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Abstract
Absence seizures have a real-life impact on epileptic subjects, as day-to-day tasks can by

suddenly interrupted making for dangerous situations. Though a lot of work has been done
on seizure detection, to limit the impact on epileptic patients, the true necessity lies in
timely prediction of seizures before they manifest. Various attempts have been made using
conventional algorithms to accurately predict seizures however, so far, results are not that
encouraging. In this work, we applied various machine-learning algorithms, in an attempt
to identify complex, multi-dimensional epileptic precursors in brain recordings. Three types
of neural networks are used in this feasibility study, namely Multi-Layer Perceptron (MLP)
networks, Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU)
networks. The used input data was annotated Electrocorticography (ECoG) data, recorded
in living mutant rodents, containing epileptic events at an interval of about one minute.
The data was pre-processed for better learning performance by data normalisation and by
generating distinctive training features. The neural networks were configured as three-class
classifiers, distinguishing among inter-ictal, pre-ictal and ictal periods. A grid-search approach
was applied to determine the best set of parameters for the neural networks. Despite our
best efforts, the relation between the input data and output data could not be learned in
a reliable way. The maximum reached Average Prediction Rate (APR) was 0.57 with a
prediction time of 3.1s when using the normalised data as input and 0.65 with a prediction
time of 6.1s when using the distinctive features as input. These results essentially signify
good detection but virtually no prediction of upcoming seizures. The evaluation of the
experimental findings has revealed that the employed ECoG recordings were ill-selected for
training our various neural-network models. Also, a non-conclusive exploratory experiment is
performed by applying a Weibull Time-To-Event Recurrent Neural Network (WTTE-RNN)
on a sub-set of the normalised input data. The experiment has yielded some positive results,
a short-notice prediction of the upcoming seizure in some cases, encouraging for further
exploration of this approach. Despite the limited success of this work, however, through its
extended forensics analysis, it has paved the crucial, initial steps in the direction of seizure
prediction.
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Abstract

Absence seizures have a real-life impact on epileptic subjects, as day-to-day tasks can by
suddenly interrupted making for dangerous situations. Though a lot of work has been done
on seizure detection, to limit the impact on epileptic patients, the true necessity lies in timely
prediction of seizures before they manifest. Various attempts have been made using conventional
algorithms to accurately predict seizures however, so far, results are not that encouraging. In this
work, we applied various machine-learning algorithms, in an attempt to identify complex, multi-
dimensional epileptic precursors in brain recordings. Three types of neural networks are used
in this feasibility study, namely MLP networks, LSTM networks and GRU networks. The used
input data was annotated ECoG data, recorded in living mutant rodents, containing epileptic
events at an interval of about one minute. The data was pre-processed for better learning
performance by data normalisation and by generating distinctive training features. The neural
networks were configured as three-class classifiers, distinguishing among inter-ictal, pre-ictal and
ictal periods. A grid-search approach was applied to determine the best set of parameters for
the neural networks. Despite our best efforts, the relation between the input data and output
data could not be learned in a reliable way. The maximum reached APR was 0.57 with a
prediction time of 3.1s when using the normalised data as input and 0.65 with a prediction
time of 6.1s when using the distinctive features as input. These results essentially signify good
detection but virtually no prediction of upcoming seizures. The evaluation of the experimental
findings has revealed that the employed ECoG recordings were ill-selected for training our various
neural-network models. Also, a non-conclusive exploratory experiment is performed by applying
a WTTE-RNN on a sub-set of the normalised input data. The experiment has yielded some
positive results, a short-notice prediction of the upcoming seizure in some cases, encouraging for
further exploration of this approach. Despite the limited success of this work, however, through
its extended forensics analysis, it has paved the crucial, initial steps in the direction of seizure
prediction.
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Introduction 1
The brain is an important organ as it controls most of the body’s behaviour. Disruptions
in the brain can therefore have a high effect on the body. Absence seizures are one
example of such disruptions, and they highly influence the subject as it blocks the normal
brain operation totally. An epileptic seizure is a transient occurrence of signs and/or
symptoms due to abnormal excessive or synchronous neuronal activity in the brain [1].
We can differentiate among different types of seizures, one of which are absence seizures.
An absence seizure lasts for two or three seconds up to about 20 seconds and ends
suddenly with resumption of the pre-absence activity, as if it had not been interrupted.
It sometimes only manifests with impairment of consciousness, but is often accompanied
by mild clonic jerks, relaxation or contraction of muscles, or common automatisms like
swallowing [2]. Absence seizures are more common in children than in adults as the
seizures can be the result of a syndrome called Childhood Absence Epilepsy. There are
multiple comorbidities of Childhood Absence Epilepsy known, showing the impact on a
child’s life, including attentional problems, anxiety, depression, social isolation, and low
self-esteem [3].

Seizure detection and prediction are methods which try to classify a certain amount of
measurements based on previously set rules or learned models. The most common type
of measurements used are brain-signal recordings, either on or under the skull, result-
ing in Electroencephalography (EEG) and Electrocorticography (ECoG) measurements,
respectively. The brain measurements are then classified using machine-learning algo-
rithms, like Support Vector Machines (SVMs) or neural-networks. Despite the amount
of research done on predicting seizures so far, the results are not that encouraging. Part
of the reason is that the prediction time is not high enough to be able to react on the
prediction, or the accuracy is too low for reliable usage. In this work we look at ap-
plying other types of machine-learning algorithms to brain-signal recordings, in order to
verify the feasibility of absence-seizure prediction with higher accuracy and with longer
prediction times.

1.1 Motivation and problem statement
While the first research on seizure prediction dates from the 20th century, most research
has been done more recently. Several machine-learning algorithms have been applied
to EEG and ECoG measurements in previous research, but they only focused on non-
recurrent machine-learning algorithms. In this work, on the contrary, we are going to
use Recurrent Neural Networks (RNNs) to predict absence seizures.

A machine-learning algorithm can be either recurrent or non-recurrent. A recurrent
algorithm uses the output of the previous iteration as input in the next iteration. By
doing so, it is possible to base the output of the current iteration not only on the input

1



2 CHAPTER 1. INTRODUCTION

of the current time-step, but also on previous ones. In other words, these are systems
with memory. This leads to the possibility to learn from markers in the data that
build up gradually over time. How the recurrency is managed internally differs for each
recurrent algorithm. Since seizures are recurring events in a patient and supposedly have
a trigger which builds up gradually, it is our hope that by using RNNs, we will be able
to increasingly improve our predictions of future events based on learned past events.

At the Erasmus MC Neuroscience department, previous research has been done on
ECoG measurements of mice [4]. The data used in [4] is also used in this work. It
contains high-quality annotations of when seizures start and end. This makes the data
suitable for use with supervised machine-learning, a method we are using in this thesis.
The availability of such a data-set is a unique possibility and enabling asset needed for
research as such done in this work.

The work is further motivated by the large social impact to be had from reliable
seizure prediction. If the prediction on rodent brains can also be applied to humans, a
patient can know that a seizure is coming. In effect, the patient has a chance to act
upon the prediction, or an automated system can be used to suppress the seizure e.g.
by using deep brain stimulation.

Generally speaking, there is a hope that the more diverse yet relevant bio-data we
can combine, the better we will be able to predict seizures in the future. This could be
facilitated by a Wireless Body Area Network (WBAN): a system where multiple sensors
and actuators on the human body can communicate wirelessly with each other. Sensors
on different parts of the body, providing input to a seizure prediction system can be
part of such a WBAN, as can the system that suppresses or prevents the seizure from
happening. To this end, we have conducted a survey on available WBAN systems and
communication protocols, which is appended to this thesis in Appendix A.

1.2 Thesis scope and contributions
In this thesis, a number of different neural-network algorithms will be applied to ECoG
measurements of rodents to verify the feasibility of predicting absence seizures. Be-
cause we do not know which features and parameters will lead to the best result, we
will apply a grid-search approach on two different data sets. The first data-set con-
sists of normalised input data and the second data-set are distinctive generated features
based on the normalised input data-set. The results will be verified based on Average
Prediction Rate (APR), True Positive Rate (TPR), True Negative Rate (TNR), predic-
tion time and neural-network loss. An exploratory experiment will also be performed
to evaluate the feasibility of applying a Weibull Time-To-Event Recurrent Neural Net-
work (WTTE-RNN) to a sub-set of the input data. This in order to advise follow-up
research whether this is a promising path to follow.



1.3. THESIS ORGANISATION 3

1.2.1 Thesis goal
The main goal of the thesis can be formulated as follows:

Determine the best-performing set of input data, neural-network type and parameters for
predicting absence seizures.

The first step towards achieving this goal is the selection of the appropriate features which
can be used to form the input data-sets. For this, we will describe the background of
some features and determine which data-sets to use as input for the neural networks. The
second step is to determine the types of neural networks and the parameters to use within
the grid-search approach. The third step is to evaluate the results of the experiments
and select the best-performing set of data, neural-network type and parameters.

1.2.2 Thesis contributions
The following contributions were made in this thesis:

• RNNs were applied on ECoG recordings, using a grid-search approach to compare
multiple combinations of neural-network parameters, in order to predict absence
seizures.

• Research has been done on which features can be generated from ECoG data, to
be able to show distinctive characteristics of ECoG measurements.

• A guideline is provided for future research on machine-learning based seizure-
prevention approaches, by setting up an extensive experimental setup and by pro-
viding a thorough analysis of working approaches and limitations.

• A regression method was used to predict a Time-To-Event (TTE) value depicting
the time to the next seizure, using Weibull distribution parameters, in combination
with a RNN.

1.3 Thesis organisation
This thesis consists of the following parts. Firstly, background information which is
needed to understand the research is given in chapter 2. In chapter 3, related research
is discussed. The design and implementation of the machine-learning algorithms is set
out in chapter 4. The evaluation of the experiments is described in chapter 5 and the
results are discussed in chapter 6.
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Background 2
In this chapter, background information is given on several topics, needed for better
understanding of the rest of this thesis. In section 2.1 we will describe what seizures
are and what their main properties are specifically for the case of absence seizures.
In section 5.1, more information is given on the used data recordings. Some relevant
signal processing algorithms are set-out in section 2.2. machine-learning is explained in
a general way in section 2.3 while specific types of machine-learning are explained in the
sections that follow (section 2.4 and section 2.5).

2.1 Absence seizures
In this section we will look at what brain signals can be defined, what absence seizures
are and how they manifest in the brain.

The brain consists of neurons that communicate with each other using electrical
pulses and chemical signals. Each electrical pulse induces a little electromagnetic field,
which is measurable using electrodes on the brain or on the scalp. Measuring brain signals
on the scalp is what we call Electroencephalography (EEG) and measuring underneath
the scalp, on the brain itself, is called Electrocorticography (ECoG). The following
frequency bands are defined as part of the recorded electrical brain signals and are
commonly used in the literature:

• Delta (δ) band: < 4 Hz

• Theta (θ) band: 4.5-8 Hz

• Alpha (α) band: 8.5-12 Hz

• Beta (β) band: 12.5-36 Hz

• Gamma (γ) band: 36.5-100 Hz

The exact cutoff frequencies can differ from publication to publication and also de-
pend on the used algorithm to filter or extract bands.

The general definition of an epileptic seizure is given by the International League
Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) as: a transient
occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal
activity in the brain [1]. Absence seizures, also called absences, are a specific type of
seizures, which we can characterise clinically and/or based on brain measurements. In
this thesis we focus on Typical Absence Seizures (TASs) because they are the most
common type of absence seizures and the expertise of the department of neuroscience at
the Erasmus Medical Center (EMC) for a number of years.

5
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Figure 2.1: A 2-channel ECoG signal containing a seizure between the vertical dashed
lines, visible by typical SWDs in the signal.

Clinically, we can identify a TAS by a brief and sudden loss of consciousness, which
generally also results in the interruption of the ongoing activity of the patient. An
absence lasts usually for a few to about 20 seconds and ends abruptly with the resumption
of the previous activity, as if no seizure occurred. Although some absences only result
in the loss of consciousness, often they are accompanied by (in the case of humans) mild
jerks of eyelids or mouth, drooping of the head, relaxation or contraction of limb muscles,
automatisms as lip licking or swallowing, sweating and dilation of pupils [2].

EEG or ECoG recordings show the characteristics of the ictal period of an absence.
Although EEG is measured on the scalp, and ECoG directly on the brain itself, they show
similar characteristics. The advantages of ECoG measurements over EEG measurements
are however, that the sensitivity of the recordings is better which results in a better signal-
to-noise ratio, the placement of the electrodes is more flexible and and the recordings are
more local. A typical absence seizure manifests generalised Spike-and-Wave Discharges
(SWDs) with a frequency of typically 3-4.5 Hz, lasting for more than 3 seconds [2], see
Figure 2.1.

Severe absence seizures occur more often in children than adults, and complex ab-
sence seizures are more common than simple absences in children, while simple absences
are more common in adults. A simple absence means that the transient consciousness
impairment is the only symptom, while complex absence seizures are combined with
other manifestations, like muscular contractions or common automatisms [5]. Absence
seizures are the hallmark seizure type in two epilepsy syndromes: Childhood Absence
Epilepsy (CAE) and Juvenile Absence Epilepsy (JAE). Research has shown that absence
seizures also have impact on one’s life socially. From children with CAE we know that
there are multiple comorbidities, including attentional problems, anxiety, depression,
social isolation, and low self-esteem [3].

Another type of seizures to which often is referred, is the tonic-clonic seizure, also
known as grand mal seizure. Clinically it is characterised by two phases. First the
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patient loses consciousness while all the muscles stiffen, the tonic phase. Then, during
the clonic phase, rapid jerking of the limbs occur. Looking at brain signals, the main
difference is visible in how the SWDs manifest.

2.2 Signal processing

2.2.1 Discrete-Wavelet Transform (DWT)

Contrary to the Fourier Transform which loses all time-domain information, the Discrete-
Wavelet Transform (DWT) transforms a signal in both frequency- and time-domain.

The Continuous Wavelet transform of a signal is the integral of the signal multiplied
by scaled and shifted versions of a wavelet function. The DWT is a discrete version of
this transform. It transforms a signal into several windows of varying length each holding
frequency information. The size of the window determines the coarseness of the time
information: a short window has a higher time-domain resolution and is used for high
frequency information while a long window is used to get a finer low frequency resolution
with a lower time-domain resolution.

To determine the DWT coefficients the signal is filtered using a high-pass and a low-
pass filter. The low-pass filter filters out the lower half of the frequencies which result
in the approximation coefficients. The high-pass filter filters out the upper half of the
frequencies containing the level-1 detail coefficients. As half of the frequencies have been
removed, we can remove half of the samples according to Nyquist’s rule, depicted by the
↓ 2 step.

This process can be repeated on the remaining signal of the low-pass filter, filtering
out again the upper half of the remaining frequencies, resulting in the level-2 detail coef-
ficients, and the lower half of the remaining frequencies, resulting in the approximation
coefficients. Each time this process is applied, the detail and approximation coefficients
double in frequency resolution and half in time resolution, see Figure 2.2. Also the cut-off
frequency of the filter halves.

x[n]

g[n]

h[n]

↓ 2

↓ 2 Level-1 detail coef.

g[n]

h[n]

↓ 2

↓ 2 Level-2 detail coef.

Level-2 approx. coef.

Figure 2.2: Block diagram of 2-level DWT signal decomposition

Because the time and frequency information both remain in the data, it is possible
to do a reverse DWT which reconstructs the signal again. This allows for removing the
coefficients of certain levels which removes the corresponding frequency range from the
signal. The resulting signal is a filtered version of the input data in which only the
selected frequencies remain.
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2.2.2 Approximate Entropy (ApEn)

Approximate Entropy (ApEn) is a signal complexity measure developed with relatively
short (starting at 100 samples) and noisy time-series in mind. These short time-series are
often encountered in biological data-sets, as e.g.„ EEG [6], ECG! (ECG!) or endocrine
hormone secretion measurements [7][8].

The ApEn algorithm has two input parameters, m and r which must be fixed to
compute the ApEn. m represents the length of the window of data to use in each run
and r specifies a filtering level. Calculating ApEn consists of the following simplified
steps:

1. The input data x is divided into vector sequences Xv(i) of length m, so that
Xv(i) = {x(i),x(i+1), · · · ,x(i+m−1)}.

2. The distance between two vector sequences Xv(i) and Xv(j) is defined using the
function d(Xv(i),Xv(j)).

3. For each Xv(i) the number of vectors N is calculated such that d(Xv(i),Xv(j)) ≤ r,
this results in the estimated parameter c.

4. Then Φ is defined as mean value of the sum of ln(ci), where ci is calculated for
m+1 vectors.

5. The approximate entropy is finally calculated using the difference of Φm and Φm+1.

This results in an entropy which measures the logarithmic likelihood that patterns
within r for m contiguous runs, remain close. For ECoG data this means that a low ApEn
indicates a signal with repetitive patterns and a high ApEn indicates that the analysed
signal contains non-similar patterns. See [7] and [6] for a more extensive explanation of
the algorithm.

2.3 Machine-learning
The ability to learn is only exclusively available to living organisms, and especially human
beings are very good at learning. With the invention of machine-learning we can also
make a machine learn a relation between its input and output data. This can be done
using supervised or unsupervised learning, where for supervised learning, the output is
known for a set of training data. For unsupervised learning, the output is not known,
but classified by the learning algorithm. Because our training data is annotated, we
know the output and therefore use supervised learning, which is easier to handle than
unsupervised learning. Unsupervised learning is in many ways still an unsolved problem.

We can differentiate between two types of machine-learning algorithms: regression
and classification. Regression is targeted at predicting continuous values e.g., future
parts of a signal. Classification algorithms aim at classifying a given input set among
two or more distinct classes and have a discrete output where each output corresponds
to a certain class.
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There are multiple learning algorithms, of which some are simple and straightforward
needing only a few data-points, and others are complex and require a lot of data to train
on. One of the simplest regression algorithms is linear regression, where we learn the a
and b parameter for the equation y = ax+ b using a set of training data-points.

The input and output data have to be preprocessed by extracting one or multiple
features which describe the input data in such a way that it can be processed by the
learning algorithm and minimises the amount of data the algorithm has to process.
Specific machine-learning algorithms are discussed in the following sections.

2.3.1 Features and Feature extraction
A feature can be described as a characteristic or attribute of an object [9]. For example
when looking at an image, features could be the amount of pixels, a histogram of the
intensity, all red pixels or a subsample of all pixels. When looking at time series we
can think of other features, e.g., the mean or standard deviation of a signal or the DWT
coefficients of a certain level. Which features are the best suited ones to use is dependent
on the learning algorithm, input and output data. In other words, what data is available
and what the learning algorithm should learn. Important is that a feature describes a
signal in a consistent and descriptive way so that a similar pattern can be described by
the same or similar features, but a different signal will yield distinctive features. The
process of generating features from the raw data is called feature extraction.

2.3.2 Training and testing
After the input data is converted into features, they are used to train the learning
algorithm. Depending on the type of learning algorithm, a classification or regression
model has to be trained. A regression model is trained to predict a numeric value as
output while a classification model is trained to determine a class-value based on the
input data. Classification can either be binary, resulting in two classes, or multi-class
which can be seen as multiple binary classifications stacked on each other.

During training, the algorithm is exposed to samples containing a set of features and
a corresponding output. The algorithm then updates its internal state in such a way
that the error between the provided output and the self predicted output, based on the
input, is minimised.

After all training samples have been processed by the learning algorithm one or
multiple times, another set of unique samples is used to test the model. This time the
internal state of the learning algorithm is not changed, but only the error between the
predicted and real output is recorded. The average of all errors then indicates how well
the model is trained.

2.4 Support Vector Machine (SVM)
An SVM is a machine-learning algorithm and binary classifier. The input data is first
mapped onto a high-dimension feature space so it can handle more complex input-sample
relations. Based on the samples in the feature space, an SVM tries to find a hyperplane
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which divides the data points into two categories or classes. This hyperplane can then
be used to classify new data into one of the two classes. The dividing hyperplane can be
linear because of the high-dimension feature space [10].

When the amounts of each different output class are not evenly distributed, a dataset
is called unbalanced. This can influence the learning process and result in a higher
probability that a more frequent class is predicted. An optimised version for unbalanced
datasets, the cost-sensitive SVM [11], keeps in consideration the class-balance of the
output classes and assigns different weights to the input values when training the SVM.
In this way, classification performs better because the less common class will also be
classified correctly instead of being drowned under the more common class. Another
variation of the binary SVM is the multi-class SVM [12] which can classify more than
two classes. Essentially, this approach is a combination of multiple binary SVMs where
the multi-class classification problem is divided into multiple two-class problems.

2.5 Artificial Neural Networks (ANNs)
A neural network is a more advanced machine-learning algorithm than the previously
mentioned algorithms, and is loosely based on how a brain works. The input data is
fed into a network of simple neuron models (simply called neurons henceforth), which
all have a certain input weight and activation mechanism. The output of the neuron is
in turn the input to the next layer of neurons. The way neurons are interconnected in
a network, the number of neurons in each layer and the activation function of a neuron
all highly influence the properties of the network.

2.5.1 Activation functions
In each neuron or gated unit of an ANN an activation function is used. It defines the
output based on the summed input. Without an activation function, the output would
explode very fast, especially because multiple neurons are chained together in ANNs.
The output function normalises the output to a usable range for the next neuron, and
offers non-linearity which allows a ANN to learn non-trivial and non-linear problems.
The following activation functions are commonly used by ANNs.

The tanh activation function is simply the tanh-function applied to the summed
input, see Equation 2.1. The function compresses the output into the range [−1,1], and
has two asymptotes at -1 and 1, see Figure 2.3a.

f(x) = tanh(x) (2.1)

The sigmoid (or logistic) activation function is defined as shown in Equation 2.2 and
has an output between 0 and 1 with also two asymptotes.

f(x) = 1
1+ e−x

(2.2)

The softmax function is a normalised version of the sigmoid function for multiple
output values which are normalised using the formula shown in Equation 2.3. The
output of a neuron is not one value but a vector of values, called x. The output is
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then normalised by applying the standard exponential function to every value in x, after
which it is divided by the sum of all the exponentials of the values in x. By doing so,
the cumulative output of a softmax output layer is always 1, which makes it suitable for
multi-class classification. Each value then depicts the probability-score of each class.

f(x)i = exi∑
j exj

(2.3)

The Rectified Linear units (ReLu) function is a modified version of a linear function.
It has an output of 0 for all negative input values, and the identity function for all positive
input values, see Equation 2.4 (with α = 0). This activation function however, can suffer
from the dying ReLu problem. A ReLu neuron is called dead when the output of the
neuron is always the same, independent of the input. Because of the learned weights on
the inputs of the neuron, the summed input will never come above 0, so the output will
also be 0. A neuron cannot come out of this state because the gradient on which the
weights are updated is also 0.

There are variations of this function which solve the dying ReLu problem. The idea
is the same as with the ReLu function. For values above zero, the activation function
is the identity function, but below zero, the output is a fraction of the input: y = α · x
These ReLu variations use a non-zero value for α in Equation 2.4 where 0 < α < 1. For
example, in the Parameteric ReLU (PReLu) α is a parameter that is being learned while
training the network and the Leaky ReLu (LReLu) has α as input parameter.

f(α,x) =
{

αx, for x < 0
x, for x ≥ 0

(2.4)

The SoftPlus activation function, also known as Smooth ReLu, is another activation
function which prevents the dying ReLu problem. The SoftPlus activation function solves
this not only by having a non-zero output for negative values, but also for an input of
zero.

f(x) = ln(1+ ex) (2.5)

Which activation function to use in a neural network depends on the input data,
output data, to which layer it is applied and what kind of learning problem needs to
be solved. For the input and hidden layers it is common to use one of the activation
functions that have a continuous output, e.g., tanh, sigmoid, softplus or LReLu. The
tanh and LReLu functions have a negative output for a negative input which is more
suitable when the input data contains negative values. The softmax activation function
is used for classification models because it outputs a probability score for each class.

2.5.2 Multi-Layer Perceptron (MLP)
A Multi-Layer Perceptron (MLP) is one of the most basic and popular types of neu-
ral network. It consists of at least three layers: an input layer, a hidden layer and an
output layer (Figure 2.4). The number of hidden layers can vary, and each layer con-
tains a configurable amount of neurons, also called perceptrons, and the perceptrons are
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Figure 2.3: Plots of commonly used activation functions

densely interconnected. Specifically, a certain perceptron from a layer is connected to
all perceptrons in the next layer.

x1

x2

x3

y1

y2

Hidden
layer

Input
layer

Output
layer

Figure 2.4: An MLP neural network with one hidden layer

The input layer is only a representation of how the input values are connected to the
network, so no activation function is needed in this layer. In the hidden and output layers,
each neuron j sums up the incoming signals multiplied with their respective connection
weights wij . Then the activation function f is applied on the weighted summation to
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calculate the output yj of the perceptron. Frequently used activation functions are a
simple threshold, sigmoid, softmax or hyperbolic tangent function. The output of each
neuron is described by the following equation:

yj = f
(∑

wjixi

)
(2.6)

The weights of all perceptron interconnections are altered based on the error of the
output signal by comparing the generated output of the network with the expected
output. Again, there are several error functions, also called loss functions available,
and a widely used function is the least-squared-error loss function [13]. All weights are
altered to minimise the calculated error using a process called back-propagation. After
an output is predicted for a certain set of input features, the delta is calculated between
the ideal weights for the current output/input combination and the current weight, and
a ratio of the delta is subtracted from each of the current weights, this ratio is called the
learning rate. The total delta is not subtracted, to get the error to zero for this sample,
to prevent over-fitting and non-converging networks. The weights are updated for each
sample and by adjusting the weights only a little bit for each input/output combination,
the network learns to predict based on a generalisation of all samples.

2.5.3 Recurrent Neural Network (RNN)
A Recurrent Neural Network (RNN) is a neural network where the internal state is
also used as input for the next iteration, so that the network architecture contains a
cycle [14, 15]. In this way, it is possible for information to persist in the network over
time because the network now has memory, and it becomes possible to find time-related
artefacts in the input data. In Figure 2.5, we can see a simple schematic of an RNN. The
left part shows the folded version of the architecture containing a loop: the output of
the hidden layer A is also used as input. If we unroll the loop, we get a repetitive neural
network where the output of a certain time step is passed on to the next time step. The
neurons itself can be a normal perceptron as used in MLPs, but specific neuron types
are developed as we see in the next subsection.

ht

A

xt

⇒

h0

A

x0

h1

A

x1

h2

A

x2

...

Figure 2.5: A recurrent neural network folded and unfolded

For an RNN, a special back-propagation algorithm is used named Backpropagation
Through Time (BPTT) where the back-propagation algorithm is applied up to several
time steps back [16].
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2.5.4 Long Short-Term Memory (LSTM)
The problem with RNNs using BPTT is that, although it is in theory possible, it turns out
to be hard to learn long-term dependencies [17]. When the error propagates backwards
in time, weights tend to blow up or vanish, resulting in oscillating weights or very long
training times. Long Short-Term Memory (LSTM) networks address this issue by using
specific type of neurons, called memory cells, and are explicitly designed to avoid the
long-term dependency problem. LSTMs were first introduced by [18] after which others
improved upon this work, but the general idea is still the same.

+

×
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×

σ
×

f

Ct−1

ht−1

xt

Ct

ht

Figure 2.6: LSTM memory cell overview with gating units

Contrary to MLPs which use a single activation function on the weighted summation
of the input, LSTMs use several so-called gating units to be able to forget previous
learned data, remember new data and determine the output. Both the internal cell state
and the output of the previous time step are fed back into the LSTM cell (Ct−1 and
ht−1 respectively), see Figure 2.6. Before the data is used in the gates, the previous
output ht−1 and the new input xt are concatenated into a new vector. Within an LSTM
memory cell multiple layers can be identified:

• The first layer is a sigmoid layer, called the forget gate layer. The output of a
sigmoid function is always between 0 and 1, so the output of the layer determines
which values to forget, and is multiplied by the previous cell state Ct−1.

• The next layer of a memory cell adds new information to the cell state; for this, a
tanh layer creates a vector of new candidates based on the input data and previous
output. The input gate layer, again a sigmoid layer, decides which values to update
and these values are multiplied which each other and added to the cell state.

• The last step is deciding the output of the memory cell, which is actually a filtered
version of the cell state. First, another sigmoid layer decides which values to
output, which is then multiplied with the output of the activation function f of
the cell state.

2.5.5 Gated Recurrent Unit (GRU)
Another type of a recurrent neural network uses Gated Recurrent Units (GRUs) as
neurons [19], to which we refer as a GRU network. Like with the LSTM memory cell,
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the GRU has gating units that regulate the information flow within the neuron, but
without the separate layers as defined for LSTM networks. A GRU only contains two
gates, named the update gate and the reset gate. There is no output gate so the GRU
does not control how much of its internal state is exposed to other neurons in the network
and exposes its whole internal state. Another difference with an LSTM unit is that a
GRU rather controls the amount of information flowing in from the previous time step
than the amount of new information added. Figure 2.7 show a schematic overview of a
GRU.
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+Ct−1

xt

Ct

Figure 2.7: GRU overview with gating units

2.5.6 Weibull Time-To-Event Recurrent Neural Network
(WTTE-RNN)

The WTTE-RNN [20] is a special type of RNN designed specifically to predict a Time-
To-Event (TTE). The network uses the Weibull distribution [21], which is a continuous
unimodal probability distribution with two parameters λ and k. Unimodal means that
it has at most one peak. See the following equation for the distribution function:

fX(x;λ,k) =


k

λ

(x

k

)k−1
exp

(
−(x/λ)k)

x ≥ 0

0 x < 0
(2.7)

where λ and k are the two parameters that determine the distribution output.
The Weibull distribution is used in a wide range of applications, e.g., in survival

analysis, where it depicts the probability of the time until failure. The distribution can
also adopt the form of other distributions, e.g., the exponential-distribution (with k = 1)
and the Rayleigh-distribution (with k = 2), making it a very expressive distribution in
terms of possible forms with only two parameters.

The WTTE-RNN works with any type of RNN as e.g., a GRU network or LSTM
network. The main properties are the combination of the activation functions, loss
function and the output. The network is trained to output two values, which are the
two parameters of the Weibull distribution: λ and k. These depict the probability
distribution until the next event. The activation functions are custom for both output
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values, the exponential and soft-plus function are used for λ and k, respectively. The
loss-function to be used is the log-likelihood function.
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In this chapter we will give an overview of previous research on seizure-signal analysis.
This includes both seizure detection algorithms, see section 3.1, and seizure-prediction
algorithms, see section 3.2.

For detection, we will only list research related to absence seizures, because absence
seizures have different characteristics than other types of seizures and because this thesis
focuses on absence seizures. For prediction, we will include multiple types of seizures
because research on absence seizures has been limited and because the event leading to
a seizure can be the same for multiple seizure types.

3.1 Seizure detection

As we have seen in section 2.1, absence seizures have very clear characteristics
and are easily visually detectable by looking at Electroencephalography (EEG) or
Electrocorticography (ECoG) recordings. This raises the expectation that it should
be possible to detect seizures also automatically. In this section, we give an overview of
multiple algorithms to detect absence seizures.

Filtering/resampling

Feature extraction

Classification

Input data

Class output

Figure 3.1: Schematic overview of a seizure detection algorithm

A seizure is a binary event: either one is ongoing in a certain time window or not.
Therefore, a binary classifier can be used to identify seizures based on certain features.
Multiple features and classifier algorithms have been proposed in previous research, and
in general a seizure-detection system follows the schematic of Figure 3.1. First, the input
data is pre-processed and features are extracted. These features are then passed onto the
classifier, which decides on whether a seizure is currently ongoing or not. In this thesis
we mainly focus on absence seizures, as they have specific characteristics compared to
all other seizure types. Table 3.1 shows an overview of the discussed studies on seizure
detection.

17
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3.1.1 Detection using Approximate Entropy (ApEn)

One of the popular ways to detect an absence seizure is by using the Approximate Entropy
(ApEn) of a signal. ApEn is a good measure of the complexity of a signal [7], and can also
be applied to biomedical signals [8]. Complexity is an important measure of non-linear
dynamic systems, and the approximate entropy is a parameter that is proportional to the
complexity of a temporal signal. Compared to other parameters, e.g., sample entropy, it
has several advantages [22]:

• It requires fewer data-points to calculate a sample (starting at around 100);

• It is robust against noise;

• It can be used for both deterministic-chaotic and stochastic processes.

See also subsection 2.2.2 for an explanation on how the ApEn is calculated.
Ocak [23] combines the approximate entropy with features based on the Discrete-

Wavelet Transform (DWT). First, the EEG signal is analysed using DWT up to three
levels and, for each of the approximation and detail coefficients, the ApEn values are
calculated. The embedding dimension (m), vector comparison distance (r) and time
delay (τ) were set to 2, 0.15 times the standard deviation of the data and 1, respectively.
Seizure detection was done by applying a threshold to the ApEn values, where ApEn
values less than the threshold were classified as epileptic. They show that the best results
were obtained when using the first level detail coefficients of the wavelet transform (43.4-
86.8 Hz) which yields an accuracy up to 96%.

Liang et al. [24] combine ApEn with two different features and compare the result
between both combinations. The selected features are the EEG power spectrum and
an Autoregressive Model (AR model) of order 20. The EEG power spectrum is calcu-
lated using a Fast Fourier Transform (FFT), and it is shown that during a seizure a
larger power is measured in the 7-9 Hz band, which is used as the detection feature.
The AR model is a parametric model for describing stationary time series and con-
tains the weighted sum of previous values and white noise. Classification is done using
both linear and non-linear classifiers: Linear Least Squares (LLS), Linear Discriminant
Analysis (LDA), Back-propagation Neural Network (BPNN) and Support Vector Ma-
chines (SVMs). The combination that on average yields the best result uses the ApEn
feature combined with power-bands features and a level Principle Component Analy-
sis (PCA) and has a sensitivity, specificity and accuracy of 97.03%, 97.83% and 97.50%,
respectively.

Another combination of features with ApEn is found by Sakkalis et al. [25], which
combine ApEn with the Order Index (OI) and Multiscale Variance Index (MVI). The
Order Index is a quantification of the degree of order of a non-stationary time series e.g.
an EEG signal. The MVI describes the variance of a signal around its arithmetic mean.
It is shown that during a seizure the OI is significantly lower and the MVI increases.
Classification is done using a threshold. ApEn yields the highest sensitivity, while OI
and MVI yield the highest results for specificity. The overall highest accuracy is obtained
using ApEn with an accuracy of 90.1%.
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3.1.2 Detection using Wavelet Transform (WT)

Another popular method for seizure detection is the use of a Wavelet Transform (WT)
to extract features from an EEG or ECoG signal. With the WT, one can do a frequency
analysis, but with a varying window length. This results in signals with varying frequency
and time resolutions, where the frequency resolution is inversely proportional to the time
resolution. In contrast to FFTs, it is also possible to choose the basis-function, where an
FFT always uses the sinusoid function. A commonly used, so-called mother wavelet is
the Daubechies function, which is scaled and shifted in time in order to decompose the
signal into subbands of different frequencies. The discrete WT is implemented using a
high- and low-pass filter, resulting in a low-frequency approximation band and a high-
frequency detail band. For each consecutive level, the approximation band is further
decomposed into another approximation and detail band [26], see also subsection 2.2.1.

Subasi published two approaches on using DWTs for detecting seizures in EEG signals
[27, 28]. Both approaches use the DWT, but features and classification differ.

In the first approach a Daubechies 4 (DB4) wavelet is used to filter the EEG signal.
The number of levels was chosen to be 5, because EEG signals do not have any useful
frequency components above 30 Hz. Classification is done using Artificial Neural Net-
work (ANN), where two solutions are compared: BPNN, here called feedforward error
backpropagation ANN (FEBANN), and a Dynamic Wavelet Neural Network (DWNN).
The input features for the neural networks were the wavelet coefficients of the four sub-
bands (α, β, δ, θ). The best results were obtained using the DWNN with an accuracy,
specificity and sensitivity of around 93% [27].

The second approach also used a 5-level DWT, but instead of using the coefficients
directly, it uses statistical features based on the wavelet coefficients. The following
features were extracted:

1. Mean of the absolute values of the coefficients in each sub-band.

2. Average power of the wavelet coefficients in each sub-band.

3. Standard deviation of the coefficients in each sub-band.

4. Ratio of the absolute mean values of adjacent sub-bands.

Classification is done using a Multi-Layer Perceptron (MLP) and an Adaptive Neuro-
fuzzy Inference System (ANFIS) after which the results are compared. An ANFIS uses
the neural-network training-process to generate a set of fuzzy if-then rules, that approx-
imate a desired data set. The ANFIS approach makes for an accuracy of about 94%
[28].

Petersen et al. [26] also utilised the WT but use the log-sum energy of 6 wavelet
subbands as features. Classification is performed using an SVM. To prevent false posi-
tives, a temporal filter is used so that at least 3 consecutive epochs (2 seconds) must be
classified as ictal before a seizure is detected.
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3.1.3 Other features

Other approaches can also be found in literature. Zeng et al. [29] use the Normalised
Mean Squared Error (NMSE) and Structural Similarity) (SSIM) at a certain compression
rate of the EEG signal and classify these features with several classifiers: Decision Tree
(DT), K-nearest Neighbor (KNN), discriminant analysis (DA) and SVMs. Sensitivity
and specificity are both around 72%.

Alkan et al. [30] calculate power spectra of three different methods, multiple signal
classification (MUSIC), AR model and periodogram methods, and use these as the inputs
to a classifier. The classifiers used are a statistical method based on Logistic Regression
(LR) and an ANN. The best results were obtained using a MLP in combination with
the MUSIC feature with an accuracy of 92%, specificity of 93.6% and sensitivity of 90%.

Diambra and Malta [31] use a non-linear custom method based on information theory
to detect ictal Spike-and-Wave Discharge (SWD) activity. A part of the recording of each
patient is used to determine the characteristics of the EEG signal for that particular
patient, which is used to create a non-linear model of the signal. The error of the
predicted samples of the model is an indication for ictal spikes, as they have different
characteristics than the inter-ictal EEG signal, which does normally not contain any
SWDs. No accuracy is reported.

3.2 Seizure prediction

The prediction of seizures is a totally different working field compared to detection as
the inducement of a seizure is not clearly visible in the brain signals. More rigid methods
and algorithms are needed to be able to make a proper forecast on if and when a seizure
will occur. A lot of research has been done on this field, but in particular for absence
seizures, no solid solution has been found. There are however studies that found signs of
precursors in the brain for seizures, e.g., [32] found a positive correlation of the seizure
duration and intensity with β-power (20-40 Hz) and a negative correlation with θ-power
(4-7 Hz), see also subsection 3.2.2.

In this section, we will look at previous research done in the field of seizure prediction.
Because the amount of research targeted at absence seizures is limited, we will also refer
to research done in general and targeted at tonic-clonic seizures. It is until now not
totally clear what leads to a seizure, therefore the same algorithms could possibly work
for both absence and tonic-clonic seizures.

3.2.1 Prediction studies

The first works date back to the 1970s when different groups started using linear ap-
proaches on EEG data, showing promising results. They however used short and man-
ually selected EEG recordings. Later research found substantially poorer results than
promised by the first approaches, and some previous research could not be reproduced,
while using larger data sets [33]. In the years that followed, more methods have been
explored and used for predicting seizures. See Table 3.2 for an overview.
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Year Author(s) Features Classification Recordings Performancea, b

Type # Patients Seizures TPR TNR/FDR
1999 Diambra and Malta Prediction error of

non-linear model
- EEG 3c -

2005 Alkan et al. MUSIC,
AR model, pe-
riodogram

LR, ANN EEG 5 20 90% 93.6%

2005 Subasi DWT coefficients BPNN, DWNN EEG 5 20 92.8% 93.1%
2007 Subasi Statistic DWT fea-

tures
MLP, ANFIS EEG 5 20 94.3% 93.7%

2009 Ocak ApEn, DWT coef-
ficients

Threshold ECoG 5 96% 93.7%

2010 Liang et al. ApEn with sig-
nal power or
AR model

LLS, LDA, BPNN,
SVM

EEG 3d 1758 97.8% 98.4%

2011 Petersen et al. WT log-sum en-
ergy

SVM with tempo-
ral filter

EEG 19 111 99.1% 0.5/h

2013 Sakkalis et al. ApEn, OI, MVI Threshold EEG 8 75 97.33% 83.91%
2016 Zeng et al. NMSE or SSIM of

compressability
DT, KNN, DA,
SVM

EEG 9 200s Accuracy: 76.7%

a Maximum reported performance of a certain combination of features and classifier
b TPR: True Positive Rate, also sensitivity, TNR: True Negative Rate, also specificity
c Of which 2 have focal epilepsy
d Recordings done on rats instead of humans

Table 3.1: Overview of studies on seizure detection
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Netoff et al. [34] report a seizure-prediction project where they utilised an SVM and
used the Freiburg EEG dataset [35]. Using visual inspection of the signal, recordings
with unwanted artefacts were removed. Then power features from 6 different recording
electrodes in 9 different spectral bands were extracted, resulting in 54 features in total.
Classification was done using an SVM and yielded a True Positive Rate (TPR) of nearly
80% and a False Positive Rate (FPR) of 0/hour.

Chisci et al. [36] describe another prediction method using AR model coefficients as
features and also used the Freiburg EEG dataset [35]. They utilised the coefficients of an
AR model which is trained specifically for each of the 9 selected patients. Classification
is done using a SVM regularised by means of a Kalman Filter (KF). The system yields
a TPR of 100% and an average FPR of 0.41 seizures/hour.

Park et al. [37] used a combination of the aforementioned approaches while also using
the same dataset. After manually removing artefacts in the data, bipolar and/or time-
differential methods have been used to remove or reduce the effect of other types of
artefacts in the ECoG data. Spectral power features were then extracted from 9 bands
using a 20s-long half-overlapping sliding window. Classification was done using a cost-
sensitive SVM and finished off with a post-processing step utilising a Kalman Filter to
remove isolated false positives. The best results were obtained using the bipolar method
and yielded a TPR of 97.5% with a FPR of 0.27/hour.

Gadhoumi et al. [38] used recordings from 17 patients with in total 1656 hours of
ECoG data. Features were extracted by calculating the wavelet energy and entropy in
different frequency bands, using a 2-second non-overlapping sliding window. Different
states were identified using discriminant analysis and in-sample cross validation. With a
seizure occurrence period above 30 min, the method performed above chance with TPRs
higher than 85% and FPRs below 0.1/h.

Howbert et al. [39] present another approach using the spectral power in multiple
ECoG frequency bands. 6 bands were used, and the power was summed in a 1-minute
non-overlapping sliding window for each of the 16 electrodes, resulting in a feature vector
of 96 features for each 1-minute block. Logistic Regression (LR) classifiers were trained
to classify the blocks as being pre-ictal or inter-ictal. The pre-ictal time was chosen to
be 90 minutes, and also the seizure itself was labeled as pre-ictal. On average a TPR of
70% and a FPR of 0.08/h is obtained.

Alexandre Teixeira et al. [40] did an extensive research on long-term seizure predic-
tion with data from 278 patients. The EEG data was recorded using 22-37 electrodes,
but recordings from only six electrodes were selected for this research. Windows of 5
seconds were used, on which 22 features were computed. These features included the
AR model predictive error, decorrelation time, energy, complexity, relative power, spec-
tral frequency and power, statistical features and DWT coefficients. Classification was
tested using two different classifiers: ANNs and SVMs. For 32% of the patient seizures
could be predicted with a TPR larger than 50% and a FPR of less than 0.15/hour.

Moghim and Corne [41] presented another approach, named ASPPR, evaluated on
the Freiburg EEG dataset [35]. They also first removed unwanted artifacts, after which a
total of 204 features were extracted, 34 distinct features for each of the 6 ECoG channels.
Features were based on the signal energy, DWT coefficients and non-linear dynamics. For
each patient the large feature-set was reduced to the best working 14 features, selected
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using the ReliefF algorithm. A multi-class SVM was then used to classify the several
states of the ECoG signal. The highest result was obtained for a prediction time of 20
to 25 minutes with a TPR of 90.15% and a True Negative Rate (TNR) of 99.44%.

Alvarado-Rojas et al. [42] reported an approach where they used the coupling between
low-frequency phase and high-frequency amplitude, which can be used to distinguish
between pre-ictal and non-ictal states. Recordings were done on 52 patients with partial
epilepsy, and for each patient about ten days of data was recorded. On average, there
were 11 seizures per patient recorded. Short-time phase fluctuations were smoothed
using a first-order Kalman Filter (KF). Classification is then performed using a variable
threshold resulting in very varying results per patient. Results vary from a sensitivity
of 0% up to 100% and FPRs of 0.02/h to 6.02/h. On average, the presented work yields
a TPR of 46.5% and a FPR of 0.94/hour. The coupling between low-frequency phase
and high-frequency amplitude is shown to be existing for a significant number of the 52
patients (13.2%).

3.2.2 Predictability studies
Other works only discuss the predictability of certain metrics without evaluating the
results, or without performing the actual seizure prediction. We will discuss a few of
these publications as they can provide interesting features for our work.

Ouyang et al. [43] tried to understand the transition of brain activity towards an
absence seizure and applied the determinism measure (DET) for this task. They found
that the DET value distribution was significantly different for pre-ictal, ictal and inter-
ictal periods, leading to the tentative conclusion that a higher degree of determinism is
present during pre-ictal time windows.

Sorokin et al. [32] presented an effect that precedes a seizure. They found a positive
correlation of the seizure duration and intensity with β-power (20-40 Hz) and a negative
correlation with θ-power (4-7 Hz). Also, they report a decrease in thalamocortical neuron
spiking frequency during the pre-ictal period. In addition, they discovered that the β-
power before a seizure inducing optical stimulation negatively correlated with the SWDs
onset.

Lüttjohann et al. [44] described their research on finding alpha, delta and theta
precursors before SWDs onset. Discovered was that a SWD is preceded by precursors
consisting of several frequency components ranging from 2 to 12 Hz. In general, alpha
and theta activity was found in the frontal cortex and thalamus simultaneously, but delta
events appeared first in the cortex and then in the thalamus after a delay. In around
90% of the cases precursors were present in the cortex, and in around 82% of the cases
they were present in the thalamus. The average precursor duration was 0.5s.

3.2.3 Prospective versus retrospective
The first prospective studies date from 2003 (Iasemidis et al. [45], D’Alessandro et al.
[46]) and are the first which tried to predict a seizure in the future only based on past
data. All other research done until that point looked retrospectively at brain recordings,
which means that they looked for features in the data before a seizure when the seizure
already occurred. Mapping events in the data by looking only at recordings just before
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a seizure does not mean that these events only happen when a seizure is following. This
could easily lead to false-positive prediction because events that happen before a seizure,
but also during normal brain activity, can be wrongly seen as seizure precursor. This
makes the prediction problem a lot harder than when retrospectively looking at the data.

This work will focus on prospective prediction of absence seizures, by only looking
at past data at a certain point in time.
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Year Author(s) Features Classification Recordings Performancea, b

Type Patients Data TPR FPR TNR
2009 Netoff et al. Spectral power

of 9 bands
SVM ECoG 9 45 seizures,

219h interictal
data

77.8% 0/h

2010 Chisci et al. AR model coef-
ficients

SVM with KF ECoG 9 ∼ 40 seizures 100% 0.41/h

2011 Park et al. Moving-
window power
of 9 bands

SVM with KF ECoG 18 >54 97.5% 0.27/h

2013 Gadhoumi
et al.

Wavelet energy
and entropy

DA, in-sample
cross validation

ECoG 17 175 seizures >85% 0.1/h

2014 Howbert et al. Spectral power
of 6 bands

LR ECoG 3c 125 seizures 70% 0.08/h

2014 Alexandre
Teixeira et al.

22 univariate
features

ANN, Multi-
class SVM

EEG 278 1519 seizures >50% <0.15/h

2014 Moghim and
Corne

34 ·6 = 204 uni-
variate features
(reduced to 14)

ReliefF, Multi-
class SVM

ECoG 21 - 90.15% 99.44%

2015 Alvarado-Rojas
et al.

Coupling of
phase and
amplitude

Variable
threshold

ECoG 53 558 seizures,
531 days data

46.5% 0.94/h

a Maximum reported performance of a certain combination of features and classifier
b TPR: True Positive Rate, also sensitivity. TNR: True Negative Rate, also specificity. FPR: False Positive Rate.
c Recordings done on dogs instead of humans
d For 32% of the patients

Table 3.2: Overview of studies on seizure prediction
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Design and Implementation 4
In this chapter, we will describe the design and implementation choices for this thesis
work. The goal is to study the feasibility of a system able to predict whether a seizure is
about to occur, within a certain time window, which is referred to by the term pre-ictal
time. As will be further explained in chapter 5, the results turned out to be negative in
most cases. Some approaches only yielded detection results, because an Artificial Neural
Network (ANN) can distinguish between ictal and non-ictal data easily, but prediction of
a upcoming event based on Electrocorticography (ECoG) measurements is a lot harder.
Therefore, we can say that a prediction time of zero seconds or less is actually a seizure
detection.

For the experiments done in this work, ECoG measurements of mutant mice are used,
as further described in section 5.1. To predict the occurrences of absence seizures we
will apply several types of ANN algorithms. The input data has to be pre-processed
to be in a for the ANN usable format, which is done by normalising the data and by
extracting useful features using dedicated algorithms. The features being used are the
power of the θ, α and β Discrete-Wavelet Transform (DWT) bands, the Approximate
Entropy (ApEn) and the signal variance, see also section 4.2. The output of the network
also needs to be post-processed and has to be analysed for determining the performance
of the system. The experiments can be distinguished based on the type of input- and
output-data and network type, and we follow the design path as shown in Figure 4.1.
The experiments are performed independent of each other and will be evaluated in the
next chapter.

First, the experiments are divided based on the two output types. The output type
for the first set of experiments are classes, encoded as a one-hot class number. With a
classification ANN it is possible to classify input data into multiple classes. This matches
our goal as we want to classify inter-ictal, pre-ictal and ictal periods in the input data.
The second set of experiments has the Weibull distribution parameters as output, which
is used for Time-To-Event (TTE) prediction. With a Weibull Time-To-Event Recurrent
Neural Network (WTTE-RNN) a time is predicted until the next seizure will happen.
This type of network is selected because it offers a possibility of using regression for time
prediction. The training parameters and evaluation differs for both output types and
therefore experiments are grouped accordingly.

For the classification experiments we will then apply three different types of ANNs,
namely Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU), and for Weibull Time-To-Event (WTTE) prediction we will only
use the recurrent versions LSTM and GRU. For each network type two input data-sets
will be used, the first being the normalised recordings and the second being a set of
extracted features, further explained in the next sections. The items shown in blue are
already covered extensively by other research. The yellow boxes are also explored by
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Classification

Threshold

SVM

MLP Raw input data

DWT power + ApEn + variance

LSTM Raw input data

DWT power + ApEn + variance

GRU Raw input data

DWT power + ApEn + variance

WTTE prediction

LSTM Raw input data

DWT power + ApEn + variance

GRU Raw input data

DWT power + ApEn + variance

Figure 4.1: Overview of the experiments performed in this thesis, specifying the output
type, network type and input data. Blue boxes are covered by other research and will
not be repeated, yellow items will be applied again although being explored by other
research. White boxes are new methods in the field of seizure prediction.

other research, but we will look further into these because they are suitable for our
research and can give new insights in combination with our data.

First, we will discuss the choices for machine-learning algorithms in section 4.1 and
then the data pre-processing for the machine-learning algorithms of choice will be dis-
cussed in section 4.2. In section 4.3 we will describe the parameter space for the ANNs
and the last section (4.4) will report on post-processing of the output data.
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4.1 Machine-learning algorithms

In this section, we will look at several machine-learning algorithms and motivate why
they are being used in this work. There are two main features which need to be supported
by the chosen machine-learning algorithms, the possibility to learn complex patterns and
the possibility to learn time dependencies.

The first selection criterion, the ability to learn complex patterns, results in the
need for support for non-linearity. With a non-linear algorithm, more complex relations
between input and output can be learned, while a linear approach is limited to only
linear relations. The property of non-linear functions is that the sensitivity to changes
in the input is not the same over the whole range. This is expressed by the derivative of
the used function, for a linear function the derivative is constant, while for a non-linear
function this is not constant.

Non-linear behaviour is especially wanted when using ANNs, because the output of
a previous layer is used by the next layer. Using a linear activation function (meaning
linear over the whole domain) would result in multiple layers of neurons which together
learn a linear relation between input and output data which can be replaced by one
layer. Several linear functions can be added together to one linear function after all. As
seizures and ECoG-measurements show highly non-linear behaviour, we need to select
non-linear activation functions, which also allows us to use deep learning. The possibility
of deep learning, meaning a layered application of the learning algorithm, is important,
because it will allow for learning more complex patterns. Related work has also shown
that it is better to use a non-linear approach; Most listed prediction studies with a higher
Average Detection Rate (ADR) in subsection 3.2.1 use a non-linear learning algorithm
which acknowledges the choice for a non-linear approach.

Further, we also want to implement a way to learn time dependencies from the data.
The precursors to a seizure can be present in the data a while before the actual onset,
and build up gradually [47]. The output of the algorithm should be either multi-class or
a continuous regression value.

For classification we want to be able to distinguish between three classes, identifying
the inter-ictal, pre-ictal and ictal periods, which is not possible with a binary classifier.
All three ictal classes have to be predicted, so we can fall back on seizure detection in
case a pre-ictal period is not predicted for a particular seizure. For regression we want
to be able to predict the time to the next event, which is a continuous value.

4.1.1 Support Vector Machine (SVM)

An SVM is a binary classifier of which also multi-class versions are available; see sec-
tion 2.4. We have seen multiple uses and different variations of SVMs in related work.
Although non-linear multi-class SVMs exist, we will not use this classifier in our work,
because SVMs do not take in account time dependencies in the data while we expect this
to be important for our work, and because SVMs cannot be used as a regressor, which
we need for TTE predictions. However SVMs have been used a lot in related works
as classifier, our works demands for more advanced classifiers which also support deep
learning.
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4.1.2 Multi-Layer Perceptron (MLP) neural network

Another type of learning algorithm we have seen in literature are ANNs and especially
the MLP variation. See also subsection 2.5.2 for more background on this type of neural
network.

An MLP is fed a list of input data, which can be a list of samples spanning a time
window or a feature-set. A combination is also possible resulting in a matrix of input
data, which has to be flattened before the neural network can use it, meaning that the
matrix is reshaped into a one-dimensional list. By spanning a time window it is possible
to make the algorithm learn time dependencies in the input data and a sliding and
partially overlapping window can be used to cover more of the input situations.

The activation function of the neurons in an MLP determines the output of a neuron
based on the input. First, the input is multiplied with the input weight and then summed,
after which the activation function is applied. The activation function of hidden layers
is always non-linear because otherwise deep learning is not possible. MLPs meet the
requirements to be included in this research and will therefore be evaluated.

4.1.3 Long Short-Term Memory (LSTM)

Another type of ANNs is the Recurrent Neural Network (RNN), where recurrent means
that is uses also its internal state as an input for the next evaluation step in the network.
This means that the internal state contains information from the input from previous
timesteps. Input from the past has therefore influence on the current output, resulting
in the ability to learn across time. This is particularly important for predicting seizures
as we do not know when a precursor is present in the signal. A further advanced version
of a general RNN is the Long Short-Term Memory (LSTM) neural network, further
explained in subsection 2.5.4.

An LSTM is specifically designed to be able to learn time dependencies from input
data, and does this using several gating units in each neuron dedicated to learning new
information, forgetting already learned information and by keeping learned information.
What information to learn and what to forget is determined during the learning process
based on back-propagation as is done with other neural networks.

Because an LSTM already has a built-in way of dealing with time dependencies, we
do not need to feed large time windows to the network. The input data only has to span
the feature-set, meaning that we can use the features of only one point in time as input.
For MLP networks, we have to use input data which also spans a time-window, so use
features of multiple points in time because it has no internal way of relating inputs with
each other over successive runs. The output of the system can also be a discrete class or
a regression value, which is the same as for MLPs. Also, the activation functions used
for MLPs, as mentioned above, can be used for LSTMs too, making for a non-linear
system.

These properties, the native ability to learn time dependencies, the non-linear be-
haviour and the output types, make LSTMs a good candidate for evaluation in this
thesis.



4.2. INPUT DATA PRE-PROCESSING 31

4.1.4 Gated Recurrent Unit (GRU)

A later successor of the LSTM neural network is a RNN which is named Gated Recurrent
Unit (GRU), see also subsection 2.5.5.

A GRU network implements the way of learning and forgetting data in a slightly
different way, but the general idea is the same. It is also a drop-in replacement for an
LSTM meaning that we can use this type of network without changing the structure
of the implementation. Therefore, we will also evaluate this learning algorithm, and
compare the results to those generated by LSTMs.

4.1.5 Weibull Time-To-Event Recurrent Neural Network
(WTTE-RNN)

The WTTE-RNN is a RNN designed for predicting times-to-events, see subsection 2.5.6.
Because we also want to predict events, seizures in this case, this approach is considered
as very suitable. The two output values of the neural network correspond to the two
parameters of the Weibull distribution: λ and k. When training the network, we train λ
to output the time to the next event, and k is trained to depict the probability that the
event occurs. In practice, this means that k is trained to be 1 if an event is upcoming,
and 0 if that is not the case. So, the probability that an event will occur is 1 if we know
the TTE during training.

Under the hood, the WTTE-RNN can use different types of RNNs. We will use it in
combination with the RNNs as listed above: the LSTM and GRU RNNs.

4.2 Input data pre-processing

In this section, we will look at the pre-processing of the input data. The available input
data was recorded for previous research using multiple electrodes on the brain of a mouse,
after which channels with usable data were selected by the researchers and the data was
resampled at 300 Hz [4]. See also section 5.1 for more information on the recordings.

For each pre-processing step, we will plot a graph with the result, based on a small
part of the raw input data, as shown in Figure 4.2a. This to show the effect each step
has in our analysis pipeline. The vertical dotted lines indicate the start and stop of an
absence seizure.

As we have seen in chapter 3, there are multiple features that can be extracted using
conventional signal-processing methods. Besides normalising the input data, we will
use the following popular or promising features: power of the θ, α and β DWT bands,
ApEn and signal variance. These features showed propitious first results in predictability
analyses (see subsection 3.2.2) or have already been used in prediction studies, further
explained in the following sections. They are generated from the normalised data as
described in subsection 4.2.1 and therefore use the same way of balancing the output
classes.
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(a) Raw input data with 3 channels at 300Hz. Each line is the recording of one channel.
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(b) Input data after normalisation with zero mean and unit variance

Figure 4.2: Input data before and after normalisation

4.2.1 Data normalisation

In order to use the input data for learning, we have to remove unwanted artifacts that
can distort the learning process. First, we need to remove any offsets so that the data
has a zero mean. Activation functions have different behaviour for negative values than
for positive values. E.g., the Rectified Linear units (ReLu) activation function is most
sensitive between -2 and 2, so when training a network which uses this activation function
in the input layer, it would be harder to learn something when the majority of the data
would be out of the sensitive range of the function. That is why we need to remove any
offsets from the data which are present over the timespan of a few seconds. The offsets in
the data can be the result of recording problems as e.g., a not properly grounded setup



4.2. INPUT DATA PRE-PROCESSING 33

or moving electrodes, recordings are done in a living animal after all. Removing the
offset is done by subtracting a moving average with a large time-window of 10 seconds.
It’s not possible to subtract a fixed offset because the offset for each recording varies
over time and per channel. Removing a dynamic offset will introduce some noise, but
this will be less than keeping the offsets in the data as they are noise themselves.

As the next step in the normalisation process we also need to scale the input data
to unit variance. The first reason for this is that activation functions are sensitive in
a certain range, values out of this range are treated all the same. This is especially
the case for asymptotic functions as e.g., the sigmoid and tanh activation functions, see
Figure 2.3 (page 12) for a plot of these functions. The second reason is that separate
recordings can have a slightly different amplification which is corrected by the scaling
process. Scaling of the input data to unit variance means that a certain distribution of the
input data will be in the range [−1,1] after scaling. This results in a signal where a small
subset of the data points, including outliers if present, have a value out of the sensitive
range of the activation function. Depending on the activation function, these values will
then have less influence, or no influence at all, on the output. This is convenient as
outliers are unwanted artifacts in the data. Scaling is done on a recording basis, so the
characteristics of each recording are comparable. One recording is recorded during the
course of an experiment and has the length of about an hour. If some recordings would
have very different characteristics, they would influence the learning process negatively.

Finally, because the inter-ictal and pre-ictal periods are a lot longer than the actual
seizures, classes are very unbalanced when using classification. To overcome this problem
there are two solutions. One is to limit the number of input samples of inter-ictal and
pre-ictal classes by removing them from the signal (under-sampling). The other solution
is to give the output samples a weight inversely related to the amount of samples that
are available for a certain class. This weight results in a higher learning rate for these
samples, so the network learns to predict the less occurring classes as good as the more
occurring classes, but based on less samples. A combination seems to be the best solution
as large weight differences yield worse learning results, and removing a lot of features
makes for less training data and creates an unnatural data-set [48].

This normalised data-set is used for the first group of experiments, but is also used
to generate the features from as described in the following sub-sections. This is done
to minimise the differences in pre-processing and therefore making the results more
comparable. Also the classes are balanced in the same way for all experiments, so only
the input data itself is different.

4.2.2 Discrete-Wavelet Transform (DWT) power

By using a Discrete-Wavelet Transform (DWT), we can extract certain frequency bands
from the input signal. The DWT can be applied at several levels, where each level pro-
duces a low-frequency approximation band and a high-frequency details band. Each level
deeper, the approximation band is used as input, and in turn split into an approximation
and details band. See also subsection 2.2.1 and Figure 2.2 (page 7).

Related work has shown that absence seizure susceptibility correlates with pre-ictal
β oscillations [32] and that the δ, θ and α bands can also be used to predict (and detect)
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Figure 4.3: DWT data containing δ, θ, α and β bands

seizures [40, 44, 37]. We therefore have to choose a DWT level so that the resulting
frequency bands overlap with the ranges of the α and β, δ and θ bands. Our input data
has a frequency of about 300Hz, so after applying a DWT of 6 levels, we get the following
frequency bands:

• 0 - 4.69 Hz

• 4.69 - 9.38 Hz

• 9.38 - 18.75 Hz

• 18.75 - 37.5 Hz

• 37.5 - 75 Hz

• 75 - 150 Hz
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• 150 - 300 Hz

The δ, θ, α and β bands are defined as 0 - 4Hz, 4.5 - 8Hz, 8.5-12Hz and 12-36Hz
respectively. The resulting DWT bands 1 to 4 approximately overlap with the needed
bands and will therefore be used. The wavelet used is the Daubechies 4 (DB4) wavelet,
which is used by other publications and turns out to be a well suited wavelet. The DB4
wavelet has a similar form as the Spike-and-Wave Discharges (SWDs) that occur in the
ECoG signal. Also, it preserves the energy in the signal, making it suitable for our study,
as we also want to use the energy in the selected frequency bands as training features
for our model. Comparing different wavelets, the Complex Morlet wavelet would also
be a good candidate and is generally a good choice for time-frequency analysis, but we
are more focused on filtering the signal than on time-frequency analysis. See Figure 4.3
for a plot of the δ, θ, α and β bands. For simplicity, only one channel is shown for each
band.

We use the power of each frequency band because it is a measure of the brain activity
in that particular band. The power is calculated by squaring the values, see Figure 4.4
for a plot of the power of the data shown in Figure 4.3.

4.2.3 Approximate Entropy (ApEn)

Approximate Entropy (ApEn) is a good measure of complexity or regularity of a signal,
and an indication of the unpredictability of fluctuations in the data [7]. It has been de-
veloped especially for determination of the regularity of biologic signals, or other natural
appearing signals, containing white noise. Related work has shown that it is a usable
metric for seizure detection, and maybe also prediction; see subsection 3.1.1.

The calculation of ApEn requires three parameters: the embedding dimension (m),
noise filter level (r) and data length (N), see subsection 2.2.2 for a description of the
parameters. There is no specific guideline for the determination of the optimal parameter
values, but the procedure described in [7] is a good rule of thumb and therefore we
use the parameters as described there. A further study on the parameters for brain
signals is given in [6] on which we based our parameter choices. They used N = 512
for the data-length parameter as a good trade-off between stability of the output signal
and computational time. Further, an embedding dimension (m) of 2 was chosen after
examining the data with the false-nearest-neighbours (FNN) [49] algorithm. For the
noise level r, we used a fixed value of 0.15 based on empirical tryouts. See Figure 4.5a
for the ApEn for each of the channels of the normalised input data. The used input data
chunk is shown in Figure 4.2a.

4.2.4 Variance

The variance metric describes the statistical variance in a signal, and shows how a set
of values is distributed around their mean value. To calculate the variance of a certain
set of data, first the mean value is determined. Then, for each data-point the squared
difference is computed, and the average of these values is the variance. The parameters
for this algorithm are the window length N and the sliding window step s.
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Figure 4.4: The power of DWT δ, θ, α and β bands

The variance is calculated on a sliding half overlapping window. The amount of
overlap of each window is a trade-off between computational time and amount of resulting
data points. The sliding-window step s can vary from 1 · · ·N , when s = N , there is no
overlap at all. We use s = N/2.

The variance of the ECoG signal vastly increases during a seizures as can be seen in
Figure 4.5b. Also, during the inter-ictal and pre-ictal period, small but sudden peaks of
variance are visible, which can possibly be an event to be learned from by a machine-
learning algorithm.

4.3 Neural-network parameters

In this section, we will discuss the meta-parameters for the experiments, which are
evaluated to find the best-performing combination. We will discuss the neural-network
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Figure 4.5: ApEn and variance for each of the 3 channels of normalised input data

types to be used, which activation functions to try, the number of hidden layers and
their size, and the input and output formatting.

As we have seen, there are three types of neural networks that we will evaluate: the
MLP, LSTM and WTTE-RNN. The latter has a defined choice for its output-layer
activation functions and output data format, see subsection 2.5.6, which we will use.

There are several activation functions that are popular nowadays. The choice depends
on the kind of problem, on whether it is a regression or classification problem, and on the
layer type. Hidden layers usually have a different activation function than the output
layer. For hidden layers the choices are multifold, common used functions are sigmoid,
softplus and Leaky ReLu, which are the function we also will evaluate. For the output
layer, the activation function is mainly dependent on the kind of prediction problem. For
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multi-class classification problems, the softmax function is advisable, because the output
values will have a cumulative value of 1. Each output value corresponds to the chance
of the corresponding class being true, and selecting the highest output value yields the
classified class. For regression, the output-layer activation function should be able to
output the range of values we expect. Therefore the tanh or sigmoid functions are less
usable as they have an output range of [−1,1] and [0,1] respectively. Variations of the
ReLu activation function are very suitable because they can output any positive number,
and we will therefore use the Leaky ReLu in our work with an α of 0.2, as deducted from
Xu et al. [50].

Another type of functions is used to determine the loss of each training step. Every
time a input sample is fed into the ANN it is used to predict an output. This output is
then compared to the expected output, which is present in the training data along with
the used input sample. The error between the predicted and expected output is then
calculated using a loss function.

In this work two types of loss functions are used, one for classification and one for
TTE prediction. For classification as loss function is needed which can determine the
error of the predicted class-probabilities. The best suitable loss function is therefore the
categorical cross-entropy loss function. For the WTTE-RNN a specialised loss function
is used, as proposed by [20], the discrete Weibull log-likelihood function.

There is no analytical method for determining the number of layers and layer size.
Therefore, we have to try multiple options and compare them to be able to select the best
combination of options. To limit the potentially exploding amount of layer combinations
we will limit ourselves to using layers of the same size only. In this work, we will explore
ANNs with 1, 2 and 3 hidden layers. The more layers one uses, the more complex
patterns can be learned. But having more layers makes it harder to learn and it takes
more training epochs and training data to get to a good accuracy. Based on several
tries we choose for 1, 2 and 3 layers. Each layer will have 10, 30, 90 or 120 neurons,
these numbers are also based on multiple tries of running the network. When using
more than 3 layers or more than 120 neurons per layer, we observed that the network
did not converge within 200 epochs, even with a low learning rate, and that the needed
computational power increased too much to be feasible to run on the available hardware.

The input window determines the amount of data that is fed to the network at once.
For an MLP, this means that this is also the time window which it can use to learn
from because it is a non-recurrent network. We will use input time windows of 0.5s,
1s, 3s, 5s and 10s. Larger time windows are hard to use because the network does not
fit into memory anymore. Also, making the window much larger would mean that a
window could include two seizures because the seizure interval in the data is on average
60 seconds. This would lead to training the network to predict the seizure based on the
time of the last seizure, which is not the goal in this research. This also means that we are
limited to a prediction time of 10s. But as the input-data contains a seizure about every
minute, we expect any available precursor to be present in the selected input windows
as well.

There are three ways of formatting the neural-network’s output for the purposes of
this work. The first is a one-hot encoded class for classification in combination with
the softmax activation function. One-hot encoded means that the output is a bit-vector



4.4. OUTPUT DATA POST-PROCESSING 39

with a single 1. The position of the 1 corresponds with the predicted class. The second
is a single output value or array of values which are a prediction of the next values of
the input signal. This can be used to evaluate if the network predicts anything sensible
at all. The third option is used for the WTTE-RNN and outputs the two parameters of
the Weibull distribution. These two parameters depict the time probability distribution
until the next seizure.

Further, optimisers have been used to increase the overall learning accuracy. An
optimiser algorithm optimises the way weights are adjusted in the network and can
also alter the learning rate based on parameters of the network. The algorithm itself
determines what parameters are changed and in what way. We have used a standard
optimiser named RMSprop, which mainly optimises the learning rate.

Another parameter often used in neural networks are drop-out layers. These are
layers in the network that randomly drop-out or ignore output parameters of neurons.
This prevents the network from over-fitting: learning for too specific cases, so the network
is not generalised enough anymore. We use a drop-out factor of 0.2 for all but the output
layer, meaning that 20% of the neuron output values is dropped for these layers.

4.4 Output data post-processing

The output of the network needs to be post-processed and evaluated to determine the
performance of the system. For the evaluation, we will use the annotations of the input
data, which indicate the start and stop times of each seizure.

For classification, the output of the network is a one-hot encoded value, which has to
be converted to an integer value. This is needed so it can be compared to the annotated
class values and they are easier to save and plot. One-hot encoded means that instead
of a normal integer value, a class is represented by a list of binary values, where the
position of the only 1 in the list corresponds with the categorical class. The output of
an ANN is non-binary, but provides a chance for each class. The highest value in the
list is the most probable class, so the conversion can easily be done by selecting the
highest value from the output list, and use the position of this value as class number.
Post-processing also includes a K-nearest Neighbor (KNN) filter, to filter out jitter of the
network and make for a more stable output signal. A KNN filter looks at a configurable
number of neighbour data-points and determines its output based on the majority of the
data-points with the same value.

When using sample prediction, we train the network to predict the input signal, and
in case of multi-channel input, the average of the input channels. This does not predict
seizures directly, but we can see if the network predicts values that correspond with the
expected output, which is the input signal one time-step ahead. If the input data was
scaled down, we need to scale the predicted output back up to get to the original value
range.

The WTTE-RNN outputs the two parameters of the Weibull distribution and we
will mainly look at the first parameter which depicts the time until the next event. If
the system cannot predict a seizure, this parameter will be around the average value of
the training times. That means that the network is not able to predict a value with high



40 CHAPTER 4. DESIGN AND IMPLEMENTATION

certainty, but will output a generalised value, which is about the average of all possible
outputs.

To evaluate the performance we will determine the following metrics:

• True Positive Rate (TPR): Also named sensitivity, is a value that depicts the
percentage of correctly predicted seizures. TPR is defined as:

TPR = TP

FN +TP
(4.1)

where true-positive (TP) is the number of correctly predicted seizures and false-
negative (FN) is the number of undetected seizures while there really was a seizure.

• True Negative Rate (TNR): Also called specificity, describes the percentage of
correctly classified inter-ictal periods, so the periods without seizure. A lot of false
predictions make for a low TNR value. The TNR is defined as:

TNR = TN

FP +TN
(4.2)

where true-negative (TN) are the number of truly predicted inter-ictal periods (with
no seizures occurring), and false-positive (FP) is the number of falsely predicted
seizures.

• Average Prediction Rate (APR): The average of TPR and TNR.

• Prediction time: The time between the prediction of the seizure and the actual
seizure occurrence.

• Categorical cross-entropy loss (only for classification): The average loss over the
last training epoch as calculated by the cross-entropy loss function. This gives an
indication of whether the predicted output classes are a random guess or actual
predictions.

Key for calculating the TPR, TNR, APR and prediction time is accurate detection
of the beginning and end of the pre-ictal and ictal period. This differs for classification-
output and when using the WTTE approach.

For a categorical class-output, we look at the pre-ictal and ictal classes, and their
start- and end-times. If a pre-ictal class is present, it should be followed directly by
an ictal class to be a positive prediction of a seizure. Otherwise, it is counted as false-
negative. The prediction time is based on the start of the pre-ictal class, or when the
pre-ictal class is not predicted before an ictal class, the start of the ictal class. The
prediction time is then calculated by comparing it to the annotated start time of the
seizure. A negative prediction time is the same as a detection delay.

For TTE output, this is a bit more difficult as the output is a continuous value.
The start of the pre-ictal or ictal period can be identified by a decreasing output value,
because when the predicted time until the next event decreases, this actually means that
a upcoming seizure is predicted. During inter-ictal periods, the output is more or less
stable and converged to an average value of training values. We define the start of the
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pre-ictal period as the moment when the predicted time is significantly lower, meaning
at least 20% lower, than the value during the ictal period. The threshold value of 20%
has been empirically determined by looking at the variation of the output signal.

Categorical cross-entropy loss is calculated using the predicted class outputs and is
used during training to adjust the weights of each neuron. This output consists out of
the normalised probabilities for each possible class. The loss is then calculated based on
these probabilities and the expected output class using the following formula:

f(x) = −
M∑

c=1
yo,clog(po,c) (4.3)

where M is the number of possible classes, y a binary indicator if class c is correct
for observation o and p is the predicted probability of observation o for class c. The
Categorical cross-entropy loss gives an indication of whether the predicted output classes
are a random guess or actual predictions based on the input data.

4.5 Software architecture
The neural networks are implemented in Python using the framework Keras [51]. Keras
is a framework designed for instantiating model-based neural networks and depends on
a low-level, high-performance back-end computing library. Multiple of these back-end
libraries are supported. The back-end library we use is TensorFlow [52], because it is
widely used, is still under active development, works stably and has support for running
on one or more GPUs.

The software implemented for the experiments of this research consists out of several
independent parts, see Figure 4.6 for how they relate to each other. The pre-processor is
used to fetch the data from the recording files and also for generating the training samples
used by the neural network. The analyser part is used for calculating the desired features,
and the Trainer and Validator part are used to perform the learning and evaluation.

The pre-processor reads the data from the recording files and saves the data to a
better-structured and more easily processable file. The original recordings are available
as ABF files, where ABF stands for Axon Binary File, a file format used by the recording
devices from Molecular Devices [53]. In the pre-processing step, the data from these
files is read using the Python library Neo [54], and converted to a Matlab file with a
certain structure reflecting the Neo objects. Also the Excel files with annotation data
are converted to a list of begin- and end-times of the seizures of the corresponding ABF
file, and added to the Matlab file so they are easily usable and accessible when creating
the training samples. So, for each source file a destination file is created including the
recording and annotation data. This process has to be done only once.

The generation of training samples is a separate process and has to be done for
each different type of experiment. The generator generates training samples, that is, a
collection of input and output values for the supervised learning algorithm. To generate
these the following parameters are used:

• Channels: The number of channels in the training samples. For source files with
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more than the configured number of channels, one or more random channels are
discarded. Source files with less than the required number of channels are ignored.

• Input window: The width of the window included in each input sample in sec-
onds. The number of values in each input sample is calculated based on the sam-
pling frequency of the signal.

• Input step: The step in seconds between input windows. So e.g., if the step is
half the input window, samples are half-overlapping.

• Input sample rate: The sampling frequency of the input samples.

• Output window: The width of the output sample window.

• Output sample rate: The sampling frequency of the output samples.

• Output offset: The offset of the output relative to the input. This is used to be
able to make an ANN predict values in the future, e.g., by using an offset equal to
the input window.

• Output type: The type of output, can be either one-hot encoded classes, input
values or values used for the WTTE-RNN network. Each output type has ad-
ditional parameters which can be specified, e.g., the duration of each class for a
categorical output.

• Pre-processor: A reference to a function can be passed to the generation class
which pre-processes the input data. In this function, features can be calculated
from the normalised input data, which is passed as parameter to the function.

The generated samples are saved in files with a certain amount of samples to limit the
file size.

The analysis package can be used to process the input data and calculate differ-
ent features. It supports calculating averages, scaling the data to a certain variance,
detecting edges and can calculate event frequencies. Further, it has functionality for
performing mathematical operations on the whole time-series data-objects, which are
then performed on each value in the data-object. For example, in case of subtracting
two time-series data-objects, each value at the same index in the objects will be sub-
tracted, resulting in a new data-object. Also adding, subtracting and multiplying with a
scalar is supported. Other parts of the analysis package allow for calculating correlations,
variance, entropy, energy and applying wavelet filters.

The next part of our application is the machine-learner package which consists of
a base model from which the different neural networks are derived: MLP, LSTM and
WTTE-RNN. The models are used for training an validation of the ANN and are based
on Keras. To be able to find the optimal meta-parameters, a grid-search module has
been implemented which tries all combinations of a certain set of parameters.

The plotter package is used for plotting graphs and it uses a little webserver so graphs
can be viewed in the browser. The loaded page shows the graphs in chunks and allows
for navigating through these chunks. This is more convenient because the time span of
the plotted data is in general too long to be plotted in a single graph.
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Figure 4.6: Diagram of the modules in the Python application.
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Evaluation 5
In this chapter, the results of the different experiments with varying neural-network con-
figurations are presented and evaluated. The performance of different configurations is
compared in terms of prediction time and Average Prediction Rate (APR). First, we will
show the set-up for the experiments, after which the evaluation criteria and results are
set out. The results are divided in two parts, where the first part discusses experiments
with an input set containing the normalised recordings and the second part discusses ex-
periments with generated features as input. Also we will report some exploratory results
on using Time-To-Event (TTE) prediction outputs. Finally the results will be discussed
and evaluated.

5.1 Electrocorticography (ECoG) recordings

The data used for the research in this thesis are ECoG recordings from the Erasmus
Medical Center in Rotterdam, recorded at the Neuroscience department. The data
is recorded on male and female natural mutant tg mice, ranging from 4- to 30-weeks
old, which have naturally occurring absence seizures. Also 8- to 10-week-old inbred
C3H/HeOuJ mice with natural-occurring absence seizures have been used. Both types
wer bred using heterozygous parents. See [4] for a more detailed description of the mouse
colony.

The ECoG recording electrodes were placed directly on the brain under the scalp.
The recordings were originally done for a research thread where they inject the mice with
either a muscimol solution, to decrease the neuronal activity, or with gabazine solution,
to increase the neural activity [4]. The goal was to to determine the relation between the
injection and seizure frequency and duration. The ECoG recordings were filtered online
using a 1-to-100Hz band pass filter, and a 50Hz notch filter. We only use data recorded
before the injections, so the recordings are not influenced by the injected solutions, but
contain only natural occurring seizures.

The recorded signals were manually annotated by employees of the neuroscience de-
partment which are experts in identifying absence seizures. Only channels with good
recordings were selected, which means that channels which did not contain proper record-
ings, e.g. no signal at all or just noise, were discarded. The resulting dataset has therefore
recordings with one, two or three channels of ECoG data, see Table 5.1. When running
experiments where we only need one or two channels while the input data has more
channels, the remaining channels are just ignored and not used. The part of data that
has less channels than required is also ignored.

The total amount of recordings is 116.87 hours and the data contains a total of 7,371
seizures. This means that the data contains on average 63.1 seizures per hour.

45
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Number of channels Hours of recordings Percentage of total
1 83.54 h 71.5 %
2 3.86 h 3.3 %
3 29.47 h 25.2 %

Table 5.1: Amount of recorded data

Parameter Values
Network type MLP LSTM GRU
Input type 3 channels normalised data, selected features
Output Inter-ictal, pre-ictal and ictal classes
Number of channels 3
Input window 0.5s 1s 3s 5s 10s
Input step 0.25s 0.5s 1.5s 2.5s 5s
Number of layers 1 2 3
Number of neurons per layer 10 30 90 120
Pre-ictal time 5s 10s 20s
Number of epochs 50 100 150
Hidden layer activation function Sigmoid Softplus LReLu (α = 0.2)
Output layer activation function Softmax
Loss function Categorical Cross-Entropy

Table 5.2: Overview of classification parameters

5.2 Experimental set-up

The experiments are run on 29.47 hours of data with recordings of three channels. More
single-channel data is also available, but it is believed that the relation between several
recording channels will improve the results. It has been shown that changes in syn-
chronicity between multiple brain areas can be an indication of a pre-ictal state, and it
is also known that the Spike-and-Wave Discharges (SWDs) spikes spread over the whole
brain [55]. After all, three channels contain more usable data than just one. There is
almost no two-channel data available in our data set, so it would make less sense to
choose for 2-channel training data.

The implemented software used for the experiments is written in Python and is
therefore cross-platform. The experiments have been run on a desktop computer with
Windows 10 and a server with Ubuntu 16.04. The computational performance of the
application will not be evaluated as it is not the goal to optimise this.

For each experiment we use a range of values for each input parameter, of which all
combinations will be tried. The goal is to find the optimal combination of parameters.
All parameters are further explained in section 4.3 (page 36).

The parameters are listed in Table 5.2 and Table 5.6 for classification and TTE
prediction respectively. Also the evaluation is different, as calculating the accuracy of
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Parameter Values
Network type GRU
Input type 3 channels normalised data
Output Weibull distribution parameters λ and k
Number of channels 3
Input window 0.5s
Input step 0.033s
Number of layers 1
Number of neurons per layer 5
Pre-ictal time 4s
Number of epochs 75
Hidden layer activation function Tan-h
Output layer activation function Exponential (α neuron) and soft-plus (β neuron)
Loss function Log-likelihood

Table 5.3: Overview of the TTE model input parameters

a predicted class differs from determining the accuracy of a decreasing time prediction,
further explained in the next section.

The total data-set is split into three parts: one for training, one for evaluation during
training and one for testing the trained model. The training data-set contains 72% of
all samples, the evaluation data-set 8% and the test data-set the remaining 20%. The
evaluation data-set is used during training to evaluate the training process, and the
reported loss is determined during this evaluation process. The test data-set is only used
after the model was trained, to verify the performance and to determine the metrics as
described in section 5.3.

The input window- and step-times have been chosen based on initial empirical try-
outs and the same counts for the network size. Also for the number epochs we looked at
the try-out results and especially at when the change in reported accuracy became very
low. The loss function and output-layer activation functions are specific for classification
purposes, while for the hidden-layer activation function we will cover three of the most
popular ones.

5.3 Evaluation criteria
The prediction performance is evaluated differently for classification and TTE prediction,
as further explained in the next sections. The evaluation for both types is done in terms
of the following metrics:

• True Positive Rate (TPR)

• True Negative Rate (TNR)

• Average Prediction Rate (APR)
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• Prediction time

• Categorical cross-entropy loss

See section 4.4: Output data post-processing for more details on the implementation
of these metrics.

5.3.1 Classification evaluation
For the performance evaluation of the class-output we will look at the predicted pre-ictal
and ictal classes and their timings. The other output class, the inter-ictal class, will be
ignored as it is the default class and does not predict or identify a seizure in any way
apart from the absence of a seizure. The class output is represented by a integer value,
and the output of the neural network is post processed as described in section 4.4.

A predicted pre-ictal class is only valid when it is directly followed by a ictal-class.
Otherwise it means that the system first predicted a seizure after which it withdraws
this prediction. If a pre-ictal class is not followed by a ictal-class, it counts as a false
positive. Also a predicted ictal class without actual seizure in the data is counted as a
false positive. If no seizure is predicted or detected when there is a seizure in the signal,
it is counted as false negative.

Whether an ictal class is counted as a correct seizure detection or not is depending
on the amount of overlap with the actual seizure. We define that a seizure is detected
correctly if the ictal-class overlaps for at least 50% with the annotated seizure. If the
ictal-class is starting before the actual seizure, it adds to the prediction time. But if it
is lagging behind, this either means a negative prediction time in the case that no pre-
ictal-class was present before the ictal-class, or that the pre-ictal class partially overlaps
with the actual seizure. For the latter, we still use the time difference between the start
of the pre-ictal-class and the annotated start of the seizure as prediction time.

If the system detects multiple separate seizures within the time of one particular
seizure it is counted as one true positive. This can be the case if the output contains
jitter, e.g. when within the seizure an inter-ictal class is predicted for a short period of
time.

The prediction time is the time between the start of a seizure prediction and the
actual occurrence of the seizure. It is determined by the start time of the pre-ictal class,
and if it is absent, the start of the ictal class, compared to the start of the actual seizure
which is available through annotations of the input data. If the pre-ictal class is not
present in the output, but the ictal class is, we are actually detecting the seizure instead
of predicting it, and the prediction time will be close to, or below zero.

The performance will be evaluated using the TPR, TNR, APR, prediction time and
categorical cross-entropy loss metrics, as further explained in section 4.4.

5.3.2 Time-To-Event prediction evaluation
Using the Weibull distribution output parameters to predict the TTE makes for a differ-
ent evaluation method than when evaluating classification outputs. The predicted time
until the next event is a continuous number which should decrease when a seizure is
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upcoming. The system is trained with a time until the next event which is equal to the
time to the next seizure. Only if the time to the next seizure is larger than the pre-ictal
time, the pre-ictal time is used, so we have a maximum TTE value with which we train
the network.

f(x) =
{

TTE, if TTE < PIT

PIT, otherwise
(5.1)

where TTE is the time to the next event, and PIT is the chosen pre-ictal time. During
an ictal period the TTE is trained to be 0.

When no event is predicted by the system, it will output a value around the pre-ictal
time, and when a seizure is predicted, this value will decrease. To prevent false-positives
we use a threshold of 20% to determine when the start of a prediction is, so when the
predicted time to the next seizure drops below 80% of the configured pre-ictal time, we
say that a seizure is predicted.

A seizure prediction is only valid when the prediction is continuous and not cancelled.
The prediction is cancelled when the predicted time goes up again to a value above 80%
of the chosen pre-ictal time.

For the determination of the prediction time, which is the time the system can predict
a seizure in advance, the same counts as for classification output. If the prediction time is
zero or lower, the prediction is rather a detection, but we will still report it as prediction
time which will then be negative. Also the calculation of the metrics is done in the same
way as for class-prediction, apart from the fact that the pre-ictal and ictal starting times
are now derived from the TTE metric instead of from the class outputs.

5.4 Prediction performance
In this section we present the prediction performance using the neural network model.
First we describe the classification performance using the normalised input and using
generated features based on the input data. Secondly we present some exploratory results
of a recurrent neural network which can predict times-to-events based on the Weibull
distribution.

5.4.1 Classification performance
For each experiment a neural network is set up with several varying input parameters.
The parameters and the different used values are described in section 5.2. Because one
cannot know the exact influence of each parameter on the performance of the neural
network, we did an extensive grid search, meaning that an experiment has been run for
every combination of input parameters.

The amount of combinations had to be limited to be able to run one whole grid
search for one set of data, either the normalised input data or the generated features,
within a week. Therefore, the number of varying parameters is limited to four, with each
three or four different input values resulting in a total number of experiments for each
data set of 108. The varied input parameters are the network type, the input window
and the network size, consisting of the layer size and number of layers.
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The output of the model is a prediction of the during training learned output values.
In our case of using a classifier, the output values are one of the learned classes. Based
on these predicted classes several metrics can be calculated by comparing them to the
expected and annotated output. The metrics we use for presenting the performance
results are the APR, TNR, TPR and the prediction time. How they are determined
is further described in the previous section, section 5.3. We also use the categorical
cross-entropy loss as performance metric. This metric is not based on the output values
of the neural network evaluated using a test data-set, but is rather a neural network
parameter used during training to evaluate the performance and is determined based
on the evaluation data-set every training epoch. The evaluation data-set is used for
determining the loss value, because it is already available during training, it is used by
the network to update the weights and not based on the training data-set.

To be able to compare the varying input parameters against the resulting output
parameters, we have selected several combinations which will be presented for both the
experiments ran on the normalised data and the generated features.

The first comparison will be made by varying the input window for all three network
types and plotting the resulting APR. This shows the influence of the amount of input
data on the performance of the network, and makes the results for each network type
comparable.

Then, we will show the average APR, TNR and TPR of runs of all network types for
varying input windows to be able to compare the difference in number of true-positives
and number of false-negatives. The TNR depicts the relative amount of false-negatives
and the TPR the amount of true-positives.

In the third and fourth graph we will plot the resulting average APR and categorical
cross-entropy loss of multiple window sizes, for the used layer sizes. This will give
insight into the relation between the window size and the layer size regarding the seizure
prediction performance and network loss.

Lastly, the average APR and categorical cross-entropy loss will be displayed for the
used layer sizes and amount of layers, to be able to determine the best combination of
those two parameter.

5.4.1.1 Results using normalised input

In this section we will look at the results using the normalised input. This input data
is the raw measured ECoG data, but then resampled to 300Hz, scaled to unit variance
and normalised to having a zero mean. The data will then look as shown in Figure 4.2b.
See subsection 4.2.1 for a detailed description on the normalisation process.

First we will look at the results of a varying input window. The input window
determines the amount of data fed to the network each step and determines the size of
the first layer, also called the input layer. The more data is fed into the network each
time step, the more information is available, possibly making for a better prediction
performance. But on the other hand it is harder to relate data to each other and learn
from the input data because the relations that have to be learned become more and
more complex. Also, certain unwanted and unrecognised artifacts of pre-processing the
input-data can get a higher influence on the learning process.
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Figure 5.1: Resulting Avg. APR for multiple input windows and network types

In Figure 5.1 we see the average resulting APR for several input windows and network
types. The results for each different network type are close to each other. The average
APR however decreases with an increasing input window size. If we look at the differences
between the TPR and the TNR (Figure 5.2) we see that the TPR is always higher than
the TNR, which means that the true seizures are being detected, but there are also a lot of
false positives making for to a low TNR. This is also shown in the bar graph (Figure 5.3)
which shows the avg. true-positive (TP), false-positive (FP), true-negative (TN) and
false-negative (FN) counts for different input windows. The number of false positives
is a lot higher than the other counts, which supports that the number of false-positives
makes for a low APR. Also, if we compare a small window to a larger window, the
number of TPs and TNs decreases, while mainly the number of FNs increases. This
means that for larger windows there are a lot more cases that the network predicts the
inter-ictal class, while the output should be a pre-ictal or ictal class.

In Figure 5.4 and Figure 5.5 we will look at the network size and its influence on
the prediction performance expressed in the average APR and categorical cross-entropy
loss. The first of the two figures shows the avg. APR for a number of input windows
and different layer sizes, and the second figure shows the categorical cross-entropy loss
for the same parameters. Again the avg. APR decreases with a increasing window
size no matter the layer size. But also the cross-entropy loss decreases meaning that the
prediction error decreases. This indicates that the higher APR value for smaller windows
is more due to random output values than due to actual predictions.

In Figure 5.6 and Figure 5.7 again the network size is compared with the average
APR and categorical cross-entropy loss. This time we look at the number of layers and
the layer size. The first of the two plots shows the avg. APR for a number of layer sizes
and number of layers. There is no clear winner, all combinations seem to perform about
the same. The second graph shows the cross-entropy loss which decreases a little for an
increasing window size with the same trend for all amounts of layers. This indicates that
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Figure 5.2: Resulting Avg. APR/TNR/TPR for multiple input windows
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Figure 5.3: Resulting avg. TP, TN, FP, FN counts for different input windows

larger layers can actually improve the prediction performance, but as the APR does not
become higher for larger layers, this does not work for our input data.

Looking at the prediction time, as shown in Figure 5.8, we see a clear optimal input
window. Around an input window of 3 seconds, the prediction time is the highest,
while other windows yield a lower prediction window. When we compare the different
number of layers used in running the experiments, a higher number of layers has a slight
advantage over fewer layers. One outlier is the result with an input window of 0.5s
and 2 layers of neurons in the neural network. Here the result is lower than expected,
with an average prediction time of 1s. This can be due to a suboptimal initial state of
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Figure 5.4: Resulting Avg. APR for multiple input windows and first layer sizes
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Figure 5.5: Resulting avg. categorical cross-entropy loss over the last training epoch for
multiple input windows and first layer sizes

the neural network, as initial neuron thresholds and connection weights are initialised
randomly. The influence of the initial state can be minimised by training the network
multiple times and taking an average of the performance metrics. However, due to the
computing complexity of the whole setup this would take too much time, which is why
we have run the experiments only once.

Another risk of an increasing number of layers in the neural network is that it is easier
for the network to overfit. We have tried to prevent this by using drop-out layers with
a drop-out of 20% and by balancing the classes in the training-data, see also section 4.3
and subsection 4.2.1.
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Figure 5.6: Resulting Avg. APR for multiple first layer sizes and amounts of layers
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Figure 5.7: Resulting avg. categorical cross-entropy loss over the last training epoch for
multiple first layer sizes and amounts of layers

The best performing combination of input parameters is listed in Table 5.4. These
results are exemplary for the other results as presented above, and are characterised
by a high TPR, but a very poor TNR. This means that seizures themselves are being
detected, but also that during the time without seizures, a lot of false-positives occur.
This might also be the reason for the relatively high prediction time of more than 3s,
while the learned prediction time is only 5s. The predicted pre-ictal periods probably
have been false-positives, like the many others that determine the TNR’s low value. This
is backed by the relatively low loss of 0.57, indicating that the output class for quite a
number of input samples was a guess. However, the loss is significantly higher than for
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Figure 5.8: Resulting avg. prediction time for multiple input windows and layers counts

Input parameter Value
Number of channels 3
Input window 0.5s
Input step 0.25s
Number of layers 3
Number of neurons per layer 30, 15, 5
Pre-ictal time 5s
Number of epochs 76
Hidden layer activation function LReLu (α = 0.2)
Output layer activation function Softmax
Loss function Categorical loss
Output metric Value
Average Prediction Rate 0.57
True Positive Rate 1.00
True Negative Rate 0.13
Prediction time 3.11s
Categorical cross-entropy loss 0.57

Table 5.4: Metrics of best run using 3 channels normalised data set

true random output, because then the loss would have been around 0.33 for a tree-class
classifier. See Figure 5.9 for a sample of the networks output of the best run, together
with the input used to predict the output.



56 CHAPTER 5. EVALUATION

0 2 4 6 8 10 12 14

−5

0

5

Time (s)

Vo
lta

ge
(v

)

Inter-ictal

Pre-ictal

Ictal

O
ut

pu
t

cl
as

s

Figure 5.9: A sample of the predicted class output of the run with highest ADR

5.4.1.2 Results using selected features

In this section we will present plots with the same variables as in the previous section
(subsubsection 5.4.1.1) but the results are from experiments with a different input set.
While in the previous section we used normalised ECoG measurements, in this section
we use a variety of features which are generated from the input data. In the next section
we will compare the results of the two data sets.

The generated features used as input for our neural networks are the power of four fre-
quency bands of Discrete-Wavelet Transform (DWT) signals, the variance of the signal
and the Approximate Entropy (ApEn) for each channel, all generated from the nor-
malised input data-set. The resulting amount of features for each time-step is therefore
18. The generation of these features is further described in section 4.2.

In Figure 5.10 the average APR is shown for GRU, LSTM and MLP types of neural
network, for varying window sizes. Except when using an LSTM, the resulting APR
decreases when increasing the input window. For the LSTM network there is an optimum
for an input window of 1s. Figure 5.11 shows for the same experiments the averages of
the APR, TNR and TPR to indicate the numbers contributing to the final APR, which
is the average of the TNR and TPR. Clearly is visible that the TPR is a lot higher
than the TNR meaning that seizures are being detected, but a lot of false-positives spoil
the result. This is supported by the bar graph (Figure 5.12) showing the avg. TP, TN,
FP and FN counts for different input windows. The number of false-cases (FP and FN)
increase with an increasing windows size, while the number of true-cases (TP and TN)
decrease. Especially for negative-cases (TN and FN) we see a large difference between
a window of 0.5s and 5s. This shows that the number of wrongly predicted inter-ictal
classes increases with an increasing window size.

The next two figures, Figure 5.13 and Figure 5.14, show the influence of the net-
work size on the resulting APR and categorical cross-entropy loss. Again, an increasing
window size results in a decreasing APR, except for a layer size of 90. The loss how-
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Figure 5.10: Resulting Avg. APR for multiple input windows and network types
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Figure 5.11: Resulting Avg. APR/TNR/TPR for multiple input windows

ever decreases for larger input windows and there is also a clear difference between the
different layer sizes. The smaller the input window and layer size, the higher the loss
becomes.

The following two graphs, Figure 5.15 and Figure 5.16 show the resulting average
APR and categorical cross-entropy loss for varying layer sizes and number of layers.
When looking at the average APR, there is almost no difference for the shown combi-
nations of layer size and number of layers. The loss however, declines from about 0.4 to
0.2 when increasing the layer size from 30 to 120. This holds for all listed amounts of
layers.

In Figure 5.17 the prediction times are plotted, showing us that with an input window
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Figure 5.12: Resulting avg. TP, TN, FP, FN counts for different input windows
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Figure 5.13: Resulting Avg. APR for multiple input windows and first layer sizes

of 3s the prediction time is the largest. The results are merely the same as with using the
normalised input, and therefore shows that 3s of input data yields the best prediction
times. These results are not related to the actual number of samples fed into the neural
network each time step, as the input sample rate of the input set containing the generated
features is only 100Hz, which is three times lower than the normalised input set.

The input parameters and output metrics of the best run using the features as input
is listed in Table 5.5. A sample of input and output data is shown in Figure 5.18. Some
of the features are left out of the plot because of the large total amount of features. For
each channel the two lowest frequency power bands are left out, they became invisible
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Figure 5.14: Resulting avg. categorical cross-entropy loss over the last training epoch
for multiple input windows and first layer sizes
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Figure 5.15: Resulting Avg. APR for multiple first layer sizes and amounts of layers

due to the other lines in the graph.
This experiment is exemplary for the results of the input set currently under investi-

gation. The seizure itself is detected decently, even a bit ahead of the annotated seizure.
This is the reason for the high average TPR. The inter-ictal and pre-ictal periods how-
ever, show a lot of false positives, leading to a low TNR. Whether the pre-ictal prediction
just before the seizure is a random false-positive or an actual pre-ictal period prediction
is hard to say. It does lead to a higher prediction time though, as all pre-ictal prediction
that are just before a predicted ical-class add to the prediction time, which can therefore
be misleadingly high.
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Figure 5.16: Resulting avg. categorical cross-entropy loss over the last training epoch
for multiple first layer sizes and amounts of layers
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Figure 5.17: Resulting avg. prediction time for multiple input windows and layers counts

5.4.1.3 Comparison of input sets

In this section a comparison will be made between the two input sets as presented in
the last two sections. The comparison is made between the average APR, TNR and
TPR, see Figure 5.19. The red solid lines depict the results when using the normalised
input, as described in subsubsection 5.4.1.1 and the blue dashed lines show us the results
when using the generated features as input data for the neural network, as shown in
subsubsection 5.4.1.2.

The average APR is about the same for both data sets, but the TPR and TNR
differ. Where for the normalised input the TPR is higher, also the TNR is lower. This
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Input parameter Value
Number of channels 3
Input window 0.5s
Input step 0.25s
Number of layers 3
Number of neurons per layer 120, 60, 30
Pre-ictal time 5s
Number of epochs 76
Hidden layer activation function LReLu (α = 0.2)
Output layer activation function Softmax
Loss function Categorical loss
Output metric Value
Average Prediction Rate 0.65
True Positive Rate 0.92
True Negative Rate 0.38
Prediction time 6.1s
Categorical cross-entropy loss 0.50

Table 5.5: Metrics of best run using 6 features for each channel as input
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Figure 5.18: A sample of the predicted class output

means that more seizures are being detected using this input set, while also having more
false-positives.

5.4.2 Time-To-Event exploratory results

This section describes the results of an experiment using a different way of predicting
seizures. The output of the neural network is a Time-To-Event (TTE): a prediction
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Figure 5.19: Resulting Avg. APR/TNR/TPR for multiple input windows and input
data sets. (Red lines = Normalised input, blue lines = generated features)

of the time until the next event, which in a perfect situation should gradually decrease
until the event is encountered. This time is depicted by two parameters of the Weibull
distribution, and special activation and loss functions are used in this approach. See
subsection 2.5.6 for more information on the Weibull Time-To-Event Recurrent Neural
Network (WTTE-RNN) type of network.

The amount of data used for this experiment is less than for the previous set of
experiments. The reason behind this is that the model is not behaving totally stable,
resulting in infinite losses or losses that are not a number (NaN). This was not solved
by using different sub-sets of the available input-data, which makes it unlikely that
an artifact in the input data is causing the instability. Also other parameters like the
learning rate did not influence the stability of the model. As losses are the main metric
used to train a model, it was not possible to train any further or predict any output with
a non-converging model. Only limiting the amount of input-data and number of epochs
resulted in a converging model, therefore we limited the amount of data to 208 minutes
of train data and 5 minutes of test data. With this amount of data is was possible to
train for 75 epochs while the neural network converged. The input parameters are listed
in Table 5.6.

The results of this experiment are exploratory, meaning that we only ran the model
with a single input set and single set of parameters, to explore it’s possibilities. We
did also not use a grid-search to get to the best combination of parameters possible,
nor automatic metric calculation to determine the performance of the network. The
goal of this experiment is to see whether it’s feasible to predict a Time-To-Event based
on an input of normalised ECoG recordings. A sample of the input and output is
plotted in Figure 5.20, where we see the input, expected output (blue line) and predicted
output (red line). A sharp drop can be seen in the predicted output a few seconds
before the actual seizure, which indicates that seizures can possibly be predicted using
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Parameter Values
Network type GRU
Input type 3 channels normalised data
Output Weibull distribution parameters λ and k
Number of channels 3
Input window 0.5s
Input step 0.033s
Number of layers 1
Number of neurons per layer 5
Pre-ictal time 4s
Number of epochs 75
Hidden layer activation function Tan-h
Output layer activation function Exponential (α neuron) and soft-plus (β neuron)
Loss function Log-likelihood

Table 5.6: Overview of the TTE model input parameters
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Figure 5.20: A sample of the predicted TTE output

a WTTE-RNN.

5.5 Discussion
In this section we will discuss the results as presented in the previous section.

The experiments had as goal to see if it is possible to predict absence seizures using a
neural network. A grid-search has been performed to try out all different combinations
of input parameters. The results are summarised using four metrics, the APR, TNR,
TPR, the detection delay and the network categorical cross-entropy loss.

Looking at these results we can identify several trends.
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1. The network size and network type do not have a large influence on the resulting
APR. This can be seen in the graphs when plotted against the input window: all
lines have the same trend and lie close to each other.

2. The prediction performance decreases with an increasing input window. This effect
is seen across all experiments and is visible in all graphs with the input window on
the x-axis.

3. The TPR is a lot higher than the TNR. This is true for both data sets across all
experiments.

4. The categorical cross-entropy loss is the lowest for the largest network sizes, with
a first-layer size of 120 and input window of 5s. The loss becomes higher when
decreasing the layer size or input window. This is visible in the loss-graphs for all
experiments.

5. The best performance in terms of prediction time is when using an input window
of 3 seconds.

The first two findings are contrary to the expectations. With an increasing network
size or input size, one expects better results up to a certain optimum, since there is more
information available to base the prediction on. With only a small data-set, the network
is prone to over-fitting as it can not learn a more generalised model based on a wide range
of input cases. When increasing the amount of available information in the network too
much, the network will become unable to relate this information to each other and the
performance will drop. In between these two situations we expect an optimum. But in
our findings the optimum amount of information is the smallest amount tried, which can
indicate that the network cannot relate information at all.

The third finding acknowledges this. The TNR is very low across all experiments,
meaning that there are a lot of false-positive seizure predictions in the network output.
During the inter-ictal period, the network is unable to relate input data with a certain
output class, resulting in random inter-ictal and pre-ictal period predictions. In other
words, there seems to be nothing in the data that distinguishes between an inter-ictal
or pre-ictal period. The ictal period, the seizure itself, is detected quite decently, but it
was already known that seizures could be detected using neural networks. This however
leads to the relatively high TPR.

The fourth finding shows how the network predicts based on learned behaviour or
random guesses. A high loss means that the predicted output class is not the same as the
annotated output class for a lot of samples, while a lower loss means that it is correct
for more samples. A high loss indicates that the network did not learn well enough
from training and is effectively randomly guessing the output class. A lower loss for
larger network sizes means that during training the network was better able to learn the
relation between input and output. As shown in the graphs above, the APR decreases
when the loss decreases, which means that the network was unable to relate input and
output data in a proper way. For a larger network, the amount of data and neurons in
the network is higher, which will lead to a more stable output because the prediction is
based on more data. When in that case the APR is still low with a low cross-entropy
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loss, the network either over-fitted or was unable to learn the right relation between
input and output data.

In the last finding, we do see the effect of an optimum. The prediction time is the
highest when using an input window of 3 seconds, while larger or smaller input windows
yield a lower prediction time. Yet, based on the very poor performance of detecting
pre-ictal periods, the pre-ictal detections which have led to a larger prediction time, can
as well be false-positives. These false-positives precede a ictal-period and their durations
are therefore added to the prediction time of the particular seizure.

The experiments in this work are limited by the used data recordings and compu-
tational power. The data used contains only 3-channels ECoG measurements of three
locations in the brain. Having more channel data might have given more insight into
the propagation of the seizure onset through the brain. Also the recording are done on
mutant mice with very periodic seizures, about one seizure every minute. Data with
high periodicity prevents the use of large input windows and can mean that the previ-
ous seizure still influences the inter-ictal period. This makes it harder to differentiate
between the inter-ictal and pre-ictal period. For a grid-search approach a lot of com-
putational power is needed as the number of combinations of input parameters easily
becomes very large. We had to limit the amount of combinations to keep evaluating
them feasible.

5.5.1 WTTE-RNN results discussion
Only exploratory research has been done on TTE prediction using a WTTE-RNN, mak-
ing for a small result set. No actual metrics have been evaluated on the results, because
the test-data contain only a few seizures. An example of the output data has been given
in Figure 5.20. An indication of a precursor can be seen in the sudden drop of the pre-
dicted TTE. This shows that it is possible to predict a seizure on a small data-set, but
it is not known how generic the model is and whether it only works on this subset of the
data.
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Conclusions 6
This work is mainly focused on applying neural networks to Electrocorticography (ECoG)
data in order to predict absence seizures. The grid-search approach has resulted in
multiple experiments with their results, which are evaluated in the previous chapter. In
this chapter we conclude the contributions of this thesis.

6.1 Thesis overview
The goal of this thesis has been to evaluate if it is possible to predict absence
seizures based on 3-channel ECoG measurements using several neural-network algo-
rithms. Specifically, to determine the best-performing set of input data, neural-network
type and parameters for predicting absence seizures. To be able to do this, the experi-
ments were split up in two different parts: classification of inter-ictal, pre-ictal and ictal
periods and Time-To-Event (TTE) prediction using the Weibull distribution.

The classification experiments were split again into two parts, both covering a cer-
tain set of input features, generated from the raw ECoG recordings. The first part
used normalised recordings as input, while the second part used 3 different features gen-
erated from the input data: the power of Discrete-Wavelet Transform (DWT) bands,
the Approximate Entropy (ApEn) and the variance of the recordings. The classifica-
tion was done with three different types of neural networks: the Multi-Layer Percep-
tron (MLP) network, the Long Short-Term Memory (LSTM) network and the Gated
Recurrent Unit (GRU) network. For each network all combinations of multiple input
parameters were tried to find an optimal functioning neural network. Performance was
evaluated in terms of Average Prediction Rate (APR), True Positive Rate (TPR), True
Negative Rate (TNR), prediction time and the loss of the neural network during training.

When looking at the results of the experiments with normalised input, there was no
clear winner in terms of performance. Also, the best-performing combination in terms
of APR and prediction time did not perform well enough to be used in practice. Using
normalised recordings as input, the best-performing combination of parameters yielded
an APR of 0.57 and a prediction time of 3.1 seconds. Detection did work well as the
TPR was 1.

Using the generated features as input, the results were slightly better. The resulting
APR was 0.65 and the prediction time 6.1 seconds. The prediction time however could be
due to a lot of false positive inter-ictal predictions, as the TNR was only 0.38. Detection
did work well as the TPR was 0.92.

Based on the results, we have to conclude that by using the approach set-out in this
thesis with the used data recordings, it was not possible to predict upcoming absence
seizures in a reliable way. However, the results using a Weibull Time-To-Event Recurrent
Neural Network (WTTE-RNN) look promising, but need further research.
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6.2 Contributions

The results of this thesis have its limitations in terms of accuracy and prediction time,
and do not make for a usable system using the type of measurements and neural-network
parameters used in this work. The machine-learning algorithms were not able to dis-
tinguish clearly enough between the inter-ictal, pre-ictal and ictal periods. Especially
deviating between the inter-ictal and pre-ictal periods turned out to be difficult, because
their characteristics lie close to each other. However, some important contributions have
been made by this thesis:

• Recurrent Neural Networks (RNNs) were applied on ECoG recordings, using a grid-
search approach to compare multiple combinations of neural-network parameters,
in order to predict absence seizures. Previous research on using machine learning
and neural networks specifically, used mainly Support Vector Machines (SVMs) and
MLP networks for predicting upcoming seizures. This research however, applied
RNNs to be able to incorporate time-domain data in a better way. Although the
trained networks in this work are not reliable enough to proof RNNs can be used
for seizure predictions, they show some results on which future works can be based.

• Research has been done on which features can be generated from ECoG data, to
be able to show distinctive characteristics of ECoG measurements.

• A guideline is provided for future research on machine-learning based seizure-
prevention approaches, by setting up an extensive experimental setup and by pro-
viding a thorough analysis of working approaches and limitations.

• A regression method was used to predict a TTE value depicting the time to the
next seizure, using Weibull distribution parameters, in combination with a RNN.
The combination of using an RNN together with the regression of distribution
parameters for prediction of events is not applied before on predicting absence
seizures based on ECoG data.

6.3 Future work

The work presented in this thesis can be considered as another step taken into the
direction of reliable absence seizure prediction. Although the results of this thesis were
not positively on itself, they allow for several recommendations for future work.

• The recordings can be combined with sensory recordings. Now only 3-
channel ECoG data is used which can also be extended with more channels
of ECoG recordings and other recordings like Electromyography (EMG) and
Electroencephalography (EEG). EMG will give insight into the muscle activity
of the subject, and can also show if spasms or lack of muscle activity occur before
or during a seizure. EEG recordings give insight into the heart rhythm, of which
variations can be related to an upcoming seizure.
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• When more channels of ECoG data are available, it is also possible to take into
account the recording locations. This spatial information can be used to relate
seizure precursors not only to time and waveform, but also to the location in the
brain. This might give insights into the propagation of the possible precursor and
seizure itself through the brain, and possibly lead to better prediction performance.

• Another recommendation is to use data with less frequent seizures. When seizures
are occurring every minute, there is not a lot of data providing samples for learning
to classify the inter-ictal period. Especially as we do not know exactly the size of
the pre-ictal window. Having more data in between seizures gives more room to
vary the prediction time and pre-ictal time window.

• The exploratory WTTE-RNN experiment showed a promising result, but further
investigation is needed to see if it is actually a feasible method. The model needs
to be able to converge on larger data-sets, which in turn can prevent over-fitting.
Also, the described evaluation method needs to be tested to see if it is a method
which is usable in practise. When these problems are overcome, it is possible to
evaluate the performance of the WTTE-RNN and conclude whether it is usable at
all for seizure prediction.
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Appendix: WBAN survey A
This survey has been originally commissioned to explore the current state of modern
Wireless Body Area Networks (WBANs). The use of multimodal data, recorded by sen-
sors on other body-parts, which are being communicated over a WBAN, would possibly
add to the accuracy of seizure prediction. However, our expectations fell short when we
realized that only single-mode, ECoG data was available to us for using in this thesis.
Still, we chose to append this WBAN survey as part of this thesis for the following
reasons:

a It was work also done during the thesis period, and

b It gives hints on the level of technological maturity of modern WBANs

Hopefully WBANs can be used in future seizure-prediction systems.
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1 Introduction
A Wireless Body Area Network (WBAN) is a network of sensor and actuator nodes which are
wireless connected, and are deployed in the vicinity of, or inside the body. Such a network
can be used to monitor all sorts of biomedical signals, e.g. heart rate, respiration rate, muscle
activity or leg movement. Certain analyses can be done by combining the data from different
nodes, either remotely or within the network, providing direct feedback to other nodes in the
network. One has to solve multiple challenges before a WBAN will work properly. Battery life,
quality of service, availability en security among other things have to be guaranteed. In this
research we give an overview of the current state of WBANs.

The first publication about WBANs dates from 2002 and identifies the main difference
between the existing medical wireless systems that use point-to-point communication and a
WBAN with multiple nodes in a network [1]. It also mentiones that previous research at that
time has only been done in the field of Personal Area Networks (PANs), which are more focused
on the personal environment and not the body itself. The following years there have been
numerous publications about WBAN systems, methods and possible protocols.

When we look at the trends based on the number of publications about WBANs, which can
be found on the website of Web of Science1, we see that the research interest in WBANs rises.
Compared to Wireless Sensor Networks (WSNs) and medical implants (IMDs) there are still a
lot less publications (see Figure 1a), but the amount of publication is increasing steadily, and
even increases faster for WBANs than for WSNs and IMDs as can be seen in Figure 1b. There
is a large dip in 2010, but the reason for this is not really clear. It can be due to the economic
crisis which started around 2007. Effects of a lack of research funds can be seen after two to
three years.

The percentage of the total publications published per year is plotted in Figure 1c, this is
the same data as depicted in Figure 1a but then normalised to a cumulative total of 100%. We
can see that more than 20 percent of the publications on WBANs is published in 2015. We do
not plot the data of 2016 because the index can still be incomplete due to the delays between
submission, publication and indexation of a paper. If we bin the number of publications on
WBANs per two years (Figure 2), a stable increase can be seen with up to 932 publications in
2014 and 2015. We choose a binning period of two years because the time between research and
publication is typically two years.

The trends are based on data from Web of Science. The data can be exported from their
website, and the key to the right data is to use the right search terms. We have used the
following search queries to get to the plotted trends:

• WBANs: ‘wireless "body area" network* OR WBAN‘ (988 results)
1http://apps.webofknowledge.com
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• WSNs: ‘wireless sensor network*‘ (22091)

• IMDs: ‘medical implant* device*‘ (6026 results)

The asterisks are used to match zero or multiple characters, to match multiple versions of a
word, e.g. both singular and plural terms.
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Figure 1: Publication statistics (from Web of Science)

The total number of publications reported by Web of Science on Wireless Body Area Net-
works is 2120, which is not even 4% of the publications on WSNs. This is mainly due to being
a newer subject, but also because WSNs is a broader topic and gets more interest in general.

In Figure 1d we have plotted a trend-line for each of the three subjects, and extrapolated
it until 2030. The trend-lines are formed by fitting a second or third order polynomial on the
current data. For the first 10 years of the trend-line for IMDs, a linear trend-line is used,
because the research interest did not follow a polynomial form in that period. The y-axis is
scaled logarithmic because the trends are more or less logarithmic, so the data is better visible
this way. Note here that this is a very rough estimation, and does not have to reflect the future
in any way.
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Figure 2: Number of WBAN publications binned per 2 years (Web of Science)

The trend-lines show us that nowadays Wireless Sensor Networks is the most popular topic,
and if the research interest will follow the current trend, it will also be like that in the future.
Although the first publications on Implantable Medical Devices date from further back, WSNs
overtake the lead in 2004.

In the next chapters we will show an overview of the surveyed systems, the results from
the publications about the number of nodes, used topologies, wireless communication choices,
routing protocols, security and conclude with a short discussion.

2 Overview of surveyed systems
To find usable publications about complete WBAN systems we have mainly used Google
Scholar2 and the digital library from IEEE Xplore3. Filtering of the results is done manu-
ally by looking at the title: if the title implies a subsystem suitable for or in a WBAN, than
it is not a complete system. But if it states an application or use case for a WBAN or using
a WBAN, than it possibly is a complete system. Filtering is done manually this way, and the
only used search terms are ’Body Area Network*’ and ’Wireless Body Area Network*’.

All 53 surveyed systems are listed in Table 1. For every system an application or design
focus is listed. Also the approach on how the researchers came to their design is interesting,
because it influences the design choices of the WBAN. We can group the publications in the
following categories based on their approach:

• WBAN architecture focus: The publication describes a top-down approach, starting
with the architecture of the Body Area Network. These publications generally describe a
general purpose system or a patient monitoring system.

• Global architecture focus: This is also a top-down approach, but the publication
also includes the global architecture including beyond-WBAN communication and cloud
computing. The applications for such approaches are mainly remote patient or elderly
monitoring.

• Application driven: The publications in the application driven category use a bottom-
up approach, starting with the application. All design choices and development efforts
are based on the application.

2https://scholar.google.com
3http://ieeexplore.ieee.org
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• Specific component focus: These publications highlight a certain component of WBANs
and focus on the design and development of that particular component. The general
WBAN architecture is only used to utilise the component. This is also a bottom-up
approach, but then to proof a certain concept.

Figure 3 shows the distribution of the different categories, and as we can see it is quite even
distributed. There are a bit more publications which focus on the WBAN architecture, and just
a few publications about specific components.

WBAN architecture focus

35%

Global architecture focus
28%

Application driven

28% Specific component focus

9%

Figure 3: Application and design focus categories of WBAN systems (sample size: 53)
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Figure 4: Surveyed publications per year (53 in total)

The number of surveyed publications per year is plotted in Figure 4. Although the sample
size is just 53 publications, we can see that more papers describing complete systems were
published between 2008 and 2011. Later publications might focus more on specific subsystems
of a WBAN, e.g. a dedicated low-power microcontroller or security aspects without applying it
to a real WBAN system.

Application/focus Authors Year
General medical WBAN V. Shnayder, B. Chen et al. [2] 2005
Assisted rehabilitation E. Jovanov, A. Milenkovic et al. [3] 2005
Remote monitoring T. Falck, J. Espina et al. [4] 2006
Using MEMS technology F.E.H. Tay, M. N. Nyan et al. [5] 2006
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Low power WBAN B. Gyselinckx, R. Vullers et al. [6] 2006
Ambulatory monitoring C. Otto, A. Milenkovic et al. [7] 2006
Triage system T. Gao, T. Massey et al. [8] 2007
Elderly monitoring S. Saadaoui, L. Wolf [9] 2007
Performance analysis D. Domenicali, M.G. Di Benedetto [10] 2007
Sleep staging N. de Vicq, F. Robert [11] 2007
Patient monitoring E. Montón, J.F. Hernandez et al. [12] 2008
Hip surgery rehabilitation M. Soini, J. Nummela et al. [13] 2008
Remote monitoring L. Xuemei, J. Liangzhong et al. [14] 2008
Telerehabilitation M. Hamel, R. Fontaine et al. [15] 2008
Activity recognition E. Farella, A. Pieracci et al. [16] 2008
Two-tier WBAN S. Jiang, Y. Cao et al. [17] 2008
Performance analysis M. Sukor, S. Ariffin et al. [18] 2008
Remote monitoring R.A. Rashid, S.H.S. Arifin et al. [19] 2008
Patient monitoring J.Y. Khan, M. R. Yuce et al. [20] 2008
UWB architecture R. Chávez-Santiago, A. Khaleghi et al. [21] 2009
General WBAN B. Wang, L. Wang et al. [22] 2009
Patient monitoring A. Saeed, M. Faezipour et al. [23] 2009
Nervous system monitoring L. Brown, B. Grundlehner et al. [24] 2009
Sensor node development A.T. Barth, M.A. Hanson et al. [25] 2009
Elderly fall assesment T. O’Donovan, J. O’Donoghue et al. [26] 2009
Customizable WBAN K. Wac, R. Bults et al. [27] 2009
Patient monitoring M. Yuce, [28] 2010
Remote monitoring E. Katoch, M. Smole et al. [29] 2011
Remote monitoring S. Sharma, A.L. Vyas et al. [30] 2011
Cycling monitoring R. Marin-Perianu, M. Marin-Perianu et al. [31] 2011
Sleep disorders detection A. Nassir, O. Barnea [32] 2012
Smartphone based WBAN M. Wagner, B. Kuch et al. [33] 2012
Remote monitoring C. Wang, Q. Wang et al. [34] 2012
General WBAN U. Mitra, B.A. Emken et al. [35] 2012
Highly reliable WBAN Y. Hamada, K. Takizawa et al. [36] 2012
Pulse wave velocity tracking K. Li, S. Warren [37] 2012
General monitoring S.L. Tan, J. García-Guzmán et al. [38] 2012
Remote monitoring P. Dinkar, A. Gulavani et al. [39] 2013
Monitoring fitness exercises Y. Varatharajah, N. Karunathilaka et al. [40] 2013
Smarphone based WBAN Y. Shi, Y. Zhang [41] 2014
General WBAN M. Chen, Z. Li et al. [42] 2014
Activity recognition Z. He, X. Bai [43] 2014
Patient monitoring U. Ghoshdastider, R. Viga et al. [44] 2014
Dual-band WBAN K.M.S. Thotahewa, J.M. Redouté et al. [45] 2014
Patient monitoring B.R. Nandkishor, A. Shinde et al. [46] 2014
Monitoring Parkinsons Disease Z. Dong, H. Gu et al. [47] 2015
Aeronautical T. Przybylski, P. Froehle et al. [48] 2015
Remote monitoring J.A. Hidalgo, A. Cajiao et al. [49] 2015
Heart attack detection G. Wolgast, C. Ehrenborg et al. [50] 2016
Swimming monitoring R. Li, Z. Cai et al. [51] 2016
Real-time WBAN Y. Wang, Y. Zheng et al. [52] 2016

Table 1: All surveyed systems with application/focus specified
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3 Number of nodes
The number of nodes used in the surveyed systems varies from 1 to 31 with an average of 4.92
nodes per system including the master node. To see whether there is a relation between the
number of nodes and the publication year, we have plotted the average number of nodes for
each year, see Figure 5. The error bars indicate the standard deviation, and the sample size,
that is the number of publications which list the number of nodes, is 38. The dashed line is
plotted at y = 4 and crosses almost all error bars, which indicates that the number of nodes
through the years stayed stable.

There is one large outlier in 2005, one of the publications [2] mentioned that they have tested
their system with 30 nodes (and a master).
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Figure 5: Average number of nodes per year (sample size: 38)

4 Topology

Star
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Tree
8%

Direct connection
2%

Peer-to-peer

2%

Unknown

2%

Figure 6: Topologies used by WBAN systems (sample size: 53)

Unsurprisingly there is a clear winner regarding the topologies of the reviewed WBAN
systems. About 80% of the systems use a plain star topology, and 6% use a tree approach,
which we can see as a multi-hop star topology. The tree topology makes for more flexible
communication as relay nodes can be used for increasing the reliability of the communication.
E.g. [21] uses a tree topology to relay data from implants to the central node, to ensure a good
communication link, because the signal is less able to propagate through the body mass. The
relays are placed on the skin at the location of the implants.

The large advantage of a star topology is its simplicity and the fact that a routing protocol
is not needed: all nodes have a direct connection to the central node, after all. Also, the most
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well-known protocols only support a star topology such as Bluetooth and WiFi. Zigbee has also
support for multi-hop communication to be able to form a tree topology, besides the support
for star networks.

A disadvantage of a star network is the single point of failure property: if the central node
stops working the whole system is unable to operate. The same counts for a tree network,
because there is also one central node which collects the data and provides the communication
link to beyond-BAN networks.

Other topologies used by the reviewed papers are:

• Mesh (3 systems): In a mesh network nodes have the ability to connect to every node
directly. More complex routing protocols are needed to route data to a sink node.

• Peer-to-peer (1 system): In a peer-to-peer network every node is an endpoint and has
it’s own responsibilities. If data has to be sent to a certain endpoint, the node has to make
a connection itself and send the data. There is no central or sink node which takes care
of the data transport and beyond-BAN communication. Although one of the end nodes
could have this responsibility.

• Direct connection (1 system): A direct connection actually means the lack of a topology
because just two nodes are being connected to each other.

That so many systems choose for a star topology is not a surprise. A star network is
the easiest to set up because its an established network topology, all used wireless protocols
support it and no routing protocol is needed. Also a star topology has the smallest delays,
because packages do not have to be relayed. For most researchers it is the default choice: other
topologies do require further research regarding implementation and design choices while this
is not necessary for a star topology.

The second choice is a tree topology which is used by four systems. The main consideration
for choosing a tree network is reliability. The distances between nodes become smaller if one
adds relay nodes, as is the case in a tree network.

5 Wireless Protocols

Bluetooth 4.0 LE

1.8%
IEEE 802.15.3

1.8% IEEE 802.15.6
1.8%

ANT1.8%

HBC
1.8%

WiFi

5.5%

Bluetooth

16.4%

IEEE 802.15.4

16.4%

Unknown/custom
20%

ZigBee (IEEE 802.15.4)

30.9%

NFC

1.8%

Figure 7: Used protocols by WBAN systems (sample size: 55)
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Several standards exist that can be used as the wireless protocol in WBANs. The most well-
known ones are Bluetooth, Zigbee and WiFi. In addition to those IEEE has published a new
standard specialised for WBAN communication, which is IEEE 802.15.6 [53]. This protocol,
however, is still not used by a lot of the researched systems, as there are not a lot of off-the-shelf
components and libraries that support it. Only one system has used a protocol based on IEEE
802.15.6, see Figure 7. The problem is also that only the Physical and Medium Access Control
(MAC) layer are defined by IEEE, while the Networking and Application layers have to be
implemented by the developer himself. This takes more effort and research to come to a good
working solution.

Some systems use more than one protocol, e.g. [54] uses a form of Human Body Commu-
nication, ZigBee and NFC. These protocols are listed separately in Figure 7 and therefore the
sample size exceeds the number of surveyed systems.

Further we see that about 20% of the systems do not list or specify the protocol they use. It
is most likely that they didn’t use a standard, and created their own protocol. The advantage of
creating a custom protocol is that it can be relative lightweight and targeted at the application
of the developed WBAN. The disadvantage is that there is no interoperability possible between
different systems, or the nodes from different systems.

The most popular choices for WBANs are IEEE 802.15.4/ZigBee and Bluetooth. The advan-
tage of these protocols is that they are well known and therefore already have a lot of hardware,
software and community support available. If the goal of a project is to prove the feasibility
of a certain application with the use of a WBAN, it is a good choice to choose an established
protocol. Also WiFi is used in some systems, but is not a popular choice due to the higher
power consumption.

A remarkable fact is that most systems use Bluetooth version 3 or lower instead of the
more energy efficient Bluetooth 4 Low Energy. Only one system has specified that they use the
Low Energy variant of Bluetooth. We have to add that not all publications have defined the
Bluetooth version they used, and that some of the older publication have not been able to use
Bluetooth 4 as it was released in 2010. ZigBee is the most widely used protocol, and has a lower
energy consumption and supports multi-hop networks. ZigBee is based on the IEEE 802.15.4
standard created by IEEE, and defines an network and application layer on top of this protocol.
Some WBAN systems do use the IEEE 802.15.4 standard, but not the higher layers as defined
by ZigBee, probably to keep the communication overhead low while being able to use ZigBee
hardware.

6 Frequency bands and Physical layer
The used frequencies are highly related to the used wireless protocols. Most of the protocols
only support one frequency band, e.g. WiFi and Bluetooth only support the 2.4GHz band.
ZigBee is also mainly used in the 2.4GHz band, while additionally also having support for
the 868MHz and 915MHz bands. 2.4GHz is therefore the most used band: 80 percent of the
surveyed systems use the 2.4GHz band, see also Figure 8.

Ultra Wide Band (UWB) follows with a usage in 12% of the systems. The frequency range
used for UWB can be very broad and differs per system. The allowed range is 3.1GHz up to
10.6GHz, although with a maximum power spectral density (PSD) of -41 dBm/MHz. A big
advantage of using the ultra wide band is that it allows for high data rates of up to 20Mbps,
while maintaining a high energy efficiency. This data rate can be necessary for sensors which
monitor multiple channels or high frequency signals e.g. signals such as ECG, ECC or EMG.
Also video streams can be transported using this link, which can be useful for capsule endoscopy.
UWB is shown as feasible communication link for WBANs in [55] and used as main wireless

8



2.4GHz
70.5%

Unknown

1.6%

21MHz

1.6%

868MHz

3.3%

915 MHz

1.6% UWB

9.8%

433MHz
6.6%

13.56MHz

1.6%

WMTS/MICS

3.3%

Figure 8: Used frequencies by the WBAN systems

communication link in e.g. [4], [10] and [21].
Human Body Communication (HBC) is only used by one of the systems as addition to

2.4GHz. But HBC is defined as one of the possible communication links in IEEE 802.15.6 and
has some unique features which are interesting for creating a secure and reliable WBAN as
stated in [56]:

• Secure barrier: A HBC network is enclosed by the body, and therefore it is not possi-
ble to eavesdrop communication between nodes remotely. The required communication
frequency for HBC is much lower than for Narrow Band (NB) or UWB communication,
at which the wavelength is much longer than the body’s channel length, so the body does
not work as antenna.

• Less interference: Because the signal does not propagate outside the body, and the
used frequencies do not match those of the crowded RF bands, interference is very low.

• Energy consumption: As shown by the authors of [57], HBC uses an order of magnitude
less energy per bit than UWB, which is already very energy efficient. ZigBee uses around
106nJ/b, Bluetooth 2.1 uses 11.9nJ/b, UWB 2.5nJ/b while HBC gets down to 0.24nJ/b.

• Data rate: The offered data rate of up to 10 Mb/s is quite high compared to ZigBee and
Bluetooth, but lower than UWB which offers data rates up to 20MB/s.

A disadvantage of HBC compared to RF communication is that it is required to have close
contact with the body. A movement tracking bracelet e.g. does not always have proper skin
contact.

In Figure 9 we compare the different frequency bands and also include Human Body Com-
munication (HBC) regarding the energy efficiency, interference levels and possible data rates.
HBC seems like a good solution because of low interference, high energy efficiency and a high
possible data rate.

7 Channel Access
Also the channel access mechanisms are related to the used protocols. Some protocols support
more than one channel access protocol, but others have defined one particular protocol which
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Figure 9: Comparison of interference, efficiency and data rate regarding the physical layer

has to be used. The Channel Access Method is related to Medium Access Control protocols,
but these are in general also concerned with addressing and assigning channels to users.

Unknown

62%
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AT-MAC
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B-MAC
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Figure 10: Channel access mechanisms of the surveyed systems

The distribution of the used channel access protocols is quite different from the previous
discussed items: most systems do not define the channel access protocol they use. It is also not
possible to derive the used channel access method from the use wireless protocols, as this is not
always fixed per protocol, see Table 2. The most popular choices are Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) and Time Division Multiple Access (TDMA).
Because IEEE 802.15.4/ZigBee and Bluetooth also mainly use channel access mechanisms based
on CSMA/CA and TDMA, we can assume that the largest part of the systems from which we
do not know the channel access mechanism will use either CSMA/CA or TDMA.

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) uses a mechanism
to sense whether another node is already using the wireless channel, and tries to avoid any
collisions, by waiting for a random short time in case a carrier is sensed, before sending it’s
data. When the cumulative data rate on a given network increases, the chance for a collision
also increases because the chance that two nodes start sending at the same time increases. An
advantage of CSMA/CA is that, at least for networks with not too much traffic, the delays
are very small: a node does never have to wait for an assigned time slot which is better for
applications with tight timing constraints.

Time Division Multiple Access (TDMA) uses assigned time slots for each node at which they
can use the channel. An advantage is that the channel will be free during the assigned time slot,
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Wireless protocol Possible Channel Access protocols
IEEE 802.15.6 Slotted ALOHA, CSMA/CA
IEEE 802.15.4/ZigBee Unslotted CSMA/CA, Beaconed TDMA
Bluetooth CSMA/CA, TDMA
Wifi CSMA/CA

Table 2: Wireless protocols with their possible channel access methods

so there are no collisions, and therefore the amount of wasted energy is minimised. Another
advantage is that a node can wake-up at this certain time slot, and sleep for the rest of the
period, so for high data rate networks it is more energy efficient. Some systems send out beacons
to synchronise the time slot schedule and to synchronise timers. For data fusion purposes the
relative measurement time of signals can be very important, otherwise synchronisation of the
signals itself becomes imprecise.

The rest of the channel access protocols we came across are actually a variation on TDMA
or CSMA/CA. The protocols are:

• CFRT: The authors of [16] have created a MAC protocol which they name the Collision
Free Real Time (CFRT) protocol. But it is actually almost the same as TDMA with
superframes.

• AT-MAC: Adaptive Data Transmission MAC (AT-MAC) [58] is another protocol used
by one of the WBAN systems, and is actually TDMA with flexible assignable time slots
for each node by a master.

• FrameComm: FrameComm [59] is a duty-cycled CSMA protocol which works with
packet bursts, also called framelets, to send data or synchronisation packages. The
framelets which span the entire duty-cycle are needed because the receiver is only lis-
tening during a certain period of the time, and data could be lost otherwise.

• B-MAC [60]: Is a CSMA-like protocol with a custom Clear Channel Assesment (CCA)
method.

In general a WBAN requires a channel access protocol that can handle both strict periodic
data, high priority data and a high data rate. A lot of sensors that measure a certain physical
signal will report this periodically, but will not have an excessive high data rate. But there are
also nodes that do need a high data rate, e.g. to be able to stream video data, although a video
stream is generally also periodic. These requirements advocate more for a TDMA like protocol.
There is only one caveat regarding high priority events. The transmission delay should be as
low as possible, which is not the case if a node has to wait for it’s assigned slot if TDMA is
used. With CSMA/CA a node can send directly after assessing whether the channel is clear,
and makes for lower delays. Therefore a hybrid approach seems the best way to go. In Figure 11
one can see the TDMA and CSMA/CA protocols compared regarding average packet delays,
energy efficiency and data rate.

8 Routing protocols
The list of used routing protocols in the researched systems is far from abundant. Due to the
fact that most systems use a star or tree topology, for which a routing protocol is not needed,
only three systems use a routing protocol:
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Figure 11: Comparison of package delay, energy efficiency and data rate regarding channel
access methods

• Publish/subscribe routing: The CodeBlue WBAN system as described in [2] uses
a publish/subscribe routing protocol for multi-hop networks. Nodes publish data to a
certain channel, and end-user devices can subscribe to this channel to receive the data.
Multi-hop routing data is maintained in a table at every node, and updated if a lower
cost path is encountered. A discovery protocol is used to discover new nodes, where nodes
need to broadcast their identity. Data from a certain channel is transmitted to all the
subscribed nodes.

• Flows [8]: This protocol uses almost the same approach as the one used in the CodeBlue
project, but allows for multiple coexisting spanning trees that span a certain set of nodes,
where the CodeBlue project uses only one spanning tree to span all nodes in the network.

• Custom implementation: The WBAN project from [40] describes a custom routing
implementation for their mesh network. A node can auto-configure itself as router and
will then be updated by the coordinator with the proper routing information. Also end-
user devices will be updated with the needed routing information by it’s parent, which can
be a router or the coordinator. If the parent is a router, it will then notify the coordinator
about the new end-user device. Data packets are routed based on the routing tables in
each device.

Apart from these three protocols other routing protocols have been developed especially
for WBANs. Some have as goal to be as energy efficient as possible, others keep track of
the radiated energy which should not exceed a certain level as regulations describe. Routing
protocols seem to be only applicable to more complex networks: in a star network every node
has a direct connection with the central node and nodes are only concerned with channel access
and prevention of collisions.

9 Energy supply
All nodes of the surveyed systems use batteries as energy supply, but most publications do not
mention the battery life. There can be at least two possible reasons: the researchers did not
optimise their system on energy efficiency and therefore do not want to publish anything about
it, or the battery life was still so bad that they did not want to mention it.

Only four papers mention the battery life of their nodes. These vary between 10 and 63
hours, which is by far not enough for a proper WBAN. Replacing or recharging batteries of all
nodes each one to two and a half day is not very practical. More research effort is needed to
create real low-power nodes.
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However only one paper mentions using energy harvesting [6], a lot of research has been
done on the field of energy harvesting from the human body. The only surveyed system which
mentions energy scavenging is [6] and reports a generated amount of power of 0.1mW. [61] gives
an in-depth overview of all the available methods to harvest energy in general, while [62] only
lists the most common methods to harvest energy from a human body, of which we give a short
overview here:

• Thermoelectric generators: A thermoelectric generator uses body heat to generate
electrical energy. The problem with these types of generators is that a temperature differ-
ence is needed to generate the power, so insulating clothing or a high ambient temperature
influences the generated amount of power negatively. [63] reports an average power pro-
duction of 10-30µW/cm2 for a typical person indoors.

• Piezoelectric generators: It’s possible to generate electrical energy by using a piezo-
electric material. When a piezoelectric material is deformed due to mechanical force, a
voltage is generated. The amount of energy depends on the piezoelectric properties of the
used material and the amount of deformation applied to the material. This method has
mainly been used in shoes, because it is easy to deform a material when walking. The
reported amount of generated power varies from 1.3mW up to 8.3mW.

• Electromagnetic generators: Another way to use kinetic energy from the body is by
using electromagnetic generators. A number of options are listed in [64], which use either a
spring with a magnet to transform vibrations into electrical energy or a rotor to transform
rotational energy into electrical energy. Larger systems are also built, e.g. using a lever
attached to the upper part of the leg, so rotational movements of the hip joint can be
used for energy generation.

An example of a battery-less ExG node is described in [65] which makes use of a Thermal
Energy Generator (TEG). Another example of a hybrid way of scavenging energy is given in
[66] where piezoelectric and electromagnetic generators are combined.

There are also other ways of charging a node without replacing batteries, which include
wireless charging techniques. We will give a short overview of some methods:

• Resonating magnetic field: This is the technique used by modern wireless phone
chargers. The technique is based on an oscillating magnetic field, which is generated by
the sending coil, and induces a current in the receiving coil if the magnetic field passes
through this coil. By using magnetic resonance is is possible to couple the two coils and
get a high efficiency. The authors of [67] take this even a step further and propose a
system where beam forming is used to charge multiple devices at a time, at a distance of
up to 50cm.

• Ultrasound: Energy can also be transferred using ultrasound, and also here resonance is
used to increase the efficiency [68]. The energy is propagated through tissue as mechanical
vibration energy and acoustic energy, which is transformed back to electrical energy at
the receiver side. The maximum efficiency is just over 22% through 10mm skin tissue.

10 Security
Security is an important aspect of WBANs due to the fact that the involved information is
strict personal and important. Especially if the information is used by other nodes to perform
an action based on the measured data, the integrity of the data is very important. The following
aspects are required to have a secure WBAN:
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• Authentication: Authentication is one of the basic security measures applied to all sorts
of networks and applications, and implies verification and identification of the sender of
the data. Data can only be trusted if the sender is to be known as being not a false
adversary.

• Authorisation: Authorisation means that the controller can allow or disallow a certain
action of a authenticated node in the network. Authorisation mechanisms are not always
available in WBAN networks because there is not always control needed of the actions
performed by a node in the network.

• Integrity: Data integrity implies the verification of the data whether it is not altered dur-
ing transmission. To prove this, together with authentication, a Message Authentication
Code (MAC) or Message Integrety Code (MIC) is often used.

• Confidentiality: Data confidentiality is needed to prevent disclosure of data. Data can
be obtained by using eavesdropping or overhearing, and even with proper authentication
and data integrity mechanisms this data can be valuable. Data confidentiality normally
means applying encryption to the data.

• Secure key management: Keys are used for encryption, authentication and integrity,
so when they can be obtained by an untrusted source, they can pretend to be a trusted
party and decrypt all data. Therefore keys should be managed and stored in a secure way
on all nodes.

• Availability: The availability of the nodes in a network should be guaranteed at all
times. Some information can be very important, and lives can depend on it. Attackers
can perform all kinds of Denial of Service (DoS) attacks to get a system down, e.g. by
jamming on the used communication frequency band.

• Data Freshness: Data freshness techniques imply measures against replaying of packets.
If a non-trusted node can capture a packet and replay this, without altering it data, it
will still be seen as a authorised and integer package, while the data is outdated and can
harm or disrupt proper operation of the system.

• Random Number Generator: Encryption keys are created based on a random number
which is generally generated by a Random Number Generator (RNG). The entropy of
such a RNG is important because if it is very low, the random number and therefore the
generated key can be guessed by an attacker.

Only three of the surveyed systems indicate the cipher suite they use for encryption, in all
other papers, encryption is not mentioned. Although all systems that use ZigBee, Bluetooth,
Wifi, IEEE 802.15.3 or IEEE 802.15.6 already have to use some sort of security measures, so
how secure the communication really is depends on implementation choices and how a system
is set up. In the following subsections we will give a short overview of the security aspects of
Bluetooth, ZigBee and IEEE 802.15.6 and some of the known vulnerabilities.

10.1 Bluetooth

An analysis of Bluetooth (BT) security and it vulnerabilities can be found in [69], of which we
will give a short overview. Each BT device possesses a unique identification number: a 48-bit
address, furhter a private 128-bit authentication key and a 8 to 128-bit private key depending on
the required level of security. Also every BT device has a 128-bit random number which is used as
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seed for the random number generator. Several other keys are used during communication, and
are generated per device-pair or on a session basis. There are several encryption modes available
depending on whether a device uses a semi-permanent link key or a master key, varying from no
encryption at all, all data except broadcast messages are encrypted or all traffic is encrypted.
Bluetooth uses a challenge-response strategy as authentication scheme with as result that both
participants have the same symmetric key.

There are several vulnerabilities known to attack a Bluetooth system. With a man-in-the-
middle attack the keys exchanged during authentication can be obtained. Which then can be
used to impersonate a node, or eavesdrop on communications. Another known vulnerability is
spoofing the BT address. As nodes already put some trust in the identity of the device based
on the address, one can impersonate a device by changing it’s address to the address of another
device. Also the PIN length makes for another vulnerability, as a lot of devices use a very short
PIN of only 4 digits. An attacker can use a brute-force attack using all possible PIN’s to get to
the proper key.

Other vulnerabilities relate to improper validation of BT implementations, exposure and
potential for improper randomness. The level of security highly relates to the implementation
and communication choices. Take e.g. the private key length which can vary from 8 to 128 bit,
the pin length and encryption mode which can be choosen by the application.

10.2 ZigBee

ZigBee, based on IEEE 802.15.4 [70], which defines only the physical and MAC layers, uses
several security measures to ensure secure communication. It utilises the CCM* encryption al-
gorithm which is based on 128-bit AES encryption in Cipher Block Chaining (CBC) mode and
offers measures for authentication, data integrity and sequential data freshness [71]. Data in-
tegrity is provided using CBC-MAC, an encrypt-then-MAC protocol which provides an integrity
check on the ciphertext. ZigBee has a network manager, a trust manager and a configuration
manager which are responsible for the key distribution, device authentication and end-to-end
security respectively. A network can operate in two modes: residential and commercial mode.
Residential mode offers a lower security level and means that all nodes use the same key for
encryption: the network key KN . This is not very secure because it is not possible to prevent
insider attacks. It is however better resource-optimised because less memory and bandwidth
are needed for the key exchange. Commercial mode offers a higher security level and applies a
separate encryption key for every device-pair in the network.

Also ZigBee has a vulnerability regarding initial key negotiation [72]. AES uses symmetrical
encryption keys, so with a man-in-the-middle attack it is possible to obtain the key and imper-
sonate a node, especially when a new node joins the network. Another vulnerability includes
that it is possible to use ZigBee without integrity check and with only encryption, or with only
integrity check and no encryption. This is dependent on the developers implementation. Also
ZigBee network addresses are dynamic and handed out by the network controller. If a node or
network controller leaves and joins the network again, nodes can have double addresses or get a
new address. Using dynamic addresses and on-demand routing makes it easier to impersonate
a node.

10.3 IEEE 802.15.6

IEEE 802.15.6 [53] uses a security hierarchy of thee layers. Using authentication credentials
a master key (MK) is generated for communication between two parties. Once per session a
Pairwise Temporal Key (PTK) is created which is used for communication during a session. A
session’s duration is determined by the security policy on which the communicating parties have
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to agree. Once per message (or frame) authentity verification, encryption and replay defence
measures are applied.

IEEE 802.15.6 offers three security levels:

• Level 0: unsecured communication. All messages are transmitted without authentication,
integrity validation, confidentiality and replay defence.

• Level 1: authentication but no encryption. Messages are transmitted with authentication
and integrity validation and replay defence, but without confidentiality protection.

• Level 2: authentication and encryption. All messages are transmitted with authentica-
tion, integrity validation, confidentiality and replay defence.

The node and a hub jointly have to select a security level during association. For unicast
secured communication, the node and hub need to activate a pre-shared MK or establish a new
MK during the association phase. This is done using a protocol based on Diffie-Helmann Key
exchange and elliptic curve public key cryptography. In total seven algorithms are used in the
IEEE 802.15.6 standard for ensuring secure communication.

IEEE 802.15.6 is vulnerable for Key Compromise Impersonation (KCI) attacks. Using the
address of another node it’s possible to agree with the network hub on a master key while
impersonating this node. This can be prevented by using public key certificates, but then it
is still possible to impersonate the hub [73]. Most algorithms also lack forward secrecy, which
means that an attacker can obtain enough data from the packages to calculate the master
key used for communication by two other nodes, and decrypt all previously recorded packages.
Forward secrecy means that if the communication key is compromised, it cannot be used to
reveal any data sent before.

11 Discussion
Looking at the last ten years of research we see that Wireless Body Area Networks (WBANs)
become an established phenomenon. The initial hype passed, but more research is published at
a stable rate. The results of this paper are based on over 50 publications of complete WBAN
systems.

The majority of these systems use a simple star topology, and only a few use a mesh or
tree topology. Connected to this we see that routing protocols are not used a lot, because
it’s not needed for a star network. The most popular protocols are IEEE 802.15.4/ZigBee and
Bluetooth, which are mainly used in the 2.4GHz band. The second choice for a physical layer
is Ultra Wide Band communication. Surprisingly, only one system uses Human Body Com-
munication (HBC) while it offers promising properties for WBANs. Channel access protocols
are limited to variations of just two protocols: Carries Sense Multiple Access with Collision
Avoidance (CSMA/CA) and Time Division Multiple Access (TDMA). CSMA/CA is better for
low-rate applications with low package delay requirements, while TDMA seems to be better for
high data-rate applications.

Security is an important aspect of WBANs due to the sensitive and personal information
it processes. The main established protocols do not offer total security, as several threats are
known. IEEE 802.15.6 offers better security than Bluetooth and ZigBee because initial key
negotiation is done using a asymmetric key exchange, but IEEE 802.15.6 is still vulnerable for
impersonation attacks and does not offer forward secrecy.

As a result of the reported state of research we see several fields on which more research
is needed. In general more research is needed to make a WBAN more mature an resilience,
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for which we need better energy efficiency, better interoperability and better security. Also
research is needed on Human Body Communication because it is a promising technique which
is not applied a lot to real WBAN systems.
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