
the same source and different source scores) for score 4 (Anderberg). This is
an indication of the strength of misleading evidence toward false hypotheses.

Figure 6.15: This figure shows the table of the transformed percentages of
the misleading SLRs in the intervals for same and different source (with the

average transformed percentages).

By the table of figure 6.15, for the same source scores, the misleading SLRs
of score 3 are the closest to an SLR of 1 (so this score performs the best in
this case). After this the misleading SLRs of score 1 are the closest, then
score 2 and the misleading SLRs of score 4 are the furthest from an SLR of 1.
For the different source scores, the misleading SLRs of score 2 are the closest
to an SLR of 1 (so this score performs the best in this case). After this the
misleading SLRs of score 1 are the closest, then score 4 and the misleading
SLRs of score 3 are the furthest from an SLR of 1. This ranking is shown in
the table of figure 6.16. The cells outlined in red have the highest ranking.
The average strengths of misleading evidence are ranked as well (which is also
shown in the table of figure 6.16). This is done for the same reason as described
in subsection 6.3.1. That is, for example, scores 1 and 2 have the same sum of
rankings (of 4), but score 2 has a lower average strength of misleading evidence
than score 1. So, using this average, the misleading SLRs of score 2 are the
closest to an SLR of 1 on average (so this score performs the best in this case).
After this the misleading SLRs of score 1 are the closest on average, then score
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3 and the misleading SLRs of score 4 are the furthest from an SLR of 1 on
average. This ranking is later used for the comparison of the SLR systems.

Figure 6.16: This figure shows the table of the rankings of strength of
misleading evidence for same and different source (with the sum and ranking

of average strength). Cells outlined in red have the highest ranking.

The strength of misleading evidence can be visualized in the form of a Tippett
plot. Figure 6.17 shows the Tippett plot of the four different SLR systems for
the same (solid lines) and different source scores (dashed lines). So it shows
the proportions of cases in which the SLRs (given H1 or H2) exceed certain
values. [14] In the case of same source scores, misleading evidence toward false
hypotheses occurs if SLR < 1 and, in the case of different source scores, it
occurs if SLR > 1. This is also why the Tippett plots of the same source
scores lie more to the right (for all score functions) than those of the different
source scores.
The greater the distance between the Tippett plots for the same source and
different source scores, the greater the discriminating power (so the better
the system is calibrated and the less misleading SLRs occur). However, when
evaluating figure 6.17, it is evident that ranking the SLR systems based on
the distance between the Tippett plots is complicated.
Note that there is a cutoff on the x axis of figure 6.17 at an SLR of 10−5 and
at an SLR of 105 in order to maintain visibility. So, there is a proportion of
cases in which the SLRs (given H1 or H2), for score 4 (Anderberg), exceed an
SLR value of 105.
The shape of the Tippett plot of the SLR system of score 1 (Overlap) can be
explained by the fact that the system only has eight possible scores. This was
explained in chapter 4.
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Figure 6.17: This figure shows the Tippett plot for the four different SLR
systems and for the same (solid lines) and different source scores (dashed

lines).

6.3.3 Calculating the expected values

Every properly working SLR system (for which the possible range of values
given each hypothesis is the same) has an expected value of the SLR of 1 for
different source comparisons. Furthermore, the expected value of the inverse
SLR for same source comparisons is 1 as well. [28] The derivations of these
two expected values is shown in equations (6.1) and (6.2) (for which equation
(2.2) and Bayes’ Theorem are used (see chapter 2)).

E(SLR|H2) = E(
f(s|H1)

f(s|H2)

∣∣H2) =

∫
s

f(s|H1)

f(s|H2)
· f(s|H2)ds =

∫
s
f(s|H1)ds = 1

(6.1)

E(
1

SLR
|H1) = E(

f(s|H2)

f(s|H1)

∣∣H1) =

∫
s

f(s|H2)

f(s|H1)
· f(s|H1)ds =

∫
s
f(s|H2)ds = 1

(6.2)

Where;
f(x) = The probability density function of the random variable X [14]
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The expected values of the SLR given H2 and of the 1
SLR given H1 are shown

in the table of figure 6.18 for the four different SLR systems (including the
average expected values). Note that E(SLR|H2) is closer to 1 than E( 1

SLR |H1)
for all scores except score 4. Also note that the graph of the SLR system with
score function 4 goes to infinity, therefore the value of E(SLR|H2) is infinity.
This means that the average expected value for score 4 is infinity as well.
It is desired that the expected values are as close to 1 as possible. So, for the
same source scores, score 4 has the expected value that is the closest to 1 (so
this score performs the best in this case). After this score 2 has the closest
expected value, then score 1 and score 3 has the expected value that is the
furthest from 1. For the different source scores, score 2 has the expected value
that is the closest to 1 (so this score performs the best in this case). After
this score 3 has the closest expected value, then score 1 and score 4 has the
expected value that is the furthest from 1. This ranking is shown in the table
of figure 6.19. The cells outlined in red have the highest ranking.
The average expected values are ranked as well (which is also shown in the
table of figure 6.19). This is done for the same reason as described in subsection
6.3.1. That is, for example, scores 1 and 3 have the same sum of rankings (of
6), but score 1 has a significantly lower average expected value (that is closer
to 1) than score 3. So, using this average, score 2 has the average expected
value that is the closest to 1 (so this score performs the best in this case). After
this score 1 has the closest average expected value, then score 3 and score 4
has the average expected value that is the furthest from 1. This ranking is
later used for the comparison of the SLR systems.

Figure 6.18: This figure shows the table of the expected values of the SLR
given H2 and of the 1

SLR given H1 for the four different SLR systems. It also
shows the average expected values.
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Figure 6.19: This figure shows the table of the rankings of the expected
values for same and different source (with the sum and ranking of average

expected values). Cells outlined in red have the highest ranking.

The R code, that was used to quantify the misleading evidence in this section,
can be found in appendix G.3.

6.3.4 Obtaining the ECE plots

Using the ECE (Empirical Cross-Entropy) is an alternative way of weighing
misleading evidence. It gives penalties for each posterior probability which
depend on the true hypothesis and the strength of the evidence; the stronger
the evidence of the true hypothesis, the lower the penalty. So, the weaker the
evidence of the true hypothesis (or the stronger the misleading evidence), the
higher the penalty.
In order to obtain the posterior probabilities, the prior probabilities are re-
quired (this was explained in chapter 2). But these are unknown, therefore
the ECE is plotted with respect to the log of the prior odds. Here the prior
odds are P (H1)

P (H2)
with H1 and H2 the hypotheses as defined in chapter 2. The

ECE is calculated with the following formula;

ECE = −P (H1)

n1

∑
s∈S1

log2P (H1|s)−
P (H2)

n2

∑
s∈S2

log2P (H2|s)

Where;
S1 = The similarity scores given H1

S2 = The similarity scores given H2

n1 = The number of similarity scores given H1 (so the size of S1)
n2 = The number of similarity scores given H2 (so the size of S2)
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This formula can be rewritten into a function that only depends on the log of
the prior odds. Namely;

ECE = − 10Ω

n1(1 + 10Ω)

∑
s∈S1

log2

(
P (s|H1) · 10Ω

P (s|H1) · 10Ω + P (s|H2)

)
− 1

n2(1 + 10Ω)

∑
s∈S2

log2

(
P (s|H2)

P (s|H1) · 10Ω + P (s|H2)

)
Where;

Ω = log10

(
P (H1)
P (H2)

)
= The logarithm with base 10 of the prior odds

P (s|H1), P (s|H2) = The probabilities of the same source and different source
scores respectively (these were found in chapter 5)

See appendix H.1 for this derivation.

In the case of a perfectly discriminating system, the ECE is equal to 0 (for all
prior odds). Thus, the closer the ECE of a system is to 0 (so the flatter the
ECE curve of a system is), the more informative an SLR system is (which is
beneficial).
Note that the ECE is used in order to examine the performance of an SLR
system. It cannot be used in order to calibrate the SLRs of the SLR system.
[14]

Figure 6.20 shows the ECE plots for the four different SLR systems. It also
shows the ECE plot in the case of a constant SLR of 1 in a system. This is
called a noninformative SLR system. The formula for the ECE of a noninfor-
mative SLR system is;

ECE = − 10Ω

1 + 10Ω
· log2

(
10Ω

10Ω + 1

)
− 1

1 + 10Ω
· log2

(
1

10Ω + 1

)

See appendix H.2 for this derivation.

In figure 6.20 it can be seen that score 2 has the flattest ECE plot (therefore
it is the most informative, so this score performs the best in this case). After
this score 1 has the flattest plot, then score 4 and score 3 has the highest ECE
plot (therefore it is the least informative).
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Figure 6.20: This figure shows the ECE plots for the four different SLR
systems and the ECE plot for a noninformative SLR system (so when the

SLR is always equal to 1).

Note that, for score 4 (Anderberg), P (s|H1) and P (s|H2) can take values of
infinity and 0. This leads to calculations with logarithms of zero which are
undefined. Therefore, for the creation of the ECE plot of score 4, infinity is
approximated by 1010 and 0 is approximated by 1

1010
.

The R code, that was used to obtain the ECE plots in this subsection, can be
found in appendix G.4.

6.3.5 Misleading evidence summary table

The table in figure 6.21 shows the rankings that were obtained in this section.
Since it is necessary to know which SLR system performs the best based on
all the performance characteristics of misleading evidence, the comparison
rankings are summed. After that, these sums are transformed in such a way
that they add up to 10 (just as the rankings 1, 2, 3 and 4 do) (for example,
the SLR system with the lowest sum of rankings gets transformed ranking 1).
This is required for the table in the next section, so when all the SLR systems
are compared based on the rankings of all the performance characteristics.
Thus, the sums of the rankings and the transformed sums are shown in figure
6.21 as well. The cells outlined in red have the highest ranking. Therefore,
based on the misleading evidence, score 2 (Goodall3) performs the best. After
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that, from best to worst; score 1 (Overlap), score 4 (Anderberg) and score 3
(Burnaby) (these last two are tied for third place). Note that score 2 performs
the best based on all of performance characteristics for misleading evidence.

Figure 6.21: This figure shows the table of the rankings that were obtained
in this section (with their sum and transformed sum). The cells outlined in

red have the highest ranking.

6.4 Evaluation summary table

The table in figure 6.22 shows all of the rankings that were obtained in this
chapter (with their sum and transformed sum). The cells outlined in red have
the highest ranking. Note that every one of the three performance character-
istics contributes with the same weight to the sum of rankings (and therefore
the transformed sum). This is the case because, for every performance char-
acteristic, the sum of the rankings were transformed in such a way that they
add up to 10 (just as the rankings 1, 2, 3 and 4 do). This was explained in
subsection 6.3.5.
The table of figure 6.22 will be used in order to draw the conclusion in the
next chapter.

Figure 6.22: This figure shows the table of all of the rankings that were
obtained in this chapter (with their sum and transformed sum). The cells

outlined in red have the highest ranking.
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Chapter 7

Conclusion

The objective of this research was to employ score-based likelihood ratio sys-
tems for the comparison of handwriting and study their performance.

The handwriting samples of 800 writers (three documents each) were consid-
ered. After the letter combinations “er” were extracted, the characteristics
were entered into a user interface for each document which makes the analysis
more time efficient. The SLR expresses the degree of uncertainty that a hy-
pothesis is true. Furthermore, the common source problem was considered due
to the unavailability of suspect specific data. So, it was tested if two writings
from unknown writers originate from the same unknown writer. For this re-
search four score functions were considered; Overlap (does not take uniqueness
of matching or mismatching values into account), Goodall3 (takes uniqueness
of matching values (so not mismatching ones) into account), Burnaby (takes
uniqueness of mismatching values (so not matching ones) into account) and
Anderberg (takes uniqueness of matching and mismatching values into ac-
count). This resulted in four SLR systems that were evaluated based on three
performance characteristics; the leave-one-out method, 95% bootstrap interval
and misleading evidence.

The table in figure 7.1 shows all of the rankings that were obtained in the
previous chapter (with their sum and transformed sum). The cells outlined
in red have the highest ranking. Therefore, overall (based on all of the
performance characteristics), score 2 (Goodall3) performs the best.
After that, from best to worst; score 1 (Overlap), score 4 (Anderberg) and
score 3 (Burnaby) (these last two are tied for third place).
This result indicates that the SLR system, that performs the worst based
on the performance characteristics, is obtained when only the uniqueness of
mismatching characteristics (so not the matching ones) is taken into account
(score 3) or when the uniqueness of matching and mismatching characteristics
is taken into account (score 4). Not taking the uniqueness of matching and
mismatching characteristics into account (score 1), improves the performance
of the SLR system. Furthermore, it is best to use score functions that only
take the uniqueness of matching characteristics (so not the mismatching ones)
into account (score 2).
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Figure 7.1: This figure shows the table of all of the rankings that were
obtained in the previous chapter (with their sum and transformed sum). The

cells outlined in red have the highest ranking.

So, overall score 2 performs the best based on the performance characteris-
tics. However, this does not mean that it performs the best based on all of
the performance characteristics. If one requires an SLR system that performs
the best based on the leave-one-out method (so a system that has the great-
est discriminating power), score function 1 (Overlap) has to be used. So the
uniqueness of matching and mismatching characteristics is not taken into ac-
count in this case. If one requires an SLR system that performs the best based
on the 95% bootstrap confidence interval (so a system that has the highest
precision) and performs the best based on misleading evidence (so a system
that produces the least number of SLRs that support false hypotheses), score
function 2 (Goodall3) has to be used. So only the uniqueness of matching
characteristics (so not the mismatching ones) is taken into account in this
case. Therefore, what score function is chosen to be used (either score
1 or 2) for the SLR system depends on the desired qualities of the
system. Note that score 2 performs the best based on 2 out of 3 performance
characteristics.

The use of SLR systems has advantages and drawbacks. The advantages are:

1. SLR systems are objective and transparent (in comparison to the sub-
jective opinion of forensic examiners) due to the analysis that is only
based on data.

2. The behavior of SLR systems is known (by the evaluation based on the
three performance characteristics).

3. The handwriting analysis with an SLR system is more time efficient
since the computer does the comparison (after the characteristics of the
handwriting are entered into the user interface).

4. Scores of SLR systems can be constructed in such a way that they take
the uniqueness of characteristics into account.
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5. SLR systems give an insight into the degree of uncertainty of the state-
ment that two writings have the same writer.

The drawbacks are:

1. SLR systems only take a small part of the available information into
account, because information is lost since the score function transforms
multidimensional data to one dimensional data. Information is also lost
when snippets of the handwriting are extracted and when these are trans-
formed into characteristics.

2. Examining the accuracy and performance of SLR systems is complicated,
because the LR (which is approximated by the SLR) is unknown.

These drawbacks will be elaborated on in the Discussion in the next chapter.

Lastly, SLRs are best used in combination with the (subjective) opinion of
forensic examiners. This way, it is possible to benefit from both the objectivity
and transparency of the SLR systems and from the knowledge and expertise
of forensic examiners (who take more information into account than the SLR
systems).

Thus, the objective of this research (employing score-based likelihood ratio
systems for the comparison of handwriting and studying their performance)
was achieved.
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Chapter 8

Discussion

In this chapter, the limitations of the findings of this research are discussed
and notions for further research are proposed.

First off, if more data is used for the research, more accurate results are ob-
tained. For example, for this research, 800 writers (of the 1500 in the CEDAR
database) were considered. They each wrote three documents. More accurate
results are obtained if more writers are considered and if each writer pro-
duces more documents. Moreover, for this research, the letter combination
“er” was examined. In the future, a different bigram or a letter combination
consisting of more letters can be studied. Furthermore, the bigram “er” has
4 · 6 · 4 · 4 · 3 · 4 · 4 · 5 = 92, 160 possible combinations of characteristics (for
this calculation the number of values that each of the eight characteristics can
take are multiplied). So, if more characteristics are taken into account (for
example the characteristic of the amount of pen pressure), more accurate re-
sults are acquired. The same holds if each characteristic can take more values
(for example if the characteristic “shape of r” also includes the capital letter
“R” as a value it can take). In this way less characteristics are classified under
“NSP” (no set pattern).
Sometimes the writers of the CEDAR database were inconsistent with their
handwriting within one document. For example, in one document, sometimes
the “r” is written in cursive and sometimes it is written in print. So, some
characteristics can take multiple values within one document. This can be
taken into account for further research. Occasionally the writers were also
inconsistent with their handwriting between the documents. For example, in
one document the “r” is written in cursive and in another document (of the
same writer) it is written in print. This can also be taken into account for
further research.
By utilizing the user interface, the handwriting analysis of this research is more
time efficient than the analysis as it is done now. However, the characteristics
of the bigram still need to be entered into the computer by hand. This is time
consuming and can lead to mistakes due to human error. For further research,
a computer program can be created (for example with neural networks) that
classifies the characteristics of a bigram in handwriting automatically. This
would make the analysis less time consuming and less prone to human error.
The code that was used in order to obtain the four SLR systems took a long
time to run (a couple of days per SLR system). The same holds for the code
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that was used for the calculation of the bootstrap intervals. This is why the
process of this calculation of intervals was repeated 50 times and not more
(this already leads to 50 · 2 · 2, 876, 400 = 287, 640, 000 samples of different
source scores (why it is multiplied by two is explained in chapter 6)). If this
research is repeated in the future, a “faster” computer can be used. In this
way, the coverage of the 95% bootstrap intervals, which was omitted from this
research due to the long run time of the code, can also be studied.
For future research, more performance characteristics of the SLRs can be taken
into account. For example, ECE plots can be studied after the PAV (pool ad-
jacent violaters) algorithm is used. This algorithm transforms the SLRs in
such a way that the ECE values are minimized, but it preserves the discrimi-
nation of the system. If the PAV algorithm does not improve the ECE curve
significantly, it indicates that the system is calibrated well. [14]
As explained in subsection 6.3.1, other thresholds (than a threshold of 1) can
be applied for the classification of misleading evidence. Further research could
investigate what threshold classifies the misleading evidence the best and it
could investigate how this performance can be measured.
As explained in section 6.2, the process of acquiring the SLR systems has a
sampling uncertainty, because the CEDAR database consists of random sam-
ples of handwriting. This means that a new data base of handwriting leads
to different results. That is why bootstrap intervals, that quantify this un-
certainty, were constructed. For further research, it can be studied what to
report in a legal case (so if the SLRs or the SLR bootstrap intervals have to
be reported).
As explained in chapter 6, the LR (which is approximated by the SLR) is
unknown. Therefore the SLR systems cannot be compared to the LR sys-
tems. So, examining the accuracy and performance of SLR systems is com-
plicated. However, their behavior can be investigated. For this research, the
leave-one-out method (cross-validation) was executed, the 95% SLR bootstrap
confidence intervals were calculated and the misleading evidence was quanti-
fied. In the future, it can be researched how the accuracy of SLR systems
can be assessed (and therefore if there is a “better” way to compare the SLR
systems).
As explained in chapter 2, because the score function transforms multidimen-
sional data to one dimensional data, information is lost. [27] Information is
also lost when snippets of the handwriting are extracted and when these are
transformed into characteristics. Because of this information loss and other
reasons, LRs and SLRs are best used in combination with the (subjective)
opinion of forensic examiners. This way, it is possible to benefit from both
the objectivity and transparency of the LR (and SLR) systems and from the
knowledge and expertise of forensic examiners (who take more information
into account than the LR and SLR systems). [14] How the SLRs and opinions
of forensic examiners can be combined can be subject for further research. If
and how the SLR needs to be implemented in case work can also be studied
in the future.
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The robustness of the SLR systems can be described as follows. The SLRs
that are produced depend on the score functions, the characteristics of the bi-
gram that are analyzed, etc. So, a different setup of the SLR system will lead
to different results. But, if the SLR system is set up in the same way (same
score functions, same characteristics that are analyzed, etc.), the results will
be the same. For this research, the CEDAR database (which consists out of
American handwriting samples) was used to obtain the different source scores.
Further research could investigate if the use of a different database will result
in different SLRs. If this is the case, then, when the SLR system needs to
be obtained for handwriting outside of the US, a database consisting out of
handwriting samples from that other country has to be used. (For example it
is possible that in the Netherlands more people write in cursive than in the
US. This affects the uniqueness of the characteristics.)
Lastly, as explained in chapter 2, scores should take both the similarity and
the typicality of the evidence into account (anchored approach). Here typical-
ity means that the same and different source scores of the suspect should be
used and not those of the general population. [17] It was also explained that,
due to the unavailability of some data, the nonanchored approach is applied;
scores only take similarity into account (and not typicality). Note that here
the nonanchored approach is the common source problem and the anchored
approach is the specific source problem. Thus, the SLR is an expression for
the degree of uncertainty that a hypothesis is true for the general population,
not a specific suspect in the case. The consequences of only taking similarity
into account (and not typicality), can be researched in the future. It is ex-
pected that the anchored approach will perform better than the nonanchored
approach since it takes more information into account (namely the typicality
as well). The validity of this hypothesis can be subject to further study as
well.
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Appendix A

Detailed calculations, and for-
mulas

The formulas used in this report are listed below. The meaning of the variables
can be found in the List of variables.

Section: Calculation of LRs and SLRs

LR(x, y) = P (x,y|H1,I)
P (x,y|H2,I)

SLR(x, y) = P (s(x,y)|H1,I)
P (s(x,y)|H2,I)

Posterior Odds = SLR · Prior Odds

P (H1|s(x,y),I)
P (H2|s(x,y),I) =

P (s(x,y)|H1,I)
P (s(x,y)|H2,I)

· P (H1|I)
P (H2|I)

Section: LR and SLR for multinomial features

s(x, y) =
∑n

i=1wi · si(xi, yi)

Chapter: Methods: Construction of SLR systems

s(x, y) =
∑n

i=1wi · si(xi, yi)

p2i (xi) =
fi(xi)·(fi(xi)−1)

N ·(N−1)

p̂i(xi) =
fi(xi)
N

Score 1 (Overlap): si(xi, yi) =

{
1 if xi = yi

0 otherwise
and wi =

1
n = 1

8

Score 2 (Goodall3): si(xi, yi) =

{
1− p2i (xi) if xi = yi

0 otherwise
and wi =

1
n = 1

8
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Score 3 (Burnaby): si(xi, yi) =


1 if xi = yi∑

q∈Ai

2log(1−p̂i(q))

log
p̂i(xi)p̂i(yi)

(1−p̂i(xi))(1−p̂i(yi))
+

∑
q∈Ai

2log(1−p̂i(q))
otherwise

and wi =
1
n = 1

8

Score 4 (Anderberg):

s(x, y) =

∑
i∈{1≤i≤n:xi=yi}

(
1

p̂i(xi)

)2
2

ni(ni+1)∑
i∈{1≤i≤n:xi=yi}

(
1

p̂i(xi)

)2
2

ni(ni+1)
+

∑
i∈{1≤i≤n:xi ̸=yi}

(
1

2p̂i(xi)p̂i(yi)

)2
2

ni(ni+1)

Chapter: Evaluation of the quality of performance of SLR systems

E(SLR|H2) = 1

E( 1
SLR |H1) = 1

ECE = −P (H1)
n1

∑
s∈S1

log2P (H1|s)− P (H2)
n2

∑
s∈S2

log2P (H2|s)

ECE = − 10Ω

n1(1+10Ω)

∑
s∈S1

log2

(
P (s|H1)·10Ω

P (s|H1)·10Ω+P (s|H2)

)
− 1

n2(1+10Ω)

∑
s∈S2

log2

(
P (s|H2)

P (s|H1)·10Ω+P (s|H2)

)
ECE = − 10Ω

1+10Ω
· log2

(
10Ω

10Ω+1

)
− 1

1+10Ω
· log2

(
1

10Ω+1

)
when SLR = 1
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Appendix B

Document that was copied by
all the writers and a handwrit-
ten sample

The document, that was written by each individual three times in order to
create the CEDAR data set, is shown below. It contains every letter of the
English alphabet at least once. Figure B.1 shows, of the CEDAR data set, a
handwritten sample of the text (of the document) provided by a writer.

From Nov 10, 1999
Jim Elder
829 Loop Street, Apt 300
Allentown, New York 14707

To
Dr. Bob Grant
602 Queensberry Parkway
Omar, West Virginia 25638

We were referred to you by Xena Cohen at the University Medical Center.
This is regarding my friend, Kate Zack.

It all started around six months ago while attending the “Rubeq” Jazz Con-
cert. Organizing such an event is no picnic, and as President of the Alumni
Association, a co-sponsor of the event, Kate was overworked. But she enjoyed
her job, and did what was required of her with great zeal and enthusiasm.

However, the extra hours affected her health; halfway through the show she
passed out. We rushed her to the hospital, and several questions, x-rays and
blood test later, were told it was just exhaustion.

Kate’s been in very bad health since. Could you kindly take a look at the
results and give us your opinion?

Thank you!
Jim [25]
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Figure B.1: This figure shows, of the CEDAR data set, a handwritten
sample of the text (of the document) provided by a writer.
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Appendix C

Examples of the different kinds
of shapes of “r”

Figures C.1 to C.5 below show examples out of the CEDAR data set of the
different kinds of shapes of “r” (so examples of {x12, x22 . . . , x52}, because x62 is
the case if the feature is “NSP”).

Figure C.1: This figure shows an example of feature x12 (Cursive with loop)
which is found on document 1 of writer 1.

Figure C.2: This figure shows an example of feature x22 (Cursive without
loop) which is found on document 1 of writer 3.

Figure C.3: This figure shows an example of feature x32 (Cursive without
horizontal piece) which is found on document 1 of writer 7.
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Figure C.4: This figure shows an example of feature x42 (In print (one
stroke)) which is found on document 1 of writer 2.

Figure C.5: This figure shows an example of feature x52 (In print (two
strokes)) which is found on document 1 of writer 6.
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Appendix D

Python code used in chapter 3

D.1 Python code used for the creation of the user
interface

The following Python code was used for the creation of the user interface (with
the option menus) as described in section 3.5.

1 from tkinter import *

2 import pandas as pd

3

4 #Create and save Excel sheet

5

6 writer = pd.ExcelWriter(’Char_Vect.xlsx’, engine=’xlsxwriter ’)

7 writer.save()

8

9 #Create first column with the characteristics as rows

10

11 df = pd.DataFrame({’Characteristic ’: ["x1","x2","x3", "x4", "x5",

12 "x6","x7","x8"]})

13

14 #Define Option Menu

15

16 class app:

17 def __init__(self , root):

18

19 #Define the different options of all the features

20

21 OPTIONSX1=["’e’ even with ’r’", "’e’ shorter than ’r’",

22 "’e’ taller than ’r’", "NSP"]

23 OPTIONSX2=["Cursive with loop","Cursive without loop",

24 "Cursive without horizontal piece","In print (

one stroke)",

25 "In print (two strokes)", "NSP"]

26 OPTIONSX3 = ["Leans to the right","Leans to the left",

27 "Stands upright", "NSP"]

28 OPTIONSX4 = ["’e’ is higher than ’r’","’e’ is lower than

’r’",

29 "’e’ and ’r’ lie on same baseline"]

30 OPTIONSX5 = ["Open loop","Closed loop", "NSP"]

31 OPTIONSX6 = ["Curved up","Curved down", "Not curved", "

NSP"]

32 OPTIONSX7 = ["Leans to the right","Leans to the left",

33 "Stands upright", "NSP"]

34 OPTIONSX8 = ["No space between ’e’ and ’r’",
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35 "Small space between ’e’ and ’r’",

36 "Medium space between ’e’ and ’r’",

37 "Large space between ’e’ and ’r’", "NSP"]

38

39 win1 = Frame(root)

40 win1.grid(row=0,column=0)

41

42 #Create option menu for feature 1

43

44 self.variable1 = StringVar(win1)

45 self.variable1.set("’e’ even with ’r’")

46 self.x1 = OptionMenu(win1 , self.variable1 ,

47 *OPTIONSX1 ,

48 command = self.varMenu)

49 l1 = Label(win1 , text="Height Relationship of ’e’ to ’r’

(x1)", width=35 )

50 l1.grid(row=5,column=1)

51 self.x1.grid(row=5,column=2)

52

53 #Create option menu for feature 2

54

55 self.variable2 = StringVar(win1)

56 self.variable2.set("Cursive with loop")

57 self.x2 = OptionMenu(win1 ,

58 self.variable2 , *OPTIONSX2)

59 l2 = Label(win1 , text="Shape of ’r’ (x2)", width=35 )

60 l2.grid(row=6,column=1)

61 self.x2.grid(row=6,column=2)

62

63 #Create option menu for feature 3

64

65 self.variable3 = StringVar(win1)

66 self.variable3.set("Leans to the right")

67 self.x3 = OptionMenu(win1 ,

68 self.variable3 , *OPTIONSX3)

69 l3 = Label(win1 , text="Angle of ’r’ (x3)", width=35 )

70 l3.grid(row=7,column=1)

71 self.x3.grid(row=7,column=2)

72

73 #Create option menu for feature 4

74

75 self.variable4 = StringVar(win1)

76 self.variable4.set("’e’ is higher than ’r’")

77 self.x4 = OptionMenu(win1 ,

78 self.variable4 , *OPTIONSX4)

79 l4 = Label(win1 , text="Position of ’e’ relative to ’r’ (

alignment) (x4)",

80 width=35 )

81 l4.grid(row=8,column=1)

82 self.x4.grid(row=8,column=2)

83

84 #Create option menu for feature 5

85

86 self.variable5 = StringVar(win1)

87 self.variable5.set("Open loop")

88 self.x5 = OptionMenu(win1 ,
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89 self.variable5 , *OPTIONSX5)

90 l5 = Label(win1 , text="Closed or open loop of ’e’ (x5)",

width=35 )

91 l5.grid(row=9,column=1)

92 self.x5.grid(row=9,column=2)

93

94 #Create option menu for feature 6

95

96 self.variable6 = StringVar(win1)

97 self.variable6.set("Curved up")

98 self.x6 = OptionMenu(win1 ,

99 self.variable6 , *OPTIONSX6)

100 l6 = Label(win1 , text="Shape of the loop of ’e’ (x6)",

width=35 )

101 l6.grid(row=10,column=1)

102 self.x6.grid(row=10,column=2)

103

104 #Create option menu for feature 7

105

106 self.variable7 = StringVar(win1)

107 self.variable7.set("Leans to the right")

108 self.x7 = OptionMenu(win1 ,

109 self.variable7 , *OPTIONSX7)

110 l7 = Label(win1 , text="Angle of ’e’ (x7)", width=35 )

111 l7.grid(row=11,column=1)

112 self.x7.grid(row=11,column=2)

113

114 #Create option menu for feature 8

115

116 self.variable8 = StringVar(win1)

117 self.variable8.set("No space between ’e’ and ’r’")

118 self.x8 = OptionMenu(win1 ,

119 self.variable8 , *OPTIONSX8)

120 l8 = Label(win1 , text="Space between the ’e’ and ’r’ (x8

)", width=35 )

121 l8.grid(row=12,column=1)

122 self.x8.grid(row=12,column=2)

123

124 #This part needs to be added if there’s two or more option

menus

125

126 def varMenu(self , selection):

127 if selection == "Heavy":

128 self.variable2.set("colour")

129 self.x2.config(state = DISABLED)

130 else:

131 self.variable2.set("Cursive with loop")

132 self.x2.config(state = NORMAL)

133

134 #For loop for every writer (1-800) and every document for every

writer (1-3)

135 #+ Create x_i binary vector for i=1,...,8 for every document of

every writer

136

137 for j in range(0,800):

138 for d in range(1,4):
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139

140 #Display option menu for every document of every writer

141

142 root = Tk()

143 a = app(root)

144 root.mainloop ()

145

146 #Create vectors for every characteristic with the

different features

147

148 Vector_X1=["’e’ even with ’r’", "’e’ shorter than ’r’",

149 "’e’ taller than ’r’", "NSP"]

150 Vector_X2=["Cursive with loop","Cursive without loop",

151 "Cursive without horizontal piece","In print (

one stroke)",

152 "In print (two strokes)", "NSP"]

153 Vector_X3=["Leans to the right","Leans to the left",

154 "Stands upright", "NSP"]

155 Vector_X4=["’e’ is higher than ’r’","’e’ is lower than ’r

’",

156 "’e’ and ’r’ lie on same baseline", "NSP"]

157 Vector_X5=["Open loop","Closed loop", "NSP"]

158 Vector_X6=["Curved up","Curved down", "Not curved", "NSP"

]

159 Vector_X7=["Leans to the right","Leans to the left",

160 "Stands upright", "NSP"]

161 Vector_X8=["No space between ’e’ and ’r’",

162 "Small space between ’e’ and ’r’",

163 "Medium space between ’e’ and ’r’",

164 "Large space between ’e’ and ’r’", "NSP"]

165

166 Vector_X1_bin=[]

167 Vector_X2_bin=[]

168 Vector_X3_bin=[]

169 Vector_X4_bin=[]

170 Vector_X5_bin=[]

171 Vector_X6_bin=[]

172 Vector_X7_bin=[]

173 Vector_X8_bin=[]

174

175 #Transform the vectors of every characteristic into

binary vectors

176 #Where a 1 means the image has that feature and 0 means

that it doesn’t

177 #have that feature

178

179 for i in Vector_X1:

180 if i==a.variable1.get():

181 Vector_X1_bin.append(1)

182 else:

183 Vector_X1_bin.append(0)

184

185 for i in Vector_X2:

186 if i==a.variable2.get():

187 Vector_X2_bin.append(1)

188 else:

104



189 Vector_X2_bin.append(0)

190

191 for i in Vector_X3:

192 if i==a.variable3.get():

193 Vector_X3_bin.append(1)

194 else:

195 Vector_X3_bin.append(0)

196

197 for i in Vector_X4:

198 if i==a.variable4.get():

199 Vector_X4_bin.append(1)

200 else:

201 Vector_X4_bin.append(0)

202

203 for i in Vector_X5:

204 if i==a.variable5.get():

205 Vector_X5_bin.append(1)

206 else:

207 Vector_X5_bin.append(0)

208

209 for i in Vector_X6:

210 if i==a.variable6.get():

211 Vector_X6_bin.append(1)

212 else:

213 Vector_X6_bin.append(0)

214

215 for i in Vector_X7:

216 if i==a.variable7.get():

217 Vector_X7_bin.append(1)

218 else:

219 Vector_X7_bin.append(0)

220

221 for i in Vector_X8:

222 if i==a.variable8.get():

223 Vector_X8_bin.append(1)

224 else:

225 Vector_X8_bin.append(0)

226

227 #Create the column name for every document of every

writer with

228 #W (writer number), D (document number) and put the

binary vectors

229 #of the characteristics in the Excel file

230

231 df[’W ’+str(j+1)+", D "+str(d)]=[Vector_X1_bin ,

232 Vector_X2_bin ,Vector_X3_bin ,

233 Vector_X4_bin ,Vector_X5_bin ,

234 Vector_X6_bin , Vector_X7_bin ,

235 Vector_X8_bin]

236

237 #Save the Excel file with the binary vectors

238

239 writer = pd.ExcelWriter(’Char_Vect.xlsx’, engine=’xlsxwriter ’)

240 df.to_excel(writer , sheet_name=’Sheet1 ’, index=False)
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D.2 Python code used for displaying the bigrams

The following Python code was used in order to display the bigrams as de-
scribed in section 3.5.

1 import numpy as np

2 import pylab as pl

3 import matplotlib.cm as cm

4 from PIL import Image

5

6 #This definition puts the image on screen with a title (the input

is the picture

7 #itself and a title (string))

8

9 def putimageonscreen(mypicture ,title):

10 pl.imshow(mypicture ,cmap=cm.gray)

11 pl.title(title)

12 pl.show()

13

14 #For every document (1-3) of every writer (1-800), the image is

opened (called

15 #(writer number)_(document number).jpg), the image is converted

into an array and

16 #The image is put on screen (with the definition above) (the

title is

17 #Writer (writer number), Document (document number))

18

19 for j in range(0,800):

20 for d in range(1,4):

21 img=Image.open(str(j+1)+"_"+str(d) + ".jpg")

22 img_array=np.asarray(img)

23 putimageonscreen(img_array ,"Writer "+str(j+1)+",Document

"+str(d))
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Appendix E

R code used in chapter 5

The following R code was used to calculate the scores and to create the graphs
in chapter 5.
The code, that was used to find the parametrization of the scores, is the same
for every score (and for the same and different source scores). Therefore, com-
ments were only added for the first score (same source). Furthermore, for the
same reason, comments were only added for the first “for loop” (of the same
source scores).
The code, that was used to create the histogram, SLR and log10(SLR) plots,
has been omitted from this report for succinctness, but is available upon re-
quest.

1 library("readxl")

2 library(fitdistrplus)

3

4 All_Char ← read_excel("Char_Vect_All.xlsx")

5 df_All_Char ←data.frame(All_Char) #Make dataframe of Excel

file

6

7 #Score 1: Overlap (w1 and S1)

8 #Score 2: Goodall3 (w2 and S2)

9 #Score 3: Burnaby (w3 and S3)

10 #Score 4: Anderberg (S4)

11 N=ncol(All_Char) -1 #Number of documents

12 w1_k=1/8 #Weight of score 1

13 w2_k=1/8 #Weight of score 2

14 w3_k=1/8 #Weight of score 3

15

16 #For Score 3 and 4

17 lst_sums←vector ()

18 n_k_lst←vector ()

19 for (i in 1:8){

20 lst_log←vector ()

21 quant=data.frame(apply(df_All_Char ,MARGIN=1,table)[i])

22 quant_lst=quant [1: nrow(quant) ,2] #This is f, so how many

times each characteristic appears in the data set

23 for (j in 1:( length(quant_lst -1) -1)){

24 p_khat=quant_lst[j]/N

25 log_func=2*log(1-p_khat)

26 lst_log←append(lst_log ,log_func)}
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27 lst_sums←append(lst_sums ,sum(lst_log)) #Append the 2*log

part of score 3

28 n_k_lst←append(n_k_lst ,( length(quant_lst -1) -1)) #Append

n_k of score 4 (so how many different features each

characteristic has)

29 }

30 Sum_Char_1=sum(data.frame(apply(df_All_Char ,MARGIN=1,table

)[1]) [2]) -1 #Total number of characteristics

31

32 #########################################################

33 #Same Source Scores

34 #For 1 writer , document 1 (j) is compared with document 2

(j+1) and 3 (j+2) and document 2 (j+1) is compared to

document 3 (j+2)

35 S1s←vector ()

36 S2s←vector ()

37 S3s←vector ()

38 S4s←vector ()

39

40 for (j in seq(2, ncol(All_Char)-1, 3)){

41 w1_k_S1s_k_list←vector ()

42 w2_k_S2s_k_list←vector ()

43 w3_k_S3s_k_list←vector ()

44 parts_sum_equal_lst←vector () #Part of score 4 (summed

over equal char.)

45 parts_sum_unequal_lst←vector () #Part of score 4 (summed

over unequal char.)

46 for (i in 1:8){

47 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[i])

48 rowX= which(df2X == df_All_Char[i,j], arr.ind=TRUE)[1]

49 f_kX=df2X[rowX ,2] #How many times characteristic X_k

appears in data set

50 p_khat_2X=f_kX/N

51 n_k=n_k_lst[i]

52 if (All_Char[i,j]== All_Char[i,j+1]){

53 w1_k_S1s_k_list←append(w1_k_S1s_k_list ,w1_k*1) #

Append score 1

54 df2←data.frame(apply(df_All_Char ,MARGIN=1,table)[i])

55 row= which(df2 == df_All_Char[i,j], arr.ind=TRUE)[1]

56 f_k=df2[row ,2] #How many times char X_k appears in

data set

57 p_k2=(f_k*(f_k-1))/(N*(N-1))

58 w2_k_S2s_k_list←append(w2_k_S2s_k_list ,w2_k*(1-p_k2)

) #Append score 2

59 w3_k_S3s_k_list←append(w3_k_S3s_k_list ,w3_k*1) #

Append score 3

60 one_part_sum_equal_lst=(1/p_khat_2X)∧2 * (2/(n_k*(n_

k+1)))

61 parts_sum_equal_lst←append(parts_sum_equal_lst ,one_

part_sum_equal_lst) #Append score 4

62 } else {
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63 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

64 rowX= which(df2X == df_All_Char[i,j], arr.ind=TRUE)

[1]

65 f_kX=df2X[rowX ,2]

66 p_khat_2X=f_kX/N #How many times char X_k appears in

data set

67 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

68 rowY= which(df2Y == df_All_Char[i,j+1], arr.ind=TRUE

)[1]

69 f_kY=df2Y[rowY ,2] #How many times char Y_k appears

in data set

70 p_khat_2Y=f_kY/N

71 log_func_2=log((p_khat_2X*p_khat_2Y)/((1-p_khat_2X)*

(1-p_khat_2Y)))

72 tot_func=lst_sums[i]/(log_func_2+lst_sums[i])

73 w3_k_S3s_k_list←append(w3_k_S3s_k_list ,w3_k*tot_func

)

74 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

75 rowY= which(df2Y == df_All_Char[i,j+1], arr.ind=TRUE

)[1]

76 f_kY=df2Y[rowY ,2] #How many times char Y_k appears

in data set

77 p_khat_2Y=f_kY/N

78 one_part_sum_unequal_lst=(1/(2*p_khat_2X*p_khat_2Y))

* (2/(n_k*(n_k+1)))

79 parts_sum_unequal_lst←append(parts_sum_unequal_lst ,

one_part_sum_unequal_lst)

80 }}

81 S1s←append(S1s ,sum(w1_k_S1s_k_list))

82 S2s←append(S2s ,sum(w2_k_S2s_k_list))

83 S3s←append(S3s ,sum(w3_k_S3s_k_list))

84 S4s←append(S4s ,(( sum(parts_sum_equal_lst))/(sum(parts_

sum_equal_lst)+sum(parts_sum_unequal_lst))))

85

86 w1_k_S1s_k_list←vector ()

87 w2_k_S2s_k_list←vector ()

88 w3_k_S3s_k_list←vector ()

89 parts_sum_equal_lst←vector ()

90 parts_sum_unequal_lst←vector ()

91 for (i in 1:8){

92 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[i])

93 rowX= which(df2X == df_All_Char[i,j], arr.ind=TRUE)[1]

94 f_kX=df2X[rowX ,2]

95 p_khat_2X=f_kX/N

96 n_k=n_k_lst[i]

97 if (All_Char[i,j]== All_Char[i,j+2]){

98 w1_k_S1s_k_list←append(w1_k_S1s_k_list ,w1_k*1)

99 df2←data.frame(apply(df_All_Char ,MARGIN=1,table)[i])
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100 row= which(df2 == df_All_Char[i,j], arr.ind=TRUE)[1]

101 f_k=df2[row ,2]

102 p_k2=(f_k*(f_k-1))/(N*(N-1))

103 w2_k_S2s_k_list←append(w2_k_S2s_k_list ,w2_k*(1-p_k2)

)

104 w3_k_S3s_k_list←append(w3_k_S3s_k_list ,w3_k*1)

105 one_part_sum_equal_lst=(1/p_khat_2X)∧2 * (2/(n_k*(n_

k+1)))

106 parts_sum_equal_lst←append(parts_sum_equal_lst ,one_

part_sum_equal_lst)

107 } else {

108 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

109 rowX= which(df2X == df_All_Char[i,j], arr.ind=TRUE)

[1]

110 f_kX=df2X[rowX ,2]

111 p_khat_2X=f_kX/N

112 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

113 rowY= which(df2Y == df_All_Char[i,j+2], arr.ind=TRUE

)[1]

114 f_kY=df2Y[rowY ,2]

115 p_khat_2Y=f_kY/N

116 log_func_2=log((p_khat_2X*p_khat_2Y)/((1-p_khat_2X)*

(1-p_khat_2Y)))

117 tot_func=lst_sums[i]/(log_func_2+lst_sums[i])

118 w3_k_S3s_k_list←append(w3_k_S3s_k_list ,w3_k*tot_func

)

119 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

120 rowY= which(df2Y == df_All_Char[i,j+2], arr.ind=TRUE

)[1]

121 f_kY=df2Y[rowY ,2]

122 p_khat_2Y=f_kY/N

123 one_part_sum_unequal_lst=(1/(2*p_khat_2X*p_khat_2Y))

* (2/(n_k*(n_k+1)))

124 parts_sum_unequal_lst←append(parts_sum_unequal_lst ,

one_part_sum_unequal_lst)

125 }}

126 S1s←append(S1s ,sum(w1_k_S1s_k_list))

127 S2s←append(S2s ,sum(w2_k_S2s_k_list))

128 S3s←append(S3s ,sum(w3_k_S3s_k_list))

129 S4s←append(S4s ,(( sum(parts_sum_equal_lst))/(sum(parts_

sum_equal_lst)+sum(parts_sum_unequal_lst))))

130

131 w1_k_S1s_k_list←vector ()

132 w2_k_S2s_k_list←vector ()

133 w3_k_S3s_k_list←vector ()

134 parts_sum_equal_lst←vector ()

135 parts_sum_unequal_lst←vector ()

136 for (i in 1:8){
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137 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[i])

138 rowX= which(df2X == df_All_Char[i,j+1], arr.ind=TRUE)

[1]

139 f_kX=df2X[rowX ,2]

140 p_khat_2X=f_kX/N

141 n_k=n_k_lst[i]

142 if (All_Char[i,j+1]== All_Char[i,j+2]){

143 w1_k_S1s_k_list←append(w1_k_S1s_k_list ,w1_k*1)

144 df2←data.frame(apply(df_All_Char ,MARGIN=1,table)[i])

145 row= which(df2 == df_All_Char[i,j], arr.ind=TRUE)[1]

146 f_k=df2[row ,2]

147 p_k2=(f_k*(f_k-1))/(N*(N-1))

148 w2_k_S2s_k_list←append(w2_k_S2s_k_list ,w2_k*(1-p_k2)

)

149 w3_k_S3s_k_list←append(w3_k_S3s_k_list ,w3_k*1)

150 one_part_sum_equal_lst=(1/p_khat_2X)∧2 * (2/(n_k*(n_

k+1)))

151 parts_sum_equal_lst←append(parts_sum_equal_lst ,one_

part_sum_equal_lst)

152 } else {

153 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

154 rowX= which(df2X == df_All_Char[i,j+1], arr.ind=TRUE

)[1]

155 f_kX=df2X[rowX ,2]

156 p_khat_2X=f_kX/N

157 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

158 rowY= which(df2Y == df_All_Char[i,j+2], arr.ind=TRUE

)[1]

159 f_kY=df2Y[rowY ,2]

160 p_khat_2Y=f_kY/N

161 log_func_2=log((p_khat_2X*p_khat_2Y)/((1-p_khat_2X)*

(1-p_khat_2Y)))

162 tot_func=lst_sums[i]/(log_func_2+lst_sums[i])

163 w3_k_S3s_k_list←append(w3_k_S3s_k_list ,w3_k*tot_func

)

164 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

165 rowY= which(df2Y == df_All_Char[i,j+2], arr.ind=TRUE

)[1]

166 f_kY=df2Y[rowY ,2]

167 p_khat_2Y=f_kY/N

168 one_part_sum_unequal_lst=(1/(2*p_khat_2X*p_khat_2Y))

* (2/(n_k*(n_k+1)))

169 parts_sum_unequal_lst←append(parts_sum_unequal_lst ,

one_part_sum_unequal_lst)

170 }}

171 S1s←append(S1s ,sum(w1_k_S1s_k_list))

172 S2s←append(S2s ,sum(w2_k_S2s_k_list))

173 S3s←append(S3s ,sum(w3_k_S3s_k_list))
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174 S4s←append(S4s ,(( sum(parts_sum_equal_lst))/(sum(parts_

sum_equal_lst)+sum(parts_sum_unequal_lst))))

175 }

176

177 #Different Source Scores

178 #Document 1 (k) of writer 1 is compared to every document

(j) of every other writer≥1, the same for document 2 (k

+1) and 3 (k+2). For writer 2, the documents are

compared to those of writer≥2
179 S1d←vector ()

180 S2d←vector ()

181 S3d←vector ()

182 S4d←vector ()

183

184 for (k in seq(2,ncol(All_Char) -1,3)){

185 for (j in seq(k+3, ncol(All_Char))){

186 w1_k_S1d_k_list←vector ()

187 w2_k_S2d_k_list←vector ()

188 w3_k_S3d_k_list←vector ()

189 parts_sum_equal_lstd←vector ()

190 parts_sum_unequal_lstd←vector ()

191 for (i in 1:8){

192 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

193 rowX= which(df2X == df_All_Char[i,k], arr.ind=TRUE)

[1]

194 f_kX=df2X[rowX ,2]

195 p_khat_2X=f_kX/N

196 n_k=n_k_lst[i]

197 if (All_Char[i,k]== All_Char[i,j]){

198 w1_k_S1d_k_list←append(w1_k_S1d_k_list ,w1_k*1)

199 df2←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

200 row= which(df2 == df_All_Char[i,j], arr.ind=TRUE)

[1]

201 f_k=df2[row ,2]

202 p_k2=(f_k*(f_k-1))/(N*(N-1))

203 w2_k_S2d_k_list←append(w2_k_S2d_k_list ,w2_k*(1-p_

k2))

204 w3_k_S3d_k_list←append(w3_k_S3d_k_list ,w3_k*1)

205 one_part_sum_equal_lstd =(1/p_khat_2X)∧2 * (2/(n_k*

(n_k+1)))

206 parts_sum_equal_lstd←append(parts_sum_equal_lstd ,

one_part_sum_equal_lstd)

207 } else {

208 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[

i])

209 rowX= which(df2X == df_All_Char[i,k], arr.ind=TRUE

)[1]

210 f_kX=df2X[rowX ,2]

211 p_khat_2X=f_kX/N
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212 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[

i])

213 rowY= which(df2Y == df_All_Char[i,j], arr.ind=TRUE

)[1]

214 f_kY=df2Y[rowY ,2]

215 p_khat_2Y=f_kY/N

216 log_func_2=log((p_khat_2X*p_khat_2Y)/((1-p_khat_2X

)*(1-p_khat_2Y)))

217 tot_func=lst_sums[i]/(log_func_2+lst_sums[i])

218 w3_k_S3d_k_list←append(w3_k_S3d_k_list ,w3_k*tot_

func)

219 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[

i])

220 rowY= which(df2Y == df_All_Char[i,j], arr.ind=TRUE

)[1]

221 f_kY=df2Y[rowY ,2]

222 p_khat_2Y=f_kY/N

223 one_part_sum_unequal_lstd =(1/(2*p_khat_2X*p_khat_2

Y)) * (2/(n_k*(n_k+1)))

224 parts_sum_unequal_lstd←append(parts_sum_unequal_

lstd ,one_part_sum_unequal_lstd)

225 }}

226 S1d←append(S1d ,sum(w1_k_S1d_k_list))

227 S2d←append(S2d ,sum(w2_k_S2d_k_list))

228 S3d←append(S3d ,sum(w3_k_S3d_k_list))

229 S4d←append(S4d ,(( sum(parts_sum_equal_lstd))/(sum(parts

_sum_equal_lstd)+sum(parts_sum_unequal_lstd))))

230

231 w1_k_S1d_k_list←vector ()

232 w2_k_S2d_k_list←vector ()

233 w3_k_S3d_k_list←vector ()

234 parts_sum_equal_lstd←vector ()

235 parts_sum_unequal_lstd←vector ()

236 for (i in 1:8){

237 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

238 rowX= which(df2X == df_All_Char[i,k+1], arr.ind=TRUE

)[1]

239 f_kX=df2X[rowX ,2]

240 p_khat_2X=f_kX/N

241 n_k=n_k_lst[i]

242 if (All_Char[i,k+1]== All_Char[i,j]){

243 w1_k_S1d_k_list←append(w1_k_S1d_k_list ,w1_k*1)

244 df2←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

245 row= which(df2 == df_All_Char[i,j], arr.ind=TRUE)

[1]

246 f_k=df2[row ,2]

247 p_k2=(f_k*(f_k-1))/(N*(N-1))

248 w2_k_S2d_k_list←append(w2_k_S2d_k_list ,w2_k*(1-p_

k2))
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249 w3_k_S3d_k_list←append(w3_k_S3d_k_list ,w3_k*1)

250 one_part_sum_equal_lstd =(1/p_khat_2X)∧2 * (2/(n_k*

(n_k+1)))

251 parts_sum_equal_lstd←append(parts_sum_equal_lstd ,

one_part_sum_equal_lstd)

252 } else {

253 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[

i])

254 rowX= which(df2X == df_All_Char[i,k+1], arr.ind=

TRUE)[1]

255 f_kX=df2X[rowX ,2]

256 p_khat_2X=f_kX/N

257 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[

i])

258 rowY= which(df2Y == df_All_Char[i,j], arr.ind=TRUE

)[1]

259 f_kY=df2Y[rowY ,2]

260 p_khat_2Y=f_kY/N

261 log_func_2=log((p_khat_2X*p_khat_2Y)/((1-p_khat_2X

)*(1-p_khat_2Y)))

262 tot_func=lst_sums[i]/(log_func_2+lst_sums[i])

263 w3_k_S3d_k_list←append(w3_k_S3d_k_list ,w3_k*tot_

func)

264 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[

i])

265 rowY= which(df2Y == df_All_Char[i,j], arr.ind=TRUE

)[1]

266 f_kY=df2Y[rowY ,2]

267 p_khat_2Y=f_kY/N

268 one_part_sum_unequal_lstd =(1/(2*p_khat_2X*p_khat_2

Y)) * (2/(n_k*(n_k+1)))

269 parts_sum_unequal_lstd←append(parts_sum_unequal_

lstd ,one_part_sum_unequal_lstd)

270 }}

271 S1d←append(S1d ,sum(w1_k_S1d_k_list))

272 S2d←append(S2d ,sum(w2_k_S2d_k_list))

273 S3d←append(S3d ,sum(w3_k_S3d_k_list))

274 S4d←append(S4d ,(( sum(parts_sum_equal_lstd))/(sum(parts

_sum_equal_lstd)+sum(parts_sum_unequal_lstd))))

275

276 w1_k_S1d_k_list←vector ()

277 w2_k_S2d_k_list←vector ()

278 w3_k_S3d_k_list←vector ()

279 parts_sum_equal_lstd←vector ()

280 parts_sum_unequal_lstd←vector ()

281 for (i in 1:8){

282 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

283 rowX= which(df2X == df_All_Char[i,k+2], arr.ind=TRUE

)[1]

284 f_kX=df2X[rowX ,2]
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285 p_khat_2X=f_kX/N

286 n_k=n_k_lst[i]

287 if (All_Char[i,k+2]== All_Char[i,j]){

288 w1_k_S1d_k_list←append(w1_k_S1d_k_list ,w1_k*1)

289 df2←data.frame(apply(df_All_Char ,MARGIN=1,table)[i

])

290 row= which(df2 == df_All_Char[i,j], arr.ind=TRUE)

[1]

291 f_k=df2[row ,2]

292 p_k2=(f_k*(f_k-1))/(N*(N-1))

293 w2_k_S2d_k_list←append(w2_k_S2d_k_list ,w2_k*(1-p_

k2))

294 w3_k_S3d_k_list←append(w3_k_S3d_k_list ,w3_k*1)

295 one_part_sum_equal_lstd =(1/p_khat_2X)∧2 * (2/(n_k*

(n_k+1)))

296 parts_sum_equal_lstd←append(parts_sum_equal_lstd ,

one_part_sum_equal_lstd)

297 } else {

298 df2X←data.frame(apply(df_All_Char ,MARGIN=1,table)[

i])

299 rowX= which(df2X == df_All_Char[i,k+2], arr.ind=

TRUE)[1]

300 f_kX=df2X[rowX ,2]

301 p_khat_2X=f_kX/N

302 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[

i])

303 rowY= which(df2Y == df_All_Char[i,j], arr.ind=TRUE

)[1]

304 f_kY=df2Y[rowY ,2]

305 p_khat_2Y=f_kY/N

306 log_func_2=log((p_khat_2X*p_khat_2Y)/((1-p_khat_2X

)*(1-p_khat_2Y)))

307 tot_func=lst_sums[i]/(log_func_2+lst_sums[i])

308 w3_k_S3d_k_list←append(w3_k_S3d_k_list ,w3_k*tot_

func)

309 df2Y←data.frame(apply(df_All_Char ,MARGIN=1,table)[

i])

310 rowY= which(df2Y == df_All_Char[i,j], arr.ind=TRUE

)[1]

311 f_kY=df2Y[rowY ,2]

312 p_khat_2Y=f_kY/N

313 one_part_sum_unequal_lstd =(1/(2*p_khat_2X*p_khat_2

Y)) * (2/(n_k*(n_k+1)))

314 parts_sum_unequal_lstd←append(parts_sum_unequal_

lstd ,one_part_sum_unequal_lstd)

315 }}

316 S1d←append(S1d ,sum(w1_k_S1d_k_list))

317 S2d←append(S2d ,sum(w2_k_S2d_k_list))

318 S3d←append(S3d ,sum(w3_k_S3d_k_list))

319 S4d←append(S4d ,(( sum(parts_sum_equal_lstd))/(sum(parts

_sum_equal_lstd)+sum(parts_sum_unequal_lstd))))}}
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320

321 #########################################################

322 #Finding Distributions

323 #Same Source

324 descdist(S1s , discrete = FALSE) #Create Cullen and Frey

graph

325 S1s←replace(S1s , S1s==1, 0.999)

326 fit.betaS1s ← fitdist(S1s , "beta") #Fit beta distr. (does

not work on 0 and 1 so these values are replaced by

0.001 and 0.999 respectively (the 0 is also replaced

for the weibull , gamma and lnorm distributions))

327 S1s←replace(S1s , S1s ==0.999 , 1)

328 fit.gammaS1s ← fitdist(S1s , "gamma")

329 fit.weibullS1s ← fitdist(S1s , "weibull")

330 fit.lognormalS1s ← fitdist(S1s , "lnorm")

331 plot(fit.betaS1s) #Plot beta distribution (Empirical and

theoretical density , Q-Q plot , Empirical and

theoretical CDFs and P-P plot)

332 plot(fit.gammaS1s)

333 plot(fit.weibullS1s)

334 plot(fit.lognormalS1s)

335

336 descdist(S2s , discrete = FALSE)

337 fit.normS2s ← fitdist(S2s , "norm")

338 S2s←replace(S2s , S2s==0, 0.001)

339 S2s←replace(S2s , S2s==1, 0.999)

340 fit.betaS2s ← fitdist(S2s , "beta")

341 S2s←replace(S2s , S2s ==0.999 , 1)

342 fit.weibullS2s ← fitdist(S2s , "weibull")

343 fit.gammaS2s ← fitdist(S2s , "gamma")

344 fit.lognormalS2s ← fitdist(S2s , "lnorm")

345 S2s←replace(S2s , S2s ==0.001 , 0)

346 plot(fit.normS2s)

347 plot(fit.betaS2s)

348 plot(fit.weibullS2s)

349 plot(fit.gammaS2s)

350 plot(fit.lognormalS2s)

351

352 descdist(S3s , discrete = FALSE)

353 S3s←replace(S3s , S3s==0, 0.001)

354 S3s←replace(S3s , S3s==1, 0.999)

355 fit.betaS3s ← fitdist(S3s , "beta")

356 S3s←replace(S3s , S3s ==0.999 , 1)

357 fit.weibullS3s ← fitdist(S3s , "weibull")

358 fit.gammaS3s ← fitdist(S3s , "gamma")

359 S3s←replace(S3s , S3s ==0.001 , 0)

360 plot(fit.betaS3s)

361 plot(fit.weibullS3s)

362 plot(fit.gammaS3s)

363

364 descdist(S4s , discrete = FALSE)
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365 S4s←replace(S4s , S4s==0, 0.001)

366 S4s←replace(S4s , S4s==1, 0.999)

367 fit.betaS4s ← fitdist(S4s , "beta")

368 S4s←replace(S4s , S4s ==0.999 , 1)

369 fit.weibullS4s ← fitdist(S4s , "weibull")

370 fit.gammaS4s ← fitdist(S4s , "gamma")

371 S4s←replace(S4s , S4s ==0.001 , 0)

372 plot(fit.betaS4s)

373 plot(fit.weibullS4s)

374 plot(fit.gammaS4s)

375

376 #Different Source

377 descdist(S1d , discrete = FALSE)

378 fit.normS1d ← fitdist(S1d , "norm")

379 fit.unifS1d ← fitdist(S1d , "unif")

380 S1d←replace(S1d , S1d==0, 0.001)

381 S1d←replace(S1d , S1d==1, 0.999)

382 fit.betaS1d ← fitdist(S1d , "beta")

383 S1d←replace(S1d , S1d ==0.999 , 1)

384 fit.weibullS1d ← fitdist(S1d , "weibull")

385 fit.gammaS1d ← fitdist(S1d , "gamma")

386 fit.lognormalS1d ← fitdist(S1d , "lnorm")

387 S1d←replace(S1d , S1d ==0.001 , 0)

388 plot(fit.normS1d)

389 plot(fit.unifS1d)

390 plot(fit.betaS1d)

391 plot(fit.weibullS1d)

392 plot(fit.gammaS1d)

393 plot(fit.lognormalS1d)

394

395 descdist(S2d , discrete = FALSE)

396 fit.normS2d ← fitdist(S2d , "norm")

397 fit.unifS2d ← fitdist(S2d , "unif")

398 S2d←replace(S2d , S2d==0, 0.001)

399 S2d←replace(S2d , S2d==1, 0.999)

400 fit.betaS2d ← fitdist(S2d , "beta")

401 S2d←replace(S2d , S2d ==0.999 , 1)

402 fit.weibullS2d ← fitdist(S2d , "weibull")

403 fit.gammaS2d ← fitdist(S2d , "gamma")

404 fit.lognormalS2d ← fitdist(S2d , "lnorm")

405 S2d←replace(S2d , S2d ==0.001 , 0)

406 plot(fit.normS2d)

407 plot(fit.unifS2d)

408 plot(fit.betaS2d)

409 plot(fit.weibullS2d)

410 plot(fit.gammaS2d)

411 plot(fit.lognormalS2d)

412

413 descdist(S3d , discrete = FALSE)

414 fit.normS3d ← fitdist(S3d , "norm")

415 fit.unifS3d ← fitdist(S3d , "unif")

117



416 S3d←replace(S3d , S3d==0, 0.001)

417 S3d←replace(S3d , S3d==1, 0.999)

418 fit.betaS3d ← fitdist(S3d , "beta")

419 S3d←replace(S3d , S3d ==0.999 , 1)

420 fit.weibullS3d ← fitdist(S3d , "weibull")

421 fit.gammaS3d ← fitdist(S3d , "gamma")

422 fit.lognormalS3d ← fitdist(S3d , "lnorm")

423 S3d←replace(S3d , S3d ==0.001 , 0)

424 plot(fit.normS3d)

425 plot(fit.unifS3d)

426 plot(fit.betaS3d)

427 plot(fit.weibullS3d)

428 plot(fit.gammaS3d)

429 plot(fit.lognormalS3d)

430

431 descdist(S4d , discrete = FALSE)

432 fit.normS4d ← fitdist(S4d , "norm")

433 fit.unifS4d ← fitdist(S4d , "unif")

434 S4d←replace(S4d , S4d==0, 0.001)

435 S4d←replace(S4d , S4d==1, 0.999)

436 fit.betaS4d ← fitdist(S4d , "beta")

437 S4d←replace(S4d , S4d ==0.999 , 1)

438 fit.weibullS4d ← fitdist(S4d , "weibull")

439 fit.gammaS4d ← fitdist(S4d , "gamma")

440 fit.lognormalS4d ← fitdist(S4d , "lnorm")

441 S4d←replace(S4d , S4d ==0.001 , 0)

442 plot(fit.normS4d)

443 plot(fit.unifS4d)

444 plot(fit.betaS4d)

445 plot(fit.weibullS4d)

446 plot(fit.gammaS4d)

447 plot(fit.lognormalS4d)
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Appendix F

Information on the decisions of
choosing the distributions in chap-
ter 5

In this appendix it will be explained why the distributions in chapter 5 were
chosen for the same and different source scores for each of the four scores.
The “R” code, that was used to create the graphs of this appendix, can be
found in appendix E.

F.1 Distribution of same source scores (score 1)

Figure F.1 shows the Cullen and Frey graph of the same source scores of score
1. It contains the square skewness and kurtosis of the observed scores and
seven theoretical distributions. Using this graph, it was decided that the beta,
gamma, Weibull and lognormal distribution could all be the distributions of
the observed scores and, therefore, they should be further investigated.
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Figure F.1: This figure shows the Cullen and Frey graph of the same source
scores of score 1 (Overlap) (it contains the square skewness and kurtosis of

the observed scores and seven theoretical distributions).

Figures F.2, F.3, F.4 and F.5 show (of the parametrization with the beta,
gamma, Weibull and lognormal distributions (respectively) of the same source
scores of score 1) the empirical and theoretical density and CDF plots, the
Q-Q and the P-P plots. By mainly looking at the Q-Q plots (and if the
theoretical and empirical quantities are on the same line), it can be concluded
that the Weibull distribution is the best fit for the same source scores of score
1 (Overlap).
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Figure F.2: This figure shows the empirical and theoretical density and CDF
plots, the Q-Q and the P-P plots of the parametrization with the beta

distribution of the same source scores of score 1 (Overlap).

Figure F.3: This figure shows the empirical and theoretical density and CDF
plots, the Q-Q and the P-P plots of the parametrization with the gamma

distribution of the same source scores of score 1 (Overlap).
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Figure F.4: This figure shows the empirical and theoretical density and CDF
plots, the Q-Q and the P-P plots of the parametrization with the Weibull

distribution of the same source scores of score 1 (Overlap).

Figure F.5: This figure shows the empirical and theoretical density and CDF
plots, the Q-Q and the P-P plots of the parametrization with the lognormal

distribution of the same source scores of score 1 (Overlap).

122



F.2 Distribution of different source scores (score 1)

Figure F.6 shows the Cullen and Frey graph of the different source scores of
score 1. It contains the square skewness and kurtosis of the observed scores
and seven theoretical distributions. Using this graph, it was decided that
the normal, uniform, beta, Weibull, gamma and lognormal distribution could
all be the distributions of the observed scores and, therefore, they should be
further investigated.

Figure F.6: This figure shows the Cullen and Frey graph of the different
source scores of score 1 (Overlap) (it contains the square skewness and
kurtosis of the observed scores and seven theoretical distributions).

Figures F.7, F.8, F.9, F.10, F.11 and F.12 show (of the parametrization with
the normal, uniform, beta, Weibull, gamma and lognormal distributions (re-
spectively) of the different source scores of score 1) the empirical and theoret-
ical density and CDF plots, the Q-Q and the P-P plots. By mainly looking at
the Q-Q plots (and if the theoretical and empirical quantities are on the same
line), it can be concluded that the normal distribution is the best fit for the
different source scores of score 1 (Overlap).
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Figure F.7: This figure shows the empirical and theoretical density and CDF
plots, the Q-Q and the P-P plots of the parametrization with the normal

distribution of the different source scores of score 1 (Overlap).

Figure F.8: This figure shows the empirical and theoretical density and CDF
plots, the Q-Q and the P-P plots of the parametrization with the uniform

distribution of the different source scores of score 1 (Overlap).

124



Figure F.9: This figure shows the empirical and theoretical density and CDF
plots, the Q-Q and the P-P plots of the parametrization with the beta

distribution of the different source scores of score 1 (Overlap).

Figure F.10: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
Weibull distribution of the different source scores of score 1 (Overlap).
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Figure F.11: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
gamma distribution of the different source scores of score 1 (Overlap).

Figure F.12: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the

lognormal distribution of the different source scores of score 1 (Overlap).
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F.3 Distribution of same source scores (score 2)

Figure F.13 shows the Cullen and Frey graph of the same source scores of
score 2. It contains the square skewness and kurtosis of the observed scores
and seven theoretical distributions. Using this graph, it was decided that
the normal, beta, Weibull, gamma and lognormal distribution could all be
the distributions of the observed scores and, therefore, they should be further
investigated.

Figure F.13: This figure shows the Cullen and Frey graph of the same source
scores of score 2 (Goodall3) (it contains the square skewness and kurtosis of

the observed scores and seven theoretical distributions).

Figures F.14, F.15, F.16, F.17 and F.18 show (of the parametrization with the
normal, beta, Weibull, gamma and lognormal distributions (respectively) of
the same source scores of score 2) the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots. By mainly looking at the Q-Q plots
(and if the theoretical and empirical quantities are on the same line), it can
be concluded that the normal distribution is the best fit for the same source
scores of score 2 (Goodall3).
Note that the Weibull distribution would also be a good fit. However, when
looking at the upper right and lower left part of the Q-Q plot, it becomes clear
that the normal distribution is a better fit (since the data points are closer to
lying on the line).
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Figure F.14: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
normal distribution of the same source scores of score 2 (Goodall3).

Figure F.15: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the beta

distribution of the same source scores of score 2 (Goodall3).
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Figure F.16: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
Weibull distribution of the same source scores of score 2 (Goodall3).

Figure F.17: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
gamma distribution of the same source scores of score 2 (Goodall3).
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Figure F.18: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
lognormal distribution of the same source scores of score 2 (Goodall3).

F.4 Distribution of different source scores (score 2)

Figure F.19 shows the Cullen and Frey graph of the different source scores of
score 2. It contains the square skewness and kurtosis of the observed scores
and seven theoretical distributions. Using this graph, it was decided that
the normal, uniform, beta, Weibull, gamma and lognormal distribution could
all be the distributions of the observed scores and, therefore, they should be
further investigated.
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Figure F.19: This figure shows the Cullen and Frey graph of the different
source scores of score 2 (Goodall3) (it contains the square skewness and

kurtosis of the observed scores and seven theoretical distributions).

Figures F.20, F.21, F.22, F.23, F.24 and F.25 show (of the parametrization
with the normal, uniform, beta, Weibull, gamma and lognormal distributions
(respectively) of the different source scores of score 1) the empirical and theo-
retical density and CDF plots, the Q-Q and the P-P plots. By mainly looking
at the Q-Q plots (and if the theoretical and empirical quantities are on the
same line), it can be concluded that the normal distribution is the best fit for
the different source scores of score 2 (Goodall3).
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Figure F.20: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
normal distribution of the different source scores of score 2 (Goodall3).

Figure F.21: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
uniform distribution of the different source scores of score 2 (Goodall3).
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Figure F.22: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the beta

distribution of the different source scores of score 2 (Goodall3).

Figure F.23: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
Weibull distribution of the different source scores of score 2 (Goodall3).
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Figure F.24: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
gamma distribution of the different source scores of score 2 (Goodall3).

Figure F.25: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the

lognormal distribution of the different source scores of score 2 (Goodall3).
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F.5 Distribution of same source scores (score 3)

Figure F.26 shows the Cullen and Frey graph of the same source scores of
score 3. It contains the square skewness and kurtosis of the observed scores
and seven theoretical distributions. Using this graph, it was decided that the
beta, Weibull and gamma distribution could all be the distributions of the
observed scores and, therefore, they should be further investigated.

Figure F.26: This figure shows the Cullen and Frey graph of the same source
scores of score 3 (Burnaby) (it contains the square skewness and kurtosis of

the observed scores and seven theoretical distributions).

Figures F.27, F.28 and F.29 show (of the parametrization with the beta,
Weibull and gamma distributions (respectively) of the same source scores of
score 3) the empirical and theoretical density and CDF plots, the Q-Q and the
P-P plots. By mainly looking at the Q-Q plots (and if the theoretical and em-
pirical quantities are on the same line), it can be concluded that the Weibull
distribution is the best fit for the same source scores of score 3 (Burnaby) (and
the gamma distribution is the second best fit).

135



Figure F.27: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the beta

distribution of the same source scores of score 3 (Burnaby).

Figure F.28: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
Weibull distribution of the same source scores of score 3 (Burnaby).
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Figure F.29: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
gamma distribution of the same source scores of score 3 (Burnaby).

F.6 Distribution of different source scores (score 3)

Figure F.30 shows the Cullen and Frey graph of the different source scores of
score 3. It contains the square skewness and kurtosis of the observed scores
and seven theoretical distributions. Using this graph, it was decided that
the normal, uniform, beta, Weibull, gamma and lognormal distribution could
all be the distributions of the observed scores and, therefore, they should be
further investigated.

137



Figure F.30: This figure shows the Cullen and Frey graph of the different
source scores of score 3 (Burnaby) (it contains the square skewness and
kurtosis of the observed scores and seven theoretical distributions).

Figures F.31, F.32, F.33, F.34, F.35 and F.36 show (of the parametrization
with the normal, uniform, beta, Weibull, gamma and lognormal distributions
(respectively) of the different source scores of score 1) the empirical and theo-
retical density and CDF plots, the Q-Q and the P-P plots. By mainly looking
at the Q-Q plots (and if the theoretical and empirical quantities are on the
same line), it can be concluded that the normal distribution is the best fit for
the different source scores of score 3 (Burnaby).
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Figure F.31: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
normal distribution of the different source scores of score 3 (Burnaby).

Figure F.32: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
uniform distribution of the different source scores of score 3 (Burnaby).
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Figure F.33: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the beta

distribution of the different source scores of score 3 (Burnaby).

Figure F.34: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
Weibull distribution of the different source scores of score 3 (Burnaby).
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Figure F.35: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
gamma distribution of the different source scores of score 3 (Burnaby).

Figure F.36: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the

lognormal distribution of the different source scores of score 3 (Burnaby).
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F.7 Distribution of same source scores (score 4)

Figure F.37 shows the Cullen and Frey graph of the same source scores of
score 4. It contains the square skewness and kurtosis of the observed scores
and seven theoretical distributions. Using this graph, it was decided that the
beta, Weibull and gamma distribution could all be the distributions of the
observed scores and, therefore, they should be further investigated.

Figure F.37: This figure shows the Cullen and Frey graph of the same source
scores of score 4 (Anderberg) (it contains the square skewness and kurtosis of

the observed scores and seven theoretical distributions).

Figures F.38, F.39 and F.40 show (of the parametrization with the beta,
Weibull and gamma distributions (respectively) of the same source scores of
score 4) the empirical and theoretical density and CDF plots, the Q-Q and
the P-P plots. By mainly looking at the Q-Q plots (and if the theoretical and
empirical quantities are on the same line), it can be concluded that the beta
distribution is the best fit for the same source scores of score 4 (Anderberg).
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Figure F.38: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the beta

distribution of the same source scores of score 4 (Anderberg).

Figure F.39: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
Weibull distribution of the same source scores of score 4 (Anderberg).
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Figure F.40: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the
gamma distribution of the same source scores of score 4 (Anderberg).

F.8 Distribution of different source scores (score 4)

Figure F.41 shows the Cullen and Frey graph of the different source scores of
score 4. It contains the square skewness and kurtosis of the observed scores
and seven theoretical distributions. Using this graph, it was decided that
the normal, uniform, beta, Weibull, gamma and lognormal distribution could
all be the distributions of the observed scores and, therefore, they should be
further investigated.
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Figure F.41: This figure shows the Cullen and Frey graph of the different
source scores of score 4 (Anderberg) (it contains the square skewness and

kurtosis of the observed scores and seven theoretical distributions).

Figures F.42, F.43, F.44, F.45, F.46 and F.47 show (of the parametrization
with the normal, uniform, beta, Weibull, gamma and lognormal distributions
(respectively) of the different source scores of score 1) the empirical and theo-
retical density and CDF plots, the Q-Q and the P-P plots. By mainly looking
at the Q-Q plots (and if the theoretical and empirical quantities are on the
same line), it can be concluded that the beta distribution is the best fit for
the different source scores of score 4 (Anderberg).

145



Figure F.42: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the

normal distribution of the different source scores of score 4 (Anderberg).

Figure F.43: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the

uniform distribution of the different source scores of score 4 (Anderberg).
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Figure F.44: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the beta

distribution of the different source scores of score 4 (Anderberg).

Figure F.45: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the

Weibull distribution of the different source scores of score 4 (Anderberg).
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Figure F.46: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the

gamma distribution of the different source scores of score 4 (Anderberg).

Figure F.47: This figure shows the empirical and theoretical density and
CDF plots, the Q-Q and the P-P plots of the parametrization with the

lognormal distribution of the different source scores of score 4 (Anderberg).
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Appendix G

R code used in chapter 6

Note that, in order to run the codes in this appendix, the R code of appendix
E needs to be ran first.

G.1 R code used in section 6.1

The following R code was used to carry out the leave-one-out method (cross
validation) in section 6.1.

1 library("readxl")

2 library(fitdistrplus)

3

4 All_Char ← read_excel("Char_Vect_All.xlsx")

5 df_All_Char ←data.frame(All_Char) #Make dataframe of Excel

file

6

7 #Same Source

8

9 S1s_Comp←vector ()

10 S2s_Comp←vector ()

11 S3s_Comp←vector ()

12 S4s_Comp←vector ()

13 #For loop to (for each document): remove the same source

scores , to

14 #perform the parametrization again and to calculate the

SLRs for that document

15 #(for scores 1, 2, 3 and 4)

16 for (i in 1: length(S1s)){

17 S1s_without←S1s[-i]

18 fit.weibullS1s_without ← fitdist(S1s_without , "weibull")

19 Log_SLR1←log10(dweibull(seq (0 ,1 ,0.001), fit.weibullS1s_

without$estimate [1], fit.weibullS1s_without$estimate
[2])/dnorm(seq (0 ,1 ,0.001), fit.normS1d$estimate [1],
fit.normS1d$estimate [2]))

20 S1s_Comp←append(S1s_Comp ,Log_SLR1[S1s[i]/0.001+1])

21 S2s_without←S2s[-i]

22 fit.normS2s_without ← fitdist(S2s_without , "norm")

23 Log_SLR2←log10(dnorm(seq (0 ,1 ,0.001), fit.normS2s_without

$estimate [1], fit.normS2s_without$estimate [2])/dnorm(
seq (0 ,1 ,0.001), fit.normS2d$estimate [1], fit.normS2d$
estimate [2]))
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24 S2s_Comp←append(S2s_Comp ,Log_SLR2[S2s[i]/0.001+1])

25 S3s_without←S3s[-i]

26 fit.gammaS3s_without ← fitdist(S3s_without , "gamma")

27 Log_SLR3←log10(dgamma(seq (0 ,1 ,0.001), fit.gammaS3s_

without$estimate [1], fit.gammaS3s_without$estimate
[2])/dnorm(seq (0 ,1 ,0.001), fit.normS3d$estimate [1],
fit.normS3d$estimate [2]))

28 S3s_Comp←append(S3s_Comp ,Log_SLR3[S3s[i]/0.001+1])

29 S4s_without←S4s[-i]

30 fit.betaS4s_without ← fitdist(S4s_without , "beta")

31 Log_SLR4←log10(dbeta(seq (0 ,1 ,0.001), fit.betaS4s_without

$estimate [1], fit.betaS4s_without$estimate [2])/dbeta(
seq (0 ,1 ,0.001), fit.betaS4d$estimate [1], fit.betaS4d$
estimate [2]))

32 S4s_Comp←append(S4s_Comp ,Log_SLR4[S4s[i]/0.001])

33 }

34 #Make data frame of the SLRs of each document

35 #(of scores 1, 2, 3 and 4 which form the columns)

36 df_Comp_s←data.frame(Score1=S1s_Comp , Score2=S2s_Comp ,

Score3=S3s_Comp , Score4=S4s_Comp)

37

38 #Make boxplots of the same source comparisons

39 boxplot(df_Comp_s, xlab="Score System", ylab=expression("

Log"[10]* "SLR"),

40 main="Boxplots of the Log SLRs of the same source

comparisons for the four

41 different score systems using the leave -one -out

method (cross -validation)",

42 names=c("Score 1 (Overlap)","Score 2 (Goodall3)",

"Score 3 (Burnaby)", "Score 4 (Anderberg)"),

col=rgb(0,1 ,0 ,0.25))

43 abline(h=0,lty=2,lwd =1)

44

45 #Different Source

46

47 S1d_Comp←vector ()

48 S2d_Comp←vector ()

49 S3d_Comp←vector ()

50 S4d_Comp←vector ()

51 #For loop to (for each document): remove the different

source scores , to

52 #perform the parametrization again and to calculate the

SLRs for that document

53 #(for scores 1, 2, 3 and 4)

54 for (i in 1: length(S1d)){

55 S1d_without←S1d[-i]

56 fit.normS1d_without ← fitdist(S1d_without , "norm")

57 Log_SLR1d←log10(dweibull(seq (0 ,1 ,0.001), fit.weibullS1s$
estimate [1], fit.weibullS1s$estimate [2])/dnorm(seq
(0 ,1 ,0.001), fit.normS1d_without$estimate [1], fit.

normS1d_without$estimate [2]))
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58 S1d_Comp←append(S1d_Comp ,Log_SLR1d[S1d[i]/0.001+1])

59 S2d_without←S2d[-i]

60 fit.normS2d_without ← fitdist(S2d_without , "norm")

61 Log_SLR2d←log10(dnorm(seq (0 ,1 ,0.001), fit.normS2s$
estimate [1], fit.normS2s$estimate [2])/dnorm(seq
(0 ,1 ,0.001), fit.normS2d_without$estimate [1], fit.

normS2d_without$estimate [2]))
62 S2d_Comp←append(S2d_Comp ,Log_SLR2d[S2d[i]/0.001+1])

63 S3d_without←S3d[-i]

64 fit.normS3d_without ← fitdist(S3d_without , "norm")

65 Log_SLR3d←log10(dgamma(seq (0 ,1 ,0.001), fit.gammaS3s$
estimate [1], fit.gammaS3s$estimate [2])/dnorm(seq
(0 ,1 ,0.001), fit.normS3d_without$estimate [1], fit.

normS3d_without$estimate [2]))
66 S3d_Comp←append(S3d_Comp ,Log_SLR3d[S3d[i]/0.001+1])

67 S4d_without←S4d[-i]

68 fit.betaS4d_without ← fitdist(S4d_without , "beta")

69 Log_SLR4d←log10(dbeta(seq (0 ,1 ,0.001), fit.betaS4s$
estimate [1], fit.betaS4s$estimate [2])/dbeta(seq
(0 ,1 ,0.001), fit.betaS4d_without$estimate [1], fit.

betaS4d_without$estimate [2]))
70 S4d_Comp←append(S4d_Comp ,Log_SLR4d[S4d[i]/0.001])

71 }

72 #Make data frame of the SLRs of each document

73 #(of scores 1, 2, 3 and 4 which form the columns)

74 df_Comp_d←data.frame(Score1=S1d_Comp , Score2=S2d_Comp ,

Score3=S3d_Comp , Score4=S4d_Comp)

75

76 #Make boxplots of the different source comparisons

77 boxplot(df_Comp_d, xlab="Score System", ylab=expression("

Log"[10]* "SLR"),

78 main="Boxplots of the Log SLRs of the different

source comparisons for the four

79 different score systems using the leave -one -out

method (cross -validation)",

80 names=c("Score 1 (Overlap)","Score 2 (Goodall3)",

"Score 3 (Burnaby)", "Score 4 (Anderberg)"),

col=rgb(0,1 ,0 ,0.25))

81 abline(h=0,lty=2,lwd =1)

G.2 R code used in section 6.2

The following R code was used to calculate the 95% bootstrap confidence
intervals in section 6.2. Only the code for the intervals of score 1 (Overlap)
is shown for succinctness, but the code for the intervals of the other scores is
available upon request.

1 library("readxl")

2 library(fitdistrplus)

3
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4 All_Char ← read_excel("Char_Vect_All.xlsx")

5 df_All_Char ←data.frame(All_Char) #Make dataframe of Excel

file

6

7 #Score 1

8 n.s=length(S1s) #Sample size same source scores

9 n.d=2*length(S1d) #Sample size different source scores

10 B←50 #Number of times the process is repeated

11 names(S1s) ← seq_along(S1s) #Give scores indices

12

13 #Put each boot -sample in a column

14 Sample .1s=sample(S1s , size=B*n.s,replace=TRUE)

15 #Create a matrix of the same source scores samples

16 #(50 rows , 2400 columns)

17 Boot.1s←matrix(Sample .1s, ncol=B,nrow=n.s)

18

19 #Find the 2397 different source scores belonging to each

document

20 Document_Sample .1s=names(Sample .1s)

21 Number_Scores_D=rep(seq(2397,0,-3),each =3)

22 Sample .1d←vector ()

23 for (i in Document_Sample .1s){

24 Number_Scores_D_i=Number_Scores_D[strtoi(i)]

25 Number_Scores_D_Before_i=Number_Scores_D[1:( strtoi(i) -1)

]

26 Before_i=sum(Number_Scores_D_Before_i)

27 Scores_of_Interest2←vector ()

28 Counter =0

29 for (j in Number_Scores_D_Before_i){

30 if (j!=Number_Scores_D_i){

31 Scores_of_Interest2←append(Scores_of_Interest2 ,S1d[(

Counter+j-strtoi(i))])

32 Counter←Counter+j}}

33 Scores_of_Interest_i1=S1d[( Before_i+1):( Before_i+Number_

Scores_D_i)]

34 Scores_of_Interest_i=c(Scores_of_Interest_i1 ,Scores_of_

Interest2)

35 Sample .1d_i=sample(Scores_of_Interest_i,size=n.s,

replace=TRUE)

36 Sample .1d←append(Sample .1d,Sample .1d_i)}

37

38 #Create a matrix of the different source scores samples

39 #(50 rows , 2*2 ,876 ,400=5 ,752 ,800 columns)

40 Boot.1d←matrix(Sample .1d, ncol=B,nrow=n.d)

41

42 SLR_1_ALL←vector ()

43 #Perform the parametrization

44 for (i in 1:B){

45 Column_1s=Boot.1s[,i]

46 Column_1d=Boot.1d[,i]

47 Dist_1s←fitdist(Column_1s, "weibull")
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48 Dist_1d←fitdist(Column_1d, "norm")

49 SLR_1_ALL←append(SLR_1_ALL ,log10(dweibull(seq (0 ,1 ,0.001)

, Dist_1s$estimate [1],Dist_1s$estimate [2])/dnorm(seq
(0 ,1 ,0.001), Dist_1d$estimate [1], Dist_1d$estimate
[2])))}

50

51 #Calculate the median and upper and lower quantile (in

order to obtain the 95% SLR bootstrap confidence

interval)

52 means_1←vector ()

53 lq_1←vector ()

54 hq_1←vector ()

55 for (j in 1:1001){

56 SLR_1←vector ()

57 for (i in seq(j,length(SLR_1_ALL) ,1001)){

58 SLR_1←append(SLR_1,SLR_1_ALL[i])}

59 means_1←append(means_1,mean(SLR_1))

60 lq_1←append(lq_1,quantile(SLR_1 ,0.025))

61 hq_1←append(hq_1,quantile(SLR_1 ,0.975))}

62

63 #Plot the median and the 95% bootstrap confidence interval

64 #for score 1 (Overlap)

65 plot(seq (0 ,1 ,0.001),means_1, type="l",xlab="Score 1 (

Overlap)",

66 ylab=expression("Log"[10]* "(SLR)"),

67 main="Median (50% point) of the SLR bootstrap results

with the boundaries of the 95% SLR bootrap

interval of score (Overlap)",lty =4)

68 lines(seq (0 ,1 ,0.001),lq_1, col = "springgreen4")

69 lines(seq (0 ,1 ,0.001),hq_1, col = "springgreen4")

70 abline(h=0,lty=2, lwd =1.5)

71 grid()

72 legend("bottomright", legend=c("Median", "95% SLR

bootstrap interval"),

73 col=c("black", "springgreen4"), lty=c(4,1),cex =0.8)

74

75 #Maximum and mean width of Interval

76 width←hq_1-lq_1

77 width←na.omit(width)

78 max(width)

79 mean(width)

G.3 R code used in section 6.3

The following R code was used to quantify the misleading evidence in section
6.3. So it was used in order to calculate the percentages of misleading evidence,
to calculate the indications of the strength of evidence, to create the Tippett
plot and to calculate the expected values.

1 library("readxl")
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2 library(fitdistrplus)

3

4 All_Char ← read_excel("Char_Vect_All.xlsx")

5 df_All_Char ←data.frame(All_Char) #Make dataframe of Excel

file

6

7 SLR1←dweibull(seq (0 ,1 ,0.001), fit.weibullS1s$estimate [1],
fit.weibullS1s$estimate [2])/dnorm(seq (0 ,1 ,0.001), fit.

normS1d$estimate [1], fit.normS1d$estimate [2])
8 SLR2←dnorm(seq (0 ,1 ,0.001), fit.normS2s$estimate [1], fit.

normS2s$estimate [2])/dnorm(seq (0 ,1 ,0.001), fit.normS2d$
estimate [1], fit.normS2d$estimate [2])

9 SLR3←dgamma(seq (0 ,1 ,0.001), fit.gammaS3s$estimate [1], fit.

gammaS3s$estimate [2])/dnorm(seq (0 ,1 ,0.001), fit.normS3d

$estimate [1], fit.normS3d$estimate [2])
10 SLR4←dbeta(seq (0 ,1 ,0.001), fit.betaS4s$estimate [1], fit.

betaS4s$estimate [2])/dbeta(seq (0 ,1 ,0.001), fit.betaS4d$
estimate [1], fit.betaS4d$estimate [2])

11

12 #Calculate the SLR values for the same and different

source scores

13 S1s_CompM←vector ()

14 S2s_CompM←vector ()

15 S3s_CompM←vector ()

16 S4s_CompM←vector ()

17 S1d_CompM←vector ()

18 S2d_CompM←vector ()

19 S3d_CompM←vector ()

20 S4d_CompM←vector ()

21 for (i in 1: length(S1s)){

22 S1s_CompM←append(S1s_CompM ,SLR1[S1s[i]/0.001+1])

23 S2s_CompM←append(S2s_CompM ,SLR2[S2s[i]/0.001+1])

24 S3s_CompM←append(S3s_CompM ,SLR3[S3s[i]/0.001+1])

25 S4s_CompM←append(S4s_CompM ,SLR4[S4s[i]/0.001+1])}

26 for (i in 1: length(S1d)){

27 S1d_CompM←append(S1d_CompM ,SLR1[S1d[i]/0.001+1])

28 S2d_CompM←append(S2d_CompM ,SLR2[S2d[i]/0.001+1])

29 S3d_CompM←append(S3d_CompM ,SLR3[S3d[i]/0.001+1])

30 S4d_CompM←append(S4d_CompM ,SLR4[S4d[i]/0.001+1])}

31

32 #Indication of the strength of evidence

33 Interval_vect←c(1/10000 ,1/1000,1/100,1/
10 ,1 ,10 ,100 ,1000 ,10000)

34

35 #Same Source

36 Perc_1s←vector ()

37 Perc_2s←vector ()

38 Perc_3s←vector ()

39 Perc_4s←vector ()

40 Perc_1d←vector ()

41 Perc_2d←vector ()
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42 Perc_3d←vector ()

43 Perc_4d←vector ()

44 Perc_1s←append(Perc_1s,sum(S1s_CompM < Interval_vect [1])/

length(S1s))

45 Perc_2s←append(Perc_2s,sum(S2s_CompM < Interval_vect [1])/

length(S1s))

46 Perc_3s←append(Perc_3s,sum(S3s_CompM < Interval_vect [1])/

length(S1s))

47 Perc_4s←append(Perc_4s,sum(S4s_CompM < Interval_vect [1])/

length(S1s))

48 Perc_1d←append(Perc_1d,sum(S1d_CompM < Interval_vect [1])/

length(S1d))

49 Perc_2d←append(Perc_2d,sum(S2d_CompM < Interval_vect [1])/

length(S1d))

50 Perc_3d←append(Perc_3d,sum(S3d_CompM < Interval_vect [1])/

length(S1d))

51 Perc_4d←append(Perc_4d,sum(S4d_CompM < Interval_vect [1])/

length(S1d))

52 for (i in 1:( length(Interval_vect) -1)){

53 Perc_1s←append(Perc_1s,sum(S1s_CompM > Interval_vect[i]

& S1s_CompM < Interval_vect[i+1])/length(S1s))

54 Perc_2s←append(Perc_2s,sum(S2s_CompM > Interval_vect[i]

& S2s_CompM < Interval_vect[i+1])/length(S1s))

55 Perc_3s←append(Perc_3s,sum(S3s_CompM > Interval_vect[i]

& S3s_CompM < Interval_vect[i+1])/length(S1s))

56 Perc_4s←append(Perc_4s,sum(S4s_CompM > Interval_vect[i]

& S4s_CompM < Interval_vect[i+1])/length(S1s))

57 Perc_1d←append(Perc_1d,sum(S1d_CompM > Interval_vect[i]

& S1d_CompM < Interval_vect[i+1])/length(S1d))

58 Perc_2d←append(Perc_2d,sum(S2d_CompM > Interval_vect[i]

& S2d_CompM < Interval_vect[i+1])/length(S1d))

59 Perc_3d←append(Perc_3d,sum(S3d_CompM > Interval_vect[i]

& S3d_CompM < Interval_vect[i+1])/length(S1d))

60 Perc_4d←append(Perc_4d,sum(S4d_CompM > Interval_vect[i]

& S4d_CompM < Interval_vect[i+1])/length(S1d))}

61 Perc_1s←append(Perc_1s,sum(S1s_CompM > Interval_vect[

length(Interval_vect)])/length(S1s))

62 Perc_2s←append(Perc_2s,sum(S2s_CompM > Interval_vect[

length(Interval_vect)])/length(S1s))

63 Perc_3s←append(Perc_3s,sum(S3s_CompM > Interval_vect[

length(Interval_vect)])/length(S1s))

64 Perc_4s←append(Perc_4s,sum(S4s_CompM > Interval_vect[

length(Interval_vect)])/length(S1s))

65 Perc_1d←append(Perc_1d,sum(S1d_CompM > Interval_vect[

length(Interval_vect)])/length(S1d))

66 Perc_2d←append(Perc_2d,sum(S2d_CompM > Interval_vect[

length(Interval_vect)])/length(S1d))

67 Perc_3d←append(Perc_3d,sum(S3d_CompM > Interval_vect[

length(Interval_vect)])/length(S1d))

68 Perc_4d←append(Perc_4d,sum(S4d_CompM > Interval_vect[

length(Interval_vect)])/length(S1d))
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69

70 #Calculate the percentages of misleading evidence

71 Perc_M_1s=sum(Perc_1s[1:5])

72 Perc_M_2s=sum(Perc_2s[1:5])

73 Perc_M_3s=sum(Perc_3s[1:5])

74 Perc_M_4s=sum(Perc_4s[1:5])

75 Perc_M_1d=sum(Perc_1d[6:10])

76 Perc_M_2d=sum(Perc_2d[6:10])

77 Perc_M_3d=sum(Perc_3d[6:10])

78 Perc_M_4d=sum(Perc_4d[6:10])

79

80 #Calculate the expected values of 1/SLR given H1 and SLR

given H2

81 Exp_1LR_1s=mean(1/S1s_CompM)

82 Exp_1LR_2s=mean(1/S2s_CompM)

83 Exp_1LR_3s=mean(1/S3s_CompM)

84 Exp_1LR_4s=mean(1/S4s_CompM)

85 Exp_LR_1d=mean(S1d_CompM)

86 Exp_LR_2d=mean(S2d_CompM)

87 Exp_LR_3d=mean(S3d_CompM)

88 Exp_LR_4d=mean(S4d_CompM)

89

90 #Creation of the Tippett plot

91 logS1s_CompM=log10(S1s_CompM)

92 logS2s_CompM=log10(S2s_CompM)

93 logS3s_CompM=log10(S3s_CompM)

94 logS4s_CompM=log10(S4s_CompM)

95 logS1d_CompM=log10(S1d_CompM)

96 logS2d_CompM=log10(S2d_CompM)

97 logS3d_CompM=log10(S3d_CompM)

98 logS4d_CompM=log10(S4d_CompM)

99 Freq_1s←table(logS1s_CompM)

100 Freq_2s←table(logS2s_CompM)

101 Freq_3s←table(logS3s_CompM)

102 Freq_4s←table(logS4s_CompM)

103 Freq_1d←table(logS1d_CompM)

104 Freq_2d←table(logS2d_CompM)

105 Freq_3d←table(logS3d_CompM)

106 Freq_4d←table(logS4d_CompM)

107

108 #Same source , Score 1

109 lst_y_t_1s←vector ()

110 lst_y_t_1s←append(lst_y_t_1s,1)

111 counter =1

112 for (i in Freq_1s){

113 counter=counter -i/length(S1s)

114 lst_y_t_1s←append(lst_y_t_1s,counter)}

115 lst_y_t_1s←append(lst_y_t_1s,0)

116 logS1s_CompM_dup1←logS1s_CompM[!duplicated(logS1s_CompM)]

117 logS1s_CompM_dup1←append(logS1s_CompM_dup1 ,c(-5,5))

118 logS1s_CompM_dup←sort(logS1s_CompM_dup1)
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119

120 #Same source , Score 2

121 lst_y_t_2s←vector ()

122 lst_y_t_2s←append(lst_y_t_2s,1)

123 counter =1

124 for (i in Freq_2s){

125 counter=counter -i/length(S1s)

126 lst_y_t_2s←append(lst_y_t_2s,counter)}

127 lst_y_t_2s←append(lst_y_t_2s,0)

128 logS2s_CompM_dup1←logS2s_CompM[!duplicated(logS2s_CompM)]

129 logS2s_CompM_dup1←append(logS2s_CompM_dup1 ,c(-5,5))

130 logS2s_CompM_dup←sort(logS2s_CompM_dup1)

131

132 #Same source , Score 3

133 lst_y_t_3s←vector ()

134 lst_y_t_3s←append(lst_y_t_3s,1)

135 counter =1

136 for (i in Freq_3s){

137 counter=counter -i/length(S1s)

138 lst_y_t_3s←append(lst_y_t_3s,counter)}

139 lst_y_t_3s←append(lst_y_t_3s,0)

140 logS3s_CompM_dup1←logS3s_CompM[!duplicated(logS3s_CompM)]

141 logS3s_CompM_dup1←append(logS3s_CompM_dup1 ,c(-5,5))

142 logS3s_CompM_dup←sort(logS3s_CompM_dup1)

143

144 #Same source , Score 4

145 lst_y_t_4s←vector ()

146 lst_y_t_4s←append(lst_y_t_4s,1)

147 counter =1

148 for (i in Freq_4s){

149 counter=counter -i/length(S1s)

150 lst_y_t_4s←append(lst_y_t_4s,counter)}

151 lst_y_t_4s←append(lst_y_t_4s,0)

152 logS4s_CompM_dup1←logS4s_CompM[!duplicated(logS4s_CompM)]

153 logS4s_CompM_dup1←append(logS4s_CompM_dup1 ,c(-5,5))

154 logS4s_CompM_dup←sort(logS4s_CompM_dup1)

155

156 #Different source , Score 1

157 lst_y_t_1d←vector ()

158 lst_y_t_1d←append(lst_y_t_1d,1)

159 counter =1

160 for (i in Freq_1d){

161 counter=counter -i/length(S1d)

162 lst_y_t_1d←append(lst_y_t_1d,counter)}

163 lst_y_t_1d←append(lst_y_t_1d,0)

164 logS1d_CompM_dup1←logS1d_CompM[!duplicated(logS1d_CompM)]

165 logS1d_CompM_dup1←append(logS1d_CompM_dup1 ,c(-5,5))

166 logS1d_CompM_dup←sort(logS1d_CompM_dup1)

167

168 #Different source , Score 2

169 lst_y_t_2d←vector ()
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170 lst_y_t_2d←append(lst_y_t_2d,1)

171 counter =1

172 for (i in Freq_2d){

173 counter=counter -i/length(S1d)

174 lst_y_t_2d←append(lst_y_t_2d,counter)}

175 lst_y_t_2d←append(lst_y_t_2d,0)

176 logS2d_CompM_dup1←logS2d_CompM[!duplicated(logS2d_CompM)]

177 logS2d_CompM_dup1←append(logS2d_CompM_dup1 ,c(-5,5))

178 logS2d_CompM_dup←sort(logS2d_CompM_dup1)

179

180 #Different source , Score 3

181 lst_y_t_3d←vector ()

182 lst_y_t_3d←append(lst_y_t_3d,1)

183 counter =1

184 for (i in Freq_3d){

185 counter=counter -i/length(S1d)

186 lst_y_t_3d←append(lst_y_t_3d,counter)}

187 lst_y_t_3d←append(lst_y_t_3d,0)

188 logS3d_CompM_dup1←logS3d_CompM[!duplicated(logS3d_CompM)]

189 logS3d_CompM_dup1←append(logS3d_CompM_dup1 ,c(-5,5))

190 logS3d_CompM_dup←sort(logS3d_CompM_dup1)

191

192 #Different source , Score 4

193 lst_y_t_4d←vector ()

194 lst_y_t_4d←append(lst_y_t_4d,1)

195 counter =1

196 for (i in Freq_4d){

197 counter=counter -i/length(S1d)

198 lst_y_t_4d←append(lst_y_t_4d,counter)}

199 lst_y_t_4d←append(lst_y_t_4d,0)

200 logS4d_CompM_dup1←logS4d_CompM[!duplicated(logS4d_CompM)]

201 logS4d_CompM_dup1←append(logS4d_CompM_dup1 ,c(-5,5))

202 logS4d_CompM_dup←sort(logS4d_CompM_dup1)

203

204 #Plotting the Tippett plot

205 plot(logS1s_CompM_dup ,lst_y_t_1s,type="s",ylim=c(0,1),xlim

=c(-5,5),

206 xlab=expression("SLR greater than (in Log"[10]*")"),

ylab="Proportion of cases",

207 main="Tippett plot showing the proportion of cases in

which the SLR

208 (given H1 or H2) exceeds a certain value for the four

different score systems",

209 col="springgreen4",lwd=2)

210 lines(logS2s_CompM_dup ,lst_y_t_2s,type="s",col="

yellowgreen",lwd =2)

211 lines(logS3s_CompM_dup ,lst_y_t_3s,type="s",col="royalblue3

",lwd=2)

212 lines(logS4s_CompM_dup ,lst_y_t_4s,type="s",col="steelblue1

",lwd=2)
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213 lines(logS1d_CompM_dup ,lst_y_t_1d,type="s",col="

springgreen4",lty=2,lwd =2)

214 lines(logS2d_CompM_dup ,lst_y_t_2d,type="s",col="

yellowgreen",lty=2,lwd =2)

215 lines(logS3d_CompM_dup ,lst_y_t_3d,type="s",col="royalblue3

",lty=2,lwd=2)

216 lines(logS4d_CompM_dup ,lst_y_t_4d,type="s",col="steelblue1

",lty=2,lwd=2)

217 abline(v=0,lty=2,lwd =2)

218 grid()

219 legend("bottomleft", legend=c("Score 1 (Overlap)", "Score

2 (Goodall3)", "Score 3 (Burnaby)","Score 4 (Anderberg)

"), col=c("springgreen4", "yellowgreen","royalblue3","

steelblue1"), cex=0.8,lwd=c(2,2))

G.4 R code used in subsection 6.3.4

The following R code was used to obtain the ECE plots in subsection 6.3.4.

1 library("readxl")

2 library(fitdistrplus)

3

4 All_Char ← read_excel("Char_Vect_All.xlsx")

5 df_All_Char ←data.frame(All_Char) #Make dataframe of Excel

file

6

7 Log_Odds=seq( -4 ,4,0.001)

8

9 #ECE of the noninformative system (with SLR=1 always)

10 ECE_SLR_1←vector ()

11 for (j in Log_Odds){

12 ECE_SLR_1←append(ECE_SLR_1,-(10∧j)/(1+10∧j)*log2 ((10∧j)/
(1+10∧j))-1/(1+10∧j)*log2(1/(1+10∧j)))}

13

14 Dist_1s←dweibull(seq (0 ,1 ,0.001), fit.weibullS1s$estimate
[1], fit.weibullS1s$estimate [2])

15 Dist_1d←dnorm(seq (0 ,1 ,0.001), fit.normS1d$estimate [1], fit

.normS1d$estimate [2])
16 Dist_2s←dnorm(seq (0 ,1 ,0.001), fit.normS2s$estimate [1], fit

.normS2s$estimate [2])
17 Dist_2d←dnorm(seq (0 ,1 ,0.001), fit.normS2d$estimate [1], fit

.normS2d$estimate [2])
18 Dist_3s←dgamma(seq (0 ,1 ,0.001), fit.gammaS3s$estimate [1],

fit.gammaS3s$estimate [2])
19 Dist_3d←dnorm(seq (0 ,1 ,0.001), fit.normS3d$estimate [1], fit

.normS3d$estimate [2])
20 Dist_4s←dbeta(seq (0 ,1 ,0.001), fit.betaS4s$estimate [1], fit

.betaS4s$estimate [2])
21 Dist_4d←dbeta(seq (0 ,1 ,0.001), fit.betaS4d$estimate [1], fit

.betaS4d$estimate [2])
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22

23 #Calculate the ECEs for the four SLR systems

24 ECE_1←vector ()

25 ECE_2←vector ()

26 ECE_3←vector ()

27 ECE_4←vector ()

28 for (j in Log_Odds){

29 sum_S1_1=0

30 sum_S1_2=0

31 sum_S1_3=0

32 sum_S1_4=0

33 for (i in 1: length(S1s)){

34 P_s1_h1_1=Dist_1s[S1s[i]/0.001+1]

35 P_s1_h2_1=Dist_1d[S1s[i]/0.001+1]

36 sum_S1_1=sum_S1_1+log2((P_s1_h1_1*10∧j)/(P_s1_h2_1+P_
s1_h1_1*10∧j))

37 P_s1_h1_2=Dist_2s[S2s[i]/0.001+1]

38 P_s1_h2_2=Dist_2d[S2s[i]/0.001+1]

39 sum_S1_2=sum_S1_2+log2((P_s1_h1_2*10∧j)/(P_s1_h2_2+P_
s1_h1_2*10∧j))

40 P_s1_h1_3=Dist_3s[S3s[i]/0.001+1]

41 P_s1_h2_3=Dist_3d[S3s[i]/0.001+1]

42 sum_S1_3=sum_S1_3+log2((P_s1_h1_3*10∧j)/(P_s1_h2_3+P_
s1_h1_3*10∧j))

43 P_s1_h1_4=Dist_4s[S4s[i]/0.001+1]

44 P_s1_h2_4=Dist_4d[S4s[i]/0.001+1]

45 sum_S1_4=sum_S1_4+log2((P_s1_h1_4*10∧j)/(P_s1_h2_4+P_
s1_h1_4*10∧j))}

46 sum_S2_1=0

47 sum_S2_2=0

48 sum_S2_3=0

49 sum_S2_4=0

50 for (i in 1: length(S1d)){

51 P_s2_h1_1=Dist_1s[S1d[i]/0.001+1]

52 P_s2_h2_1=Dist_1d[S1d[i]/0.001+1]

53 sum_S2_1=sum_S2_1+log2(P_s2_h2_1/(P_s2_h2_1+P_s2_h1_1*

10∧j))
54 P_s2_h1_2=Dist_2s[S2d[i]/0.001+1]

55 P_s2_h2_2=Dist_2d[S2d[i]/0.001+1]

56 sum_S2_2=sum_S2_2+log2(P_s2_h2_2/(P_s2_h2_2+P_s2_h1_2*

10∧j))
57 P_s2_h1_3=Dist_3s[S3d[i]/0.001+1]

58 P_s2_h2_3=Dist_3d[S3d[i]/0.001+1]

59 sum_S2_3=sum_S2_3+log2(P_s2_h2_3/(P_s2_h2_3+P_s2_h1_3*

10∧j))
60 P_s2_h1_4=Dist_4s[S4d[i]/0.001+1]

61 P_s2_h2_4=Dist_4d[S4d[i]/0.001+1]

62 sum_S2_4=sum_S2_4+log2(P_s2_h2_4/(P_s2_h2_4+P_s2_h1_4*

10∧j))}
63 ECE_1←append(ECE_1,-(10∧j)/(length(S1s)*(1+10∧j))*sum_S1

_1-1/(length(S1d)*(1+10∧j))*sum_S2_1)
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64 ECE_2←append(ECE_2,-(10∧j)/(length(S1s)*(1+10∧j))*sum_S1
_2-1/(length(S1d)*(1+10∧j))*sum_S2_2)

65 ECE_3←append(ECE_3,-(10∧j)/(length(S1s)*(1+10∧j))*sum_S1
_3-1/(length(S1d)*(1+10∧j))*sum_S2_3)

66 ECE_4←append(ECE_4,-(10∧j)/(length(S1s)*(1+10∧j))*sum_S1
_4-1/(length(S1d)*(1+10∧j))*sum_S2_4)}

67

68 #Plot the ECE Plots for the four SLR systems

69 plot(Log_Odds ,ECE_1,col="springgreen4",type="l",xlab=

expression("Log"[10]*"(Prior odds)"), ylab="Empirical

Cross -Entropy", ylim=c(0,1),main="ECE plot of the four

SLR systems",lwd=2)

70 lines(Log_Odds ,ECE_2,col="yellowgreen",lwd=2)

71 lines(Log_Odds ,ECE_3,col="royalblue3",lwd=2)

72 lines(Log_Odds ,ECE_4,col="steelblue1",lwd=2)

73 lines(Log_Odds ,ECE_SLR_1,col="black",lwd=2,lty=2)

74 grid()

75 legend("bottomleft",

76 legend=c("Score 1 (Overlap)", "Score 2 (Goodall3)",

"Score 3 (Burnaby)","Score 4 (Anderberg)","

Noninformative SLR system"),

77 col=c("springgreen4", "yellowgreen", "royalblue3",

"steelblue1", "black"),cex=0.8,lwd=c(2,2,2,2,2),

lty=c(1,1,1,1,2))
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Appendix H

Derivations of the formulas in
subsection 6.3.4

H.1 Derivation of the formula for the ECE

Prior odds = P (H1)
P (H2)

= P (H1)
1−P (H1)

(because P (H1)+P (H2) = 1 (since H1 and H2

are two mutually exclusive hypothesis by definition), thus P (H2) = 1−P (H1))

So; P (H1) = Prior Odds · (1− P (H1)) = Prior Odds− P (H1) · Prior Odds

Thus; Prior Odds = P (H1) + P (H1) · Prior Odds = P (H1)(1 + Prior Odds)

Therefore; P (H1) = Prior Odds
1+Prior Odds = 10Ω

1+10Ω
with Ω = log10

(
P (H1)
P (H2)

)
(so the

logarithm with base 10 of the prior odds)

P (H2) = 1−P (H1) = 1− Prior Odds
1+Prior Odds =

1+Prior Odds−Prior Odds
1+Prior Odds = 1

1+Prior Odds =
1

1+10Ω

So;

P (H1) =
10Ω

1 + 10Ω
(H.1)

P (H2) =
1

1 + 10Ω
(H.2)

Now; P (H1|s) = P (s|H1)P (H1)
P (s) (by Bayes’ Theorem that states that P (A | B) =

P (B|A)·P (A)
P (B) [10]) = P (s|H1)P (H1)

P (s|H1)P (H1)+P (s|H2)P (H2)
(by the law of total probability

[11])

So; P (H1|s) =
P (s|H1)· 10Ω

1+10Ω

P (s|H1)· 10Ω

1+10Ω
+P (s|H2)· 1

1+10Ω

(by equations (H.1) and (H.2))

So;

P (H1|s) =
P (s|H1) · 10Ω

P (s|H1) · 10Ω + P (s|H2)
(H.3)
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And in the same way;

P (H2|s) =
P (s|H2)

P (s|H1) · 10Ω + P (s|H2)
(H.4)

Therefore; ECE = −P (H1)
n1

∑
s∈S1

log2P (H1|s) − P (H2)
n2

∑
s∈S2

log2P (H2|s) =

− 10Ω

n1(1+10Ω)

∑
s∈S1

log2

(
P (s|H1)·10Ω

P (s|H1)·10Ω+P (s|H2)

)
− 1

n2(1+10Ω)

∑
s∈S2

log2

(
P (s|H2)

P (s|H1)·10Ω+P (s|H2)

)
(by equations (H.1), (H.2), (H.3) and (H.4))

So;

ECE = − 10Ω

n1(1 + 10Ω)

∑
s∈S1

log2

(
P (s|H1) · 10Ω

P (s|H1) · 10Ω + P (s|H2)

)
− 1

n2(1 + 10Ω)

∑
s∈S2

log2

(
P (s|H2)

P (s|H1) · 10Ω + P (s|H2)

)

H.2 Derivation of the formula for the ECE of a
noninformative SLR system

In the case of a noninformative SLR system, the SLR is always equal to 1.
So, SLR = P (s|H1)

P (s|H2)
= 1 for all s (this formula was given in chapter 2). Thus,

P (s | H1) = P (s | H2).

So; ECE = − 10Ω

n1(1+10Ω)

∑
s∈S1

log2

(
P (s|H1)·10Ω

P (s|H1)·10Ω+P (s|H2)

)
− 1

n2(1+10Ω)

∑
s∈S2

log2

(
P (s|H2)

P (s|H1)·10Ω+P (s|H2)

)
(See previous section)

= − 10Ω

n1(1+10Ω)

∑
s∈S1

log2

(
P (s|H1)·10Ω

P (s|H1)·10Ω+P (s|H1)

)
− 1

n2(1+10Ω)

∑
s∈S2

log2

(
P (s|H2)

P (s|H2)·10Ω+P (s|H2)

)
= − 10Ω

n1(1+10Ω)

∑
s∈S1

log2

(
P (s|H1)·10Ω

P (s|H1)·(10Ω+1)

)
− 1

n2(1+10Ω)

∑
s∈S2

log2

(
P (s|H2)

P (s|H2)·(10Ω+1)

)
= − 10Ω

n1(1+10Ω)

∑
s∈S1

log2

(
10Ω

10Ω+1

)
− 1

n2(1+10Ω)

∑
s∈S2

log2

(
1

10Ω+1

)
= − 10Ω

n1(1+10Ω)
·n1·log2

(
10Ω

10Ω+1

)
− 1

n2(1+10Ω)
·n2·log2

(
1

10Ω+1

)
(because log2

(
10Ω

10Ω+1

)
and log2

(
1

10Ω+1

)
do not depend on s and because the sizes of S1 and S2 are

n1 and n2 respectively (this was defined in subsection 6.3.4))

Therefore;

ECE = − 10Ω

1 + 10Ω
· log2

(
10Ω

10Ω + 1

)
− 1

1 + 10Ω
· log2

(
1

10Ω + 1

)
(Note that this is equal to ECE = −P (H1)·log2 (P (H1))−P (H2)·log2 (P (H2)))
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