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Abstract

The Earth needs attention. That is the bottom line of today’s discussion on
the impact of humans on the environment and their contribution to global
warming. With the rapid sea level rise and the melting ice caps, it is be-
coming increasingly important to understand these processes. Mass balance
estimates of the cryosphere (e.g. Greenland and Antarctica) are one of the
keys to unlocking the secrets of today’s concerns and predicting tomorrow’s
problems. The primary objective of this research is to construct an auto-
matic classification algorithm to that will distinguish between the polar land
cover types: ice, rock, snow and water. The algorithm is based on full wave-
form laser altimetry measurements gathered by the Ice, Cloud and Elevation
Satellite (ICESat). The results of this research have the potential to play an
important role in improving the current methods for computing mass balance
estimates and monitoring seasonal changes in land cover type of the cryosphere.

Mass balance estimates are an important technique for monitoring the total water con-
tent of the polar regions. Analyzing temporal differences in ice mass change offers an
insight into the melting of the ice sheets and its effects on global water cycle, such as ocean
currents. The more accurately mass balances can be estimated, the better the impacts on
the Earth’s processes can be determined.

One of the techniques to compute mass balance estimates involves the use of surface
altimetry data. One of the main Earth observing satellites for surface altimetry is ICESat,
launched in 2003 by the National Aeronautics and Space Administration (NASA). This
satellite measures the Earth’s surface elevations with a technique called laser ranging: 40
times per second, the satellite sends out a laser pulse to the Earth’s surface and records
how long it takes until each reflected pulse returns. The time duration multiplied by the
speed of light yields the range between satellite and the ground surface. With the location
of the satellite at the time of measurement, the Earth’s surface can be modeled.

This method holds true to its simplicity only if the transmitted laser pulses would be
infinitely short and would only encounter a flat ground surface. However, the received
pulses are broadened (in terms of energy over time) by the finite transmitted pulse length
and, more importantly, by all objects along the laser’s path line-of-sight. The waveforms
that result from these influences form the most important piece of information for the
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classification algorithm of this research study.

The research basically analyzes the effects of ice, rock, snow and water on the returned
waveforms. To verify the land cover types, validation data sets have been used from vari-
ous Earth observing satellite missions, airborne altimetry missions, and terrestrial weather
stations. Aided by these validation data sets, a classification algorithm was constructed
based on ICESat’s waveforms. The most important waveform attributes for classification
are the waveform returned energy, width, kurtosis and saturation energy.

The returned energy, from which the reflectivity of the laser pulse can be computed, is
the most important attribute to classify snow, since snow generally gives higher reflectiv-
ity than other land cover types. The waveform width is used to classify rock, since rock
generally makes the waveform wider due to elevation differences within the laser’s surface
footprint. In addition, small width values are used for classifying ice. The waveform kur-
tosis is a measure for the peakedness of the waveform and indicates water, since flat water
surfaces makes the waveform sharply peaked rather than bluntly peaked. Finally, simply
put, the waveform saturation energy is a measure for the unexpectedness of returned energy
with respect to the returned energy of the previous measurements. For the classification
algorithm, this attribute is used to indicate a change in land cover type.

The classification algorithm has been tested against validation data to analyze its accu-
racy. This resulted in the most important conclusion of the research, namely that classifica-
tion based on ICESat’s full waveform signals and attributes works well, with a classification
accuracy of 74%. The algorithm has been applied to other test areas as well, showing sea-
sonal changes in land cover types.

Two major benefits of the classification algorithm can be identified. First, rough classi-
fication maps of the polar regions per season improve the mass balance estimates by indi-
cating which areas to exclude. Since spatial interpolation between ICESat’s measurements
is required for computing the mass accumulation or loss, an indication of rock surfaces can
help to make the estimate more accurate. In addition, ice, snow and water have different
mass densities, which means that one meter accumulation in height does not result in equal
mass gain for each land cover type. The second major benefit is the potential monitoring
of changing land cover types over time. For example, glacier retreat and shrinking snow
extent over time could be observed. The implementation of the classification algorithm gets
us closer to answering the question: what is the impact of climate change on the cryosphere?



Preface

Climate change is one of the most challenging issues that we currently face and
will face in the future if we do not take significant action to reduce our impact
on the environment. As the Climate Change 2007 Synthesis Report of the
Intergovernmental Panel on Climate Change (IPCC) points out: “Partial loss
of ice sheets on polar land could imply meters of sea level rise, major changes
in coastlines and inundation of low-lying areas, with greatest effects in river
deltas and low-lying islands.” That statement concerns only the possible sea
level rise due to melting of the ice caps, but does not even indicate the direct
wide-spread implications to mankind and our fellow inhabitants. It may sound
popular, but right now could very well be the defining moment to get a grip on
the situation and significantly reduce or even avert potential disastrous effects
on today’s society.

Contributing to finding solutions to today’s problems was one of the main reasons for
my interest in this research study. Although I was hoping to see already the direct effects
of this study on a better understanding of the Earth’s problems, I am optimistic about the
implications it might have. If the results of this study will be indeed used by the scientific
community, I will be satisfied knowing that I was able to have a (small) contribution to
the research on today’s problems.

This research study is the final project of the MSc. Geomatics of Delft University of
Technology (DUT) in The Netherlands. The research has been conducted partly at DUT
and partly at the Center for Space Research (CSR) at the University of Texas at Austin.
In the first three months, a literature study and some basic processing of ICESat data was
conducted at DUT. In addition, preparations were made for the four months internship
at the CSR. In Austin, the study focused on data filtering and correction techniques, the
waveform interpretation and the integration of validation data with ICESat data. In addi-
tion to the benefits of consultation with CSR colleagues for this research study, I intended
to provide the CSR with helpful feedback on the data and assistance where ever I could.
At the end of the internship, I gave a seminar to the all colleagues of the CSR that were
interested in my research.

After the internship, the research focused more on the surface topography analysis and
the classification algorithm. Along the way, more and more analysis was put into finding
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more optimal attributes for the classification algorithm, such as the atmospheric signal,
the gain and the saturation energy correction. Finally, after fifteen months, the work is
finished and a classification algorithm can be presented.

Looking back at the research, several difficulties and lessons learned can be summarized.
First of all, the interpretation of all of the flags, and the understanding of the correction
and filtering techniques was surprisingly difficult. Since ICESat suffered from some set-
backs during its lifetime, it was difficult to determine which flags and corrections were still
valid and how to apply these properly. Fortunately, the colleagues at the CSR were able to
assist me in this process. Another difficulty was the somewhat ambiguous interpretation
of the validation data. Since the primary validation data set was acquired before ICESat
was operational, special care had to be taken in comparing this data to ICESat data. Fi-
nally, a review of the gain and saturation of the signals after thirteen months delayed the
research study once more, because some unexpected signal characteristics were discovered
that had to be taken into account for proper classification. The most important lesson
learned regarding how to tackle the research question is that special attention should be
paid to the relevancy of subprojects with respect to the end goal of the research.

In addition, several experiences and gained skills can be identified as well. First of
all, to become acquainted with the academic scene of research was helpful and I got a
good impression of the working environment. Still to the last day, I am amazed by the
researchers’ dedication to the matter of research that is so important for current discus-
sions. On a personal level, I became more skilled in a technical and social way. First of
all, my abilities of scripting in MATLAB improved significantly over the research study.
In addition, I learned new computing languages such as Fortran and IDL. Even though
programming is not my hobby in particular, I learned to appreciate that it forms a pow-
erful tool to get sensible and interpretable results from abstract data. Without a doubt,
the freedom in programming results in endless and unlimited possibilities for the sake of
research. However, interpretation of computer-made results remains dependent on human
skills and their personal judgment. Finally, I realized the importance of clear and straight-
forwards communication towards colleagues, not only face to face but via the electronic
highway as well. Especially, the communication with DUT, the CSR, the Goddard Space
flight Center (GSFC), and the National Snow and Ice Data Center (NSIDC) was essential
for my research and I hope I was able to provide these parties with sensible feedback as well.

Besides these institutes and centers as a whole, I would like to thank several individuals
as well. First of all, I would like to express my gratitude towards my girlfriend Sanne. I am
a lucky man with the support she gave me by accompanying me to Austin, by giving me
the freedom to work hard on this research study and by reading my lengthy chapters. Of
extremely high importance was the support of my supervisors as well: Brian Gunter and
Roderik Lindenbergh at DUT and Tim Urban at the CSR. The weekly and two-weekly
meetings in Delft with Brian and Roderik gave me the extra drive to get the most out of
this research study; their support via email during my time in Austin is highly appreciated
as well. In Austin, I received great support from Tim on direct ICESat related issues.
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Especially the explanations on the data products and the interpretation of their attributes
were essential to this research. I hope I compensated the CSR’s time and effort by giving
constructive feedback on ICESat’s data. Next to the direct players in the research study, I
also would like to thank the CSR employees Roberto Gutierrez for the information on the
White Sands data, Amy Neuenschwander for the waveform interpretation, Robert Harpold
for the help with Fortran, Charles Webb for the data product processing, and Dr. Schutz
for giving me the opportunity to conduct research at the CSR. In addition, I would like
to thank Boris Jutzi (Research Institute for Optronics and Pattern Recognition) for shar-
ing his experience with the deconvolution technique, Stephen Palm (GSFC) for helping
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Chapter 1

Introduction

This research study focuses on analyzing full waveform signals of the Ice, Cloud and Ele-
vation Satellite (ICESat) for the classification of land cover types over the cryosphere. The
title of this research can be decomposed into three important pieces of information: the
full waveform signals of ICESat, the classification of land cover types, and the cryosphere.
Together, these indicate the limits of the playing field of this research study: the first part
limits the means of the research to signals that are produced by ICESat’s laser ranging;
the second part limits the goal of the research to the characteristics of the Earth’s surface;
the third part limits the domain of the research and implies the classification of ice, rock,
snow and water.

In this chapter, the structure of the report and research study will be introduced. First
of all, a brief explanation on ICESat’s full waveform signals will be given in Section 1.1.
In Section 1.2 the relevance of the research project will be explained. Next, the research
objectives and research question will be given in Section 1.3. Finally, in Section 1.4 and
Section 1.5 the report outline and research outline will be discussed with text and flow
diagrams.

1.1 Brief introduction to full waveform analysis

Full waveform signals play a central role in this research. The basic principle
of ICESat’s measurements is simple: the satellite sends out a laser pulse to the
Earth’s surface and records how long it takes until the reflected pulse returns.
The time duration multiplied by the speed of light yields the range between
satellite and the ground surface. With the location of the satellite, the Earth’s
surface can be modeled in a pre-defined reference frame. Yet, this is only the
beginning.

This method holds true to its simplicity only if the transmitted pulse would be infinitely
small and not disturbed by any other factor than a flat ground surface. However, the re-
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ceived pulse is broadened in terms of energy over time by the transmitted pulse length
and, more importantly, by all objects along the laser’s path line-of-sight. The laser beam
cross-section on the Earth’s surface is about 120m in diameter and because the elevation
differences within this footprint may differ, the received waveform (i.e. the distribution of
returned laser energy over time) becomes complex. Furthermore, the reflectance of land
cover types and atmospheric disturbances like aerosols and clouds have their effect on the
waveform as well. In addition, also the satellite’s waveform recorder has its effects on the
waveform’s shape.

Based on the signals that are recorded by ICESat and additional information computed
on-ground, data products are created by the National Snow and Ice Data Center (NSIDC)
[35]. These data products contain hundreds of attributes, from raw satellite parameters
to computed elevation estimates and corrections. For example, these include the raw
waveforms; pre-computed signal characteristics, such as signal reflectivity and signal peak
location; footprint geometry values; data quality flags and corrections. For this research
study, the attributes are essential for analysis of the signals and serve as the framework for
constructing the classification algorithm.

After this brief explanation of what ICESat’s waveforms are and which factors influence
these, one might wonder if these waveforms could be used not only for estimation of surface
elevation, but for other applications as well. One of these applications is the classification
of land cover types. This would make ICESat data even more successful than it already is.

1.2 Relevance of research

This research study basically comes down to analyzing an alternative applica-
tion of ICESat data other than the primary goal of the mission. The relevance
directly relates to the improvement of current techniques for mass balance es-
timates of the polar regions.

Currently, most of the mass balance estimates from space are computed either with
gravity field determination or surface altimetry (e.g. ICESat), or a combination of the
two. To estimate the water content from a mass estimate (for example the amount of
snow on Greenland), information is required on the composition of the Earth’s surface.
This composition changes over time and consequently the water content too. For these
approaches, assumptions are made concerning the land cover types.

Since ICESat takes measurements along flight direction and these tracks cross each
other once in a while, cross-over measurements can be used for analysis. Several tech-
niques to compute mass balance estimates use these cross-overs to determine the elevation
difference over time. However, because the cross-overs are not regularly spaced, in partic-
ular away from the Earth’s poles, the height change observations at the cross-overs cover
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individual points rather than an extended region. To estimate the height change over a
complete region, the observations at the cross-overs should be interpolated to get a smooth
grid of estimations. This smoothing and interpolation results inevitably in height change
estimation errors. The main contributing factor to these errors is the uncertainty between
observations, i.e. the difference between the actual height change and the interpolated
height change at a certain point. In addition, to estimate the mass gain or loss from height
changes, information is required of the land cover type. Here, the relevance of this research
kicks in.

Consider two cross-overs on Greenland both showing an surface elevation increase of
1m at time t2 with respect to the year before (t1 ). The elevation increase is presum-
ably caused by snow accumulation and the two cross-overs are 100km apart. Interpolation
would probably result in an estimated elevation increase of 1m right at the center of the
two points. Whether this is indeed true, is unknown and consequently this creates uncer-
tainty in the analysis. Even though there is not a cross-over at the central point, there
still might be a single observation taken by ICESat at time t2. If this observation could be
used to determine whether there was bare rock, then it might be concluded that no snow
accumulation at this central point occurred. Consequently the interpolation can be cor-
rected for. Thus, knowing the locations of rock areas, the ice sheet mass balance estimates
could be improved by filtering out these areas.

In addition to the benefit of identifying areas of bare rock at the polar regions, another
important advantage of classification is related to mass densities. Snow, ice and water
have different mass densities and information where these land cover types occur could
make the estimation of total water content of ice sheets more accurate. Furthermore, the
classification could be used for monitoring ice sheet landform change over time. For exam-
ple, glacier retreat and advance over time and changing snow extent could be monitored.
Finally, the classification as a new application can be seen as an extension of the ICESat’s
possibilities and makes the mission even more valuable than it already is.

1.3 Objective and research question

Having explained the relevance of this research, the overall objective and re-
search question can be stated. This will make the goal of the research more
concrete and tangible. The research question will subsequently be divided into
subquestions.

The main objective of the research is to improve the overall accuracy of the ICESat-
derived elevations and elevation changes over the cryosphere (in particular Antarctica and
Greenland). This is a broad objective and could be approached in many ways. To narrow
down the scope of the research, the focus will be on two approaches. The first approach
relates to finding a methodology to classify land cover types. For this methodology, the
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relevant ICESat attributes have to be identified. This is the most important approach and
forms the red thread throughout the research. The second approach involves the analysis
of surface topography and the ICESat measurement system for recording the signals. The
results of this approach will contribute to construct the land cover type classification algo-
rithm.

From the objective and approaches, the main research question and underlying question
can be identified. The main research question is:

Can ICESat’s full waveform signals be used to discriminate between land cover types over
the cryosphere?

The research question can be subdivided into two underlying questions, accompanied
by brief explanations:

∙ Which attributes can help to distinguish between the land cover types? The ICESat’s
full waveform signals consists of several attributes, from waveform width to signal
reflectivity. the relevant attributes will be used to construct a classification algorithm.
The land cover types that are distinguished for this research are ice, rock, snow and
water. To verify these land cover types, validation areas will be identified, together
with validation data sets.

∙ What effect do surface topography and the ICESat measurement system have on ICE-
Sat’s full waveform signals? Surface topography influences the full waveform signals,
because of the elevation changes within the footprint. It could assist in identifying
classification criteria for the discrimination between land cover types. In addition,
the measurement system of ICESat should be taken into account as well, because it
influences the recording of the waveform signals.

The priority of this research study is finding a classification algorithm based on full
waveform signal analysis. Consequently, most attention will be paid to answering the first
subquestion. The second subquestion is mainly answered in the process of finding the
classification algorithm.

1.4 Report outline

The report outline gives a rough overview of the research structure and the
relationship between the chapters. It is intended to construct the report such
that the chapters have minimal overlap and are as decorrelated as possible.
The chapters have been structured in the report outline in parallel order as
well as in sequential order.

Since the research process is quite complex, the report outline can help to introduce the
general structure of the research study. It is the first step in explaining how the research
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Figure 1.1: The outline of the report, indicating the four segments and the corresponding chapters.
The chapters are indicated by square boxes. The corresponding chapter numbers are
indicated between parentheses.

question is approached and what it takes to find the answer. The report can be divided
into four segments, each one covering multiple chapters, see Figure 1.1. The first segment
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addresses the background and data set information. In Chapter 2, the ICESat principles
are analyzed, which includes the mission’s objectives, the mission’s operations and the data
products. In Chapter 3 the validation areas and data sets will be discussed. A distinction
is made between the validation data for surface topography analysis and the validation
data for classification analysis.

The second segment can be summarized as the data extraction, filtering and correction
process. In Chapter 4 an overview will be given of the data product derived attributes
that have no relationship with the full waveform signals. Here, the characteristics of these
attributes are explained, together with the filtering and correction techniques that are ap-
plied to them. Chapter 5 gives an overview of all waveform derived attributes. It discusses
the exact meaning of waveforms and how these are affected. In addition, the filtering tech-
niques that are applied on the waveforms will be discussed. After these two chapters, the
data is ready to be used for more advanced processing and the data can be combined with
the validation data sets.

In the third segment, ICESat data and validation data sets are combined to prepare
for classification analysis. In Chapter 6 the ICESat waveform signals are analyzed for ef-
fects of surface topography. First of all, the theory behind slope and roughness analysis
is discussed, followed by a description about an angle-related correction technique that is
applied to waveforms. Finally, the results of the surface topography analysis are discussed.
In Chapter 7 an explanation will be given on the methodology of applying ICESat data
on the classification validation data sets. In addition, the methodology of interpreting the
resulting data will be discussed.

In the fourth and final segment the classification algorithm is constructed and applied
on test areas. In Chapter 8, the procedure of constructing the algorithm is explained with
several case studies, a detailed analysis of data attributes and a step-by-step breakdown
of the algorithm. Finally, in Chapter 9 the algorithm is applied on several test areas in
Antarctica and Greenland.

1.5 Research methodology and outline

The report outline gave a simple overview of the chapter structure of the re-
port. However, since the structure of the research is more complex, a detailed
overview is required to understand the processes from raw data to classification
results. This section provides the research outline and is useful for reference
while reading the report.

Before reading the rest of the report it is advised to briefly study the research outline
of Figure 1.2. It shows the detailed methodology of this research study in a two page
flow diagram. All chapters except ‘ICESat Principles’, ‘Data product derived attributes’
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and ‘Waveform derived attributes’ (Chapter 2, Chapter 4 and Chapter 5, respectively) are
included in the flow diagram. The chapters that have been left out are included in Fig-
ure 2.3 in Chapter 2. These three chapters are combined in the research outline of Figure
1.2 as the yellow colored box ‘Pre-filtered and corrected ICESat footprints and waveforms’.

The research outline can be used as a guide for the report in order to better understand
how the different parts of analysis contribute to the overall objective of the research.
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Figure 1.2: The outline of the research, every segment refers to one of the chapters. The corre-
sponding chapter numbers are indicated between parentheses. The yellow box com-
bines three chapters, see Figure 2.3.
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Chapter 2

ICESat principles

In this chapter some background information about the ICESat mission will be described,
in order to provide the reader an insight into the mission’s principles and the data products
that are used for this research. In Section 2.1 the objectives, purpose and relevance of the
ICESat mission are described. Section 2.2 explains the characteristics of the ICESat mis-
sion, including a detailed overview of the main measurement instrument. Finally, Section
2.3 addresses the essentials of the ICESat data in general and a detailed analysis of the
available ICESat data used for this research.

2.1 ICESat objectives

The ICESat mission was launched on the 12th of January 2003 and became op-
erational in February 2003. The mission is the benchmark Earth Observation
System (EOS) mission of the National Aeronautics and Space Administration
(NASA). EOS is one of NASA’s programs that comprises of a series of Earth
observing satellites designed to monitor and understand climate related pro-
cesses [25]. The main purpose of the ICESat mission is to measure the mass
balance of ice sheets, observe cloud and aerosol heights, and determine land
topography and vegetation characteristics [23]. The main measurement prin-
ciple is laser ranging to determine surface topography elevations and carry out
atmospheric profiling. The satellite is the first Earth orbiting satellite that
takes measurements with a laser altimeter system. The mission is especially
relevant considering the recent concern about the effects of global warming on
ice sheet mass balances.

Before ICESat was launched, the science team set up the most important science goals
for the mission. These goals represent the very essence of the mission. In the end, all
components in the mission contribute to realizing these goals. Below, the most important
science goals are listed per discipline: cryosphere, land processes and atmospheric science.
The goals are extracted from the Geoscience Laser Altimeter System (GLAS) Science Re-
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quirements [5].

Cryosphere: “to measure long-term changes in the volumes (and mass) of the Greenland
and Antarctic ice sheets to sufficient accuracy to assess their impact on global sea level,
and to measure seasonal and inter-annual variability of the surface elevation in sufficient
spatial and temporal detail to permit identification of long-term trends and to help explain
those trends. A further goal is to provide a precise elevation topography of these ice sheets
and describe the nature of surface characteristics (e.g., roughness), including sea ice.”

Land processes: “to conduct topographic measurements of the Earth’s land surface on
a global basis in order to contribute to a global grid of ground control points for georef-
erencing of topographic maps and digital elevation models. The secondary land processes
science goal is to detect topographic change at the meter per year level or better in selected
regions of limited spatial extent.”

Atmospheric science: “to determine the radiative forcing and vertically resolved atmo-
spheric heating rate due to cloud and aerosol by directly observing the vertical structure and
magnitude of cloud and aerosol parameters that are important for the radiative balance of
the earth-atmosphere system, but which are ambiguous or impossible to obtain from exist-
ing or planned passive remote sensors. A further goal is to directly measure the height of
atmospheric transition layers (inversions) which are important for dynamics and mixing,
the planetary boundary layer and lifting condensation level.”

The document also notes that, where conflicts occur with the higher-level requirements
between the disciplines, the cryosphere requirements should have primary importance.
Following from the science goals, the two main measurement types are surface elevation
estimation and atmospheric profiling, both using laser principles. At the time of writing,
ICESat still provides elevation estimates with unprecedented accuracy based on a tech-
nique never used before in space for Earth applications.

A quick glance at the higher level requirements gives an idea about the order of ac-
curacy and resolution that is associated with the measurements. The ice sheet elevation
changes are to be estimated with an accuracy of 1.5cm per year over areas of 100km by
100km for low surface sloped areas (<0.6∘). The vertical sampling resolution of the atmo-
spheric signal is 75m, while the vertical sampling resolution of the elevation signal is 15cm
[13]. In Section 2.2, more specifications of the measurements are provided.

Laser ranging as a measurement technique for ice sheet monitoring is in itself not
unique; however, it is for Earth observing systems from space. Existing laser knowledge
applied to airborne lidar systems and the Mars Orbiter Laser Altimeter (MOLA) mission
served as a basis for the design and operation of the space operating laser system of ICESat
[23]. Bringing this technique into space for Earth observation has two major advantages
over airborne laser ranging, namely the significant improvement of temporal and spatial
coverage. This holds especially for the polar regions, which are generally less accessible and
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more expensive for airplanes to observe. ICESat provides a combination of unprecedented
temporal resolution, spatial coverage and spatial accuracy, that is of particular relevance
with today’s discussion about the impact of global warming on the ice sheets and sea level
rise. Even though ICESat’s spatial resolution and vertical accuracy cannot beat airborne
laser ranging resolution and accuracy, the combination with temporal and spatial coverage
makes this space system truly unique.

2.2 ICESat mission

The satellite should be considered as only one aspect of the ICESat mission.
The mission as a whole includes the space segment, the data and information
support segment, the mission control segment and the science segment. In
the end, all segments have one common goal, which is satisfying the primary
objectives and science requirements of ICESat.

The space segment is predominantly the satellite. The satellite has a near-circular
orbit at an approximate altitude of 600𝑘𝑚, with an inclination of 94∘. During the first
120 days after launch, the satellite was in a repeat orbit of 8 days, after which the orbit
was changed to a 183 day repeat orbit [8]. The satellite was launched from Vandenberg
Air Force Base, California, with a nominal lifetime scheduled for 3 years, with a 5 year goal.

The GLAS instrument is the primary payload on ICESat. The main purpose of the
instrument is to send out and receive the laser pulse and measure the time it takes for the
transmitted pulse to come back to the satellite [8]. Figure 2.1 illustrates the GLAS in-
strument with annotations to the vital parts. The instrument includes three identical and
redundant lasers, each sending out pulses at 1064nm wavelength (in the near-infrared) for
measuring the surface topography and at 532nm wavelength (in the green) for measuring
atmospheric characteristics [33]. When operating in nominal mode, the laser continuously
fires pulses at a rate of 40Hz, each with a pulse width of 5ns. Each of the three solid
state Nd:YAG lasers has an expected lifetime of about 2.5 billion shots, which translates
into approximately 2 years of continuous operation. Together, the lasers are designed to
meet the 3-year minimum lifetime requirement with a 5-year goal. However, after more
than a month of operation, failure of the first laser forced the mission to handle a revised
measurement campaign strategy. According to the Independent GLAS Anomaly Review
Board Executive Summary [30], an unexpected failure mechanism in the laser’s pump diode
caused increased degradation of laser 1 and subsequent failure after only 37 days of opera-
tion. The design fault was likely to exist in the other two lasers as well, so a decision had
to be made whether to continue taking continuous laser measurements and consequently
face a premature ending of the mission, or to carry out discrete measurement campaigns
and consequently be able to measure for a larger time frame. Since taking measurements
over a long period of time is of higher importance for the mission, the choice was made to
measure for discrete periods. As a result, the orbit of ICESat was changed to a 91-cycle
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orbit with a 33 day sub-cycle. From that defining moment on, the instrument has been op-
erational for periods of approximately one-month, with campaigns conducted every three
to six months. At the time of writing, ICESat already has been measuring for more than
six years, recording billions of measurements to date.

Figure 2.1: The GLAS instrument with annotations. The red arrows indicate the main signal
measuring sub-instruments. Illustrations taken and adapted from [24, 13].

The GLAS instrument also consists of a telescope of about 1m in diameter collecting
the reflected photons of the laser pulse. A mirror reflects the incoming beam onto the sec-
ondary mirror tower, which reflects the beam to the detectors. The incoming reflected laser
light is then split into the 1064nm and 532nm signals. The 1064nm signal is directed to an
altimeter detector and a dense cloud and aerosol detector, both subject to a bandpass filter
of 0.8nm. The first one uses an Avalanche Photo Diode detector which digitizes both the
transmitted and surface backscatter signals at 1GHz. This results in a time resolution of
1ns, equivalent to a range resolution of 15cm taking into account the two-way travel. This
is the only detector system used for altimetry measurements, recording the full waveforms
that are used in this research study. The second one, i.e. the aerosol detector, separately
filters and digitizes the signal at 1.953MHz, resulting in a time resolution of 512ns and a
vertical resolution of 76.8m [14]. This detector is used for the detection of aerosols and
dense clouds and is complementary to the 532nm signal for atmospheric measurements.
The 532nm laser pulses are measured with the more sensitive photon counting channel,
consisting of eight separate photon counting detectors for improved dynamic range and
redundancy. The vertical resolution is also 76.8m. This channel uses a bandpass filter of
about 0.03nm, which is considerably lower than the altimeter detector, and consequently
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provides the highest quality data for measuring both aerosol and cloud returns. The reason
that the 532nm channel is used for atmospheric measurements is because the backscatter
at this frequency is much more sensitive to weak scattering layers in the atmosphere [33].

Next to the lasers and detectors, GLAS includes an instrument star-tracker system with
a stellar reference system for orbit and attitude determination. The ICESat bus carries
a GPS receiver, coarse sun sensors, gyro system, and a laser retroreflector for additional
orbit and attitude determination. Post-processing on-ground then determines the precise
orbit and precise attitude determination, which is of particular importance for accurately
estimating surface elevations and carrying out atmospheric profiling measurements. Heat
pipes and two radiators supplemented by heaters take care of the thermal control. The
optical and telescope benches serve as supporting platform for the sub-instruments.

The footprint that is illuminated by the laser was supposed to be about 70m in diam-
eter, with spatial intervals of 170m. However, due to the inconsistent performance of the
laser systems, the footprint geometry changed significantly over the laser operating time.
Also, the degradation caused the laser energy to decrease over time. For example, the
footprint’s major axis was roughly 160m for laser 1 measurements and roughly 60m for
late laser 3 measurements. The transmit power degraded, for example, from 67mJ (early
laser 3 measurements) to 32mJ (late laser 3 measurements) [45]. Another unfortunate
effect of the laser degradation is that the atmospheric measurements became less reliable
in the later laser campaigns [46].

As mentioned before, the GLAS instrument is equipped with three identical lasers.
Each of these lasers fire laser pulses during several campaigns. Table 2.1 shows the several
laser campaigns that have been conducted to date. The name of the laser campaigns are
composed as follows, with L3D taken as example: the ‘L’ stands for laser, number ‘3’
for laser number (i.e. 1 to 3), and the letter ‘D’ for the campaign number. The table
shows that the first laser operated for somewhat more than a month, the second for half
a year and the third for five years. At the time of writing, the third laser failed during
camping L3K and the second laser was used to complete the initially planned ground tracks.

Table 2.2 shows some important specifications of the GLAS instrument, as expected
before the launch of ICESat. In reality, the pulse transmit energy is not constant and
fluctuates during the laser campaigns. The altimeter detector collects about 4.5 million
1ns samples for each transmitted pulse. However, only 544 samples over ice sheet and land
surface, and 200 samples over sea and oceans are sent to the ground stations to reduce
the data stream [3]. The pointing of the laser beam is carried out by rolling and/or pitch-
ing the spacecraft and can be controlled to within ±35𝑚 on the surface [14]. In nominal
mode, ICESat is near-nadir pointing with a beam co-elevation angle of about 0.3∘, pitched
upward in the direction of the spacecraft motion. The reason for this off-nadir pointing is
to protect the receiver from specular reflection of the laser pulse from flat, highly-reflected
surfaces [45]. The pointing angle can be increased to about 5∘ for measuring targets of
opportunity, such as validation and calibration sites [14].
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Campaign number Start date of operation End date of operation Days of operation
L1A 20/02/2003 29/03/2003 38 days
L2A 25/09/2003 19/11/2003 55 days
L2B 17/02/2004 21/03/2004 34 days
L2C 18/05/2004 21/06/2004 35 days
L3A 03/10/2004 08/11/2004 37 days
L3B 17/02/2005 24/03/2005 36 days
L3C 20/05/2005 23/06/2005 35 days
L3D 21/10/2005 24/11/2005 35 days
L3E 22/02/2006 28/03/2006 34 days
L3F 24/05/2006 26/06/2006 33 days
L3G 25/10/2006 27/11/2006 34 days
L3H 12/03/2007 14/04/2007 34 days
L3I 02/10/2007 05/11/2007 37 days
L3J 17/02/2008 21/03/2008 34 days
L3K 04/10/2008 19/10/2008 15 days
L2D 25/11/2008 17/12/2008 19 days

Table 2.1: The laser campaigns until the time of writing, with the start date, end date of operation
and days of operation.

Specification Surface Atmosphere Atmosphere
Wavelength 1064nm 1064nm 532nm
Laser pulse energy 75mJ 75mJ 35mJ
Laser pulse rate 40Hz 40Hz 40Hz
Laser pulse width 5ns 5ns 5ns
Telescope diameter 1.0m 1.0m 1.0m
Receiver FOV 0.5mrad 0.5mrad 0.17mrad
Vertical sampling resolution 0.15m 76.8m 76.8m

Table 2.2: The intended specifications of the GLAS instrument, taken and adapted from [33] and
[14].

Since there exists a spatial gap between the footprints centers of about 170m, the
ground track is not illuminated by the laser continuously. Also, since the orbit is inclined
by 94∘, the ground tracks of the satellite are more densely distributed in the polar regions.
The polar region is not covered completely due to the 4∘ polar gap, as illustrated in Figure
2.2.

The data and information support segment basically provides the infrastructure to dis-
tribute data to and from the satellite. Not only scientific data is accounted for, but also
satellite housekeeping data and commands (e.g. for orbital corrections and activation of
the GLAS instrument). It also provides the data portal to the end user of the data prod-
ucts. This segment is mainly operated by the Goddard Space Flight Center (GSFC). The
National Snow and Ice Data Center (NSIDC) archives and distributes the data products
to the users [38].

The mission control segment is a general term for all ground activities related to the
functioning of the satellite itself. The launch vehicle was provided by the NASA Kennedy
Space Center, the GLAS instrument mainly by the GSFC and the spacecraft by Ball
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Figure 2.2: ICESat’s ground tracks covering Antarctica to illustrate the denser coverage at the
polar regions and the polar gap. The variable colors indicate elevation values, taken
from measurements from October 3 through November 8, 2004 [20]. Image taken from
the NASA Earth Observatory [26].

Aerospace. In orbit, the satellite is operated by Ball Aerospace. The housekeeping data
of the satellite is monitored to check the satellite’s status. In addition, here the orbital
maneuvers are planned and prepared, and flight dynamics are monitored (e.g. orbit and
attitude determination). Basically, Ball Aerospace monitors the satellite and compiles the
commands to be sent to ICESat. The actual sending is then carried out via the ground
stations that are part of the data and information support segment. The mission control
segment works closely together with the science segment to discuss the status and plan
schedules and scenarios for the satellite.

The science segment provides the in-depth research of the data products and basically
forms the last step before providing the results to the users. Research is conducted on
the data itself, the scientific methods used to process the data, potential optimizations,
and data related results, such as estimating the actual ice mass balance changes. Reports,
documents, publications and papers are produced by this segment to maximally exploit the
available data. Also, this segment offers an advising role to the mission control segment
for decision making regarding the functioning of the satellite. The key player in the science
segment is the science team of ICESat, which comprises of scientists located at various
research institutes like NASA departments, several universities and research centers [23].
The Center for Space Research (CSR) of the University of Texas at Austin and the GSFC
act as the science data system (SDS) centers that primarily handle data processing. Here,
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the raw data is processed and data products are created. Finally, the data products are
provided to the data information and support segment, where the NSIDC archives the data
products and distributes them to the user.

2.3 Data products

In total 15 data products are produced by the ICESat mission, each of them
offers a unique set of parameters. Essentially all the relevant information of
ICESat is incorporated in the data products, from raw satellite parameters to
computed elevation estimations and parameter corrections. For this research,
three data products are of special interest, namely the altimetry data, the
global elevation data, and the global backscatter data.

All data products are available through a data portal of NSIDC; however, not all data
sets are relevant for this thesis project. Three of them are, with the global altimetry
data GLA01 being the first, since it includes the transmitted and received full waveforms.
The second important data product is the global elevation data, GLA06, which incorpo-
rates, amongst others, accurate geolocation parameters of the footprints, the estimated
elevations, correction parameters and waveform statistics. Finally, GLA07 contains at-
mospheric backscatter profiles that are used for classification analysis. Table 2.3 gives an
overview of all the available data products.

Data product Processing level Description
ID level
GLA01 1A Global altimetry data
GLA02 1A Global atmosphere data
GLA03 1A Global engineering data
GLA04 1A Global laser pointing data
GLA05 1B Global waveform-based range corrections data
GLA06 1B Global elevation data
GLA07 1B Global backscatter data
GLA08 2 Global planetary boundary layer and elevated aerosol layer heights
GLA09 2 Global cloud heights for multi-layer clouds
GLA10 2 Global aerosol vertical structure data
GLA11 2 Global thin cloud/aerosol optical depths data
GLA12 2 Antarctic and Greenland ice sheet altimetry data
GLA13 2 Sea ice altimetry data
GLA14 2 Global land surface altimetry data
GLA15 2 Ocean altimetry data

Table 2.3: The data products available of ICESat, together with a short description. GLA01,
GLA06 and GLA07 are the most important data products used for this research.

The level-1A data products contain raw measurement data, such as satellite housekeep-
ing data and waveforms, and some precomputed parameters, such as estimated footprint
dimensions. The GLA05 level-1B products contain corrections data including parameters
required to calculate surface slope and roughness. It is used in conjunction with GLA01
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to create GLA06 and GLA12-GLA15 [34]. GLA06 is a global product, containing all ele-
vations that are computed using the standard parameterization, the ice sheet algorithm.
GLA12-GLA14 are regional elevation data products, which only cover the specified sur-
face type [34]. There are two algorithms for estimating the elevations, the standard one
is used for ice sheets, oceans, and sea ice. This algorithm fits no more than two Gaussian
functions in the received waveform and uses the maximum peak location for elevation esti-
mation. The so-called alternative algorithm is used for land and allows up to six Gaussian
functions, which is especially useful for vegetated areas. It uses the centroid of the sum
of the fitted Gaussian functions for elevation estimation. Both correct for atmospheric
delays [35]. The returned waveforms are subject to these two algorithms for estimating
the elevations. Which algorithm is used for data product computation is dependent on a
predefined surface mask. For this research the GLA06 product is used, because it uses the
right (standard) algorithm for polar regions and is available globally. The GLA14 product
is more relevant when looking at the elevations over more complex regions, like vegetated
and urban areas. GLA02 and GLA08-GLA11 represent global atmospheric data products
and are not relevant for this research. Besides the extensive use of GLA01 and GLA06,
also the Global backscatter data product GLA07 is used for analysis of the atmospheric
signals. Please refer to NSIDC [35] for more information on these products and algorithms.

All the data products are provided as binary formatted files to reduce the file size.
Some of the parameters are recorded per individual shot (at 40𝐻𝑧), while others are only
available per 40 shots (at 1𝐻𝑧). The data products used for this research are linked to-
gether with an unique record number and shot number. Each record number contains 40
shot numbers (i.e. corresponding to the 40 shots per second). For this research the record
numbers have been combined with the shot numbers, such that every individual shot has
its own unique shotID. With the shotIDs, the corresponding parameters in different data
products can be found. For this research, all laser campaigns up through L3J are used for
analysis. Only the data products of data Release 28 are considered for this research. Each
data release incorporates its own corrections and recomputing techniques for improved
data usage.

For full waveform analysis of the ICESat laser data, the Global altimetry data (GLA01)
is the main source since this data set contains the transmitted and received waveforms from
the GLAS instrument. Both the received echo and the corresponding transmit pulse are
available in the GLA01 data set. Since the returned waveform is dependent on the laser
output waveform, see Chapter 5.3, both waveforms are taken into account. Special care is
paid to filtering criteria and corrections that are incorporated and applied to the data. For
this research two sets of attributes are used: data product derived attributes and waveform
derived attributes. Both sets are used for filtering and correction techniques as well as for
surface topography and classification analysis later in this research. In Chapter 4, the
data product derived attributes will be discussed and in Chapter 5, the waveform derived
attributes will be discussed. The main difference between the two sets of attributes is the
following.
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The data product derived attributes includes all attributes that are extracted from
data products but are not directly related to the received or transmitted waveform. For
example, attributes related to geolocation, footprint dimensions and atmospheric signals
are included. As a consequence, only GLA06 and GLA07 attributes are used in this dis-
cussion. The waveform derived attributes includes data product derived attributes as well,
but only the ones that are directly related to waveforms. Since the waveforms are extracted
from GLA01, this data product is the primary data product in this discussion. However,
there are several GLA06 derived attributes that relate to the waveform as well, and as a
consequence both GLA01 and GLA06 attributes are used in this discussion. Additionally,
several self-computed (waveform) attributes are included as well.

As indicated by the report outline and research outline (Figure 1.1 and Figure 1.2,
respectively), the chapter on validation data is essential for continuing with the research
process. As a results, this chapter is discussed next. After the validation data chapter, the
attributes that are used for the research will be discussed. Since these two chapters, i.e.
‘Data product derived attributes’ and ‘Waveform derived attributes’, are directly related
to this chapter (see the report outline) both will be introduced briefly with Figure 2.3.
This flow diagram shows the steps to compute the the ‘Pre-filtered and corrected ICESat
footprints and waveforms’, that is included in the research outline.

The importance of presenting this flow diagram now is because of the contribution of
the current chapter to later discussion on the ICESat data. As the diagram indicates, first
the binary files of the data products are requested using the NSIDC data subsetter [38].
With the subsetter, spatial and temporal preferences can be specified. This is preferred
above the other data portals, because only for the data subsetter the spatial subsetting
of the GLA01 data product is enabled. After the data sets have been subsetted, the sets
can be retrieved from FTP. All operations after the data sets have been downloaded are
performed with IDL, ENVI or MATLAB. The reason that the box ‘spatial and temporal
preferences’ is included in the second segment in the flow diagram as well is because the
data sets from NSIDC should be customized with IDL or MATLAB for specific purposes
based on finer preferences. The rest of the flow diagram is explained in more detail in
Chapter 4 and Chapter 5. The waveform correction will be explained in Chapter 6.
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Figure 2.3: The flow diagram combining the three chapters that are responsible for GLAS data
retrieval and operations, and one chapter that explains the waveform correction tech-
nique. The corresponding chapter numbers are indicated between parentheses.
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Chapter 3

Validation data

In this chapter the validation areas and related data sets will be discussed. The detailed
analysis that is carried out on the data is not described here, but in Chapter 6 and Chapter
7. Validation forms an essential part of the research, because it offers information about
what ICESat’s returned waveforms actually describe. Land cover type classification and
surface topography analysis based on full-waveform analysis play a central role in this
research, and require accurate and suitable validation data sets. In Section 3.1 the Dry
Valleys in Antarctica will be discussed that serve as the primary validation site. In addition,
some basic information is given about Lake Victoria that serves as the validation area for
water. The classification analysis is carried out on both areas; the surface topography
analysis is only carried out on the Dry Valleys. In Section 3.2 the validation data sets that
will be used for classification purposes of both validation areas are discussed. This section
is subdivided into two paragraphs to emphasize the importance of the different data sets.
Finally, in Section 3.3 the validation data sets are described that will be used for surface
topography analysis.

3.1 Validation areas

The Dry Valleys in Antarctica and Lake Victoria in Africa form the main val-
idation areas of this research. For the validation of rock, glacier ice, lake ice
and snow covered regions the Dry Valleys are used, for the validation of water
Lake Victoria is used.

For classification and surface topography analysis, validation data sets are used that
cover the Dry Valleys region in Antarctica. The region is located near the coast of the Ross
Sea, see Figure 3.1. It consists of several valleys, mountain ridges and glacier formations.
Figure 3.2 shows the part of the Dry Valleys that is used for this research. The valleys
are 5-10km wide and 15-50km long, are mostly flat in the middle and sloped towards the
ridges. Height differences between the valleys and neighboring mountains range up to sev-
eral kilometers. The Dry Valleys offer some unique features that make the region suitable
for various cryospheric research studies. The valleys get virtually no snowfall or moisture
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and, as a consequence, the valleys form the largest relatively ice-free area of Antarctica [17].
The area is also known as the coldest and driest place on Earth [6]. In the valleys, several
near-perennial ice covered lakes are located, which occasionally melt during the Antarctic
mid-summer. Generally speaking, the small glaciers do not invade into the valleys because
of regional and local weather patterns. Small inlet glaciers on the heads of the western
part of Wright Valley, and the Mckelvey and Barwick Valleys, connect the Dry Valleys
with the snow covered polar plateau and inland domes. These interesting features make
the region attractive for various research studies and, as a result, the region has been well
documented by various measurement missions. It serves as a validation site for several
remote sensing missions as well, such as the ICESat mission. For this research, the region
is used as a validation site for four reasons in particular: the meteorological stability, the
presence of the land cover types that are required for this research study, the high density
of ICESat measurements and overlapping tracks, and the presence of weather stations (see
Section 3.2). The land cover types lake ice, glacier ice, snow and bare rock can all be
found in the Dry Valleys with minimal change over time, due to little precipitation and
the rapid sublimation of snow. The soil type in this part of the Dry Valleys is further-
more almost homogeneously covered by a material named Typic Anhyorthel [16]. This
soil type is described as stony, gravely sands that is composed of basalt with ice-cemented
permafrost below about 30cm [9]. No detailed study was found on which soil types cover
the cryospheric regions, and the Typic Anhyorthel is assumed to be representative for po-
lar regions other than the Dry Valleys as well. This assumption is based on the fact that
Typic Anhyorthel is the main soil type of the Dry Valleys and is based on the similarity
between LANDSAT images of bare rock covering the Dry Valleys and LANDSAT images
of bare rock covering Greenland. In addition, the main objective of this research study
is to find a methodology to discriminate between ice, rock, snow and water, rather than
between various soil types.

Figure 3.1 shows the position of Antarctica and the neighboring continents. The lo-
cation of the Dry Valleys, encircled with red, is located less than 100km from the Ross
Sea, which partly freezes over winter time. The plain inland area towards the south pole is
called the polar plateau and consists mainly of perennial snow covered inland domes. The
region of the Dry Valleys that is used for this research is shown in Figure 3.2, which is the
main part of the Dry Valleys.

As Figure 3.2 shows, the Dry Valleys offer a validation area for the land cover types
glacier ice, lake ice, bare rock and snow. The fifth land cover type that is analyzed for
this research is water. The Dry Valleys are located close to the Ross Sea, which partly
freezes during the winter season. Between winter and the summer time, sea ice covers
the seas, which makes the Antarctic region not optimal for analysis of waveform covering
water. Therefore, another validation site is selected for water waveforms. To mitigate the
probability of sea ice, Lake Victoria was selected. Figure 3.3 shows the location of Lake
Victoria and the spatial boundary box used to subset ICESat data.

The bounding box has an upper latitude of -1.60∘, lower latitude of -2.10∘, western
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Figure 3.1: The Antarctic continent with the location of the Dry Valleys region highlighted with
the red circle. Illustration taken and adapted from [52].

longitude of 32.00∘ and eastern longitude of 32.60∘. These spatial limits are taken to
avoid land to be included in the image. Although there is the possibility that man-made
structures and unnoticed natural features are present in the selected region, it is assumed
that the bounding box encloses nothing but a surface of water. The lake is the world’s
second widest freshwater body and has a mean depth of 40m. The average temperature
ranges from 21∘C to 24∘C [15]. Since the lake has different characteristics compared to
other lakes and seas around the world, it cannot perfectly represent all water bodies. For
example, it may differ in salinity, wave height and temperature, but for this research these
influences have not been analyzed. It is assumed that the waveforms over this region form
a representation for all water bodies, from (ice-free) seas close to land to (ice-free) lakes
inland. Ice covered lakes and seas are represented by the frozen lakes in the Dry Valleys.

3.2 Classification validation data

For the classification part of this research, the influences of land cover types
on waveforms shapes and characteristics are analyzed. In order to know what
land cover type each waveform describes, validation data sets are required.
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Figure 3.2: The Dry Valleys area in Antarctica that is used for the research. The black lines
represent geographic grid lines, the red dots and names refer to the meteorological
LTER stations, see Paragraph 3.2.2. The naming of the valleys and glacier is consis-
tent with the naming used by US Geological Survey (USGS), [51]. Data taken and
adapted from LANDSAT Image Mosaic of Antarctica (LIMA) [52].

The Dry Valleys form an important region for various research studies and there are
several relevant data sets available for this area, including satellite images and on-site
weather station data. One of the most important criteria for the validation data is that
is should have sufficient resolution. With ICESat’s laser footprint areas on the Earth’s
surface ranging from 2,800m2 to 20,000m2 (which is equivalent to a third of and two and
half times a full soccer field respectively) and a distance between footprint centers of only
175m, the resolution of the validation data should be such that the land cover class can be
identified for every individual footprint. LANDSAT images offer the resolution to achieve
this and, in combination with the availability of the spectral information in various bands,
these form a suitable validation data set. In Paragraph 3.2.1, this validation data set is
discussed. A meteorological data set obtained by weather stations in the Dry Valleys form
a complementary validation data set and is discussed in Paragraph 3.2.2. For Lake Victo-
ria, only LANDSAT images are used.
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Figure 3.3: The location of Lake Victoria (left) and a LANDSAT image of part of the lake (right).
The red bounding box in the right image indicates the area for subsetting ICESat data.
The white lines in the LANDSAT image represent geographic grid lines. Left image
taken and adapted from USGS Coastal and Marine Geology InfoBank [48], data of
right image taken and adapted from the USGS Earth Resources Observation and
Science (EROS) data portal [49].

3.2.1 LANDSAT images

In total, seven LANDSAT satellites have been launched over the last 36 years. Only images
of the most recent one, LANDSAT 7, are used for validation purposes for this research.
LANDSAT 7, which is still operational, was launched in 1999 and is a joint initiative of
the USGS and NASA. The sensors collect data in eight spectral bands and images at res-
olutions in the range of 15m to 60m. The satellite acquires the data over a 185km swath,
in visible and infrared bands at 30m spatial resolution, in the pan-chromatic band at 15m
and in the thermal band at 60m [53].

Table 3.1 shows the band designations of LANDSAT with the corresponding spatial
resolution values.

In support of the International Polar Year 2007-2008, a joint effort of USGS, British
Antarctic Survey and NASA created the LANDSAT Image Mosaic of Antarctica (LIMA).
Over 1000 LANDSAT 7 images have been combined into LIMA, which is a seamless, vir-
tually cloud-free mosaic that offers high resolution images of Antarctica, except the center
of the continent [52]. LIMA offers various pre-processed versions of the images, each high-
lighting different features of the landscape. For this research, the most interesting version
is the false-color, pan-sharpened product, which incorporates infrared data. The bands in
the green (band 2), the red (band 3) and near-infrared (band 4) at 30m resolution (i.e.
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Band Wavelength [nm] Resolution [m]
1 450-520 30
2 520-600 30
3 630-690 30
4 770-900 30
5 1550-1750 30
6 10400-12500 60
7 2090-2350 30
8 520-900 15

Table 3.1: The band designations and resolution of LANDSAT 7.

false-color composite) have been merged with the grayscale panchromatic band (band 8)
at 15m (i.e. pan-sharpened). As the LIMA website [52] points out, the pan-sharpening
maintains the false-color information while keeping the high resolution of 15m. Through
resampling techniques of the pixels, a 15m spatial resolution image is produced. The in-
frared component offers a better discrimination between ice and snow [52]. Figure 3.4
shows a single LANDSAT image displayed as a false-color composite (left) and as a normal
color composite (right). The difference in snow and ice is improved by incorporating the
near-infrared band, which results in the icy part being displayed as more blue-colored.

Figure 3.4: The same scene acquired by LANDSAT, using the false-color composite in the left
image and the normal color composite in the right image. The images demonstrate
the improved discrimination between snow (white) and ice (blue) using false-color
composites. The scene shows an inlet glacier invading Barwick Valley with lake ice
at the tip of the glacier and snow in the higher elevated areas, taken on the 13th of
November 2008. Data taken and adapted from USGS EROS [49].

The entire spatial subset of the false-color, pan-sharpened LIMA image of the Dry
Valleys that is used throughout this research for classification analysis, is in fact shown in
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Figure 3.2. It shows that ice parts like Taylor Glacier and the lakes are easily identifiable.
This image, without the annotations, serves as the primary validation image for classifi-
cation purposes of the Dry Valleys. Its acquisition date is the 12th of November 2001,
which is well before the launch of ICESat. The image contains no cloud cover and offers,
as mentioned earlier, 15m resolution with improved discrimination between ice and snow
through the incorporation of the near-infrared band. As will be explained in Chapter 7,
this LIMA image is used for generating a classification map for validation purposes. The
term ‘LIMA’ is used throughout this report to refer to the Dry Valleys LANDSAT image
taken on the 21st of November, 2001. This reference makes it easier to avoid confusion
with LANDSAT images taken at other dates.

Besides the single LIMA image, LANDSAT images acquired at later dates are available
as well, corresponding better to ICESat’s laser campaign dates. However, after May 2003,
all images are heavily affected by the faulty Scan Line Corrector (SLC). The SLC is an
electromechanical device correcting for the forward motion of the satellite [50]. The defect
results in data gaps appearing as black lines running though the images. Figure 3.5 shows
an example LANDSAT image taken of the Dry Valleys after the 2003 incident. It is clearly
visible that the black stripes form an obstruction for automatic classification. However, the
affected images are still suitable for validation purposes, because a significant part of the
land cover is still visible. It is especially relevant for visually validating the surface state on
different locations. For many occasions, the acquisition date of the LANDSAT images does
not coincide with the acquisition dates of the specific ICESat shots, so assumptions have
been made with respect to the land cover type. However, for some occasions, LANDSAT
images coincide almost with ICESat acquisition dates and can be used for complementary
validation.

The reason that later LANDSAT images are not used for the construction of multiple
supervised classification maps is because of the date differences and the black stripes. The
images serve only for post-classification analysis. The LIMA and LANDSAT images are
displayed in polar stereographic projection, which is a conformal projection that assumes
the projection plane is tangent to the Earth at the pole. The coordinates are defined in
the WGS84 datum and WGS84 ellipsoid.

The individual LANDSAT images consists of the eight individual bands, in contrast to
the LIMA image which is a pre-computed false-color, pan-sharpened image. For the post-
classification analysis using LANDSAT images, the second (green), third (red) and fourth
(near-infrared) bands are used. No pan-sharpening is carried out, because the images serve
for manual post-classification purposes only, instead of being used for a high-resolution su-
pervised classification map.

To summarize the difference between the LIMA and LANDSAT images: the LIMA
image serves as the main validation data set for classification and the LANDSAT images
serve as a complementary validation data set in time. Therefore, the supervised classifica-
tion map that is estimated from the LIMA image only represents the land cover situation
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Figure 3.5: A LANDSAT image of the Dry Valleys and surrounding area. The width the black
lines resulting from the SLC defect increase from center of the image towards the
edge. The inset shows a close-up of the Taylor Glacier, where the effects of the black
lines are clearly visible. Data taken and adapted from USGS EROS [49].

at one instance in time. To minimize the temporal effect as much a possible, only those
ICESat campaigns are selected for classification analysis that were carried out in approx-
imately the same calendar month as the LIMA acquisition month, November. Since the
Dry Valleys form a stable region where little change in land cover type takes place, see
Section 3.1, it is assumed that the single LIMA image can be used as a primary validation
data set. In addition, regions of the Dry Valleys that are assumed to be less stable are left
out of the analysis. Chapter 7 explains the methods to deal with temporal inconsistencies
in more detail.

3.2.2 LTER

In addition to the LANDSAT images, another complementary validation data set will be
used as well, which is offered by the Long Term Ecological Research (LTER) project. As
explained before, post-classification analysis of the ICESat waveforms sometimes requires
validation at specific dates. For post-classification validation, LANDSAT images are used
in combination with LTER data of the Dry Valleys. The LTER data set consists of meteo-
rological data acquired by weather stations in the Dry Valleys region. Figure 3.2 shows the
locations of the three weather stations, highlighted in red, that are used for this research.
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Figure 3.6: Two LTER meteorological stations in the Dry Valleys. The left picture shows a station
on Taylor Glacier, the right picture on Lake Vida. Pictures taken and adapted from
LTER [17]. c○2006 McMurdo Dry Valleys LTER, both pictures courtesy Thomas
Nylen.

These stations are located at two lakes and one glacier. Figure 3.6 shows two examples of
meteorological stations used in the Dry Valleys.

The meteorological stations acquire a wide range of measurements every 15 minutes.
At the two lakes (i.e. Lake Vanda and Lake Vida), the measurements that are relevant for
this research are air temperature, soil temperature and snow height/soil surface change.
The measurements that are used at the Taylor Glacier station are air temperature, ice sur-
face temperature and ice surface change. For measuring the air temperatures a scientific
temperature probe is used, at 3m height for the lake stations and at 1m height for the
glacier station. The ice temperatures are measured with an infrared thermometer system.
For the lake stations the soil temperatures are measured at the soil surface and the glacier
station measures the temperatures on the ice surface.

For the lake stations, ultrasonic distance rangers are used for snow height/surface
change measurements. From correspondence with the Department of Geology at Port-
land State University [11], the exact method of measuring these changes can be explained
as follows. The distance sensors are mounted directly on the weather station tripods at a
fixed height above the surface. The sensors measure the distance to the surface in meters
which is then subtracted from the original measured height. As a result, the height is
relative to the original measured height. The sensors have an accuracy to 1cm. Since the
ground surface changes over time because of blowing sediment, the values could become
slightly negative. In case of the weather station on glacier, the tripods are mounted on
wooden pods which are drilled into the ice and are consequently fixed to the ice. Each five
years these station pods are reset. Even though the measurements are not available for
all years of the ICESat campaigns, the data set offers a valuable source of information for
post-classification analysis. A major drawback however is that the information is very local.
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3.3 Surface topography validation data

For surface topography analysis of ICESat waveforms, validation data of sur-
face elevation is required. In December 2001, an extensive survey by NASA’s
Airborne Topographic Mapper (ATM) of the Dry Valleys resulted in several
digital elevation models (DEM). The surface elevations were estimated using
an airborne laser altimetry system, after which a DEM grid was interpolated
through the laser points.

In total 18 ATM DEMs were produced, the majority having 2m and others having 4m
spatial resolution. For this research, the DEMs of Barwick Valley, Victoria Valley, Mck-
elvey Valley, Bull Pass, Wright Valley and Taylor Glacier are used as validation data sets.
All six DEMs offer elevations estimates at a spatial resolution of 2m, measured relative
to the WGS84 reference ellipsoid [42]. The accuracy of the DEMs was verified by using
independent GPS data obtained by on-ground stations. Interpolated DEM elevations at
the position of the GPS points were compared with the GPS elevations for the accuracy
analysis [42]. Approximate elevation differences at the GPS points are on the order of
centimeters to decimeters, which is acceptable considering the vertical accuracy of ICESat
of 15cm at best and the validation purpose of the DEMs for this research.

Figure 3.7 shows the six DEMs that are used for this research. The names in the figure
correspond to the names in Figure 3.2. As the figure shows, the DEMs do not cover the
areas homogeneously. During the measurement campaigns, only elevation measurements
were taken of those areas that were not covered by snow. The most plausible reason for
this is that elevations of the snowy parts are likely to change. The areas that are measured
cover the more stable lower elevated rock and ice parts of the Dry Valleys. However, even
in these parts, gaps in the DEMs are present, most likely due to non-overlapping ground
tracks and outliers that were already removed by the provider of the data [42].

The DEM observations are defined in the WGS84 datum and WGS84 ellipsoid and are
map projected using the Lambert Conformal Conic projection. As the projection name
indicates, the projection is conformal and consequently preserves angles. Although this
projection is different from the projection of LIMA and LANDSAT, the observations of both
data sets are defined in the same datum and reference ellipsoid. As a consequence, the data
sets can be compared in geographical coordinates without any coordinate transformation.
However, when comparing observations in map projected coordinates one should take care
of the projection differences. The classification analysis and topography analysis are carried
out separately, meaning ICESat footprints are projected according to the projection of
the data set that is analyzed. Thus, when analyzing classification, the footprints are
projected in the polar steographic projection; when analyzing topography, the footprints
are projected in the Lambert Conformal Conic projection.
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Figure 3.7: The six DEMs that are used for elevation validation, reprojected into polar stereo-
graphic projection for direct matching with the LIMA image. The red lines mark
the boundaries of each DEM. Data taken and adapted from USGS Atlas of Antarctic
Research - United States Antarctic Resource Center [51].
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Chapter 4

Data product derived attributes

For this research two sets of attributes are used: data product derived attributes and
waveform derived attributes. Both sets are used for filtering and correction techniques,
and subsequently used for surface topography and classification analysis. In this chapter,
the data product derived attributes will be discussed; in Chapter 5, the waveform derived
attributes will be discussed. Data product derived attributes are all attributes that do not
directly relate to waveforms. The data products contain many attributes, including raw
satellite housekeeping values, pre-computed elevation estimates, quality flags and attribute
corrections. Before relevant data attributes can be used for this research, various filters and
corrections are applied to get reliable data. This is especially important considering the
sensitivity of unwanted influences on the waveforms and the importance of characteristic
parameters.

This chapter is divided into three parts: an overview of the data product derived at-
tributes used for this research (Section 4.1); the filtering techniques (Section 4.2) and the
correction techniques (Section 4.3); and finally the transmitted energy analysis (Section
4.4) and atmospheric channel analysis (Section 4.5). The three chapters ‘ICESat prin-
ciples’, ‘Data product derived attributes’ and ‘Waveform derived attributes’ (Chapter 2,
Chapter 4 and Chapter 5, respectively) contribute to the yellow colored box ‘Pre-filtered
and corrected ICESat footprints and waveforms’ of the flow diagram of Figure 1.2. Figure
2.3 can be used as a guide for these chapters. This flow diagram is especially focused on
the retrieval, filtering and correction techniques on the data.

4.1 Overview of data product derived attributes

The data product derived attributes that are used for this research consist of
descriptive values and corrections. They are selected in agreement with re-
search literature and in correspondence with experts on ICESat data analysis.

The descriptive values and corrections used for this research come from the higher-

35
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level processed data product Global elevation data (GLA06) and Global backscatter data
(GLA07). The higher-level processed attributes include the precise geolocations of the
footprints and beam geometry attributes. The initial data filtering is based on GLA06,
because this product offers the most relevant attributes for spatial subsetting and indica-
tions of bad data. As depicted in Section 2.3, this data product is commonly used for ice
sheet elevation analysis. After filtering and applying the corrections, the selected unique
record index numbers and shot numbers (combined called the ShotID) are used to extract
the actual waveforms from GLA01. Only a fraction of the variables available in the GLA06
product files have been used for data filtering, because not all are relevant for the research
purposes discussed here.

To give a complete overview of the data product derived attributes, Table 4.1 not only
provides the attribute name and official ID, but also the corresponding data product and
the frequency rate in the data product (i.e. 1Hz or 40Hz ). The official ID of the original
attribute is a reference to the data product description of the NSIDC website [35]. The
relevant attributes of GLA07 are also included in the table; these are discussed in Section
4.5. All data product derived attributes are extracted from the data product binary files
using IDL code and software (see IDL website [40] for more information on IDL). The orig-
inal code has been taken from the NSIDC website [34] and modified to serve the purpose
of this research.

Derived attribute ID Data product Frequency Attribute name
shotID GLA01/GLA06/GLA07 40Hz record index + shot number
Original attribute ID Data product Frequency Attribute name
i lat GLA06 40Hz latitude of footprint center [degrees north]
i lon GLA06 40Hz longitude of footprint center [degrees east]
i elev GLA06 40Hz surface elevation [meter]
i tpazimuth avg GLA06 1Hz transmitted pulse azimuth - frame average [degrees]
i tpeccentricity avg GLA06 1Hz transmitted pulse eccentricity - frame average [-]
i tpmajoraxis avg GLA06 1Hz tramsitted pulse major axis - frame avg [meter]
i beam coelev GLA06 40Hz beam co-elevation [degrees]
i beam azimuth GLA06 40Hz beam azimuth [degrees]
i gdHt GLA06 2Hz height of the geoid above the ellipsoid [m]
i DEM elv GLA06 40Hz SRTM30 DEM height above the ellipsoid [m]
i40 g bcsc GLA07 40Hz 532nm merged attenuated backscatter profile

from 10.3km to -1.0km [1/(m·sr)]
i40 ir bscs GLA07 40Hz 1064nm attenuated backscatter profile

from 10.3km to -1.0km [1/(m·sr)]
i40 g TxNrg EU GLA07 40Hz 532nm laser transmitted energy [1e-5 J]
i40 ir TxNrgEU GLA07 40Hz 1064nm laser transmitted energy [1e-5 J]

Table 4.1: The data product derived attributes that are used for the research. All distances
are relative to the geoid. The frequency represents the rate per second of attribute
occurrence in the specified data product. Units of the parameters are indicated between
brackets.

The detailed descriptions of the attributes of Table 4.1 will be given throughout the
report; please refer to the index at the end of this report for the specific page numbers. The
table makes a distinction between derived and original attributes. The derived attribute,
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shotID , is not extracted directly from any data product, but is a combination of the orig-
inal attributes unique record number and shot number. As a result, every individual shot
has its unique number that can be used for referencing shots between different data prod-
ucts. The original attributes are directly extracted from GLA06 and GLA07 data products.

4.2 Filtering techniques

The filtering techniques that are applied on the data product derived attributes
consist of data subsetting in the temporal and spatial domain, and of invalid
value detection.

The geolocation parameters, i lat and i lon, describe the center of the laser footprint
in geodetic latitude and geodetic longitude, respectively. The surface elevation, i elev , is
the surface elevation with respect to the Topex/Poseidon ellipsoid. The three attributes
have been computed after precise orbit and attitude determination, and after instrument
corrections, atmospheric delays and tides have been applied. Furthermore, the coordinates
are computed with the the standard, i.e. ice-sheet, algorithm. See Section 2.3 for more
information about this algorithm. Before using these coordinates, an atmospheric correc-
tion, and a datum and ellipsoid transformation are applied for correct assimilation with
the validation data sets. Section 4.3 explains these correction techniques in more detail.
The corrected footprint geolocations are used for data subsetting in the spatial domain.
The derived attribute ShotID is used for temporal subsetting.

The validity of important attributes is, next to the spatial and temporal filtering, the
only filtering that is discussed in this chapter. The reason that measurements are filtered
out if an important attribute has an invalid value is simply because it cannot be used for the
waveform analysis. Particularly geolocation of the footprint and beam geometry attributes
are essential for analysis of the data and consequently all shots are filtered out that do not
hold valid values for these attributes. This means that i lat, i lon, i elev, i beam coelev,
i beam azimuth, all should represent valid values. Generally speaking, these attributes are
invalid when the elevation estimation was not carried out successfully. The reason that
the other attributes like footprint geometry and atmospheric backscatter attributes are not
filtered out when invalid, is because these are not of highest importance for the analysis:
the footprint geometry can usually be derived from neighboring shots; the atmospheric
channels attributes are used for classification analysis only and consequently their validity
is analyzed separately.

As the flow diagram in Figure 2.3 shows, more filtering techniques will be described
in Section 5.4. These are not discussed here, because they relate to waveform derived
attributes.
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4.3 Correction techniques

To make the data suitable for analysis, three corrections are applied. All
corrections relate to the characteristics of the laser footprints. The first cor-
rection is the replacement of bad footprint geometry values for a particular
laser campaign, the second is the correction of the footprint geolocation due
to atmospheric refraction correction, and the third is the datum and ellipsoid
transformation of the footprint geolocations.

4.3.1 Footprint geometry correction

The attributes i tpazimuth avg , i tpeccentricity avg and i tpmajoraxis avg (transmitted
pulse azimuth angle, eccentricity and major axis, respectively) all relate to the footprint
orientation and geometry and are embedded in the GLA06 data product. Figure 4.1 illus-
trates how these attributes define the footprint geometry. The values of the attributes are
based on so-called laser profiling array (LPA) images. The figure also shows some examples
of these images (up to laser campaign L3B).

Figure 4.1: The laser footprint geometry is described by the GLA06 attributes transmitted pulse
azimuth (𝛼TP), the major axis (𝑎) and eccentricity, see the left part. The arrows
pointing in north and east directions are included for orientation purposes. The
footprint geometry is determined based on LPA images. Some example LPA images
up to laser campaign L3B are also shown (right), courtesy NASA/ICESat.

In Figure 4.1, 𝑎 is the semi-major axis, 𝑏 is the semi-minor axis and 𝛼TP is the trans-
mitted pulse azimuth angle. Since the major axis and the eccentricity, e, are provided in
the GLA06 product, the semi-minor axis can be computed with the following equation.

𝑏 = 𝑎
√︀

1− 𝑒2 (4.1)

The transmitted pulse azimuth angle is defined as the angle clockwise from north of the
major axis of the transmitted pulse as seen by the LPA. LPA images are recorded at 40Hz
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by the GLAS instrument when transmitting the laser pulse. It is a far-field projection of
the laser spot that is used for footprint geometry and orientation derivation. Pixels in the
array with intensity more than 1

𝑒2 (∼13.5%) of the maximum pixel intensity are used for
the footprint size computation [31], where e is Euler’s number. The LPA images in Figure
4.1 illustrates the non-uniform power distribution within the footprint and is, for this re-
search, approximated by a two dimensional Gaussian distribution. From correspondence
with ICESat data experts at the CSR [44], it turns out that the GLA06 data product of
laser campaign L3A (Release 28) holds incorrect values for the footprint geometry param-
eters. As a consequence, these values are replaced by corrected values provided by the CSR.

4.3.2 Geolocation correction

Another correction is the footprint geolocation correction due to atmospheric refraction.
This is of particular concern for large off-nadir pointing angles of the laser beam, due to the
bending of the ray in the atmosphere [43]. Figure 4.2 illustrates the geometry of the laser
ray path, both undisturbed by refraction (straight line from satellite to P1 ) and disturbed
by refraction (dashed line from satellite to P2 ). The reason that the path bends more at
lower elevations is because of an increase in density of the atmosphere near the Earth’s
surface.

In Figure 4.2, P1 is the expected ground location (not taking refraction into account)
and P2 the real ground location (taking the refraction into account). The figure shows
that the footprint is shifted by a distance towards the sub-satellite point (i.e. the point at
nadir, where the dotted line would intersect the Earth’s surface) in the horizontal plane.
This distance is computed with Equation 4.2.

𝑑 = ℎ · (tan(𝛽)− tan(𝛽 − 𝛿𝛽)) (4.2)

Here, d is the distance between the expected (P1 ) and the real (P2 ) ground location
of the footprint, ℎ is the satellite’s altitude above ground, 𝛽 is the beam co-elevation angle
in degrees and 𝛿𝛽 is difference between the expected beam co-elevation angle in degrees
(related to P1 ) and the real beam co-elevation angle in degrees (related to P2 ). This
difference is approximated by Equation 4.3 assuming standard surface conditions [43].

𝛿𝛽 = 0.016∘ · 𝑡𝑎𝑛(𝛽) (4.3)

As a result, when taking 600km as the satellite’s altitude and taking the nominal beam
co-elevation angle of 0.3∘, the horizontal shift is about 0.9m which is insignificant consider-
ing the geolocation accuracy of about 4.5m [14] and the much larger footprint dimensions.
However when taking the maximum off-nadir beam co-elevation angle of 5∘, the shift in-
creases to about 14.7m, which is significant. Even though the shift at the nominal angle is
well within the geolocation accuracy, the refraction correction is taken into account for all
footprints to make sure that the locations of the footprints are as accurate as possible.
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Figure 4.2: The geolocation difference of the footprint due to atmospheric refraction of the laser
ray path. The intersection of the dotted line with the Earth’s surface represents
the sub-satellite point. The dashed line represents the real path, the solid line from
satellite to P1 represents the undisturbed path. Adapted from GLAS Algorithm
Theoretical Basis Document (ATBD) about atmosphere delay correction [43].

4.3.3 Datum and ellipsoid transformation

The third and final correction relates to the datum and ellipsoid transformation of the
footprint’s geolocations. ICESat’s laser footprints are expressed in geodetic latitude, lon-
gitude and elevation. These coordinates are referenced to the Topex/Poseidon ellipsoid.
The validation data sets (see Chapter 3) that are used for this research are usually de-
scribed in the WGS84 datum with the WGS84 reference ellipsoid. When merging the
ICESat data with the validation data for analysis, both should be described in the same
reference frame to avoid position inconsistencies. Since WGS84 is a more commonly used
reference frame, the ICESat geolocated footprints are transformed into this reference frame.

The measurements that ICESat carries out are defined in the International Terrestrial
Reference Frame (ITRF) with the Topex/Poseidon reference ellipsoid [5]. The reason that
the ICESat footprints are described in this particular reference ellipsoid is to enable easy
comparison with the Topex/Poseidon and Jason-1 altimetry missions [37], which both work
with this rather specialized reference ellipsoid. Table 4.2 compares the characteristic values
of the Topex/Poseidon and WGS84 ellipsoids. For the transformation, it is assumed that
the difference between the center of the Earth defined by the ITRF used for the WGS84 and
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Topex/Poseidon ellipsoids is negligible, taking into account the accuracy of the geolocation.

Parameter Topex/Poseidon WGS84
Equitoral radius 6378136.300000 6378137.000000
Polar radius 6356751.600563 6356752.314245
Reciprocal flattening 298.25700000 298.25722356
Eccentricity 0.081819221456 0.081819190843

Table 4.2: The characteristic values of the Topex/Poseidon and WGS84 reference ellipsoids, taken
from NSIDC [37].

The Topex/Poseidon ellipsoid is 70cm smaller than the WGS84 ellipsoid. As a conse-
quence, the same point on the Earth’s surface will have different geodetic coordinates when
using the different ellipsoids. As the NSIDC [37] points out, the horizontal shift is only a
few centimeters, which is neglectable considering that the GLAS geolocation accuracy in
the horizontal direction is on the order of a couple of meters. However, the dominant dif-
ference is in geodetic height (elevation) and should be accounted for when comparing with
digital elevation models defined in the WGS84 datum. To make sure ICESat data can be
properly validated against other data sets, all sets are defined in the WGS84 datum. For
ICESat’s footprint geolocations and some validation data sets, ellipsoid transformations
are carried out.

To transform the geolocations in WGS84, a standard script provided by the CSR is
used. Part of the script uses the theory described by Tscherning et al., [7]. First, the
script converts the geodetic coordinates to Earth fixed coordinates, expressed in Cartesian
coordinates (𝑥,𝑦,𝑧), based on the Topex/Poseidon ellipsoid semi-major axis and flattening
parameters. Subsequently, the Cartesian coordinates are transformed to geodetic coordi-
nates using a first order Taylor series expansion with the WGS84 ellipsoid parameters. The
process to estimate the geodetic coordinates is iterated as long as the difference between
the estimations is above certain thresholds. Finally, the geodetic coordinates in latitude,
longitude and height referenced to the WGS84 datum can be used in combination with the
validation data sets.

4.4 Transmitted energy analysis

The satellite was designed to transmit green and infrared signals at a constant
energy level over ICESat’s lifetime. For the green signals, the instrument was
designed to transmit pulses at 35mJ ; for the infrared signals, at 75mJ. How-
ever, as was explained in Chapter 2, an unexpected defect in the laser’s pump
diode caused the energy to decrease over time. This design fault even ended
in premature failure of the lasers. In the classification analysis, this varying
transmitted energy can have considerable effects on attributes.

Figure 4.3 shows the transmitted energy values of both the green and the infrared laser
over the Dry Valleys. These values are extracted from the GLA07 data product that holds
the transmitted energy at 40Hz for both wavelengths, i.e. the attributes i40 g TxNrg EU
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and i40 ir TxNrgEU of Table 4.1. It illustrates the high variability of the energy between
campaigns and during campaigns. It also shows the relatively small operational period
of the first laser compared to the other two. As for the green laser signals, the energy
decreased from about 35mJ to less than 5mJ in just two campaigns using the second laser.
Apparently, for the third laser system it was decided to begin the measurements with a
lower energy level to extend its lifetime. The right plot of the figure shows the dramatic
decrease in transmitted energy for the infrared lasers, especially for the L2C campaign.
Even though the energy levels for L2C approach 10% of the initial level, they remain sub-
stantially higher than the energy of the green laser. For some instances, the plots show
large short-period fluctuations, each of these concerning individual shots and represent a
very small minority of the total values.

Figure 4.3: The transmitted energy values of the green and infrared signals over the Dry Valleys,
separated by campaign.

4.5 Atmospheric channel analysis

The GLAS instrument transmits laser pulses in the green (532nm) for at-
mospheric measurements and in the infrared (1064nm) for altimetry measure-
ments as well as for atmospheric measurements. For analyzing the classification
potential of ICESat’s attributes, not only is the infrared returned signal that is
recorded by the altimetry channel (i.e. the full waveform) taken into account,
but also the ground return signals of the atmospheric channels. In this section,
the relevance of the atmospheric signals will be discussed first. In addition,
the meaning of the atmospheric signals will be explained by discussing how
the signals are computed. Finally, the retrieval of the atmospheric signals at
ground level will be addressed. These ground return signals are used for clas-
sification analysis later in this research.
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4.5.1 Relevance of atmospheric signals

Incorporating the infrared band in the LIMA image significantly improves the discrimina-
tion between snow and ice, as was discussed in Section 3.2. In Figure 3.4 it is clearly visible
that incorporating the infrared component makes the the icy parts more blue-colored than
the snowy parts, while the normal color composite displays the icy parts more white and
more similar to snow. Since GLAS transmits and receives laser pulses both in the infrared
and in the green, the two bands could be used to construct a spectral signature of each
land cover type. The relevance of incorporating the green channel for classification analysis
is demonstrated with Figure 4.4.

In the infrared band (left image), the icy parts and bare rock are darker (lower re-
flectance) and are easy to distinguish from the snowy parts that are brighter (higher re-
flectance). However, the ice and bare rock areas are more difficult to distinguish from
each other due to their low reflectance. Moreover, the small icy lake left of the glacier
is nearly invisible from the surrounding bare soil. Looking at the same area in the green
(right image), the difference between ice and bare rock is more clear. For example, the
lake ice is clearly distinguishable from the bare rock surroundings. In addition, the glacier
that invades the valley shows high reflectance compared to rock as well. On the other
hand, the difference in reflectance in the green between ice and snow is less clear and are
consequently harder to distinguish from each other.

From the figure it is clear that ice shows low reflectance in the infrared and high re-
flectance in the green. Thus, combining the reflectance of a laser pulse in the infrared
with the reflectance of a laser pulse in the green might result in an improved classification
algorithm.

4.5.2 Explanation of atmospheric signals

For reflectance of the infrared pulse, the parameter i reflctUncorr , ‘reflectivity not cor-
rected for atmospheric effects’, is used for classification analysis. See Section 5.1 for more
information on this attribute. However, a similar attribute in the data products for the
green signal does not exist. To still incorporate the green signal in the classification anal-
ysis, the green atmospheric backscatter profiles are used for classification analysis. In
addition, since the method of extracting the backscatter profiles is similar for the infrared
signals, the infrared atmospheric backscatter profiles will be incorporated as well. Both
profiles, i40 g bscs and i40 ir bscs for the green and infrared signals respectively, are avail-
able in the Level-1B atmospheric data product GLA07, see Table 4.1.

Both frequencies are measured with a vertical resolution of 76.8m, but differ in the way
they are measured. The 532nm signals are measured with photon counting modules; the
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Figure 4.4: The same scene acquired by LANDSAT, using the infrared band in the left image
and using the green band in the right image. The images demonstrate the spectral
difference between the different land cover types. It is the same scene as Figure 3.4.
Data taken and adapted from USGS/EROS, [49].

1064nm signals are measured with an analog-to-digital converter. The photon counting
module measures the green signal in photons; the analog-to-digital converter measures the
signal in digital counts, which are converted back to voltages using a pre-defined look-up
table [33].

Table 4.3, together with the attenuated backscatter profiles of Table 4.1, shows the
most important attributes that are used for the detailed discussion on the atmospheric
signals later in this section. These attributes of Table 4.3 are not extracted from the data
products, but only serve for discussion purposes.

Original Data product Frequency Parameter name
parameter ID
i40 g lid GLA02 40Hz 532nm (normalized) lidar data

from 10.3km to -1.0km [(photons/bin)· km2/J]
i40 ir lid GLA02 40Hz 1064nm (normalized) lidar data

from 10.3km to -1.0km [(W· km2)/J]
i g cal cof GLA07 1Hz 532 nm backscatter calibration coefficient

[(photons/bin)·(km3/J)·sr ]
i ir cal cof GLA07 1Hz 1064 nm backscatter calibration coefficient

[W· km3/J·sr]

Table 4.3: Attributes relevant for the discussion on the green and infrared backscatter at ground
level. These are not extracted from the data products. All distances are relative to
the geoid. The frequency represents the rate per second of attribute occurrence in the
specified data product. Units of the attributes are indicated between brackets.
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The units of the backscatter profiles are [m−1sr−1] where sr stands for steradian, the
International System of Units (SI) unit of solid angle measure [36], see Table 4.1. The pro-
files basically represent the backscatter intensity per spatial column unit. The solid angle
(in steradian) is the ratio between the fractional area subtended by a spherical surface of
the beam at range r (i.e. 𝐴𝑓𝑟, which is a spherical cap) and the total area of the sphere at
r (i.e. 𝐴𝑡), multiplied by 4𝜋. In Figure 4.5, the range and the areas are illustrated. In this
explanation, r is the radius of the sphere, i.e. the distance from the point where the beam
originates to the fractional area. The ratio is multiplied by 4𝜋, such that the solid angle
of a sphere measured from a point in the sphere is 4𝜋[sr ]: [4𝜋𝑟2/(4𝜋𝑟2)] · 4𝜋 = 4𝜋[sr ]. It
is a measure of the narrowness of the beam. For example, consider a circular footprint on
the ground surface with radius 50m and assume its flat surface area is approximately the
same as the area of sphere that it occupies (i.e the cross-section is approximately equal to
the spherical cap). Taking a distance from satellite to ground surface of 600km results in:
[𝐴𝑓𝑟/𝐴𝑡] · 4𝜋 = [𝜋 · 502/(4𝜋 · (600 · 103)2)] · 4𝜋 = 2.18 · 10−8sr. The solid angle of ICESat’s
transmit pulse is larger in reality due to the fact that the laser pulse actually illuminates
a larger area. The reason that the surface area is larger is because the footprint diameter
of 50m is based on an intensity threshold of a LPA image, see Section 4.3.

Figure 4.5: An illustration of the computation of the solid angle. The fractional area, 𝐴𝑓𝑟, is a
spherical cap and the total area, 𝐴𝑡, is the area of the sphere.

In the following paragraphs an explanation will be given of how the attenuated backscat-
ter profiles, i40 g bscs and i40 ir bscs of Table 4.1, are computed using, together with other
variables, the attributes of Table 4.3. Please note that these attenuated backscatter pro-
files are readily available from the GLA07 and consequently the following discussion is not
strictly required for understanding how the profiles have been acquired. The discussion is
only meant for the reader to understand how the profiles have been computed by ICESat’s
data product algorithms. By providing this background information, the meaning of the
profiles can be understood better. The information on the attenuated backscatter profiles
profiles has been taken and adapted from the GLAS ATBD of GLAS Atmospheric Data
Products [33].
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Before computing the attenuated backscatter profiles, the meaning of the normalized
signals, i40 g lid and i40 ir lid, will first of all be explained. The computation principle
of these signals is the first step towards the computation of the attenuated backscatter
profiles. For both 532nm and 1064nm signals the normalization of the raw data consists of
applying fundamental corrections and range and laser energy normalization. Although the
raw signals of both frequencies are subject to essentially the same normalization algorithm,
both require a slightly different approach. The normalization of 532nm channel will be
discussed first. The signal is normalized for range and laser energy and is corrected for the
ambient background signal and dead time, see Equation 4.4. Simply put, the dead time
correction is the correction for non-continuous recording of the signal. The second part of
the equation is important for understanding the normalization procedure. The third part
is important for understanding the meaning of the green backscatter profile, i40 g bcsc of
Table 4.1.

𝑃 ′532(𝑧) =
(DC[𝑆532(𝑧)]−DC[𝐵532])𝑅2

𝛼𝐸532
= 𝐶532𝛽532(𝑧)𝑇 2

532 (4.4)

Here, 𝑃 ′532 is the green normalized signal at an altitude 𝑧 (i.e. i40 g lid). The second
part consists of the dead time correction (DC ) of the measured signal 𝑆532(𝑧) and the
background signal, 𝐵532(𝑧), the range 𝑅 from the satellite to altitude 𝑧, the ratio 𝛼 of
the input and output energy passing through the same bandpass filter (i.e. a measure for
filter transmission coefficient), and the transmitted energy before the bandpass filter 𝐸532.
In other words, the normalization consists of subtracting the background from the atmo-
spheric return signal, then multiplying by the square of the range and finally dividing by
the effective transmitted energy. This second part shows which measurements are required
for computing the normalized signal. The third part of the equation basically combines the
second part of the equation in other variables. Here, 𝐶532 is the lidar calibration constant,
𝛽532 is the total atmospheric backscatter cross section at altitude 𝑧 and 𝑇 2

532 is the two-way
transmission of the top of the atmosphere to altitude 𝑧.

The algorithm for the 1064nm channel is essentially the same, using slightly different
variables. Equation 4.5 shows the algorithm for computing the infrared normalized signal.

𝑃 ′1064(𝑧) =
𝐷𝑟(𝑉𝑠(𝑧)− 𝑉𝑏)𝑅2

𝐸1064
= 𝐶1064𝛽1064(𝑧)𝑇 2

1064 (4.5)

Here, 𝑃 ′1064 is the infrared normalized signal at an altitude 𝑧 (i.e. i40 ir lid), 𝐷𝑟 is the
detector responsivity factor (which is a constant that converts Volts to Watts), 𝑉𝑠(𝑧) is
the return signal at altitude 𝑧, 𝑉𝑏 is the background signal (both converted from digital
counts to Volts), and 𝐸1064 is the laser transmitted energy. The third part of the equation
follows the same principle as before, where 𝐶1064 is the lidar calibration constant, 𝛽1064

is the total atmospheric backscatter cross section at altitude 𝑧 and 𝑇 2
1064 is the two-way

transmission of the top of the atmosphere to altitude 𝑧.
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As depicted in Table 4.3, the units are [(photons/bin)· km2/J ] for the green normalized
signal and [(W ·km2)/J ] for the infrared normalized signal. Both signals are available in
the GLA02 data product. However, the retrieval of these parameters from the GLA02
data products is not as straightforward as the retrieval of parameters from other products.
GLA02 is a near-real-time atmospheric data product and the files become very large. Also,
the data subsetter of NSIDC does not support GLA02 data subsetting based on fine spatial
and temporal preferences. The main reason for this is that the product only contains the
predicted latitude and longitude of the footprints assuming nadir-pointing only, which can
differ tens of kilometers from the actual locations in case of off-nadir pointing. As a conse-
quence, for this research it is decided that the normalized signals are not used for analysis,
but instead the attenuated backscatter profiles. Basically, these profiles only differ from
the normalized signals in a scaling factor (the calibration constant) and the correction for
transmission losses. Another advantage of this approach is that both the green and infrared
backscatter profiles can be directly compared due to the same units, i.e. [m−1sr−1], see
Table 4.1.

The two equations described above basically show how the attenuated backscatter pro-
files can be computed. However, first the lidar calibration constants should be computed.

The laser light is backscattered from atmospheric clouds, aerosols and molecules [33].
The lidar calibration constants, 𝐶532 and 𝐶1064, are time-dependent and require, next to
the normalized lidar signals, the average molecular backscatter cross-section and the two-
way transmission of the atmosphere. This means that, for the computation of the lidar
calibration constants, 𝛽532 and 𝛽1064 in Equation 4.4 and Equation 4.5 become the molecu-
lar profiles, and 𝑃 ′532 and 𝑃 ′1064 become the vertically integrated normalized signals. These
molecular profiles and normalized signals are only required for a specific calibration layer of
2km. The molecular backscatter profiles, that are dependent on atmospheric temperature,
pressure and humidity, are determined from meteorological data. The transmission term
is the two-way transmission from the top of atmosphere to the calibration height and is
composed of a Rayleigh (molecular scattering [54]) component and an ozone component.
When computing this two-way molecular transmission term, it is assumed that there is no
absorption due to aerosols. The molecular transmission is assumed to be equal to one for
the infrared laser and is close to one for the green channel. For the infrared channel, the
ozone absorption is negligible and consequently the total transmission term for the infrared
channel is equal to one. However for the green channel, the ozone absorption should be
accounted for and is calculated using ozone mixing ratios. These ratios are dependent on
latitude and month of year and are found in pre-defined look-up tables. The molecular
transmission term for the green channel is determined with meteorological data as well.
More detailed information on the constant and transmission calculations can be found in
the ATBD [33].

Thus, briefly summarized, the lidar calibration constant is dependent on the normalized
lidar signal that is measured and the molecular backscatter profile that is found in look-up
tables. The signal and backscatter profile are retrieved only for a specific calibration layer
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of 2km. For the infrared channel, the signal and profile are sufficient, for the green channel,
also the two-way transmission term from top of the atmosphere to the calibration height
should be determined with look-up tables. After measuring the signal and determining
the profile and transmission term, the lidar calibration constants can be computed with
Equation 4.4 and Equation 4.5.

Once the lidar calibration constants are known, the attenuated backscatter profiles can
be computed using the normalized lidar signals from GLA02 and the two-way transmis-
sion term over the entire profile range (instead of only the calibration layer), again using
Equation 4.4 and Equation 4.5. These are rewritten and shown in Equation 4.6. Here
too, it holds that the transmission term is equal to one in case of the infrared channel and
dependent on altitude for the green channel. The reason that the backscatter profiles are
renamed as attenuated backscatter profiles is because of the attenuation of the laser pulses
due to molecular and aerosol/cloud scattering effects along the laser’s path line-of-sight.

𝛽′532(𝑧) =
𝑃 ′532(𝑧)

𝐶532𝑇 2
𝑜,532(𝑧)

𝛽′1064(𝑧) =
𝑃 ′1064(𝑧)
𝐶1064

(4.6)

Here, 𝛽′532 and 𝛽′1064 are the attenuated backscatter profiles, 𝑃 ′532 and 𝑃 ′1064 are the
normalized signals at an altitude 𝑧, 𝐶532 and 𝐶1064 are the lidar calibration constants and
𝑇 2

𝑜,532(𝑧) is the two-way ozone transmission from the top of the atmosphere to altitude 𝑧.
Even though the GLA07 product documentation [36] specifies that the green signals are
replaced by infrared signals when the green channel becomes saturated (i.e. in case of thick
clouds or ground), correspondence with the GSFC [41] brought forth that this was never
implemented and consequently is not relevant.

As Table 4.1 shows, the green and infrared backscatter profiles are computed between
10.3km and -1.0km above the geoid at 40Hz. Since their vertical resolution is 76.8𝑚, each
of the 40Hz backscatter profiles contain 148 bins. The green laser footprint is identical to
the infrared footprint, with a major axis ranging from 50m to 120m. Since the repetition
rate is 40Hz, the horizontal resolution is the same as the horizontal resolution of the al-
timeter signals, i.e. about 175m.

4.5.3 Retrieval of atmospheric signals at ground level

Now that the backscatter profiles from 10km to -1km above the geoid are known, the
ground return values can be extracted. For this, the height of the geoid, i gdHt, and the
height of the surface above the reference ellipsoid are required. To get the most reliable
results, the altimeter detector estimated elevation, i elev, is used as surface height. See
Table 4.1 for more information on these attributes.
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In case the surface elevation, i elev, is invalid (i.e. in most cases due to failed elevation
estimation), the SRTM30 DEM, i DEM elv, is used. This is a near-global DEM that com-
bines the dataset of the Shuttle Radar Topography Mission (SRTM), flown in February
2000, and the dataset of USGS’s GTOPO30 [22]. The reference frame of this DEM has
already been changed to the Topex/Poseidon ellipsoid to make it consistent with the ICE-
Sat derived elevations. Now that the geoid height and surface elevation above the ellipsoid
are known, the surface height above the geoid can be determined by simple subtraction.
Next, the backscatter values are extracted from the bin numbers corresponding to eleva-
tions ranging from 300m to -300m with respect to the ground surface. In the rare case
that both the ICESat estimated elevation and the DEM elevation are invalid, a maximum
height of 4km and a minimum height of -1km above the geoid is chosen, and consequently
more bin values are extracted. The maximum value of the backscatter profiles that occurs
in the extracted bin values is assumed to be the ground return value. Figure 4.6 shows
typical examples of the green and infrared backscatter return values from 10km to -1km
above the geoid, also indicating 300m and -300m above the ground surface.

As the plots in Figure 4.6 show, the backscatter values of the green channel are roughly
an order of magnitude lower than those of the infrared channel, most likely due to the
lower transmitted energy, which decreases the signal-to-noise ratio (SNR), and higher at-
mospheric absorption. For the infrared channel, the ground returns are clearly identifiable
with respect to the rest of the backscatter profiles (i.e. atmospheric values). However the
ground returns of the green channel show more fluctuations. Some green return values
are clearly higher than the rest at ground level, while others are closer to the backscatter
values of the atmosphere, see the top two plots of Figure 4.6.

Over the Dry Valleys, in total 67,318 valid green and 73,160 valid infrared backscatter
returns at ground level are available, not taking into account any filtering criteria other
than the return signals being a valid number. The difference in number of returns at
ground level is accountable to the high number of invalid green backscatter profiles for
laser campaign 1A, most probably due to erroneous backscatter profile computations.

The attenuated backscatter values at ground level of the green and infrared signals will
be used for classification analysis. The combination of the green ground return signals
with the infrared signal attributes might improve the classification algorithm, because ice
in particular shows different reflectance for both wavelengths. Even though theoretically
the classification algorithm might be improved by taking into account the green signals, in
practice however the dramatic decrease in transmit energy might pose a problem. Whether
the green and infrared ground signals will actually improve the classification algorithm will
be discussed in Chapter 8.
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Figure 4.6: Four typical backscatter profiles of the green and infrared channels over the Dry
Valleys. The red lines indicate 300m above and below the geoid.



Chapter 5

Waveform derived attributes

In addition to the data product derived attributes, waveform derived attributes are used
for the surface topography and classification analysis as well. With the filtering techniques
that are described in this chapter, together with the filtering and correction techniques
described in Chapter 4, the subset of shots to be used for further analysis is determined.
The filtering techniques in this chapter are included in Figure 2.3. The beam co-elevation
angle correction technique will be explained in Chapter 6, because this correction can be
better explained in the context of surface topography analysis.

All attributes in this chapter are related to the received and transmitted waveforms. In
addition to how these attributes are used for filtering techniques, this chapter will discuss
how surface topography and land cover types might influence ICESat’s laser pulses as well.
First of all, in Section 5.1 an overview of the waveform derived attributes will be given.
Brief descriptions of several of these attributes are provided in this section as well. Next,
to make the reader familiar with the waveform principles and its composition, Section 5.2
addresses some background information about the returned waveform. With the knowl-
edge of the returned waveform and the transmitted waveform, the so-called deconvolution
technique can be applied. In Section 5.3 this technique will be explained. The filtering
technique of the waveforms will be discussed in Section 5.4. Finally, the waveform is sub-
ject to statistical analysis, which will be explained in detail in Section 5.5.

5.1 Overview of waveform derived attributes

The waveform derived attributes include data product derived attributes and
self-computed attributes. The data product derived attributes that are ex-
plained here are all related to transmitted and received waveforms.

The transmitted waveforms, i tx wf , and received waveforms, i rng wf , are extracted
from the Global altimetry data product, GLA01. Both waveforms are embedded in the
data product and are expressed as digitizer counts. With IDL code and software these
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waveforms are extracted and counts are transformed into energy units, Volts, using a sim-
ple look-up table. This table holds for each digitizer count the corresponding value in
Volts. Detailed information about GLA01 data product usage guidance can be found on
the NSIDC website [34].

Derived attribute ID Data product Frequency Attribute name
shotID GLA01/GLA06/GLA07 40Hz record index + shot number
Original attribute ID Data product Frequency Attribute name
i rng wf GLA01 40Hz 1064nm range waveform [counts]
i tx wf GLA01 40Hz sampled transmitted pulse waveform [counts]
i RecNrgLast EU GLA01 40Hz 1064 nm laser received energy [atto J]
i EchoPeakLoc GLA01 40Hz Echo peak location [ns]
i reflctUncorr GLA06 40Hz reflectivity not corrected for atmospheric effects [-]
i gval rcv GLA06 40Hz gain value used for received pulse [counts]
i satNrgCorr GLA06 40Hz saturation energy correction [0.1fJ]
i kurt2 GLA06 40Hz kurtosis of the received echo (standard) [-]
i skew2 GLA06 40Hz skewness of the received echo (standard) [-]
Self-computed attribute ID Related data product Frequency Attribute name
Width GLA01 40Hz Waveform width [ns]
FWHM GLA01 40Hz Waveform Full Width at Half Maximum [ns]
Maximum GLA01 40Hz Waveform maximum [V]
Summation GLA01 40Hz Waveform summation [V]
Risetime GLA01 40Hz Waveform risetime [ns]
Number of peaks GLA01 40Hz Waveform number of peaks [-]
Mean GLA01 40Hz Waveform mean [V]

Table 5.1: The waveform derived attributes that are used for the research, all relate to waveforms.
The frequency represents the rate per second of parameter occurrence in the specified
data product. Units of the parameters are indicated between brackets.

Table 5.1 shows the waveform derived attributes that are used for this research. It
differentiates between one derived attribute, original (data product derived) attributes
and self-computed attributes. All original and self-computed attributes relate to ICESat’s
waveforms. The first attribute, ShotID , is used for referencing the shots between the data
products. The original attributes are explained next. However, waveform kurtosis, i kurt2,
waveform skewness, i skew2, and all self-computed attributes will be explained in Section
5.5.

The echo peak location, i EchoPeakLoc, is used for this research as a measure for the
presence of a valid return peak in the received waveform. It is used for initial filtering
of the waveforms, see Section 5.4. The reflectivity not corrected for atmospheric effects,
i reflctUncorr or hereafter referred to as reflectivity, is calculated as the ratio of the re-
ceived energy and the transmitted energy and it has been scaled for range. The received
energy is calculated as the area under the waveform after noise subtraction and scaled
by the receiver gain. More information on the receiver gain, later in this section. The
transmitted energy is calculated as the area under the transmitted waveform and scaled by
the transmitted gain. Both are also scaled by the corresponding optical to detector Volt
efficiency [3]. Equation 5.1 shows the equation for computing 𝜌surf uncor, the reflectivity
uncorrected for atmospheric effects.
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𝜌surf uncor =
𝜋𝐸rec𝑅

2

𝐸trans𝐴telescope𝜏opt
(5.1)

Here, 𝐸rec is the received energy, 𝑅 is the range in meters, 𝐸trans is the transmitted
energy, 𝐴telescope is the telescope area (0.709𝑚2), and 𝜏opt is the optics transmission (67%).
GLA06 also offers the attribute i reflCorr atm, reflectivity corrected for atmospheric ef-
fects; however, this parameter is not used for this research, because the atmospheric cor-
rection is not reliable throughout the laser campaigns due to the degradation of the green
laser [46]. Since i reflctUncorr is not corrected for the atmospheric effects, this value should
be interpreted with caution and only used when the cloud presence is minimal. The test
for cloud presence is addressed later in this chapter. The received energy is the energy of
the received laser pulse between the thresholding crossing before and after the maximum
amplitude in energy units [J ]. It used in Chapter 8 for the discussion on correcting the
reflectivity attribute, i reflctUncorr, for saturation. More information on saturation later
in this section.

For each laser pulse the GLAS instrument transmits, the received energy is mainly
dependent on atmospheric and ground reflecting effects. Based on the amount of received
energy, the voltage gain of the detector pre-amplifier, i gval rcv , is adjusted. This is car-
ried out automatically to amplify the backscattered signal such that a proper waveform
is recorded and Gaussian distributions can be fit in order to estimate the elevation. To
get this proper received waveform shape, the gain is adjusted depending on the maximum
received amplitude [3]. If the received energy is low, the gain will be increased and if
the received energy is high, the gain will be decreased. The minimum and maximum val-
ues are 13 counts and 250 counts, respectively (although on the NSIDC data description
page [35] a maximum of 200 [counts] is posted). However, since the response time of the
gain is limited, in some cases the recorder becomes saturated. As will be demonstrated
with case studies in Section 8.1, the response time of the receiver gain is about 10 shots
(i.e. 0.25 seconds) from high gain to low gain and about 5 shots (i.e. 0.125 seconds) for
low gain to high gain. Basically, saturation means that the GLAS instrument may not
properly record the received energy values because gain over-amplifies the received pulse.
This occurs generally for the following case. The gain has been set at a high value (i.e.
large amplification) when the returned energy is low. In case the received energy suddenly
increases, due to changing land cover type for example, the instrument should adjust to
lower gain (i.e. low amplification) in order to keep proper output signals for the digital
waveform recorder. However, since the response time of the gain is non-optimal (too slow),
the gain does not adjust properly and consequently the signal output is over-amplified.
The waveform recorder has a limited recording range and the over-amplification results in
the recorder to become saturated. Consequently, the samples that are recorded may not
represent the actual waveform values. This over-saturation of the detector can cause the
waveform peaks to be clipped [45] and the upper part of the received waveform is omitted.
When the gain eventually adjusts, the waveforms are recorded normally again. Conversely,
in case the received energy jumps from high returned energy to low returned energy and
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the gain cannot increase properly, the recorder does not become saturated but instead a
weak signal may be recorded. In extreme cases, no echo peak could be found and the echo
peak location, i EchoPeakLoc, becomes equal to zero.

Figure 5.1 shows two waveforms, the left is non-saturated and the right is saturated.
When the returned pulse causes the receiver to be saturated, the received waveform could
be distorted and does not represent the actual returned voltages. To correct for this effect
the saturation energy correction, i satNrgCorr , can be applied. This attribute indicates
the energy that should be added to the recorded received energy in case of saturation. The
detailed discussed with real examples of the variability of the gain and saturation energy
correction with varying transmitted energy and land cover type, is provided in Chapter 8.

Figure 5.1: Example of a non-saturated waveform (left plot) and a saturated waveform (right
plot). Notice the clipped peak when saturated.

5.2 Returned waveform composition

Between the time the GLAS instrument transmits a laser pulse and receives
the returned pulse, the pulse is subject to various attenuation and distortion
factors. Not only the surface that is illuminated by the laser beam contributes
to pulse distortion, but also atmospheric disturbances. Besides these exter-
nal factors, two internal factors are taken into account as well, namely the
transmitted waveform shape and the receiver impulse response effects. As
a result, the returned waveform is a function of the scattering elements along
the traveled path of the laser and internal GLAS instrument related factors [3].

After the waveform is extracted from GLA01 with IDL software, the waveform basically
represents the energy of the laser pulse as a function of time. From the moment the laser
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pulse is generated at the satellite, it is subject to many complex influences. A simplified
overview of the processes the laser pulse is subjected to from transmittance until recep-
tance is illustrated in Figure 5.2. The waveforms show an example sequence of what the
pulse could experience. The landscape in the figure is actually a part of the Dry Valleys
in Antarctica validation site and is used here only for visualization purposes. See Section
3.1 for more information on the Dry Valleys.

Figure 5.2: A simplified overview of waveform propagation from transmittance till receptance.
The changes between the waveforms are not to scale and only meant for visualization
purposes. The upper atmosphere includes the ionosphere and mesosphere, the lower
atmosphere includes the stratosphere and troposphere.

Figure 5.2 should be interpreted as follows. Eight waveforms are indicated and travel
in the direction of the outer arrows, so in the left part the pulse travels from satellite to
ground and in the right part the pulse travels from ground to satellite. Each waveform
is expressed as energy versus time, and for each block (i.e. pulse generator, upper atmo-
sphere, etc.) the axes of the waveform correspond to the axes shown on top of that part.
Thus, for the left and right waveforms the time axis is orientated downwards. This is
because the first sample that is recorded after transmission in the left part is also the first
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sample that is recorded in the right part. The first internal factor that contributes to the
shape of the received waveform is the shape of the transmitted waveform. Generally speak-
ing, the transmitted waveforms are similar, each describing a near-perfect single Gaussian
pulse with a standard deviation of about 3ns [14]. Although not visible in the figure,
the transmitted energy is in reality an order of magnitude twelve times higher than the
received energy, mainly due to attenuation and scattering. The first external disturbance
(the free space loss ignored) is the upper atmosphere, roughly defined as a combination of
the ionosphere and mesosphere. The upper atmospheric attenuation is very small and de-
lay corrections can be neglected [45]. Since the entire pulse is short (5ns) and travels with
the speed of light, it penetrates the atmosphere extremely quickly and it is assumed that
the entire pulse is affected homogeneously over the entire waveform. The only influences
are a slight decrease in signal energy and the addition of small scale noise over the entire
waveform. This small scale noise is assumed to come from background radiation having the
same frequency as the laser pulse. In Figure 5.2 the lower atmosphere, roughly defined as
a combination of the stratosphere and troposphere, is mentioned separately, because larger
particles forming clouds and aerosols exist here. These particles can distort the waveform
significantly by severe scattering. Heavy clouds completely block the laser signal and as a
result no surface elevation can be estimated but only cloud information is measured [45].
Thinner clouds and aerosols cause forward scattering, which distorts the waveform and
shifts the centroid of the return waveform to later times [3]. Especially with the low laser
energy at later ICESat campaigns, cloud cover can prohibit the signal to touch the ground
at all. Since it is important for this research to work with ‘clean’ waveforms (affected by
unwanted effects as little as possible) a cloud filtering threshold is proposed, see Section
5.4 and Section 8.2.

After the pulse has penetrated the atmosphere the most important interaction takes
place, namely the interaction with ground features. Higher elevated objects are illuminated
first and, as a consequence, these scatter back (part of) the energy first. Lower elevated
objects scatter back (part of) the energy at a later stage and this results in a complex
returned waveform. Important to know in this discussion is that the ground as a three
dimensional surface affects the waveform in a two dimensional way. Since the receiver
on the satellite only records counts (indirectly energy levels) versus time, rather than an
(spatial) energy image over time, the laser beam becomes rotationally independent around
the beam center line. As a result, in the transformation from surface to waveform, the
information looses one dimension. Figure 5.3 illustrates such an example where it does not
matter for the returned waveform where the object is located, as long as the same area is
illuminated and the distance between the object and beam center line remains the same.
In other words, if the object would have been exactly on the opposite side, the received
waveform would be exactly the same. The reason that the distance from the object to the
beam center line should remain the same for the waveform to be identical is because of
the non-uniform power distribution (assumed to be Gaussian) of the beam with respect to
the beam cross-section (i.e. the plane perpendicular to the beam center line). If the same
illuminated area of the object is located closer to the beam center, the object would cause
a higher local waveform peak because more energy is returned at that particular elevation.
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In case the object would be sufficiently lower (i.e. closer to the ground), the peaks
in the waveform would merge. The maximum separability of features in the waveform
is 15cm, see Section 2.2. Therefore, an object that is elevated 15cm or more above the
ground or other objects, should theoretically be distinguishable in the waveform. However,
receiver noise makes this ideal resolution worse in reality. Also, more objects illuminated
by the beam result in a more complex waveform.

Figure 5.3: The effect of elevated objects on the received waveform. In this case only an object
and the ground are considered. The beam center line represents the axis of beam
rotational independence, indicated by the rotating arrow.

After the laser pulse is reflected off objects and (possibly) ground, the pulse is scat-
tered back into the atmosphere. Only a fraction will then be scattered in such a way
that it is within the field of view of the GLAS telescope. It will again travel through
the difference atmospheric layers, resulting in even a lower returned energy level. Finally,
the pulse is recorded by the GLAS receiver, as indicated in Figure 5.2. In the figure, a
potential unwanted effect of the receiver is incorporated as well, namely the ringing effect
after the actual waveform. As the GLAS ATBD on range derivation [3] mentions, this
always happens when detector saturation occurs. Since no filtering based on saturation
energy correction is carried out, the possibility of ringing effect is taken into account (see
Section 5.5). The exact cause behind the ringing effect is unknown, other than that it
is an unwanted effect caused by the detector. In all cases of saturation, the ringing does
not represent the surface [35]. Especially for waveform analysis this effect is important,
because it can influence the derivation of waveform statistics.
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5.3 Waveform deconvolution

The returned waveform is mainly dependent on the transmitted waveform,
the influences along the laser’s path line-of-sight and the receiver impulse re-
sponse. The surface response function is of special interest to this research
since it holds information about the illuminated features. A technique called
deconvolution can estimate this function using the received waveform and the
transmitted waveform. In this section, this technique is explained and its rel-
evance is discussed. Even though deconvolution is a very promising technique
for vegetated areas, it is concluded that for ice sheet applications the technique
is not of significant importance.

The transmitted waveform experiences many interactions along the laser’s path line-
of-sight, basically consisting of the atmospheric and surface response functions, and the
receiver impulse response. Since the atmospheric effects are hard to model, especially with
the degradation of the green laser pulses (see Section 2.2), preferably these effects should
be minimized. In Section 5.4 and Section 8.2 a method is proposed to filter out data
that most likely is affected by significant cloud coverage. As a consequence, the returned
waveform, assuming it is not biased by significant atmospheric disturbances, represents a
convolution of the transmitted signal, the surface response function and the receiver re-
sponse function. Although it does not mean that the waveforms are actually ‘free’ from
atmospheric effects, it does imply that the waveforms are affected by atmospheric effects
in a more or less similar way. When ignoring any receiver instrument effects, the simple
convolution is expressed by Equation 5.2 [4].

𝑝(𝑡) = 𝑠𝑚(𝑡) * ℎ(𝑡) = ℎ(𝑡) * 𝑠𝑚(𝑡) (5.2)

Here, the ‘*’ symbol represents the actual convolution operation, 𝑝(𝑡) is the returned
waveform as function of time, 𝑠𝑚(𝑡) is the (measured) transmitted waveform a as func-
tion of time and ℎ(𝑡) is the surface response function as a function of time. To compute
an estimate of the surface response function, the deconvolution technique can be applied.
Since Equation 5.2 describes the convolution in the time domain, the deconvolution op-
eration has no direct mathematical definition other than being the inverse [32]. In order
to transform the time domain convolution into a multiplication, the variables should be
transformed into the frequency domain. So, the known functions 𝑝(𝑡) and 𝑠𝑚(𝑡) should be
fast-Fourier transformed (fft) into 𝑃 (𝑓) and 𝑆𝑚(𝑓), respectively, where the variable 𝑓 de-
notes the variable in the frequency domain. Equation 5.3 shows this simple transformation
from the time domain to the frequency domain. The fast-Fourier transforms have been
normalized by the length of the signal and cut off at half the fft, because the frequency
spectrum of the fft is symmetric.

𝑃 (𝑓) = fft(𝑝(𝑡))
𝑆𝑚(𝑓) = fft(𝑠𝑚(𝑡))

(5.3)
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With the transmitted and received waveforms expressed in the frequency domain, the
actual deconvolution equation can be stated, see Equation 5.4.

𝐻(𝑓) =
𝑃 (𝑓)
𝑆𝑚(𝑓)

(5.4)

𝐻(𝑓) is the spectral surface function, 𝑃 (𝑓) is the spectral received function and 𝑆𝑚(𝑓)
is the spectral transmitted function. This equation exactly describes what is needed for
deconvolution in the ideal case. However, in practice, the received and transmitted wave-
form are biased with a receiver noise term. Without taking this noise into account, large
numerical errors could result [4]. Equation 5.5 shows the additional noise (𝑛(𝑡)), which is
simply added to the signal in the time domain.

𝑠𝑚,𝑛(𝑡) = 𝑠𝑚(𝑡) + 𝑛(𝑡)
𝑝𝑛(𝑡) = 𝑝(𝑡) + 𝑛(𝑡)

(5.5)

The 𝑠𝑚,𝑛(𝑡) and 𝑝𝑛(𝑡) of Equation 5.5 represents the raw transmitted and received
waveform that are recorded by the GLAS instrument and are available in the GLA01 data
product. To account for the noise term, two filtering techniques are applied, one in the
time domain and one in the frequency domain. In the frequency domain the Wiener filter
is used, which is a statistically optimal filter [28] that minimizes the error between the
uncorrupted surface response function 𝐻(𝑓) and the estimated surface response function
𝐻̂(𝑓) [4]. Equation 5.6 shows the Wiener filter in the frequency domain.

𝑊 (𝑓) =
|𝑃 (𝑓)|2

|𝑃 (𝑓)|2 + |𝑁(𝑓)|2
(5.6)

The Wiener filter takes the absolute of both frequency functions to describe a real func-
tion. 𝑁(𝑓) is the noise term in the frequency domain and 𝑃 (𝑓) is again the uncorrupted
received waveform in the frequency domain. The noise frequency spectrum is computed by
fast-Fourier transforming the first 150 samples of the waveform in the time domain into the
frequency domain. These 150 samples usually represent the noise component of waveforms
having 544 samples (i.e. over ice sheet and land) [12]. In case the entire waveform is 200
samples long, i.e. over ocean and sea ice, the first 75 samples are used for noise estimation.
Since only the noise corrupted received signal is available, the uncorrupted signal should
be estimated. For this estimation a linear binominal filter is used as a low pass filter to
suppress the high frequency noise [4]. The filter uses one row of Pascal’s triangle and is
normalized over the sum of the row. The matrix below shows the the first six rows of
Pascal’s triangle.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
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For every received waveform, the row number is determined based on the width of the
returned pulse. How this width is determined, see Section 5.5. For example, if the sixth
row is used for filtering, the row [1, 5, 10, 10, 5, 1] would first be normalized, resulting in
[1, 5, 10, 10, 5, 1]/32 = [0.313, 0.1563, 0.3125, 0.3125, 0.1563, 0.0313]. The values form an ap-
proximation to the Gaussian [18]. By convolving the filter with the raw received waveform,
the noise is suppressed. Equation 5.7 shows this simple convolution, where binom filter rep-
resents the normalized binominal filter. It basically acts as a Gaussian smoothing filter.
The effect of the binominal filter on an example raw waveform is shown in Figure 5.4.

𝑝(𝑡) = 𝑝𝑛(𝑡) * binom filter
𝑃 (𝑓) = fft(𝑝(𝑡))

(5.7)

With the noise-suppressed received waveform in the frequency domain, the Wiener fil-
ter is multiplied with Equation 5.4, resulting in Equation 5.8.

𝐻̂(𝑓) =
𝑃 (𝑓)
𝑆𝑚(𝑓)

·𝑊 (𝑓)

ℎ̂(𝑡) = ifft(𝐻̂(𝑓))
(5.8)

Here, 𝐻̂(𝑓) again represents the estimated surface response function in the frequency
domain. After applying an inverse fast-Fourier transformation (ifft), the estimated surface
response function is transformed into time domain (ℎ̂(𝑡)). As Neuenschwander [2] points
out, some of the advantages of deconvolution over Gaussian waveform decomposition are
that deconvolution identifies more peaks compared to the Gaussian decomposition since
no a priori information on the number of peaks is required. Based on this information,
the deconvolution technique opens a very interesting way for modeling the waveforms and
consequently for classification, waveform parameter analysis and slope correction purposes.
The right plot of Figure 5.4 demonstrates the deconvolution result of the raw waveform
illustrated in the left plot. The deconvoluted waveform is normalized with respect to the
maximum peak. The middle plot shows the effect of the binominal filter on the raw re-
ceived waveform.

With the estimated surface response function, the separability between the targets
along the laser path is increased. The function, also known as reflectivity function, is
again dependent on various complex relationships along the laser path’s line-of-sight, such
as surface topography, surface reflection, forward scattering, laser pointing, laser energy,
footprint size, shape and orientation, and object height and position within the footprint
[2]. As the right plot of Figure 5.4 demonstrates, the peaks are better identifiable. For
this research, particularly the convolution of the surface topography and surface reflection
encapsulated in the deconvolved waveform could be useful for defining rock, snow, ice and
water terrain classification and for improved slope correction technique. To separate these
factors and, more importantly, to deduce the classification and correction technique, ideally
all of these influences are deconvoluted and decomposed into individual and identifiable
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Figure 5.4: Example of a raw waveform (left), the same waveform after the binominal filter is
applied (middle) and finally the normalized deconvolved waveform (right).

functions.

Especially for applications like vegetation and urban areas, this decomposition is im-
portant for accurately measuring the difference between the top and the bottom of the
object. For example, detection of tree heights could be improved by carrying out the de-
convolution technique on received waveforms. With this technique the separability between
tree canopy and ground surface could be improved. However for this research, it turned
out that the improved separability between features in the signal does not compensate for
the extra amount of computation time needed to deconvolve each waveform. Since this
research focuses on ice sheet and water waveforms only, it was concluded after comparison
with raw received waveforms, that the deconvoluted received waveforms do not change
significantly. Moreover, the transmitted waveform over time is consistent enough for this
research (despite the problems with the transmitted energy) and it is assumed that the
minor changes in shape of the transmit waveform does not affect the shape of the received
waveform in any way that it compromises the waveform analysis of this research.

Figure 5.5 shows the variability of all transmitted waveforms over the Dry Valleys
validation area. The waveforms are centered along the time axis such that the maximum
peak of all waveforms are located on one vertical line. As indicated by the figure, the shape
remains more or less the same over time. After comparison of this observation, together
with the lack of need for high separability of peaks of ice sheet and water waveforms, with
the extra required computation time, it was decided that the deconvolution is not carried
out for this research.

5.4 Waveform filtering techniques

After the waveforms are extracted, they are tested on several criteria to filter
out unreliable waveforms. This is necessary because in case waveforms have
low SNR, the statistics that are derived from the waveforms, see Section 5.5,
may give bad results. In addition to filtering based on data product derived
attributes related to the waveform, a waveform filtering criterion based com-
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Figure 5.5: The variability of the transmitted waveform over the Dry Valleys, normalized over
the maximum peak. The mean and the standard deviation (std) values are indicated.

parison between the returned waveform with background noise is applied as
well. The filtering steps are included in the flow diagram of Figure 2.3.

The first attribute used for filtering out waveforms is the already discussed i EchoPeakLoc,
the echo peak location. If the GLAS algorithm does not detect a noise threshold crossing
of the waveform, the echo peak location becomes zero. Consequently, all waveforms are
filtered out that have an echo peak location value equal to zero. The second attribute that
could be used for filtering is i gval rcv , gain value used for received pulse. According to
several references, the gain value is an important measure for the cloud presence during the
laser shot [55, 21, 46]. It is an alternative for using the cloud flag (i FRir qaFlag), which
turned out to be unreliable during the mission lifetime (due to the green laser degrada-
tion). As outlined by Donghui et al. [55], a gain value of higher than 50 normally indicates
clouded sky. However, as is discussed in Chapter 8 with detailed examples, this threshold
setting may also exclude valuable waveforms that are most probably not affected by cloud
cover. From the analysis in Chapter 8 a cloud filtering technique is used to filter out all
shots that have a reflectivity (i reflctUncorr) value of 0.1 or lower; no gain filtering is
applied.

The third attribute that could be used for filtering out inaccurately recorded waveforms
is the already discussed i satNrgCorr , the saturation energy correction. It is a measure
of the amount of saturation affecting the returned waveform. One possible and simple
solution is that if the value is not equal to zero, and consequently saturation has occurred
(resulting in possible waveform distortion), the shot is removed. However, as will be dis-
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cussed in Chapter 8 as well, using this parameter to filter out shots results in the loss of
valuable shots over particular land cover types. So no filtering is carried out based on the
saturation energy correction.

Beside these initial filtering steps (i.e. based on reflectivity and echo peak location),
another filtering technique is applied as well. This technique is based on the waveform noise
level with respect to the waveform peaks. As mentioned in Section 5.3, the noise is taken
from the first 150 samples of the waveform. Over ice sheet and land surface the waveform
holds 544 bins of 1ns samples and from visualizing the waveforms it is clear that the first
150 samples represent the background noise [12]. In case of 200 bins long waveforms over
sea ice and ocean, the first 75 samples are used to represent the noise. Equation 5.9 uses
this noise to compute a noise threshold value, which is the sum of the mean (noise level)
and three times the standard deviation [10].

threshold = mean(noise) + 3 · std(noise) (5.9)

If the waveform has no values larger than this threshold, the waveform is filtered out.
See Figure 5.7 for an example of the noise threshold compared to the waveform. Also in
case one of the first 150 or 75 samples is higher than the rest of the waveform, the wave-
form is filtered out. Finally, all waveforms are filtered out that have invalid values for the
attributes given in the overview of Table 5.1 (except i satNrgCorr).

5.5 Waveform statistics

An essential part of full waveform analysis is the computation of waveform
statistics. These statistics refer to all attributes that are directly related to
the returned waveform’s shape. Each waveform statistic describes a character-
istic of the waveform and can be used for discrimination purposes between land
cover types and to analyze the surface topography within the footprint. Two
kinds of waveform statistics are used for this research: pre-computed statis-
tics that are readily available in the GLAS data products and self-computed
statistics that are computed for this research. All attributes discussed in this
Section are included in the overview of Table 5.1 as well.

The pre-computed waveform statistics used for this research are kurtosis, 𝑖 𝑘𝑢𝑟𝑡2, and
skewness, 𝑖 𝑠𝑘𝑒𝑤2. The kurtosis is a measure for the peakedness and flatness of the distri-
bution and skewness is a measure for the asymmetry of the distribution around the mean
[3]. Both are available from GLA06 and are computed using the standard parameteriza-
tion, which fits up to two Gaussian distributions in the returned waveform. Hence the
number 2 in the ID of the attributes. Based on the location(s) of these Gaussian(s) and
the raw waveform, the two attributes are calculated. As the GLAS ATBD on the range
derivation [3] describes, kurtosis and skewness are based on equations that are dependent
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on the mean and standard deviation of the waveform. Equation 5.10 describes the equa-
tions behind these pre-computed attributes.

kurtosis =
1
𝜎4

𝑖=𝑒𝑛𝑑∑︁
𝑖=𝑠𝑡𝑎𝑟𝑡

(𝑖−mean)4𝑤[𝑖]

𝑖=𝑒𝑛𝑑∑︁
𝑖=𝑠𝑡𝑎𝑟𝑡

𝑤[𝑖]

− 3

skewness =
1
𝜎3

𝑖=𝑒𝑛𝑑∑︁
𝑖=𝑠𝑡𝑎𝑟𝑡

(𝑖−mean)3𝑤[𝑖]

𝑖=𝑒𝑛𝑑∑︁
𝑖=𝑠𝑡𝑎𝑟𝑡

𝑤[𝑖]

(5.10)

In this equation, 𝑤[𝑖] is the power at gate 𝑖 of the waveform, mean is the mean and
𝜎 is the standard deviation of the waveform. The kurtosis and skewness are the 4th and
the 3rd standardized moments, respectively. The ‘minus three’ in the kurtosis equation is
a correction to make the kurtosis of the normal distribution equal to zero. Equation 5.11
provides the computation for the mean and standard deviation.

mean =

𝑖=𝑒𝑛𝑑∑︁
𝑖=𝑠𝑡𝑎𝑟𝑡

𝑖𝑤[𝑖]

𝑖=𝑒𝑛𝑑∑︁
𝑖=𝑠𝑡𝑎𝑟𝑡

𝑤[𝑖]

𝜎2 =

𝑖=𝑒𝑛𝑑∑︁
𝑖=𝑠𝑡𝑎𝑟𝑡

(𝑖−mean)2𝑤[𝑖]

𝑖=𝑒𝑛𝑑∑︁
𝑖=𝑠𝑡𝑎𝑟𝑡

𝑤[𝑖]

(5.11)

In case the returned waveform describes a perfect normal distribution, both the kurtosis
and skewness are zero. If not, the ATBD on the range derivation [3] provides the methods
that are used to determine the start and end values used for the computations. Figure 5.6
illustrates the relationship of kurtosis and skewness on probability density functions.

The subfigures in Figure 5.6 show probability density functions with varying kurtosis
and skewness values. The distributions in each subfigure have the same standard devia-
tion and are normalized with respect to the area under the distributions to make proper
comparisons. The distributions illustrating the different skewness values are shifted hori-
zontally to show the distributions as clearly as possible. As the figure shows, the larger the



5.5. Waveform statistics 65

Figure 5.6: Example probability density functions with varying kurtosis and skewness values. In
both subfigures, the red line represents the normal distribution having zero kurtosis
and zero skewness. All distributions in each subfigure have the same standard devi-
ation and are normalized with respect to the area under the distribution. The figure
is only meant for visualization purposes.

kurtosis, the more peaked the distribution is. The distributions become skewed to the left
in case of positive skewness values and vice versa. The physical explanation behind varying
kurtosis and skewness can be explained as follows. A laser pulse that illuminates a sloped
or rough surface will result in a broad peak. Consequently, the kurtosis will decrease. Con-
versely, the received waveform will be sharply peaked over flat surfaces, resulting in more
positive kurtosis values. As for the skewness, the physical interpretation could be found
in terms of non-uniform illuminated surfaces. For example, a tree with increased canopy
width towards ground surface will result in increased waveform energy values with the
main lobe at the end of the waveform. Consequently, the received waveform skewness will
have negative skewness values. Positive skewness values will result from opposite surface
geometries, i.e. a large cross-sectional area elevated above the ground (such as a blunt hill).

The kurtosis and skewness are the only pre-computed waveform attributes (i.e. avail-
able from the data products). The self-computed waveform attributes are not extracted
from any data product, but are computed for this research. These waveform statistics form
an essential part in full waveform analysis because they indicate valuable characteristics of
the waveform. Eventually, these characteristics are used to get correlations between sur-
face types and waveform statistics, in order to come up with an algorithm to discriminate
between surface types based on full waveform statistics. It also plays an important role
for surface topography analysis. Below, each of these statistics are explained individually
using Figure 5.7 as an illustrative example. The figure shows the waveform as returned
energy versus relative distance and returned energy versus relative time. Originally in the
GLA01 data product, the waveform is described as a function of relative time in [ns]. By
multiplying this time by half the speed of light (due to the two way ranging), the waveform
can be described by relative distance.
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Figure 5.7: Example waveform with the indications of waveform statistics. The black rounds
indicate peaks within the waveform. The waveform is expressed in returned energy
versus relative distance and returned energy versus relative time.

The waveform threshold is meant to distinguish between the initial noise signal and the
returned waveform. Identical to the explanation in Section 5.4, this value is computed by
taking the sum of the noise mean and three times the noise standard deviation of the first
150 or 75 samples. In Figure 5.7 the threshold is indicated with the lowest horizontal red
dashed line. Below this line, no statistics are computed and it serves as the division line
between the background noise and the returned waveform.

In the following paragraphs, the computation of the self-computed attributes are ex-
plained. In the explanations, sometimes ‘interpolation’ between specific samples is men-
tioned, with which the following is meant. Since the samples have interval values of 1ns
and the waveforms can be narrow (width as small as 5ns) the waveform statistics are
computed with sub-nanosecond values. Consequently, interpolation between samples be-
fore and after the specific value is carried out. For example, if the noise threshold is
0.01V and the sample (at 100ns) before the threshold crossing has a value of 0.008V
and the subsequent sample (at 101ns) has a value of 0.02, the interpolated sample is
(0.01− 0.008)/(0.02− 0.008) + 100 = 101.17ns.

The width of the waveform is the time difference between the beginning and the end
of the returned waveform. The beginning is defined as the interpolation between the last
sample under threshold before the maximum of the waveform, and the subsequent sample.
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Similarly, the end is defined as the interpolation between the first sample under threshold
after the maximum of the waveform, and the previous sample. Consequently, the beginning
is the first sample of consecutive samples above the threshold, the end is the last sample of
same consecutive samples above the threshold. In Figure 5.7 the two vertical green dashed
lines indicate the start and end point of the waveform. If a sample rises above the threshold
and there exists no other sample that is below the threshold between this sample and the
maximum, this sample (interpolated with the previous sample) defines the beginning of
the waveform. The same principle holds for the end of the waveform, but reversed. This
statistic can indicate the elevation difference between the illuminated objects within the
beam footprint. For the example of Figure 5.7, the width is 16m or 107ns.

The full width at half maximum (FWHM ) is defined as the time difference between
the beginning at half of the maximum and the end at half of the maximum of the wave-
form. In Figure 5.7 the two vertical brown dashed lines indicate the start and end point of
the FWHM of the waveform. The beginning and end samples are defined with the same
principle as before: the beginning is the interpolation between the last sample under the
half maximum value before the maximum, and the subsequent sample. The end is the
interpolation between the first sample under the half maximum value after the maximum,
and the previous sample. This statistic is also a measure for the elevation difference within
the footprint, however ignoring the lower returned energies. Higher energies values may
be related to the object close to the beam center due to the Gaussian power distribution
of the beam and/or from more scattering elements within the footprint. The higher the
maximum of the waveform, the less energy is distributed over time and the more energy is
concentrated near the peak. This will then result in a smaller FWHM. In Figure 5.7 the
FWHM is 4.7m or 32ns, which could indicate the elevation difference of that part within
the footprint contributing to the maximum peak.

The maximum of the waveform is simply the value of the maximum peak of the wave-
form expressed in energy units. In this case, the figure indicates a returned maximum
recorded energy value of 0.75V. This value should be interpreted with caution, because
the receiver gain determines the height of the waveform recording. In case the received
energy is very low and consequently the gain is large, the recorded maximum value of the
waveform could be the same in case the received energy is high and consequently the gain
is low. Especially when saturation occurs and the recorded waveform gets clipped, the
maximum value is not very reliable. Although this statistic is discussed here, it is not used
for classification or slope analysis. However, it is important for risetime computations that
are discussed later on.

The summation of the waveform, not indicated in Figure 5.7, is simply the summation
of the waveform values that are above the threshold. No integration takes place, because
the values are not necessarily continuously ordered in the waveform (i.e. some peaks are
identified before the waveform beginning). In addition, all waveforms are sampled at 1ns
(0.15m) intervals, resulting in the same summation computation. The statistic is a mea-
sure for the returned energy above threshold and can be used for a SNR estimate by taking
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the ratio between the sum of the waveform and the noise threshold value. For example,
different surface types could result in different SNR values. In case of Figure 5.7, the sum-
mation is 76V compared to a noise threshold of 0.008V. The summation should be taken
with caution as well, because it does not represent the actual received energy, for the same
reasons as explained above.

The risetime of the waveform is defined as the time difference between 10% and 90%
of the maximum peak value. Figure 5.7 illustrates these points as ‘10% max waveform’
and ‘90% max waveform’ (the two vertical black dashed lines). The ‘10% max waveform’
is the interpolation between the last sample under the 10% value of the maximum before
the maximum value, and the subsequent sample. Similarly, the 90% max waveform is the
interpolation between the last sample under the 90% value of the maximum value before
the maximum, and the subsequent sample. This statistic is a measure for the slope of the
maximum peak. It could indicate the signal penetration of objects or the slopeness of the
illuminated surface within the footprint. For example, a tree canopy that allows the signal
to gradually be returned will have a lower risetime than a flat solid surface type. A flat
surface will result in a distict peaked waveform return, whereas a sloped surface will result
in a more broadened waveform return. The example of Figure 5.7 has a risetime of 2.7m
or 18ns.

The number of peaks of a waveform is dependent on the step width of the detection
algorithm, the noise threshold and the location in the waveform. First of all, the step
width is taken to be 2ns, which places constraints on the two samples before and the two
samples after the peak. The first sample before and the first sample after the peak should
both have values smaller than the peak value. In addition, the second sample before and
the second sample after the peak should both have values smaller than the first sample
before the peak and the first sample after the peak, respectively. In other words, the five
values (where the middle is the peak) should describe a ‘∧’. This step width is taken into
account to deal with the additive noise term in the waveform (i.e. very small local spikes
are not indicated as peaks). Only the peaks that are above the 10% of the maximum value
are considered, because peaks in the noise sections before and after the waveform are not
relevant. Finally, the location of the peak in the waveform is used to deal with the ringing
effect, which was already mentioned in Section 5.2. Detector saturation could result in
oscillations after the major waveform that rise above the threshold. As a consequence this
could negatively influence the number of peaks. To exclude the ringing peaks, all values
after the waveform end are left out in the peak identification. The number of peaks could
be a measure for the roughness of the terrain and different elevated objects within the
illuminated surface of the footprint. The example of Figure 5.7 has three peaks.

Finally, the mean of the waveform is the mean value between the beginning and the
end of the waveform. This statistic is also a measure of the spreading of the energy over
time when comparing to the maximum value. The smaller the mean over the maximum,
the more energy is spread over a wide waveform time frame. The higher the mean over
the maximum, the more the energy is concentrated in a narrow waveform time frame (for
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example the waveform describes one single peak). Figure 5.7 has a mean of 0.24V.

Most of the the described statistics are commonly used for signal waveform analysis.
They provide the basis for this research in order to analyze the effects of various surface
types and slopes on the returned waveform. In Chapter 6 and Chapter 8, these statistics
will be used.
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Chapter 6

Surface topography analysis

Slope and roughness of the illuminated surface form two major influences on the returned
waveform shape. In addition, the waveform’s shape is affected by the angle under which
the laser beam illuminates the surface as well. This angle is referred to as the beam co-
elevation angle. The combination of the slope and beam co-elevation angle together form
the so-called incidence angle. In this chapter the effects of slope, roughness and beam co-
elevation angle on the waveform width will be analyzed. This is important because these
effects should be understood properly before using waveform analysis for land cover type
classification.

In Section 6.1, a method of estimating slope and roughness will be explained. The
method of combining the beam co-elevation and slope to get the incidence angle is ex-
plained in Section 6.2. In Section 6.4 the influence of incidence angle and roughness on
waveform width are analyzed. To correct for the effect of beam co-elevation angle on
waveform derived attributes like width and risetime, Section 6.3 explains how this angle
can be used to compress the waveform. For this research, the surface slope is defined as
the inclination angle of a plane with respect to the horizontal plane in the projected map
coordinate system. The incidence angle is defined as the angle the laser beam makes with
the line perpendicular to the surface footprint plane. The roughness is defined as the root
mean square (rms) of the surface deviations from a fitted plane through the elevations.
The angles and roughness will be explained in more detail in this chapter.

6.1 Slope and roughness estimation

From the six DEMs over the Dry Valleys (see Section 3.3) together with the
ICESat footprint dimensions and geolocations, the slope and roughness param-
eters can be computed. The information of these parameters is essential for
analyzing their effect on the waveform’s shape.

To compute the essential surface topography parameters (slope and roughness) the
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ATM validation data set is used over the Dry Valleys, see Section 3.3. The set consists of
six individual DEMs, all having a spatial resolution of 2m. The models primarily cover the
valleys and Taylor Glacier, where bare rock, lake ice and glacier ice are the main land cover
classes. No elevations of regions covered by snow at the time of the DEM acquisition dates
are available. Apart from gaps between the DEMs, also data gaps in the DEMs themselves
occur. Nevertheless, the data set forms a valuable and relevant validation information
source. Since the Dry Valleys is a meteorologically stable region, this region is used for
topography analysis for several ICESat laser campaigns.

For the estimation of the surface topography parameters, the DEM elevations that are
analyzed are located within the laser footprint’s border. The geographical coordinates
(latitude, longitude) of this border are computed with the major axis and eccentricity and
are then projected into Cartesian coordinates using the same map coordinate system of
the DEMs (Lambert Conformal Conic projection). To compute the slope and roughness
parameters, a plane is estimated through the DEM elevations located within the footprint.
The estimation is carried out with the least-squares method. Equation 6.1 shows the equa-
tion for the linear system.

𝑧 ≈ 𝐴𝑥 + 𝜖 (6.1)

Here, z is the measurement vector, A is the matrix of coefficients, x is the parameter
vector, 𝜖 is the measurement error vector [29]. The 𝑁 × 1 measurement vector consists of
N DEM observations located in the footprint. The 𝑁 × 3 matrix of coefficients consists of
the two 𝑁 × 1 location vectors of the observations and a 𝑁 × 1 vector of ones. The 𝑁 × 1
parameter vector consists of the unknown parameters to be estimated. The observation
model looks as follows:

⎡⎢⎣ 𝑧1
...

𝑧𝑁

⎤⎥⎦ =

⎡⎢⎣ xpos1 ypos1 1
...

...
...

xpos𝑁 ypos𝑁 1

⎤⎥⎦
⎡⎣ xslope

yslope
offset

⎤⎦ +

⎡⎢⎣ 𝜖1
...

𝜖𝑁

⎤⎥⎦
The least-squares estimation of the parameter vector is denoted in Equation 6.2.

𝑥̂ = (𝐴𝑇 𝐴)−1𝐴𝑇 𝑧 (6.2)

One problem with the measurement vector is that the values (elevations) are quite
large. As a consequence, the 3 × 3 matrix that follows from 𝐴𝑇 𝐴 in Equation 6.2 could
come close to singular and could violate the working precision of MATLAB. To deal with
this, a local reference frame is defined, which has its origin at a fixed location of one of the
analyzed observations and it has the same axes directions. In this way, the new measure-
ment vector and the location vectors contains only the differences with the original vectors
resulting in much smaller values and the working precision is not pushed to its limits.
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The parameter vector consists of the two gradients expressed in [m/m] and the offset
in [m] from the origin. The two gradients essentially give the slope of the fitted plane in
two perpendicular directions, i.e. in positive x and in positive y directions. To link the
direction of the gradients to positive latitude and longitude (required for later analysis),
the map coordinate system of the DEMs is used. In this case (Dry Valleys DEMs), the map
axes are defined as being positive in local north and local east directions, corresponding
to positive x and positive y map directions. Since the DEMs are map projected using
a conformal projection and cover a rather small area, these directions are preserved [19].
Therefore the gradients can be directly applied to compute the slopes in north and east
directions. Equation 6.3 shows the relationship between the gradients and the slopes.

𝜎𝑁 = arctan 𝑥̂𝑁

𝜎𝐸 = arctan 𝑥̂𝐸
(6.3)

With the estimated parameter vector, the least-squares solution of the observations can
be computed, see the first line of Equation 6.4. The least-squares residuals vector yields
the discrepancy between the adjusted elevations and the actual elevations, shown in the
second part of the equation.

𝑦 = 𝐴𝑥̂
𝜖 = 𝑦 − 𝑦

(6.4)

Here, 𝑦 is the least-squares adjusted elevations at the same horizontal location as the
original DEM locations and 𝜖 is the least-squares residual vector. As mentioned before, the
slope of the plane is one of the three major influences on the shape of ICESat waveforms.
The other topography parameter is the roughness of the illuminated surface. For this re-
search the roughness is defined as the rms value of the residual vector between the actual
DEM elevations and the estimated plane elevations within the footprint, i.e. the rms of 𝑒,
see Equation 6.5.

roughness =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (6.5)

Similar as before, N is the number of DEM elevations that are present in the footprint,
𝑦𝑖 is the 𝑖𝑡ℎ DEM elevation in the footprint and 𝑦𝑖 is the 𝑖𝑡ℎ plane adjusted elevation at
the same horizontal location. This roughness parameter gives the quadratic mean of the
DEM deviations from the estimated plane.

Figure 6.1 illustrates the DEM observations and least squares fitted plane in one of
the footprints over Victoria Valley. For visualization purposes, Delaunay triangulation has
been carried out on the adjusted elevations to make the fitted plane more distinct from
the individual DEM observations. The left plot shows the front face of the fitted plane
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and part of the DEM observations. In the right plot the figure is rotated to illustrate the
deviations of the DEM observations with the plane. Both plots are defined in a local hori-
zontal reference frame for visualization purposes; the vertical axis expresses the elevations
with respect to the ellipsoid. For the slope computations, the fitted plane is compared
with the local horizontal plane (not shown in the plots); the roughness is dependent on the
difference between the DEM observations and the adjusted elevations.

Figure 6.1: Illustration of slope and roughness analysis, demonstrating the DEM observations
within the footprint and the least squares fitted plane based on the adjusted elevations
in the footprint. The left plot shows primarily the face of the plane, the right plot
shows primarily the deviations of the DEM observations with the plane.

The third major influence on the waveform shape is the beam orientation relative to
the surface footprint plane. The combination of the slope and beam orientation then yields
the beam incidence angle. The next section explains the geometry and equations involved
in the incidence angle computation.

6.2 Incidence angle estimation

If the laser beam would hit the surface parallel to the local vertical, i.e. exactly
nadir pointing, the slope and roughness parameters could directly be used for
analysis on the waveform’s shape. However, this is not the case for ICESat
laser pointing and consequently the beam orientation also affects the shape.
The combination of the beam orientation and slope angle of the footprint plane
results in the incidence angle.

Figure 6.2 and Figure 6.3 illustrate the geometry that is involved in the incidence angle
estimation. The left part of Figure 6.2 illustrates the beam co-elevation angle and the
azimuth angle of the laser beam from the satellite to the Earth’s surface. Here, 𝛼𝐵 is
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the beam azimuth angle minus 180∘ and 𝛽 is the beam co-elevation angle. Both angles
are extracted from the GLA06 data product, see Section 4.1. The beam azimuth angle,
i beam azimuth, is defined as follows: “the direction clockwise from north of the laser beam
vector as seen by an observer at the laser ground spot viewing toward the spacecraft (i.e. the
vector from the ground to the spacecraft)” [35]. The north (increasing latitude) direction
and east (increasing longitude) direction are also indicated in both figures. To get 𝛼𝐵, 180∘

is subtracted from the beam azimuth angle, because as a consequence, 𝛼𝐵 can directly be
used for decomposition of the beam in north and east components, see the next paragraph.
The beam co-elevation angle (𝛽), i beam coelev , is defined as follows: “the direction from
vertical of the laser beam as seen by an observer located at the laser ground spot” [35].

Figure 6.2: Angles of the laser beam with respect to a local terrestrial reference system (left), and
beam and slope angles decomposed into north and east components (right).

In the right part of Figure 6.2, both angles 𝛼𝐵 and 𝛽 are indicated again. The geometry
of the left part of the figure (where the beam hits the ground plane) is shown again. Just
below this, the beam co-elevation angle is decomposed into a north and east component,
𝛽𝑁 and 𝛽𝐸 respectively. Equation 6.6 shows how these components are computed.

𝛽𝑁 = 𝛽 · cos 𝛼𝐵

𝛽𝐸 = 𝛽 · sin 𝛼𝐵
(6.6)

The bottom right part of the figure shows the slope angle decomposed in north and
east components of the adjusted plane within the footprint. This plane is illustrated as an
ellipse with the north slope component 𝜎𝑁 and the east slope component 𝜎𝐸 . As mentioned
in Section 6.1, the plane is estimated with least-squares analysis of the DEM elevations
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Figure 6.3: The north and east components of the beam co-elevation angle and the slope an-
gle result in the north and east components of the incidence angle (left), and the
combination of the incidence angle components resulting in the total incidence angle
(right).

within the footprint. With the north and east components of the beam co-elevation angle
and the slope angles, the incidence angle can be computed. Figure 6.3 illustrates the com-
bination of these angles with the sloped plane.

As indicated in the figure, the incidence angle is defined as the angle the beam makes
with the line perpendicular to the surface footprint plane. Or, in other words, the off-nadir
angle with respect to the surface footprint plane. Equation 6.7 shows how the north and
east components of the beam co-elevation (𝛽𝑁 and 𝛽𝐸) and the north and east components
of the slope of the plane (𝜎𝑁 and 𝜎𝐸) combine to get the components of the incidence angle,
𝜑𝑁 and 𝜑𝐸 .

𝜑𝑁 = |(90∘ + 𝛽𝑁 − 𝜎𝑁 )− 90∘| = |𝛽𝑁 − 𝜎𝑁 |
𝜑𝐸 = |(90∘ + 𝛽𝐸 − 𝜎𝐸)− 90∘| = |𝛽𝐸 − 𝜎𝐸 |

(6.7)

From the definition of the incidence angle and Equation 6.7, the incidence angle will be
zero if the beam is exactly nadir pointing from the spacecraft with respect to the horizontal
map plane (𝛽 = 0) and the footprint plane is not tilted with respect to the horizontal map
plane (𝜎 = 0). On the other hand, the beam is also nadir pointing with respect to the
ground plane if the north and east components of the beam co-elevation angle are equal
to the north and east components of the slope, respectively. In the latter case, the beam
orientation cancels out the slope orientation and consequently the beam is nadir pointing
with respect to the footprint plane.

Having computed the north and east components of the incidence angle, the total in-
cidence angle can be derived. The right part of Figure 6.3 illustrates the construction of
the total incidence angle. The sides 𝑎, 𝑏, 𝑐 and 𝑑 help visualize the construction of this
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angle. Equation 6.8 shows the simple dependency between the sides and the incidence
angle components.

𝑎 = 𝑐 · tan 𝜑𝐸

𝑏 = 𝑐 · tan 𝜑𝑁

𝑑 = 𝑐 · tan 𝜑𝑇 =
√

𝑎2 + 𝑏2

(6.8)

From Equation 6.9 the simple expression for the incidence angle can be derived, see
Equation 6.9.

𝜑𝑇 = arctan(
√︀

tan2 𝜑𝐸 + tan2 𝜑𝑁 ) (6.9)

6.3 Beam co-elevation angle correction

The GLAS instrument of ICESat mostly operates in nominal mode, i.e. near-
nadir pointing of the laser with a beam co-elevation angle of about 0.3∘, pitched
upward in the direction of the spacecraft motion. However, this angle can be
increased up to about 5∘ (in any direction) for illuminating targets of opportu-
nities, like calibration and validation sites. The Dry Valleys area in Antarctica
also serves as a validation site and ICESat deliberately carries out off-nadir
pointing to make the tracks overlap as much as possible. Before some of the
waveform derived attributes are computed, beam co-elevation correction is car-
ried out.

The shape, and in particular the width, of the returned pulse is mainly affected by the
incidence angle and to a lesser extent the roughness. The exact relationship between these
surface topography parameter and the width is discussed in Section 6.4. Since incidence
angle is dependent on the beam co-elevation angle and the slope angle, keeping the slope
angle constant and increasing the beam co-elevation angle will change the width of the
returned waveform. The amount of this increase is important, because it could signifi-
cantly change the attribute values that are analyzed per land cover type. For example,
a beam co-elevation of 0.3∘ over a flat lake will result in a narrow return peak, while a
beam co-elevation angle of 4∘ illuminating the same surface will result in a wider return
peak. Consequently, when looking at the waveform characteristics over lake surfaces, the
width values indicate that the waveform width over the lake surface changes. Correcting
for the beam co-elevation angle would remove this effect and consequently only the slope
and roughness of the footprint influences the waveform width.

The effect can be modeled by looking at the direct effect of a tilted beam hitting the
surface. For the explanation below, a flat horizontal surface is assumed, while varying the
beam co-elevation angle, see Figure 6.4. The footprint plane of the beam is perpendicular
to the beam center line, which means that the time difference between the first and the
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Figure 6.4: The incoming laser beam hitting the surface, the dark green plane is the footprint of
the beam. The extra range of part of the incoming laser beam is induced by a beam
co-elevation angle.

last beam ray hitting the ground is directly dependent on the range difference between the
satellite receiver and point P1, and the satellite receiver and point P2.

The amount of range difference, Δ𝑅, is dependent on side 2r and beam co-elevation
angle 𝛽, as illustrated in the figure. The size of side 2r is dependent on the footprint
dimensions and its orientation with respect to the laser beam’s azimuth angle. Figure 6.5
shows the geometry involved in the computation of side 2r.

The left part of the figure shows the footprint in a horizontal plane with the north,
east and z-directions for reference purposes. As used before, 𝛼𝐵 is the beam azimuth angle
minus 180∘ and 𝛽 is the beam co-elevation angle. The transmit pulse azimuth angle is
𝛼𝑇𝑃 and is defined as the angle the major axis makes with north, measured clockwise. In
Figure 6.5 a and b are the semi-major and semi-minor axes, respectively. The polar angle
𝜃 in the right part of the figure is defined as the angle the radius r of the ellipse makes with
respect to the north direction, also in a clockwise (east) direction. This is in agreement
with the definition of the beam azimuth angle and the transmit pulse azimuth angle, both
measured clockwise from the north direction. The angle 𝜃 is simply the difference between
𝛼𝐵 and 𝛼𝑇𝑃 . When expressing the equation of the ellipse, first part in Equation 6.10, in
polar coordinates, second part, the radius r can be computed.
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Figure 6.5: The geometry of the incoming laser beam combined with the orientation of the foot-
print axes, shown in the left part. The right part shows the geometry involved in the
computation of side 2r.
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1
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𝑏2

(6.10)

The variables a and b are the footprint semi-major and semi-minor axes, respectively.
The range and time difference, Δ𝑅 and Δ𝑡 respectively, can consequently easily be calcu-
lated with Equation 6.11.

Δ𝑅 = 2𝑟 · tan 𝛽

Δ𝑡 = 2 · Δ𝑅

𝑐

(6.11)

The time difference computation in Equation 6.11 incorporates the two-way travel time
of the beam and the speed of light, c. Since the samples of the returned waveform represent
the returned energy per nanosecond, the time difference should be expressed as nanosec-
onds as well for direct correction of the returned pulse.

Not the entire waveform as available in the GLA01 product is relevant for width cor-
rection, since it also includes noise sections. Therefore, only that part of the waveform



80 Chapter 6. Surface topography analysis

which is between the beginning and end sample of the width is corrected. See Section 5.5
on how these two samples are determined. To make proper reference to this waveform part
in this discussion, the term ‘returned pulse’ is used and basically represents the continuous
part of the entire waveform that is between the beginning and end sample of the width.
It is assumed that this is the part that results from the reflecting of the transmit pulse
off objects along the lasers path line-of-sight and does not include the near-flat noise part
before and after. Figure 6.6 shows the flow diagram of the correction algorithm to illus-
trate each step in the process with numbered references. This process is explained step by
step in the next paragraphs. The identification of the returned pulse is referred to as step 1.
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Figure 6.6: The flow diagram illustrating the steps that are taken to correct waveforms for beam
co-elevation angles.
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The returned pulse is then compressed to correct for the widening effects caused by
the beam co-elevation angle. The compression ratio is defined as the width of the original
returned waveform over the corrected width. Equation 6.12 shows the computation of the
ratio, with Δ𝑡 as determined with Equation 6.11

compression ratio =
widthreturned pulse

|widthreturned pulse −Δ𝑡|
(6.12)

The original returned pulse is then compressed by linear interpolation of the original
returned pulse at intervals equal to the compression ratio. In the flow diagram this step
is referred to as step 2. When compressed, the returned pulse will have approximately
the same return energy values but over a smaller time frame. As a consequence, the sum
of the compressed returned pulse energy values is not the same as the sum of the original
returned pulse energy values. To correct for this, a simple factorization is applied, see
Equation 6.13. Please note that the returned energy values are based on the recorded
waveform values and are not the same as the actual received energy because the waveform
values have not been scaled to receiver gain.

pulsecorrected = pulsecompressed ·
∑︀𝑁

𝑖=1 pulse𝑖,original∑︀𝑀
𝑖=1 pulse𝑖,compressed

(6.13)

Here, the pulsecorrected represents the energy values of the compressed returned pulse
corrected for the sum of returned energy, pulse𝑖,compressed is the 𝑖𝑡ℎ energy value of the
compressed pulse uncorrected for energy, pulse𝑖,original is the 𝑖𝑡ℎ energy value of the pulse
from the original waveform, and N and M are the number of energy values of the two
corresponding pulses. This step is referred to as step 3 in the flow diagram.

To simulate the corrected entire waveform as accurately as possible, the waveform
should be constructed similarly to the original entire waveform. As such, the maximum
peak of the compressed returned pulse is aligned with the maximum peak of the original
returned pulse. This is step 4 in the flow diagram. Next, the part of the original wave-
form in front of and after the returned pulse (i.e. the noise parts) is pasted in front of and
after the corrected pulse, step 5 in the flow diagram. However, these added parts will not
cover the entire waveform, because of the compression of the returned pulse results. So the
beginning and end samples that are left to be filled are filled with a copy of begin and end
samples of the original waveform, see step 6. These samples are not relevant for waveform
analysis, they only contribute slightly to the computed threshold value used for statistical
analysis.

Finally, the result is a waveform that is corrected for beam co-elevation angle while
keeping the summation of the returned pulse values and preserving the length of the cor-
rected waveform with respect to the original waveform. With this algorithm, the extra
width induced by the co-elevation angle is corrected for, such that the total width of the
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corrected returned pulse is only dependent on the shape of the transmitted pulse, the slope
and roughness of the laser illuminated surface, and possible objects along the laser’s path
line-of-sight.

Please keep in mind that this beam co-elevation angle only affects the returned wave-
form signal. It does not have any influence on data product extracted values like the
reflectivity, receiver gain, kurtosis, skewness and returned energy. These original values
are still dependent on the returned pulse affected by the total incidence angle and conse-
quently the beam co-elevation angle. The beam co-elevation correction is primarily used
to correct for the extra width of the waveform induced by the beam co-elevation angle,
because otherwise the same location on Earth would return different waveform widths and
risetimes for different beam co-elevation angles while in reality the location itself does
not change. Each time reference is made to waveform derived attributes like width and
risetime, it will be explicitly indicated whether the corrected or raw waveform is used for
computations.

To give the reader an idea about the difference in waveform width between a raw and
a compressed waveform, the following examples are given. For nominal beam co-elevation
angles, the beam angle correction is small (in the order of 0.3∘ to 0.4∘) and the corrected
width is similar to the width derived from the original waveform. Only in case of large
beam co-elevation angles, the waveform will be significantly compressed. For 90% of all
shots covering the Dry Valleys, the beam co-elevation angle is below 0.5∘ and consequently
in most cases the beam co-elevation corrected width is similar to the width computed from
the raw waveforms. Only in the cases the beam co-elevation angles are significantly larger
(i.e. larger than 1∘) the correction becomes increasingly effective. For example, a beam co-
elevation angle of 0.3∘ and a circular footprint with radius 50m illuminating a flat surface
results in a Δ𝑅 of 0.52m and a Δ𝑡 (i.e. width compression) of 3.5ns. A beam co-elevation
angle of 4∘ with the same footprint and illuminating the same surface results in a Δ𝑅 of
7.0m and a Δ𝑡 (i.e. width compression) of 47ns. Based on the Δ𝑡, the amount of waveform
compression is computed. Alternatively, when only interested in the waveform width, the
original waveform width can be directly subtracted by Δ𝑡.

6.4 Incidence angle and roughness results

The previous sections described the computations involved in the incidence an-
gle, roughness and beam co-elevation correction. This section discusses some
results of the ATM DEM derived incidence angles over the Dry Valleys. The
effect of the incidence angle on the returned width is analyzed. This section is
of particular importance for the waveform derived attribute: waveform width.
Since this attribute is eventually used for classification purposes, its depen-
dence on surface topography should be understood properly.
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This section is subdivided into three paragraphs. In the first paragraph the histograms
of incidence angle and roughness are discussed. In the second paragraph the incidence
angle and roughness results over the Dry Valleys are demonstrated. Finally, the third
paragraph shows the effect of incidence angle and roughness on the non-corrected width.

6.4.1 Incidence angle and roughness histograms

For the incidence angle and roughness computations the ATM DEMs of the Dry Valleys
are used. In total, 24408 ICESat footprints cover the Dry Valleys area, of which 6099
footprints cover the ATM DEMs. For each DEM overlapping footprint the incidence angle
and roughness parameter is estimated.

The histograms of the incidence angle and roughness parameter are given by Figure
6.7. The incidence angle histogram shows that the frequency is highest around 1.5∘. Since
mostly a beam co-elevation angle of around 0.3∘ is used for the footprints in the Dry
Valleys, most footprints cover low-sloped areas. The near-zero incidence angles occur at
the lakes and flat glacier parts, which cover a smaller part of the Dry Valleys than the
low-sloped valleys. As a consequence, the incidence angles show a drop in frequency close
to zero. The more sloped parts are located towards and on the ridges. The roughness
histogram also shows a drop in frequency close to zero from the maximum frequency point
of view. Again, this can be explained by the fact that the flat areas are lakes and glaciers
are covered by a smaller number of footprints than the rock covered areas.

Figure 6.7: The histograms of the incidence angle and the roughness over the Dry Valleys. Both
are truncated at 40∘ and 2m for visualization purposes, resulting in the exclusion of
0.4% of the incidence angle values and 2.2% of the roughness values.
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6.4.2 Incidence angle and roughness examples

Figure 6.8 shows the Dry Valleys area with all footprints that cover the ATM DEMs. The
colored points vary in the left plot with incidence angle and in the right plot with rough-
ness. Especially on the lakes and glaciers, the incidence angle and roughness come close to
zero. Also the valley’s inner parts show small incidence angle values. Towards the ridges,
the angle increases even to a maximum angle of 56∘.

Figure 6.8: The Dry Valleys with the DEM covering footprints on top. The left plot shows
varying incidence angles, the right plot shows varying roughness. Bounding boxes
enclose the enlargements of Figure 6.9. The colorbars are truncated at 40∘ and 2m
for visualization purposes.

To show examples of what effects land cover types can have on the incidence angle and
roughness, some enlargements of interesting areas are displayed in Figure 6.9. The upper
left plot shows the tip of Taylor Glacier and its adjacent lake; the upper right plot shows
Lake Vanda. The increased incidence angles at the upper edge of Lake Vanda indicate
that the ground surface deflects just in front of the lake. Towards the bottom of the left
plot, the incidence angles become higher and near the elevated plateau even more than
35∘. The same holds for the ridge in the lower part of the upper right plot. The lower plots
demonstrate the effects of land cover on roughness. The lower left plot shows the glacier
that invades Wright Valley. As the values demonstrate, the glacier ice generally causes
lower roughness and the varying terrain left causes a mix between low and high roughness
values. The lower right plot shows a part of Taylor Glacier. Interesting of this plot is the
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increased roughness values right on the edges between the glacier ice and rock.
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Figure 6.9: Enlargements of bounding boxes indicated in Figure 6.8. The upper two plots demon-
strate the effects of land cover types on incidence angle, the lower two plot demonstrate
the effects of land cover type on the roughness.
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6.4.3 Effect of incidence angle and roughness on waveform width

The width of the waveform is an important indication of the incidence angle, as explained
in Section 5.5. Figure 6.10 shows the incidence angles versus the width and the incidence
angle induced range difference versus the width. No beam co-elevation correction has been
applied to the width because this discussion and the figures concern the incidence angle.
The incidence angle induced range that is used in the right plot is simply the extra range
that arises from a non-zero incidence angle. It is essentially the same as the extra range
induced by the beam co-elevation angle, see Figure 6.4, but instead it is induced by the
incidence angle. Consequently, both beam co-elevation angle and slope angle are included
in this computation. The result is the incidence angle induced range expressed in meters.
This range also accounts for the two-way travel of the beam.

The induced range is computed with the mean of the footprint major axis and minor
axis, and the incidence angle. For example, a footprint with a major axis of 136m and
a minor axis of 21m (mean is 78.5m) illuminating the surface under an incidence angle
of 5∘, results in an incidence angle induced range of 78.5 · tan 5∘ · 2 = 13.7𝑚. When the
returned waveform width is 50ns, this width in metric units is 50 · 10−9 · 3 · 108 = 15𝑚.
The received waveform width (right plot) can be directly compared with the extra range
that is induced by the incidence angle. One would expect that the incidence angle induced
range would be about the same as the width in meters. For the first part of the figure the
linear relationship indeed holds, however there is a factor two difference. The reason for
this difference is not exactly known, but some possible explanations will be given later in
this section. The mean value of both ellipse axes is used because the beam is rotationally
independent, as explained in Section 5.2. Since the footprint slope is unknown in real-life,
there is no way to tell whether a certain width is induced by the major axis covering a
smaller slope angle or the minor axis covering a larger slope angle. Thus, the footprint is
assumed circular for this incidence angle induced range because the orientation of the sur-
face slope is unknown in reality. Possibly a global DEM could be used for complementary
surface slope information, however this has not been considered for this research.

For both plots the mean and standard deviation are indicated for 50 bins, to show the
increased variability of the values for higher incidence angle and incidence angle induced
range. As can be seen in the left plot of Figure 6.7, about 60% of the incidence angles are
below 10∘. In both plots of Figure 6.10, the standard deviation is relatively small below
10∘ and tends to diverge for higher angles. The mean of the binned values show that the
width of the waveform does not follow a linear trend towards the higher angles. A two
degree polynomial fit based on least-squares (red line) is chosen to approximate the overal
trend of the incidence angle and incidence angle induced range versus the width. Since the
estimation of the incidence angle from the waveform width is not the primary goal of this
research, the exact reason for this quadratic trend is not analyzed. One possible reason is
that the energy of the received waveform becomes low compared to the noise level for high
incidence angles, such that the begining of the waveform stays below the noise threshold
value for a longer time and therefore the computation of the waveform width results in a
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Figure 6.10: The incidence angle versus the waveform width (left plot) and the incidence angle
induced range difference versus the waveform width (right plot). The yellow lines
indicate the mean (dot), and mean plus and minus the standard deviation (horizontal
bar). For visualization purposes, the plots are truncated at about 40∘ and 45m
respectively, resulting in the exclusion of 1% of the total observations.

smaller width than actually is the case.

The advantage of the right plot is that the width of the waveform and the incidence
angle induced range can be directly compared. As the plot shows, for small incidence
angles the induced range agrees with the observed waveform width (i.e. the two variables
have approximately the same values). However, for larger incidence angles the width tends
to converge and even decrease. Again, this could very well arise from the conflict between
decreased energy of the waveform and the threshold value. Also the standard deviation
diverges with higher incidence angles. The red line of both plots can be used to indicate
the relation between the waveform width and the incidence angle. What is important in
this analysis is the strong correlation between the width and incidence angle. This is re-
quired for proper analysis of the effect of land cover types and its curvatures on waveform
attributes like gain and reflectivity. The reason that the width and incidence angle induced
range differ a factor two, is most probably due to the fact that the footprints are larger in
reality. Since the footprint dimensions are based on an intensity threshold of the LPA im-
ages (see Section 4.3), the footprint in reality will be larger. As a consequence, a footprint
that covers a sloped surface will result in an induced range that is larger in reality than
the induced range that is computed based on the LPA derived footprint dimensions.

The roughness of the surface also affects the waveform width. Figure 6.11 shows the
roughness versus the width, where the difference between the plots is only the units of the
width. Since the roughness is based on the rms of the residuals, the larger the roughness,
the more the surface deviates with respect to the fitted plane. As shown in the plots and in
Figure 6.7, the roughness of the Dry Valleys stay close to zero. In fact, 74% of the observa-
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Figure 6.11: The roughness versus the width in [ns] (left plot) and the roughness versus the
waveform width in [m] (right plot). The yellow lines indicate the mean (dot), and
mean plus and minus the standard deviation (horizontal bar). For visualization
purposes, the plots are truncated at about 1.3m, resulting in the exclusion of 5% of
the total observations.

tions describe roughness values below 40cm and, when taking into account the waveform
sample recording of 1ns results in a maximum seperability of 15cm, most roughness values
will have negligable effect on the waveform width.

Similar to the incidence angle plots, the larger the roughness values the larger the
standard deviation and the less the mean values agree with a linear trend. However, the
roughness plots even show less correlation between the roughness and the waveform width.
One explanation of this smaller correlation is because larger roughness occurs at the more
sloped planes. The flat valleys of the Dry Valleys do not contain much deviating surfaces.
And in case of large roughness, generally speaking also the surface plane is tilted. This
results in the effect of roughness on the waveform width to be dominated by the effect of
incidence angle on the waveform width. For example, when a footprint has an incidence
angle of only 5∘, the width of the waveform will already be increased with about 70ns
or 21m, based on Figure 6.10. A roughness value of 1m incorporated in the plane then
contributes almost no additional width to the waveform, because the waveform is already
broadened more by the incidence angle. Only in case of large surface deviations right at
the point where the first or last ray of the beam hits the surface an additional broadening
effect on the width results. Even though the width might not change that much with larger
roughness, the waveform shape most probably will be affected especially in the increase of
local peaks. However, this is beyond the scope of this research and will not be discussed
further.

From the previous analysis and discussions, it is clear that the incidence angle of the
laser beam with respect to the ground surface has significant effects on the waveform width.
The roughness affects the waveform width as well, however in a less linear manner, due
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to the more significant effect of the incidence angle in combination with the footprint di-
mensions. It should be noted that these observations only concern the polar regions (the
Dry Valleys in particular) and will most probably not hold for vegetated areas. Since the
beam co-elevation angle and surface slope angle directly contribute to the incidence angle,
similar results can be expected for these angles. In the following chapters all waveform
width values are compensated for beam co-elevation angle. From the results analyzed in
this section, waveform width proves to be a useful waveform derived attribute for surface
topography analysis. This is of particular importance for the classification analysis in the
next chapters. Eventually, the width will be used in the classification algorithm to distinct
shots between ice and rock for example. Thus, this chapter contributes directly to under-
standing the effects of surface topography on the waveform’s width and this information
can be directly used for classification analysis.
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Chapter 7

Classification methodology

In this chapter the preparations are taken for the classification analysis. First of all, for
each footprint that covers the Dry Valleys the land cover type is determined using a so-
called supervised classification map. With this information, the effects of each land cover
type on the waveform attributes can be analyzed. The understanding, purpose and how
this map is created will be discussed in Section 7.1. The exact methodology to determine
the land cover type for each footprint will be discussed in Section 7.2. After a land cover
type is assigned to each footprint, the effects can be analyzed. One of the methods to
analyze these is by computing so-called Kernel smoothed probability density estimates.
The method of computing the distributions and how to interpret these will be explained
in Section 7.3.

7.1 Supervised classification map

To analyze the influence of the land cover type on the returned waveform, val-
idation data is required. For this research a so-called supervised classification
map of the Dry Valleys is produced. With this map, each footprint is tested
for the dominant land cover type it covers.

The LIMA image, acquired in November 2001, serves as the main validation image
for classification purposes. The image is pan-sharpened resulting in a spatial resolution
of 15m and incorporates near-infrared data for improved discrimination between ice and
snow. See Section 3.2 for more information about the validation data sets. Furthermore,
it offers a cloud-free, consistent and complete overview of the Dry Valleys region, which
is used as the primary validation area for this research. Since the Dry Valleys do not
offer a water basin that is ice-free year round, Lake Victoria serves as the area for vali-
dation of ICESat waveforms over water. In this section, the supervised classification map
of the Dry Valleys is discussed. The footprint classification over water is not carried out,
because all footprints covering the subset of Lake Victoria are assumed to cover only water.

A spatial subset of the LIMA image is used to create a classified image with the image
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processing program ENVI. The classification is carried out by supervised maximum like-
lihood classification. The supervised part means that for each surface type one or more
regions of interest (ROI) are defined manually. Each set of these ROIs represents a training
class, group of pixels with spectral information, that belongs to one of the corresponding
surface types, i.e. one ROI is defined that represents snow, one ROI is defined that repre-
sents rock, etc. Figure 7.1 indicates the defined ROIs superimposed on the LIMA image.

Figure 7.1: The LIMA image of the Dry Valleys, with the ROIs on top. The green polygon is the
ROI used for glacier ice, red for bare rock, blue for snow, and yellow for lake ice.

Based on these ROIs, ENVI computes a classified map based on maximum likelihood
estimation. The maximum likelihood algorithm estimates probability density functions
based on the information of the training data that holds the spectral signature of each
class. It assumes the probability is normally distributed and per pixel the probability is
computed that it belongs to each class. The class with the highest probability is assigned
to that particular pixel. After the maximum likelihood classification, post-classification
analysis is carried out to make sure no essential parts of the LIMA image are misclassi-
fied. For this classification map only some misclassified glacier parts were assigned lake ice
parts. Figure 7.2 shows the final classification map, where red represents bare rock, blue
is snow, yellow is lake ice and green is glacier ice. The reason that glacier ice and lake ice
are separately classified, is because these two land cover type are easily classified by the
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Figure 7.2: The classification map of the subset LIMA image after supervised maximum likelihood
classification and post-classification.

supervised classification algorithm and post-classification. As a result, both ice types can
be analyzed for the classification potential using ICESat’s signals.

The accuracy of the classification map can be analyzed with a so-called confusion ma-
trix, the overall accuracy and 𝜅̂-accuracy [12]. A confusion matrix basically represents an
overview of the number of pixels that are classified correctly and the number pixels that
are classified incorrectly. Table 7.1 shows the confusion matrix for the classification of the
LIMA image.

Ground truth

C
la

ss
ifi

c
a
ti

o
n Class Glacier ice Rock Snow Lake ice Total Commission

Glacier ice 92073 4 2 67 92146 0.079%
Rock 0 152888 24 103 153015 0.083%
Snow 0 0 136741 0 136741 0.00%
Lake ice 0 0 0 29820 29820 0.00%
Total 92073 152892 136767 29990 411722
Omission 0.00% 0.00% 0.019% 0.057% 0.049%

Table 7.1: The confusion matrix for the classification map based on the LIMA image. The table
is expressed in number of pixels and the corresponding error percentages.

For the computation of the confusion matrix, new ROIs are used to make sure that
the results are not biased by using the same ROIs used for classification. In this way, the



96 Chapter 7. Classification methodology

confusion matrix offers an independent accuracy overview of the classification map. Thus,
four independent sets of ROIs each representing a class are compared with the classifica-
tion result. The columns represent the ground truth pixels in the independent ROIs, the
rows represent resulting classification of these pixels. The table shows for example that
24 pixels are classified as rock, while they should have been classified as snow. A possible
explanation for this is that the independent ROI of rock incorrectly included some snow
pixels. The table also shows the commission and omission percentages. Here, the commis-
sion is defined as the percentage of the pixels that are classified as that particular class
(row) but in fact do not belong to that class, i.e. the incorrect inclusion of pixels. To use
rock as an example, 24 plus 103 pixels are classified as rock but should have been classified
as snow and lake ice respectively. The omission is defined as the percentage of the pixels
that are classified as another class but in fact belong to that particular class (column), i.e.
the incorrect exclusion of pixels. For example for snow, 24 pixels are classified as rock and
2 pixels are classified as glacier ice but all should have been classified as snow. The overall
percentage, 0.048% in this case, is the total number of pixels that are classified incorrectly
compared to the total number of ground truth pixels. Equation 7.1 shows how the overall
accuracy is computed.

overall accuracy =
∑︀𝑟

𝑖=1 𝑥𝑖𝑖

𝑁
(7.1)

Here, 𝑟 is the number of classes, 𝑥𝑖𝑖 is the value of the confusion matrix in row 𝑖 and
column 𝑖 (on the diagonal), and 𝑁 is the total number of observations (411722 in this
case). The overall accuracy is equal to the sum of the four diagonal elements divided by
the total number of ground truth pixels, which is equal to 100% minus the overall per-
centage. In this example, the overall accuracy is 99.951%. This percentage indicates the
success of the classification. However this accuracy represents a biased indication of suc-
cess, because it does not take into account to the chance agreement of a random classifier.
The 𝜅̂-accuracy compensates for this effect and is basically the overall accuracy compen-
sating for random classification. It is always smaller or equal to the overall accuracy and
gives a more realitistic indication of the classification success. Equation 7.2 shows the con-
ceptual equation as well as the mathematical equation of the 𝜅̂-accuracy [12]. Essentially,
the 𝜅̂-accuracy indicates the success of the classification with respect to a random classifier.

𝜅̂-accuracy =
overall accuracy− chance agreement

1− chance agreement

𝜅̂-accuracy =
𝑁 ·

∑︀𝑟
𝑖=1 𝑥𝑖𝑖 −

∑︀𝑟
𝑖=1(𝑥𝑖+ · 𝑥+𝑖)

𝑁2 −
∑︀𝑟

𝑖=1(𝑥𝑖+ · 𝑥+𝑖)

(7.2)

Similar to Equation 7.1, 𝑟 is the number of classes, 𝑥𝑖𝑖 is the value of the confusion
matrix in row 𝑖 and column 𝑖 (on the diagonal), and 𝑁 is the total number of observations.
In addition, 𝑥𝑖+ is the total number of observations in row 𝑖 and 𝑥+𝑖 is the total number
of observations in column 𝑖. In this case the 𝜅̂-accuracy is 99.93%, which is only a fraction
smaller than the overall accuracy. This accuracy can be interpreted as that the supervised
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classification performs 99.93% better than a classification from chance [12]. Such a high
𝜅̂-accuracy is acceptable for using the classification map for validation purposes. Even
though this number indicates the success of this classification map, it does not in any way
indicates the success of using the classification map for ICESat footprint validation at later
dates.

Parallel to this process, a mask is created based on the same LIMA image. Since the
LIMA image was acquired in November 2001 and no ICESat waveforms are available of
that moment, the supervised classification map should be used with caution. To include
only the stable regions, a mask is drawn over the LIMA image. This mask excludes the
more instable parts, like the snowy mountain region that could be subject to changing
snow cover. This unknown factor cannot be corrected for with the other validation data,
because the LANDSAT images taken after 2003 do not coincide precisely with any of the
acquisition dates of the tracks, and the LTER stations are too sparsely distributed in the
Dry Valleys region. In addition, the later LANDSAT images are not suitable for automatic
classification because of the black stripes. See Section 3.2 for more information about
LTER and LANDSAT data. Therefore, the mask is required to exclude the instable re-
gions. It is basically a binary layer that has value 1 over stable areas and 0 over instable
areas. As a result, the combination of the mask and the classified image represents a suffi-
ciently reliable source for classification validation. In addition, only ICESat footprints are
selected that were acquired close to November, the acquisition month of the LIMA image.
Figure 7.3 shows the mask. The parts that the mask excludes are made transparent red
and laid over the LIMA image for visualization purposes. The clearly visible parts with
the annotations indicate the areas that the mask includes for analysis.

In Figure 7.3 the numbered regions indicate the parts of the mask that are selected
for analysis. Region number 1 mainly covers glacier ice on Taylor Glacier, region 2 covers
bare rock and lake ice in the valleys, and region 3 covers snow which lies on a rather flat
plateau and is surrounded by mountain ridges. From the figure it is also visible that the
mountainous regions where snow and ice are mixed with rocky parts are excluded by the
mask.

To summarize the means taken to make the classification analysis as reliable as possible:

∙ The Dry Valleys region is selected as a validation data set, because the area is one
of the driest regions on Earth; very little precipitation occurs, snow that falls in the
valleys sublimates quickly and temperatures are almost always below zero (except
for the mid-summer). Consequently the region forms a stable validation area.

∙ Accuracy assessment of classification of the Dry Valleys indicates a 𝜅̂-accuracy of
99.93%, which is acceptable to serve as an initial validation map for ICESat data.

∙ A mask is created that excludes the more instable parts of the Dry Valleys, which are
generally speaking the mountain ridges, where land cover types snow, ice and rock
unpredictably change over time.
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Figure 7.3: The mask superimposed on the LIMA image. The transparent red area covers the
regions of the Dry Valleys that are left out for analysis. The numbers indicate the
regions that are used for analysis.

∙ Only the ICESat waveforms and footprints are analyzed for Dy Valleys classification
analysis that were taken in the same season as the acquisition month of the LIMA
image, which is in the Antarctic spring. As a consequence, the selected campaigns
are: L2A, L3A, L3D L3G and L3I.

∙ Post-classification analysis with LANDSAT images and LTER that were acquired
close to ICESat campaign dates can be used as complementary information to the
LIMA supervised classification map.

7.2 Footprint classification

After the estimation of the classification map and the construction of the mask,
the resulting images are analyzed with MATLAB. In MATLAB only those foot-
prints are selected that cover the valid parts of the mask and were acquired
close to the LIMA acquisition month. To analyze the dependency of waveform
characteristics on the land cover class, for each footprint the surface class is
computed, based on the supervised classification map. This section explains
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step by step the footprint classification procedure.

The supervised classified map is exported from ENVI, with which the supervised clas-
sification was carried out, as a GeoTIFF image, which is basically a georeferenced raster
image. It consists of the image information, the indexed raster image and the colormap.
The image information includes characteristics that describe the image properties and
cartographic information. The most relevant fields incorporated in GeoTIFFs are the pro-
jection, geographical coordinate system, datum, reference ellipsoid, and the referencing
matrix that is used to transform pixel row and column coordinates to map coordinates.

After the GeoTiff has been imported in MATLAB, first of all, the geographical co-
ordinates of the footprint with respect to the WGS84 ellipsoid are computed according
to the footprint major axis and eccentricity. These coordinates are then converted to
Cartesian coordinates in the same map coordinate system of the classification map (polar
stereographic projection). With these coordinates and the pixel size (which is 15m), the
bounding box around the footprint is defined. Using its coordinates and the pixel center
locations, all pixels are selected that lie inside the bounding box. Figure 7.4 illustrates the
how the land cover is determined of a footprint that covers multiple land cover classes.
The bounding box around the footprint is enlarged with one pixel. The magenta dots
show the outline of the footprint. Since the pixel center locations inside the bounding box
are known, the pixel values can be retrieved as well. These values represent the class of
the land cover at that location; they are colored in the figure according to the same color
scheme used in the classification map of Figure 7.2.

The land cover classes, enclosed by the bounding box, with their locations are now avail-
able for further analysis. As Figure 7.4 illustrates, not all pixels are completely enclosed
by the footprint and consequently are taken into account only partially. The percentage of
the pixel overlap is computed by making bounding boxes around each individual pixel and
determining the intersection of each pixel with the footprint outline. In Figure 7.4 this is
illustrated by black lines enclosing pixels that do not lie inside the footprint and magenta
pixels that do lie inside. Also partially intersected lines are colored likewise. For each
pixel that is located partially or completely inside the footprint, the intersected polygon
is defined. The area of these polygons, which is smaller or equal to the pixel area, is then
divided by the total area of the footprint to compute the percentage of footprint overlap
with the pixel. In other words, for each pixel that is partially or completely inside the
footprint the percentage overlap is computed; the sum of the percentages is then 100%,
i.e. filling the entire footprint. Since the percentages of overlap are now computed and
the class each pixel belongs to is known, the sum of the percentages per class gives the
footprint classification result, expressed in a percentage per class.

For further waveform classification analysis, only the footprints are selected that cover
a single class for 95% or more. If this is the case, the prevailing class is assigned as a single
class to the footprint, i.e. becomes 100%. In case of Figure 7.4, the footprint is classified
as 24% rock, 53% glacier, 0% snow and 22% lake ice, and is consequently not selected for
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Figure 7.4: Footprint ellipse (colored magenta) over the classified pixels. The black boxes enclose
the individual pixels; the magenta boxes enclose the (part of) pixels that are located
in the footprint.

further analysis.

7.3 Kernel smoothed probability density estimate

To analyze the effect of land cover types on the ICESat’s signals, several tools
can be used to determine and visualize these effects. For example, when com-
paring the histograms of waveform attributes for each land cover type, the
differences can be analyzed. For this research, not histograms are used for this
kind of comparison, but Kernel probability density estimates using MATLAB’s
‘ksdensity’ tool.

The ‘ksdensity’ tool is a function offered by MATLAB and is used for this research
to visualize the distribution of important parameters per land cover type. The following
information is interpreted from the MATLAB ‘ksdensity’ source code and its main refer-
ence [1]. It basically carries out histogram smoothing using a normal Kernel function and
subsequently computes the probability density estimate. For optimal explanation of the
function, the reflectivity parameter, i reflctUncorr see Section 5.1 is used as an example.
For this particular example, only the shots have been selected that cover snow and have a
gain value lower than 50 counts.

The MATLAB tool requires two input vectors and offers the specification of many
function control parameters, however only one control parameter has been used for this
research. The first and most important function input is the vector to be analyzed, which
is basically the attribute value vector of the specific land cover type. For the example, this
vector is the reflectivity of snow: the vector contains 127 values with a mean value of 0.73
and a standard deviation of 0.099. Figure 7.5 shows two histograms of the vector, the first
using 50 and the second using 10 bins between the minimum and maximum values. As
the left plot shows, the small number of observations in combination with the narrow bin
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width results in gaps appearing between some bins. One of the most probable causes is
random variations in the data. One would expect, for example, that the gap at about 0.6
would be filled if more snow observations were available. On the other hand, when a larger
bin width is taken, the detail is compromised resulting in loss of information, see the right
plot. This trade-off between high level of detail and suppressing the influence of random
variations is optimized by the ‘ksdensity’ tool. The tool essentially smooths the histogram
of the observations and estimates its probability density function.

Figure 7.5: The histogram of the reflectivity of snow, using 50 bins in the left plot and 10 bins in
the right plot.

The general form of the Kernel density estimator is given by Equation 7.3 [1].

𝑓(𝑦) =
1

𝑁ℎ

𝑁∑︁
𝑖=1

𝐾

(︂
𝑦 − 𝑦𝑖

ℎ

)︂
(7.3)

Here, 𝑓(𝑦) is the Kernel density estimate at point 𝑦, ℎ is the bandwidth also known as
the smoothing parameter, 𝑁 is the number of observations, 𝐾 is the Kernel function whose
variance is controlled by ℎ, and {𝑦1, ..., 𝑦𝑁} is the observation vector. The smoothing pa-
rameter, ℎ, determines the amount of smoothing by the Kernel function. Since generally
speaking the observations, for example the snow reflectivity, are assumed to be normally
distributed, the smoothing parameter is used that is optimal for a normal distribution [1].
Equation 7.4 shows this smoothing window.

ℎ = 𝜎 ·
(︂

4
3𝑁

)︂1/5

(7.4)

Here, ℎ is the smoothing parameter or bandwidth over which the smoothing is applied,
𝜎 is the standard deviation of the distribution and 𝑁 is the length of the vector. For the
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computation of ℎ, a robust estimate of the standard deviation is preferred above the usual
sample standard deviation, to account for long-tailed distributions and possible outliers.
Therefore the so-called median absolute deviation estimator, 𝜎̃ is used [1], see Equation 7.5.

𝜎̃ = median{|𝑦𝑖 − 𝜇̃|}/0.6745 (7.5)

Here, median simply means the median of the vector that is computed between the
curly brackets, and 𝜇̃ is the median of the observation vector 𝑦𝑖. The constant 0.6745 is
the value of the interquartile range of a normal distribution. It is used as a correction factor
to make the estimate consistent with the standard deviation of a normal distribution [27].
In case the observation vector is perfectly normal distributed, 𝜎̃ is equal to one. When the
vector is one-sided long-tailed distributed (i.e. skewed to one side) or has outliers , 𝜎̃ will
be less affected than the usual standard deviation.

Now that the smoothing parameter is known, the range of observation values (in this
case the range of reflectivity values) over which to evaluate the density is determined. The
minimum value is equal to the minimum of the observation vector minus three times ℎ;
the maximum value is equal to the maximum of the observation vector plus three times
ℎ. The number of points over which the probability density estimate is evaluated is by de-
fault 100 points, but is changed to 1,000 points to make the estimate a smoother function.
For this specification, one of the function control parameters is used. It does not affect
the resulting density estimate, but only increases the number of intervals over which the
density estimate is evaluated. As a result, the vector over which the density estimate is
evaluated is a linearly spaced vector with minimum and maximum values dependent on the
bandwidth together with the minimum and maximum values of the observation vector, and
is filled with 1,000 linearly spaced points in between. In case of the example, the minimum
and maximum values are 0.5168 and 1.0188, respectively. With ℎ equal to 0.0423, the
minimum value and maximum value over which the density estimate is evaluated becomes
0.5168− 3 · 0.0423 = 0.3899 and 1.0188 + 3 · 0.0423 = 1.1457, respectively.

The most important part of the Kernel density estimator is the Kernel function. There
are several Kernel functions possible, ranging from triangular and box to quadratic and
higher order functions. For this research only the normal Kernel function is considered,
which is defined by Equation 7.6.

𝐾(𝑧) =
1√
2𝜋

𝑒−
1
2
𝑧2

(7.6)

Here, 𝐾(𝑧) represents the Kernel function that is applied on value 𝑧. It is identical to
the the standard normal distribution with the mean equal to zero and standard deviation
equal to one. Referring back to Equation 7.3, 𝑧 is simply replaced by 𝑦−𝑦𝑖

ℎ . Equation 7.3
also includes the division over 𝑁ℎ, which normalizes the Kernel density estimator such that
the summation of the values that are evaluated over points 𝑦 multiplied by the interval
width is equal to one. In other words, the integral over the density estimate is always one.
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Briefly summarized, Equation 7.3 estimates the probability density over each point 𝑦.
The range of these points is determined by the bandwidth ℎ that is computed with Equa-
tion 7.4, and the minimum and maximum values of the observation vector. In between
the begin and end values of the range, the density is estimated over 1,000 linearly spaced
points. The most important part of the estimation is the Kernel function, which computes
per observation 𝑦𝑖 the Kernel density estimate at point 𝑦, based on a normal distribution,
see Equation 7.6. After taking the summation of the normal distribution values of all ob-
servation values at point 𝑦, one gets the Kernel density estimate on point 𝑦. When carrying
this out for all points 𝑦, the total density estimate is computed.

Figure 7.6 shows two results of the density estimate of the snow reflectivity. The left
plot shows the estimate using a smaller bandwidth than the optimal bandwidth for optimal
distributions, which is in this case the optimal bandwidth divided by four (i.e. ℎ becomes
0.0423/4 = 0.0106). It clearly demonstrates that the level of detail is high enough to ob-
serve the gaps between some reflectivity values. The right plot shows the estimate using
the nominal bandwidth (i.e. 0.0423). It demonstrates that the function has smoothed the
estimate to such a degree that the gaps disappeared. For this example this is preferred,
because one would expect the reflectivity values to approach a more or less normal dis-
tribution, instead of gaps appearing due to possible random variations in the data. The
disadvantage of this approach is that information is lost and possibly important clusters
that result from other influences than random variations (for example fresh and old snow)
are not visible anymore.

The insets of the plots show that the Kernel density estimate is a superposition of the
standard normal distribution of the observations estimated by the Kernel function. Espe-
cially the left plot clearly demonstrates the relation between the normal distributions and
the density estimate. For example, the normal distribution of only one value at 1.02 causes
the density estimate to increase locally. The right plot shows that the larger bandwidth
makes the normal density functions become increasingly spread out and consequently have
more overlap with each other. As a result, the Kernel density estimate becomes smoother
and shows less detail.
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Figure 7.6: The Kernel density estimates of the snow reflectivity, displayed in blue. The left plot
shows the result using the nominal bandwidth divided by four, the right plot shows
the result using the nominal bandwidth. The insets show that the density estimate
(blue) is composed of the Kernel function estimated normal distributions (red).



Chapter 8

Constructing the classification
algorithm

In the previous chapters, the preparations were made to analyze the influences of the vari-
ous land cover types on ICESat’s attributes. This chapter will combine all the results from
the previous chapters in order to construct the classification algorithm based on ICESat’s
full waveform signals. Since the data product derived attributes and the waveform derived
attributes are available for analysis and the classification methodology has been explained,
the classification algorithm can be constructed.

In Section 8.1, several case studies of the Dry Valleys and Lake Victoria are used to
demonstrate the attribute’s potential for classification. In addition to the potential for
classification, in some cases the attributes show irregular values that can be related to
various influences. In Section 8.2, these irregularities are demonstrated with additional
case studies; it is explained that these irregular values can be related to cloud presence. In
section 5.4, the proposed filtering criterion for clouds was already mentioned, but in this
chapter the underlying analysis will be presented. With this knowledge, (assumed) cloud
affected shots are filtered out and a detailed overview of the number of shots that are used
for classification analysis can be given. This overview is discussed in Section 8.3. With
the selected points, the final classification analysis can be carried out. In Section 8.4, the
Kernel smoothed probability density estimates, hereafter referred to as Kernel smoothed
distributions, are used to discuss the effects of land cover types on various attributes. With
this information, the final classification criteria are presented and discussed in Section 8.5.
These criteria together form the classification algorithm.

To avoid confusion regarding the attributes, Table 8.1 provides a list of attributes that
are used for classification analysis. It combines the relevant attributes that have been dis-
cussed in Chapter 4 and Chapter 5. Four self-computed attributes that are explained in
Chapter 5 have been considered for classification analysis, but are not included in the de-
tailed analysis in this chapter. First of all, FWHM shows virtually no difference from width
of the waveform and to reduce the redundancy in the coming discussions this attribute has
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been omitted. Furthermore, maximum, summation and mean of the waveform have been
omitted as well, because these attributes do not show any contribution to the classification
potential of the receiver gain, i gval rcv, and reflectivity, i reflctUncorr. Moreover, since
the receiver gain does not adjust properly in certain cases, see Section 8.1, the maximum,
summation and mean are considered to be unreliable for accurate classification analysis.

Attribute ID Relevant section Frequency Attribute name
i40 g bcsc 4.5 40Hz 532nm merged attenuated backscatter profile

from 10.3km to -1.0km [1/(m·sr)]
i40 ir bscs 4.5 40Hz 1064nm attenuated backscatter profile

from 10.3km to -1.0km [1/(m·sr)]
i reflctUncorr 5.1 40Hz reflectivity not corrected for atmospheric effects [-]
i gval rcv 5.1 40Hz gain value used for received pulse [counts]
i satNrgCorr 5.1 40Hz saturation energy correction [0.1fJ]
i kurt2 5.5 40Hz kurtosis of the received echo (standard) [-]
i skew2 5.5 40Hz skewness of the received echo (standard) [-]
Width 5.5 40Hz Waveform width [ns]
Risetime 5.5 40Hz Waveform risetime [ns]
Number of peaks 5.5 40Hz Waveform number of peaks [-]

Table 8.1: The attributes that are used classification analysis with a reference to the corresponding
sections. The frequency represents the rate per second of parameter occurrence in the
specified data product. Units of the parameters are indicated between brackets.

8.1 Attributes potential for classification

To demonstrate the potential of attributes for land cover type classification,
several case studies over the Dry Valleys and Lake Victoria will be discussed.
To show the effect of varying transmit energy on the waveform attributes, for
each case study the attribute’s values are demonstrated and discussed for high
and low transmit energy. In this section a discussion will be given why reflec-
tivity has not been corrected for saturation as well.

The case studies show the values of all attributes of Table 5.1 and the values of the
surface elevation, i elev. The reason to include case studies in this chapter is because the
land cover types and surface topography can be directly related to the attributes. The
disadvantage is that only a small portion of the shots can be presented. The attribute
values of all shots per land cover type will be discussed in Section 8.4. The following para-
graph will give a brief overview of the attribute descriptions and introduce the attributes
for classification analysis.

The receiver gain is a measure for the amplification of the signal in order to record
the waveform properly. As the case studies will show, the gain behavior changes dramat-
ically with changing land cover types and surface topography. In addition, it is sensitive
to varying transmit energy. The reflectivity is related to the gain because both depend
on the returned energy. However, in contrast to the gain, the reflectivity is normalized
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with respect to the transmit energy and the range. The reason that both the gain and
reflectivity values are considered is to show that both can act as complementary rather
than mutually redundant attributes. The saturation energy correction is used to show
whether shots are saturated or not. This is of particular importance for understanding the
limitations of the receiver and its effect on other attributes. The kurtosis and skewness
are data product derived attributes and are two measures of the waveform’s shape. The
kurtosis indicates the peakedness of the waveform, the skewness indicates the asymmetry
of the waveform. The three self-computed attributes that are taken into account are the
waveform width, risetime and number of peaks. These three attributes have been com-
puted from beam co-elevation angle corrected waveforms. Together with the kurtosis and
skewness, these attributes indicate the shape of the waveform. Finally, the ground returns
of the 532nm and 1064nm attenuated backscatter profiles are included in the analysis as
well. These values, referred to as green and infrared ground return signal respectively,
show the backscatter intensity per spatial column unit. The green ground return values
are particularly interesting for classification purposes. However, as will be demonstrated
in this chapter, in practice these signals do not show significant potential for classification
improvement.

In the next paragraphs, several case studies of the Dry Valleys and of Lake Victoria are
shown and discussed. These case studies serve a special purpose by showing how different
land cover types and varying transmit energy affects the attributes. Four case studies are
included for the Dry Valleys, and one case study for Lake Victoria.

8.1.1 Dry Valleys area

For each campaign, several repeating tracks overlay the Dry Valleys. To demonstrate the
potential of the attributes, one of these repeating tracks is selected and some parts are
highlighted for detailed analysis. In Figure 8.1, the tracks of campaigns L3B and L3J that
cover the Dry Valleys are shown. The track that is bounded by the green rectangle is used
to demonstrate the classification potential of the attributes. The reason for selecting the
campaigns L3B and L3J is the significant difference in transmit energy. The mean transmit
energy of the L3B and L3J track is 58.5mJ and 16.7mJ respectively, see Figure 4.3. This
is important, because some of ICESat’s measurements are affected by this drop in energy
over campaigns, in particular the gain. Thus, the case studies are used to demonstrate both
the potential of using the attributes for classification and the variability of attributes with
varying transmit energy. For proper comparison, the same track and the same bounding
boxes are analyzed for both campaigns. The track of L3B was flown on the 15th of March
2005 and the track of L3J on the 12th of March 2008.

The track runs from the upper left to the lower right, as indicated by the arrow. The
upper (first) box covers part of Taylor Glacier, the second box covers part of Wright Valley
and Lake Vanda, the third box covers Barwick Valley and Mckelvey Valley, and finally the
lower (last) box covers a higher elevated snow covered plane. All boxes serve a special
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Figure 8.1: All tracks covering the Dry Valleys of laser campaign L3B (left) and campaign L3J
(right). The green rectangle and the red squares in each plot highlight the track and
the close-ups that are used for comparative analysis.

purpose for demonstrating the land cover type and land topography influence on the gain
and several other waveform attributes. For each close-up, the results of the L3B and L3J
attributes are shown on the same page to make easy comparisons per box and to demon-
strate the effect of transmit energy.

Occasionally, gaps in the tracks occur, especially occurring at very high sloped ground
surfaces. These gaps represent invalid values and are generally speaking caused by invalid
geolocation values (latitude, longitude and elevation). Usually, invalid geolocation values
indicate failed elevation estimates due to incorrect waveform recordings. However, in some
cases a proper waveform is recorded and a location of the echo peak has been found. The
exact reason why the geolocation values are still invalid is not known, but the figures in-
dicate that these occurrences relate to highly inclined surfaces. A shot is considered to be
saturated if the saturation energy correction is not equal to zero. This implies that a shot
having invalid saturation energy correction, is considered to be saturated as well.

The vertical axes of the subplots (i.e. the ten plots on the right) have been scaled
to the minimum and maximum values such that the variability can be clearly observed.
However, it also implies that the axes between the case studies differ and consequently one
should pay attention to these differences. The horizontal axes show the shot number from
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beginning until end of the track in the direction of the arrow. After the case studies, the
most important observations will be summarized in a separate paragraph.
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Figure 8.2: Case study 1: the close-up of the selected track of campaign L3B covering Taylor
Glacier. The arrow indicates the direction of the track.

Figure 8.3: Case study 1: the close-up of the selected track of campaign L3J covering Taylor
Glacier. The arrow indicates the direction of the track.



8.1. Attributes potential for classification 111

Case study 1

Figure 8.2 and Figure 8.3 show the close-ups of Taylor Glacier. Both figure show interest-
ing gain and saturation values. Based on the elevation and waveform width, the high and
low gain values are related to sloped and flat areas, respectively. The first 15 observations
show extremely low gain and cover a rather flat area. Whether this part is actually rock
or snow cannot be validated, however, the reflectivity shows high values (higher than 0.6)
for these first observations and remain generally lower further on. Since the elevation and
width plots show that these higher reflectivity values cover flat areas and the flat glacier
gives lower reflectivity values, the reflectivity could be an indication of land cover type.

After the elevated flat area (around shot number 20), the gain reaches maximum values
(250 counts). Based on the elevation and width values, these shots cover a highly sloped
surface just before the glacier begins. Also, the reflectivity drops and the moment the shots
cover the small inlet glacier just before Taylor Glacier the shots become saturated. This
could be an indication that highly sloped snow or glacier surfaces return more energy than
highly sloped rock surfaces. The saturation occurs due to increased energy being received
by the instrument and the limited reaction time of the gain. As the figure indicates, it takes
more than ten shots before the gain is adjusted properly and shots become non-saturated
again. Over the glacier, the gain values remain low and the reflectivity values stay close to
0.5. The saturation and gain observations show another interesting characteristic as well;
from high gain to low gain, the shots become saturated and this lasts for more than ten
shots. However, from low gain to high gain, for example over rock surfaces, the gain is
correctly adjusted fairly quickly, i.e. in about five shots.

The kurtosis plot shows increased values over the glacier part. Positive kurtosis means
that the waveform shape is more peaked. Also interesting about the kurtosis is that it
increases only after the shots become non-saturated (after shot number 30). This can be
explained by the waveform shape being distorted due to the non-optimal recording (i.e.
the waveform is clipped). The waveform width and risetime, on the other hand, change
the moment the shots cover the flat glacier. The reason for this is that width and risetime
are less affected when the waveform top is omitted. In addition, the number of peaks vary
strongly between the sloped parts and the flat glacier part, from ten peaks for the rock
surfaces to only one peak for the glacier surface. The infrared ground return signals do not
show much variation along the track. The green ground return signals show a weak sign of
changing land characteristics. More important about these signals is the magnitude, since
this changes significantly with lower transmit energy.

The same part of the track taken in campaign L3J is shown in Figure 8.3. When com-
paring the observations of L3J to L3B, some differences come forward. First of all, the
reflectivity plot shows significantly lower values for the first 15 observations compared to
the L3B campaign. This is in contrast to the waveform width and risetime which show
similar values for the two campaigns. The number of peaks, however, shows different values
as well (5-10 instead of only single peaks). An explanation for the smaller number of peaks
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could be the saturation of waveforms of L3B. Still, the lower reflectivity values of L3J are
not explained by this fact, because saturated reflectivity values are underestimated rather
than overestimated. Consequently, saturation would make the L3B values even higher.
The exact relationship between saturated shots and reflectivity, and why the reflectivity
is not corrected for saturation is explained in more detail later in this case study discussion.

Also noticeable is that the gain of the L3J shots remains high and saturated over glacier
and becomes non-saturated again only after about ten shots. The big difference with L3B
is that the L3B gain values gradually decrease and the L3J values drop only just before the
shots get non-saturated (at shot number 35). Further on, when the shots cover the rocky
area (after shot number 55), the gain reaches again near-maximum values in contrary to
the same shots of L3B. The reflectivity values, however, are similar for both campaigns.
A plausible reason for the difference in gain values is that the transmitted energy is more
than three times as low for the L3J campaign. Here too, it appears that the gain adjusts
faster from low to high gain than the other way around. Another interesting observation is
the big difference between the low gain over glacier ice and the high gain over rock surface
after the glacier, while the reflectivity is almost the same. From this, it appears that even
for a slight decrease in returned energy, the gain has to be increased to its maximum to
record proper waveforms. Apparently, the dynamic range of the gain is too limited with
low transmit energy, i.e. the difference in gain is disproportional compared to the difference
in reflectivity.

Looking at the kurtosis, similar results are observed over glacier for the two campaigns:
the moment the shots are not saturated anymore the kurtosis becomes positive (at shot
number 35). The skewness appears to increase locally for L3J, although this is not that
evident for L3B. The risetime shows similar trends as the width: high values on the rock
surfaces and low values on the glacier. The infrared ground return signals show a similar
trend as the reflectivity, but are about twice as high compared to L3B. The next paragraph
will explain how the reflectivity can be corrected for saturation and why this has not been
applied, using Figure 8.3 as an example.

The reflectivity parameter shows noticeable results, as was mentioned before. The most
odd reflectivity values occur in Figure 8.3: as the measurements over rock enter the glacier
area the shots become saturated, due to limited response time of the gain. For at least ten
shots, this saturation continues until the gain is lowered and non-saturated waveforms are
recorded. The reflectivity also changes significantly during this adjustment period. Only
after the saturation becomes zero, does the reflectivity over glacier appears to increase and
approach the correct values. Especially during the saturated shots, the reflectivity is much
lower and this is most likely due to the incorrect measurement of received energy (i.e. lower
energy recorded than actually the case). On the GLAS data release description page on the
NSIDC website [39], an overview of all improvements and bug fixes are explained for each
new data release. One of the known problems is the effect of saturation on the reflectivity.
As was shown in Section 4.2 with a detailed equation, the reflectivity is basically the
received energy over the transmitted energy, both scaled by gain. The reflectivity has been
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calibrated, amongst others, for gain non-linearity (i.e. is gain corrected), but this only
holds for non-saturated shots. In case of saturated shots, the original reflectivity values
are not computed correctly. NSIDC proposes to apply a simple ratio factor to correct for
this, see Equation 8.1

sat. corrected reflectivity = i reflctUncorr · i RecNrgAll + i satNrgCorr
i RecNrgAll

(8.1)

Here, i reflctUncorr is the original reflectivity parameter, i satNrgCorr is the saturation
energy correction parameter and i RecNrgAll is the laser received energy from signal begin-
ning to signal end. However, NSIDC also notices some concerns with this approach, since
the saturation corrected reflectivity values have not been fully verified. First of all, some
saturation energy correction values are large compared to the received energy values, which
potentially results in reflectivity values larger than one. Also, since the saturation energy
corrections are determined using narrow waveforms, this correction may not be valid for
wide over-land waveforms. Finally, NSIDC mentions that about 20% of the saturation
energy correction values over land are not valid at all (i.e. invalid values are returned).

For this research, this correction on reflectivity has been considered. However, it has
not been applied due to the following reasons, taking Figure 8.3 as an example. As the
first of the NSIDC concerns already describes, some reflectivity values become unexpect-
edly large (i.e. even larger than 1.5) for shots that are similar to neighboring shots. It
appears the correction introduces an unreliable and unpredicted effect. In addition, the
fact that the saturation energy correction has not been verified for wide over-land wave-
forms makes the correction more unreliable. However, the most important reason not to
apply the correction is the high percentage of invalid values. For Figure 8.3, more than
90% of the saturation energy correction values are invalid. And these occur not only over
the sloped rock surfaces but to the same degree over the flat glacier parts. As a result,
more than 90% of the reflectivity values would have invalid values after the correction (i.e
the saturation energy cannot be applied), which makes the correction an inconvenience
rather than an improvement for the analysis of reflectivity values over the Dry Valleys. In
fact, for all shots that cover the Dry Valleys, 67% of the saturation values are invalid. The
exact reason for the high percentage of invalid values is neither known nor analyzed for
this research. It is not likely that it is the result from failed elevation estimates, because
consequently the other attributes would have been invalid as well. A plausible reason
is that the receiver cannot properly record unexpectedly high returned energy values. If
in the future the saturation energy correction is validated for wide-overland waveforms
and an alternative for invalid values is provided, the correction should be looked at again
and possibly implemented. However, for this research this correction is not applied. The
downside of not correcting the reflectivity is that the reflectivity of about 29% of all shots
covering the Dry Valleys and 17% of Lake Victoria is not computed correctly. The direct
effect on the reflectivity is that the values are underestimated and should actually be higher.
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Figure 8.4: Case study 2: the close-up of the selected track of campaign L3B covering Wright
Valley and Lake Vanda. The arrow indicates the direction of the measurements in
the track.

Figure 8.5: Case study 2: the close-up of the selected track of campaign L3J covering Wright
Valley and Lake Vanda. The arrow indicates the direction of the measurements in
the track.
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Case study 2

Figure 8.4 and Figure 8.5 show observations over the dynamic mountainous area between
Taylor Glacier and Wright Valley, over Wright Valley and finally over Lake Vanda. For
L3B, the reflectivity values range from 0.2 to 0.9 and width values from 40ns to 300ns.
Interesting to notice is that the width values do not follow the same trends as reflectivity
values. For example, when the shots cover the steep rock surface (between shot numbers
40 and 50), the width and reflectivity values are around 200ns and 0.3, respectively. When
comparing these to the shots just before (between shot numbers 30 and 40), the width is
about 200ns as well, but the reflectivity approaches almost 1. A possible reason for this is
that sloped snow surfaces give high reflectivity values, while sloped rock surfaces give low
reflectivity values (and consequently high gain values). The flat rock surface just before
Lake Vanda (between shot numbers 50 and 60) shows low width values but high reflectivity
values. However, LTER data acquired at Lake Vanda station shows that almost 4cm of
snow fell in the end of February and still 3cm covered the site on the L3B track acquisition
date (15th of March). In this case the temporal difference between the acquisition date of
the LIMA image and the acquisition date of ICESat’s tracks plays an important role. Since
no LANDSAT images are available at the acquisition date of the L3B track, it cannot be
fully verified which areas were covered by snow. This shows that the validation data has
its shortcomings and conclusions have to be drawn with caution.

Over Lake Vanda, the width and risetime values become small (approximately 10ns
and 5ns respectively) and most of the time only one peaked waveforms are detected. Since
almost all shots are saturated over Lake Vanda, the kurtosis and skewness values are biased
and consequently do not represent accurate figures. Similarly to Taylor Glacier, it takes
about ten shots before the gain is forced down to proper values. The gain adjustment from
low to high gain appears to go faster.

The first difference between L3J and L3B is the higher gain values of L3J, which is most
likely due to the lower transmit energy in L3J. The reflectivity values are somewhat similar
until the flat rock surface just before Lake Vanda (between shot numbers 50 and 60). Here,
the L3J reflectivity values are around 0.3 (compared to around 0.6 for L3B). Based on the
assumption that high reflectivity values indicate snow, this could mean that indeed snow
was covering this part in L3B but not in L3J. Unfortunately at the time of writing the
LTER data of 2008 had not been processed yet, so no validation can be carried out for L3J.
Interesting as well, is that far less L3J shots are saturated, which means that the waveform
derived attributes are more reliable. Most probably, the lower transmit energy is the main
cause of less saturation. As for the kurtosis of L3J, more consistent values are observed
and it appears that the higher sloped areas give a negative kurtosis (more bluntly shaped)
and Lake Vanda, after the saturated shots, gives positive kurtosis (more sharply peaked).

Similar to L3B, for L3J it appears that the gain value can increase rapidly (in two to
three shots for the first couple of shots) but needs more time to decrease. Even though the
gain is close to maximum for a large part of the track, the reflectivity values show differ-
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ent trends. Almost all shots between the shot numbers 20 and 35 have reflectivity values
higher than 0.6 and further on in the track the have lower values of around 0.3, including
the reflectivity values over Lake Vanda. The number of peaks shows high correlation with
width, risetime and kurtosis. When looking at the green ground return signals it shows
somewhat higher values than L3B but there is no evident relation with the land features.
The infrared ground return signals show a slight linear relation with the reflectivity values,
but more important to notice is that the values have become about three times as large
compared to L3B. An exact reason for this is not known, but it could be that the lower
transmit energy makes the normalized lidar signal higher because of the transmit energy
normalization and consequently the values of the infrared attenuated backscatter profiles
become larger. This could also hold for the green ground return signal, but the reason why
these values are not three times higher is unknown. Perhaps the very low SNR plays a role.
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Figure 8.6: Case study 3: the close-up of the selected track of campaign L3B covering Barwick
Valley and Mckelvey Valley. The arrow indicates the direction of the track.

Figure 8.7: Case study 3: the close-up of the selected track of campaign L3J covering Barwick
Valley and Mckelvey Valley. The arrow indicates the direction of the track.
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Case study 3

Figure 8.6 and Figure 8.7 show the observations over Barwick Valley and Mckelvey Val-
ley and are included in the analysis to show what the influence of topography is on the
attributes. As the elevation, width and risetime values indicate, the area includes two
flat valleys (between shot numbers 15 and 50, and between 60 and 70) and higher sloped
surfaces near the elevated plateau (towards shot number 40). Interesting to notice are the
high number of low gain values and the number of high reflectivity values for L3B. Even
though the gain values are mostly small, still 41% of the shots is saturated. This indicates
that the occurance of saturation is high even when the gain is brought down. Apparently,
in a dynamic environment where the receiver applies low gain, it is not able to deal with
individual shots having high returned energy. It demonstrates the low dynamic range of the
receiver recording capabilities. Nonetheless, most attributes are still relevant for analysis.
As was suggested before, high reflectivity values could indicate snow. Also in this case the
real validation poses a problem. The LTER data of Lake Vida (which is about 8km away,
see Section 3.2.2) also indicates that more than 4cm of snow fell at the end of February
and the same amount of snow was there at the acquisition date of the track. Therefore, it
is plausible that these valleys were covered with snow. The kurtosis shows positive values
for the flat areas and slightly negative values for the sloped areas. The number of peaks
show a large increase at the sloped areas and more steady values in between. Finally, the
green ground return signals show values that appear to follow the risetime and width values.

The gain values of L3J are generally significantly higher and the reflectivity values
lower. Saturation occurs less often as well: only 26% of the shots are saturated. One
reason is that the transmit energy is lower and as a result less energy is reflected back,
limiting required the dynamic range. In addition, the lower reflectivity values indicate that
less energy is reflected back and consequently the dynamic range of the receiver are not
pushed to its limits. The reflectivity values show that these may relate to surface topogra-
phy characteristics as well. From the width and risetime values, it appears that the more
sloped rock surfaces (between shot number 1 and 10, and towards shot number 40) show
lower reflectivity values than the flat rock. And, similar to L3B, the kurtosis values show
negative values for sloped and positive values for flat parts. The infrared ground return
signals are about twice as large as for L3B and show similar trends to the reflectivity. The
green ground return signals show no signs of any relationship with the surface character-
istics at all.
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Figure 8.8: Case study 4: the close-up of the selected track of campaign L3B covering the snow
plain north of Barwick Valley. The arrow indicates the direction of the track.

Figure 8.9: Case study 4: the close-up of the selected track of campaign L3J covering the snow
plain north of Barwick Valley. The arrow indicates the direction of the track.
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Case study 4

Figure 8.8 and Figure 8.9 show the final close-ups of the track of both campaigns. These
figures show a plateau covered by snow and surrounded by somewhat more mountainous
areas. It is assumed that the major part of the plain contains snow during both campaigns.
The outer mountains showing rock surface are more doubtful since the snow extent is more
susceptible to temporal differences.

The most apparent observation of the attribute values of L3B is the high reflectivity
over snow. The first part of the track shows lower reflectivity values, which also happen to
coincide with the (not verified) rock surfaces. Based on the elevation, width and risetime
values, the main part is fairly flat except for the edges of the track. For example, the
highly sloped surfaces near the last observations show high width and risetime values, but
also high reflectivity values. From this information, it appears that snow under high slope
angles will also result in high reflectivity values (higher than 0.6). This is in contrast to
the rock under high slope that has much lower reflectivity values (around 0.3).

The number of peaks increases close to the more sloped parts and the kurtosis shows
positive values for the flat areas and negative values for the sloped areas. The ground re-
turn signals show some relationship with the risetime and width, which could indicate that
indeed the green laser illuminated the surface and these were received properly. Similar
to the L3B observations of previous areas, saturation still occurs, even though the gain is
decreased to its minimum.

The observations of L3F over the snow covered region show quite similar reflectivity
values, but with higher gain values. Especially the early observations show low reflectivity
and high gain values. After the gain has been decreased and the track covers the center
area of the snow plain (at shot number 60), the reflectivity shows high values and the
kurtosis becomes positive. Compared to L3B, the snow covered shots have higher gain and
slightly lower reflectivity values. It even occurs that in the middle of the snow area (at
shot number 50), where the elevations show a small bump, the gain becomes higher than
200 while the reflectivity remains the same. Also the number of peaks, width and risetime
show locally higher values. This demonstrates that, even though the gain can become high
(most likely due to a local sloped surface), the reflectivity value can remain the same. In
addition, the observations show that not all snow covered waveforms have only one peak.
The green ground signal returns show no clear relationship with land characteristics. The
infrared ground signal returns are slightly correlated with the reflectivity.

Case study conclusions

In the previous paragraphs the observations of each case study were discussed and ana-
lyzed. The most important observations are summarized. First of all, the gain changes
significantly between the two campaigns. This difference is most probably due to the dif-
ference in transmit energy. Even though high gain values usually occur over sloped rock
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surfaces, no simple thresholding rule can be applied because of the limited reaction time
of the gain. Especially from high gain to low gain, it takes about ten shots before the
shots get non-saturated and the right gain level is applied. In the case of the L3J track
over Taylor Glacier for example, a thresholding criterion to classify sloped rock based on
gain (i.e. gain larger than 200 counts) will also include the saturated shots over the glacier.
Reflectivity as a simple threshold forms a problem as well, because no saturation correction
is applied. On the other hand, when separating saturated and non-saturated shots, criteria
based on the attribute’s values can be applied with more confidence. When taking this
into account, reflectivity of non-saturated shots shows that values above 0.6 are very likely
to come from snow. Unfortunately, no clear difference in reflectivity was observed between
rock, glacier and lake ice.

Another useful attribute is the waveform kurtosis, showing large positive values over
very flat areas like glacier ice, lake ice and flat rock. The width, risetime and number of
peaks are good indicators of flat terrains as well. The skewness does not give promising
results for classification, similar to the ground return signals of the atmospheric channels.
When these signals do show classification potential, they generally follow the same trends
as reflectivity and consequently become redundant. In Section 8.4, a more general discus-
sion will be given on the the attribute values taking into account all shots over the Dry
Valleys and Lake Victoria. Based on the current section and Section 8.4, the classification
criteria will be constructed in Section 8.5.

In the case of saturated shots, the classification criteria will become even more com-
plicated. Leaving saturated shots out would indeed give a simpler classification criteria
scheme, but it would also have severe effects on the number of shots that are left, espe-
cially for glacier ice and lake ice. Since these land cover types contain many saturated
shots, for lake ice even about 50% of all the lake ice covering shots, the results would no
longer be representative for practical applications. In most cases of saturation, the gain,
reflectivity and kurtosis are biased. However this does not mean these cannot be used at
all. For reflectivity, saturation results in the underestimation of reflectivity values. This
means that, when saturated reflectivity values are higher than 0.6, in reality these values
are even higher and consequently could be used for snow classification. One should be
cautious however, when interpreting reflectivity values below 0.6, because these could also
be higher than 0.6 in reality.

Saturation information could be used to detect changing land cover types as well. For
example, after sloped rock surfaces with high gain values, subsequent saturated shots could
indicate glacier ice, lake ice or snow, even though the gain values are still high. The case is
different for saturated kurtosis values. For example, saturated kurtosis values over glacier
ice are usually negative, but when the shots become non-saturated over the same area, the
kurtosis values become positive. In other words, saturated shots give unreliable kurtosis
values. The waveform width, risetime and number of peaks appear to be less affected by
saturation and consequently can be used for classification criteria with more confidence.
Width and risetime could be used for detecting whether saturated shots cover areas like
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sloped or rough surfaces that could indicate rock. The number of peaks could contribute
to this detection as well, but should be interpreted with caution because part of saturated
waveforms is omitted.

These observations form an important reference for the classification analysis that is
carried out in Section 8.4. From the results of that section in combination with the obser-
vations of this section, the final classification criteria are constructed.

8.1.2 Lake Victoria area

In the previous paragraphs, the observations over several Dry Valleys areas were analyzed.
In the coming paragraphs, one case study is used to show the effects of water on the mea-
surement attributes. Similarly to the Dry Valleys, two examples have been highlighted to
observe the effect of high and low transmit energy. The shots were taken in the same track
and a nominal beam co-elevation angle was applied. The first figure includes measurements
of L3B, acquisition date the 1st of March 2005, and has a mean transmit energy of 64.3mJ.
The second figure includes measurements of L3H, acquisition date the 22nd of March 2007,
and has a mean transmit energy of 24.7mJ.



8.1. Attributes potential for classification 123

Figure 8.10: The close-up of a selected track of campaign L3B covering Lake Victoria. The arrow
indicates the direction of the track.

Figure 8.11: The close-up of a selected track of campaign L3H covering Lake Victoria. The arrow
indicates the direction of the track.
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Figure 8.10 shows the measurements of L3B and the first interesting observations that
come forward are the virtual absence of saturated shots and the small elevations differ-
ences. The reflectivity values stay around 0.3 and do not show significant variation along
the track. There appears to be a slight increase in the reflectivity though, which might
relate to the smaller surface elevation values. Despite the slight increase in reflectivity,
the values are still smaller compared to most reflectivity values over the Dry Valleys. The
gain is low and fairly consistent as well; it is close to the minimum value of 13 counts.
In addition, the figure confirms the assumption stated before, that saturation dominantly
occurs in highly dynamic environments.

The kurtosis indicates that the waveforms are sharply peaked and show even higher
values than the kurtosis over glacier ice and lake ice. The skewness does not show any
consistent values along the track. The width is small and comparable to the width over
flat glacier ice, lake ice and snow. Also the risetime and number of peaks show that
the waveforms consist of one narrow peak and that virtually no variation occurs. The
green ground return signals are small compared to most L3B values over the Dry Valleys.
The infrared ground return signals show consistent values and are somewhat lower than the
values of L3B over the Dry Valleys. These signals can be directly related to the reflectivity.

The observations of L3H are shown in Figure 8.11. The gain values are about twice
as high compared to the L3B gain values and no saturated shots occur. The reflectivity
values are similar to the L3B campaign and show a slight increase along the track as well.
The elevations appear to slightly decrease as well. The kurtosis values are highly positive
compared to most of the Dry Valleys values, but are slightly smaller than the values of
L3B. The width is similar to L3B, although occasionally high values occur. The values of
risetime and number of peaks are virtually identical to L3B. The green ground return sig-
nals are similar with the exception of some local spikes. The infrared ground return signals
are somewhat higher than for L3B and also show a slight increase, similar to the reflectivity.

In general, the two figures mainly show similarities, in particular the reflectivity, wave-
form width, risetime and number of peaks. The observations differ slightly in gain, kurtosis,
and infrared ground return signals. When comparing these observations with the Dry Val-
leys observations, already some potential classification criteria and some difficulties can be
identified. First of all, the kurtosis of Lake Victoria shows higher values compared to the
Dry Valleys, although (non-saturated) shots covering glacier ice and lake ice can give high
kurtosis values as well. The reflectivity, waveform width, risetime and number of peaks
in many cases is comparable to glacier ice and lake ice observations. In some cases, the
attribute values over flat rock are similar to the water values.
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8.2 Attributes irregularities analysis

In the previous section the effect of land cover type and topography on the
attributes have been analyzed with case studies. The potentials of using at-
tributes for classification have been identified. In this section, two case studies
are highlighted that show inconsistent values with respect to the case studies
of the previous section. These inconsistent values will be related to cloud pres-
ence. See Section 5.4 for the technique based on gain values that is currently
applied for cloud filtering. Similar to the previous section, the Dry Valleys and
Lake Victoria are used for analysis.

8.2.1 Dry Valleys area

The first case concerns part of a L3C track over the glacier invading Wright Valley, see
Figure 8.12. It demonstrates high gain values for a land cover type and topography that
does not comply with the observations of the previous section. As the figure shows, the
gain is constantly 250 counts and none of the shots is saturated. The fact that this occurs
over glacier, makes these observations particularly interesting when comparing these to the
observations over Taylor Glacier of the previous section for example. Even if the temporal
difference between the original background LIMA image and campaign L3C resulted in
snow accumulation, the gain values would still be smaller than 50 counts and the reflectiv-
ity would be close to 0.6, as was seen in the previous section.

Possible explanations are a high beam co-elevation angle, a thin layer of melted ice, ab-
normal solar background radiation or the presence of clouds. To find out what explanation
could cause the high gain values, Figure 8.13 is used for comparative analysis. This figure
shows a different track over the same glacier taken in the same campaign. Most impor-
tantly, the comparison with Figure 8.12 shows that both tracks were run under generally
the same conditions. The beam co-elevation angle of Figure 8.12 is 0.33∘ and of Figure
8.13 this angle is 0.32∘. Also the terrain topography is similar, looking at the elevation
profile of both tracks. As will be shown later on, it is likely there was snow accumulation in
between the tracks. However, possible topography change due to snow fall would definitely
not result in such low reflectivity values. Furthermore, the solar radiation circumstances
are identical as well, since for both campaigns the Sun does not come above the horizon.
Approximately the same transmit energy is used, for Figure 8.12 this is about 47mJ and
for Figure 8.13 about 45mJ. By no means did this difference result in the dramatic increase
in gain. For example, the gain values over Taylor Glacier of L3J (see previous section) were
subject to even lower transmit energy while having significantly lower gain values.
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Figure 8.12: Close-up of a selected track of campaign L3C covering the glacier invading Wright
Valley, demonstrating inconsistent gain values. The arrow indicates the direction of
the track.

Figure 8.13: Close-up of a selected track of campaign L3C covering the glacier invading Wright
Valley, demonstrating expected gain values. The arrow indicates the direction of the
track.
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Since both tracks were flown in mid-winter, a thin layer of water cannot have been
the cause either. The left plot of Figure 8.14 confirms this assumption by showing the
air temperatures that were recorded at the closest weather station, Lake Vanda (at about
25km distance from the track), over the entire L3C campaign. The dashed lines indicate
when both tracks were flown, showing that the temperatures were well below zero degrees
Celsius (i.e. lower than -15∘). The right plot shows that about 8cm of snow was accumu-
lated in one day at Lake Vanda. Even though the amount of snow rapidly declines (most
probably due to rapid sublimation), there is still snow left at the time the second track
was flown (i.e. a couple of centimeter). Even though Lake Vanda is located about 25km
from the ground tracks, it indicates the temperatures were most definitely below zero and
heavy snow fall occurred. It might give a hint of the cloudiness at the time of the high
gain track, because of the heavy snow fall a couple of days later. In this discussion it is
not that important to know whether there was snow accumulation or not at the locations
of the tracks. More interesting is the presence of clouds, and although the weather station
is about 25km distant from the locations of the track, the snow accumulation does make it
more probable that clouds were present at the time of measurements. However, this could
not be verified and should be interpreted with caution.

Figure 8.14: The soil temperature and soil surface change or snow height for both L3C tracks
taken at Lake Vanda. The left dashed lines of both plots indicate the time that the
track of Figure 8.12 was flown, the second dashed lines indicate the time that the
track of Figure 8.13 was flown. Data taken and adapted from LTER, [17].

Since beam co-elevation angle, solar radiation and a thin layer of water are most prob-
ably not the causes of the high gain values, and heavy snowfall occurred close to the ac-
quisition date of the track, the most plausible reason is the presence of clouds at the time
of measurements. In the discussion about clouds, also other forms of severe atmospheric
influences are implied by this term. It is beyond the scope of this research to analyze
the severity of each atmospheric disturbance on waveform attributes, but at least some
kind of relevant filter criteria will be proposed to reduce the probability of cloud affected
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attributes. A disadvantage of the fact that both tracks were flown in night conditions, is
that no LANDSAT images are available and no on-site solar radiation levels of the LTER
stations can be used.

The subplots with the attribute values of Figure 8.12 show odd observations. First of
all, the reflectivity values are extremely low (i.e. lower than 0.4), generally even more than
an order of magnitude lower compared to Figure 8.13. Even in cases of highest gain and
lowest reflectivity discussed in the previous section, for example the sloped rock surfaces
of Figure 8.5, the reflectivity was still about ten times higher. In other words, the laser
pulse is attenuated or reflected such that almost no energy is returned. Additionally, the
sign of the kurtosis is reversed compared to Figure 8.13, which means that the raw wave-
form shape is changed from sharp peaked to blunt peaked. The ground return signals of
the atmospheric channels are considerably lower as well and most of the signals differ an
order of magnitude. This means that between 300m and -300m above the ground sur-
face, the maximum peak of both signals is not that different from the neighboring signal
returns, i.e. the ground return signals have similar values as the atmospheric return signals.

Despite the fact that almost all attributes of Figure 8.12 show completely different
results than one would expect based on the previous section and Figure 8.13, the eleva-
tion values are similar to the elevation of Figure 8.13. The most plausible explanation is
that even though the received signal is extremely low, the infrared signal still touched the
ground surface and surface elevations were successfully estimated. Perhaps fog was present
at the time of measurement, or the infrared signal is strong enough to penetrate heavier
clouds as well. Next to the abnormal gain values, also some gaps occur in the data. This
is again due to invalid values of the geolocation parameters, resulting from failed elevation
estimates. Perhaps for some shots, the attenuation was that strong that no usable wave-
form was reflected back and no Gaussian peaks could be fitted in.

Although there are some more tracks with similar unexpected gain values over the Dry
Valleys that could be highlighted, it is decided not to discuss these since the essence is the
same. Instead, another figure (Figure 8.15) is included that relates to the analysis of Figure
8.12 as well. It concerns a similar track of L3D that runs parallel to the track of Figure
8.12 and is only 200m next to the track of Figure 8.12. The L3D figure shows how the gain
values in this case are more or less as expected. The most apparent differences with Figure
8.12 are again related to the reflectivity (0.02 for L3C compared to 0.3 for L3D), kurtosis
(-1 compared to 3), atmospheric green channel ground returns (around 0.1 compared to
0.3) and the atmospheric infrared ground return (0.06 compared to 0.9). Thus, quite some
important attributes differ considerably for approximately the same track. On the other
hand, elevation, width and risetime show almost similar results. In particular the elevation
is almost identical, indicating that the infrared laser signal of Figure 8.12 certainly hit the
ground and proper elevations were estimated.
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Figure 8.15: Close-up of a selected track of campaign L3D covering the glacier invading Wright
Valley, demonstrating expected gain values. The arrow indicates the direction of the
track.

8.2.2 Lake Victoria area

For Lake Victoria one track has been highlighted as well to show some gain irregularities
that are likely related to cloud presence. The observations were taken on the 31st of May
2005 with a beam co-elevation angle of 0.37∘ and a mean transmit energy of 47.6mJ. Al-
though there are LANDSAT images available that were acquired about a week before and
after the acquisition date of the track which indeed show cloud presence, it is decided not
to include these for cloud validation, because of the high variability in cloud cover over time.

Figure 8.16 shows a track of L3C with unexpected low gain values. As demonstrated
in the previous section, generally speaking the waveform attributes are approximately con-
stant over water. However, this figure shows such varying gain, reflectivity, kurtosis and
infrared ground return signals that there must be some kind of disturbing factor causing
these irregularities. The most probable factor is cloud interference; this figure contributes
to the assumption that extremely low reflectivity values are associated with cloud pres-
ence as well. Especially the first 50 shots of the track shows irregular values with low
reflectivity values and high gain values. In the remainder of the shots, the attributes show
values that are similar to the attribute values over Lake Victoria in the previous section.
Cloud forming at locations where the shots have high gain and low reflectivity could be a
plausible explanation. The reason that occasionally the number of peaks is relatively high
can be explained by either high waves or the effect of low SNR. This effect of SNR can
be explained as follows. Since the reflectivity (and consequently the received energy) of
these shots is extremely low, the returned waveform is closer to the noise threshold. Con-
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Figure 8.16: Close-up of a selected track of campaign L3C covering Lake Victoria. The arrow
indicates the direction of the track.

sequently, the noise affects the waveform shape in such a way that the number of peaks
may locally become higher.

8.3 Data points used for classification

Based on the previous discussions, a simple method to filter out the most ir-
regular shots will be proposed in this section. This filtering is a very rough
estimate, but is meant to filter out those shots that are affected severely by
(assumed) cloud presence. Additionally, this section will give an overview of
the data points used for final classification analysis.

As was analyzed in Section 8.2, the reflectivity that occurs at the irregular gain val-
ues, is more than ten times lower than any reflectivity value of the nominal gain values.
Even though some other attributes like kurtosis, gain and infrared ground return signal
also show significantly different results, only the reflectivity is used for cloud filtering. The
reason that kurtosis and gain are not taken into account for filtering is because kurtosis
occasionally changes from large negative to slightly positive values for the irregular case
studies and the gain does not show consistent irregular values due to varying transmit
energy. Additionally, the gain is already accounted for in the reflectivity and the infrared
ground return signals show in many cases the same trends as the reflectivity.

As demonstrated by all figures in Section 8.1, shots having nominal gain values all have
reflectivity values higher than 0.1. For the irregular gain values, the reflectivity drops to
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about 0.03 for Figure 8.12 and 0.01 to 0.06 for Figure 8.16. As mentioned in Section 8.2,
these extremely low values are that different from expected values, that these are assumed
to be affected by clouds. As such, a threshold filtering is proposed to exclude all shots
having reflectivity value lower than 0.1. One should keep in mind that this cloud
filtering is based on comparison between expected and irregular gain values and has not
been confirmed by validation data.

Besides the cloud filtering, some other criteria were formulated to select specific shots
for classification analysis as well, see Section 7.1. The two criteria that involve data fil-
tering are the Dry Valleys mask and the selection of only those campaigns that are taken
in the same season in which the LIMA image was taken (i.e. austral spring). As a result
only the L2A, L3A, L3D, L3G and L3I campaigns are used for the Dry Valleys. For Lake
Victoria all campaigns that overlap the specific subset are used, which are L2A, L2B, L3A,
L3B, L3C, L3D, L3E, L3F and L3H.

After all filtering steps have been taken, the result is that 10% of the total shots cover-
ing the Dry Valleys subset is left. In case of Lake Victoria this is 74%. Table 8.2 shows the
impact of the mask, campaign and cloud filtering over the Dry Valleys and Lake Victoria.
Since no mask or campaign filtering is used for Lake Victoria, only cloud filtering and
waveform selection make a difference.

Limiting criterion Dry Valleys Lake Victoria
Total over subset 24408 1804
Mask selection 5864 1804
Campaigns selection 2733 1804
Cloud selection 2375 1334
Waveform selection 2326 1059

Table 8.2: The number of points that are left after each filtering criterion for both validation
areas. The campaign and mask selection criteria are based on temporal and spatial
preferences, the cloud filtering is based on attribute thresholding, and the waveform
selection is based on the availability of valid waveforms.

Table 8.2 shows that 76% of the Dry Valleys shots are filtered out at the mask filtering
step. The campaign selection accounts for filtering out 53% of the shots covering the mask,
resulting in 11% of the total number of shots. These two filtering procedures may seem
very strict, but the big advantage is that the analysis of the resulting classified footprint
becomes more reliable. The cloud criterion filters out 13% and 26% of the shots that are
left for the Dry Valleys and Lake Victoria, respectively.

After the filtering has been carried out, all shots over the Dry Valleys are divided into
land cover classes according to the supervised classification map described in Section 7.1.
For Lake Victoria, all shots that comply with the filtering criteria are assumed to cover
water. Figure 8.17 shows the classified shots over the Dry Valleys and Lake Victoria.
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Figure 8.17: The shots that are used for classification analysis over the Dry Valleys (left) and
over Lake Victoria (right). Over the Dry Valleys, the shots are classified based on
the classification map.

Of all the shots that are classified with the Dry Valleys classification map, 1861 cover
rock, 183 cover glacier, 195 cover snow and 67 cover lake, which adds up to 2306 points.
The reason that this is not the same as 2326 as indicated by Table 8.2 is because some
footprints do not cover one land cover type for 95% or more. In case of Lake Victoria, 1059
shots are used for classification analysis.

8.4 Attributes distributions

In the previous sections, various attributes were analyzed for their potential
for classification. Using Kernel smoothed distributions per land cover type,
the distinguishing power of each attribute will be determined.

Ideally, the Kernel smoothed distribution of each land cover type is significantly dif-
ferent from the other land cover types, because a certain attribute interval could then
exclusively be assigned to each land cover type. In the following paragraphs the Kernel
smoothed distributions will be given of the attributes of Table 8.1. With the distributions,
the classification potential of the attributes will be analyzed. No final classification criteria
will be given in the coming discussions. The classification criteria will be constructed in
Section 8.5 based on the Kernel smoothed distributions and the findings of Section 8.1. For
the percentages and distributions that are mentioned in the following discussions, unless
otherwise indicated, the following order of land cover type is used: glacier ice, rock, snow,
lake ice and water (the same order as the legends of the figures).
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8.4.1 Gain and saturation energy correction

As the case studies in Section 8.1 demonstrated, the receiver gain is dependent on land
cover type and topography as well as on transmit energy. Over sloped rock surfaces, the
gain is mostly close to the maximum value of 250. However, since reflectivity accounts
for changing transmit energy by normalization, the reflectivity is a better alternative than
gain in classifying land cover types. The case studies showed that changing land cover
type from rock surface to high reflectivity surfaces like snow or ice for example, the shots
become saturated because the gain is not adjusted properly. And even though in many of
these cases the reflectivity values will be biased, this saturation information can also be
used for classification.

Of all shots that cover glacier ice, 74% is non-saturated; of all rock covered shots 79%
is non-saturated; of all snow covered shots 68% is non-saturated; of all lake ice covered
shots, 55% is non-saturated; of all water covered shots, 75% is non-saturated. The reason
that the percentage for lake ice is low, is because the Dry Valleys lakes are surrounded by
rock surface . Therefore the gain values are moderate to high just before the shots cover
the lake. Because the lakes are relatively small and the gain adjusts slowly, many shots
over lake are saturated.

Some attribute values are significantly different when saturation occurs (for example
kurtosis). Consequently, the first important decision in the classification is separating sat-
urated and non-saturated shots. This means that saturated shots will be subject
to other classification criteria than the non-saturated shots. Consequently, in the
following discussions a clear distinction is made between distributions of saturated and
non-saturated shots. The first distribution that is analyzed is the gain per land cover type.

Figure 8.18: The Kernel smoothed probability density of gain per land cover type. The left
plot shows the estimate for all shots, the right plot shows the estimate for all non-
saturated shots.
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Figure 8.18 shows the Kernel smoothed probability density estimates of gain per land
cover type. The left plot shows the estimate of all shots and the right plot shows the
estimate of the non-saturated shots. The reason that the gain distributions of saturated
shots are not shown is because these do not present any relevant information. For many
saturated shots, the same gain values are observed over different land cover types, because
of the limited response time of the gain.

The right plot indicates that the majority of all non-saturated shots having a gain
larger than 100 counts, belong to rock: of all shots that are classified as rock, 39% is non-
saturated and has a gain value higher than 100 counts. For the shots that are classified
as glacier ice, snow, lake ice and water these percentages are 2.2%, 2.1%, 0% and 0%,
respectively. Consequently, a substantial part of all rock covering shots (i.e. 39%) could
be classified as rock, with only minimal losses for the other land cover types.

8.4.2 Reflectivity

The reflectivity is the most important attribute for the classification algorithm to distin-
guish snow. The case studies in Section 8.1 already indicated that shots covering snow
typically have reflectivity values higher than 0.6. This is also confirmed by Figure 8.19,
where the Kernel smoothed distributions of reflectivity are shown per land cover type.

Figure 8.19: The Kernel smoothed probability density of reflectivity per land cover type.

For the non-saturated shots, 100% of the snow covering shots have reflectivity values
higher than 0.6. For glacier ice this is 11%, for rock 9.0%, for lake ice 5.6% and for water
2.5%. Based on the percentages of non-saturated shots over all shots (i.e. 74%, 79%, 68%,
55% and 75%, see the previous paragraph) this means that 68% of all snow covered shots
can be classified as snow. However, setting this classification criterion also means that 8.2%,
7.1%, 3.0% and 1.9% of all shots covering glacier ice, rock, lake ice and water, respectively,
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are incorrectly classified as snow. For the shots covering the Dry Valleys, this is according
to what is assumed to be ‘true’ from the supervised classification map. The validation of
the clusters in the left plot (for example the glacier cluster at around 0.6) poses a problem
because of the lack of consistent validation data. Since the classification of the shots are
based on one image taken in November 2001, temporal variation of land cover type can
give incorrect classification results. For some cases, no proper validation data is available
to validate the exact land cover type at the moment of measurement. LANDSAT images
are mostly not available for the exact date of interest and the LTER data set usually does
not cover the area of interest exactly. Although it might be possible that the supervised
classification map resulted the incorrect exclusion of shots classified as snow, this research
adheres still to the classification results from the supervised classification map. Also, the
left plot shows that the ice and rock observations having reflectivity values higher than 0.6
form small isolated clusters. The fact that these clusters have low density values and are
well separated from their main peak, indicates that they represent irregular observations
from the main peak. For example for glacier, the main peak is around 0.2 and one small
cluster is in the 0.6 region.

When looking at the reflectivity distribution of saturated shots, again the snow is
generally higher than the other Dry Valleys land cover types. However, more overlap
occurs and especially the saturated shots over water show a wide distribution and even
have a mean and maximum reflectivity of 1.0 and 2.1 respectively. As a consequence, if the
same simple criterion, classifying all shots with reflectivity values higher than 0.6 as snow,
would be used, 12%, 11%, 95%, 6.5% and 81% of the saturated shots covering glacier ice,
rock, snow, lake ice and water would be classified as snow. This comes down to 3.3%, 2.4%,
31%, 3.0% and 20% of all shots covering the corresponding land cover types. Especially for
water, this would make the classification accuracy significantly worse. Ignoring the lower
percentages (i.e. glacier ice, rock and lake ice), the two most important land cover types
for reflectivity value higher than 0.6 would be snow and water.

8.4.3 Kurtosis

The kurtosis is the most important attribute for classifying water. As the case studies of
Section 8.1 already demonstrated, the shots over water usually give high positive kurtosis
values. Positive kurtosis indicates peak shaped waveforms. Figure 8.20 shows the Kernel
smoothed probability density estimates of kurtosis per land cover type.

The left plot shows that the kurtosis can be used for non-saturated shots to distinguish
between water and other land cover types, though glacier ice and lake ice have more overlap
which makes it more difficult. For the saturated shots, the distributions show increased
overlap and consequently it is harder to find sound classification criteria.

The percentages of non-saturated shots having a kurtosis higher than 2.5 are 17%,
0.48%, 0%, 22% and 89% for glacier ice, rock, snow, lake ice and water respectively. Tak-
ing into account the percentages of non-saturated shots over all shots, the result is that
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Figure 8.20: The Kernel smoothed probability density of kurtosis per land cover type.

13% of all glacier ice covered shots have kurtosis higher than 2.5, 0.38% for rock, 0% for
snow, 12% for lake ice and 66% for water. Using this threshold as a classification criterion
will result in the majority of all water covering shots to be correctly classified. However, it
also results in 13% and 12% of all glacier ice and lake ice shots to be incorrectly classified
as water. For two of these cases, some extra research is carried out to check whether it is
possible that some melting occurred.

The first case concerns shots over Taylor Glacier taken in L3D on the 22nd November
2005. The second case concerns the shots over Lake Vanda taken in L3G on the 17th
of November 2006. Figure 8.21 shows the ice and soil temperatures of Taylor Glacier
and Lake Vanda during the specific campaigns with an indication of the specific dates of
measurements. For the Taylor Glacier observations, the maximum, mean and minimum
temperatures are -2.6∘C, -7.0∘C and -13∘C respectively. And even though the day before
the maximum temperature was +1∘C, it does not convincingly prove that there was a thin
layer of ice on top of the glacier. For the Lake Vanda observations, the maximum, mean and
minimum temperatures are +2.5∘C, -3.1∘C and -7∘C respectively. The day before the max-
imum temperature was as high as +5.8∘C. These temperatures indicate there might have
been a small layer of water on top of the lake during the time of measurement. However,
since the observations are not supported sufficiently and it would be too labor intensive
to check all of these cases, this research yet again adheres to the supervised classification
map results. Again, this decision might give the accuracy assessment a more pessimistic
result, however the LTER observations can provide several of the incorrect classification
results with explanations.

The percentages that correspond with the kurtosis criterion (i.e. kurtosis larger than
2.5) show that for non-saturated shots, water can be clearly separated from rock and snow.
However, it also results in incorrect inclusion of a part of glacier ice and lake ice. But
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Figure 8.21: The ice temperature during L3D taken by the Taylor Glacier weather station (left
plot) and the soil temperature during L3G taken by the Lake Vanda weather station
data (right plot). The dashed lines indicate the specific dates of measurements. Data
taken and adapted from LTER, [17].

because there is no other attribute more optimal for distinguishing water from the other
land cover types and because some of the misclassifications might be explained by LTER
data, it is decided to use kurtosis higher than 2.5 for classifying non-saturated shots as
water.

For saturated shots, the classification is even more difficult. As the right plot of Figure
8.20 shows, part of the saturated water shots have kurtosis values close to zero. As dis-
cussed earlier in Section 8.1, saturation influences the kurtosis values due to the distorted
waveforms (part is clipped off). Since a significant part of the shots is saturated (i.e. 26%,
21%, 32%, 45% and 25% for glacier ice, rock, snow, lake ice and water respectively) it
is still important to make sure these percentages are classified as correctly as possible,
especially in case of lake ice. As already mentioned in the paragraph about reflectivity, the
reflectivity can be used to filter out most of the snow and water covering shots.

8.4.4 Waveform width

The waveform width is an important attribute to classify between ice and rock and water.
The previous paragraphs show that reflectivity only helps in separating between snow and
other land cover types for non-saturated shots and between -snow and water- and -rock
and ice- for saturated shots. Kurtosis is useful for non-saturated shots only, to separate
between water and other land cover types. However for non-saturated shots the distinction
between ice and rock, and for saturated shots between water, snow, ice and rock the width
is the only attribute that offers reasonable classification potential.

In Chapter 6, the relationship between width and surface topography is analyzed and
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discussed. Even though theoretically the beam incidence angle as well as roughness affect
the width, it was shown in this chapter that most dominantly the incidence angle has
influence on the width. Since the incidence angle combines beam co-elevation angle with
surface slope angle, the uncorrected width is also dependent on the beam geometry. To cor-
rect for this, the beam co-elevation correction was applied to the width. The waveform is
compressed according to the extra width the angle induces. This is particularly important
when carrying out comparative analysis between tracks that do not have identical beam
co-elevation angles and when looking at the Kernel smoothed distribution of the width.
As a result, the width plots of the figures in Section 8.1 are beam co-elevation corrected
as well as the Kernel smoothed distribution of Figure 8.22.

Figure 8.22: The Kernel smoothed probability density of width per land cover type. The plots
are truncated at 250ns for visualization purposes, resulting in the exclusion of 3.5%
(left plot) and 2.7% (right plot) of the rock distributions.

The left plot shows that the width can be used for non-saturated shots to distinguish
rock from glacier ice and lake ice after water is separated by use of kurtosis. For the satu-
rated shots, two cases can be identified based on the previous sections. First of all, when
reflectivity can separate snow and water from the other land cover types, the width can
separate snow from water. Secondly, after reflectivity isolates rock, glacier ice and lake ice
from snow and water, width can be used to distinguish between ice and rock. Taking into
account the large percentage of shots over lake ice that are saturated, this forms potential
for discrimination between rock and lake ice in particular.

For non-saturated shots as well as for saturated shots, a width threshold is used of
50ns, which corresponds to approximately 3∘ surface slope. For non-saturated shots, 89%,
12%, 14%, 100% and 100% of the corresponding land cover types has width smaller than or
equal to 50ns. When only considering the non-saturated shots having width values smaller
than or equal to 50ns, 66%, 9.5%, 9.7%, 54% and 75% of all shots would be classified as
one land cover type. Since this does not result in optimal classification, other classification
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criteria will precede the width criterion, see Section 8.5. For saturated shots, 83%, 24%,
33%, 100% and 94% of the corresponding land cover types has width smaller than or equal
to 50ns. In this case, when one would assign these shots to one land cover type, the result
would be that 21%, 5%, 11%, 46% and 24% of all shots would be classified. Again, this
criterion is not applied without considering preceding classification criteria (see Section
8.5).

8.4.5 Other attributes

In this paragraph, the attributes that do not contribute to the classification criteria are
briefly analyzed and discussed. Only those attributes that are also incorporated in the
figures in Section 8.1 are taken into account, which are skewness, waveform risetime, wave-
form number of peaks and the atmospheric ground return signals. For these attributes the
Kernel smoothed distributions are again based on separating non-saturated from saturated
shots, and were applicable correlation coefficients are used to analyze the redundancy with
other attributes.

Skewness

As the case studies in Section 8.1 indicate, the skewness does not offer significant classifica-
tion potential. Figure 8.23 shows the Kernel smoothed distributions per land cover type. It
shows that for non-saturated shots the distributions of all land cover types overlap, except
for a part of lake ice. If the threshold would be set on -0.3 for non-saturated shots, the
result would be that 1.5%, 9.2%, 3.0%, 50% and 1.8% of the non-saturated shots covering
the corresponding land cover types would be classified as lake ice. However, this research
does not use skewness as a classification attribute because the classification criteria that are
used for identifying lake ice (i.e. a combination of saturation, reflectivity and width) offer
better results. One of the main reasons for this is that the skewness cannot provide a high
percentage (i.e. more than 50%) for lake ice alone without also including large portions of
other land cover types. In fact, more than 50% of the non-saturated shots covering lake
ice still have skewness values that completely coincide with the distributions of other land
cover types. In addition, a physical explanation why lake ice would have smaller skewness
values than flat rock or water cannot be provided as well. Since only 67 shots cover lake
ice (compared to many more shots over other land cover types, see Section

Risetime

The risetime is computed using the beam co-elevation corrected waveform as well. The
waveform attribute is useful to separate land cover types having narrow peaked waveforms
like lake ice and water from other land cover types. Figure 8.24 shows the risetime distri-
butions per land cover type. As the figure indicates, the risetime for non-saturated shots
covering water is small compared to snow and rock. The water distribution shows overlap
with the glacier ice and lake ice for the non-saturated shots. The rock distributions in both
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Figure 8.23: The Kernel smoothed probability density of skewness per land cover type.

plots are low and broad, indicating that the risetime values of rock is dispersed.

In case of saturated shots, the distributions become more dispersed and consequently
have more overlap. In addition, some clusters are shown in the right plot for water. The
most probable reason for this is that the computation of risetime is affected by the clipped
part of saturated waveforms. Since the risetime is the time difference between 10% and
90% of the maximum peak but for saturated waveform this peak might be clipped off,
the risetime might be incorrectly computed. So especially for saturated waveforms, the
waveform width is more reliable than risetime.

Figure 8.24: The Kernel smoothed probability density of risetime per land cover type. The plots
are truncated at 50ns for visualization purposes, resulting in the exclusion of 38%
(left plot) and 9.3% (right plot) of the rock distributions.
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For non-saturated shots, the risetime is a good alternative for width. However for satu-
rated shots, the risetime values are likely to be biased by incorrect peak identification and
using the width becomes more favorable. As the case studies in Section 8.1 demonstrated,
the risetime mainly follows the same trends as the waveform width. The correlation coef-
ficient between width and risetime is 0.83, indicating the two are considerably correlated.
The part of risetime that is not correlated with the width does not contribute to better
classification results. Because of this correlation with width; the lack of contribution of the
non-correlated part to the classification; the biased values for non-saturated shots; and to
keep the classification algorithm as simple as possible, this research does not include the
risetime as a classification attribute.

Number of peaks

The number of peaks is also an alternative for waveform width, albeit less optimal. Figure
8.25 shows the Kernel smoothed distribution of the number of peaks. It shows that shots
covering water and lake ice mostly have only one peaked waveforms for both non-saturated
and saturated shots. The correlation coefficient with waveform width is 0.82, similar to the
correlation coefficient of risetime with width. The main reason that the number of peaks
offers a less optimal classification potential compared to the width is because it concerns
discrete values and the overlap between the land cover types is significantly larger. Of
all non-saturated shots, 89%, 22%, 81%, 100% and 100% of the corresponding land cover
types have a number of peaks equal to one. For saturated shots these percentages are 76%,
36%, 83%, 94% and 64%. That 36% of all saturated shots covering water have a number of
peaks larger than one could indicate that waves or surface roughness are the cause of sat-
uration. On the other hand, for saturated shots the computation of peaks is also affected
by the incorrect recording of the waveform. The main reasons that the number of peaks
are not incorporated in the classification algorithm are the high correlation to waveform
width (which is a better alternative) and the high overlap of distributions per land cover
type.

Atmospheric channels ground return signals

The green and infrared ground return signals do not show classification potential based on
the case studies in Section 8.1 and suffer from highly undesired effects caused by changing
transmit energy. The correlation coefficient between the two attributes is 0.77; between the
green infrared signals and reflectivity 0.34; and between the infrared signals and reflectivity
0.60. All three values are not sufficiently convincing to conclude that one attribute makes
the other attribute redundant, although the correlation between the two atmospheric at-
tributes can be interpreted as interesting. This correlation is most probably because both
signals are recorded similarly and are influenced by the similar attenuation and scattering
factors. The reason both are not entirely correlated is likely because the transmit energy
is much lower for the green channel and the green signal is more sensitive for atmospheric
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Figure 8.25: The Kernel smoothed probability density of the number of peaks per land cover
type.

effects than the infrared signal. Figure 8.26 and Figure 8.27 show the distributions of the
green and infrared ground return signals, respectively.

For green signals, none of the plots show dominant distribution clusters that can be
used for classification purposes. One of the interesting features of both plots is the small in-
dividual clusters of lake ice in the left plot and of water in the right plot. These clusters are
a direct consequence of the varying transmit energy. For lake ice, only a few non-saturated
shots cover this land cover type each campaign. As a result, the differences between cam-
paigns is clearly visible and show the effect of transmit energy on the backscatter values.
About five main peaks can be identified in the lake ice distribution. As demonstrated by
the case studies, the backscatter values increase with decreasing transmit energy.

Similarly, for the infrared signals no clear separation can be made between the land
cover types. The non-saturated distributions show that about half of the values for snow
are somewhat higher than the other land cover types. This can be related to the higher
reflectivity values of snow compared to the other land cover types. In the left plot, the dis-
tribution of lake ice shows more homogeneous results than is the case for the green signals.
This can be explained by the smaller transmit energy differences of the infrared signals
throughout the campaigns and by the smaller sensitivity of infrared signals to atmospheric
effects.

The main reasons that the green and infrared signals of the atmospheric channels are
not used for classification purposes are the reliability issues with the signals caused by the
transmit energy variations (in particular for the green channel) and the poor potential for
making clear distinctions between the land cover types. If the same attributes would be
available for the green signals as are available for the infrared signals (i.e. similar waveform
recording, etc.) and the transmit energy would be sufficiently high and constant, the green
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Figure 8.26: The Kernel smoothed probability density of the green ground return signal using
the atmospheric channel per land cover type.

signal may offer significant improvements to the classification algorithm. In particular, the
expected reflectivity of green signals in combination with the reflectivity of infrared signals
could result in a spectral signature that would significantly improve the classification. For
an example of what difference green light reflectance makes compared to infrared light
reflectance, see Figure 4.4 in Section 4.5.

8.5 Classification criteria

In the previous section, the distributions of the attributes per land cover type
and their classification potentials were analyzed and discussed. Based on that
information and the case studies, the classification criteria are determined. In
this section these criteria will be explained by means of a decision tree. For
each decision, two branches are defined and the impact of each decision on the
further branches will be analyzed with percentages. Finally, each end branch
leads to a classification result. These results are analyzed with percentages as
well. The exact methodology and functioning of the tree and its assessment
will become clear during the process of classification. The intention of this
research is to make the decision tree with all its classification criteria as simple
as possible, while keeping the classification as accurate as possible, such that
the classification algorithm becomes generally applicable.

To accompany the entire classification process, the decision tree is shown in Figure
8.28. The attributes shown in the top are required for the classification after which the
classification is started. For each branch, the percentage per land cover type is shown
with respect to the previous decision. Finally, the diamonds show the final classification
decisions. The percentages shown below these diamonds are the final percentages of the
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Figure 8.27: The Kernel smoothed probability density of the infrared ground return signal using
the atmospheric channel per land cover type.

land cover types with respect to all shots. All percentages will be explained in the following
discussions. The branches are discussed from top to bottom and from left to right. The
two main branches, the non-saturated and saturated branches, are indicated individually
in the coming discussions. Please keep in mind that following order of land cover type is
used, unless stated otherwise: glacier ice, rock, snow, lake ice and water (the same order
as the decision tree).

The classification criteria are generally based on particular attribute values. The val-
ues have been defined such that the classification algorithm is defined in the most optimal
way. However, the values have been rounded to a easily interpretable number as well. For
example, the criteria that are related to the waveform width are based on a 50ns value. A
slightly higher value (e.g. 50.12ns) might result in an improvement of a tenth of a percent-
age in classification accuracy, but it negatively affects the simplicity of the algorithm. Thus,
for each criterion a balance is found between an optimal algorithm and interpretable values.
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Figure 8.28: Classification decision tree based on ICESat’s attributes. The squares indicate clas-
sification criteria, the diamonds indicate the decisions and the circles indicate the
numbers corresponding to the decisions. Please note that the glacier ice and lake ice
will be merged as will be explained further in this section.
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8.5.1 Non-saturated shots

Of all shots covering glacier ice, rock, snow, lake ice and water, 74%, 79%, 68%, 55% and
75% respectively are non-saturated, see Section 8.4. As mentioned before, the reflectiv-
ity is the most important attribute to distinguish snow from the other land cover types.
Consequently, the decision after the isolation of the non-saturated shots distinguish the
shots based on the reflectivity criterion of 0.6. For the branch reflecivity higher than 0.6,
the percentages indicate the number of shots having reflectivity values higher than 0.6
with respect to the non-saturated shots. So, 11%, 9.0%, 100%, 5.6% and 2.5% of the non-
saturated shots covering the corresponding land cover types have reflectivity values higher
than 0.6. Directly after this branch the first decision is made: if a shot is non-saturated
and has reflectivity value higher than 0.6, the shot is classified as snow. The
result is that 8.2%, 7.1%, 68%, 3.0% and 1.9% of all shots covering the corresponding land
cover types is classified as snow.

For the non-saturated shots having reflectivity values lower than or equal to 0.6, more
complex classification criteria are required. As the decision tree indicates, 89%, 91%, 0%,
94% and 97% of all non-saturated shots comply with this reflectivity criterion. To filter
out the shots covering water, the criterion of kurtosis higher than 2.5 is used. As a result,
17%, 0.53%, -, 18% and 89% of all non-saturated shots having reflectivity lower than of
equal to 0.6 covering the corresponding land cover types have kurtosis higher than 2.5.
The ‘-’ indicates that no snow shots are left for this criterion, because of the reflectivity
criterion earlier. After the kurtosis criterion the second decision is made: if a shot is non-
saturated, has a reflectivity value lower than or equal to 0.6 and has kurtosis
value higher than 2.5, the shot is classified as water. The result is that 11%, 3.8%,
0%, 9.0% and 65% of all shots covering the corresponding land cover types is classified as
water.

For the shots having kurtosis lower than or equal to 2.5 and comply with the previous
criteria, 83%, 99%, -, 82% and 11% of the corresponding land cover types are left. As these
percentages together with the percentages of the preceding criteria indicate, a large por-
tion of glacier ice, rock and lake ice has to be properly distinguished. Section 8.4 already
indicated that the distinction between these land cover types is problematic, because none
of the attributes offer a clear separation potential between these types. The attribute that
offers the best solution is the waveform width. Basically, this width criterion is a measure
for the flatness of the surface. For the Dry Valleys this criterion holds reasonably well:
85%, 12%, -, 100%, 100% of all shots that comply with the previous criteria have width
smaller than or equal to 50ns. This comes down to the surface having a slope smaller than
3∘. For the glacier and lakes of the Dry Valleys this indeed is true. However, when glacier
ice has high slopes or large roughness, this width criterion may pose a problem. This is
one of the major pitfalls of this classification scheme. However, since attributes like reflec-
tivity, kurtosis or skewness do not offer classification potential, and waveform attributes
like risetime and number of peaks are heavily correlated and related to the same problem,
it is chosen to use the width for classification criterion. Consequently, after the kurtosis
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criterion the third decision is made: if a shot is non-saturated, has reflectivity value
lower than or equal to 0.6, has kurtosis value lower than or equal to 2.5 and
has width value larger than 50ns the shot is classified as rock. The result is that
8.2%, 62%, 0%, 0% and 0% of all shots covering the corresponding land cover types is
classified as rock. Also the fourth decision can be stated: if a shot is non-saturated,
has reflectivity value lower than or equal to 0.6, has kurtosis value lower than
or equal to 2.5 and has width value smaller than or equal to 50ns the shot is
classified as glacier ice. The result is that 47%, 8.7%, 0%, 42% and 8.3% of all shots
covering the corresponding land cover types is classified as glacier ice.

8.5.2 Saturated shots

Of all shots covering glacier ice, rock, snow, lake ice and water, 26%, 21%, 32%, 45% and
25% respectively are saturated, see Section 8.4. Again, the first criteria involves the reflec-
tivity to separate the largest portion of snow from the other land cover types. The result
is that 12%, 11%, 95%, 6.5% and 81% of the saturated shots covering the corresponding
land cover types have reflectivity higher than 0.6. This means that a substantial portion
of the saturated water shots are also selected, see also Figure 8.19. Since the kurtosis is
not reliable for saturated shots, it is decided to use width to distinctguish between snow
and water. Setting the width criterion to 50ns, results in 100%, 6.7%, 35%, 100% and
96% of all shots that comply with the previous criteria have a width value smaller than
50ns. From these percentages alone, it would make sense to classify these shots as glacier
ice or lake ice. However, when taking into account the percentages of the criterion before
(i.e. the reflectivity criterion), the larger effective percentage belongs to water. So the fifth
decision is made: if a shot is saturated, has reflectivity higher than 0.6 and has
width smaller than or equal to 50ns the shot is classified as water. As a result,
3.3%, 0.16%, 11%, 3.0% and 20% of all shots covering the corresponding land cover types
is classified as water. This means that still a significant part of the shots covering snow is
classified as water. It shows that saturated shots give different results than non-saturated
shots. Also the sixth decision can be stated: if a shot is saturated, has reflectivity
value higher than 0.6 and has width value larger than 50ns the shot is classi-
fied as snow. The result is that 0%, 2.3%, 20%, 0% and 0.76% of all shots covering the
corresponding land cover types is classified as snow.

For the non-saturated shots with reflectivity values lower than or equal to 0.6, again
the width is used to separate between glacier ice and lake ice, and rock. Consequently,
80%, 26%, 0%, 100% and 86% of all shots that comply with the previous criteria have
width smaller than or equal to 50ns. This also yields the seventh decision: if a shot is
saturated, has reflectivity value smaller than or equal to 0.6 and has width
value smaller than or equal to 50ns the shot is classified as lake ice. As a result,
18%, 4.9%, 0%, 43% and 4.1% of all shots covering the corresponding land cover types
is classified as lake ice. Also the eighth decision can be stated: if a shot is saturated,
has reflectivity value smaller than or equal to 0.6 and has width value smaller
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larger than 50ns the shot is classified as rock. As a result, 4.4%, 14%, 1.5%, 0%
and 0.66% of all shots covering the corresponding land cover types is classified as rock.

When looking at the percentages under each decision, it appears that for many decisions
the classification tree performs reasonably well. In the next chapter, the exact classification
accuracy assessment is carried out. However from these percentages one noticeable pitfall
in particular becomes apparent, namely the lack of distinction between glacier ice and lake
ice. This was also indicated in Section 8.4 and with the observations in this section it is de-
cided to merge the two land cover types. When also considering the practical implication,
merging the two is reasonable since lake ice is very similar to glacier ice. The difference
between the two is more a matter of slope angle and roughness than a difference in physical
substance. In addition, flat glacier ice in particular is practically indiscernible from lake ice,
merging the two would prevent unnecessary misclassifications. In addition, when consider-
ing the research question, the emphasis is on finding a classification algorithm between ice,
rock, snow and water, rather than between different ice forms. For improved mass balance
estimations, computing the difference between the ice forms does not make a significant
contribution, in contrary to the other land cover types. Therefore, because of the limited
relevancy and the difficulty of making proper distinction between the different ice forms,
the classification of glacier ice and lake ice are merged. The combination is simply called
‘ice’ hereafter. The reason that glacier ice and lake ice were separated in the first place,
is because it was relatively easy to implement in the supervised classification map (see
Section 7.1). As a consequence, it was possible to analyze the potential of ICESat’s signals
to discriminate between the two ice types.

Since the classification algorithm has been determined, it can be applied on test areas.
In Chapter 9 several the classification results on various areas will be discussed. By com-
paring the classification results of the Dry Valleys and Lake Victoria with the supervised
classification map, the accuracy can be determined. Furthermore, in Chapter 9 the classi-
fication results of Jakobshavn in Greenland and of Greenland itself will be discussed as well.



Chapter 9

Classification results

In this chapter, the classification algorithm will be applied on several test areas. First of
all, in Section 9.1 the classification results of the Dry Valleys and Lake Victoria will be
compared with the supervised classification map. By comparing the two, the accuracy of
the classification algorithm can be determined. In Section 9.2, the classification algorithm
is tested on the Jakobshavn area in Greenland. Finally, in Section 9.3, the entire area of
Greenland is used as test area. The resulting classification maps serve as practical exam-
ples of the algorithm.

For the Dry Valleys and Lake Victoria, the same shots are used with which the classi-
fication criteria have been determined. Consequently, the classification results of Section
9.1 can be directly compared to Figure 8.17. For the Jakobshavn area, three individ-
ual campaigns are classified and plotted on corresponding LANDSAT images. For entire
Greenland, two campaigns are classified. The campaigns that are selected for the Jakob-
shavn area were flown in the end of the winter and in spring, such that the areas are not
only covered by snow and sea ice, but also include bare rock, open water and glacier ice.
Similarly, for the Greenland area, the two selected campaigns were flown in winter and
spring to show the difference in classification; it makes the classification more challenging.

9.1 Classification accuracy

With the defined classification criteria, the shots that were classified with the
supervised classification map are considered to be true and act as reference
data. This data can be used to assess the classification accuracy by feeding
these into the classification decision tree and compare the resulting computed
classes to the reference classes. With this information, a confusion matrix, the
overall accuracy and 𝜅̂-accuracy can be computed. The accuracy assessment is
carried out for all available reference data as well as a random subset of the
reference data. First of all, the classification results of all shots plotted on the
Dry Valleys and Lake Victoria images will be discussed.

149
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9.1.1 Dry Valleys and Lake Victoria classification results

Figure 9.1: The classification results over the Dry Valleys (left) and over Lake Victoria (right).

Figure 9.1 shows the classification results of all shots that were classified by the su-
pervised classification map, i.e. all reference data available over the Dry Valleys and Lake
Victoria. As the left image shows, the classification of shots generally correspond to the
land cover of the LIMA image. As expected, the misclassification occurs mostly in the flat
part of valleys, where shots are classified as glacier but in reality cover rock. In addition,
some misclassification occurs at Taylor Glacier, where rock and water classified shots are
mixed with ice classified shots. Finally, one particular track shows snow classified shots
over the entire region. Because some tracks overlap in the Dry Valleys, some close-ups of
this region are included, see Figure 9.2. Before discussing these, first some comments on
Lake Victoria will be given. As the right image of Figure 9.1 shows, the shots are mostly
classified correctly. As the confusion matrix of Table 9.1 will indicate, 84% of all shots
covering water have been correctly classified as water. In particular the isolated track
shows that the majority of the shots have been classified as ice.

The four close-ups of Figure 9.2 are given to provide some detailed analysis of the
misclassified shots over the Dry Valleys. First of all, the shots over Taylor Glacier show a
combination of correct and incorrect classification results. In most misclassified cases the
shots are classified as water, and these occur mainly on the flat parts. The reason for this
is that these parts give high kurtosis values and are consequently classified as water. The
shots that are misclassified as rock mainly occur at the rougher parts of the glacier (i.e. the
upper shots). These parts give high waveform width values and consequently they are not
classified as ice. Finally, some consecutive shots were classified as snow. These shots be-



9.1. Classification accuracy 151

Figure 9.2: Detailed images of the classification results over the Dry Valleys. The areas of the
images starting at the upper left in clockwise direction are: Taylor Glacier; Lake
Vanda; snow elevated plain; and Barwick Valley and Mckelvey Valley.

long to one track over the Dry Valleys that contains a high number of snow classified shots.

For the Lake Vanda region, the shots have been classified mostly as rock over the rock
area and ice over the lake. In addition, some shots that have been classified as water occur
on the lake. Noticeable is the clear transition between where the shots classified as rock
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stop and where the shots classified as ice begin. The shots that were classified as snow
mostly occur in the same track that show snow classified shots over Taylor Glacier.

For the snow elevated plain, by far most shots have been correctly classified as snow
and only a few have been classified as water or rock. The water classified shots appear to
occur at specific places, at the most flat parts of the plain where the kurtosis values are
high. Three rock classified shots occur closer to the boundary of the plain, which might
indicate the surface is more tilted.

The fourth and final image shows the Barwick Valley and Mckelvey Valley region. Most
tracks show a mix of ice and rock classified shots. Especially in the flat valleys parts, the
shots are misclassified as ice. This is mainly due to the low waveform width values that
occur on these locations. Next to the ice and rock classified shots, some shots were classi-
fied as snow as well. Most of these shots belong to the same track mentioned before. This
could indicate that during the acquisition date of this track, some snow covered the Dry
Valleys or that anomalies occurred during the entire track. Finally, the image shows that
virtually none of the shots were classified as water. This is most probably due to the low
kurtosis values.

Generally, the shots were classified correctly. However, some persistent misclassifica-
tions occurred at specific sites. The shots that were misclassified as ice mostly occur at the
flat valley areas; the shots that were misclassified as rock mostly occur at rougher glacier
areas; the shots that were misclassified as snow mostly belong to one particular track; and
the shots that were misclassified as water mostly occur at flat areas like flat glacier parts,
lake ice and flat snow parts.

9.1.2 Confusion and accuracy matrix, all shots

Table 9.1 shows the confusion matrix of the shots used in the previous discussion (i.e. all
shots over the Dry Valleys and Lake Victoria). The equations that are used to make the
confusion matrix have already been explained in Section 7.1. A short description of what
the matrix represents is briefly summarized below using Table 9.1 as an example. The
classes per column indicate the land cover types that have been classified with the classi-
fication map. These are considered to be reference data, or ground truth. The classes per
row indicate the land cover types that have been classified with the classification algorithm
based on ICESat’s attributes (i.e. the decision tree). The ‘total’ is the sum of the row
entries and represents the number of ground truth shots that are fed into the classification
algorithm. So, ideally on the diagonal of the inner matrix these total numbers should be
present, i.e. 250 on the intersection ‘ice’ and ‘ice’, 1861 on the intersection ’rock’ and
‘rock’, etc. If this would be the case, all omission and commission errors would be 0%
and the overall and 𝜅̂-accuracy would be 100%, i.e. perfect classification. However, the
classification is not perfect because some shots have been misclassified.
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The misclassified shots should be interpreted as follows. Since the columns represent
the ground truth, all off-diagonal entries in the columns indicate the number of shots that
are classified as the land cover type indicated by the row, but should be classified as the
land cover type indicated by the column. For example for the column ice, 176 shots were
classified correctly, but 23 were classified as rock, 17 were classified as snow and 34 were
classified as water. The omission error then indicates the percentage that is omitted from
correct classification. For ice, (23 + 17 + 34)/250 · 100% = 30% is classified as other land
cover types instead of ice. The commission error indicates the percentage that is incorrectly
included in the land cover type. For ice, (252 + 0 + 131)/559 · 100% = 69% is classified as
ice, but these should have been classified as rock and water respectively. The total error
is the sum of all off-diagonal entries of the inner matrix divided by the total number of
classified shots, and is equal to 100% subtracted by the sum of the diagonal entries of the
inner matrix divided by the total number of classified shots: (252 + 0 + 131 + 23 + 3 + 7 +
17+174+28+34+10+21)/3365·100% = 100%−(176+1425+171+893)/3365·100% = 21%.

Ground truth
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Ice 176 252 0 131 559 69%
Rock 23 1425 3 7 1458 2.3%
Snow 17 174 171 28 390 56%
Water 34 10 21 893 958 6.8%
Total 250 1861 195 1059 3365
Omission 30% 23% 12% 16% 21%

Table 9.1: The confusion matrix for the for the classification algorithm. The table is expressed in
number of pixels and the corresponding error percentages.

Table 9.2 shows the accuracy matrix that corresponds to the confusion matrix of Table
9.1. The producer’s accuracy is identical to 100% minus the commission error and the
user’s accuracy is identical to 100% minus the omission error. The producer’s accuracy
shows that particularly the classification of rock and water performs well since it includes
few shots that belong to other classes. The user’s accuracy shows that the classification
of all land cover types performs well by not excluding many shots that belong to the par-
ticular class. The overall accuracy is equal to 100% minus the overall error and is 79%.
The 𝜅̂-accuracy basically compensates the accuracy for random classification and is al-
ways lower than the overall accuracy. See Section 7.1 for a detailed explanation about the
𝜅̂-accuracy. In this case the 𝜅̂-accuracy is considerably lower than the overall accuracy
because of relatively high commission errors of ice and snow.

Briefly explained, the overall accuracy indicates that the classification algorithm cor-
rectly classifies 79% of all shots. The 𝜅̂-accuracy indicates that the classification algorithm
correctly classifies 68% of all shots taking into account chance agreement. However, these
percentages should be interpreted with great caution, because of the large differences in
available shots per true land cover type. For example, for rock, 1861 shots are available
while for snow only 195 shots are available, more than a factor nine difference. To nor-
malize these differences, another confusion matrix and accuracy matrix are constructed.
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These matrices use only a subset of the shots available, see Paragraph 9.1.4. First of all,
the misclassifications of Table 9.1 will be discussed in the next paragraph.

Class Producer’s accuracy User’s accuracy
Ice 31% 70%
Rock 98% 77%
Snow 44% 88%
Water 93% 84%
Overall accuracy 79%
𝜅̂-accuracy 68%

Table 9.2: The accuracy matrix corresponding to Table 9.1.

9.1.3 Misclassification analysis

The confusion matrix gives a clear overview where the classification algorithm performs
correctly and where misclassification occurs. It shows the direct impact of misclassified
shots on the resulting error percentages. Four primary misclassification results are high-
lighted and possible explanations are given.

First of all, ice has a very high commission error. One of the main causes relate to the
252 shots covering rock which are incorrectly classified as ice. The shots were classified as
ice, because of the width criterion, i.e. when the width is smaller than or equal to 50ns the
shots are classified as ice, otherwise the shots are classified as rock. As explained before,
since there is no other attribute that offers a clear distinction between the two, the best
possibility is to classify the two as correctly as possible by using the width criterion, which
is highly correlated with the surface slope. As a result, the shots covering rock surface
with very little surface slope (i.e. in the midst of the Valleys), are incorrectly classified as
ice. Because there are many more shots available that cover rock compared to the number
of shots that cover ice, the impact on the commission error is significant. The argument
that in reality some of the misclassified rock shots are indeed ice is not very plausible
since the temporal difference between the supervised classification map is more likely to
be dominated by snowfall, resulting in higher reflectivity values. The hypothesis that in
reality a melting snow layer became a small ice layer at the time of measurement might
contribute to the misclassification. However, this cannot be verified and is much less likely
than the argument of the width criterion.

The second misclassification result that warrants attention relates to the 131 shots cov-
ering water that are incorrectly classified as ice. Similar to before, the reflectivity does not
offer clear separation capabilities between ice and water. As the previous section and the
decision tree indicate 8.3% and 4.1% of all shots covering water are classified as ice corre-
sponding to the fourth and seventh decision respectively. For both decisions the preceding
criteria include waveform derived attributes (i.e. kurtosis and width). Since the width
distributions of the two land cover types have some overlap, the misclassification is a un-
derstandable consequence. Apparently, some of the shots covering water have larger width
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values and smaller kurtosis values than usual and are consequently classified as ice. Waves
and roughness of the water surface could cause this effect, however this is not verified.
About 12% of all water shots are incorrectly classified as ice. The much higher number of
shots that cover water compared to the number of shots that cover ice contributes to the
high comission error.

The third misclassification result that warrants attention relates to the 174 shots cov-
ering rock but have been classified as snow. As mentioned in the previous section, it may
be possible that part of these shots are indeed snow and are consequently correctly clas-
sified as snow. However, because of difficulties with validation this cannot be confirmed.
Although it is not desired to use attribute findings for hypothesis testing, the reflectivity of
snow is one of the most reliable classification criteria of the decision tree. Since these par-
ticular shots covering rock have been classified as snow based on the reflectivity criterion,
this somehow indicates that the shots might be snow in reality. Although this cannot be
accepted as an argument, it indicates the possible deviation from the results based on the
supervised classification map. Additionally, many of these shots were taken in the same
unique track (i.e. on the same day), which makes it more probable that on that particular
day there was some snow covering the rock surfaces.

The fourth and final case concerns the 34 shots that cover ice but are classified as wa-
ter. Again, the waveform derived attributes play a major role in the classification criteria.
For flat ice, the kurtosis and width values may overlap with the values assigned to water.
Another possibility is that a layer of water was in fact present on the glacier and lake at
the time of measurement, as was already discussed in the previous section.

9.1.4 Confusion and accuracy matrix, randomly selected shots

Table 9.3 shows the confusion matrix based on a random subset of all available shots. For
each land cover type a random subset is taken such that the total number of reference shots
per land cover types is equal. Since the number of shots covering water is the smallest
among the other total numbers, for each land cover type 195 shots are randomly selected
for classification. As a result, for snow all the available shots are taken into account and
for the other land cover types a random subset of 195 shots is taken.

As the table shows, the error percentages are more balanced amongst one another than
before. For example, the commission error of ice is now 25% instead of 67% and the comis-
sion error for rock is 13% instead of 2.3%. The reason for these changes is that for each
land cover type the same number of shots is used for classification, and consequently no
more high numbers of incorrectly classified shots are compared to low total numbers and
vice versa. Table 9.4 shows the corresponding accuracy percentages. The overall error and
consequently the overall accuracy are almost identical as before. Also the user’s accuracies
are very similar, however the producer’s accuracies show less variation. The reason that
the producer’s accuracies are more equalized is because the commission errors are more
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Ice 138 26 0 20 184 25%
Rock 20 152 2 0 174 13%
Snow 13 15 167 7 202 17%
Water 24 2 26 168 220 24%
Total 195 195 195 195 780
Omission 29% 22% 14% 14% 20%

Table 9.3: The confusion matrix comparing classification map results (ground truth) with the
classification algorithm results based on ICESat’s attributes. Here a random subset of
shots is used. The table is expressed in number of shots and the corresponding error
percentages.

sensitive to variation in total numbers than the omission errors are. Consequently, the
𝜅̂-accuracy is improved to 74%, mainly because of the lower commission errors. Since the
subsets are taken randomly, the confusion matrix changes with other subsets. The overall
accuracy ranges between 79% and 82%, the 𝜅̂-accuracy ranges between 71% and 76%.

Class Producer’s accuracy User’s accuracy
Ice 75% 71%
Rock 87% 78%
Snow 83% 86%
Water 76% 86%
Overall accuracy 80%
𝜅̂-accuracy 74%

Table 9.4: The accuracy matrix corresponding to Table 9.3.

9.2 Jakobshavn area classification results

The second area on which the classification algorithm has been applied is the
Jakobshavn area in Greenland. Three campaigns have been selected for anal-
ysis. One in the late winter, two in late spring.

Figure 9.3 shows the location of the Jakobshavn area on Greenland. In fact, Ilullissat
is the Greenlandic name of Jakobshavn and is also shown on the map. The area of interest
covers Jakobshavn, some ice fjords and islands. In the winter the sea is covered with ice
and the coastline is covered with snow. In the spring and summer the sea ice melts and
changes to open water, and the coastline shows bare rock and ice. More inland, the land
is covered with snow. The figures on the following pages show the classification results of
several campaigns plotted on top of the corresponding LANDSAT images. Without any
doubt, temporal differences occur between the ICESat acquisition dates and the LAND-
SAT acquisition dates. However, each LANDSAT image can give an impression of what
the conditions were like during each ICESat’s campaign. For some images, black stripes
run through the data. These data gaps are cause by the faulty SLC of the LANDSAT
satellite, see Section 3.2.1 for more information. The blue parts of the images represent
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Figure 9.3: A map of Greenland showing the stable ice cap region and indicating the Jakobshavn
area. Image taken and adapted from [47]. Image courtesy Philippe Rekacewicz,
UNEP/GRID-Arendal.

mainly ice, the red parts represent bare rock, the white parts represent snow and the black
parts represent water.

9.2.1 Campaign L1A

Figure 9.4 shows the classification results of L1A, during the late winter of 2003. The
LANDSAT image was taken about three weeks later and consequently might show more
bare rock than actually was the case during the ICESat’s measurements. In addition, there
might have been more ice than that the image shows. For the next discussion, the tracks
are analyzed upwards. As the upper left image shows, the shots are classified mainly as
snow and water and these alternate mostly according to the land cover types the LAND-
SAT image indicates. The close-ups show more detailed results, especially the differences
between several tracks. The upper right image shows the track A that covers partly the
sea and partly land. One of the most successful results this image shows is the clear sep-
aration between shots covering water (or sea ice) and land. The moment the shots cover
land, the classification changes from ice and water into rock and snow. Further up, the
classification fails to recognize water or ice. The separation between water (or ice) and
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Figure 9.4: The L1A classification results over the Jakobshavn region. The shots were taken
between the 21st of February 2003 and the 7th of March 2003, the LANDSAT image
was taken on the 30th of March 2003.

land is less evident for the tracks B and C in the right part of the image. Track B shows
acceptable results for the first part, but becomes less accurate further upwards. Track C
shows the change in land cover type even less accurately. For this track, it appears that
the classification confuses between rock and ice. One possible explanation for this is that
the ice surface is rougher and consequently has higher width values. Perhaps the difference
between tracks B and C is that for track B the ice was flat and track C the ice already
broke into pieces and formed sea ice.

The lower right and lower left images show similar results to the upper right image,
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Figure 9.5: The L2C classification results over the Jakobshavn region. The shots were taken
between the 19th of May 2004 and the 21st of June 2004, the LANDSAT image was
taken on the 12th of May 2004.

where the shots correctly indicate differences in land and ice but with confused land cover
types. Here too, the track B show better results than track C, especially downwards. Track
A in the lower left image shows the similar results to track C. For all images in this figure,
the shots that were classified as snow correspond most accurately with the LANDSAT
image. In some cases, the classification correctly shows the transition from ice and water
to land, and sometimes it does not.
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Figure 9.6: The L3F classification results over the Jakobshavn region. The shots were taken
between the 25th of May 2006 and the 26th of June 2006, the LANDSAT image was
taken on the 26th of June 2006.

9.2.2 Campaign L2C

Figure 9.5 shows the classification results of L2C, during the late spring of 2004. The upper
left image shows that most shots have been classified as water and more to the right of the
image more shots have been classified as ice. The upper right image contains tracks that
cover both land and water. Track A correctly shows the transition from water to land, but
fails to classify any shots over land as snow. Whether there was indeed rock at the time
of measurement has not been verified. It could be that the extremely low transmit energy
causes the low SNR to affect the reflectivity values. The tracks B, C and D show mixed
classification results between snow, water and ice. The reason why most shots classified as
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snow cover water is not clear, perhaps the water surface roughness plays a role or again
the complications with the low transmit energy. The lower left image shows the misclassi-
fication of water as well. Especially track D contains many shots that have been classified
as snow. The lower right image shows better results for the transitions between water and
land. Especially the shots covering rock are classified correctly and clear transitions are
present. Even the small island in the lower half of the image has been classified correctly
in track E.

For all images in this figure, the most interesting is the misclassification of snow over
(assumed) water. On the other hand, transitions in land cover types were generally accu-
rately classified, especially for the lower right image. The extremely low transmit energy
might have its effect on the classification results. In addition, the temporal differences be-
tween ICESat’s measurements and the LANDSAT image could result in misinterpretation.

9.2.3 Campaign L3F

Figure 9.6 shows the classification results of L3F, during the late spring of 2006. The upper
left image shows that few shots are classified as rock and most transitions in land cover
types have been correctly classified. The upper right image contains tracks that cover both
water and land. The tracks A and B show a clear transition between water and snow.
Track A continues with shots classified as snow (and occasionally rock) upwards until the
shots again cover water. Some shots of track B that cover water have been classified as ice.
This occurs even more for the tracks on the right, like track C and D. For these tracks,
the transition from water to land have been correctly indicated as well, only most water
covering shots have been classified as ice. The over-land shots have been classified as rock
and snow. More upwards of track C and D, see the lower left image, the transitions are
again indicated correctly, although it is not clear whether shots were correctly classified
as ice or not (due to the uncertainty in LANDSAT image). Track D shows similar results
as discussed before, with shots mainly classified as snow over land and shots classified as
water and ice elsewhere. Interesting to notice is that track C shows a consistent pattern
in shots classified as ice and shots classified as snow. The transitions of the narrow fjords
have been classified correctly as well (although it is not sure if there was ice or water). The
lower right image shows similar results as discussed before as well. For some ice or water
parts of track E, some shots have been incorrectly classified as rock, especially over the icy
areas. This could relate to rough ice sheet or sea ice.

For all images in this figure, the transitions between land cover types mostly correspond
with transitions in classification results. Whether the transition between rock and snow is
correct cannot be accurately verified, however the transition between land and water or ice
is more evident in the classification results. The fact that there were few shots classified
as rock could be related to the time difference between LANDSAT and ICESat’s measure-
ments, meaning little rock was indeed visible. The transition from ice or water to rock or
snow mostly corresponds neatly to the transitions the LANDSAT image indicates.
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9.3 Greenland area classification results

The final test area covers Greenland. For this area, two campaigns are classi-
fied: a spring campaign and a winter campaign. The spring campaign, L3C,
was flown from the 20th of May until the 23rd of June 2005. The winter
campaign, L3E, was flown from the 22nd of February until the 28th of March
2006. For each campaign, a random subset of 500,000 points is taken to reduce
computational processing loads. The two classification maps show significant
differences due to changing season and give an insight into the success of the
algorithm, but also into its deficiencies. A low resolution version of the coast-
lines is plotted on top of the maps.

9.3.1 Campaign L3C

Figure 9.7 shows the results of the L3C campaign. The shots classified as rock mostly
occur at the coastlines. Although the results have not been validated, the locations of the
shots that are classified as rock form plausible results. Since the tracks are more densely
distributed in the north, the hegemony of classified regions can be better observed than in
the south. From north to south along the east coast of Greenland, large continuous areas
have been classified as rock. More to the south, the regions are more difficult to identify.
Virtually all shots over the island east of Greenland, i.e. Iceland, have been classified as
rock, which is very plausible during that time of year. In addition, the area west of Green-
land, i.e. the east coast of Canada, shows a large portion of shots classified as rock as well.

Less successful is the classification of Greenland’s inland, where relatively few shots
are classified as snow and relatively many shots have been classified as ice or water. Some
individual tracks show high densities of shots classified as snow, but generally the tracks
contain shots classified as ice or water inland and rock at the coast. One possible expla-
nation for the inland results is that higher temperatures in the summer cause the snow to
have different properties than the snow that is used for validation in the Dry Valleys. There
are also large quantities of results mixed up at the ocean areas. The reason that the shots
have not been classified as water could relate to the surface roughness at open sea causing
the kurtosis value of the waveforms to decrease and consequently the shots to be classified
as ice. This example shows the drawback of using the waveform-derived attributes for
classification. In case the reflectivity of water would have been substantially different from
the other land cover types, classification based on ICESat data would be simpler and most
probably more accurate. In addition, the map shows individual fragments of tracks on the
inner part of Greenland that have been classified as rock. This is most probably the result
from changing surface topography. When the surface becomes more sloped or rough, the
waveform width increases and as a consequence, the shots will be classified as rock.
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Figure 9.7: The L3C classification results over Greenland. The shots were taken between the 20th
of May 2005 and the 23rd of June 2005.
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9.3.2 Campaign L3E

The results of L3E show quite different results from the results of L3C. Most dominantly
is the higher number of shots that are classified as snow. This is most probably due to the
presence of fresh snow that corresponds better to snow in the Dry Valleys. In addition,
the map shows few shots that are classified as rock, especially at the coast of Greenland.
Furthermore, most shots covering the sea west of Greenland have been classified as snow.
This is most likely due to a snow layer on top of sea ice.

The less successful parts of the classification map are the inner part of Greenland and
the sea south-west of Greenland. The inner part is mainly covered by shots that have
been classified as snow. However, quite some shots have been classified as rock or water as
well. As for rock, the reason for misclassification can be found with the criteria that use
waveform width, irrespective of saturation. Apparently, some areas of the inner part of
Greenland have high slopes or roughness. The same type of misclassifications are present
in the classification map of L3C as well. The water waveforms are most likely due to the
exactly opposite reason: extreme flat parts resulting in high kurtosis values. This holds
true for non-saturated shots. For saturated shots the reason lies with flat areas as well,
but in combination with high reflectivity. Saturated shots having a high reflectivity value
and low width are classified by the algorithm as water. This is one of the major pitfalls of
the algorithm: for Lake Victoria these criteria worked most optimally, however for other
areas these criteria might work less optimally or even adversely. As a result, in the recom-
mendations, see Section 10.2, it is advised to take a closer look how to deal with saturated
shots, in particular for classifying snow and water.

The second area that shows typical misclassification results of the L3E map is the sea
south east of Greenland. This area shows a mixture of shots classified as ice and shots
classified as water. Similarly to the L3C discussion, this could be related to the surface
roughness at the time of measurements causing the kurtosis to decrease. Whether there
was sea ice at the time of measurements has not been validated.

Both resulting classification maps show the potential of using ICESat data for land
cover type classification. Especially the information of areas that are classified as rock can
be used for better understanding of processes in the Arctic regions. Although the classifi-
cation can provide classification maps with non-uniform coverage and having non-perfect
accuracy, it can give estimates of which areas are covered by rock that could be extracted
from mass balance estimates. Especially since current techniques apply smoothing and
interpolation for the estimation of mass balance, classification maps could be used to iden-
tify which areas to exclude from the estimation. In particular further away from the poles,
the density of shots decreases and fewer cross-overs are available resulting in increased
interpolation errors.
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Figure 9.8: The L3E classification results over Greenland. The shots were taken between the
22nd of February 2006 and the 28th of March 2006.
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Chapter 10

Conclusions and recommendations

Based on the findings of previous chapters, conclusions and recommendations can be given.
Section 10.1 gives the conclusions; Section 10.2 gives the recommendations.

10.1 Conclusions

The most important conclusion is that classification based on ICESat’s full
waveform signals and attributes essentially works. Based on comparison of
the algorithm with validation data, a classification accuracy of 74% was found.
The algorithm has been applied to other test areas as well, showing seasonal
changes in land cover types.

The final classification algorithm requires only four attributes and is based on seven
simple classification criteria. After the criteria, the shots are divided into the land cover
types using eight decisions. Distinction is made between non-saturated and saturated shots
to deal with the effects of ICESat’s measurement system on recording saturated waveforms.
To summarize the classification algorithm, the next list gives the most important criteria:

∙ The reflectivity is the most important attribute to identify snow for both non-
saturated and saturated shots.

∙ The kurtosis is the most important attribute to identify water for non-saturated
shots.

∙ The width is the most important attribute to identify rock and ice for non-saturated
shots, and to distinguish water from snow, and ice from rock, for saturated shots.

The classification algorithm has been applied to several test areas. First of all, the
classification results over the validation areas (Dry Valleys and Lake Victoria) were used
to assess the accuracy of the classification. To make sure the accuracy of the classification
algorithm was not biased by the availability of shots over different land cover types, random
subsets were taken. From comparing the results of the classification algorithm with the
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ground truth, a final accuracy was computed to be 74%. This number can be interpreted
as the percentage of shots that are classified correctly with respect to a random classifier.

In addition, the classification has been tested on the Jakobshavn area in Greenland and
Greenland itself. Both areas were not used for quantitative accuracy assessment, but rather
for analyzing visually the success of classification. Over Jakobshavn, the most dominant
success relates to the clear transitions in classification results over changing land forms.
For example, the algorithm is capable in most cases to distinguish water and ice from rock
and snow. This is especially striking for inlet bays and fjords. Furthermore, the classifi-
cation between rock and snow give reasonable results with respect to the land cover types
indicated by the LANDSAT images. However, accurate validation between the land cover
types remains problematic due to the temporal difference between ICESat’s measurements
and LANDSAT’s images.

For the final test case of the classification algorithm, the entire Greenland area was
used. Two campaigns have been selected, with the first flown during spring 2005 and the
second during winter 2006. The two resulting classification maps show clear differences in
land cover types. The spring campaign shows a high number of shots classified as rock at
the coastal regions of Greenland. In addition, virtually all shots over Iceland and the east
coast of Canada have been classified as rock as well. The classification map of the winter
campaign shows totally different results. A large portion of the sea west of Greenland
have been classified as snow, most probably due to a snow layer on top of the sea ice. In
addition, almost all shots that cover the mainland of Greenland have been classified as
snow as well. The shots over Iceland show a mixture of snow and rock, which is plausible
for that time of the year.

Besides the (presumed) success of the classification over the Greenland area, several
(presumed) deficiencies can be identified as well. First of all, both classification maps show
shots covering the inner part of Greenland that have been classified as water. These results
most certainly do not represent reality. Furthermore, both maps show a large portion of
shots covering water that have been classified as ice, especially for the spring campaign.
From these two cases of misclassification it was concluded that the algorithm is not working
optimally primarily due to the confusion between ice and water. A plausible cause for this
can be found in the interaction of surface topography with waveform signals. Since ice and
water are mainly identified in the classification algorithm based on kurtosis (i.e. peaked-
ness) of the waveform, increased water roughness could cause the kurtosis to decrease and
consequently the algorithm leads to ice. This holds for non-saturated waveforms. For
saturated waveforms, ice is distinguished from water by reflectivity. Since reflectivity is
biased by saturation, the algorithm performs less confidently for these shots. This could
result in shots covering ice (or snow) to be classified as water.

A general note about the classification concerns the uncertainty of land cover type just
below the surface. Even if the classification algorithm would perform perfectly, i.e. the
accuracy is 100%, it would still give information about the top layer of the Earth’s surface
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only. This means, for example, that if an area that is usually covered by rock has a thin
layer of snow on top, the algorithm would most probably classify the surface as snow. This
problem can be solved by comparing overlapping footprints. In the recommendations, this
is explained in more detail.

In addition to the construction of the classification, the research study came across
several interesting aspects of ICESat as well. First of all, the data filtering and correc-
tion techniques include some unconventional approaches to preparing the data. For data
filtering, the most important difference with conventional research studies is the inclu-
sion of shots irrespective of gain value. The exclusion of shots based on gain values is
widely accepted in the ICESat research community for filtering out cloud affected shots
[55, 21, 46]. However, in particular for campaigns suffering from lower transmit energy, the
gain can become high for certain land forms as well. In particular, shots covering sloped
rock surfaces have high gain values and regularly even reach the maximum gain value of 250
counts. For campaigns with low transmit energy, the number of shots having a high gain
value dramatically increases, irrespective of cloud presence. One advantage of low transmit
energy, and consequently higher gain values, is that saturation occurs less often and as a
result makes the data products of ICESat more reliable. To filter out cloud affected shots,
a filtering criterion based on reflectivity values, instead of gain values, was proposed. All
shots with a reflectivity value lower than 0.1 were filtered out. Since this criterion has not
been properly verified, it should be interpreted with caution and is therefore included in
the recommendations.

For correcting the data, two techniques in particular were included in the research.
The first technique corrects the geolocation of the footprint of the shots for atmospheric
refraction. Although the correction is not significant for small beam co-elevation angles,
it becomes significant for higher angles. The technique relocates the footprint by more
than 14m for a 5∘ angle. This technique has been adapted from one of the GLAS Algo-
rithm Theoretical Basis Documents. The second technique corrects ICESat’s waveforms
for beam co-elevation angle. Especially for classification purposes this is required, since
the waveform width is included in the classification criteria. The beam co-elevation angle
has a direct effect on the waveform’s shape by making it wider and this could negatively
affect the classification algorithm. With the beam co-elevation correction, the waveform
is compressed according to the angle-induced extra width. This technique has been devel-
oped especially for this research study.

For this research study, several ICESat signal related attributes have been analyzed.
One of these attributes is the green laser signal, with which atmospheric measurements
are carried out. As was discussed in Section 4.5, several land cover types show different
reflectance in the infrared and in the green. The potential was demonstrated that the
combination of the infrared signals with the green signals at ground level could result in
a spectral signature per land cover type. Consequently, this could make the classification
algorithm more accurate. However, based on analysis of the atmospheric channels, it was
shown that the green signals at ground level do not provide any improvement to the classi-
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fication algorithm. The main reasons for this are the extremely low laser transmit energy
in the green for later campaigns, and the invalid values of the green backscatter signals for
the first two campaigns.

Finally, the answer on the research question can be stated.

Can ICESat’s full waveform signals be used to discriminate between land cover types over
the cryosphere?

Up to an accuracy of 74%, yes.

10.2 Recommendations

In this section a list of recommendations will be given. These could be used
for further research studies, but should most definitely be taken into account
when using the results of this research study.

∙ The first and most important recommendation is the actual implementation of the
results of this research on current mass balance estimation techniques and to analyze
their improvements. Furthermore, analyzing the change in land cover type might
give interesting results of the variability of polar regions over time. Even though the
classification is not accurate enough for detailed ice sheet monitoring such as glacier
retreat and advance over time, general impressions of changing snow coverage over
time should be possible to obtain.

∙ The classification algorithm makes distinction between saturated and non-saturated
shots. For the non-saturated shots, reflectivity and waveform width are used. Since
the reflectivity has not been corrected for saturation, this part of the classification
is the least reliable. By correcting the reflectivity and reviewing the corresponding
classification criteria, the classification accuracy might increase and less confusion is
made between snow and water.

∙ The varying transmit energy has its implications on ICESat’s attributes, especially
on gain and saturation energy correction. In addition, the computation of full wave-
form attributes like waveform width becomes less reliable with lower transmit energy
because of the lower signal-to-noise ratio (SNR). Analyzing the effects of SNR on the
waveform derived attributes, might result in measures to correct for negative effects
or even make classification criteria dependent on transmit energy.

∙ Related to the previous recommendation: even though the reflectivity is based on
the ratio of the received energy to (amongst other influences) the transmit energy,
it was observed that the reflectivity changes inversely with transmit energy over
stable areas. Although it has not been included in the report, during analysis of
ICESat’s attributes, several plots indicated that lower transmit energy results in
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higher reflectivity values for stable areas (like Dry Valleys snow and Lake Victoria
water). Perhaps the SNR plays a role in the computation of the reflectivity. By
analyzing these effects, the classification criteria might be reviewed and changed.

∙ The shots for this research have been selected irrespective of gain values. Since the
gain is commonly used for filtering out cloud affected signals [55, 21, 46], another
filtering criterion was proposed in this research. Based on case study analysis, all
shots were removed with a reflectivity value of 0.1 or lower. However, validation of
this cloud filtering criterion has not been carried out. Analyzing the influence of
clouds on ICESat’s signals might improve the proposed criterion and consequently
might result in a better classification algorithm.

∙ In addition to the atmospheric effects on ICESat’s signals, solar radiation should be
analyzed as well. It might affect the SNR and consequently the reflectivity values.
Even though the received energy has been corrected for background noise, some quick
analysis (not included in the report) indicated differences in reflectivity over the same
area for night and for day conditions. Analyzing the interference of solar radiation on
ICESat’s signals might change the interpretation of these signals and consequently
might change the classification criteria as well. In addition, solar glint of certain land
cover types might influence the classification as well.

∙ For this research study, a fast working algorithm to detect overlapping footprints was
made. However, this algorithm has not been used for constructing the classification
algorithm, because no valuable information was found. Nevertheless, this algorithm
still provides an effective way of detecting overlapping footprints. By identifying
overlapping footprints and comparing the land cover types, a classification map can
be made of the cryosphere. This map can help to identify areas with covering sur-
faces but are temporally covered by snow; it could very well be used for improving
the classification of land cover types over time. For a detailed explanation of the
overlapping footprints algorithm and the programming code, please refer to the au-
thor or to the supervisors.

∙ For the surface topography analysis, it was assumed that the waveform width is
dominantly influenced by surface topography and beam co-elevation angle. To de-
convolve the effects of topography and beam co-elevation angle from the width, the
beam co-elevation angle correction was applied on the waveforms. This technique
assumes a circular footprint to determine the amount of waveform compression, be-
cause the orientation of the footprint with respect to the illuminated surface slope
was considered to be unknown. However, a global DEM that roughly indicates the
slope direction of the beam illuminated surface could improve the beam co-elevation
correction technique. Analyzing the improvement of a global DEM to the beam co-
elevation technique might result in more accurate compression of waveforms. On the
other hand, using a global DEM should be applied with caution especially for the
polar regions because of changing land cover types. Furthermore, research could be
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carried out on the actual contribution of scatters outside the footprint dimensions
that are indicated by the laser profiling array (LPA). Since these dimensions are
based on an intensity threshold (see Section 4.3), the laser footprint actually covers
a larger region and this might influence the full waveform signals.

∙ In several cases the data descriptions on the NSIDC website [35] were incorrect. First
of all, according to the source, the gain has a maximum value of 200 counts. Actually,
the maximum value is 250 counts. This change has also not been incorporated in
the descriptions of past data releases. Secondly, NSIDC proposes a technique to
correct reflectivity for saturation and mentions some limitations to the correction as
well. One of the limitations mentions that about 20% of the non-zero saturation
energy values are invalid. However, this research found out that for one of the
case studies the percentage was even 90% and over the entire Dry Valleys was 67%.
Further analysis to the causes of the high percentage of invalid values might result
in improved computation techniques for saturation energy correction and eventually
in the successful correction of all reflectivity values of saturated shots.

∙ The final recommendation that relates to the data products provided by NSIDC
relates to the signals of the atmospheric channels. According to the data descriptions
of the GLA09 data product [35], the two following attributes should be available
but in fact hold nothing but invalid values: i FRg grd sig , ‘full-resolution ground
return signal at 532nm’, and i FRir grd sig , ‘full-resolution ground return signal at
1064nm’. After correspondence with the Goddard Space Flight Center (GSFC) [41],
it was concluded that most probably some kind of error in the computation algorithms
causes the attributes to give nothing but invalid values. Correcting for this error will
make it easier for the data user to access the ground return values of the atmospheric
channels, instead of deriving the return signals with extra programming. In addition,
the green backscatter signal values embedded in GLA07 (i40 g bcsc) are invalid for
the L1A and L2A (at least over the Dry Valleys).

∙ As was mentioned before in this section and in Section 4.5, attributes derived from
green laser signals have the potential to improve land cover type classification sig-
nificantly. Combining these attributes with the attributes of the infrared laser could
result in a spectral signature per land cover type. This might be especially relevant
for improved discrimination between ice and rock. Even though for ICESat this
potential was not realized due to low transmit energy and invalid values, perhaps
this recommendation can be taken into account for designing the ICESat follow-up
mission: ICESat II.

∙ Other recommendations for the ICESat follow-up mission relate to the improved
functioning with respect to ICESat. First of all, recording of returned waveforms
with higher temporal resolution could improve the identification of effects along the
laser’s path line-of-sight. In addition, research should be carried out on implementing
a two dimensional recording array of the laser pulse. Consequently, the waveform (as
the time series of two dimensional images) can be analyzed for the spatial contribution
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of scatters along the laser’s path line-of-sight. As such, the waveform does not loose
a dimension, as was explained in Section 4.3. The array could be similar to the
LPA, however having higher spatial resolution and more sensitivity. Furthermore,
the interaction of the receiver gain with the waveform recording should be improved
by making the response time of the gain faster, such that saturation of waveforms can
be prevented. In addition, the dynamic range of the gain should be increased, such
that shots with extremely low reflectivity and extremely high values are recorded
properly. Furthermore, the transmit pulse should be generated more constantly, not
only in terms of energy but in terms of shape as well. Even though this research
assumes that the variability of the transmit pulse shape does not affect the received
pulse shape, even minor changes might have impact on the received pulse shape.
The plot of the transmit waveforms (Figure 5.5) indicated a small bump after the
main peak as well. Perhaps the waveforms were recorded incorrectly due to ringing
effect, but otherwise the shape transmit pulse shape should be made more constant
to minimize the effect on the received waveform. Finally, more attention should be
paid to clearly describe the relevance of quality flags and their validity, especially in
case the satellite might not perform as anticipated.

∙ The final recommendation that relates to ICESat II concerns the incorporation of
a camera system on the satellite. Based on the experiences of this research study,
the validation of weather conditions, land cover types and solar effects can be trou-
blesome. Especially the temporal differences between the laser measurements and
validation data could be solved by simultaneously acquiring images. In addition, the
characteristics of the atmosphere and land cover types (for example solar glint) from
the instrument’s point of view can be analyzed more accurately with a camera system
on-board.
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i satNrgCorr, 52, 54, 62, 106, 107, 112, 113
i skew2, 52, 106, 107
i tpazimuth avg, 36, 38
i tpeccentricity avg, 36, 38
i tpmajoraxis avg, 36, 38
i tx wf, 51, 52
ICESat science goals, 12
ICESat specifications, 16

Lake Victoria, 24

Noise threshold, 63, 66

Overall accuracy, 96, 153

ShotID, 19, 37, 52

Waveform FWHM, 52, 67, 105
Waveform maximum, 52, 67, 106
Waveform mean, 52, 68, 106
Waveform number of peaks, 52, 68, 107
Waveform number peaks, 106
Waveform risetime, 68, 106, 107
Waveform summation, 52, 67, 106
Waveform width, 52, 66, 106, 107
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