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Abstract

Forecasting algal blooms using remote sensing
data is less labour-intensive and has better cover-
age in time and space than direct water sampling.
The paper implements a deep learning technique,
the UNet Architecture, to predict the chlorophyll
concentration, which is a good indicator for al-
gal bloom in the Rio Negro water reservoirs of
Uruguay. The research question focuses on the dif-
ferences between classification and regression in
algal bloom forecasting. The experiments show
that the regression implementation achieves bet-
ter accuracy and lower mean squared error than
the classification implementation that uses cross-
entropy loss and four pre-fixed bins. Different loss
functions that account for the class imbalance in the
data do not improve the model’s performance. Fi-
nally, a quantile-based binning strategy that consid-
ers the data’s underlying distribution achieves the
highest accuracy in both settings.

1 Introduction
Over the last decades, there has been a dramatic escalation
in the number of harmful algal blooms (HABs, commonly
called ”red tides”) across the globe. HABs are caused by
toxic or harmful algae blooms that can cause severe envi-
ronmental and human health problems and economic im-
pacts [1]. Forecasting algal bloom may be helpful in limiting
the harmful effects of HABs.

Measuring algae concentrations traditionally relies on direct
water sampling, a labour-intensive method that is limited spa-
tially and temporally. Remote-sensing-based detection solves
these two problems, but it often relies on estimated data such
as chlorophyll (Chl-a) that may be unreliable estimates and
not direct measurements [2]. The paper will use remote-
sensing data to forecast the estimated chlorophyll concen-
tration values (in µg/l). The estimation is based on a local
algorithm developed by the Ministry of the Environment for
the three reservoirs of the Rı́o Negro in Uruguay: Baygorria,
Bonete and Palmar.

The objective is to predict a continuous variable, the chloro-
phyll concentration, given remote-sensing data. The output is
intuitive, but it does not explain the accuracy of the predic-
tions. It is possible to frame the original regression problem
as a classification problem to account for uncertainty by esti-
mating the probability of a value belonging to a bin or a range
of values.

Forecasting algal blooms is a challenging task due to algal’s
non-linear and non-stationary nature, especially for classi-
cal models such as linear regression. Machine learning ap-
proaches are known to work well with complex real-world
data and have been applied to HAB predictions. Recent
deep learning techniques such as Long-Short-Term-Memory
(LSTM) networks can discover temporal patterns in the data
and thus improve the prediction [3]. The research is not con-
cerned about the accuracy of the predictions, so a simpler net-
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Figure 1. The paper explores the difference between a regres-
sion and classification implementation of the UNet Architec-
ture in the context of algal bloom forecasting.

work that only takes into account the spatial information, the
UNet Architecture, has been implemented [4]. Specifically,
two different adaptations of UNet have been implemented.
One predicts a discrete label corresponding to a range of val-
ues, and the other outputs a continuous value representing the
chlorophyll concentration.

The paper will answer the following research question: What
are the differences between a classification and regression
model for forecasting the chlorophyll-a concentration of a
water reservoir? The research question can be divided into
three sub-questions:

1. What are the differences between a classification and re-
gression implementation of the UNet Architecture?

2. How can class imbalance be mitigated using different
loss functions?

3. What influence does the binning strategy have?

The research provides three main contributions. The regres-
sion implementation of UNet outperforms the simple classifi-
cation implementation in terms of accuracy and mean squared
error, but it misses vital information about the uncertainty of
the predictions. Different loss functions that account for the
class imbalance have little effect on the overall accuracy of
the predictions. An appropriate binning strategy improves
the performance in the classification task and gives the best
accuracy and mean squared error.

2 Related Work
Machine learning methods have already been developed to
forecast the occurrence of algal blooms using remote sensing
data. In a study, the Gradient Boosted Descent Tree (GBDT)



algorithm was the most effective approach to predict such
phenomenon [5]. The data used in HAB forecasts contains
relevant spatiotemporal information. Long Short-Term Mem-
ory (LSTM) networks are typically used in time series data
where the order of the observations is essential. Convolu-
tional Neural Network (CNN) models are used to work with
images. An approach to work with sequential images is the
ConvLSTM [6]. Although, these methods provide excellent
performance in predicting HABs, the research is concerned
with the differences between regression and classification, so
a more straightforward method, the UNet Architecture, has
been implemented.

One way of handling the class imbalance problem is to use
an appropriate loss function. A simple heuristic is to set class
weights inversely proportional to the class frequency. How-
ever, as the imbalance increases, loss functions based on over-
lap measures, such as dice score, have been proven to be more
robust than weighted cross entropy loss [7]. Dice loss penal-
izes the pixel-wise mismatch between prediction and ground
truth and is widely used in image segmentation tasks to solve
the class imbalance problem [8]. Other loss functions, like fo-
cal loss, force the network to focus on hard samples that are
not easily discriminated from others and are often misclas-
sified. Focal loss can enable Convolutional Neural Network
(CNN) models to be less biased towards the majority class
and achieve higher F1-scores than models augmented with
normal cross-entropy loss [9]. Another candidate loss func-
tion, Dynamically Weighted Balanced (DWB) loss, adapts its
scale according to the reliability of confidence estimates [10].
The paper uses focal, dice and weighted cross entropy loss to
account for the class imbalance of the chlorophyll concentra-
tion and leaves DWB loss as future work.

3 Method
This section describes the methods used to answer the re-
search question and the three sub-questions.

3.1 Classification vs Regression
In the classification task, the continuous chlorophyll-a con-
centration values are assigned to a label according to the fol-
lowing ranges: label 1 [0, 10), label 2 [10, 30), label 3 [30, 75)
and label 4 for values above 75 mg/mL. The data is skewed
towards low chlorophyll-a concentration values since most of
the points are set to labels 1 and 2 while only a few get as-
signed to label 4. Applying a Softmax Activation Function to
the model’s output gives the probabilities of each label for a
given input. The label with the highest probability becomes
the predicted label.

The label goes through the same transformations as the input
in the regression implementation. The Mean Squared Error
(MSE) is used as the loss function. Since the least popular
labels have high chlorophyll-a concentration values, the loss
function will penalise these more, correcting partly for the
class imbalance. No other technique has been used to fight
the class imbalance in the regression setting. After the stan-
dardisation has been reverted, the model’s output becomes the
predicted continuous value.

3.2 Loss Functions
The data is distributed unevenly across the different classes.
Training on such an imbalanced dataset results in a model that
performs well in majority classes but cannot predict the mi-
nority classes. Cross Entropy Loss treats each class equally
and is expected to perform poorly on such datasets. Differ-
ent loss functions that account for class imbalance have been
implemented to answer the second research question.

Focal loss is a dynamically scaled cross-entropy loss.

FocalLoss = −
∑

(1− pi)
γ log(pi), (1)

where the term − log(pi) is normal cross entropy loss and
the term (1 − pi)

γ is the regulating factor that focal loss in-
troduces [11]. The idea is to reduce the loss more in well-
classified examples than in less confident misclassified sam-
ples. If the model is confident, a small portion of the cross
entropy loss is taken, and when the model is less confident,
it is penalised more by taking a larger portion of the cross
entropy loss. The focusing parameter, γ, is set to five in the
experiments.

Class-balanced loss introduces a weighing factor σ to ac-
count for the class imbalance. Precisely, a class-balanced loss
function based on the effective number of samples [12] has
been used in the experiments and has the following weight-
ing factor.

σi =
1− β

1− βni
, (2)

where ni refers to the number of samples in the ground truth
label i and β is a parameter that can be tuned but is set to 0.99.

Dice loss is a measure of similarity between two samples,
where zero means the labels are predicted perfectly, and one
means none of the predictions matches the labels. The idea
is to maximise the overlap or correctly classified labels while
minimising the union of the ground truth and the prediction.
The definition of dice loss is

DiceLoss = 1− 2
∑

ŷy + ϵ∑
ŷ + y + ϵ

, (3)

where ϵ is a small number to avoid division by zero, ŷ are the
predictions and y are the labels.

Compound Loss is obtained by summing over different types
of loss functions.

3.3 Binning Strategies
Two different binning strategies have been implemented to
convert the original regression problem into a classification
one. Figure 2 visualises the class ranges used by the differ-
ent binning strategies against the chlorophyll concentration
distribution.

In fixed-width binning, values are assigned to bins according
to some predefined range of values based on some domain



Figure 2. Visualisation of the estimated chlorophyll-a con-
centration distribution and the class ranges used in different
binning strategies. Fixed-width binning results in irregular
bins, while quantile-based adaptive binning results in equal-
sized bins by considering the data distribution.

knowledge. A drawback of this approach is that it can lead
to irregular bins that contain different numbers of points. The
Uruguay government considers the chlorophyll-a concentra-
tion high when it is above 80 µg/L and is interested in the
following ranges of values: [0, 10, 30, 75, 150].

If a specific range of values is not necessary, adaptive bin-
ning is a safer strategy because it is based on the underlying
distribution of the data. Specifically, the paper implements
quantile-based binning, where q-Quantiles can be used to par-
tition the data into q equal partitions [13]. In the experiments,
4-Quantiles binning is used, which results in the following
bin ranges: [0.0, 4.34, 7.24, 15.04, 150.0]. These ranges are
fine-grained in the lower chlorophyll-a concentration values
since the data is skewed towards lower values.

4 Dataset
The experiments were run on data from the Palmar reservoir.
A data loader has been used to load the data into the model.
Additionally, before training the model, some pre-processing
steps were applied to the data.

4.1 Data loader
The data loader allows specifying a window size and a pre-
diction horizon. The window size controls the number of past
observations taken into account when training the model. A
window size larger than one is more sensible in an architec-
ture designed to learn temporal patterns, so it is set to one in
the experiments. The prediction horizon represents how far
into the future a prediction is made in terms of days. A pre-
diction horizon of one is used in the experiments. The train-
ing loader samples 200 random crops of the reservoir every
epoch in batches of size 4. The validation loader contains the
same 37 samples, measurements that take place after Decem-
ber 31st of 2021, across epochs.

4.2 Data Processing
The research discards the meteorological data and only uses
biological, i.e., chlorophyll, turbidity and cdom, and water

Figure 3. Forecast of the chlorophyll concentration for a spe-
cific sample of the validation set in the regression setting. The
label and the prediction are continuous values between 0 and
150, representing the chlorophyll concentration in µg/l for a
specific reservoir location. The grey area represents miss-
ing labels due to cloud coverage. The absolute prediction
error is also plotted, and the binned regression output is for
a more direct comparison with the regression setting. The
binned prediction plot contains the accuracy of the sample in
the title.

temperature features for efficiency. The missing values in the
input are replaced by zero. The data contains significant out-
liers that may hurt the performance of the model. The values
are clipped to a maximum value of 150 to limit the effect
of outliers. Furthermore, a Yeo–Johnson transformation has
been applied to the biological data to make the biological data
more normal distribution-like. Finally, the data is standard-
ised to have mean zero and unit variance.

5 Experiments
The average mse loss and accuracy of all the training and
validation steps are logged per epoch. The loss is computed
without considering predictions with missing labels, so these
do not contribute to the gradient. Similarly, the accuracy ig-
nores missing labels. The training uses the Adam optimizer
and a learning rate of 10−4. Gradients exceeding a value of
1.0 are clipped to avoid the exploding gradient problem. The
network can overfit in one batch and predict all the labels.
These checks verify that the network has been implemented
and adapted correctly to the data. Multiple runs are needed
to reduce the possible effects of the random initialization of
weights and biases at the beginning of the experiment. There-
fore, each experiment has been run five times.

Difference between regression and classification
The experiment answers the question: what are the differ-
ences between a classification and regression implementation
of the UNet Architecture? Figure 3 shows the regression re-
sults for a specific sample of the validation set and Figure 4
shows the classification results for that same sample. One



Figure 4. Forecast of the chlorophyll concentration for a spe-
cific sample of the validation set in the classification setting.
The label and the prediction are discrete labels that corre-
spond to ranges of chlorophyll concentration values in µg/l.
The figure shows the reservoir locations where the predic-
tion matches the label and the confidence of the prediction
to account for model uncertainty. The bins are smoothed to
continuous values by taking the mean and median of each bin
for a direct comparison with the regression output.

big difference is that confidence in the prediction can only be
measured and plotted in the classification setting. Binning the
regression output makes it possible to obtain accuracy scores
in the regression setting. Smoothing the classification output
by the mean and median of each bin allows the computation
of the mean squared error in the classification setting. Ta-
ble 1 summarizes the average and standard deviation of the
accuracy and mse in the regression and classification setting.
The regression implementation has higher accuracy and lower
error on average than the classification implementation that
uses normal cross-entropy loss and four pre-fixed bins.

METHOD ACCURACY (%) MSE (µG/L)
regression 43.2± 0.7 1953± 8
classification 41.5± 0.9 2154± 35

Table 1. Average and standard deviation of samples’ accu-
racy and mean squared error in the validation set in the re-
gression and classification task over five runs. The regression
implementation has better accuracy and lower mean squared
error than the classification implementation.

LOSS ACCURACY (%) MSE (µG/L)
cross-entropy 41.5± 0.9 2154± 35
balanced cross-entropy 41.6± 0.1 2114± 37
focal 40.8± 0.4 2166± 44
dice 36.9± 0.3 2436± 6

Table 2. Average and standard deviation of the accuracy
and mean squared error of the validation set for different loss
functions. There is no significant difference in the overall ac-
curacy using different loss functions.
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Figure 5. Normalized confusion matrices of the classification
predictions using different loss functions. The accuracy does
not improve for the minority classes by using different loss
functions.

Choosing an appropriate loss function
The following experiment answers the question: how can
class imbalance be mitigated using different loss functions?
Table 2 shows that changing the loss function to account for
class imbalance does not significantly impact the overall ac-
curacy of the predictions in the validation set. Additionally,
Figure 5 shows that the accuracy does not improve for the
minority classes except for the model augmented with focal
loss, which shows a slight improvement in the prediction of
the minority classes.

Binning strategy analysis
This experiment answers the question: what influence does
the binning strategy have? Figure 6 shows that fixed-width
binning can predict roughly half of the labels in the major-
ity classes but almost none in the minority classes, while
quantile-based binning predicts all the labels more accurately,
specifically label 3. On average, Table 3 shows that quantile-
based binning results in higher accuracy but a bigger mean
squared error. Most adaptive binning misclassifications are
assigned to label three instead of label 0, as happens on fixed-
width binning. Since label 3 has a range of higher chloro-



BINNING ACCURACY (%) MSE (µG/L)
fixed-width 41.5± 0.9 2154± 35
adaptive 52.6± 0.6 2753± 10

Table 3. Average and standard deviation of samples’ accu-
racy and mean squared error in the validation set using differ-
ent binning strategies. The adaptive-binning strategy results
in higher accuracy but a bigger mean squared error.
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Figure 6. Normalized confusion matrices for different bin-
ning strategies. Fixed-width binning predicts the majority
classes well, labels 0 and 1, but it performs poorly on the
minority classes, labels 2 and 3. Quantile-based binning re-
ports better accuracy in all labels.

phyll concentration values, the error is expected to be bigger
in adaptive binning, even though the accuracy is better than
in fixed-width binning

6 Responsible Research
The experiment has been made more reproducible by using
a popular PyTorch implementation of the UNet architecture
that is widely available on GitHub [14]. Additionally, data
processing steps and parameters, such as the learning rate or
the batch size, have been documented in the paper. However,
the data used to train the model is not publicly available, so
the experiment’s reproducibility is limited to those with ac-
cess to the data.

Algal blooms are a serious phenomenon that can have severe
health, environmental and economic effects. For those rea-
sons, correctly forecasting algal blooms is important. On the
contrary, providing the wrong predictions may worsen the ef-
fects of harmful algal blooms. The research has provided a
classification implementation of UNet that gives information
about the confidence of the predictions, which can be used by
the authorities to make more educated decisions in the possi-
ble presence of algal bloom.

7 Discussion
Two different variants of the UNet Architecture have been im-
plemented to predict the chlorophyll concentration of a reser-
voir using remote sensing data in a regression and classifi-
cation setting. The regression task uses mean squared error,
achieves higher accuracy and has a lower error than the clas-
sification task, which uses cross-entropy loss and four pre-
fixed bins. If a concrete set of ranges is not required, an adap-
tive binning strategy based on the quantiles of the chlorophyll

concentration distribution yields the highest accuracy score
in both settings. The classification implementation can pro-
vide information about the uncertainty of the predictions. The
class imbalance in the data was tackled using different loss
functions such as focal, dice and class-balanced loss. None
of the loss functions showed a significant improvement in the
overall accuracy of the predictions compared to cross-entropy
loss. However, focal loss did achieve a slightly higher accu-
racy on the minority classes.

The experiments have been limited to manual tuning, and the
UNet model is unsuitable for accurate algal bloom forecasts.
The same experiments can be run in future work with a more
adept model and hyperparameter tuning to see if the same
conclusions are reached.
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