

Delft University of Technology

Well-typed programs can go wrong
A study of typing-related bugs in JVM compilers
Chaliasos, Stefanos; Sotiropoulos, Thodoris; Drosos, Georgios Petros; Mitropoulos, Charalambos;
Mitropoulos, Dimitris; Spinellis, Diomidis
DOI
10.1145/3485500
Publication date
2021
Document Version
Final published version
Published in
Proceedings of the ACM on Programming Languages

Citation (APA)
Chaliasos, S., Sotiropoulos, T., Drosos, G. P., Mitropoulos, C., Mitropoulos, D., & Spinellis, D. (2021). Well-
typed programs can go wrong: A study of typing-related bugs in JVM compilers. Proceedings of the ACM on
Programming Languages, 5(OOPSLA), Article 123. https://doi.org/10.1145/3485500

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3485500
https://doi.org/10.1145/3485500

123

Well-Typed Programs Can Go Wrong:

A Study of Typing-Related Bugs in JVM Compilers

STEFANOS CHALIASOS∗, Athens University of Economics and Business, Greece

THODORIS SOTIROPOULOS∗, Athens University of Economics and Business, Greece

GEORGIOS-PETROS DROSOS, Athens University of Economics and Business, Greece

CHARALAMBOS MITROPOULOS, Technical University of Crete, Greece

DIMITRIS MITROPOULOS, University of Athens, Greece

DIOMIDIS SPINELLIS, Athens University of Economics and Business, Greece and Delft University of

Technology, Netherlands

Despite the substantial progress in compiler testing, research endeavors have mainly focused on detecting

compiler crashes and subtle miscompilations caused by bugs in the implementation of compiler optimizations.

Surprisingly, this growing body of work neglects other compiler components, most notably the front-end. In

statically-typed programming languages with rich and expressive type systems and modern features, such as

type inference or a mix of object-oriented with functional programming features, the process of static typing

in compiler front-ends is complicated by a high-density of bugs. Such bugs can lead to the acceptance of

incorrect programs (breaking code portability or the type system’s soundness), the rejection of correct (e.g.

well-typed) programs, and the reporting of misleading errors and warnings.

We conduct, what is to the best of our knowledge, the first empirical study for understanding and char-

acterizing typing-related compiler bugs. To do so, we manually study 320 typing-related bugs (along with

their fixes and test cases) that are randomly sampled from four mainstream JVM languages, namely Java,

Scala, Kotlin, and Groovy. We evaluate each bug in terms of several aspects, including their symptom, root

cause, bug fix’s size, and the characteristics of the bug-revealing test cases. Some representative observations

indicate that: (1) more than half of the typing-related bugs manifest as unexpected compile-time errors: the

buggy compiler wrongly rejects semantically correct programs, (2) the majority of typing-related bugs lie in

the implementations of the underlying type systems and in other core components related to operations on

types, (3) parametric polymorphism is the most pervasive feature in the corresponding test cases, (4) one third

of typing-related bugs are triggered by non-compilable programs.

We believe that our study opens up a new research direction by driving future researchers to build

appropriate methods and techniques for a more holistic testing of compilers.

CCS Concepts: • Software and its engineering→ Compilers; Software testing and debugging.

Additional Key Words and Phrases: compiler bugs, compiler testing, static typing, Java, Scala, Kotlin, Groovy

ACM Reference Format:

Stefanos Chaliasos, Thodoris Sotiropoulos, Georgios-Petros Drosos, Charalambos Mitropoulos, Dimitris

Mitropoulos, and Diomidis Spinellis. 2021. Well-Typed Programs Can Go Wrong: A Study of Typing-Related

∗These authors contributed equally.

Authors’ addresses: Stefanos Chaliasos, Athens University of Economics and Business, Greece, schaliasos@aueb.gr; Thodoris

Sotiropoulos, Athens University of Economics and Business, Greece, theosotr@aueb.gr; Georgios-Petros Drosos, Athens

University of Economics and Business, Greece, t8180024@aueb.gr; Charalambos Mitropoulos, Technical University of Crete,

Greece, cmitropoulos@isc.tuc.gr; Dimitris Mitropoulos, University of Athens, Greece, dimitro@ba.uoa.gr; Diomidis Spinellis,

Athens University of Economics and Business, Greece and Delft University of Technology, Netherlands, dds@aueb.gr.

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART123

https://doi.org/10.1145/3485500

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485500

123:2 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

Bugs in JVM Compilers. Proc. ACM Program. Lang. 5, OOPSLA, Article 123 (October 2021), 30 pages. https:

//doi.org/10.1145/3485500

Well-typed programs cannot łgo wrongž. Ð Robin Milner [1978]

1 INTRODUCTION

Over the past decade, we have witnessed tremendous advances in techniques for improving compiler
reliability. Dozens of methods have emerged to validate compilers’ correctness or facilitate compiler
testing and debugging: from program generators [Livinskii et al. 2020; Nagai et al. 2012, 2014; Yang
et al. 2011] and transformation-based techniques [Le et al. 2014, 2015; Sun et al. 2016b; Zhang et al.
2017], to test-case reduction [Regehr et al. 2012] and test-case prioritization approaches [Chen et al.
2017, 2016a]. Although the initial focus was on C/C++ compilers, researchers have also invested
much effort on testing other compilers [Dewey et al. 2015; Donaldson et al. 2017; Lidbury et al. 2015],
runtime systems [Chen et al. 2019, 2016b], and even dynamic programming languages [Holler et al.
2012; Park et al. 2020; Wang et al. 2019]. This exciting research work has led to the discovery and
fixing of thousands of bugs in industrial-strength compilers, and has assisted compiler developers
in preventing crashes and miscompilations (i.e., generation of incorrect machine instructions) from
happening.
Most of the proposed techniques though, focus on finding bugs in optimizing compilers. For

example, Nagai et al. [2012, 2014] craft C programs that exercise optimizations on arithmetic
expressions. Another example is the most recent program generator for C/C++ programs [Livinskii
et al. 2020], which adopts a set of program generation policies that are tailored to triggering specific
buggy optimizations.
We find it surprising that this growing body of work currently neglects other compiler compo-

nents, most notably the front-end. The compiler front-end is responsible for performing (1) the
source code’s lexical analysis and parsing, and (2) a set of semantic analyses that verifies whether
the input code is error-free and respects the semantics of the language. In statically-typed languages
with (1) rich and expressive type systems that rely on complex type theories (e.g., higher-kinded
types [Moors et al. 2008], parametric polymorphism, or path-dependent types [Amin et al. 2016]),
and (2) modern features (e.g., type inference, mix of object-oriented with functional programming),
the implementation of front-ends (and especially the task of typing programs) has become par-
ticularly complex exhibiting a high-density of bugs. For example, at the time of writing, the type
checker of the Scala 2 compiler (typer) is the component that suffers from the most bugs (see
scala/bug). Bugs in the implementation of front-end’s semantic analyses and typing algorithms
can potentially affect the ability of a compiler to effectively deal with certain programs leading
to type-safety breaches and compilation of non-portable code, or propagate themselves to other
compiler phases.
In this work, we conduct the first quantitative and qualitative study of the characteristics of

typing-related compiler bugs. Specifically, we aim to understand their manifestations, their nature,
and obtain insights into how these bugs are introduced, triggered, and fixed. Specifically, our study
seeks answers to the following research questions.

RQ1 (Symptoms) What are the main symptoms of typing-related compiler bugs?What is
the frequency of these symptoms? (Section 3.1)

RQ2 (Bug Causes) What are the categories into which we can group typing-related bugs

based on their root cause? What is the frequency of these categories? (Section 3.2)
RQ3 (Bug Fixes) How are typing-related compiler bugs introduced?What is the size of their

fixes? How long does it take to fix these bugs? (Section 3.3)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://doi.org/10.1145/3485500
https://doi.org/10.1145/3485500
https://github.com/scala/bug/issues

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:3

RQ4 (Test Case Characteristics) What are the main characteristics of the bug-revealing

test cases?What language features are prevalent in these test cases? (Section 3.4)

To answer these questions, we examine bugs from the compilers of fourmainstream JVMprogram-
ming languages, namely Java, Scala, Kotlin, and Groovy. All these languages are statically-typed
object-oriented languages, feature a nominal type system, and support parametric polymorphism
by using the Java generics framework [Bracha et al. 1998]. Beyond that, they support (some to a
lesser or greater extent) functional programming features, while they also adopt some sort of type
inference. Java is in the list of the most widely-used and popular programming languages [Github
Inc. 2021; TIOBE Software BV 2021]. The Scala programming language [Odersky et al. 2004] is a
research product that unifies the object-oriented and functional paradigms. One of the strengths
of Scala is its type system, which offers higher-kinded types, implicits, and path-dependent types.
Regarding Kotlin: although it is quite a new language (it first appeared in 2011), it has gained much
popularity recently. It is now Google’s preferred programming language for building Android appli-
cations [Mateus and Martinez 2020]. Finally, Groovy is a popular programming language [TIOBE
Software BV 2021] that supports both dynamic and static typing, and also provides flow-sensitive
typing.
Using carefully-crafted search criteria and some heuristics, we search the issue trackers of the

studied languages and obtain 4,101 previously reported typing-related bugs that have been fixed.
We analyze a random sample of 320 bugs. Specifically, we study each bug report of this sample,
along with the accompanying developers’ discussion, bug fix and test case, and we finally evaluate
every bug in terms of several aspects including, its symptom, its root cause, and its test case’s
characteristics.
Contributions. Our work makes the following contributions:

• We present a method for collecting and assessing typing-related compiler bugs, and provide a
corresponding reference dataset consisting of bugs taken from popular JVM compilers (Section 2).

• By examining 320 typing-related bugs, we provide an in-depth analysis on diverse aspects,
including bug symptoms, root causes, bug fixes, and test case characteristics (Section 3).

• We enumerate the implications of our findings, and discuss potential future directions on compiler
testing (Section 4).

Summary of findings. Some of our representative findings are: (1) most of fixed typing-related
bugs (50.94%) manifest as unexpected compile-time errors: the buggy compiler mistakenly rejects
correct programs, (2) the majority of fixed typing-related bugs (40.31%) lie in the implementations
of the underlying type systems and in other core components related to operations on types
(e.g., type inference, subtyping rules), (3) although typing-related bugs are typically fixed without
requiring extensive modifications in compilers’ code base, developers take a few months to resolve
a bug, (4) parametric polymorphism is the most pervasive feature: 57.19% of the bug-revealing
test cases involve parametric polymorphism-related features, e.g., declaration of a parameterized
function/class or use of a parameterized type.
Implications. To demonstrate the practicality of our study, we leverage some of our observations

to design and implement a proof-of-concept program generator for testing the Kotlin and Groovy
compilers’ front-end. Our program generator was able to find 28 previously unknown bugs within
two months of testing. More than half (16 / 28) of the reported bugs have already been fixed. We do
believe that our study can help researchers to build appropriate testing techniques or adapt the
existing ones for a more holistic testing of compilers.
Availability. The research artifact is available at https://zenodo.org/record/5411667.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://zenodo.org/record/5411667

123:4 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

Post-filtering

Iterate per n bugs

Bug Collection

Issue
Tracker

1 2

Repositories

Analysis

Categorization

1. Collecting
We search the issue trackers of the
languages under test, to gather
fixed bugs related to the typing
algorithms of the corresponding
compilers.

2. Post-filtering
In this step, we exclude bugs without
any explicit fix, and bugs whose fix or
report is not accompanied by a test
case that triggers the bug.

Analysis
Our assessment is done in iterations by four researchers. In
each iteration two researchers choose a random sample taken
from the dataset (3), and manually analyze (4) each bug of this
sample to answer the research questions. The output of the
analysis is a categorization that takes into account several
aspects of bugs (e.g the bug’s root cause). Finally, two
additional researchers verify the categorization (5).

Typing-related
Bug

Bug Dataset

Typing-related
Bug

Test Cases

Fix Revision

Validation

Sample
Selection

3 4

5

AnalysisCollection

Fig. 1. The overview of our bug collection and bug analysis approach.

2 METHODOLOGY

First, we create a corpus of typing-related bugs taken from the issue trackers of four JVM languages
(Section 2.1). Then, we explain how we study and analyze the collected bugs (Section 2.2), and
finally, we discuss the limitations and threats to validity of our method (Section 2.3).

Our bug collection and analysis approach is summarized in Figure 1. As a starting point, we take
the issue trackers of the languages under study, and we apply language-specific filters in order to
obtain an initial list of typing-related bugs (bug Collection). Then, in the next step (post-filtering),
we filter out typing-related bugs that are not accompanied by an explicit fix and a test case. To do
so, we search the repositories and the issue trackers of the examined languages for commits, pull
requests or bug reports that are linked with any of the bugs included in the output of the previous
step. The bug collection and post-filtering steps are fully automated and constitute our approach for
collecting bugs and their fixes (Section 2.1). The final outcome of this approach is a bug dataset
consisting of a set of typing-related bugs, their fix revisions, and their test cases.
The resulting dataset is used as an input to our bug analysis approach (Section 2.2). This bug

analysis is done in iterations by four researchers. Each iteration involves the examination of a
specified number of bugs, 𝑛. Specifically, two researchers first choose a random sample of bugs
taken from the initial dataset (sample selection), and then they manually analyze each bug of this
sample to answer our research questions (RQ3 is partly answered through automated means Ð see
Section 3.3). The output of the analysis is a categorization that takes into account several aspects
of bugs, including their symptom, root cause, and test case characteristics. Finally, two additional
researchers verify the proposed categorization. In case of a conflict, they discuss with the original
researchers until reaching consensus (validation).

2.1 Collecting Bugs and Fixes

Our bug collection approach consists of two steps, namely, bug collection and post-filtering. In the first
step, we search the issue trackers of the studied languages to gather fixed bugs related to the typing
algorithms of the corresponding compilers. Our study excludes bugs related to the implementation
of lexers and parsers. Similarly, bugs in the implementation of compiler optimizations or code
generation are beyond the scope of this paper. The output of the first phase includes four sets
containing the URLs of the retrieved bug reports. Each set B𝑙 contains bugs related to a language 𝑙 .

We further filter the collected bugs by performing the post-filtering step. This step aims to exclude
bugs without any explicit fix, and bugs whose fix or report is not accompanied by a test case that
triggers the bug. To do so, we proceed as follows. First, for each language 𝑙 , we get the ID of each
previously collected bug 𝑏 ∈ B𝑙 . Second, we search the repository of the corresponding compiler

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:5

Table 1. Statistics on bug collection. Each table entry shows per language statistics about (1) the total number

of the reported issues (Total issues), (2) the creation date of the oldest and the most recent issue considered

in the study (Oldest and Most Recent), (3) the number of the selected bugs after running the bug collection

step (BC), and (4) the number of the remaining bugs after running the post-filtering step (PF).

Language Issue Tracker REST Endpoint Total Issues Oldest Most Recent BC PF

Java Jira https://bugs.openjdk.java.net/rest/api/latest/search 10,872 11 Feb 2004 26 March 2021 1,252 873
Scala 2 GitHub https://api.github.com/repos/scala/bug 12,315 22 May 2003 11 March 2021 1,180 1,067
Scala 3 GitHub https://api.github.com/repos/lampepfl/dotty 4,286 1 Feb 2014 28 March 2021 429 366
Kotlin YouTrack https://youtrack.jetbrains.com/api/issues 40,998 28 Oct 2011 9 April 2021 2,189 1,601
Groovy Jira https://issues.apache.org/jira/rest/api/2/search 9,710 25 Sep 2003 9 April 2021 300 246

to find all the commits that refer to the given bug identifier. Third, for completeness, we use the
GitHub API to retrieve pull requests that have references to the given bug. Note that it is a standard
practice for the developers of the studied compilers to include the bug’s numeric identifier in the
description of their bug fixes.

In the post-filtering step, having kept the bugs for which we are able to find corresponding com-
mits, we further examine their revisions to check whether they contain a test case. The development
team of each compiler places test cases in dedicated directories, e.g., tests/. Therefore, to decide
whether the associated commits contain a test case, we look for file updates in the aforementioned
directories. When a commit does not contain a test case, we look into the corresponding bug report
to discover and retrieve any linked test cases. At the end of the post-filtering step, we obtain four
sets of bugs (where each set B ′

𝑙
is a subset of the corresponding set B𝑙 produced by the first step of

our collection approach) along with the corresponding fix revisions and test cases.
While applying our bug collection method, we had to tackle the following challenge: the devel-

opment teams of the languages under examination use diverse issue trackers, and adopt various
categorization strategies for the reported bugs. Therefore, before collecting bugs, we carefully
examined the corresponding issue trackers to identify all the relevant categories and filtering
criteria that can be used to obtain fixed typing-related bugs.

Table 1 shows descriptive statistics of our bug collection effort. After applying the bug collection
and post-filtering steps to each language, we got our final dataset, which consists of 4,153 bugs
in total, of which 873 bugs are in Java compiler (javac), 1,433 bugs are in Scala compilers (either
scalac or Dotty), 1,601 bugs are in Kotlin compiler (kotlinc), and 246 bugs are in Groovy compiler
(groovyc). Note that although not all the examined programming languages used the same issue
tracker throughout their lifetime (e.g., Scala recently migrated to GitHub from Jira [Tisue 2017]), we
were able to consider bugs even from the early days of these languages, as all these historical issues
were imported to the current issue trackers. In the following, we discuss some language-specific
details related to our bug collection approach.
Collecting Java Bugs. Focusing on javac typing-related bugs, we inspected bugs reported

in the OpenJDK project, which is the open-source implementation of the Java SE platform. The
OpenJDK project employs the Jira issue tracker, which, at the time of writing, hosts 292,059 issues
associated with a large number of JDK components, such as the JVM runtime, the Just in Time (JIT)
compiler, Java’s standard library, or other external JDK tools like the bytecode disassembler.
We used the Jira REST API to find JDK issues that meet the following selection criteria: (1) the

type of the issue is łbugž, (2) its status is either łresolvedž or łclosedž, (3) its łresolutionž field is set
to łfixedž, and (4) the issue is related to the Java compiler (i.e., the bug is assigned to the javac
sub-component of JDK). Due to the large volume of JDK issues (> 200k), we applied two more
filters. First, we selected bugs that affect JDK 7 and onwards. We excluded bugs that affect early
versions of JDK where crucial features of Java (e.g., generics) are not present. Second, we filtered
JDK bugs based on their priority. Specifically, we selected bugs that are considered important, and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://bugs.openjdk.java.net/rest/api/latest/search
https://api.github.com/repos/scala/bug
https://api.github.com/repos/lampepfl/dotty
https://youtrack.jetbrains.com/api/issues
https://issues.apache.org/jira/rest/api/2/search

123:6 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

their priority is łP1ž, łP2ž, or łP3ž. Running the bug collection and post-filtering steps yielded the
final set of javac bugs, namely B ′

𝑗 , containing 873 JDK issues.

Collecting Scala Bugs. We collected Scala bugs from two sources. The first source contains
bugs reported for the Scala 2 compiler (scalac), while the second one includes bugs related to
Dotty, the Scala 3 compiler. Both sources are using the issue tracking system of GitHub. At the time
of writing, 12,315 and 4,386 issues have been reported, in total, for scalac and Dotty respectively.
The developers of these two compilers perform the classification of the reported issues by

assigning different labels to each issue. We constructed two queries for fetching bugs that con-
tain labels associated with Scala’s type system and typing procedures. Specifically, for scalac
bugs, we looked for closed GitHub issues to which at least one of the following labels is as-
signed: łtyperž, łinferž, łshould compilež, łshould not compilež, łpatmatž, łoverloadingž, łdepen-
dent typesž, łstructural typesž, łexistentialž, łgadtž, łvalueclassž, łtypelevelž, łcompiler crashž,
łimplicit classesž, and łimplicitž. For Dotty, we were interested in closed GitHub issues that com-
bine the łitype:bugž, łitype:crashž or łitype:performancež label with at least one of the following
labels: łarea:typerž, łarea:overloadingž, łarea:gadtž, łarea:implictsž, łarea:f-boundsž, łarea:pattern-
matchingž, łarea:erasurež, łarea:match-typesž. We used the Github REST API and fetched 1,180
bugs for scalac and 429 bugs for Dotty. After excluding the bugs without an explicit fix or a test
case, we were left with 1,067 and 366 bugs for scalac and Dotty respectively. The final set of bugs
B ′
𝑠 includes 1,433 bugs coming from both Scala compilers.
Collecting Kotlin Bugs. Kotlin developers use the YouTrack issue tracker. Currently, it

hosts 40,998 issues and bugs associated with different aspects of the Kotlin compiler, including type
inference, code generation, IDE support and Android support.

We examined the tracker to identify issues with type: łbugž or łperformance problemž, and status:
łfixedž. Kotlin developers follow a fine-grained categorization for determining the components
affected by the issue. This made it easy for us to identify bugs that occur in the implementations of
the semantic analyses and type checker. Specifically, all typing-related compiler issues are assigned
to categories prefixed by the term łFrontendž. Thus, we searched for Kotlin issues that belong
to such categories. Bugs in the lexer and the parser are placed in a dedicated category named
łFrontend. Lexer & Parserž, so it was easy for us to exclude them. Our search returned 2,189 Kotlin
bugs. After running the post-filtering step, we ended up with the final set of Kotlin bugs B ′

𝑘
. This

set contains 1,601 elements.
Collecting Groovy Bugs. Groovy issues are hosted on a Jira instance that currently con-

tains 9,710 cases. We were interested in Groovy issues that have the łbugž label, are either łclosedž
or łresolvedž, and their resolution status is łfixedž. To identify typing-related bugs, we searched
for issues assigned to a category named łStatic Type Checkerž. Our Jira query fetched 300 Groovy
bugs. The post-filtering step produced the B ′

𝑔 set consisting of 246 Groovy bugs

2.2 Analyzing Bugs

The total bug population contains 4,153 bugs. Since the manual analysis of each bug requires a
certain amount of time to understand the root cause and the nature of the bug, it was not feasible
for us to study every bug in the population. Therefore, we randomly sampled 80 bugs from the bug
set of each language, leaving us with 320 bugs for manual analysis in total.
To better understand the nature of the examined bugs, cover a wide range of scenarios on how

these bugs are triggered, and reduce the possibility of getting biased, we chose to uniformly study
bugs in the selected compilers rather than primarily focusing on a single one. To this end, our
manual analysis was done in an iterative manner. Specifically, in every iteration, we randomly
picked 20 bugs from each language set (sample selection, Figure 1), and the first two authors made a
first pass over the selected 80 bugs and excluded bugs that are outside the scope of this study (e.g.,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:7

a parser bug in a compiler that was mistakenly selected during bug collection). After agreement,
we randomly chose additional bugs, until we had 20 analyzable bugs for each language. Then,
the actual analysis of these bugs began. The first two authors independently studied each of the
selected 80 bugs (analysis), and tried to assign every bug to categories based on (1) its symptom
(RQ1), (2) its root cause (RQ2), and (3) the characteristics of the bug-revealing test cases (RQ4). In
particular, regarding RQ1, the authors considered the description of each bug report to identify
differences between the compiler’s expected and actual behavior. For RQ2, the authors studied the
discussion among developers and the fix of each bug to locate which specific compiler procedure
was buggy, while for answering RQ4, examining the accompanying test cases was enough.

Moving forward, for each bug, the first two authors together discussed their categorization, until
they reached consensus. The procedure described above was repeated four times, i.e., until studying
320 bugs in total. During these four iterations, the first two authors revisited, adapted (i.e., split,
merged or renamed) the proposed categories, and, if it was necessary, re-assigned each aspect of
bugs to other categories. Finally, two additional researchers verified the resulting categorization
and discussed their conflicts with the initial authors until agreement. Notably, having this extra
validation step was beneficial in cases where the first two authors could not reach consensus. In
such cases, there was a discussion during validation, where the researchers considered all possible
options, and finally agreed to the most łoptimalž one.

2.3 Threats to Validity

One potential threat to internal validity is associated with the selection criteria and representa-
tiveness of the examined bugs. We were interested in fixed bugs accompanied with a fix and a
test case. Such fixed bugs (1) are real bugs, (2) are important for the developers (since they are
fixed), and (3) have enough information (i.e., a fix and a test case) to understand and characterize
them. Furthermore, our study considered only real bugs rather than enhancements or features (e.g.,
situations where the typing algorithm is incomplete and can be further improved). To do so, during
the selection process, we chose issues explicitly marked with the label łbugž (recall Section 2.1), and
avoided issues marked as łenhancementž or łfeaturež. This is in line with prior work [Di Franco
et al. 2017; Jin et al. 2012; Sun et al. 2016c], where fixed bugs were also studied.
For selecting bugs related to the typing algorithms of compilers, we carefully examined the

categorization adopted by each development team, and applied (if possible) the necessary filters
for fetching such bugs (e.g., getting all bugs prefixed with the łFrontendž term in case of Kotlin).
When we did not have such information (e.g., in the case of javac), we did not apply additional
filters. We avoided using keywords during search to reduce the chance of missing relevant bugs.
In all cases, during our bug analysis, the selected bugs were manually examined by the first two
authors, who excluded irrelevant ones.

A threat to external validity is the representativeness of the selected bugs. To mitigate this threat,
we picked a random sample of 320 typing-related bugs, which is consistent with the literature of
bug studies. Specifically, Jin et al. [2012] have manually analyzed 110 real-world performance bugs,
Di Franco et al. [2017] analyzed 269 bugs in numerical libraries, Leesatapornwongsa et al. [2016],
and Bagherzadeh et al. [2020] analyzed 104 and 186 concurrency bugs in distributed and actor-based
systems respectively. Theoretically, as in the work of Mastrangelo et al. [2019], we can presume that
using a random sample of 320 bugs, there is a probability of (1 − 0.01)320 ≃ 0.04 = 4% of missing a
category whose relative frequency is at least 1%, and a probability of (1 − 0.015)320 ≃ 0.008 = 0.8%
of missing a category whose relative frequency is at least 1.5%. Note that in practice, as we were
examining bugs in iterations, we observed that it was easy to categorize bugs coming from the
third or the fourth iteration, as most of these bugs fitted well in one of the resulting categories.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

123:8 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

0 20 40 60 80 100 120 140 160

Compilation Performance Issue

Misleading Report

Unexpected Runtime Behavior

Internal Compiler Error

Unexpected Compile-Time Error

7 / 320

18 / 320

53 / 320

79 / 320

163 / 320

Compiler
groovyc
javac
kotlinc
scalac & Dotty

Fig. 2. The distribution of symptoms.

Another threat to external validity is the representativeness of the chosen languages and their
compilers. We selected these programming languages as they hold an important stake in the JVM
technology. We argue that the chosen languages can represent, to some degree, other statically-
typed, object-oriented programming languages (e.g., C++, C#, TypeScript). However, some of the
findings of our work may not be generalized to languages such as Haskell, OCaml, or Go.
Our manual analysis of bugs may be subjective. To minimize this threat, the first two authors

independently studied each bug, and then they had a thorough discussion until agreeing on
categorization. To further mitigate this threat, two additional researchers verified the categorization
performed by the first two authors. This is consistent with previous empirical studies [Bagherzadeh
et al. 2020; Di Franco et al. 2017; Wang et al. 2017], where each bug was inspected and verified by
multiple researchers.

3 BUG STUDY

We present the main findings of our work providing answers to each of our research questions. All
references to specific bugs provided as examples are hyperlinked to the corresponding entry in the
compiler project’s issue tracking system.

3.1 RQ1: Symptoms

Every bug report of our dataset consists of a short description that contains information about
how the bug is triggered along with the compiler’s expected and actual behavior. We manually
examined the differences between the compiler’s expected and actual behavior, and grouped these
differences into categories.We ultimately identified five categories of symptoms, namely,Unexpected
Compile-Time Error, Internal Compiler Error, Unexpected Runtime Behavior, Misleading Report, and
Compilation Performance Issue. Figure 2 shows the distribution of the symptom categories. In the
following, we discuss each symptom category in detail. Further, we elaborate on its frequency and
impact, and present a concrete example of a compiler bug associated with the symptom.

3.1.1 Unexpected Compile-Time Error. A bug involving this symptom manifests itself when the
compiler rejects a well-typed program, producing an informative error message to the developer.
Such errors may frustrate developers, leaving them with the impression that their programs are
indeed incorrect. Unexpected compile-time error is by far the most common symptom, accounting
for 50.94% of the examined bugs.

Example bug: KT-10711

Figure 3 shows an instance of this symptom (related to kotlinc Ð see KT-10711). The program
includes a parameterized class named A that takes one type parameter T, and defines a property
named f whose type is given by the type parameter (line 1). Later, the program creates a list of
strings (line 3). To convert every element of this list into an object of class A, the code applies the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://youtrack.jetbrains.com/issue/KT-10711
https://youtrack.jetbrains.com/issue/KT-10711

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:9

function map by passing a reference to the constructor of class A. map is a parameterized method in
class List whose signature is <I, O> map(fun: I => O): O. Specifically, map (1) is instantiated
with two type parameters, I and O, (2) expects a function with type I => O as input, and (3)
returns a value of type O.

1 class A<T>(val f: T)

2 fun test() {

3 listOf<String>().map(::A)

4 }

Fig. 3. KT-10711: A program that trig-

gers a kotlinc bug with an unex-

pected compile-time error.

The Kotlin compiler rejects the above program providing
the following error message: łerror: not enough information
to infer type variable Tž. Specifically, map is applied to a list
of strings. Thus, the type variable I of function map is instan-
tiated with a String type, making map expect a function of
type String => O as input. However, there is a bug in the
inference engine of kotlinc, which prevents the compiler
from instantiating the type variable T defined in class A (and
as a result, the corresponding type of function reference ::A) based on the expected function type
String => O.

In the above example, the compiler considers the program as invalid and produces a corresponding
diagnostic message (i.e., inference is not feasible). Other similar types of wrong error messages
involve type mismatches (e.g., inferred type is X, but Y was expected), unresolved references (e.g.,
cannot find method m), and accessibility issues (e.g., private variable cannot be accessed in this
context).

3.1.2 Internal Compiler Error (or Crash). This is the second most common symptom in our dataset
(24.69%). Such errors manifest themselves when the compiler terminates its execution abnormally.
This symptom differs from unexpected compile-time error, because the compiler is unable to yield
a normal diagnostic message, or even generate target code. Internal compiler errors are clear
indications that something is not working well in the compiler.

Example bug: GROOVY-7618

1 interface I {

2 int m()

3 }

4 int m2(I x) {

5 x.m()

6 }

7 void test() {

8 m2 { -> 1 }

9 }

Fig. 4. GROOVY-7618: A program

that triggers a groovyc bug with an

internal compiler error.

Figure 4 presents a Groovy program that triggers a bug (see
GROOVY-7618) leading to an internal compiler error. The pro-
gram defines a single abstract method (SAM) interface named
I containing an abstract method m that takes no parameters
and returns an integer (lines 1ś3). Note that every SAM inter-
face is also a functional one, meaning that instead of concrete
classes, such SAM interfaces can also be implemented by
lambda expressions and functions. The program later defines
a function called m2 that expects an instance of I, and re-
turns a value of int by calling the method m of the given
instance. Finally, the program calls m2 by passing a lambda
as an argument (line 8). The type of lambda is () => int.

groovyc internally represents a lambda expression with an object, which among other things,
contains a field named params that stands for the parameter list of lambda. While coercing the type
of lambda to a SAM type for type checking the call at line 8, groovyc first computes the arity of
lambda by accessing the property params.length. Nevertheless, the given lambda is parameterless
(line 8), and therefore the value of params is null. This in turn, leads to a NullPointerException,
because the params.length access is not guarded by a null-check of the receiver (params).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://youtrack.jetbrains.com/issue/KT-10711
https://issues.apache.org/jira/browse/GROOVY-7618
https://issues.apache.org/jira/browse/GROOVY-7618
https://issues.apache.org/jira/browse/GROOVY-7618

123:10 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

Internal compiler errors occur because of the following reasons: (1) operations on un-
validated data that trigger unexpected runtime exceptions (e.g., NullPointerException,
ArrayOutOfBoundsException, ClassCastException), (2) failures of assertions included in the
compiler’s source code or custom exceptions thrown when the compiler validates input data
that are in an illegal state, and (3) infinite loops in recursive computations leading to a
StackOverflowException. We found that 35 internal compiler errors were triggered by unex-
pected runtime exceptions, 35 by assertion failures and custom compiler exceptions, and 9 by
infinite loops. As an example of an assertion failure, consider Dotty-7041, where Dotty performs a
post-condition check after type erasure to ensure that all types of the program tree are erased and
are consistent with the type of system of the JVM. This is not the case in this issue, where after
type erasure the program tree contains an illegal type leading to an AssertionError.

3.1.3 Unexpected Runtime Behavior. The 16.56% of our bugs come with an unexpected runtime
behavior symptom. Unlike previous symptoms, a bug related to an unexpected runtime behavior
manifests itself when running the executable generated by the compiler. This involves the successful
compilation of a given source program and the generation of a faulty executable that in turn, may
lead to errors and wrong outcomes.

There are two reasons why a compiler may generate incorrect executables. First, a compiler bug
can break the soundness of the type system. Hence, the compiler accepts an invalid program which
it should have rejected. Such bugs are important, because they defeat the safety offered by type
systems in statically-typed languages [Milner 1978]. Second, the compiler may perform wrong
static linking between methods and objects (e.g., it chooses the wrong overloaded method to call).
Like miscompilations caused by optimization bugs, typing-related bugs with unexpected runtime
behavior are very confusing for developers, and worse, they may be released unnoticed, as many of
these unexpected runtime behaviors are triggered by specific application inputs.

Example bug: JDK-7041019

1 interface A<E> {

2 void m(E x);

3 }

4 interface B<Y> extends A<Y[]> { }

5 class C implements B<Integer> {

6 @Override

7 void m(Integer[] x) { }

8 static <T extends B<?>> void m2(T x) {

9 //Boom! ClassCastException at runtime.

10 x.m(new String[]{"s"});

11 }

12 static void main(String[] args) {

13 m2(new C());

14 }

15 }

Fig. 5. JDK-7041019: A program that triggers a

javac bug with an unexpected runtime behavior.

Consider the Java program of Figure 5, which causes
a known javac bug (see JDK-7041019) associated
with an unexpected runtime behavior symptom. First,
the code defines a parameterized interface Awhich is
instantiated with a type parameter E. This interface
contains an abstract method m expecting a value of E
(lines 1ś3). Another parameterized interface called B
has one type parameter (Y), and extends the interface
A instantiated as A<Y[]> (line 4). Later, a class called
C implements B<Integer> by overriding the abstract
method m (line 7). Furthermore, on lines 8ś11, class
C defines a static parameterized method, m2. This
method defines a type variable T with upper bound
B<?>. Also, m2 receives a parameter x whose type
is T, and returns nothing. The body of this method
calls x.m() by passing an array of strings as input
(line 10). Finally, the code defines main, which invokes m2 using an instance of C as a call argument
(lines 12ś14).

javac compiles this program successfully, and produces the corresponding bytecode. Unfortu-
nately, the JVM throws a ClassCastException when running the method call on line 10. This

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://github.com/lampepfl/dotty/issues/7041
https://bugs.openjdk.java.net/browse/JDK-7041019
https://bugs.openjdk.java.net/browse/JDK-7041019
https://bugs.openjdk.java.net/browse/JDK-7041019

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:11

is because the JVM tries to pass an array of strings in a method expecting an array of integers
(notice that the receiver of the callee method m is an object of class C at runtime, see lines 7, 10,
13)! This soundness issue is caused by a bug in javac. Specifically, when typing the method call at
line 10, javac instantiates the expected type of m (which at that time is X[], where X stands for a
fresh type variable) based on the upper bound of type parameter T (i.e., B<?>) of method m2. javac
substitutes the type variable X with a capture type represented as CAP#1, but instead of creating
an array type holding elements of type CAP#1, it mistakenly creates an array type that stores
elements of type Object. After this incorrect type substitution, m now expects something of type
Object[]. In Java though, arrays are covariant, thus, javac treats the argument type String[]
as a subtype of the expected type Object[], and mistakenly allows the call at line 10.

Some common runtime behaviors caused by typing-related bugs with an unexpected runtime
behavior include bytecode verification failures (VerifyError), dynamic linking and resolution fail-
ures (AbstractMethodError, IllegalAccessError), execution failures (NullPointerException,
ClassCastException), or wrong execution results.

3.1.4 Misleading Report. The fourth most common symptom is misleading report (5.62%). Such
symptoms appear when for a given program, the compiler emits a false warning or a false error
message. False warnings and error messages may be misleading because they suggest ineffective
fixes (e.g., warning about an unsafe cast, but the cast is actually safe). Furthermore, spurious
messages can hide other program errors (e.g., the compiler reports a type mismatch error instead of
an uninitialized variable error). Unlike unexpected compile-time error, in case of misleading report,
the compiler correctly accepts (or rejects), a valid (or invalid) program. However, it does so by
producing wrong diagnostic messages.

Example bug: KT-5511

1 interface X<T> {

2 inner enum class C : X<T>

3 }

Fig. 6. KT-5511: A program that triggers a

kotlinc bug with a misleading report.

Figure 6 shows a Kotlin program triggering a bug
(see KT-5511) with amisleading report symptom. The
code defines a parameterized interface named X in-
stantiated by one type parameter T (line 1). Inside the
body of X, the code declares an inner enum named
C that implements X<T>.

For this program, kotlinc generates two compile-time error messages: (1) łerror (2, 3): Modifier
‘inner’ is not applicable to enum classž, and (2) łerror (2, 26): Expression is inaccessible from a nested
class ‘C’, use ‘inner’ keyword to make the class innerž. These two error messages are contradictory:
the first message says that enum class cannot be inner, while the second one suggests developer
make the enum class inner. This example program is indeed invalid, and the first error message is
correctly reported by the compiler. However, the second error of the compiler is spurious, and it
is caused by a bug in the reporting mechanism of kotlinc.

3.1.5 Compilation Performance Issue. The least common symptom is compilation performance issue
(2.19%). Bugs related to this symptom cause noticeable degradations in compilation performance.
The impact of such bugs is the waste of developers’ time and resources, because the compiler
requires much time or memory to compile even the simplest fragment of code, and in many cases,
compilation never terminates.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://youtrack.jetbrains.com/issue/KT-5511
https://youtrack.jetbrains.com/issue/KT-5511
https://youtrack.jetbrains.com/issue/KT-5511

123:12 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

Example bug: Dotty-10217

Consider the Scala program of Figure 7, which triggers a bug in Dotty (see Dotty-10217).

1 trait A

2 trait B

3 trait C

4 ...

5 trait W

6 trait Foo[T]

7 val f: Foo[A | B | C | ... | W] = ???

Fig. 7. Dotty-10217: A program that triggers a

Dotty bugwith an compilation performance issue.

The program defines 23 types (most of them are
omitted for brevity): from type A to type W. Then,
the program defines a type constructor Foo which
is instantiated with one type variable T. Finally, the
code declares one variable named f with a type that
comes from the application of type constructor with
a union type consisting of types A to W.

Dotty spends roughly five minutes to compile this
program. Specifically, Dotty performs a type opti-
mization on union types: a union type of the form T

| Null or Null | T becomes a regular type T. In this context, Dotty examines the union type
passed as a type argument of type constructor Foo (line 7) to see whether this optimization is
applicable to this union type. To do so, Dotty recursively checks if the union type consists of a
bottom type (i.e., Null or Nothing) by using an internal function named derivesFrom, which
returns true if a given type is an instance of a given class (e.g., NothingClass). The complexity
of derivesFrom is exponential, which means that for a union type containing 23 terms, Dotty
performs 223 calls to derivesFrom!

3.1.6 Comparative Analysis. From Figure 2, we observe similar trends among studied compilers.
The unexpected compile-time error symptom is the most common symptom for all compilers followed
by internal compiler error, and unexpected runtime behavior. The only exception is kotlinc, where
unexpected runtime behavior is the secondmost common symptom category. Specifically, 22 kotlinc
bugs were marked with an unexpected runtime behavior symptom, while 18 bugs were crashes.
The high number of kotlinc bugs with an unexpected runtime behavior symptom is explained
by missing well-formed checks on declarations in the compiler’s implementation, which may be
attributed to Kotlin’s immaturity compared to the other compilers. An example of such a missing
check is that a Kotlin class must not implement two interfaces containing members with conflicting
signatures. Around three quarters of groovyc bugs (59 out of 80) make the compiler reject valid code,
while we found only ten groovyc crashes compared to 18, 25, and 26 crashes found in the Kotlin,
Java, and Scala compilers. Finally, we did not observe any groovyc bug causing any compilation
performance issue.

3.2 RQ2: Bug Causes

We classified the examined bugs into categories based on their root cause. To do so, we studied the
fix of each bug and identified which specific compiler’s procedure was buggy. From our manual
inspection, we derived five categories that include bugs sharing common root causes: Type-related
Bugs, Semantic Analysis Bugs, Resolution Bugs, Bugs Related to Error Handling & Reporting, and AST
Transformation Bugs. Figure 8 illustrates the distribution of our bug causes. In the following, we
provide descriptions and examples for every category.

3.2.1 Type-Related Bugs. To type check an input program, a compiler consults the type system of
the language, which provides a set of rules of what are the language main types, what operations
on these types are valid, how these types relate to each other, and how they can be combined.
In this context, a compiler internally represents all types and properties of the underlying type
system using specialized data structures. Further, when typing an input program, it applies a

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://github.com/lampepfl/dotty/issues/10217
https://github.com/lampepfl/dotty/issues/10217
https://github.com/lampepfl/dotty/issues/10217

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:13

0 20 40 60 80 100 120

AST Transformation Bugs

Bugs Related to Error Handling & Reporting

Resolution Bugs

Semantic Analysis Bugs

Type-related Bugs

15 / 320

22 / 320

77 / 320

77 / 320

129 / 320

Compiler
groovyc
javac
kotlinc
scalac & Dotty

(a) The distribution of bug causes per compiler.

0 20 40 60 80 100 120

AST Transformation Bugs

Bugs Related to Error Handling & Reporting

Resolution Bugs

Semantic Analysis Bugs

Type-related Bugs

15 / 320

22 / 320

77 / 320

77 / 320

129 / 320

Symptom
Unexpected Compile-Time Error
Internal Compiler Error
Unexpected Runtime Behavior
Misleading Report
Compilation Performance Issue

(b) The distribution of bug causes per symptom.

Fig. 8. The distribution of bug causes.

broad spectrum of operations to these data structures based on the rules and design of the type
system. Corresponding examples include type variable substitutions, type constructor applications,
subtyping checks, type normalizations, and more.
We define a type-related bug when one of these type operations is not implemented correctly.

Since types and their operations are at the heart of a compiler, such correctness issues have a great
impact on the ability of the compiler to accept the given code. Therefore, type-related bugs are
mainly responsible for unexpected compile-time errors (see Figure 8b). We classified 129 out of
320 (40.31%) bugs as type-related, which makes this bug cause the most common one. Type-related
bugs belong to one of the following groups: (1) incorrect type inference & type variable substitution,
(2) incorrect type transformation / coercion, or (3) incorrect type comparisons & bound computations.

Incorrect Type Inference & Type Variable Substitution. In languages supporting type infer-
ence, explicit types may be omitted in a program. The compiler represents these omitted types with
type variables, which in turn, are replaced with concrete types at compile-time, typically by solving
a type constraint problem. Many type-related bugs are caused by building a wrong constraint
problem (e.g., the constraint system contains excessive, missing, or contradictory constraints), or
instantiating a type variable in a wrong way. As a result, for a certain type variable, the compiler
infers a wrong type, or in many cases, it is unable to infer the type at all.
Figure 3 gives an example of such a bug. Due to an incorrect handling of function references,

kotlinc constructs a constraint problem with incomplete constraints. This makes it impossible for
the compiler to solve the system and find an optimal solution, leading to an unexpected compile-time
error. Another example is shown in Figure 5. When dealing with an array type containing a type
variable, javac performs a wrong type variable substitution, which causes a soundness bug.

Incorrect Type Transformation / Coercion. Guided by certain rules, a compiler may trans-
form a certain type into another type for numerous reasons, e.g., type normalization or type
erasure. For example, as shown in Figure 7, Dotty normalizes a union type of the form T | Null

to T. Another example involves type erasure where all studied compilers erase type information
from parameterized types. Similarly, we have the boxing and unboxing processes where a value
type becomes a reference type, and vice versa. Diverse bugs in the implementation of these type
transformations cause many problems.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

123:14 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

Example bug: KT-9630

1 interface A

2 interface B

3 class C : A, B

4 fun <T> T.m(): Unit where T : A, T : B { }

5 fun main() {

6 C().foo()

7 }

Fig. 9. KT-9630: A Kotlin program that triggers

a bug related to an incorrect type transformation.

As an example, consider Figure 9, where a Kotlin
program triggers KT-9630. Specifically, this program
defines a parameterized extension function named
m instantiated by one type variable T that has two
upper bounds: A and B (line 4). The code later calls
this function using a receiver of type C (line 6). When
typing this program, kotlinc instantiates type vari-
able T with the intersection type A & B. Since in
Kotlin, intersection types are only used internally
for type inference purposes, kotlinc needs to convert the intersection type A & B into a type
that is representable in a program. The problem in this example is that kotlinc fails to convert
type A & B to type C. Consequently, kotlinc rejects the given code, because it is unable to find
the method m in a receiver of type C, even though this type has been extended with method m.

Incorrect Type Comparison & Bound Computation. Another instance of type-related bugs
are incorrect type comparisons and bound computations. A compiler applies different kinds of
comparisons between types, which are underpinned by formal rules and relations included in the
type system. For example, a compiler consults the subtyping rules of the type system to check
whether a value of type T1 is assignable to a variable of type T2. Beyond that, a compiler implements
a number of algorithms dealing with type bounds, such as computation of lowest upper bound and
greatest lower bound. We have identified many type-related bugs caused by type comparisons and
bound computations that do not obey the rules of the type system.

Example bug: JDK-8039214

1 interface I<X1,X2> {}

2 class C<T> implements I<T,T> {}

3

4 public class Test {

5 <X> void m(I<? extends X, X> arg) {}

6 void test(C<?> arg) {

7 m(arg);

8 }

9 }

Fig. 10. JDK-8039214: A Java program that trig-

gers a bug related to incorrect type comparisons.

Figure 10 demonstrates a javac bug (see JDK-
8039214) caused by an incorrect type comparison.
While type checking the call on line 7, javac checks
whether the argument type C<?> is a subtype of the
expected type I<? extends X, X>. As part of this
subtyping check, javac tests if the type argument ?
of type constructor C is contained in type argument
? extends X of type constructor I. This type ar-
gument comparison is guided by the containment
relation defined in the Java Language Specification
(JLS) [Gosling et al. 2015, ğ4.1.5]. Unfortunately, the
implementation of javac does not follow this containment relation to the letter. Hence, it considers
that C<?> is not a subtype of I<? extends X, X>. This makes javac reject this well-formed
program.

3.2.2 Semantic Analysis Bugs. Semantic analysis occupies an important space in the design and
implementation of compiler front-ends. A compiler traverses the whole program and analyzes
each program node individually (i.e., declaration, statement, and expression) to type it and verify
whether it is well-formed based on the corresponding semantics. A semantic analysis bug is a bug
where the compiler yields wrong analysis results for a certain program node. The 24.06% of the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://youtrack.jetbrains.com/issue/KT-9630
https://youtrack.jetbrains.com/issue/KT-9630
https://youtrack.jetbrains.com/issue/KT-9630
https://bugs.openjdk.java.net/browse/JDK-8039214
https://bugs.openjdk.java.net/browse/JDK-8039214
https://bugs.openjdk.java.net/browse/JDK-8039214
https://bugs.openjdk.java.net/browse/JDK-8039214

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:15

inspected bugs are classified as semantic analysis bugs. A semantic analysis bug occurs due to one
of the following reasons: (1) missing validation checks, and (2) incorrect analysis mechanics.

Missing Validation Checks. This sub-category of bugs include cases where the compiler fails
to perform a validation check while analyzing a particular node. This mainly leads to unexpected
runtime behaviors because the compiler accepts a semantically invalid program because of the
missing check. In addition to these false negatives, later compiler phases may be impacted by
these missing checks. For example, assertion failures can arise, when subsequent phases (e.g.,
back-end) make assumptions about program properties, which have been supposedly validated by
previous stages. Some indicative examples of validation checks include: validating that a class does
not inherit two methods with the same signature, a non-abstract class does not contain abstract
members, a pattern match is exhaustive, a variable is initialized before use.

Example bug: Scala2-5878

Consider the Scala program of Figure 11, which demonstrates a semantic analysis bug related
to a missing validation check (see Scala2-5878). The program defines two value classes A and B

1 case class A(x: B) extends AnyVal

2 case class B(x: A) extends AnyVal

Fig. 11. Scala2-5878: A Scala program that

triggers a bug related to missing validation

checks.

with a circular dependency issue, as the parameter of A
refers to B, and the parameter of B refers to A. This de-
pendency problem, though, is not detected by scalac,
when checking the validity of these declarations. As
a result, scalac crashes at a later stage, when it tries
to unbox these value classes based on the type of their
parameter. The developers of scalac fixed this bug
using an additional rule for detecting circular problems in value classes.

Incorrect Analysis Mechanics. Another common issue related to semantic analysis bugs is
incorrect analysis mechanics. This sub-category contains bugs with root causes that lie in the analysis
mechanics and design rather the implementation of type-related operations, i.e., these bugs are
specific to the compiler steps used for analyzing and typing certain language constructs. Incorrect
analysis mechanics mostly causes compiler crashes and unexpected compile-time errors.

For example, in Dotty-4487, the compiler crashes, when it types class A extends (Int => 1),
because Dotty incorrectly treats Int => 1 as a term (i.e., function expression) instead of a type
(i.e., function type). Specifically, Dotty invokes the corresponding method for typing Int => 1 as
a function expression. However, this method crashes because the given node does not have the
expected format. Dotty developers fixed this bug by typing Int => 1 as a type.

3.2.3 Resolution Bugs. One of a compiler’s core data structures is that representing scope. Scope
is mainly used for associating identifier names with their definitions. When a compiler encounters
an identifier, it examines the current scope and applies a set of rules to determine which definition
corresponds to the given name. In languages like those examined in our study where features, such
as nested scopes, overloading, or access modifiers, are prevalent, name resolution is a complex
and error-prone task. A resolution bug is a bug where the compiler is either unable to resolve an
identifier name, or the retrieved definition is not the right one. We found that the 24.06% of our
bugs lie in this pattern. These bugs are caused by one of the following scenarios: (1) there are
correctness issues in the implementation of resolution algorithms, (2) the compiler performs a
wrong query, or (3) the scope is an incorrect state (e.g., there are missing entries). The symptoms of
resolution bugs are mainly unexpected compiler-time errors (when the compiler cannot resolve
a given name or considers it as ambiguous) or unexpected runtime behaviors (when resolution
yields wrong definitions) Ð see Figure 8b.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://github.com/scala/bug/issues/5878
https://github.com/scala/bug/issues/5878
https://github.com/scala/bug/issues/5878
https://github.com/lampepfl/dotty/pull/4487

123:16 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

Example bug: JDK-7042566

1 class Test {

2 void test() {

3 Exception ex = null;

4 error("error", ex);

5 }

6 void error(Object o, Object... p) { }

7 void error(Object o, Throwable t,

8 Object... p) { }

9 }

Fig. 12. JDK-7042566: A Java program that

triggers a resolution bug.

Figure 12 presents a test case that triggers the javac
bug JDK-7042566. For the method call at line 4, javac
finds out that there two applicable methods (see lines
6, 7). In cases where for a given call, there are more
than one applicable methods, javac chooses the most
specific one according to the rules of JLS [Gosling et al.
2015, ğ15.12.2.2 and ğ15.12.2.3]. For our example, the
method error defined at line 7 is the most specific one,
as its signature is less generic than the signature of
error defined at line 6. This is because the second ar-
gument of error at line 7 (Throwable) is more specific
than the second argument of error (Object) at line 6. However, a bug in the way javac applies
this applicability check to methods containing a variable number of arguments (e.g., Object...)
makes the compiler treat these methods as ambiguous, and finally reject the code.

3.2.4 Bugs Related to Error Handling and Reporting. When an error is found in a given source
program, modern compilers do not abort compilation. Instead, they continue their operation to find
more errors and report them back to the developers. In the context of type checking this is typically
done by assigning a special type (e.g., the top type) to erroneous expressions. Compilers also strive
to provide informative and useful diagnostic messages so that developers can easily locate and fix
the errors of their programs. A bug related to error handling & reporting is a bug where the compiler
correctly identifies a program error, but the implementation of the procedures for handling and
reporting this error does not produce the expected results. We found that the 6.88% of our bugs are
associated with error handling and reporting. All bugs of this category are related to crashes and
wrong diagnostic messages (i.e., misleading reports).

For example, the Kotlin program of Figure 6 triggers a bug related to error handling and reporting.
As already discussed, in this program, kotlinc produces an excessive diagnostic message. This
message suggests developers to take actions that contradict with previously reported messages.

3.2.5 AST Transformation Bugs. The semantic analyses of a compiler works on a program’s
abstract syntax tree (AST). Before or after typing, a compiler applies diverse transformations and
simplifications to the AST so that the given program is expressed in terms of simpler constructs.
For example, javac applies a transformation that converts a foreach loop over a list of integers for
(Integer x: list) into a loop that employs iterators as follows: for (Iterator<Integer> x

= list.iterator(); x.hasNext();) An AST transformation bug is a bug where the compiler
generates a transformed program that is not equivalent with the original one, something that
invalidates subsequent analyses. We found that the 4.69% of our bugs are AST transformation bugs,
which cause many unexpected compile-time and internal compiler errors.

Example bug: Scala2-6714

Figure 13 demonstrates an instance of this bug category (see Scala2-6714). This Scala 2 pro-
gram defines a class B overriding two special methods named apply, and update (lines 2ś5).
The function apply allows developers to treat an object as a function. For example, a variable
x pointing to an object of class B can be used like x(10). This is equivalent to x.apply(10).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://bugs.openjdk.java.net/browse/JDK-7042566
https://bugs.openjdk.java.net/browse/JDK-7042566
https://bugs.openjdk.java.net/browse/JDK-7042566
https://github.com/scala/bug/issues/6714
https://github.com/scala/bug/issues/6714

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:17

1 class A

2 class B {

3 def apply(x: Int)(implicit a: A) = 1

4 def update(x: Int, y: Int) { }

5 }

6 object Test {

7 implicit val a = new A()

8 val b = new B()

9 b(3) += 4 // compile-time error here

10 }

Fig. 13. Scala2-6714: A Scala program that

triggers an AST transformation bug.

Furthermore, the update method is used for updating
the contents of an object. For example, a variable x of
type B can be used in map-like assignment expressions
of the form x(10) = 5. This is equivalent to calling
x.update(10, 5). Notice that in our example, the apply
method takes an implicit parameter of type A. This means
that when calling this function, this parameter may be
omitted, letting the compiler pass this argument auto-
matically by looking into the current scope for implicit
definitions of type A.

Before scalac types the expression on line 9, it łdesug-
arsž this assignment, and expresses it in terms of method
calls. For example, b(3) += 4 becomes b.update(3, b.apply(3)(a) + 4). However, due to a
bug, scalac ignores the implicit parameter list of apply, and therefore, it expands the assignment
of line 9 as b.update(3, b.apply(3) + 4). Consequently, the expanded method call does not
type check, and scalac rejects the program.

As already discussed in Section 2.3, we may have missed the identification of categories not
included in the sample of analyzed bugs. For example, such a missing category may involve bugs
concerning program serialization, a process that translates the AST of a program into another
storable format, e.g., see the TASTy files of Dotty.1 Such representations are useful for inspecting
the semantic information of the input program and designing custom program analyses.

3.2.6 Comparative Analysis. According to Figure 8a, type-related bugs form by far the most
common bug cause for all studied compilers. This suggests that reasoning about types is a complex
and challenging task for compilers, and that the corresponding type system implementations are
susceptible to errors. Type-related bugs, resolution bugs, and semantic analysis bugs are almost
uniformly distributed across studied compilers. The Scala compilers and javac are the outliers
though. Specifically, we classify more javac bugs as bugs related to error handling & reporting
compared to the remaining compilers. Furthermore, notice that AST transformation bugs are
particularly common in Scala compilers. We attribute this to the fact that Scala is a very powerful
language, meaning that individual features are often combined together to establish new features
and use cases. scalac and Dotty apply a large number of transformations (e.g., Dotty implements
more than 50 passes until it performs type erasure) that simplify program tree so that complex
features are expressed through simpler primitives. AST transformation bugs of Scala are associated
with eta expansion, inlining, and desugaring of various language constructs.

3.3 RQ3: Bug Fixes

To get an insight into the complexity of typing-related compiler bugs, we studied how these errors
are introduced, and what are the properties of their fixes. We examined the revisions of each bug
fix to measure its size and how many components are affected by the fix. Finally, we computed and
examined the time compiler developers need to resolve a bug.

3.3.1 How Are Bugs Introduced? To understand how bugs are introduced, we manually studied
every bug fix and the discussion among developers in the corresponding bug reports or commit
messages. We found that the bugs of our dataset are mainly introduced by logic errors, algorithmic
errors, design errors, or other programming errors.

1https://docs.scala-lang.org/scala3/reference/metaprogramming/tasty-inspect.html

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://github.com/scala/bug/issues/6714
https://docs.scala-lang.org/scala3/reference/metaprogramming/tasty-inspect.html

123:18 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

1 3 5 10 25 50 100200 1000 3000
LoC in a Fix

0

20

40

60

80

100
Bu

g
pr

ev
al

en
ce

 (
%

)

(10, 40)

(100, 89)

(a) Cumulative distribution of lines of code in a fix.

1 2 3 4 5 10 15 45
Number of Files in a Fix

0

20

40

60

80

100

Bu
g

pr
ev

al
en

ce
 (

%
)

(b) Cumulative distribution of files in a fix.

Fig. 14. Size of bug fixes.

Logic errors, which stand for defects in logic, sequencing, or branching of a procedure [Zubrow
2010], are the dominant source of bugs in our dataset (204 / 320). Most of these logic errors are
missing cases or steps in the implementation of a routine, or incorrect conditions of an if statement.
According to Groovy developers, such missing cases are introduced by failing to handle some edge
cases (e.g., due to insufficient test coverage) when adding a new compiler feature or making an
enhancement. Other instances of logic errors are extraneous computations, incorrect sequence of
operations, or wrong/insufficient parameters passed to a function. We observed that the fixes of
logic errors usually include changes to a single method or file and consist of few lines of code. For
example, many logic errors are fixed by adding a missing else if case in the body of a buggy
method.

Algorithmic errors are related to errors in the structure and implementation of various algorithms
employed by compilers (e.g., inference of a type variable, resolution of a method). Algorithmic errors
arise either because the implementation of an algorithm is wrong or because a wrong algorithm
has been used. Unlike logic errors, fixes of algorithmic errors usually involve changes in a few
dozen lines of code. A characteristic example of this category is Dotty-10217 (Figure 7), in which
the implementation of the underlying algorithm has exponential complexity. Algorithmic errors
were found in 67 / 320 bugs.

In contrast to logic and algorithmic errors that describe defects in compilers’ implementations,
language design errors express issues at a higher level. They describe the cases where although
the compiler has the intended behavior and is not buggy, a program reveals that this behavior
can lead to undesired results. As a result, a re-design is essential for both the language and the
compiler. Fixes of design errors include changes from a few code lines to significant refactorings in
a compiler’s code base. For example, KT-11280 demonstrates a bug that stems from a design issue
in the language. When encountering a condition of the form if (x == A()) b else c, kotlinc
implicitly coerces the type of x to type A inside the true branch of the if statement. However,
KT-11280 demonstrates that this behavior is a source of unsoundness. A developer is free to override
the method equals (this is the method invoked when performing the == operator), meaning that x
is not guaranteed to have a type of A whenever the check x == A() returns true. Kotlin designers
and developers fixed this by forbidding these implicit coercions whenever equals is overridden.
We encountered 36 / 320 bugs introduced by an error in the compiler/language design.

Other programming errors we observed include declarations of a variable with an incorrect
data type, out-of-bounds array accesses, accesses to null references, and unchecked exceptions.
For example, the groovyc bug of Figure 4 is introduced by a missing null check causing a
NullPointerException. The fixes of such faults are usually trivial and involve a single change in
one line of code. We ran into such programming errors in only 13 / 320 bugs.

3.3.2 Size of Bug Fixes. We considered the revisions of every bug fix of our dataset, and we excluded
file modifications and creations related to test files (e.g., test cases) plus all non-source files (e.g.,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://github.com/lampepfl/dotty/issues/10217
https://youtrack.jetbrains.com/issue/KT-11280

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:19

updates in docs). Using automated means, we counted the lines of code modifications made to
source files, and we computed how many source files are updated in each fix.
As Figure 14a shows, 89% of the bug fixes contain fewer than 100 lines of code, and 40% of the

bug fixes are less than 10 lines. These results are consistent with the study of Sun et al. [2016c],
which indicates that 92% and 50% of the GCC and LLVM bug fixes include less than 100 and 10
lines of code respectively. On average, the number of lines of code modified in a bug fix is 52, and
the median is 16. For completeness, Figure 14b shows how many files are modified in a bug fix. The
majority of fixes change few files: 60% of the patches update a single file, and only 4% of the fixes
change more than 5 files. One exception to this pattern is Scala-2742, where the corresponding
fix requires updates in the Scala specification, which result in scattered updates across multiple
compiler components. In summary, this fix consists of more than 3,000 lines of code and modifies
more than 40 source files.

1 10 20 35 60 180 365 1000 3000
Duration of Bugs in Days

0

20

40

60

80

100

Bu
g

pr
ev

al
en

ce
 (

%
)

All
javac
kotlinc
groovyc
scalac & Dotty

Fig. 15. Cumulative distribution of bugs

through time.

3.3.3 Duration of Bugs. Considering the plots in Fig-
ure 14, a reader may conclude that most of the bugs are
simple and easy to fix, because they affect only a small
part of the compiler. Despite the small size of fixes, during
our manual inspection, we observed that many bugs are
challenging to solve and the developers have long-lasting
conversations about potential solutions and their implica-
tions. Hence, we decided to investigate the bugs’ lifetime
to better understand the complexity of bug fixes. To do
so, we conducted a quantitative analysis of the time that
elapsed in order to fix them. All bug tracking systems of
our studied compilers provide details about the creation
date and resolution date of each bug report. We defined the duration of a bug as the time interval
between its creation and resolution date.
Figure 15 shows the bugs’ cumulative distribution function over time. The blue plot indicates

that over half of the investigated bugs were fixed in one month, and 15% of the bugs took more
than a year to be fixed. In terms of days to fix, the median is 24 days and the mean is 186 days. This
suggests that many typing-related bugs are not fixed immediately after a bug report is opened.
Indeed, we came across many cases where the corresponding bugs undergo careful examination and
risk evaluation by developers and the language committee. This is because fixes of typing-related
bugs can potentially break backward compatibility Ð a fixed compiler may not be able to compile
existing programs that rely on the old compiler’s behavior. Therefore, to prevent regression bugs,
developers carefully estimate the impact of each suggested fix. For example, after one year of
discussions, the Java team decided to address JDK-8075793 so that existing applications written in
Java 7 do not break under the new versions of javac. Beyond that, many typing-related bugs are
closely related to the language specification and design (e.g., Scala-2742, and KT-22517), and they
require fixes and enhancements in both the implementation of the compiler and the design of the
language.

3.3.4 Comparative Analysis. Consider again Figure 15. groovyc bugs (see yellow line) need consid-
erably less time to be fixed than the bugs of the other compilers. Specifically, the median duration
of groovyc bugs is only 8 days, while the median duration is 21, 34 and 55 days for javac, kotlinc,
and Scala bugs respectively. One explanation to this deviation could be that some parts of groovyc
(e.g., the type checker) may be less mature than the other compilers, and many groovyc bugs are
programming errors (e.g., a GROOVY-7618, Figure 4), which can be fixed easily (e.g., by adding
a null check), rather than defects that require much domain expertise and knowledge. Another

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://github.com/scala/bug/issues/2742
https://bugs.openjdk.java.net/browse/JDK-8075793
https://github.com/scala/bug/issues/2742
https://youtrack.jetbrains.com/issue/KT-22517
https://issues.apache.org/jira/browse/GROOVY-7618

123:20 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

Bounded type parameters
Parameterized function

Parameterized class
Parameterized type Parametric polymorphism (57.19%)

Nested class
Overloading

Overriding
Inheritance OOP features (53.75%)

Primitive type
Type definition / member

Wildcard type
Subtyping Type system-related features (36.25%)

Coroutines API
Reflection API

Function API
Collection API Standard library (30.63%)

Function type
Function reference

SAM type
Lambda Functional programming (31.56%)

Import
Cast

Array
Conditionals Standard language features (28.75%)

Flow typing
Variable type inference

Parameter type inference
Type argument inference Type inference (43.44%)

0 10 20 30 40 50 60 70
Bug prevalence (%)

Extension function / property
Java interoperability

Pattern matching
Implicits Other (28.75%)

Fig. 16. The classification of the language features that appear in test cases, along with their frequency. For

each category, we show the four most frequent features.

explanation may lie in the motivation and resources associated with the project’s development
team.
We also performed the Mann-Whitney U test on the distributions of bugs’ duration. We found

that the duration of Groovy and Scala bugs is statistically different than that of Kotlin and Java
bugs, while the durations of Kotlin and Java bugs are not.

3.4 RQ4: Test Case Characteristics

We now present a discussion on the characteristics of the bug-revealing test cases. Studying the
characteristics of test cases gives us an intuition regarding what language features are promising
for uncovering typing-related bugs.

Table 2. General statistics on test case

characteristics.

Compilable test cases 216 / 320 (67.5%)
Non-compilable test cases 104 / 320 (32.5%)

LoC (mean) 10.2
LoC (median) 8.0

Number of class decl. (mean) 2.0
Number of class decl. (median) 2.0

Number of method decl. (mean) 2.9
Number of method decl. (median) 2.0
Number of method call (mean) 2.5
Number of method call (median) 1.0

3.4.1 General Statistics. Table 2 presents some general sta-
tistics on test cases. Roughly 67.5% of the inspected bugs
are triggered by compilable test cases. However, around one
third (32.5%) of typing-related bugs occurs when compil-
ing invalid code, i.e., the corresponding test case contains
e.g., type mismatches, ill-formed declarations. This is an im-
portant observation, because in addition to using valid test
cases (as prior work did for detecting optimization bugs [Le
et al. 2014; Livinskii et al. 2020; Yang et al. 2011]), identi-
fying typing-related bugs requires passing non-compilable
programs as input to the compiler under test. These incorrect programs mainly trigger bugs that
cause internal compiler errors, unexpected runtime behaviors, and misleading reports. The av-
erage size of test cases is 10.2 lines of code (LoC), while the median is 8 LoC. This suggests that
typing-related bugs are mainly triggered by small fragments of code.

3.4.2 Language Features. We also identified what specific language features are involved in each
test case. Since the studied languages are primarily object-oriented, we excluded prevalent object-
oriented features that we encountered in almost every test case (e.g., class declaration, object
initialization). Then, we grouped the features exercised in every test case into eight categories:
(1) standard language features containing features seen in almost every language (e.g., exceptions,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:21

Table 3. The five most frequent and the five least frequent features supported by all studied languages.

Most frequent features Least frequent features

Feature Occ (%) Feature Occ (%)

Parameterized type 46.56% Multiple ‘implements’ 2.19%
Type argument inference 31.87% ‘this’ expression 2.19%
Parameterized class 30.00% Arithmetic expression 1.88%
Parameterized function 26.25% Loops 1.25%
Inheritance 24.06% Sealed class 0.94%

casts, loops), (2) object-oriented programming (OOP) features (e.g., overriding, inheritance), (3)
functional programming features (e.g., higher-order functions), (4) parametric polymorphism (e.g.,
parameterized functions), (5) type inference features (e.g., type argument inference) (6) type system-
related features (e.g., subtyping), (7) standard library (e.g., use of collection API), and (8) other
including features not belonging to any of the previous categories (e.g., named arguments).

For every category of features, Figure 16 presents its frequency along with its four most frequent
features. Parametric polymorphism is pervasive in the corresponding bug-revealing programs:
more than half of the examined bugs (57.19%) are caused by test cases containing features, such
as declaration and use of parameterized functions, use-site variance, and bounded type parame-
ters. Another interesting observation is that around one third of test cases employ the standard
library, and especially the collections API, which includes functions and classes for creating and
manipulating data structures (e.g., lists). An example of such a test case is the program of Figure 3.
Other frequent features are: inheritance for OOP features, subtyping (e.g., A x = new B()) for type
system-related features, lambda expressions for functional programming features, conditionals for
standard features, type argument inference (e.g., X<String> x = new X<>()) for type inference
features, and Scala implicits for other.

Table 3 shows which features are the most frequent and which features are the least frequent in
the examined test cases. This table presents features that are supported by all studied languages.
Features associated with parametric polymorphism (i.e., usage of parameterized types, functions
and classes) and their combinations with type argument inference are highly common in the
bug-revealing test cases. However, features like arithmetic expressions and loops have a small
bug-triggering capability, as they appear only in 1ś2% of the bug-revealing programs. This finding
contradicts prior testing efforts [Le et al. 2014; Livinskii et al. 2020] for optimization bugs, which
rely on programs with complex arithmetic expressions, control- and data-flow (e.g., nested loops).
To find out whether there are any interesting features’ combinations that are more likely to

trigger bugs, we also computed the lift score, which has been also used in previous bug studies [Jin

et al. 2012], For two features A and B, the lift score is given by: lift(𝐴, 𝐵) = 𝑃 (𝐴∩𝐵)
𝑃 (𝐴)𝑃 (𝐵)

, where 𝑃 (𝐴∩𝐵)

is the probability of a test case containing both features A and B. The lift score gives an estimation
of how strongly two features are correlated. A lift score greater than 1 means that the features are
positively correlated: when a test case contains feature A, it is also likely to contain feature B. A lift
score close to 1 indicates no correlation, while a lift score smaller than 1 denotes that the features
are negatively correlated.
The most positively correlated categories are standard library with functional programming

features, and standard library with type inference features with a lift score of 5. Indeed, many
bug-revealing test cases invoke higher-order methods coming from the standard library, such
as the function map in the program of Figure 3. Moreover, such test cases often let the compiler
infer some type information, e.g., signature of lambda expressions, or type argument of a callee
parameterized function. Regarding individual features, some interesting combinations are: (1)
variable arguments with overloaded methods (e.g., Figure 12) with a lift score of 24, (2) use-site
variance with parameterized function (e.g., Figure 5) with a lift score of 17.1, (3) type argument

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

123:22 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

Table 4. The five most bug-triggering features per language.

Java Scala Kotlin Groovy

Feature Occ (%) Feature Occ (%) Feature Occ (%) Feature Occ (%)

Parameterized type 51.25 Parameterized type 57.50 Parameterized type 36.25 Parameterized type 41.25
Type argument inference 42.50 Parameterized class 42.50 Parameterized class 33.75 Collection API 35.00
Functional interface 37.50 Inheritance 32.50 Type argument inference 32.50 Type argument inference 35.00
Parameterized function 35.00 Implicits 23.75 Parameterized function 26.25 Lambda 25.00
Parameterized class 30.00 Parameterized function 22.50 Inheritance 25.00 Parameterized function 21.25

inference with parameterized function (e.g., Figures 5, 9) with a lift score of 12.7, (4) Scala implicits
with parameterized class with a lift score of 10.9, (5) type argument inference with collection API
(e.g., Figure 3) with a lift score of 8.6, and (6) type argument inference with parameterized types
with a lift score of of 7.

Remark. Our analysis on test case characteristics does not provide information about the
behavioral characteristics of each test case. For example, our analysis gives the frequency of
casts, but it does not offer details about how and where a cast is used [Mastrangelo et al. 2019].
However, we argue that future testing techniques can still take advantage of our findings to produce
interesting programs by considering features that are more likely to trigger bugs, and combining
these features in divergent ways (see Section 4.2).

3.4.3 Comparative Analysis. Table 4 shows the five most bug-triggering features per language.
Again, parametric polymorphism-related features are in the top of every language under study.
Another interesting finding is that implicits, a powerful and popular Scala-only feature [Křikava
et al. 2019], appears in 23.75% of the examined scalac and Dotty bugs. Therefore, in addition to
parametric polymorphism, Scala implicits is a feature which researchers and Scala developers could
profitably invest time to deeply test. Beyond implicits, other language-specific features that are
common are: pattern matching (21.25%), higher-kinded types (13.75%), and algebraic data types
(13.75%) for Scala, as well as nullable types (16.25%), and extensions (15%) for Kotlin.

4 IMPLICATIONS AND DISCUSSION

We now discuss several implications of our work, and how our findings can serve as a basis for
future research endeavors in compiler testing. We also demonstrate the value of our study’s results
through a type-related Kotlin and Groovy test-program generator.

4.1 Lessons Learned and Takeaways

Typing-related bugs have diverse manifestations. Contrary to optimization bugs, which mainly
manifest at runtime as errors [Le et al. 2014; Yang et al. 2011], typing-related bugs can potentially
affect both compilation and runtime (Section 3.1). Researchers should develop appropriate test
oracles that can catch typing-related bugs with a plethora of manifestations. For example, for
finding bugs that manifest as unexpected compile-time errors, a fuzzer should generate programs
that are valid by construction so that rejection of these programs indicates a potential bug. Similarly,
for detecting bugs with a misleading report symptom, a fuzzer should generate or use programs
with known compile-time errors or warnings, and compare these expectations with the actual ones
using a form of pattern matching (e.g., via regular expressions).
Typing-related bugs are located in few specific compiler components. According to Fig-

ures 14a and 14b (which show that bug fixes are mostly local), typing-related bugs are caused by
incorrect implementations of some few and specific compiler tasks and routines. In Section 3.2, we
showed that these buggy tasks and routines are typically associated with operations on types (e.g.,
type inference), name resolution, semantic analysis of declarations, desugaring, or error handling &
reporting. A possible direction for researchers is to introduce targeted methods for identifying bugs

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:23

in these components. For example, for finding bugs related to type inference, a mutation strategy
could gradually remove type information from a program, e.g., from variable declarations, or type
constructor applications. For triggering bugs in resolution algorithms, a promising approach could
be the creation of programs that contain and use many overloaded methods or nested declarations.
Similarly, for detecting missing validation checks, a potential mutator could inject faults in the
program’s declarations, e.g., it could inject a circular dependency as in the program of Figure 11.
A large number of typing-related bugs is triggered by non-compilable programs. Almost

one third of the studied bugs is triggered by invalid code (Table 2). This observation comes in
contrast to existing compiler testing techniques, which feed compilers with compilable programs [Le
et al. 2014; Livinskii et al. 2020; Yang et al. 2011]. Generating incorrect programs is a challenging
task, as the generated programs must be subtly incorrect, meaning that the programs should be
syntactically correct and contain at most one semantic error. A future research direction could
be the proposal of new program generators and mutators that provide such invalid test cases.
However, since the search space of invalid programs is enormous, a challenge related to this is
to determine the program point to inject the fault, and the nature of the injected fault (e.g., type
mismatch error or non-static method in a static context call error). To address this, a technique
similar to skeletal program enumeration (SPE) [Zhang et al. 2017] could be used to enumerate all
subtly invalid programs based on a given program structure.
Parametric polymorphism is the feature with the most bug-triggering capability. Test

cases that make an extensive use of parametric polymorphism-related features are responsible
for more than half of the examined bugs (Tables 3, 4). Therefore, parametric polymorphism is a
promising feature that future program generators should consider for uncovering typing-related
bugs. Parametric polymorphism is supported by all the studied languages. Consequently, parametric
polymorphism-oriented testing techniques (e.g., a mutator that converts a given class / function
into a parameterized one) could be invaluable for testing multiple compiler implementations. For
example, such a mutator could be applied to testing both javac and kotlinc. Finally, our findings
suggest that parametric polymorphism works well with type argument inference (Section 3.4.2).
Therefore, generating programs involving parameterized types and functions that omitted type
arguments is another interesting research direction.
Use of the standard library is pervasive in test cases. Based on our observation that around

one third of our test cases use the standard library and particularly the collection API, an interesting
direction for stress-testing compilers could be the generation of small expressions that use these
APIs in a complex manner, without requiring the generation of the corresponding definitions. (e.g.,
see Figure 3, line 3). Interestingly, such APIs heavily rely on parametric polymorphism.
Control-flow constructs and arithmetic expressions are not common in bug-revealing

test cases. Table 4 shows that control-flow constructs (e.g., loops) and arithmetic expressions
barely trigger typing-related compiler bugs. This conflicts with the design and motivation of prior
approaches [Livinskii et al. 2020; Nagai et al. 2014; Yang et al. 2011]. For example, as an effort to
uncover optimization bugs, the recent work of Livinskii et al. [2020] adopts a generation policy
that creates complex arithmetic expressions and bitwise operations. Our findings suggest that the
existing techniques should be adapted so that they also consider features that are more likely to
cause typing-related bugs. This would lead to a more holistic testing of compilers.
Implicits and pattern matching are two promising features for testing Scala. Implicits

and pattern matching appear in 23.75% and 21.25% of the examined scalac and Dotty bugs. Hence,
in combination with parametric polymorphism, it is worth proposing methods that are specifically
targeting these Scala features. For example, future testing methods can be inspired by the work
of Křikava et al. [2019], which describes how implicits are used in practice, to produce programs
that, in turn, exercise different implicits’ idioms and patterns in a complex manner. Similarly, for

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

123:24 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

1 def gen_program(builtins, max_decls, max_fields,

2 max_methods, max_params)

3 decls = []

4 type_pool = builtins

5 for i in range(randint(1, max_decls)):

6 decl_type = random(

7 ["FUNC", "CLASS", "VAR"])

8 if decl_type == "CLASS":

9 cls = gen_class(max_fields, max_methods,

max_params)

10 type_pool.append(get_type(cls))

11 decls.append(cls)

12 elif decl_type == "FUNC":

13 func = gen_func(max_params)

14 decls.append(func)

15 else:

16 var_type = random(type_pool)

17 expr = gen_expr(var_type)

18 decls.append(create_var(var_type, expr))

19 def gen_class(max_fields, max_methods, max_params

):

20 fields = []

21 methods = []

22 for i in range(randint(1, max_fields)):

23 field_type = random(type_pool)

24 fields.append(create_field(field_type))

25 for i in range(randint(1, max_methods)):

26 methods.append(gen_func(max_params))

27 return create_cls(fields, funcs)

28

29 def gen_func(max_params):

30 ret_type = random(type_pool)

31 params = []

32 for i in range(randint(1, max_params)):

33 param_type = random(type_pool)

34 params.append(create_param(param_type))

35 body = gen_expr(ret_type)

36 return create_func(params, ret_type, body)

Fig. 17. The high-level description of our program generation approach.

validating exhaustiveness checks of pattern matching expressions, a possible testing solution could
be the generation of random algebraic data types, along with the enumeration of their corresponding
match patterns. Such a technique could be also applicable to languages such as Haskell or OCaml.

4.2 A Proof-of-Concept Program Generator

We demonstrate the leverage obtained from our work’s findings through the design and implemen-
tation of a proof-of-concept Kotlin and Groovy test-program generator. Specifically, our prototype
relies on the following observations: (1) parametric polymorphism is a crucial feature for uncovering
typing-related bugs, (2) parametric polymorphism is supported by both Groovy and Kotlin and (3)
parameterized types are often combined with type argument inference (Section 3.4.2).

Our program generator produces programs written in an intermediate language (IR) representing
a simple object-oriented language that has a limited support on parametric polymorphism and type
inference. Specifically, our language supports class declarations, method declarations, local variable
declarations, inheritance, subtyping, object initializations, assignments, method calls, property
accesses, constant expressions, (e.g., integers), conditionals, logical operators (e.g., &&), comparison
operators (e.g., <=), parameterized classes, bounded type parameters, declaration-site variance,
type argument inference, and local variable type inference.
Our algorithm for generating programs written in the IR is summarized in Figure 17. Every

program iswell-formed by construction and consists of a number of randomly generated declarations
(i.e., classes, functions or variables), see lines 5ś18. Each class declaration includes a random number
of methods and fields (lines 19ś27), while each function declaration contains a signature (i.e., a
list of formal parameters and a return type Ð see lines 30ś34), and a body corresponding to an
expression whose type is a subtype of function’s return type (line 35).
During generation, we randomly assign types to the signature of functions (e.g., return type,

formal parameter type Ð lines 30, 33), or the signature of class fields (line 23). These types are
chosen randomly from our type pool, a data structure that contains types that have already defined
in the program. For example, whenever we generate a class declaration, we add the corresponding
type to the pool (line 10). Note that the type pool is initialized with the set of built-in types (line 4).
This set is given as input to our generation algorithm and contains the set of built-in types (e.g.,
Int, String, Boolean) supported by the language under test. Regarding expressions (e.g., variable

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:25

Table 5. Summary of the bugs found by our proof-of-concept tool. In total, we have found 28 bugs in kotlinc

and groovyc, of which, 16 have been fixed by developers.

groovyc kotlinc

Symptom Confirmed Fixed Confirmed Fixed

Unexpected compile-time error 5 14 7 1
Internal compiler error 0 0 0 1

Total 5 14 7 2

1 class A<T> {

2 T x;

3 A(T x) { this.x = x; }

4 void test() {

5 m((new A<>("str")).x) // error here

6 }

7 void m(String x) {}

8 }

(a) The program that triggers the bug.

test.groovy: 5: [Static type checking] -

Cannot find matching method A.m(T).

Please check if the declared type is correct

and if the method exists.

@ line 5, column 5.

m((new A<>("str")).x);

^1 error

(b) The incorrect output of the compiler.

Fig. 18. GROOVY-9963: A Groovy bug found by our program generator. This bug was fixed in Groovy 4.0.

references, function calls, assignments, etc.), the algorithm generates a random expression whose
type is a subtype of the given type 𝑡 . Finally, whenever it is applicable, our algorithm randomly
omits type information from local variables’ declaration, or type constructor applications.

Representing the generated programs through an IR allows us to test both kotlinc and groovyc.
In particular, having generated a program in IR, we translate it into a concrete source file (e.g., a
Kotlin source file) using language-specific translators. Every translator traverses the input program
(written in IR) and converts every declaration / statement / expression into the corresponding one
that follows the syntax of the target language. The output of this translation is then passed as an
input to the compiler under test. Generating programs that are well-formed by construction gives
us the test oracle: when the compiler is unable to compile the given source file (i.e., it crashes or
reports a compile-time error), a potential bug is detected.
Table 5 gives a summary of the bugs found by our program generator. In total, we found 28

previously unknown bugs in kotlinc and groovyc, of which 16 bugs have been already fixed by
developers. Almost all of the reported bugs manifest as unexpected compile-time errors, while
all but two are typing-related bugs, i.e., one bug was classified as a back-end bug, and one was
classified as a parser bug by the Kotlin developers. These bug detection results demonstrate that
the observations of our study can indeed guide the design of future techniques on compiler testing,
which (1) are useful for finding typing-related bugs, (2) are applicable to more than one compilers.

As an example of bug found by our tool, consider the Groovy program of Figure 18a (minimized
for space reasons). The program defines a parameterized class A that expects one type parameter
T (lines 1ś8). This class defines a field called x whose type is given by T (line 2). The code later
initializes an instance of class A, and passes the value of the field x as an argument to a function
named m (line 5). Although this program is type-correct, groovyc rejects it by producing the error
message shown in Figure 18b. This is caused by a bug in the type substitution algorithm of groovyc.
Specifically, the compiler fails to substitute the type variable corresponding to the type of field
x with the concrete type String, with which the type constructor A is instantiated during the
constructor call A<>("str").
Remark. Our program generator does not come with a test-case reducer. This is because

our program generator mainly found unexpected compile-time errors. Therefore, by inspecting
the incorrect compiler message, it was easy for us to locate the specific program expressions that
triggered the bug (e.g., see the error message of Figure 18b). Apparently, for other kinds of symptoms

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://issues.apache.org/jira/browse/GROOVY-9963

123:26 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

(e.g., crashes), manually reducing the test case is a tedious task. Since test-case reduction is beyond
the scope of this paper, we leave this as future work.

5 RELATED WORK

Understanding Compiler Bugs. The closest bug study to our work is that conducted by Sun
et al. [2016c]. The authors collected and automatically analyzed 52,732 bugs and 31,399 revisions
from the GCC and LLVM compilers. Some of their key findings are: (1) C++ is the most buggy
component of the examined compilers, (2) GCC and LLVM bugs are typically triggered by small
test cases (3) most of the bug fixes are local and (4) developers need a couple of months to resolve
the reported bugs. Zhou et al. [2021] recently repeated the study of Sun et al. [2016c], but this
time, researchers gave emphasis to optimization bugs in GCC and LLVM. Some of their results
(e.g., size of test cases, duration of bugs, locality of bugs) are consistent with the findings of Sun
et al. [2016c]. In a different spirit, Marcozzi et al. [2019] tried to measure the effect of compiler
bugs found by fuzzing tools on real-world application code. According to their results, most of the
fuzzer-found bugs indeed affect the final executables produced by compilers, but they semantically
change only a small portion of the code (typically involving a small number of functions). Our
work is complementary to these previous studies. It provides the first insights into understanding
the nature of typing-related bugs, a category of bugs that is currently overlooked.
Other Bug Studies. Here we briefly present recent studies that are closely related to our work.

Trying to investigate the characteristics of distributed concurrency bugs, Leesatapornwongsa
et al. [2016] manually analyzed 104 non-deterministic concurrency bugs from four distributed
systems used in a production environment. Their analysis consisted of several aspects, including
bug symptoms and fixing. Bagherzadeh et al. [2020] focused on actor-based concurrency bugs.
They constructed a dataset consisting of 186 concurrency bugs found in Akka coming from Stack
Overflow questions, and GitHub projects. For each bug in the dataset, they identified its symptom,
root cause, and the Akka APIs that the buggy program uses.
Numerical bugs form another category of bugs that has been examined by previous empirical

studies. Di Franco et al. [2017] selected 269 numerical bugs from five popular numerical libraries
and classified them into four categories based on their patterns and root causes. In a subsequent
study, Dutta et al. [2018] characterized inference-related bugs by manually analyzing 118 commits
from three probabilistic programming systems. Their categorization involves accuracy bugs, bugs
associated with the handling of special numerical values (e.g., NaN), and other correctness issues.
Based on their findings, they also proposed a differential testing approach for finding such bugs.
Jin et al. [2012] performed one of the first bug studies for performance bugs. They selected 109

real-word performance bugs from well-established systems (e.g., GCC, MySQL), and showed how
these bugs are introduced and fixed. They designed a bug-finding tool that was able to detect 332
performance issues in MySQL, Apache and Mozilla.
Compiler Testing. Testing compilers through randomized testing is a research topic that has

received much attention (see the survey of Chen et al. [2020] for more details). Csmith [Yang et al.
2011] is the most well-known program generator for C programs. A characteristic of Csmith is that
it generates programs that are free from undefined behavior. Thanks to Csmith hundreds of bugs in
GCC and LLVM compilers have been uncovered. Since then, more program generators [Livinskii
et al. 2020; Nagai et al. 2014] for C/C++ programs have been introduced with a focus on detecting
optimization bugs. Following C’s success, researchers have developed fuzzing tools and program
generators for testing (1) other compilers such as OpenCL [Lidbury et al. 2015], graphics shader
compilers [Donaldson et al. 2017], (2) runtime systems [Chen et al. 2019, 2016b], and (3) dynamic
programming languages, such as PHP and JavaScript [Holler et al. 2012; Park et al. 2020; Wang
et al. 2019]. Some of these tools have also been used in a production setting [Donaldson et al. 2020].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:27

Most of the generators and fuzzers above target compiler crashes. For finding other functional
errors (i.e., miscompilations), researchers have applied differential testing and equivalence modulo
inputs (EMI) testing in combination with program generators. Differential testing has been suc-
cessfully applied to C/C++ compilers [Livinskii et al. 2020; Sun et al. 2016a; Yang et al. 2011], JVM
implementations [Chen et al. 2019, 2016b] and OpenCL compilers [Lidbury et al. 2015]. Beyond
C compilers [Le et al. 2014], EMI testing has been recently applied to finding bugs in simulation
software [Chowdhury et al. 2020]. Another interesting method for testing optimizing compilers
is skeletal program enumeration (SPE) [Zhang et al. 2017]. SPE enumerates all programs that expose
different variable usage patterns, while preserving the given program structure.
Currently, there is a research gap in automated testing of compiler front-ends. Although łtra-

ditionalž fuzzing techniques, such as the AFL-based (American Fuzzy Lop) methods introduced
in [M. Zalewski 2013; Wang et al. 2019], are effective in testing lexers and parsers, they struggle
to construct semantically-valid inputs that get past the very front-end of a compiler and exercise
the implementation of typing procedures. Dewey et al. [2015] have proposed a method for finding
bugs in the type checker of Rust. Using constraint logic programming, they generate well-typed (or
ill-typed) programs to detect various types of bugs (e.g., precision or soundness bugs). Sun et al.
[2016a] have employed differential testing to check how different are the warnings produced by
the GCC and LLVM compilers. We argue that our work can assist researchers in designing new
testing methods, specifically targeting compiler front-ends.

6 CONCLUSION

We presented the first empirical study of 320 fixed typing-related bugs found in compilers of four
popular JVM languages, that is, Java, Scala, Kotlin, and Groovy. Unlike optimization bugs, typing-
related bugs have diverse manifestations: from unexpected compile-time errors to compilation
performance degradations. Correctness issues found in the core components of compiler typing
processes, such as the type system, inference and resolution engines, and the semantic validation of
declarations, are responsible for the majority of the inspected bugs. We also found that a non-trivial
number of typing-related bugs is caused by non-compilable test cases, whereas loops and arithmetic
expressions are hardly seen in the bug-revealing programs. These observations conflict with the
intuition behind the existing approaches for finding optimization bugs.
We discussed several implications of our study’s findings. Future testing techniques should

consider diverse test oracles, as typing-related bugs affect both compilation and runtime in various
ways. Another interesting future challenge is the generation of subtly invalid programs that are
more likely to trigger typing-related bugs and, most notably, soundness issues. Furthermore, the
existing program generators for C++ could benefit from the results of our study: their generation
strategies could be adapted to include features (e.g., type inference, lambdas, overloading) that can
potentially uncover inference or resolution bugs in the C++ compilers.
Finally, we implemented a simple program generator that relies on some of our observations

regarding type inference and parametric polymorphism. Our generator was able to reveal 27
unexpected compile-time errors, and one internal compiler error in the Kotlin and Groovy compilers.
This demonstrates the practicality of our study: we believe that researchers can build upon our
work’s findings by creating improved compiler validation methods and tools.

ACKNOWLEDGMENTS

We thank Alex Delis and the anonymous reviewers for their constructive comments. We also thank
the Groovy developers, Eric Miles and Paul King, for fixing our bug reports quickly and providing
feedback in an earlier draft of this paper. This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 825328.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

123:28 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

REFERENCES

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The Essence of Dependent Object Types.

Springer International Publishing, Cham, 249ś272. https://doi.org/10.1007/978-3-319-30936-1_14

Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi Khatchadourian. 2020. Actor Concurrency Bugs: A

Comprehensive Study on Symptoms, Root Causes, API Usages, and Differences. Proc. ACM Program. Lang. 4, OOPSLA,

Article 214 (Nov. 2020), 32 pages. https://doi.org/10.1145/3428282

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. 1998. Making the Future Safe for the Past: Adding

Genericity to the Java Programming Language. In Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (Vancouver, British Columbia, Canada) (OOPSLA ’98). Association

for Computing Machinery, New York, NY, USA, 183ś200. https://doi.org/10.1145/286936.286957

Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie. 2017. Learning to Prioritize Test Programs

for Compiler Testing. In Proceedings of the 39th International Conference on Software Engineering (Buenos Aires, Argentina)

(ICSE ’17). IEEE Press, 700ś711. https://doi.org/10.1109/ICSE.2017.70

Junjie Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie. 2016a. Test Case Prioritization for Compilers: A

Text-Vector Based Approach. In 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST).

266ś277. https://doi.org/10.1109/ICST.2016.19

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and Lu Zhang. 2020. A Survey of

Compiler Testing. ACM Comput. Surv. 53, 1, Article 4 (Feb. 2020), 36 pages. https://doi.org/10.1145/3363562

Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential Testing of JVM Implementations. In Proceedings of the

41st International Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 1257ś1268.

https://doi.org/10.1109/ICSE.2019.00127

Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016b. Coverage-Directed Differential Testing

of JVM Implementations. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 85ś99.

https://doi.org/10.1145/2908080.2908095

Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T. Johnson, and Christoph Csallner. 2020. SLEMI: Equivalence modulo

Input (EMI) Based Mutation of CPS Models for Finding Compiler Bugs in Simulink. In Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery,

New York, NY, USA, 335ś346. https://doi.org/10.1145/3377811.3380381

Kyle Dewey, Jared Roesch, and Ben Hardekopf. 2015. Fuzzing the Rust Typechecker Using CLP. In Proceedings of the 30th

IEEE/ACM International Conference on Automated Software Engineering (Lincoln, Nebraska) (ASE ’15). IEEE Press, 482ś493.

https://doi.org/10.1109/ASE.2015.65

Anthony Di Franco, Hui Guo, and Cindy Rubio-González. 2017. A Comprehensive Study of Real-World Numerical Bug

Characteristics. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering (Urbana-

Champaign, IL, USA) (ASE 2017). IEEE Press, 509ś519. https://doi.org/10.1109/ASE.2017.8115662

Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017. Automated Testing of Graphics Shader

Compilers. Proc. ACM Program. Lang. 1, OOPSLA, Article 93 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133917

Alastair F. Donaldson, Hugues Evrard, and Paul Thomson. 2020. Putting Randomized Compiler Testing into Production

(Experience Report). In 34th European Conference on Object-Oriented Programming (ECOOP 2020) (Leibniz International

Proceedings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss DagstuhlśLeibniz-Zentrum

für Informatik, Dagstuhl, Germany, 22:1ś22:29. https://doi.org/10.4230/LIPIcs.ECOOP.2020.22

Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing Probabilistic Programming Systems. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Machinery,

New York, NY, USA, 574ś586. https://doi.org/10.1145/3236024.3236057

Github Inc. 2021. The state of the Octoverse. https://octoverse.github.com/. Online accessed; 05-03-2021.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. 2015. The Java Language Specification: Java SE 8

Edition. https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf.

Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code Fragments. In Proceedings of the 21st USENIX

Conference on Security Symposium (Bellevue, WA) (Security’12). USENIX Association, USA, 38.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012. Understanding and Detecting Real-

World Performance Bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design

and Implementation (Beijing, China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 77ś88.

https://doi.org/10.1145/2254064.2254075

Filip Křikava, Heather Miller, and Jan Vitek. 2019. Scala Implicits Are Everywhere: A Large-Scale Study of the Use of Scala

Implicits in the Wild. Proc. ACM Program. Lang. 3, OOPSLA, Article 163 (Oct. 2019), 28 pages. https://doi.org/10.1145/

3360589

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/3428282
https://doi.org/10.1145/286936.286957
https://doi.org/10.1109/ICSE.2017.70
https://doi.org/10.1109/ICST.2016.19
https://doi.org/10.1145/3363562
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1145/2908080.2908095
https://doi.org/10.1145/3377811.3380381
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1109/ASE.2017.8115662
https://doi.org/10.1145/3133917
https://doi.org/10.4230/LIPIcs.ECOOP.2020.22
https://doi.org/10.1145/3236024.3236057
https://octoverse.github.com/
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/3360589
https://doi.org/10.1145/3360589

Well-Typed Programs Can Go Wrong: A Study of Typing-Related Bugs in JVM Compilers 123:29

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equivalence modulo Inputs. In Proceedings of the

35th ACM SIGPLAN Conference on Programming Language Design and Implementation (Edinburgh, United Kingdom)

(PLDI ’14). Association for Computing Machinery, New York, NY, USA, 216ś226. https://doi.org/10.1145/2594291.2594334

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs via Guided Stochastic Program Mutation. In

Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (Pittsburgh, PA, USA) (OOPSLA 2015). Association for Computing Machinery, New York, NY, USA, 386ś399.

https://doi.org/10.1145/2814270.2814319

Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of Non-

Deterministic Concurrency Bugs in Datacenter Distributed Systems. In Proceedings of the Twenty-First International

Conference on Architectural Support for Programming Languages and Operating Systems (Atlanta, Georgia, USA) (ASPLOS

’16). Association for Computing Machinery, New York, NY, USA, 517ś530. https://doi.org/10.1145/2872362.2872374

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson. 2015. Many-Core Compiler Fuzzing. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR,

USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 65ś76. https://doi.org/10.1145/2737924.

2737986

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Testing for C and C++ Compilers with YARPGen. Proc.

ACM Program. Lang. 4, OOPSLA, Article 196 (Nov. 2020), 25 pages. https://doi.org/10.1145/3428264

M. Zalewski. 2013. American fuzzy lop. https://lcamtuf.coredump.cx/afl/. Online accessed; 05-08-2021.

Michaël Marcozzi, Qiyi Tang, Alastair F. Donaldson, and Cristian Cadar. 2019. Compiler Fuzzing: How Much Does It Matter?

Proc. ACM Program. Lang. 3, OOPSLA, Article 155 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360581

Luis Mastrangelo, Matthias Hauswirth, and Nathaniel Nystrom. 2019. Casting about in the Dark: An Empirical Study of

Cast Operations in Java Programs. Proc. ACM Program. Lang. 3, OOPSLA, Article 158 (Oct. 2019), 31 pages. https:

//doi.org/10.1145/3360584

Bruno Gois Mateus and Matias Martinez. 2020. On the Adoption, Usage and Evolution of Kotlin Features in Android

Development. In Proceedings of the 14th ACM / IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM) (Bari, Italy) (ESEM ’20). Association for Computing Machinery, New York, NY, USA, Article 15,

12 pages. https://doi.org/10.1145/3382494.3410676

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17, 3 (1978), 348ś375.

Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Generics of a Higher Kind. In Proceedings of the 23rd ACM

SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications (Nashville, TN, USA) (OOPSLA

’08). Association for Computing Machinery, New York, NY, USA, 423ś438. https://doi.org/10.1145/1449764.1449798

Eriko Nagai, Hironobu Awazu, Nagisa Ishiura, and Naoya Takeda. 2012. Random testing of C compilers targeting arithmetic

optimization. In Workshop on Synthesis And System Integration of Mixed Information Technologies (SASIMI 2012). 48ś53.

Eriko Nagai, Atsushi Hashimoto, and Nagisa Ishiura. 2014. Reinforcing Random Testing of Arithmetic Optimization of C

Compilers by Scaling up Size and Number of Expressions. IPSJ Transactions on System LSI Design Methodology 7 (2014),

91ś100. https://doi.org/10.2197/ipsjtsldm.7.91

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane Micheloud, Nikolay Mihaylov,

Michel Schinz, Erik Stenman, and Matthias Zenger. 2004. An overview of the Scala programming language. (2004).

S. Park, W. Xu, I. Yun, D. Jang, and T. Kim. 2020. Fuzzing JavaScript Engines with Aspect-preserving Mutation. In 2020 IEEE

Symposium on Security and Privacy (SP). 1629ś1642. https://doi.org/10.1109/SP40000.2020.00067

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-Case Reduction for C Compiler

Bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation (Beijing,

China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 335ś346. https://doi.org/10.1145/2254064.

2254104

Chengnian Sun, Vu Le, and Zhendong Su. 2016a. Finding and Analyzing Compiler Warning Defects. In Proceedings of the

38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16). Association for Computing Machinery,

New York, NY, USA, 203ś213. https://doi.org/10.1145/2884781.2884879

Chengnian Sun, Vu Le, and Zhendong Su. 2016b. Finding Compiler Bugs via Live Code Mutation (OOPSLA 2016). Association

for Computing Machinery, New York, NY, USA, 849ś863. https://doi.org/10.1145/2983990.2984038

Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016c. Toward Understanding Compiler Bugs in GCC and LLVM.

In Proceedings of the 25th International Symposium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA 2016).

Association for Computing Machinery, New York, NY, USA, 294ś305. https://doi.org/10.1145/2931037.2931074

TIOBE Software BV. 2021. TIOBE index. https://www.tiobe.com/tiobe-index/. Online accessed; 05-03-2021.

Seth Tisue. 2017. Bye bye JIRA Ð Scala issues migrated to GitHub scala/bug. https://contributors.scala-lang.org/t/bye-bye-

jira-scala-issues-migrated-to-github-scala-bug/715.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-Aware Greybox Fuzzing. In Proceedings of

the 41st International Conference on Software Engineering (Montreal, Quebec, Canada) (ICSE ’19). IEEE Press, 724ś735.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3428264
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3360581
https://doi.org/10.1145/3360584
https://doi.org/10.1145/3360584
https://doi.org/10.1145/3382494.3410676
https://doi.org/10.1145/1449764.1449798
https://doi.org/10.2197/ipsjtsldm.7.91
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2884781.2884879
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2931037.2931074
https://www.tiobe.com/tiobe-index/
https://contributors.scala-lang.org/t/bye-bye-jira-scala-issues-migrated-to-github-scala-bug/715
https://contributors.scala-lang.org/t/bye-bye-jira-scala-issues-migrated-to-github-scala-bug/715

123:30 S. Chaliasos, T. Sotiropoulos, G. Drosos, C. Mitropoulos, D. Mitropoulos, and D. Spinellis

https://doi.org/10.1109/ICSE.2019.00081

Jie Wang, Wensheng Dou, Yu Gao, Chushu Gao, Feng Qin, Kang Yin, and Jun Wei. 2017. A Comprehensive Study on Real

World Concurrency Bugs in Node.js. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software

Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, 520ś531. https://doi.org/10.1109/ASE.2017.8115663

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Proceedings

of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)

(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 283ś294. https://doi.org/10.1145/1993498.1993532

Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal Program Enumeration for Rigorous Compiler Testing. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain)

(PLDI 2017). Association for ComputingMachinery, New York, NY, USA, 347ś361. https://doi.org/10.1145/3062341.3062379

Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. 2021. An empirical study of optimization bugs in GCC and LLVM.

Journal of Systems and Software 174 (2021), 110884. https://doi.org/10.1016/j.jss.2020.110884

David Zubrow. 2010. IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993)

(2010), 1ś23. https://doi.org/10.1109/IEEESTD.2010.5399061

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 123. Publication date: October 2021.

https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ASE.2017.8115663
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3062341.3062379
https://doi.org/10.1016/j.jss.2020.110884
https://doi.org/10.1109/IEEESTD.2010.5399061

	Abstract
	1 Introduction
	2 Methodology
	2.1 Collecting Bugs and Fixes
	2.2 Analyzing Bugs
	2.3 Threats to Validity

	3 Bug Study
	3.1 RQ1: Symptoms
	3.2 RQ2: Bug Causes
	3.3 RQ3: Bug Fixes
	3.4 RQ4: Test Case Characteristics

	4 Implications and Discussion
	4.1 Lessons Learned and Takeaways
	4.2 A Proof-of-Concept Program Generator

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

