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SAMENVATTING

Uitgaande van de Reynoldsvergelijkingen met de bijbehorende
randvoorwaarden wordt een vereenvoudigd wiskundig model afge-
leid voor ondiepe bochtige rivieren, met als voornaamste uit-—
gangspunten:
- de vertikale afgeleiden van de snelheden zijn groot t.o.v.
de horizontale
- de schuifspanningseffekten overheersen de traagheids- (ad-
vectieve) effekten.
Dit 1ijkt juist voor het geval dat de waterdiepte klein is
t.o.v. de breedte en de representatieve bochtstraal, terwijl
niet te sterke variaties in de geometrie mogen optreden.
Het aldus verkregen stelsel differentiaalvergelijkingen met
randvoorwaarden is in twee stappen oplosbaar. Eerst wordt
(analytisch) de vertikale verdeling van de snelheidscomponenten
en de totale druk bepaald, d.w.z. de vorm van de krommen maar
nog niet de numerieke waarden. Met gebruikmaking van deze in-
formatie worden vervolgens de vergelijkingen geintegreerd over
de waterdiepte, waarna de over de diepte gemiddelde waarden van
snelheden en druk berekend worden door het geintegreerde stelsel
numeriek op te lossen.
Bij vergelijking van de resultaten met metingen blijkt het ge-
bruikte model goed te voldoen voor wat betreft de verdelingen
in de vertikaal, maar minder goed waar het gaat om de verdeling
van de gemiddelde grootheden, vooral bij vlakke bodem. Dit is
kwalitatief te verklaren uit het feit dat het advectieve effekt
van de secundaire stroming op de hoofdstroom en de invloed van

de oevers niet in het model zijn opgenomen.




I.

INTRODUCTION

The steady flow in a rivéer usually has a three-dimensional
character. For some purposes a one or two-dimensional approach
may be sufficient, but in many problems, such as the flow through
a curved river section, the three-dimensionality cannot be ig-
nored.

In the past many efforts have been made to understand and predict
the flow pattern in curved rivers. As early as 1868 Boussinesq(l)
gave a mathematical description of the velocity—-components in
a very simple case of curved laminar flow, giving a good impres-—
sion of one of the most striking features of curved shear flow,
viz. the existence of a secondary circulation, clockwise if the
bend turns to the left and counterclockwise if the bend turns

to the right.

Afterwards, many authors have attempted to describe the steady
curved shear flow mathematically, but they all had to make severe
restrictions in order to solve the mathematical problems. A
review of this literature is given in ref. 2.

Most investigators assume axial symmetry of the flow pattern
(i.e. in each cross-section the flow field is the same), yielding
a very limited class of solutions. Experiments have shown that
the validity of this assumption is doubtful, at least for bends
of limited turning angles.

In 1973, Kuipers and Vreugdenhil(3) attempted to attack the
problem by computing the depth—averaged flow pattern in shallow
curved channels, neglecting the influence of the secondary
circulation but avoiding the assumption of axial symmetry.
Unfortunately, their results were influenced by the computational
procedure (artificial viscosity, the fitting of the curved walls
in a rectangular mesh).

(10)

Recently, Engelund used a greatly simplified, but non-

axisymmetrical method for the computation of the flow field in




order to predict the bed configuration in a sinusoidal bend
with an erodible bed. The results agree well with experimental
observations.

In the present report, the secondary flow theories are extended
to non~axisymmetrical flows and combined with depth-averaged
computation methods. A basic assumption in this theory is that
the depth of flow is much smaller than the channel width and a

characteristic radius of curvature of the flow.




I1. THE MATHEMATICAL MODEL

1. Coordinate-system

A Cartesian coordinate-system (x,y,z) is adopted, in which
% and y are horizontal coordinates and z represents the

vertical coordinate, increasing in upward direction (cf.

sketch).

Definition sketch

A curvilinear coordinate-system may be preferable for the
actual application of the method, but the essential reason-—

ing is not influenced thereby.




2. Differential equations

If g represents the acceleration due to gravity, p the mass
density of the fluid, Vs Vy and v, the velocity—components
in the relevant coordinate directions and ¢, ¢ _, 0__,

xx* “yy® “zz
T s T and T the components of the stress tensor, the
xy’ "xz z
differential equations describing the conservation of mass

and momentum in an elementary volume read:
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If the anisotropic part of the stress tensor is assumed to
be related to the rate-of-strain tensor through a scalar
viscosity-coefficient A(x,y,z), the components of the stress

tensor can be written as:
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where p denotes the isotropic part of the stress. The viscosity-
coefficient needs further specification. This will be discussed in
chapter V. Substitution of the above expressions into the balance-

equations yields:
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3. Boundary conditions

The solution

conditions:

- inflow and
- conditions

- conditions

of this system must satisfy three kinds of boundary

outflow conditions
at fixed walls (banks, bed)

at the free surface

The inflow and outflow conditions may differ from case to case, but
the boundary conditions at the fixed walls and at the free surface
will have the same character for all problems considered.

At a fixed wall the boundary conditions stem from the impermeability
of the wall (forcing the normal velocity to vanish) and the no-slip

condition (implying vanishing tangential velocity). Consequently:
(14)

at the fixed walls.
At the free surface, z = zs(x,y), the boundary conditions arise from
the kinematical condition of zero normal velocity and the dynamical

conditions of zero pressure and tangential shear stress, yielding:




s (15)

(16)
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III. NORMALIZATION

Since the present mathematical model is too complex to be solved
completely, it is simplified. Looking for the dominant terms in
the differential equations , a normalization is carried out,
such that each term of the differential equations and the bound-
ary conditions is written as the product of a constant scale-
factor and a variable (dimensionless) quantity of the order of
magnitude 0(1)*). Doing so, the importance of a term is indicated
by the relative magnitude of its scale factor.

It is assumed that this normalization of the mathematical model
can be realized by adopting an adequate scale-factor for each
variable, either dependent or independent. So if a function £

of the independent variable x may be normalized as:

£f=TF *% f(¢) whilex =X *z

F and X being constant scale-factors, then:

4f _E df ien I .
" X iz with ar 0(1)

In general terms, the normalization is carried out by defining:

v =Uu; v =Vv;v =Ww (18)

o
+
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*) In the sense of Landau's O-symbol: a quantity f is of the

order of magnitude O(en) if lim fg exists.

€
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yielding the normalized differential equations:

du . VX 3v _ WX 3w _
R T (19)
3,2, , WX P op . 2
3 (u™) + W on (vu) Uz 0% (wu) = - ;Ei 5e + T

82u X2 Bzu X2 Bzu J0, du da X~ 3u VX ov
bt S g e ot e e )
T Y T 2% ez oy on

oa X2 au WX ow
"o Gt 5] @0

and two other momentum—equations.

In this way the problem of estimating the order of magnitude

of the terms in the differential equations has been "translated"
into the problem of choosing the correct scale-factors of the
variables. In essence both problems are similar, but the

latter provides a more systematical attack.

The actual choice of the scale—factors is based on the following

considerations (see sketch):




I.

The horizontal coordinates have not yet been related to the
channel geometry and therefore the coordinates x and y as
well as the velocity-components Vi and vy must be equivalent

in the equations. Hence:
X=X and U=V

In a shallow river at large distances from the banks (say

at least a few times the average depth of flow), the shear
stress terms in the momentum—equations including derivatives
with respect to z will be predominant. So restricting the
problem to shallow rivers, one can state:

X2

—_—>> ]
2
Z
In the case mentioned above, the vertical derivative of the

main velocity~component is estimated to be:

avtot VtOt
9z = a o
in which v = the depth-averaged value of v and 4 =

tot tot
depth of flow. Therefore the scale-~factors of the vertical

coordinate and the horizontal velocity-components are chosen
as:

U=V-= ; z2=4d 21

9
Bd

in which: = total discharge

representative channel-width

e = O
]

= characteristic depth of flow (for instance

the overall mean value)




4, The deviation from uniform flow is caused by the curvature
of the channel and the configuration of the bed. A charac-
teristic radius of curvature, such as the average radius of
curvature RO of the channel axis, will be an adequate scale-
factor for the horizontal coordinates if the influence of

the bed configuration is not dominant. Then:
X=Y=R (22)

Otherwise the horizontal length scale must be based on the

bed configuration.

5. In the equation of continuity, the term including %% can

not be expected to be dominant over the other terms. So at

most:
WX .
- 1 or, taking account of 21 and 22:
d
W== V (23)
RO

6. The normalized model must include the case of uniform,
rectilinear shear flow, for instance along the x-axis.

For X = Y = RO eq. 20 then reduces to:

A 2
P 9p - X 3 Ju
0 = = +——~—"——(0L—— (24)
pV2 9 pUX ZZ 14 14

Since both terms in this equation must be of the same order

of magnitude, one can state:

—37 = or, regarding 21 and 22:
pV
R

P = sz ‘é‘Q (Re')-l (25}
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pVd
where Re' = —~ can be considered as a scale-factor for

the Reynolds number based on the turbulent viscosity and
the depth of flow.

As an alternative, P could be defined proportional to pgd
(the pressure will be nearly hydrostatic). In that case

eq. 24 yields:

v %o
P=red 3 d R (26)

So P = pgd is applicable to the present problem if

]
o’/‘U

- *)
Re' Os(l)

Bl
=X

The Reynolds number scale Re' is a very important factor
in the normalized momentum-equations. If Re' is of the
order 0(1), the friction terms dominate the inertial terms.
In that case a first approximation of the velocity field
can be based on friction, piezometric head and continuity.

d
If 1/Re' = O(i ), however, friction terms and inertial
0
terms are equally important and then the latter terms can no

longer be neglected, not even in a first approximation.
As a consequence, the Reynolds number scale has great

influence on the method of solution of the problem.

*) In the sense of Landau's Os-symbol: a quantity is of

the order of magnitude Os(en) if lim EK exists and # O.

€
evo




At this point the friction is assumed to be dominant, so

Re' = 1.

In chapter IX, the consequences of this assumption for the
applicability of the solution will receive further attention.
According to (25) P may then be chosen as:

szRO

The scale-factors defined by defs. 21-27 are substituted
into the system of differential equations and boundary condi-
tions. Defining € by Q/RO, whence & << 1, the normalized

system is found to read:

Ju v ow
5E + an + SE =0 (28)
] 2 3 9 EE Bzu 2 Bzu
e{sg (u™) + Ty (uv) + 3 (uw)} = - 5E + a{——7 el st
14 an
2 82u 2 3o 3du 2 3a ,0u v
+ ¢ — } o+ 2¢ EE-EE + € 5;-(§;-+ SEQ +
3E
3a ,ou 2 3w
t Grte W (29)
2 3.2 .3 p . ok, 23
E{SE (uv) + Ty ) + EE(VW)} == 5 + a{—_i el =5+
24 m
2 Bzv 2 30 0V Ju 2 30 dv
+ Z— — (— s et
e ag2}+€ 5t Ger ) Y2 o
3,0V 2 aw
Yo Grt e o (30)
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2
2 0w 2. 3a 2 w Ju LI 2 dw v
+ e 352 } + e {32-(5 3t 529 * 3 ( T ) +
3a oW
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with the boundary conditions:

- at the fixed walls (bed and banks): u= v=w=0 (32)

14 3z
_ _ s s
at the free surface [ = S T + kv (33)
gd
p = wemane g;s (34)
v
Ju 2 dw v 2 Jdw, _
cy,(s-i- + € BE) = a(-é-g + € _8-;)-) = 0 (35)

Condition 34 shows that p is of the order Os(l) at the free
gd
surface if — = Os(l). In that case, according to eq. 26,

V2

P = pgd is applicable as well.

Summary of restrictions

The present normalization restricts the applicability of

the mathematical model at the following points:

~ the channel must be shallow, but not necessarily of uni-
form cross—section.

- the characteristic depth of flow must be small with respect

to the horizontal length scale.




- if a characteristic radius of curvature of the channel
is chosen as a horizontal length scale, the influence
of the bed configuration on the flow field must not
dominate the influence of the channel curvature.
Otherwise, the horizontal length scale must be based
on the bed configuration.

- the shear stress effects must dominate the inertial

effects (Re' = 0(1)).

1 T/

Included in the normalized model

(except the bank regions).

— 1

Not included in the normalized model.

)

Included Not included




IV. METHOD OF SOLUTION

The normalized problem will be attacked by means of a
well-known method of regular asymptotic expansions. If
f(g£,n,z,e') denotes any dependent variable of the normal-
ized system, €' being a small parameter, it is attempted
to find a solution of f of the form:

£(E,n,03e') = (et £, (£,n,z3e’) with £, = 0(1) (36)

I ™8

i=o0

Each function fi (called here the (i)th order subfunction
of f) is solved from the corresponding approximation of
the differential equations and the boundary conditions,
starting from i=0 and going on with i=1,2,3,.....,
successively.

The small geometrical parameter e = ijO is selected as
the perturbation parameter here, since it represents the
curved character of the flow.

The convergence of the power series expansions according
to (36) will not be considered, since this may be expected
to raise very complicated mathematical problems which are

far beyond the scope of the present report. In order to

obtain a rough indication of the limitations of the solu-
tion, however, it will be checked whether the consecutive
terms in the expansions decrease, if at least the sub-

functions in these terms have been determined.

Algorithm to the asymptotic solution of the system.

1. Expand each of the dependent variables u, v, w, p and
o in a power series of ¢, according to 36 and substi-
tute these expansions into the normalized differential
equations 28 through 31 and the boundary conditions 32
through 35.




2. Collect all terms of the order of magnitude 0(1) in each
equation and neglect all smaller terms. This yields the
so—called zero order differential equations.

3. Determine the boundary conditions of the zero order
system (see Appendix I).

4. Solve the zero order system.

5. Eliminate all terms 0(l) from the complete equations
resulting from 1., collect all.terms of the order of
magnitude O(e) in each equation and neglect all smaller
terms., This yields the first order equations.

6. Determine the boundary conditions of the first order
system (App. I).

7. Solve the first order system.

Repeat steps 5 through 7 for successively higher powers of e.

An important feature of this asymptotic method is the possi-
bility that not all boundary conditions can be satisfied.

In the present case all inertia terms as well as the greater
part of the stress terms vanish from the zero order equa-
tions. As a consequence, the only boundary condition which
can be satisfied at the banks is the condition of imperme-
ability to the main flow, which provides the lateral bounds
of the main flow. The no-slip conditions at the banks are
not satisfied, so the solution must be expected to hold

good only at some distance from the banks, where the latter
conditions have ceased to influence the flow pattern. This
emphasizes again that the solution is only applicable to

shallow flows.




V. TURBULENCE MODEL AND BOUNDARY CONDITIONS AT THE BED

In turbulent flows, the shear stresses appearing in the
momentum-equations (2-4) consist of two parts, one of which
arises from the molecular viscosity, while the other one
represents the exchange of momentum due to turbulence.
Therefore, if the shear stress is assumed to be proportion-
al to the rate of strain (eqs. 5-10), the coefficient of

proportionality consists of two parts:
A= py + At(x,y,z) (37)
in which v denotes the kinematical viscosity of the fluid

and At(urbulence)
of turbulence viscosity. In general, At depends on the

is called eddy viscosity or coefficient

velocity field, so on the solution of the mathematical
problem, which itself depends on At again. Consequently,
the mathematical problem does not form a closed system in
case of turbulent flow.

The most usual way to make the system closed is to assume
a distribution of At over the flow field or to prescribe
its dependence on the velocity field. The latter will be
done here and to that end some simplifying assumptions
will be made:

1. The molecular part of the viscosity can be neglected

with respect to the turbulent part. So:
PV << A or %3 << g (38)
2, At any point of the flow field the turbulence effects

in the vertical direction are the most important. This

is in accordance with the earlier assumption of shallow




channels. It implies that in a first approximation the main
flow can be considered as a simple shear flow in a (horizon-

tally curved) vertical surface.

A mixing-length hypotheses can be used to describe the eddy

viscosity:

L
0, = 1GH% + EDHH (39)

This is a rather crude assumption, presumably adequate to a
first approximation of the main flow, but at the least
questionable for more complex flow fields like the present
one, where the curvature and the secondary flow will influ-

@),

Nevertheless, a mixing-length hypothesis is adopted because:

ence the turbulence (Bradshaw

- it allows for a rather simple solution, whereas more
advanced turbulence models (Launder and Spalding(S))
do not. So it may be interesting to find out to what
extent this simple approach yields results which are
applicable in engineering practice.

- many authors dealing with axisymmetric curved river flow
have made assumptions as to the turbulent shear stress
which are based on a mixing-length hypothesis (Rozovskii
(6>) or could be derived from it. It may be interesting
to compare the results for axisymmetric flow with the
results of a similar theory for an actual bend.

7 . .
B.C. Yen( ) corrects o, for curvature effects in

the following way:

o = 1HEDT <§-§>2}* F(r) (40)
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where r denotes some quantity indicating the curvature of
the main flow. F is chosen such that the average lateral
dispersion coefficient is proportional to 1/r2. From a
physical point of view this is a rather weak basis, whence

F is set equal to 1 here.

Rozovskii concluded from experiments that throughout the
bend the vertical distribution of the main velocity-
component far from the banks remains close to the well-
known logarithmic distribution of uniform shear flow.
Besides he showed for axisymmetric curved flows that the
transverse velocity—component agrees better with experi-
mental results when computed from a logarithmic main flow
than when computed from any other distribution (parabolic,
power law, elliptic).

Therefore, an expression of L will be adopted that is known

to generate the logarithmic distribution in case of uniform

flow:
Tt .~z

L=«(-t) (Es—:—-- % (41)
s Cb

where k = Von Karman's constant, Cs = normalized free
surface level, Cb = normalized bed level.
Excluding the correction factor for curvature effects, the

expression of @, finally becomes:

T~z 1
_ 2 s 2 w2 3v.2.4
s m oK e @)’ (@ D (42)

The power series expansion of this expression is given in

Appendix II.




A problem arising from the logarithmic distribution is how
to account for the no-slip condition at the bed, where the
logarithm has no finite value. In uniform flow theory it is
usual to cope with this problem by prescribing the level where
the logarithm equals zero. This level lies somewhat above the

bed, say at ¢ =g, + z'. Then the expression for the velocit
b Yy

distribution reads:

—) (43)

where I is the slope of the energy-line. Then:

P . =_1_ - - LI P
u J u dg K»/(cs g) L{-1+¢ ' o+

+ ln(Cs - Cb)} (44)
Adopting Chezy's law for shallow flows:

A e (45)

where C denotes Chezy's constant, and equating 44 and 45

yields for

z' << |inz']:

2" = expl- 1 - L4 1@ - g, )} (46)
Vg 8

Then the expression for the velocity-distribution can be

written as:

-z
-3 /8, Y8 b
u=u{l + ot ln(CS - Cb)} (47)




A graphical representation of this distribution is given in
fig. 1.
Correspondingly, in case of curved flow the original no-slip

conditions at the bed are replaced by:
u(g =g, *g') =v(c=1t +') =0 (48)

where r' follows from eq. 46.

This assumption may be plausible for a first approximation
of the main flow. For the secondary flow it is doubtful, as
it would imply that the transverse velocity profile (which
will contain logarithm—like functions as well) becomes zero
at the same, artificially introduced level as the main flow
profile. Besides it is unlikely that Chezy's constant will
determine that level.

Considering other authors, one finds several types of bound-
ary conditions at or close to the bed.

(6)

1. For smooth beds, Rozovskii supposes the transverse
shear stress to vanish at the bed instead of the transverse
velocity. He arrives at this condition by the following
considerations (for axisymmetric shallow flows far from
the banks):

- there must be a point at some distance § above the bed
where the vertical gradient of the transverse velocity-
component (and consequently the transverse shear stress)
equals zero (see sketch).

The momentum balance in the layer below this level
shows that the transverse bed shear stress is of the
order of magnitude 0(8/d). For smooth beds § is small
with respect to the depth of flow.




5‘1- Viransverse

- in the shallow water approximation, the piezometric
head is nearly constant in a vertical. Therefore the
gradient of the piezometric head is proportional to
the slope of the free surface.

- averaging the transverse equation of motion over the
depth of flow shows that the transverse slope of the
free surface consists of two components, one caused
by the average centrifugal force and the other ome
caused by the radial bed shear stress. In case of a
smooth bed, the latter component can be neglected with
respect to the former one, since it is of the order
0(s8/4d).

—- the slope term in the transverse equation of motion can
be approximated as above. This is equivalent to setting
the radial bed shear stress equal to zero.

In chapter VII it will be shown that the transverse veloc-—

ity profile near the bed, satisfying condition 48, can

differ considerably from the profile based on Rozovskii's

condition, even though in both cases the transverse bed




2 4

gshear stress is negligible with respect to the centrifugal
effect.

(8)

Ananyan uses the laminar sublayer concept, assuming the
thickness of the sublayer to be the same as in a uniform
flow with the same shear velocity. The results of this
approach turn out to be very similar to those obtained

by condition 48. Condition 48 is simpler, however and
therefore preferable.

(9)

Kikkawa et al. state that a turbulent boundary layer
must develop from the outer wall towards the inner wall
as a consequence of the secondary flow. The thickness of
this layer, &, is defined as the vertical distance from
the bed to the level where the transverse velocity has a

zero gradient (see sketch).

? éi‘

H
Inner wall Quter wall

As mentioned above, the transverse shear stress equals
zero at the edge of this layer. Therefore, the momentum
balance in the boundary layer provides an expression for
the bed shear stress, which does not depend on the trans—
verse velocity profile as long as the transverse slope

of the free surface can be approximated by the centrifugal
effect alone. As stated above, this is only true for
smooth beds.

In addition, expressions are given for the boundary layer
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thickness and the transverse shear velocity as functions

of the fluid Viscosity, the channel width and the local
transverse velocity at the edge of the boundary layer.

These expressions are derived from the theory of the devel-
oping boundary layer at a smooth flat plate. Together with
the formula for the transverse bed shear stress they provide
an explicit expression for the boundary layer thickness.

It is questionable whether this condition can be applied

to a rough bed, as the authors suppose. Even if it is lim-
ited to smooth beds, an important objection is, that the
layer between the level § and the bed is essentially differ-
ent from the boundary layer at a smooth flat plate. Hence
the flat plate theory for the growth of the layer can not

be transferred to this problem.

A very widely applied rough bed condition is given by
Rozovskii(6), who states that the shear stress vector close
the bed must coincide with the velocity-vector there, since
the force exerted by the bed upon the stream is not primarily
determined by viscous effects, but by the presence of rough-
ness elements obstructing the stream near the bed. This

is essentially different from the smooth bed, where the force
arises entirely from viscous effects. Then the shear stress
vector can deviate from the velocity-vector close to the

bed. From this point of view condition 48 should be con~
sidered as a smooth bed condition.

Rozovskii's condition seems to have a sound physical basis,
but it raises another question: at what level must

the condition be imposed?

Without further arguments Rozovskii takes the equivalent
bottom roughness k as the distance from this level to the

bed, while k is assumed to be related to Chezy's constant
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in the same way as in uniform flow. This could be reason-
able, supposing the flow very near the bed behaves like a
uniform flow with the same bed shear stress. From this point
of view condition 48 can be defended as well, since in uni-
form flow it is applicable both in smooth and in rough bed
cases.

Moreover, using Rozovskii's condition the solution of the
mathematical problem is only fully determined in axisym-
metric flows. Otherwise an additional condition is needed
near the bed, as will be shown in chapter VI.

For instance, this could be a prescription of the level
where the total velocity equals zero or of the value of the

total velocity at a distance k above the bed.

An essentially different approach to both the turbulence model
and the boundary condition at the bed is suggested by
Engelund(lo), who assumes that the eddy viscosity is constant
in a vertical, introducing a slip-velocity at the bed. Conse-
quently, the main flow profile is the well-known Boussinesq-
Bazin parabola (fig. 1). For the secondary flow Engelund uses
the aforementioned rough bed condition, which is sufficient

as he assumes the transverse velocity to have the same vertical
distribution everywhere in the flow field (then the solution
procedure is the same as in the axisymmetrical case).

(8) and Ikeda(]l)

the logarithmic and the parabolic law, adopting a logarithmic

Ananyan suggest some kind of mixture between
main flow distribution, but a constant eddy viscosity when
computing the secondary flow,

Finally, Rozovskii(6) studied several other main flow distri-
butions (power law, elliptic), but even though they are rather
good approximations to the main flow, they turned out to yield

secondary flow profiles which were inferior to those obtained
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from the logarithmic profile. Therefore they will not receive

further attention.

In chapter VII the vesults of the present model and of the
most important other models mentioned will be compared to
one another and to experimental results.

First, the next chapter gives a description of the solution

procedure.
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VI. SOLUTION IN CASE OF PREDOMINANT SHEAR STRESS

Since the essential points of the solution procedure are
hardly influenced by the turbulence models mentioned in

chapter V, the present model is maintained here.

1. Zero order system

Applying the solution algorithm to eqs. 28 through 35

yields the following zero order system:

;;Q + ;;9 + ;;9 =0 (49)
0= - zzo + %- (o zzo ) (50)
0=- ;;9 + %E'(ao ;;9 ) (s5n
0=~ -2—52 (52)
“olcb+cé=vo'cb+c6=wo g rey 0 53"
(g zzo )| oo (g z_?" )lzsc =0 (54)
wol teo (% aiio TV BE:O ) (55"

s0

*) Solving w, from eq. 49, only one boundary condition

is needed? Cond. 55 is preferable here, as all free
surface boundary conditions are imposed at one well-
defined level, whereas it is not certain whether the
condition for w, should be imposed at g = ;b or at

0
r =1z +1'.

b 0
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s0
pal, == (56)
0 CSO F2
in which:
- -1 - k€ -
o = exp {- 1 /g+ In(g 4 = g )} (57)
and:
1 egd
F2 V2

‘In order to solve the zero order system, it is assumed that
the shape of the vertical distribution of the main velocity
is constant throughout the flow field. This is in accordance
with the conception of the main flow being a curved version
of uniform flow, adopted in the foregoing chapters.

Eqs. 50 and 5! show that Uy and vy may be considered as the
zero order components of this main flow. Hence their vertical

distributions must be similar.

So the zero order main velocity is written as:

=u' f 59
ug £5(Est goty) ‘ (59)

and its components in the horizontal directions are:

u = u fo(c,cso,cb) and v, = v, fo(c,cso,cb) (60)

In these expressions, 36, ;0 and ;0 denote depth-averaged

quantities as defined in appendix III. Consequently:

fo = 1 (61)

Subsequently, the zero order system can be solved, yielding:
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ay = 1 + B+ LB anr 4 7)) (62)

vy = Vil + é% + é% In(l + 2,)} (63)
3u v

AN (T ;b){339.+ 3;9}(1 + 2 ) {1 + :; + é% In(1 + 2} +

Y oz
g -1 /s, /8 *
*lug gt Vo e XU gt e I+ 2)) (64)
-
Po = Bo = 3 (65)
F
in which:
-z
zy = 2 (66)
CSO cb

The depth-averaged functions GO’ ;O and EO must be solved from

the depth—averaged zero order equation of continuity:

1 9 - 9 -
oo [57 (g egg = 201 *+ 37 (p(egg = 503 = (67)

p

and the depth-averaged zero order equations of motion:

u!

5
3L o2 (68)

%) This solution satisfies both cond. 53 and cond. 55, which
implies that the boundary condition near the bed should be

imposed at ¢ = Cb + Cé rather than at ¢ = cb.




This solution will be discussed in chapter VIII,

(69)
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2. First order system

The first order differential equations read:

Bu] Bvl Bwl
—e e e = ()
G T T (70)
3(u2) 3(u.v a(u w,.) ap du du
o), M%7 %Mol T Tl D00 gy
o9& an K14 3k 3z 0 3t 1 3¢
3(u.v.) B(vz) a(v.w.) ap v v
o¥o” , "ol Yool T8 T, T 00 g
14 3n 14 an 9z 0 3¢ 1 3z )
Bpl
0= - T (73?

According to appendix 1, the relevant boundary conditions are:

w,lzbwfﬁ K%(GO;;ENO;P» (76)
(o 2—1;-‘- o -Z-;(-’- )"?so - ES—O—;—S_—‘-C—]—D—% ugul (77)
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av 'avo ! Csl g ==
(o o, —) = = v (78)
0 3z 132 ey T~ Gy g2 00
ow 3z 14 3z
0 sO s0 sl
wl =-r G (u . +u +
e, s173g g g 1 ot 1 5 0 "B8E
Zeo 3 z M Zeo
4
sl
pil, == (80)
s0 F
The solution of this system is:
z
- g, /e sl /g
up =l 4ok 8 In(142) ) = === TR U ¥
s0 b
- - v l/_S. - - ‘/i .‘{.% _’fi %
(cgg = Tp) U, [2F(20) + ZE Fy(2g) - 201- {1+ co + oo
1n(1+z0>}] (81)
=\—z{1+-’{&+l/§1(l+z)}-——-—;-s-l——-/\7+
M 1 cc k¢ M7 L -1z, xC 'O
s0 b
- - i _‘/_5. - - _‘/ﬁ _‘{.5 '/i *
(tgo = 5V, [2F (20) + 2B Fo(20) - 201- o) {1+ o+ o
In(1+24)}] (82)

*) Only one of these conditions is needed for solving LA
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- Esl
pl = p] = =5 (83)
F
in which:
N -2 =2, = == =
R T (g™ + vp) Tpg = ugvy Tl (84)
N -2 =2 = == =
vy 7,3 (g T ) T T ugvg Tyl (85)
2¢ u
0
du 3u
T oo-5 9,7 _0
Teo " % 58 Y Vo T (86)
3v av
- - V5 - 9
To= %3 "V m (87)
z, 1n(1+2)
F](ZO) = f 7 dZO (88)
-1+z! 0
0
Z, 1n2(1+ZO)
F,20) = [ ———dz (89)
-1+2! 0
0
2;'
0 KC
Z]! = e = exp(-1- ) (90)
0 T - & [

Subsequently, w, can be solved from eq. 70, yielding a fairly
complex expression which is not relevant to the argumentation.

Therefore it will be left out.




35

The depth—averaged functions El, \7'1 and 51 must be solved from

the depth-integrated first order equation of continuity:

3 - - 3 = _
3¢ tu (C'SO N C‘o) * U'Ocsl} +5-5{V1(CSO N CD) * VOCsl} =0

9g 1

and the depth-averaged first order equations of motion:

op
1 g 1 Lol . 32 - - -
—_—= = S — {(w!)7 + udu, + u vV}t
3E 2 Too ~ o 0 0’™ 001
C v
g 51 ot Sel g _ o, 88 -
+ u'u (143 2 ) T
2 (e, - Cb)z 0% 2.2 33 £0
o) 1 1 2 - - -
— - e —— {(u'" + V)V, + u v ul+
n 2 %o = 0 0’V1 oo™
0
4
g 51 - g _ . g's
) 7 U T (43 55 = 25579 T,
C (cso- %) k“C  C

This solution will be discussed in chapter VIIIL.

CRY)

(92

(93)
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3. First order approximation of the complete solution.

If an (n)th order approximation fn(&,n,z3e) of the function

f(E,n,z3e) is defined by:

fn(E,m,zie) = £(E,n,z5e) + 0™ ) (94)

then the following expressions for u, v and p are first order
approximations of the solution of the complete system (28

through 35):

ut = uf{l + Ki% + {% In(1+2)} - e(g = L) u [ZFI(Z) + —;—/%FZ(Z) +

-2Q1 —:—%){1 +-K‘-/-§+l:%1n(1+z)}] (95)° "
vl'= v{1 + -‘{5+ g In(1+2)} - ez - )’\'[ZF (z) + 1/5F (z) +
wc T xc " eltg = Lp/VLeF, <C "2

- 2(1 —:—‘-é){) +:—%+-£%1n(l+z)}] (96)
4 ,

pl = —= (97
n ,

in which:
4

Z = ——— (98)
Cs Cb

n 1 -2 . =2 = - -

u = — (' +v) T, ~uvrT} (99)
2K2 u'3 £ n




Y= 21 5 (@2 + 3% En -5 3 TE} (100)
2k !
T
TE =y 5E + v o (101)
Tn = q 5E + v ™ (102)
Zo L (142)
FI(Z) = f J*—E-— dz (103)
~-1+z'
z 2
F (2 = J ll‘-é—‘i?—)- 4z (104)
-1+Z'
v :
A - ICHIE -’}g) (105)
s b

This solution provides little insight into the physics of the
secondary flow. Therefore it will be attempted to express it

in a more "physical" way by means of a coordinate-transfor-
mation.

Expressions 95 and 96 are hardly influenced by orthogonal
transformations of the horizontal coordinates. Only the factors
S and v will change. Adopting horizontal coordinates coinciding
with the streamlines of the G, v-field and their orthogonals,
one of the transformed depth—averaged velocity—components,

say v, equals zero by definition. In that case one finds:

U S S 1 (106)
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vl o1l u (107)

. . . . . -1 .
in which s is the streamwise coordinate and rS is the curva-
ture of the local u, v-streamline.

Then the horizontal velocity—components can be written as:

ul = a{1 + {% + Kig-ln(HZ)} - ez, - 1) —%g-s- fsec(z) (108)
2k
vi= - e -t) 1§-§~ fsec(Z) (109)
K s

in which fsec(Z) denotes the normalized vertical distribution
of the secondary flow. This has in essence been found by many
authors for axisymmetric flow problems. According to 95 and 96
it is given by:

fsec(Z) = 2 FI(Z) + é% FZ(Z) - 2(1 - E%){l + E% + g%‘ *

1n (1+2)} (110)

A graph of this function is given in fig. 2.

From 108 and 109 it appears that there is a main flow with a
vertical distribution like uniform shear flow and a secondary
flow due to inertial effects, having a vertical distribution
similar to the radial velocity in axisymmetric curved flow
(fig. 2). In the present case, however, this secondary flow is
in general not perpendicular to the main flow, but has a compo-
nent in the main flow direction as a result of the longitudinal
acceleration of the main flow. As in the case of axisymmetric
flow, the transverse component of the secondary flow is caused

by centrifugal effects, thus by the curvature of the main flow.
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Considering the deviation of the horizontal velocity vector from

the direction of the G,;—streamlines, eqs, 108 and 109 yield:

_ vl _ “l___ 2

tan ¢v =TT a(;s Qb) 5 fdev(z) + 0(e™) (1
«r
s

where: fdev(z) = fsec(2) (112)

Ve, Ve
b+ kC * kC In(1+2)

Fig.3 gives a graph of this function. Its value at the free sur-

face is:

1 v
fdev(0) = — 2F (0 +2£F (0) - 200 - $5-)}

1+ g k C
kC
v
= = (1.2899 - 2.4041 B+ 2 B} (113)
xC 2.2
g k C
1 + ==
kC
Near the bed one finds:
/g
fdev(ZVy ~ 1) = = 2(1 = KC) (114)

The components of the horizontal shear stress follow from the

definitions:

_ Ju _ v -
TSC =a, 5T and Tnz a 5T (115)

Using expression 42 for a, and exprs. 108 and 109 for the veloc-

ities, the components of 115 can be elaborated to:
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--E P e - ol 1% )22 4 0?16

T
14 02

-2
T = Sy T ) L l/-g- 2(1+2) 9-f-§-‘3-°- + 0 (117)

The vertical distribution of the ''secondary shear stress',

Z(1+Z) Ef%%ﬁ » is given in fig. 4. The values of the bed shear

stress components are:

. B2 S,y D3, &8 .78
sted 7 U * E(CS cb) u 9s 2 2.2 (1 KC) (118)
C Kk C
ol g /g, |
Tobed © £(Bg T &) T 2 2.2 - (119)

So the deviation of the bed shear stress vector from the direc-—

tion of the u,v-streamlines is:

=21 _ Vs - 2
tan ¢r = Kz r, (1 KC)(CS Cb) + a(e”) (120)

Apparently, the directions of the velocity vector at the bed

e 2
and the bed shear stress vector coincide up to 0(e™).

Returning to the Cartesian coordinate-system, the differential
equations from which the depth-averaged quantities u,v and 5

must be solved read:




3 - 3. - _ -

-a-é-{u(cs ’;b)}’“%‘ﬁ{"(cs :.b)} 0 (121)
p__g nu - e(1 + 3 £ —zif&-)i (122)
98 c? % T 5y 2 S
§§_=_§i§.'__—e(1+3g —z-g-/-%—-)i (123)
an C2 CS - Cb KZCZ K3C3 n

The solution of this system will be discussed in chapter VIII.
In the equations of motion 122 and 123, there is an extra term
in addition to the "uniform flow terms". Apparently, this term
arises from inertial effects, but it is not exactly equal to the
average of the inertial terms of the main flow, since then the

constant should have been

|+ B instead of | + 38— -2 g’s_ (124)
2.2 2.2 3 3
k C € C kC

. 2
as can be shown by averaging u_ over the depth of flow. The rest

0
of the term accounts for the bed shear stress caused by the

secondary flow. According to 118 and 119, the secondary bed shear
stress i1s proportional to the inertial terms of the average main

flow through the constant

g Y
2 =5 3 E‘%)
k C

which is exactly the difference between the two constants in
124,

Obviously, the secondary bed shear stress is of minor importance
in the depth—averaged equations of motion 122 and 123, the

factor g/K2C2 being small with respect to 1.
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4., Solution with rough bed conditions.

In case of a rough bed, at a distance k above the bed the
direction of the horizontal shear stress must coincide with

the direction of the horizontal velocity. So:

T v, 2w

nt _ of an _ Vv - k

T, au, 20w FETR T
e T % BE

In the zero order system, this yields:

o

<

Qr
™
i

[+

(=3

=4
oo

o

at g =g, +

e
fej=

Q
L

which is automatically satisfied if the vertical distributions
of Y, and v, are similar. Hence the system requires another
boundary condition in order to be fully determined. Assuming
the flow near the bed to be similar to a uniform flow with

the same bed shear stress and the same local direction, this

condition is:

v
N N 3Y SO k s sk
u (u® o+ v9) - (7E + 1 + ln,d) at =g ¥ a
. . 2 2.4
hich: = + 4
in which: v (Tgc TUC )

Combining this "velocity-condition" and the abovementioned

"shear stress condition", one obtains:
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Ju 2 ow, kC k.2
) Ao In <
£ 3z + € 85) (Vg + 1 + d)

¢ at = + E
& Cb d
1 ov 2 3w, ,kC k2
LI EAS did In &
vu Kz o, (3§ + g Sn)(Vg + 1 + d)

Using these boundary conditions, the vertical distributions of
the various subfunctions can be solved in the same way as

described before.

In axisymmetric flow, the "velocity-conditions' and the "shear
stress condition" can be uncoupled, as the main and the secondary
flow direction coincide with the tangential and the radial
coordinate, respectively. In that case the tangential (main)
velocity is solved directly from the equation of motion in tan-
gential direction, using the 'velocity-condition" at the bed.
Subsequently, the radial (secondary) velocity is solved from

the equation of motion in radial direction, using the "shear

stress condition" at the bed.
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VII. AXISYMMETRIC FLOW

Before going on with the computation of the depth-averaged
quantities, the axisymmetric flow problem will receive
further attention, in order to compare the present solutions
to those of other authors and to experimental results. In
fact, the axisymmetric solution is only a special case of
the general solution, so it may be obtained by the general
procedure described in chapter VIII., Since it allows for a
rather simple analytical solution, however, it will be
treated separately.

Adopting a cylindrical coordinate system (r,¢,z) with a
vertical axis going through the centre of the circle describ-
ing the centreline of the channel, the present solution

reads in case of axisymmetric flow:

we=ui{l +l:-§+l:%1n(1+z>} (125)
v = a(cs - Cb) —§~ fsec(Z) (126)
K ¥

with the depth-averaged equations:

1 3 g _u
1 I . S (127
r 99 CZ Cs - Cb )
» g glg &
=e(l +3 -2 ) — (128)
ar 2.2 3.3 r
Kk C k C

. )
For geometrical reasons, SE-must be a constant, say - A.

Then:
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z
=5 5 (129)

o a —_B—.= -
(CS cb) u dr = r T, (130)

where T, and r_ are the radius of curvature of the inner and the
outer bank, respectively. If (cs - ;b) is known, A can be solved

from 129 and 130.

Since 5 = ;s/F2 (eqs. 34 and 58), eq. 128 can be translated
into an equation for Cs' 1f, moreover, the origin of the coor-
dinate-system is situated at the average level of the free surface

in the ray under consideration, then by definition:
J z dr =0 (131)

Thus the general solution of Cs reads:

K K
T T h
g, = Ke {e¢ - r{ e — dr} (132)
1 r
2
with: K = eF°(1 + 3 =B -, 88 y S a
2.2 3.3
kK C x C
r _K r 5
rfdr e T f et —E
. : 2
1 l
C=
r K
0 - =
f e Tdr

i
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Since K ( and so A) appears in this expression in a rather
complex way, it will be hard to solve A from 129 and 130.

If A << 1, however, 132 can be approximated by:

Tty 2
= 1 o .
Cs A K {CO r{ S dr} + 0(A7) (133)
i r
2
with: K' = eF2(l +3—§——2—-2g§E y &
Kk C k C g
r rz
c, = ! 7 Car f ) dr
0 r, = . r. r, 2
0 i1 i r
Then Cs - Cb = - Cb + 0(A), whence 129 and 130 yield:
1 %o 3/2 ~1/2 , -2 2
A = 53 { e 1 % (~z) r dr} © + 0(a%) (134)
r = r, r. b
C o] 11
In case of a flat bed, when Ly = -1, this reduces to:
A=%—l~(ff + VT.)2 (135)
4 0 i
C
Hence:
- /170 + Vr,
u== 2+ 0(A) (136)
VT
Furthermore:
r
- ARt o -1 2
g, = OK'(z———0 In == - ) + 0(a%) (137)
o i i
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Hence the superelevation, i.e. the difference in the free
surface level between the outer and the inner bank, is given

by:

N N N 2
6t AR (ro ri) + 0(0%) (138)

This axisymmetric solution can be compared to theoretical and
experimental results obtained by other investigators. This will
be done separately for the most essential features of the solu-

tion.

1. Vertical disggibution of the main flow.

Actually, the logarithmic distribution given by 125 is not a
result of the analysis but an assumption: this logarithmic
profile follows directly from the assumed vertical distribution
of the eddy viscosity.

The validity of this assumption was studied extensively by

(6)

Rozovskii' ’, who arrived at the conclusion that the logarithmic
law is a good approximation of the main flow profile throughout
the bend.

Ever since, the logarithmic law is most widely applied in
shallow bend theory. In fig. ! it is compared to experimental

results and to the Boussinesq-Bazin parabola:

Yy

E (1 - 322)} with o' = 6.5 (139)

- ¥
u=u {1+ %

applied by Engelund(lo).
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Fig. | shows that there is no definite conclusion in favour of
either profile as far as the main flow distribution is concerned.
The parabola is better in the upper part of the vertical and

the logarithm is better in the lower part.

2. Vertical distribution of the radial velocity.

As mentioned before, there are many different opinions about

how to compute the radial velocity component. Fig. 2.a gives
some of the resulting vertical distributions for a hydraulically
smooth bed and some relevant experimental results. Fig. 2.b
gives the same for a hydraulically rough bed.

It can be concluded from these figures that eq. 110 provides

a fairly good approximation of the measured values, both for
smooth and for rough beds.

In addition, figs. 3a and 3b give the vertical distribution

of the tangent of the velocity-vector deviation angle for a
smooth and a rough bed, respectively. These figures show that
the present model (eq. 112) and Engelund's "parabolic model"(lo)
yield finite deviation tangents when approaching the bed, while
Rozovskii's(6) and Ikeda's(ll) yield infinite tangents. Since
it has been shown experimentally many times that the angle of
deviation at the bed is less than 90° (mostly less than 450),

eq. 112 and the parabolic model are preferable in this respect.

3. Vertical distribution of the "secondary shear stress!

The vertical distribution of the "secondary shear stress",

i.e. the shear stress component due to the secondary flow, is
given in fig. 4.

Fig. 4a (smooth bed) shows that the secondary shear stress

tends to vanish near the bed in Rozovskii's and Ikeda's model,
but has a finite value in the present (eq. 117) and in Engelund's

model.
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Fig. 4b (rough bed) shows that Rozovskii's model yields a
finite value at the bed now, as well as Engelund's model and
eq. 117, but in contrast to Ikeda's.

As the secondary shear stress can not be expected to vanish

at the bed in either case, this is another drawback of Ikeda's

and Rozovskii's (smooth bed) models.

4. Transverse slope of the free surface .

The expression for the transverse slope of the free surface

resulting from the various models always has the form:

) (140)

Fig. 5 gives the distribution of K as a function of C/Vg.

In all models but one (Rozovskii's), K shows a uniformly
damping character, with a limit value 1 for large C/vg. Only
Rozovskii's model yields a distribution of k having a maximum
for C//E = 9, The differences between the various models are
rather small, however, and there are no experimental data
available which are suited to make a distinction between them
in this réspect. The only information available is provided
by B.C. Yen and C.L. Yen<12), whose experiments show that the

transverse slope coefficient in a 90° shallow bend with a flat

bed is a constant slightly above ! almost throughout the bend.

Conclusion:

The comparison of the present model with various other models
for shallow, axisymmetrical flow shows that the present model
yields results which agree fairly well with experiments.

Besides, its behaviour is acceptable from a physical point of
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view.

Only one of the other models considered shows these features

as well, viz. Engelund's parabolic model.

It is rather difficult to decide which of the two models should
be preferred, the former being an extension of the logarithmic
distribution, which is in accordance with boundary layer theory,
the latter being much easier from a computational point of

view.

Besides, it turns out that the boundary condition at the bed
needs not be different for smooth and rough beds. Both the
present (with an essentially smooth bed condition) and Engelund's
model (with an essentially rough bed condition) show good

agreement with smooth as well as rough bed data.




VIII. COMPUTATION OF THE DEPTH-AVERAGED QUANTITIES

Returning from the axisymmetric problem to the general
curved channel problem, the horizontal distribution of the
depth~averaged quantities is still to be determined. This
could be done in two different ways:

- following the successive approximations of chapter VI,
i.e. solve the zero order depth—averaged system 67-69,
subsequently the first order system 91-93 (the zero order
quantities in it being known functions then), etc.
Finally, the subfunctions can be composed to a certain
approximation of the complete solution.

- solving the first order approximation of the complete
depth-averaged system 121-123 directly.

Both approaches will be discussed in this chapter, but

the first one only as far as the zero order system is

involved, as all higher order systems allow for the same

computational procedure.

1, Solution of the zero order depth-averaged system.

According to chapter VI, the depth-averaged quantities

Uy 50 and 50 must be solved from:
1 ) - 3 -
o - cb[a&: fug(tgg = 501+ 55lvp (g — 5] (67)
ap w.u'
359 = 55 -9-9:—*— (68)
c” %s0 " %
p v.u!
_5__0_ = - 5_2_ _9..9____;.._ (69)
n C ESO b
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Eliminating 50 from the latter two equations, one finds after

some elaboration:

u u' [:14 3L
) -0 __ 0 g b_o3z Db
2 uy 9o o To- Cb (uO 5 Ay 5E ) 0 (141)

in which LI is the radius of curvature of the streamlines of

the EO’ ;O— field as derived in appendix IV, while the
vorticity W, is defined by:
v, du
_ %% _ Y
Wy = 3F o (142)

Defining the streamfunction @0 by:

0o 3%

- 1 0 - -1 0
U, o m——— and V, = o—— e (]43)

0 CsO Z;b on 0 CsO Eb ok

the equation of continuity 67 is satisfied. Substituting 143
into 142 finally yields the relation between stream function

and vorticity:

oz 3z
2 B - %k, - 9%
Ve, (Tso = %)% * Y 3~ Vo 3F (144)
5 32¢0 32@0
in which V QO = 7 + 7
L1 an

Using 141, one obtains from this relation:

! T 3L
2 1 Y9 3 - %% - %%
Vo =3 G 5 Tt (g5 T Yy 38 ) (145)

s0
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The elevation of the free surface CsO can be solved from:

3z w.u
=0 - - p B 00 (146)
¢ %s0 ~ b
AL v.u!
BSO = - F2 EE._Q,Q:___ (147)
n ¢ %s0 %

._2 -
u' u!
N S B R . S
C s0 b’ "n0 C (CSO - Cb)
-,3
3z 3T 2 !
e Y T N
(uo 5E * v, 5 )~3 F 7 3 (148)

c (Cso - cb)

in which T o is the radius of curvature of the curves normal

to the streamlines of the GO’ Qo—field as derived in appendix

Iv.

The system to be solved comsists of eqs 143, 145 and 148.
The relevant boundary conditions are provided by the zero
normal velocity- component at the banks and by the inflow
and outflow conditions (e.g. a prescribed velocity-distri-
bution at the inflow boundary and a prescribed free.surface
elevation at the outflow boundary). The following iterative

procedure could be adopted for solving this system:

1. Make a first estimate of the velocity field by taking, for

instance, the potential flow distribution, following from:
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w25 =0 (150)

Determine the radil of curvature r , and r from this

s0 0
velocity-field, using the expressions given in appendix IV.
Determine the boundary conditions for the free surface

elevation by integration along the banks of:

14 u
sO _ _2¢g 0
5 F T (151)

in which s denotes a coordinate along the bank. The value
of Ze0 in the right hand part of this equation must be
estimated.

Solve CSO from eq. 148.

Solve a new ®O from eq. 145.

. Determine the new velocity-field.

Repeat the procedure from 2. on until the quantities have
reached their final value (i.e. until some termination

criterion is satisfied).

As an example, the zero order solution of a simple curved

flow problem has been determined using a similar iterative

procedure. The problem concerns a 180° curved flume with

straight tangent sections at either end of the bend and a

rectangular cross-section, having the dimensions:

RO =4.25m ; B=1.70m ; d =0.18m ; L =6.00m

L being the length of the tangent sections. The flow para-

meters are:

Vzlgg = 0.215 ; C

2/g =330 ; ¢ = 0.4
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The bed is flat and horizontal (cb = = 1,00) and the inflow

and outflow conditions aret

~ a constant velocity along the upstream boundary: aé = 1.00

- a vanishing free surface elevation at the downstream end:
z = 0,

s0
Fig. 6 gives some results of this computation, viz. the distri-

bution of the total velocity Gé and the free surface elevation

ts0°

Apparently, the zero order system gives neither an adequate
description of the depth-averaged velocity-field nor of the
free surface elevation.

The most striking phenomena observed in experiments as well as
in natural rivers are poorly represented: the transverse slope
of the free surface and the shift of the velocity-maximum from
the inner to the outer bank.

This 1s to be expected, however, since the zero order system
only concerns the continuity and the bed shear stress of the
main flow, but no inertia effects at all; the typical inertia
effects mentioned above are not included in the system.
Actually, the zero order solution is the curved uniform flow
mentioned before.

In order to improve the model, the first order system 91-93
must be solved in addition. Although the first order equations
look more complex than the zero order ones, the solution
procedure is identical, Since all additional terms consist of
known zero order quantities. Therefore it will not be described
here. The execution of the computation requires rather extensive
calculations as a consequence of the complex additional terms.
Besides, it will be shown that the solution of the first order
approximation of the complete system is preferable from a

mathematical point of view.




Therefore the first order system will not be solved sepa-

rately for the present example.

2. First order approximation of the complete solution.

As follows from chapter IV, the first order accurate depth-

averaged quantities G, v and p must be solved from:

3 - 3 - )
57 luGgg =g} + olv(e, -5 )b =0 (121)
p . _g_u'u g 8’8y =

= - - el + -2 T 122
5 - 2T, ¢, e+ 3 2.2 3.3 ) T (122)
g8V 3B - BE T 123
an 2t - oy e 22 33 ) T, (123)

Eliminating p from the latter two equations and elaborating the
result, accounting for the equation of continuity 121 and for

L, = in, the following equation is found:

] =2 o - 3z _ 9L
S S R (R s S
C Cs Cb s Cs 2;b n
2 1 ar’ 5 - 3 -
= EF K ——— e - eK{z—=(uw) + —(ww)} = 0 (152)
L Cb T £13 an

in which K = 1 + 3 —8— - 2 8.8
2.2 3.3
k C k C

r, = radius of curvature of the streamlines of the

u,v-field as derived in appendix IV

w = =— — — = the vorticity of the depth-averaged flow.
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Eq. 152 can be elaborated to:

l u

9 - 3 = g g |
— (uw) + = (vw) = - 2p + =2 = — *
9t on e:C2 K Cs Eb eC2 K ts 2;b
=2 ot
(1+eFF —2 )2y
Cs Cb s
Y 'l 14
1 ! - b - b
-2 % - 2 g T v (153)
eC (CS - Cb)

The equation of continuity is satisfied by defining a stream

function ¢ such that:

w=—1— 2 and §=—-—?-}—-i-—-g;§ (154)
T, - &, on T, -,

Substituting this into the definition of w, the following

relation between the stream function and the vorticity is

obtained:
14 9L -3
2. _ _ -""p _ - b, _ 2, u
Ve = - (g r,b)w + (v TR ) - eF°K ———rs (155)
2 2
in which: VZQ = 2—% + 2—%
3L an

The first order approximation of the free surface elevation

Es can be solved from:
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14 i -

-B-E—S- S —g-i-———“—_-_-‘-i—c- - eF%K T, (156)
C Cs b

14 “ -

-§—S-=—F2§-2*——%—~EF2KT (157)

n C z;s b n

These equations can be transformed to a Poisson equation in the

same way as it was done for the zero order system:

v’ = a(g,n) (158)

in which q(g,n) is a fairly extensive expression containing

u', o, T and T
n .

g

The system of equations to be solved consists of eqs. 153, 154,
155 and 158 and the solution procedure is chosen similar to the
procedure applied to the zero order system, but here the compu-
tation of the vorticity from the transport equation 153 must

be added.

Before doing so, however, it is worthwile to pay some further
attention to the vorticity transport equation 153. This equation

can be written as a conservation law, reading:

1

» . 3 - B
E‘::‘g;‘ [g'g lulz, = el + o= vz, - cb)w}] =

w - 3 - 3 .
Cs - Z;b[u 3E (CS Cb) v an (ES Eb)l + the right hand

side of eq. 153 (159)
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The left hand side of this equation is equivalent to

ar e
3s
s denoting a (curvilinear) coordinate along the streamlines of

the G, v-field. Besides

3 2z -
- s = s _ 28 u B 2 - - =
u 5E + v e F cz T eF'RK (u TE + v Tn) (160)
5 b
- 0hy 9ty 1 30 °% 30 °%b

U b Vo = e (e = o e )
E)3 an t.s S In 3§ 3 3n

-1 g,

= = a' P S
= % (graddxgrad %) u' e (161)
S
L 3 0% a0 %%
V e = Y] —— = (_____.__+___.__
? EX) L5 dF 23E 3n Bn
-1 -, %%
= - — '———_—
(grad@.gradcb) u' o= (162)

5T R

n being a coordinate along the curves normal to the streamlines
of the E, v-field. The n, s—coordinate-system will be referred to
as the streamline—cgordinate system.
After some elaboration and division by u', eq. 159 yields:

D)

5§-+ f](s,n) = f2(s,n) (163)

with: f](s,n) -2 &8
s




_2 —
1 g 1 2 g u' u'
f (syn) = {—— 25 =+ F =5 }— +
2 5% eCz K c? ( S %)2 s
pu g 1%
2 2 K 3n
(ES g)” eC

So, if the velocity field and the free surface elevation are

known, f] and f2 are known functions independent on w. Then w
reads:
s s s
w = exp(— /£ ds)[ S7f, exp(+ Sf ds) ds + constant} (164)
So 1 o 2 o 1

where the constant is determined by a boundary condition. Apparent-
1y,  has to be prescribed in one point of everey streamline in
order to make the solution fully determined. Thus, if no stream-
line separation occurs at the banks, it is sufficient to prescribe
®w in one ray (which intersects all streamlines).

Considering the equations for the free surface elevation 156 and

157 from the same point of view, they can be written as:

32; _12 - T
= - F? & C“_ - eFx u g—‘é—— (165)
C ] %3
3¢ -2
5 2. u
el eF K = (166)

The latter equation is equivalent to the well~known axisymmetric
transverse surface slope equation.

Rewriting eq. 165 as:

(167)




it is equivalent to the well-known energy equation holding along

a streamline,

Writing the solution of this equation in its integral form:

-2 -2
\J 1]
cs=—eF2K‘—7f———Fzg—2£S C"_

c 0 % %

shows that Cs must be prescribed also in only one ray to make the

ds + constant (168)

solution fully determined.

Making use of these results, one can develop a variant to the com~
putational procedure used to solve the zero order system. It is

an iterative procedure involving the following steps:

1. Make a first estimate of the velocity-field, for instance
by taking the potential flow distribution.

2. Determine by interpolation the streamlines of this velo-
city-field, being contourlines of the stream function sur-
face.

3. Determine the radii of curvature of the streamlines and
their normals, r and ros respectively.

4, Compute the free surface elevation by applying 168 along
the streamlines.

5. Compute the vorticity by applying 164 along the streamlines.

6. Solve a new ¢ from eq. 155.

7. Determine the new velocity-field using 154.

8. Repeat the procedure form 2 on, until a termination crite-
rion is satisfied.

The disadvantage of this procedure is the great number of inter-
polations, since the Poisson-equation 155 is solved in a coordi-
nate-system which differs from the streamlines. This introduces

an extra source of inaccuracy. On the other hand, it is possible
to apply the method to more complex geometries, since the Poisson~
equation can be solved using a finite element method and the
method of computation of the vorticity and the free surface ele-
vation is not influenced by the geometry. Thus the problems at

the boundaries arising in finite difference methods are avoided.
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The only complication is the determination of T and o, since
the expressions derived in appendix IV can no longer be used.
This may not be an obstacle, since there are other methods to

determine the curvature of a given curve.

Using the procedure described here, one can find the first order
approximation of the complete solution. This has been done for
the previous example, yielding the results represented in fig. 6.
It turns out that, in contrast with the zero order solution,

the velocity-maximum tends to move outward, but much less than
observed in experiments. This discrepancy will further be ana-
lysed in chapter X.

Besides, fig. 6b shows that the first order approximation yields
a somewhat larger average free surface slope than the zero order
system. Neither approximation agrees well with the measured data,
however, even though in the first order approximation a transverse
surface slope occurs. The computed superelevation is larger than
the measured one and the computed transverse configuration in the
curved section should be "lifted" in order to cope with the ex—
perimental data. These discrepancies can be explained from the
differences between the measured and the computed velocity-

distributions.
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IX. ACCURACY OF THE APPROXIMATIONS

The foregoing chapter shows that the paratmeters influencing the
solution are:

~ the length-scale ratio ¢,

- the Froudenumber er,

- the friction factor vg/«C.

Since the latter parameter may become rather small (say
.2>Vg/xC>.1), special attention must be paid to the validity

(accuracy) of the various approximations of the complete solution.

1. Zero order approximation.

Neglecting the first order terms in the first order approximation
of the complete solution represented by eqs. 95-105 and 121-123,

the zero order approximation is found to be:

om0+ B i) v (B (169)
v=v {1+ é% + é% In(i+Z)} + 0O {e(é%)o} (170)
) 5 - ) /g, 0

with Sz{u( T %)} + 5;‘{V(C = %)} =0 + 0 {S(EE) } a7y
5p _ _ g _u'u /g0
R (172)
= e u'v Zg 0
= T + O{E(KC) } (173)

This zero order approximation is reliable only if the error in
the latter equations is much smaller than the other terms.

Consequently:

(174)

g <<

g_
CZ
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Actually, this is a direct consequence of setting Re' = 1 in the
normalization of the system (i.e. supposing the friction to be

dominant).

Doing so, it is assumed that the terms

9 Ju 3 v
SE{GEEQ and gg(ugz)

in the normalized system are of the order of magnitude 0(1). If

G', u, v and -z all are of the order 0(1), this implies:
s %

& - 0(e?y
c

which is equivalent to 174.

2. First order approximation.

There are many ways to generate a first order approximation of

the complete solution, but only two possibilities will be con-

sidered here:

a. the sum of the solution of the zero order system and ¢ times
the solution of the first order system,

b. the first order approximation described by eqs. 95-105 and
121-123.

In order to obtain an impression about the accuracy of these

approximate solutions, the second order system must be considered.

Giving only the terms that are of interest here, the solution

of this system reads:

- e . /g .
u, = [J {1+ EE-+ w0 1n(1+Z)}}2 - [( %* %) i fsec(Z)]1 +
+ other terms 0(52) (175)

in which the subscripts of the expressions between brackets in-
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dicate which subfunction of the relevant

A similar expression is found for Voo

expression is concerned.

The depth-averaged second order equations read:

e gl, « 5 v, = 0 (176)
.?_pg = - [5——_'—-—4 -k [T + other terms O(Q) (177)
9E C2 2 2 5] 1 kC
Py e 'y ; /g
Fralie [? Cs“lb]z - K [Tn] , * other terms 0 (178)

Consequently the second order approximat

tion can be written as:

e, /g

u=u{] +KC+-KTE].B(1+Z)} "E(C»S'Cb)

v=yv{l+

%, K£§ In(1+2)} - e(g-g)

kC

with the dept-averaged equations:

313 - 3 13 - =

—a'g {u ( CS %)} + m {v (?;S lb)} 0

éé = - & u'u - gK T, + terms O(e2 —@
13 C2 CS—QD E kC
p__eg UV _ 7 2 /g
an o2 TN ek TE + terms 0(e KC)

ion of the complete solu-

i fsec(Z) + terms O(ezﬁ-)
/g

I fsec(Z) + terms O(ezf—g)
g

(181)

(182)

(183)
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a. Accuracy of the weighted sum approximation.

Adopting the weighted sum of the solutions of the zero and first
order systems as the first order approximation of the complete
gsolution, none of the second order terms is taken into account.

Consequently, this approximation can be written as:

u=[ufll+ ;’%«» .i_g Wn(+2)3] L g - d(gmn) 6 fsec(2)] ) +
+ 0(e? K5 (184)
/g

where the subscripts of the expressions between brackets indicate
which combination of subfunctions of the relevant expression is
concerned.

For v a similar expression is found.

The relevant depth-averaged equations read:

5 - 3 (- 2
G eyl v o *log ey 4 g =0+ 0D 89

ap __ g w'u q _ - 2

[5%]0 + exl CZ l:cs-z;b lg + cg1 ~ €K [TE]O + 0(e™) (186)
) =- 51 u'y ) - ek [T] + 0D (187)
N0 + exl C2 z;s—zb 0 + exl n' 0

Requiring the error in each expression to be much smaller than
each of the other terms in that expression, one finds as limita-
tions of e:

- in the expressions for u and v: e << /g/KC (188)

- in the depth-averaged equations: e << Vg/kC (189)
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b. Accuracy of the solution of the first order equation system.

The solution of the first order approximation of the complete
system, given by eqs. 95-105, can be written:

e, /2

. 2 xC
ot we Wn(1+D)} - e(p oty U fsec(Z) + 0(e” —

) (190)

u=u{l+
g

and a similar expression for v. The depth-averaged equations are
identical to eqs. 181-183.

Hence the following limitations of € are found:

- in the expression for u and v: g << /g/KC (191)

~ in the depth-averaged equations: Ez<</g/KC (192)

As shown by 187 and 192, the difference between the two first order
approximations is formed by the accuracy of the depth-averaged
equations: the solution of the first order equationm system yields
results which are a factor vg/xC more accurate than the weighted

sum approximation.
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COMPARISON WITH EXPERIMENTS

In order to find out to what extent the model is able to pre-
dict an actual flow field, several experiments have been simu-

lated, covering the most important features included in the

model.

A, Flat bed experiments.

1. LFM-experiments.

In the Laboratory of Fluid Mechanics of the Dept. of Civil Engi-
neering, Delft University of Technology, a 180° curved flume of

the following dimensions has been constructed:

RO =4,25m ;3 B=1.70m ; L =6.00m
L being the length of the straight tangent reaches upstream and
downstream of the curved section. In this flume flat bed expe-
riments have been conducted, i.a. with the following data:

2

0.18 m Vz/gg = 0.215 ; C%/g = 330 (smooth bed)

4

0.215 Cz/g

d=0.175m ; Vz/gé 97 (rough bed)
In both experiments the inflow conditions were:

- a constant velocity along the upstream boundary

- a vanishing free surface elevation at the downstream weir.
Besides, in the numerical simulation the vorticity was assumed
to vanish at the upstream boundary, which was acceptable in view
of the long straight reach before the bend.

The measured and computed values of the total velocity and the
free surface elevation for the smooth bed case are represented
in fig.6, together with the results of the zero order computa-
tion described in chapter VIII.

As can be seen from fig 6.a, the velocity-distribution is re-
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presented quite well in the first part of the flume (say up to

30° in the bend), but further on the experimental data show
gradual shift of the velocity-maximum from the immer to the outer
wall, which is very poorly represented by the computed data, even
though the first order approximation shows a slight shift in the
downstream tangent. In the rough bed computations represented in
fig. 7, the shift is somewhat stronger, but not sufficient to
approximate the measured velocities satisfactorily.

The computed free surface elevation (fig 6.b) does not agree with
the experiments either, as was stated already in chapter VIII.
There is good agreement as far as the fall over the entire flume
is concerned, but this is no merit of the model, but rather an
imposed feature, since Chezy's comstant is chosen such that this
fall is obtained. Using this value of C in the zero order compu-
tation, however, the fall turns out be somewhat smaller (about
12%). This phenomencn could be explained from the zero order equa-
tion of motion along a streamline 151 and its first order counter-
part, eq. 165. The only difference arises from the term:

- PR glsl—'—
accounting for the inertial effects of the main flow and the
streamwise component of the shear stress caused by the seconda-
ry flow. Both effects work out in the same way, causing the

extra head loss computed in the first order approximation.

2. Rozovskii's_experiment no. !.

The LFM-flume mainly consists of plastered masonry, but the
outer wall of the curved section is formed by much smoother
glass-panels. In order to eliminate this as a possible source
of discrepancies between measured and computed data, another
smooth bed experiment in a flume with uniform wall roughness was

simulated numerically, viz. Rozovskii's exp. no. | with the flume




geometry:

RO =0,80m ; b=0.80m ; L=3.00m

and the flow conditions:
2 2
d=0.06m; V/gd = 0.114 ; C“/g = 366

The inflow and outflow conditions were the same as in the simu-—
lation of the LFM—experiments.

Fig. 8a gives the total mean velocity-distribution found from
this experiment and the numerical simulation. It shows the same
kind of discrepancies as fig. 6a, but more intensively as a con-
sequence of the greater curvature.

This suggests the bank roughness has no important influence on
the distribution of the depth-averaged velocities at some dis-—
tance from the banks.

The water surface configuration (fig. 8b) is predicted fairly
well as far as the superelevation is concerned, but the computed

head loss is smaller than the measured one.

““““““““““““ (13)

Anticipating the simulation of C.L. Yen's "equilibrium bed

experiments'', the flat bed experiments in the same flume reported

(14)

by B.C. Yen were simulated. The flume consisted of two oppo—
site 90° curved sections with a 4.27 m (14 ft) straight reach be-
tween them and 2.13 m (7 ft) tangent reaches at the upstream and
dowvnstream end. In B.C. Yen's experiment the channel had a tra-

pezoidal cross-section with the banks under a 1:1 slope. Further

dimensions were:

1.83 m (6 ft)

RO = 8.53 m (28 ft); Bbed =
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and the experiment was run under the flow conditionms:

d =0.16 m (0.512 ft) ; v2/gd = 0.34 ; ¢/g = 500

In the computations, the channel was assumed to have a rectangular

cross—section of B +d=1.99 m (6,5 ft) wide. Furthermore, the

ed
inflow and outflowbconditions were taken the same as in the simula-
tion of the LFM-experiments.
The velocity-distribution following from these computations and ex-
periments is shown in fig. 9 for the second bend and the preceding
straight reach. Now the deviations from the measured data are consi-
derable even in the first part of the represented section. This is

a consequence of the curved section immediately upstream, which
causes deviations similar to those found in the previous cases.
Thus the 'extra' shift of the velocity-maximum towards the right
hand bank (being the outer bank of the preceding bend) could be
explained.
Eliminating this effect, however, the agreement in the downstream

part of the second bend becomes worse, the model predicting no out-

ward shift of the velocity-maximum at all.

B. C.L. Yen's 'equilibrium bed' experiment.

C.L. Yen conducted a series of experiments in the same flume as

B.C. Yen used, but he applied vertical sidewalls and a loose sand
bed(IB). Under various flow conditions he determined among other
things the equilibrium bed configuration, defined as the configu-
ration of the average bed (i.e. with all irregularities like ripples
and dunes smoothed out) in its final state, when variations with
time no longer occur.

For one selected set of conditioms, viz.:

8.53m (28 £ft) ; B =2.36m (7.75 ft) ;

ol
it

0.12 m (0.38 ft) ; Vz/gg = 8.09

[a ¥
i
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this equilibrium bed was reproduced in concrete and subsequent-—
ly experiments were conducted under the same flow conditions,
apart from a correction of the longitudinal channel slope ac-
counting for the reduction of the bed resistance due to the
smaller grain roughness of the concrete bed and the absence of
ripples or dunes. Unfortunately, neither the friction factor
nor the corrected longitudinal slope were reported, so they had
to be estimated:

3

/g = 250 ; i d=g/02=4x10—

be
The equilibrium bed configuration, corrected for the overall
channel slope, is given in fig. 10a.

The numerical simulation had to be limited to the second part

of the flume, since data were available only for this section.
Therefore, a non—uniform velocity-distribution was imposed at
the upstream boundary. For practical purposes a parabola was
chosen, somewhat resembling the measured distribution, but in
principle any distribution can be chosen as long as no negative
longitudinal velocities occur.

The vorticity at the upstream boundary was assumed to be zero and
a linear free surface configuration was imposed at the down-—
stream boundary, such that the measured configuration was more
or less represented there.

Fig. 10b shows the velocity-distribution and fig. 10c the bed
shear stress computed from these data, together with the measu-
red values. Fig. 10d gives the measured flow direction near the
bed and the computed bed shear stress direction.

Considering the velocities, the same phenomenon as in the si-
mulation of B.C. Yen's flat bed experiment shows up a fortiori:
the velocity-maximum shifts to the right hand bank as a conse-
quence of the preceding bend. In the computations, however, this
bend is absent, whence the skewness of the velocity-distribution

vanishes rather quickly downstream of the inflow boundary.
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A possible way to improve this upstream condition is to account

for the radial flow occuring at this boundary by adopting some other
boundary condition for the vorticity (e.g. a prescription of %g
instead ofw itself), but even in that case it must be doubted
whether a good connection with the bend upstream can be realized.
Beyond the first part of the bend under consideration , the effect
of the preceding bend is no longer identifiable and the velocity-
maximum shifts to the outer bank much faster than in B.C. Yen's
flat bed experiment. This is no effect of curvature, however, but
rather a consequence of the bed configuration, which forces the
flow to pass mainly through the deeper parts of the ctoss-section.
This phenomenon is fairly well represented by the computations, al-
though the velocity near the inner bank remains too high (the mea-
sured data even suggest a streamline separation from the banks).
The bed shear stress distribution shows essentially the same fea-
tures as the velocity-distribution: poor agreement between measure-
ment and computations in the upstream part, probably caused by the
inadequate account of the preceding bend,and a somewhat better agree-
ment in the downstream part, except near the inner bank. The devia-
tions of the shear stress from the streamwise direction, however,
seem to agree fairly well with the measured deviations of the velo-
city near the bed.

The computed free surface elevation included a transverse slope,
indeed, but much smaller than the observed ome (the superelevation
half way along the bend was computed as about 507 of the observed
value). Besides, there was a large 'scatter' in the numerical re-
sults. Since this scatter increased ffom the downstream edge on,
the free surface computation probably was insufficiently accurate.
This may be true, since the longitudinal step size was about 1.4 ft
(0.43 m), which is rather large with respect to the longitudinal
dimensions of the banks and the throughs { order of maénitude

5-10 £t (1.52 - 3.05 m)).
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Conclusion: The results of the mathematical computations represent
the experimental results rather poorly, especially when considering
the transverse distribution of the depth-averaged total velocity.
Only in case of a bed configuration deviating considerably from
the flat bed, a better agreement can be expected.

The discrepancies in the velocity-distributions are probably
caused by the influence of the banks and by the influence of

the secondary flow on the main flow. There are two phenomena

in this respect, viz. the transverse transport of longitudinal
momentum and the "'turn around" of the secondary circulation near
the banks.

1. Transverse transport of longitudinal momentum.

At some distance from the banks, the transverse circulation mainly
consists of the transverse velocity-component, directed outward

in the upper part of the cross-section (where the higher values of
the main velocity occur) and inward in the lower part (covering
the lower values of the main velocity). Consequently, a net
transport of longitudinal momentum in transverse direction occurs,
which is not accounted for in the present computations.

In mathematical terms, actually:

z
S

/ A dz # 0 (193)

2

v and v being the velocity—components in streamwise and trans-—
verse direction, respectively, while from the present model it
follows that:

z
S

Zf vV, dz %(zs—zb) vV (194)
b

which vanishes, since v, o= 0 by definition of the streamwise coor-—

dinates.

In the present asymptotic approach, eq. 193 represents a second




75

order effect, which is correct in the philosophy of this model,
assuming the sidewalls not to influence the solution at some dis-
tance from these walls. Inclusion of this second order effect

in the present computations proves to have a small effect upon
the solution, indeed.

If, as Rozovskii suggests(6), the effect of the no-slip condition
at the sidewalls on the main flow distribution and the effect

of the impermeability of the wall on the distribution of the
transverse velocity are included, however, the above mentioned
transverse transport of longitudinal momentum becomes much more
important. Then the relevant advective term in the depth-inte~

grated streamwise equation of motion

-3
S g;(vsvn) dz (195)

becomes much more important as a consequence of the steep trans-
verse gradients of the velocities near the banks. The term is
positive near the inner bank and negative near the outer bank,
thus causing a deceleration of the main flow in the former
region and an acceleration in the latter one, as was shown for
axisymmetric laminar flow by the present author(ls).

Besides, the term causes an extension of the region with high
velocity~gradients near the banks, such that in non-axisymmetric
flows the accelerating and decelerating effects have the oppor-
tunity to spread out over an increasing region until the entire
cross—-section is influenced. Thus one of the basic concepts of
the present model is violated and a main flow distribution

is generated with a velocity maximum outward shifting.

2. The "turn around" of the transverse circulation.

Near the banks the vertical velocity-component is much larger

than near the centreline, viz. of the same order of magnitude as
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(15)

the transverse velobity—component . Near the inner bank the
vertical velocity is directed upward, causing an upward transport
of "low momentum fluid" from the lower cormer. In the upper part
of the vertical this fluid is conveyéd outward as described be-

fore.

In mathematical terms: near the banks the term:
3
— (v v
9z ( s z)

in the longitudinal momentum equation becomes a first order term.
Near the inner bank it is positive in the greater part of the ver-
tical, except near the free surface, where a negative peak occurs
such that the integral value of the term vanishes. As is shown

in ref. 15, this causes a deceleration of the main flow. Near

the outer bank a similar reasoning leads to an acceleration

of the main flow. Obviously, the turn around of the secondary
circulation near the banks acts upon the main flow in the same

way as the net transverse transport of longitudinal momentum,

thus increasing the outward shift of the velocity-maximum.

These ideas are confirmed by experimental observations, espec-
cially in narrower channels, like Fox and Ball's (]6), shown in
fig. 11. It is seen that the velocity-distribution shifts to the
inner bank in the first part of the bend, but after about 30°
the influence of the secondary circulation becomes more and more

perceptible until the entire flow field is influenced in the

second half of the bend.
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XI. SUMMARY, CONCLUSIONS AND FURTHER RESEARCH.

Starting from a general mathematical model of steady turbulent
flow, consisting of the Reynolds equations and the boundary con-
ditions at the free and the 'no—-slip' boundaries, a simplified
model of shear flow in shallow curved open channels has been
derived. The assumptions underlying the simplification are:

1. the shear stress tensor is related to the rate-of-strain tensor
through a scalar "coefficient of turbulence viscosity", which
may vary in space,

2. in a shallow river at a distance from the banks the vertical
velocity-gradiénts dominate the horizontal ones,

3. the shear stress effects dominate the inertial (advective)
effects.

The latter two assumptions only hold good if the average depth

of flow is small with respect to the radius of curvature, or

rather if the vertical length scale is small with respect to the

horizontal one.Besides, they turn out to imply that the no-slip
conditions at the sidewalls do not influence the flow pattern

at larger distances from these walls.

In addition, the coefficient of turbulence viscosity is assumed

to be distributed over the vertical essentially in the same way

as in uniform shear flow having a logarithmic velocity-distribu-
tion. Likewise, the velocity is assumed to vanish at a prescribed
level above the bed, as usual in simple uniform flow computations.

The normalized dependent variables (total pressure, velocity

components) solved from the simplified system of equations and

boundary conditions turn out to have the form

£(5,m,0) = ] g, () h () (196)

n

Hence it is possible to solve the problem in two subsequent steps:

1. determine the vertical distribution of the dependent varia-
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bles (in fact: determine the functions hn(a) in eq. 196)

2. integrate the whole system of equations over the depth of flow,
taking account of the functions hn(c) found from the first step,
and solve for the depth-averaged dependent variables, or rather
the functions gn(g,n) in eq. 196.

In this way the three-dimensional problem is split up into two simpler

problems, one being one-dimensional, the other one being two-dimensio-

nal in the horizontal plane. The former problem can be solved analyt-
ically; the latter one requires application of procedures which have
been elaborated.

Comparing the vertical distribution of the dependent variables in case

of axisymmetric flow (i.e. no changes in longitudinal direction) with

theoretical and experimental results obtained by other researchers,
the present model turns out to be a fairly good omne.

Considering the horizontal distribution of the depth-averaged varia~

bles in a curved channel without assuming axial symmetry, however,

the conclusion must be less positive: experimental data are not well

represented, particularly in the downstream part of the bend and

downstream of it. The agreement is less for a flat bed than for a con-
figuration with banks and troughs. The differences between the measur-
ed and the computed results may be explained qualitatively by the ab-
sence of advective effects of the secondary flow on the main flow in

the present mathematical model.

Although the mathematical model has limited applicability, it shows

some important features of non—axisymmetric curved flows:

1. The secondary flow 'plane' is not perpendicular to the streamwise
direction, as in the case of axisymmetric flow, since both longi-
tudinal and transverse accelerations cause a secondary flow.

2. As a consequence of the above mentioned secondary flow, the stream-
wise component of the bed shear stress in increased if the main
flow accelerates and decreased if the main flow decelerates. The
transverse component of the bed shear stress arises from the

secondary flow alone; it is caused by the stream—
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line curvature and directed towards the centre of curvature.
Therefore, in regions of decelerating curved flow the bed shear
stress vector will deviate from the streamwise direction at lar-~
ger angles than in axisymmetric flow of the same curvature, while
in accelerating regions the angle of deviation is smaller.

3. Even though the bed shear stress vector may deviate considerably
from the stream direction, the "secondary” bed shear stress is of
minor importance to the computation of the depth-averaged quan-—

tities.

Further research.

The present research as to curved river problems may be continued

in two different ways:

I. It may be attempted to improve the mathematical model of the flow
field by including the advective effect of the secondary flow on the
main flow. To that end, the influence of the sidewalls must be taken
into account, which could be done by extending the model to the side-
wall regions or by correcting the present model for the most impor-
tant sidewall effects in an approximative way.

The description of the flow field near the sidewalls raises many
problems, physically (turbulence model) as well as mathematically (cf.
the computation of laminar, axisymmetric flow (15)). Maybe it will be
profitable to use a very simple turbulence model, such as the para-
bolic one, having a constant eddy viscosity (but then the problem is
what slip-velocities must be prescribed at the walls).

Attempting to give an approximate description of the most important
sidewall effects, one must have an insight into the phenomena occur-
ring in the sidewall regions. This could be obtained by elaborating

a simplified model of the flow in these regions, such as the laminar
flow model or the above mentioned parabolic model.

2. Since the present model yields more satisfactory results in case of

bed configurations deviating from a flat bed, it is more suitable for

the prediction of the equilibrium configuration of erodible beds.
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Starting from a flat bed, the velocity and bed shear stress distribu-
tions are not correct, but both act upon the bed in a correct sense,
viz. in the inward direction. Confining the problem to relatively
coarse sediments, such that only bed load transport will occur, and
making the sidewalls impermeable to the sediment (they are not for
the secondary flow!), sedimentation will be predicted near the inner
wall and erosion near the outer wall, thus indicating the formation
of a bank and a through, respectively. Qualitatively, this agrees
with observed configurations (cf. fig. 10 a).

(10)

The actual procedure may be iterative or a quasi-steady step by

step procedure. Both consist of the computation of a steady state
flow field followed by a bed level computation, the former trying

to predict the equilibrium level directly, the latter using an
extrapolation in time based on sediment transport laws. In that case

the rate of sedimentation azb follows from the equation of con-

tinuity of the sediment: ot

vz, 25, 38,
=) 5 *35 *55 =0 (179

with? p = porosity of the bed

Sx’ Sy = components of the sediment transport vector in

x~ and y-direction, respectively.
An iterative procedure for the prediction of the equilibrium con-
1 .
( O). Applying

a mathematical model which is more simplified than the present one

figuration of the bed is followed by Engelund

he obtains (after only two iterations!) a good prediction of the
configuration found experimentally+by Hooke in a sinusoidal channel
17y

An important problem arising in these erodible bed computations are
the dynamic equations for the sediment transport components, where

a problem is encountered that does not appear in "one~dimensional"
sediment transport computations; the banks and troughs involve relati-
vely steep bed slopes (i.e. much steeper than the overall channel

slope), such that the component along the bed of the gravitational




force can not be neglected with respect to the other forces

acting upon the bed.
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F = (v2/gae)?

A
A
B
C
d
d
F
P, (2), F,(2)

fdev(Z)

fsec(Z)

B - ® w0
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scalar viscosity-coefficient

scalefactor of A

channel width

Chezy's constant

depth of flow

vertical length scale (characteristic depth of flow)
"normalized" Froudenumber

component of the vertical distribution of the second-
ary flow

function describing the vertical distribution of the
tangent of the velocity deviation angle ¢dev
function describing the vertical distribution of the
horizontal component of the secondary flow
acceleration due to gravity

transverse surface slope coefficient

equivalent bottom roughness

normalized mixing length

constant in the parabolic formula for the vertical
distribution of the main flow

coordinate along the normal lines of the depth-
averaged flow field

scalefactor of the total pressure p + pgz

isotropic pressure

normalized total pressure

depth—averaged value of p

subfunctions in the series expansion of

T3

subfunctions in the series expansion of
discharge

local radius of curvature

horizontal length scale (representative radius of
curvature)

normalized radial coordinate in a polar coordinate

system
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normalized radius of curvature of the inner wall
normalized radius of curvature of the normal lines
in the depth-averaged flow field

subfunctions in the series expansion of T
normalized radius of curvature of the outer wall
normalized radius of curvature of the streamlines
in the depth-averaged flow field

subfunctions in the series expansion of T,
Reynoldsnumber based on the turbulent viscosity
scale

coordinate along the streamlines of the depth-~
averaged flow field

component of the sediment transport in x—(y-)direct-
ion

streamwise inertial terms in the depth-averaged
computation

transverse inertial terms in the depth—averaged
computation

inertial terms in §-direction in depth-averaged
computation

subfunctions in the series expansion of ig
inertial terms in n-direction in depth-averaged
computation

subfunctions in the series expansion of §n
scalefactor of the velocity-component in x—direction
normalized velocity-component in {-direction
normalized total horizontal velocity
depth-averaged value of u, u'

depth-averaged factor in the E-component of second-
ary flow

subfunctions in the series expansion of u
subfunctions in the series expansion of u'
subfunctions in the series expansion of u

subfunctions in the series expansion of u'




<t <

<

0r Vy» vt

Vs Vys e

tot

]

<

N

5

o=
o£2<2<<<2

N9 <M

00 Zyr v
AN

8 8

equivalent of U in the solution of the first order
system

scale-factor of the velocity-component in y-direction
and of the horizontal velocities

normalized velocity-component in n-direction
depth—averaged value of v

depth~averaged factor in the n-component of second-
ary flow

subfunctions in the series expansion of v
subfunctions in the series expansion of v
equivalent of ¥ in the solution of the first order
system

velocity-component along the normal lines of the
depth-averaged flow field

velocity-component along the stramlines of the depth-
averaged flow field

total horizontal velocity

velocity-component in x~direction
velocity-component in y-direction
velocity-component in z-direction

scalefactor of the vertical velocity-component
normalized vertical velocity-component

subfunctions in the series expansion of w
scalefactor of the x-coordinate

horizontal coordinate in a Cartesian system
scalefactor of the y—coordinate

horizontal coordinate in a Cartesian system

in chapter III: scalefactor of the z-coordinate

elsewhere: Z = £ %
57 %

subfunctions in the series expansion of Z
subfunctions in the series expansion of Z'

vertical coordinate
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bed level

free surface elevation

normalized viscosity-coefficient A

normalized coefficient of turbulence viscosity
subfunctions in the series expansion of a,
thickness of the layer between the bed and the level
of zero "secondary' shear stress

longitudinal slope of the energy-line in the channel-
axis

perturbation parameter

small parameter (undefined)

normalized vertical coordinate

normalized level near the bed where the velocities
vanish

subfunctions in the series expansion of [

normalized bed level

normalized free surface level

subfunctions in the series expansion of (5

normalized y-coordinate

Von Karman's constant

kinematical viscosity of the fluid

normalized x—-coordinate

mass density of the fluid

normal stress components of the stress-tensor
normalized bed shear stress component in n-direction
normalized shear stress component in n-direction
normalized bed shear stress component in s-direction
normalized shear stress component in s—direction
shear stress components of the stress—tensor
streamfunction of the depth-averaged horizontal
velocities

subfunctions in the series expansion of ¢
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tangential coordinate in polar coordinate-system
deviation angle of the velocity-vector from the
s-direction

deviation angle of the bed shear stress from the
s-direction

vorticity of the depth-averaged velocity-field

subfunctions in the series expansion of w




APPENDIX I: Asymptotic expansion of the boundary conditionms.

Suppose a function £(x) must satisfy at x=x the boundary condition:
f(x) = f (1.1)
*p

If £(x), fb

meter ¢, such that:

and X, can be expanded in a power series of the small para-

£Go = £y + e (x) ¥ €0 £,00) + ..n (1.2)
fb = be + ef:b1 + 52 sz Foiaaen (1.3)
X, = ¥ +oex + ez X 5 + e (1.4)

what are the boundary conditions to be imposed on the subfunctions fi(x)
then? Making use of the series expansions I1.2-I.4, condition I.1.can be

written:

2
£o(x) + ef (x) + e £.(x)+ ..., 2
[ 0 0 0 } X0 + €X + € X9 + ...

fbO + efb1 + € sz + i (1.5)

Expanding the left hand part of this equation in a Taylor—series around

X0 yields:

2 2
[fo +ef +e f2 + ...q x, + (exb] tex, t ces) B

0
df df df
0 1, 2% 1 2 2
(& tom v @ ol et e
[dzfo dzfl 5 <1‘°'f2 )
t+ g + € + e =f +ef 4+ TE 0+ ... (1.6)
2 1 dx ]xbo b0 bl b2
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Collecting the terms with the same power of ¢ and putting each
of these groups of terms equal to zero yields the conditions to be

imposed on the various subfunctions:

£ (x) = f (1.7)
0 ,xbo b0
af,,
£ (x) = f - — (1.8)
1 !xbO bl *b1 dx beO
at af
£, (x) =f - — - —
2 |%0 b2 ~ *p2 dx %0 *b1 dx X0
2
12
271 g% 1% (1.9)
etcetera.

Each of the boundary conditions of the normalized system (see
conds. 32-35 and cond. 48) has been treated this way, yielding the

following results:

BCS BCS
1. Condition 33: WIES = u‘gs 5E + v}z o
o e o, s
o[r,SO ol;so 3L o[gso an (I.10)
Jdu E14 14
0 s0 sl
L4 (u z ) +u +
llcso 1 s1 3t lc o 9% o! 50 OF
+ (v, + I avo)l *s0 + { 251 - Efg
1 sl 3z z 0 an 0 CsO an sl 3z |C 0
(I.11)
z

=

s
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s0
p = —= (1.12)
OlCSO F2
z op l
sl 0 !
r = o - L T (1.13)
]\ESO 7’ st 9% \ESO ';
: % o a’p
pZ\Z; - 32 Y 32012 S le‘c - % ts1 ZOL; (1.14)
s F s0 s0 14 s0
e Cou, 20w o Av, 23y
3, Condition 35: ou(aZ + e 35)\CS ot(ac + e an)‘?;s 0 (1.15)
Buo
(o ——) =0 (1.16)
I
du 3u 9u
1 0 ? 0
(o, ==— *+ © =) = -7 , =, =) (1.17)
0 9% 1 3¢ \ESO sl a5~ 0 92 ‘ESO
3u Ju Ju oW
1 0 0 |
@ 2sa ez, =T G T
0 9z 1 3¢ 2 3¢ \z;so 0 3¢ \;SO |
u Jdu du
3 0 9 0 1
B T e T I - B T LY
s2 3 0 32 \CSO s} 9 1 3T 0 9% ESO
2 sy
1.2 3 0 (1.18)

- =, ey 57
2 "sl 31;2 0 3¢ ‘ESO

Similar conditionms hold for the subfunctions of a(%—;—’- + 52 -g—%’-).

3 2 . - = 3 ' = - - et KC
4. Condition 48: u r v 0 with T (z;s ?;b) exp (-1 ?g)

b



=0
“o\z;b AN
[ u
- sl
u y ° — 4 [
\\cb ¥ Ty To b 0 3T \i;b * Ty
Ju
“2\r, s o8 Lizc E)S"t;g\r, S
v 70 0 b b 0
2 2
- {,_E.,SJ——" g‘ ?_‘jl-— '/E,Sl-«/ ;‘ ?___\:‘-9-} '
T b 073 2gg ” gb)z 03 "o ko

the subfunctions of Vv and W

(1.19)

(1.20)

1.2V
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APPENDIX II: Asymptotic expansion of a .

The expression adopted for the eddy viscosity was (see eq. 42):

T -z

2 S . N2 0u2  Ov.2y }
s b
Using the series expansions:
Ju du, du 94, du Ju
Bu,2 _ ,°Y.2 0% 2 0 °%2 1,2
G = Gr) tEawow v o G
v av, 3v v, 9v av
w2 Y0 ov1 2 0 V2 1.2
EAE A T A A
- o 8u0 Bu] . 3V0 BVl
du, 2 V.2, b _ 0,2 0.2, % 3r 3¢ 3z 3¢
{(BC * (BE) ! - {(BC )+ (BC )} [I T e Ju v
D%+ =2
14 14
Buo Buz . BVO sz ) (aul)z (Bv])z
2 3¢ 3¢ 3T AT € 3z 1S
T T v MV T v
%+ =2 %+ =2
3T 3z 9T 3z
I S I P %
bs T %y Bg0 T Fhep Tover b0 T % %50 " % %s0 T b
2
2 z232 Z;sl ¢ Cb
S g e e
s0 b (CSO - ;b) s0 b

the subfunctions of a, turn out to be:
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L~z \ .
.2 s0 N2 0.2 0.2,
"o T TR T )T {ge? ¢ 0D (11.1)
s0
6 = 2 _so (c-z.y2 3L_3T 3¢ Bt .
tl 1;80 Cb b Buo 2 Bvo 2.1
— 2 H
G+ G0
2 ts1 3,,%% 2 0,24
PR (z-z,) {(§—~ * G (11.2)
(., ~z) ¢ B
s0 b
Mok Moty gy
B 2 s0 23z 3t 7 3¢ 7 ‘3t 7 3¢
G 5, ==K - (z-z.) +
t2 z z b du v .
0" (D7 + 22
5T Y4
. 2 sl (- >3 YA 3L 9L s
S 2
s0 b {('.a‘i——) + (BC )}
z z du v .
2 i
U e — ) e’ (G? + oA
<CsO cb) (z 0~ %y
(I1.3)

etcetera.
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APPENDIX III: Asymptotic expansion of depth—averaged quantities.

Let f be the depth-average of a function £(g), defined by:

ES
f=3 lc ] £@) d (I11.1)
s °b Cb

how are the subfunctions of the asymptotic expansion

- - - D
f = f0 + efl + € f2 S S (111.2)

then defined?

Substituing the series expansions

_ 2
Ly = ;so + ecsl + e Csz L R (I11.3)

E(2) = £,(0) + ef, () + 25, () + ... (IT1.4)

and expansion I17.2 into definition III.1 multiplied by (CS—Cb) yields:
( + + 2 + )(% + cf, + 2§ + ) =
csO e&s] € Cs2 N 0 € 1 € 2 ceses

2
T + ECS] +e CSZ + o

s0O

f (fo + ef1 + szf N ) dg

b

(I11.5)

The right hand part of this equation can be expanded in a Taylor-series

around ;=cso, such that:
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;s ;SO
2 B 2
t, (f0 + efl + € f2 + ...) dz = Cb (f0 + efl + e f2 + .. ) dz +

2
+ (ggsl *er, t ...)(fO +ef) + €2f2 + ""')}E +
: s0

1 dfO df1 deZ

2 2
qrlerg vty r e G e e w e
s0

(I1I.6)

Substitution of IIL.6 into IIL.5 yields:

_ - — 2 — —
(T = &) fo telltgg =) £+ 5 Bl + e llr o) £y v o fy Y

+ Cszfo} Fooiea.. =
CsO CsO
= [ gy o+ el [ £ g fo’cso} +
Ly Ly
CsO
2
+e“ (] £, da+z £ +¢  f +
. 2 sl 1[@80 2 o\zso
b
df
1 2 0
+ = —_— } + PP (111.7)
2 °sl dg EsO
Consequently:
CSO
- 1
f o= ——— [ f_dt (111.8)
0 %50 % °
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etcetera.
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(111.9)




APPENDIX VI: Radius of curvature of streamlines and normal lines

in a two-dimensional flow field.

- . . . . .
Let u' = (u,v) be a two-dimensional flow field in which u and v denote
3 > . » .
the components of the velocity-vector u' in two orthogonal directions
£ and n, respectively, then the streamlines of this flow field are

defined by:

dn _ v

dE" (Iv. 1)
. d @dny _d v 1  dv_du
So: T (di) dg(u) u2(u it v aE (1v.2)
e 4.8 ,dn3d 9 v3
Since: i 3E + & 5E + < (1Iv.3)

equation IV.2 can be written:

an 1 v, av o du_ v
dgz“uz(“ AT 3~ u_ an (1v.4)

Defining the radius of curvature T of a streamline by:

L dg (1V.5)

2
1 1 2 3v v du 2 3u v, —3/2
S = S A AR 2 . et 2 IvV.6
T u3(u 3% A A an) {1+ uz} ( )

So if u' = V(u2 + v2) :




101

2 Jv v du 2 Ju (1v.7)

=1 (" == + uv — - uv v o—
u-3 9E on 9E an

Hl—-

S

The normal lines of the flow field are defined by:

dn _ _u
i (1Iv.8)
) d dny _ _ 1 du  dv
So: F (EE ;E(V T u EE) (1V.9)

ince: L. =3 ,dnd _ 3 _u3d ‘
Since: E N + T T T » (IV.]Q)

equation IV.9 can be written:

2
du du v u 3v (IV.11)

5 :E(Vg‘g-us-ﬁ—u—a-g'*r'ﬁ)

Defining the radius of curvature of the normal lines by:

dzn
2
1 dE
— = (1V.12)
o+ <§g>2}35

it follows from IV.8 and IV.11:

2 3u Ju v 2 3¥v
EANM A T (V.13
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Q= 019m¥s
d=018m 170m
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First order solution
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. Measurements

@ 1 % Scaleof @

figh Comparison of zero order and first order
solution with results from
LFM ~ experiments {smooth bed)
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T .
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fig 10d. Direction of the velocity and the shear stress at the bed
upper part: measured flow direction at the bed
tower part . computed bed shear stress direction
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