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Abstract There is broad consensus that situation awareness
(SA) plays a key role in agent-based modelling of com-
plex sociotechnical systems. However in the social sciences
and human factors literature there are different views on
what SA is and how it could be modelled. More specifi-
cally, one school of research considers SA as the process
of gaining awareness, another school refers to it as to the
product of gaining awareness, whereas the third school sees
SA as a combination of the process and product. Typically,
agent-based modelling of SA is done from the second view
for each individual agent, possibly with additional social
components to enable interaction. Current developments in
multiagent systems indicate that social abilities and rela-
tions between agents should be not an addition, but at the
core of any model of a sociotechnical system. To address
this issue, we develop a mathematical modelling frame-
work of SA relations between agents which supports all
three views. The use of the framework is demonstrated by
an example of retrospective accident modelling from the
aviation domain.

Keywords Situation awareness · Multiagent systems ·
Sociotechnical systems · Formal framework

H. A. P. Blom (�) · A. Sharpanskykh
Faculty of Aerospace Engineering, Section Air Transport
and Operations, Delft University of Technology,
Kluyverweg 1, 2629 HS Delft, The Netherlands
e-mail: henkblom@ieee.org

A. Sharpanskykh
e-mail: o.a.sharpanskykh@tudelft.nl

H. A. P. Blom
National Aerospace Laboratory NLR, Amsterdam,
The Netherlands

1 Introduction

Modern sociotechnical systems are characterised by high
structural and behavioural complexities. They often con-
sist of a large number of heterogeneous components with
complex properties and nonlinear interaction between these
components. Multiagent systems (MAS) have proven to be
a suitable paradigm to model the dynamics of such systems
(see e.g. [1]).

There is broad consensus that situation awareness (SA)
plays a key role in agent-based modelling of complex
sociotechnical systems. In the literature there are different
views on what SA is and how it could be modelled. More
specifically, one school of research considers SA as the pro-
cess of gaining awareness [2], a second school refers to it
as to the product of gaining awareness [3], whereas a third
school sees SA as a combination of the process and prod-
uct. Representatives of the third school take an ecological
approach and describe SA as a ‘generative process of knowl-
edge creation and informed action taking’, e.g. Smith and
Hancock [4]. According to their view, one’s interaction with
the world is directed by internally held mental models. The
outcome of interaction modifies these mental models, which
directs further exploration. Support for the view promoted
by the third school also becomes clear in a series of stud-
ies of conflicts between multiple agents [5]. Conflicts are an
imminent part of the dynamics of sociotechnical systems.
Furthermore, conflicts between beliefs and goals of agents
are common in intra- and intergroup dynamics in a MAS.
As argued in [5], conflicts may occur as mere differences or
contradictions, but also as social conflicts. Hence conflicts
are identified as an essential part of a MAS that captures
complex sociotechnical system behaviour.

In order to integrate SA in a multiagent model of a
sociotechnical system, the framework of Endsley [3] is often
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taken as a starting point. Following Endsley’s definition [3],
situation awareness refers to the level of awareness that
an individual has of a situation; to an operator’s dynamic
understanding of ‘what is going on’. The SA model pro-
posed by Endsley is based on human information processing
theories and comprises three levels: Level 1 involves per-
ceiving by an individual the state, attributes, and dynamics
of task-related elements in the surrounding environment. At
Level 2, data perceived at Level 1 are being interpreted and
understood in relation to the individual’s task and goals.
At Level 3, the individual predicts future states of the sys-
tems and elements in the environment based on their current
state. Endsley and Jones [6] extend the original SA model
of Endsley to shared SA and introduce differences in SA
between multiple human agents in a sociotechnical environ-
ment. In Endsley and Jones [7], this model is used in shared
SA requirements analysis for the design of sociotechnical
systems.

Typically, in agent-based models based on Endsley’s
SA model, individual actors are considered at the basic
level as isolated information processing entities, e.g. [8–
10], and as required, social abilities of and interaction
between actors are built on top of such individualistic
models. However, in the area of agent-based modelling of
sociotechnical systems it has been recognised that clas-
sical individualistic models of agents (e.g., based on the
Belief Desire-Intention framework) are not able to cap-
ture many aspects of social dynamics. Following Dignum
et al. [11], humans are in the core social beings, and thus
social aspects should be addressed not as an addition, but
at the core of any model that involves interaction between
agents. Similar arguments are recently made for robotic
systems [12]. Such a paradigmatic shift of view on agent-
based modelling of sociotechnical systems calls for novel
models of SA and SA relations between agents at their
core.

In order to make progress in this challenging and divided
domain of research, in this paper we develop a mathemati-
cal framework for modelling and analysis of multiagent SA
(MA-SA) which is based on MA-SA relations in a system of
multiple agents. For this development we take advantage of
the insight gained by applying the MA-SA model of Stroeve
et al. [13] to agent-based safety risk analysis in air traffic
management [14]. However, the development in the current
paper is different. The MA-SA model in [13] extended the
model of Endsley [3] by incorporating non-human agents,
whereas the current paper uses the framework of Endsley
and Jones [6] as a starting point to also capture MA-SA rela-
tions and shared MA-SA between multiple human agents in
a sociotechnical system.

The SA definition provided in [6] implicitly considers
human agents only, whereas the MA-SA framework devel-
oped in this paper also includes non-human agents. This

provides the basis for a subsequent development of a series
of complementary extensions:

• MA-SA relations between two agents may be asymmet-
ric, i.e. agent A may maintain SA about certain state
elements of agent B, while agent B maintains SA about
no or other state elements of agent A. Moreover, fol-
lowing Gerran’s [15] Theory of Mind, MA-SA relations
may involve more than two humans e.g. human agent A
may maintain SA about the SA maintained by human
agent B about human agent C.

• MA-SA in a MAS is defined through MA-SA relations.
This also applies to MA-SA differences and shared
MA-SA. The MA-SA relations support a systematic
approach in differentiation between self-awareness, SA
about another agent, and SA about non-agent entities.

• The MA-SA update processes at the three levels of End-
sley are made more specific in terms of: Observation
or Messaging at level 1, Interpretation at level 2 and
Projection at level 3.

• A distinction is made between MA-SA differences that
are known to exist, and MA-SA differences that are
unknown to exist; the latter are referred to as MA-SA
inconsistencies.

The paper is organised as follows. In Section 2 we give
a formal presentation of the SA framework of [6] for a
sociotechnical system containing N human operators. The
SA relations in this framework are defined through design
requirements on sharing SA. Section 3 introduces and elab-
orates a novel MA-SA relationship for a system of N agents.
Section 4 characterizes the MA-SA update processes in a
MAS. Section 5 distinguishes MA-SA differences that are
known to exist from those that are unknown to exist. Section
6 illustrates the application of the novel framework to the
Überlingen mid-air collision accident. Section 7 provides
concluding remarks.

2 SA framework of Endsley and Jones

We consider a sociotechnical system containing N human
operators Hi, i = 1,..,N, amidst an environment of multi-
ple non-human entities that all together are represented by
H0. At moment t , Hi, i = 1,..,N has SA σt,i , which is a
finite set of multi-dimensional stochastic processes, each of
which has realizations in a well defined state space. Endsley
and Jones [6] assume that each pair of human operators has
certain requirements regarding the similarity of their SAs.
In order to capture this during the design of a sociotechnical
system, Endsley and Jones define SA requirements for team
members: “SA requirements are those SA elements that
need to be shared between team members”. Subsequently,
Endsley and Jones define “Shared SA is the degree to which
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team members have the same SA on shared SA require-
ments”. Shared SA requirements, according to Endsley and
Jones [7] may concern data (e.g., about a system, other team
members), comprehension (e.g., of status relevant to own
or other’s goals, of impact of own actions on others and
of actions of others on self) and projection (e.g., of actions
of team members). Shared SA between two humans is the
degree to which the SA elements of their shared SA require-
ments are equal, with fully shared SA having the highest
degree.

In order to formalize this, denote by Ri,k the set of SA
elements that have to be shared between humans Hk and
Hi, i �= k. Formally, we define Ri,k as a set of Ni,k different
pairs (s, r)j , j ∈ [1, Ni,k], where s points to the s-th ele-
ment of σt,i , which is denoted as σt,i(s), and r points to the
r-th element of σt,k , which is denoted as σt,k(r). Then, fully
shared SA between humans Hk and Hi, i �= k, applies if
the SA elements in the set of their shared SA requirements
Ri,k are equal. More precisely, humans Hk and Hi have fully
shared SA if

σt,i(s) = σt,k(r), ∀(s, r) ∈ Ri,k. (1)

If similar conditions are satisfied for all other pairs
of humans, then all humans in the sociotechnical system
considered have fully shared SA.

For example, in an air traffic context, a pilot and an air
traffic controller need to share information about the loca-
tion of the pilot’s aircraft. Assume the aircraft locations
are maintained by the pilot and the controller as SA ele-
ments σt,pilot (s) and σt,controller (r) respectively. Then the
pair (s,r) will be in the set Rpilot,controller of SA elements
that have to be shared between the pilot and the controller.
If in this example σt,pilot (s) = σt,controller (r), then the pilot
and the controller share information about the location of
the pilot’s aircraft. However if σt,pilot (r) �= σt,controller (s)

then there is an SA difference between the pilot and the
controller. Similarly, there may be SA sharing or an SA
difference between the controller and the pilot of another
aircraft.

Following Endsley and Jones [6], if all humans involved
have the same but erroneous SA about their environment H0

of non-human entities, then the conditions of fully shared
SA between all humans in the sociotechnical system are still
satisfied. In the above example, this means that σt,pilot (s) =
σt,controller (r), while this does not exclude the possibil-
ity that both SA’s about the location of the aircraft differ
from the true aircraft location. This example shows that it is
worthwhile to include non-human entities in the framework
of [6].

Having formalized the Endsley and Jones model of
shared SA and SA difference for a collection of humans in a
sociotechnical system, our next step is to introduce a similar

but different relationship formalism for a system of multiple
agents that need not be human.

3 Novel MA-SA framework for a system of N agents

In contrast to Section 2, where we formalized Endsley and
Jones’s [6, 7] SA design requirements, this section aims to
formalize the SA relations that are maintained in a MAS.
Because a MAS may involve different types of agents, these
MA-SA relations are not symmetrical, e.g. agent A may
maintain SA about agent B, but not the opposite.

3.1 MA-SA relations in a system of N agents

We consider a MAS consisting of N agents Ai, i =
1, . . . , N and a set A0 of non-agent entities that are
in the environment of these N agents. In the MAS
domain, reactive and proactive behaviours of agents are
often distinguished. Reactive behaviour is a simple, event-
driven ‘stimulus-response’ type of behaviour. Proactive
behaviour refers to a more complex, goal- or motive-driven
behavioural type, including adaptation.

We assume that at moment t , Ai has state xt,i , i =
0, . . . , N . The state xt,i of an agent Ai may have multi-
ple state elements. Note that in this section we do not yet
make any assumption on which elements of xt,i are SA
elements and which are not. Agent Ai may maintain state
elements about other state elements of itself, of other agents
Ak, k �= i, or of A0. To capture such relations between state
elements of different agents, we denote by Sk

i the multiagent
situation awareness (MA-SA) relation of agent Ai regarding
agent Ak . Similarly as Ri,k in Section 2, Sk

i is a set of Nk
i

different pairs (s, r)j , j ∈ [1, Nk
i ], where s points to state

element xt,i(s) and r points to state element xt,k(r). 1

To illustrate the difference between Sk
i and Ri,k we con-

sider the pilot-controller example of Section 2, where both
the pilot and the controller maintain SA about the location
of the pilot’s aircraft. In a MAS setting this means there are
three agents: the pilot (agent 1), the controller (agent 2) and
the pilot’s aircraft (agent 3). Each of these agents has a state
vector, i.e. xt,pilot , xt,controller and xt,aircraf t . Let’s assume
that the aircraft location elements in these state vectors are:
s for the pilot, r for the controller and q for the aircraft.
Then the pair (s, q) is in the set S

aircraf t
pilot and the pair

(r, q) is in the set S
aircraf t
controller . However, normally the pairs

(s, r) and (r, s) are not in the sets Scontroller
pilot and S

pilot
controller ,

1Note that each element in Sk
i in fact defines an ontological mapping

between state elements of agents i and k. This means that as long as
the same ontology is used, there is freedom how to express the state
elements to which the components of an element of a MA-SA relation
refer.
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respectively, even if (s, r) is in the set Rpilot,controller . Only
in exceptional situations, the pair (r, s) may be in the set
S

pilot
controller ; for example if the controller has reason to believe

that the pilot has an erroneous SA regarding the location of
his or her aircraft.

Remark 1 Because Sk
i explicitly belongs to Ai , a logical

assumption is that the MA-SA relation Sk
i is known to agent

Ai , i.e., Sk
i is represented by one or more elements of state

xt,i of agent Ai . In line with this, the MA-SA relation Sk
i

may vary over time. Nevertheless, for notational simplicity
we assume that Sk

i is time-invariant.

3.2 Special cases

For proactive agents and for non-agent A0, special cases
apply. In particular, proactive agents may have a self-
awareness relation Si

i . If the pair (s, r) is in the set Si
i , then

state element xt,i(s) is agent Ai’s self-awareness about its
own state element xt,i(r). This also means that the opposite
pair (r, s) is not in the set Si

i .
For non-agent A0, the specialty rather is that none of its

state elements maintains SA. Hence, the set Sk
0 is empty.

Of course, in general, the opposite MA-SA relation S0
k

will not be an empty set, i.e. agent Ak may maintain SA
about one or more entities in A0. This means that typi-
cally there will be an asymmetry between S0

k and Sk
0 , i.e.

(s, r) may be in S0
k while (r, s) is not in Sk

0 . Such asym-
metry may also apply to any pair of agents, i.e. in general
Si

k �= Sk
i , k �= i.

In the following special cases the situation is considered
in which MA-SA relation Sk

i contains partly overlapping
pairs. Two kinds of overlap are possible: 1) (s, r) and (s, r ′),
r ′ �= r are both in Sk

i ; and 2) (sr) and (s′, r), s′ �= s

are both in Sk
i . In case 2), both xt,i(s)and xt,i(s

′) form SA
of xt,k(r). If agent Ai assures that the two are always the
same, then one of the two can be deleted. However, if agent
Ai would fail to maintain equality, then this could lead to
ambiguity.

In case 1), xt,i(s) is the SA of both xt,k(r) and xt,k(r
′).

Because agent Ak is in control over xt,k(r) and xt,k(r
′), it

may happen that these two differ, i.e. xt,k(r) �= xt,k(r
′). In

such a case there may be ambiguity for SA xt,i(s) of agent
Ai . In order to avoid the above types of ambiguities the pro-
posed MA-SA framework does not allow any partial overlap
of pairs in MA-SA relations: If (s, r) ∈ Sk

i , then neither
(s, r ′), r ′ �= r , nor (s′, r), s′ �= s, are in Sk

i .

Remark 2 An open question is if it would make sense
to relax the above assumption, for example to allow that
agent Ai maintains SA about some composite state ele-
ments of another agent, or to allow that agent Ai maintains
a composite SA about one state element of another agent.

For the pilot-controller example in Section 3.1, the MA-
SA relation framework allows that the controller maintains
SA about what the pilot maintains as SA about the location
of its aircraft. Such type of reasoning is often considered
in Theory of Mind [15], also for a depth of more than two
levels. The proposed framework also supports any depth of
reasoning. For this MA-SA, relations have to be concate-
nated. For example, if MA-SA relation Sk

i of agent Ai has

an element (s, r) and MA-SA relation S
j
k of agent Ak has

an element (r, q), then concatenation of Sk
i and S

j
k yields:

xt,i(s) is the SA of agent Ai about xt,k(r), which is the SA
of agent Ak about state element xt,k(q) of Aj .

3.3 MA-SA in a system of N agents

Having defined i) the MAS, ii) the state of each agent and
of non-agent entities, and iii) the MA-SA relations between
state elements, we are prepared to identify which elements
of state xt,i are SA elements and which are not. We denote
by σk

t,i the SA of agent Ai at moment t about the state of

agent Ak . This defines σk
t,i as the set of states xt,i(s) of agent

Ai for which there is a MA-SA relation with state elements
of agent Ak , i.e.:

σk
t,i

�= {xt,i(s), ∃rs.t.(s, r) ∈ Sk
i } (2)

If set Sk
i is non-empty, then σk

t,i is non-empty, and we say
“Agent Ai maintains SA about Ak”.

Similarly, by setting k = i, (2) defines the self-awareness
σ i

t,i of agent Ai at moment t . In addition to the self-

awareness σ i
t,i and the MA-SA components σk

t,i , k �= i,
state xt,i may contain state elements that are not related to
any other state element through

{
Sk

i , k = 1, . . . , N
}
. These

elements of xt,i define the base state ξt,i of Ai , i.e.

ξt,i
�= {xt,i(s), s.t. (s, r) /∈ Sk

i for ∀(k, r)} (3)

As a consequence of (2)-(3), it follows that the state xt,i of
Ai consists of base state ξt,i , self-awareness σ i

t,i , and SA

σk
t,i , k �= i, of all other agents, i.e.

xt,i = ξt,i ∪ σ i
t,i

⋃

k �=i

σ k
t,i (4)

Remark 3 If, for some s, state element xt,i(s) of agent Ai

makes part of the base state ξt,i , then this does not exclude
the possibility that another agent Ak, k �= i, maintains SA
about this base state element xt,i(s) of agent Ai .

Remark 4 We can use the MA-SA relations to collect
those state elements of Ai for which SA is maintained
by any of the other agents; this is the following set:{
xt,i(r), ∃s s.t.(s, r) ∈ Si

k for some k ∈ [1, N]}
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4 MA-SA updating in a MAS

The aim of this section is to express agent Ai’s situation
assessment process of its environment at the three levels
of Endsley [3]. First, Section 4.1 addresses the updating of
an agent’s SA about its environment, i.e. σk

t,i , k �= i, and
how this relates to Endsley’s levels 1 and 2. Next, Section
4.2 addresses the updating of the agent’s other state com-
ponents, i.e. ξt,i and σ i

t,i , and how this relates to Endsley’s
level 3.

4.1 Updating of an agent’s SA about its environment

Each agent Ai in a MAS determines its own moment in time
at which an update is made of its SA σk

t,i about Ak, k �= i.

Just before such moment t the SA of agent Ai about agent
Ak is σk

t−,i .
2 As a consequence of the update at moment t ,

the SA of agent Ai about agent Ak becomes σk
t,i . Within a

MAS, such update of a subset of the state of agent Ai is
some function fi,k of the states of agents Ai and Ak just
before the update. This can be expressed through the fol-
lowing equation: σk

t,i = fi,k(xt−,i , xt−,k). Obviously the
specific form of the function fi,k depends of the MAS model
for agent Ai and its interactions with agent Ak . Also the time
moment t will be determined by the MAS model for agent
Ai on the basis of its own state and the possible activity by
another agent.

In practice, typically there are all kinds of uncertainties
involved when applying such a functionfi,k . In order to cap-
ture such uncertainties we enter some random term εt,i,k in
the latter equation, which yields an overall MA-SA update
equation:

σk
t,i = fi,k(xt−,i , xt−,k, εt,i,k) (5)

where εt,i,k represents possible errors or uncertainty that
may play a role in updating the SA of agent Ai about agent
Ak .

In order to make MA-SA update (5) more specific, next
we characterize it through three more specific update equa-
tions, each of which can be linked to one of the first two
levels of [3]. These three equations are for:

a. Observation, by agent Ai about the state of agent Ak;
b. Messaging, received by agent Ai from agent Ak; and
c. Interpretation, by agent Ai of an Observation or a

Message.

An update of σk
t,i based on an observation of state

elements of Ak is represented by a combination of the
following Observation and Interpretation equations:

yk
t,i = f observation

i,k

(
xt−,i , xt−,k, ε

observation
t,i,k

)
(6)

2Here t− stands for t − �, with � some small time delay.

σk
t,i = f

interpretation
i,k

(
xt−,i , y

k
t,i , ε

interpretation
t,i,k

)
(7)

where f observation
i,k (.) is an observation function,

f
interpretation
i,k (.) is an interpretation function, and

εobservation
t,i,k and ε

interpretation
t,i,k represent potential

observation and interpretation errors respectively.
Observation (6) provides a measurement of xt−,k from

the perspective of A′
i s state xt−,i . This coincides quite well

with Endsley’s level 1 of perception by an individual of the
state, attributes, and dynamics of task-related elements in
the surrounding environment. Subsequently, Interpretation
(7) uses this measurement and the state of agent Ai to update
the SA of agent Ai about agent Ak . The latter coincides
quite well with Endsley’s level 2 of interpretation and under-
standing of a new observation in relation to the individual’s
task and goals.

In order to verify that the Observation and Interpretation
combination yields an equation of type (5), we substitute (7)
into (6), which yields:

σk
t,i = f

interpretation
i,k

(
xt−,i ,

f observation
i,k

(
xt−,i , xt−,k, ε

observation
t,i,k

)
, ε

interpretation
t,i,k

)

The latter implies that σk
t,i can be written as a function of

xt−,i , xt−,k and a random error, such as in (5).
For a received message from agent Ak , a set of equations

applies that is similar to (6,7), i.e.

zk
t,i = f

message
i,k

(
xt−,i , xt−,k, ε

message
t,i,k

)
(8)

σk
t,i = f

interpretation
i,k

(
xt−,i , z

k
t,i , ε

interpretation
t,i,k

)
(9)

with messaging function f
message
i,k (.), interpretation func-

tion f
interpretation
i,k (.), and ε

message
t,i,k and ε

interpretation
t,i,k rep-

resenting potential observation and interpretation errors
respectively. Similar to Observation (6), Messaging (8) pro-
vides a kind of measurement of Ak’s state xt−,k from the
perspective of Ai’s state xt−,i , and therefore also fits quite
well at Endsley’s level 1. Subsequently, Interpretation (9)
uses this measurement and the state of agent Ai to update
the SA of agent Ai about agent Ak .

4.2 Projection equation at Endsley’s level 3

An interpretation update according to (7) or (9) typically
triggers a projection type of update of agent Ai’s base state
ξt,i and self-awareness σ i

t,i . The resulting outcome of such

projection update is ξt+,i and σ i
t+,i

3 respectively, which is

3Here t + stands for t + �, with � some small time delay.
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captured through the following projection equation:
(
ξt+,i , σ

i
t+,i

)
= f

projection
i

(
xt,i , ε

projection
t,i

)
(10)

where f
projection
i (.) is a projection function and ε

projection
t,i

represents possible error in the projection process.
Projection (10) incorporates two coupled updates:

– Update of agent Ai’s base state ξt,i through reasoning at
Endsley’s level 3;

– Update of agent Ai’s self-awareness σ i
t,i .

The reasoning at Endsley’s [3] level 3 addresses the predic-
tion, i.e. significantly beyond the current time t , of future
states of the other agents and non-agent entities in the envi-
ronment of agent Ai as well as making novel plans for itself.
All these novel predictions and plans form elements in the
base state ξt+,i . Simultaneously with the updating of these
predictions and plans, agent Ai’s self-awareness σ i

t+,i is also
updated, for example to maintain self-awareness of agent
Ai’s task load that is involved with the updated predictions
and plan.

Typically as a result of the updates of agent Ai’s base
state to ξt+,i agent Ai will send one or more messages to
one or more other agents. Subsequently this may trigger SA
updates by these other agents.

5 MA-SA differences and MA-SA inconsistencies

We say that agent Ai has correct SA about Ak iff the
following equation holds true:

xt,i(s) = xt,k(r), ∀(s, r) ∈ Sk
i (11)

By analogy with Endsley and Jones [6], we say that
shared MA-SA between agents Ak and Ai, i �= k, is the
degree to which the pairs of state elements that correspond
to the sets Sk

i and Si
k are equal. Hence, agents Ak and Ai are

said to have fully shared SA iff both (11) and the following
hold true:

xt,k(s) = xt,i(r), ∀(s, r) ∈ Si
k (12)

If similar conditions are satisfied for all other pairs of
agents in the MAS, then all agents in the MAS are said to
have fully shared MA-SA. We say that agents Ai and Ak

have a fully shared and correct MA-SA, iff in addition to
(11, 12) the following equations are satisfied:

xt,k(s) = xt,0(r), ∀(s, r) ∈ S0
k (13.a)

xt,k(s) = xt,0(r), ∀(s, r) ∈ S0
i (13.b)

In case there is a pair of agents for which (11,12) do not
hold true, then we say there is MA-SA difference among
agents in the MAS. For example, if there is an (s, r) ∈ Sk

t,i

for which xt,i(s) �= xt,k(r) then this means that the SA
of agent Ai differs from the corresponding state element
xt,k(r) of agent Ak .

As has been well explained in [5] there are various types
of differences. From a safety perspective, an important dis-
tinction is whether a difference is known or unknown. We
illustrate this distinction for the pilot-controller example of
Section 3.1. Assume the pilot’s awareness about the posi-
tion ν of its aircraft is according to a belief measure4 with
support on the interval [ν̄1− ∈1, ν̄1+ ∈1]. Similarly assume
that the controller’s awareness about the position ν of this
aircraft is according to a belief measure with support on
the interval [ν̄2− ∈2, ν̄2+ ∈2]. Unless ν̄1 = ν̄2 = ν and
∈1=∈2= 0, there are differences between each of these
three SA’s. However, the difference in the SA of the pilot
about its aircraft’s position is often known; it is an unknown
SA difference iff |ν̄1 − ν| >∈1. Similarly, the difference
in the SA of the controller about this aircraft position is
unknown iff |ν̄2 − ν| >∈2.

In order to capture this idea of unknown SA difference
we introduce the concept of MA-SA consistency. We say
there is MA-SA consistency of agent Ai regarding Ak iff

Support{xt,i(s)} ⊇ Support{xt,k(r)}, ∀(s, r) ∈ Sk
i (14)

where Support{xt,i(s)} refers to the mathematical support
(the set of values having a non-zero belief measure) of state
element xt,i(s) . Application of (14) to the pilot/controller
example above implies that MA-SA of the pilot about
the aircraft position is inconsistent if |ν̄1 − ν| >∈1, and
the MA-SA of the controller about the aircraft position is
inconsistent if |ν̄2 − ν| >∈2

If there is MA-SA consistency of agent Ai regarding
agent Ak and there also is MA-SA consistency of agent Ak

regarding agent Ai , then we say there is MA-SA consistency
between agents Ak and Ai . Finally, if (14) holds true for
each combination of (i, k) with i �= 0 and k �= i, i.e. includ-
ing k = 0, then we say there is full MA-SA consistency in
the MAS.

4In the area of artificial intelligence, state elements are often quali-
tative, and specified using some mathematical logic-based language,
e.g., order-sorted predicate logic. For quantitative applications some
measure may be associated with state elements, for example, a proba-
bility density function as a measure of state (un)certainty. An individ-
ual state element may express statements about a current time point, as
well as about some past or future time points. States of agents differ in
complexity depending on cognitive abilities of the agents.
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6 Case Study

To illustrate the MA-SA modelling framework, we per-
form a retrospective analysis of the Überlingen mid-air
collision — one of the most serious accidents in avia-
tion history. It occurred on the 1st of July 2002 between a
Tupolev TU154M passenger jet and a Boeing 757-200 cargo
jet over the towns of Überlingen and Owingen in south-
ern Germany. In the official accident investigation report
[16] the following immediate causes of the accident were
identified:

– The imminent separation infringement was not noticed
by the air traffic controller on duty in time. The instruc-
tion for the TU154M to descend was given at a time
when the prescribed separation to the B757-200 could
not be ensured anymore.

– The TU154M crew followed the air traffic controller’s
instruction to descend and continued to do so even after
the onboard traffic collision avoidance system (TCAS)
advised them to climb.

Among the causes, which were identified by the official
investigation are the following two: i) the integration of
new TCAS systems into the aviation system was insuf-
ficient; and ii) during the night, workstations were not
continuously staffed by controllers. For a more detailed
description of the accident and its investigation we refer to
[16].

In the following sections we shall model this case using
the newly developed MA-SA framework. In Section 6.1
we identify the relevant agents and their relevant states.
Relevant MA-SA relations are described in Section 6.2.
In Section 6.3 MA-SA differences and their evolution
and propagation through MA-SA update processes are
described. Section 6.4 summarizes the novel aspects of the
framework in this case study.

6.1 Relevant agents and their state elements

We start the modelling of the case study with the identifi-
cation of agents and the formalization of their states. The
agents and non-agent entities that played a relevant role in
the Überlingen accident are identified in Table 1 below.

To formalize the states of agents in air traffic manage-
ment, Stroeve et al. [13] distinguish the following state
components:

– the identity of an agent (e.g., the callsign of an aircraft,
the organisational role of a human such as that of a
supervisor controller);

– a discrete state (mode) of an agent (e.g., an alert mode
of a technical system, a cognitive mode of a pilot);

Table 1 Agents in the Überlingen accident considered in the case
study

Identity Description

TU154 Aircraft TU154M

TU154 crew The crew of TU154M aircraft

B757 Aircraft Boeing 757-200

B757 crew The crew of B757 aircraft

TCAS-TU TCAS of aircraft TU154M

TCAS-B TCAS of aircraft B757

ATCo The air traffic controller on duty

STCA Short-term conflict alert system used by ATCo

ATC-K Air traffic control center in the Karlsruhe zone

– a continuous state of an agent (e.g., the speed of an
aircraft, the workload of an ATCo);

– an intent of an agent – a plan to be followed by an
agent, which is a time-indexed sequence of discrete and
continuous states to be executed in the future (e.g., a
time-indexed taxiing route).

For our case study, the values for these state elements
of the agents were identified based on the investigation
report [16], also taking into account manuals and regula-
tions, prescribing rules of execution of operations in ATM.
In accordance with the proposed theoretical framework, the
states of the agents comprise base state, self-awareness and
SA components. The state vectors of the aircraft in our study
consist of base state components only. The aircraft are con-
sidered to be reactive agents; they neither have SA about the
other agents, nor have self-awareness. The identified state
elements for agents TU154, TU154 crew, and ATCo are pro-
vided in Table 2. The state elements of agents B757 and
B757 crew are defined in the same way. The identified state
elements for the other relevant agents are provided in Table
3; their sets of state elements are rather limited.

6.2 MA-SA relations

Table 4 shows the MA-SA relations identified between the
agents in the case study. Most of the relations described in
the table concern TU154 and TU154 crew agents. The rela-
tions for B757 and B757 crew agents are defined in a similar
way. Note that the state properties referred to in the MA-
SA relations are specified using the same state language and
the same ontology. Therefore, as indicated in Section 3, the
MA-SA relation elements in Table 4 are identified by the
corresponding state properties.

In addition, the following MA-SA relations were identi-
fied involving other agents:

ST CAS−T U
T U154crew: TCAS-TU alert, TCAS terms of use
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Table 2 State elements of
agents TU154, TU154 crew,
and ATCo, denoted by their
indexes

TU154 TU154 crew ATCo

Continuous valued state elements

Location of TU154 Altitude of TU154 Altitude of TU154

Altitude of TU154 Location of TU154 Location of TU154

Speed of TU154 Direction of TU154 Direction of TU154

Direction of TU154 Speed of TU154 Speed of TU154

Altitude of B757 Altitude of B757

Location of B757 Location of B757

Direction of B757 Direction of B757

Speed of B757 Speed of B757

B757-TU154 distance B757-TU154 distance

Discrete valued (mode) state elements

Flight mode of TU154 Flight mode of TU154 Flight mode of TU154

Flight mode of B757 Flight mode of B757

TCAS-TU alert Conflict B757-TU154

TCAS-B alert STCA’s mode

Conflict B757-TU154 STCA’s alert

TCAS terms of use

Intent valued state elements

Intent of TU154 crew Intent of TU154 crew

Intent of B757 crew Intent of B757 crew

SST CA
AT Co : STCA’s mode, STCA’s alert

SAT Co
AT C−K : Conflict B757-TU154

Furthermore, the following base state components were
identified for agents TU154 crew and B757 crew, i.e. these
state components are no components of an SA about state
components of another agent:

ξt,T U154 crew : intent of TU154 crew
ξt,B757 crew : intent of B757 crew

Development of the conflict, which led to the acci-
dent, can be explained in terms of the development and
propagation of MA-SA differences through MA-SA update
processes. In the following, these processes are indicated as
(O) for observation, (M) for messaging, (I) for interpretation
and (P) for projection. In order to keep the elaboration of
the MA-SA updating limited, we shall focus on the key SA
differences and SA updates in the development of the con-
flict during the last 5 minutes before the mid-air collision
happened.

6.3 Development and propagation of MA-SA differences

Figure 1 illustrates the development and propagation of the
MA-SA differences for the case study, which we identify
through the analysis below.

In our MA-SA analysis we take time point 21:30:11 as
the starting point. At this time point, the TU154 and the
B757 aircraft were at the same flight level and approached
each other at right angles; the distance between them was
64 NM. However, the ATCo did not notice this, as a result
of his erroneous observation (O) and interpretation (I) pro-
cess regarding one or both aircraft. Furthermore, at that time
point, neither of the crews knew about the existence of the
other aircraft. Thus, there was an SA inconsistency of the
TU154 crew regarding the B757 and an SA inconsistency
of the B757 crew regarding the TU154, w.r.t. all MA-SA
relations connecting the two aircraft and their crews.

Both crews detected (O) the other aircraft later, but before
the infringement had occurred; however, they could not
identify (I) their altitudes, flight directions and air speeds

Table 3 State elements of the
other relevant agents TCAS-TU: TCAS-TU alert

TCAS-B: TCAS-B alert

STCA: STCA’s mode (aural, optical, aural and optical), STCA’s alert

ATC-K: Conflict B757-TU154
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Table 4 MA-SA relations of
ATCo and TU154 crew
regarding TU154, ATCo and
B757 crew; and of ATCo,
TU154 crew and B757 crew
regarding TU154

ST U154 crew
AT Co , SAT Co

T U154 crew SB757 crew
T U154 crew ST U154 crew

AT Co , ST U154
T U154 crew , ST U154

B757 crew

B757-TU154 distance B757-TU154 distance Location of TU154

Conflict B757-TU154 TCAS-B alert Altitude of TU154

Intent of TU154 crew TCAS terms of use Speed of TU154

Intent of B757 crew Conflict B757-TU154 Direction of TU154

Intent of TU154 crew Flight mode of TU154

Conflict B757-TU154

accurately because of the high altitudes and darkness. Thus,
the differences in the corresponding MA-SA relations were
not eliminated, but the SA inconsistencies were resolved.

The ATCo detected (O, I) the developing conflict when
the horizontal separation between the aircraft was already
below 5 NM (21:34:49). Then, the ATCo advised (M) the
TU154 crew to descend, which was acknowledged by the
crew (I, M). Thus, both the intent state of the T154 crew and
the SA of the ATCo about the intent state of the T154 crew

were updated in the same way, i.e., there was no MA-SA
difference in

ST U154 crew
AT Co : Intent of TU154 crew.

However, the B757 crew was not aware of the T154
crew’s intent, as it was not communicated (M) to them,
neither by the ATCo, nor by the T154 crew. Thus, there
was an SA inconsistency of the B757 crew regarding the
TU154 crew w.r.t. state ‘intent of TU154 crew’ and an SA

Fig. 1 Development and
propagation of MA-SA
differences in the case study
based on a sequence of events
and MA-SA update processes
(horizontal axis at the top of the
figure). Initially, there are
MA-SA inconsistencies
(unknown MA-SA differences)
because the crews of both
aircraft were not aware of the
presence of each other’s aircraft,
and the ATCo was not aware of
the conflict. Then the ATCo
noticed the conflict and provided
instructions, as a result of which
the MA-SA inconsistencies step
by step either were resolved or
changed into known differences.
However, before these known
differences were resolved,
TCAS alerts created various
novel inconsistencies.
Unfortunately, the timely
recognition of these
inconsistencies did not happen,
and there was no lucky miss
between the aircraft either
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inconsistency of the B757 crew regarding the ATCo w.r.t.
state element ‘intent of TU 154 crew’.

Furthermore, both crews were still not aware of the
developing conflict (infringement), as it was not clearly
communicated (M) by the ATCo, and they themselves were
not able to observe (O) it.

The crews of the aircraft became aware of the developing
conflict only when their corresponding TCASs issued reso-
lution advisories at 21:34:56 (M, I). At that time, the crews’
SAs were updated through messaging and interpretation.

The TCAS of the TU154 provided (M) to its crew the
advisory to climb, whereas the TCAS of the B757 provided
(M) to its crew the advisory to descend. However the crews
were not aware of each others’ TCAS advisories.

The flight operation manual prescribes that pilots must
comply with TCAS instructions. However, the TU154 crew
was not aware of this (I), i.e., there was an SA inconsistency
of the TU154 crew regarding TCAS-TU w.r.t. state element
‘TCAS terms of use’.

Because of this, the TU154 crew continued following the
ATCo’s instructions, which contradicted the TCAS-TU res-
olution advisory. Thus, there was no change in the TU154
crew’s intent because of the error in the projection process (P).

On the contrary, the B757 crew decided (P) to follow the
TCAS advisory and started to descend (21:35:19), however
this information reached (M, I) neither the ATCo, nor the
TU154 crew due to an error of omission in the messaging
or interpretation updating process. Thus, there existed an
SA inconsistency of the ATCo regarding the B757 and an
SA inconsistency of the TU154 crew regarding the B757;
both inconsistencies were w.r.t. state element ‘flight mode
of B757’ and ‘altitude of B757’.

Also the intent of the B757 crew was not known to the
ATCo (M) and the TU154 crew (M), meaning that there
were SA inconsistencies of the ATCo regarding the B757
crew and of the TU154 crew regarding the B757 crew; both
inconsistencies were w.r.t. state ‘intent of B757 crew’.

Thus, the ATCo was not aware of the developing conflict.
At 21:35:00, the STCA system of ATCo, which had func-

tioned in the aural mode, issued a conflict alert, which was
not perceived by the ATCo (O), i.e., an SA inconsistency of the
ATCo regarding STCA w.r.t. state element ‘STCA’s alert’.

The neighbouring air traffic control center ATC-K was
aware of the conflict, but was not able to warn the ATCo
(M) because of the malfunctioning phone system, i.e., an
SA inconsistency of ATC-K regarding the ATCo w.r.t. state
element ‘conflict B757-TU154’.

Therefore, the ATCo was not aware of the conflict until
the accident happened at 21:35:32.

This example application shows that our newly devel-
oped MA-SA framework forms an effective way to structure
a retrospective analysis of systemic behaviour behind an
accident in a complex sociotechnical system.

6.4 Novel aspects of the framework in the case study

In this section we illustrate, by using the case study, the
novel aspects of our proposed framework over the frame-
work of Endsley and Jones [6]

Novel aspect 1: The SA definition provided by [6]
implicitly considers human agents only. The MA-SA frame-
work developed in this paper also includes non-human
agents.

In the case study the following non-human agents were
considered: aircraft TU154 and aircraft B757, the TCAS of
these aircraft, and the STCA system

Novel aspect 2: MA-SA relations between two agents
may be asymmetric, i.e. agent A may maintain SA about
certain state elements of agent B, while agent B maintains
SA about other state elements of agent A.

In the case study all MA-SA relations of type S
j
i where i

is a human agent and j is a non-human agent are asymmet-
ric. Furthermore relation SAT Co

AT C−K is asymmetric too.
Novel aspect 3: Modelling to any depth the SA of one

agent about the SA of another agent.
Consider an example of depth two. Let MA-SA rela-

tion SAT Co
B757 crew of agent B757 crew have an element (ATCo

knows that B757 crew is aware of conflict B757-TU154,
B757 crew is aware of conflict B757-TU154) and let MA-
SA relation SB757 crew

AT Co of agent ATCo have an element
(B757 crew is aware of conflict B757-TU154, there is a
conflict B757-TU154). In such a way, agent B757 crew can
reason about the ATCo’s knowledge about the B757 crew’s
awareness of the conflict.

Novel aspect 4: A systematic approach in differentiation
between base state, self-awareness, SA about another agent,
and SA about non-agent entities.

For example, consider agent TU154 crew. Its base
state is defined by ξt,T U154 crew ={intent of TU154
crew at t} , its SA about human agent B757 crew is
defined by σB757 crew

t,T U154 crew ={intent of B757 crew at t},
its SA about non-human agent TCAS-TU is defined by
σT CAS−T U

t,T U154 crew ={TCAS-TU alert at t}
Novel aspect 5: The MA-SA update processes at the three

levels of Endsley [3] are made more specific for a MAS in
terms of: Observation or Messaging at level 1, Interpretation
at level 2 and Projection at level 3.

These MA-SA update processes are indicated throughout
Section 6.3 by (O) for observation, (M) for messaging, (I)
for interpretation and (P) for projection.

Novel aspect 6: A distinction is made between differ-
ences that are known to exist, and differences that are
unknown to exist; the latter are referred to as MA-SA
inconsistencies.

Figure 1 illustrates that severe safety problems typ-
ically start when a MA-SA inconsistency (= unknown
MA-SA difference) sneaks in. Because such differences are
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unknown, they can stay and propagate unnoticed for some
time in a MAS

7 Concluding remarks

In this paper, a formal framework has been developed for
retrospective and prospective modelling and analysis of
multiagent SA (MA-SA), which is based on multiagent SA
relations in a system of multiple agents. In contrast to the
existing agent-based models of SA (e.g. [8–10]), the pro-
posed framework defines relations between agents at the
most basic level and not as an addition on top of individu-
alistic agent reasoning. Furthermore, SA is introduced as a
set of stochastic processes, which cannot be represented by
traditional epistemic and doxastic logic.

To develop the framework, first in Section 2 the Endsley
and Jones model [6] for N humans in a sociotechnical
system was captured in a formal setting. Based on this
elaboration, a mathematically well-defined concept of SA
relations between humans and shared SA was introduced.
Next, in Section 3 this formalized concept of SA relations
was extended to a multiagent system. This approach led
to several extensions over Endsley and Jones [6]: i) the
developed framework incorporates non-human agents; ii)
MA-SA relations between two agents no longer need to
be symmetric; iii) the MA-SA relation framework allows
going in any depth to systematically capture the SA of one
agent about the SA of another agent. In Section 4 it was
shown that the MA-SA relation framework provides a sys-
tematic approach in differentiation between self-awareness,
SA about another agent, and SA about non-agent entities
Complementary to this, a formal characterization of MA-SA
update processes in a MAS was provided at the three levels
of Endsley [3]: Observation or Messaging at level 1, Inter-
pretation at level 2 and Projection at level 3. Subsequently
in Section 5, differences in MA-SA were defined relative
to MA-SA relations between agents. Moreover a distinction
was introduced between known and unknown differences
and the latter were named MA-SA inconsistencies.

Finally, in Section 6, the newly developed formal frame-
work was used to demonstrate a retrospective agent-based
modelling of the Überlingen mid-air collision between two
commercial transport jets. This example application demon-
strates that the newly developed framework supports multi-
ple views on SA considered in the literature. Although the
model of Endsley and Jones [6] was used as a starting point,
the support of the proposed framework is not limited to the
product view on SA only. In particular, the proposed MA-
SA update processes address the process view on SA [2]
Moreover, it was shown that the framework can be used to
specify the interplay between the process and product views,
as the ecological SA approach prescribes [4].

During the development of the novel MA-SA frame-
work, a few assumptions were adopted, such as the one that
the MA-SA relations are non-composite and time-invariant.
In follow-up research it will be studied how our newly
developed mathematical framework can be extended to less
restrictive conditions. In particular, such an extension would
be useful to enable agents with abilities to represent and
reason about aggregated structures (such as teams, orga-
nizations) and joint actions and states of multiple agents.
For example, in air traffic, a pilot will maintain some SA
about ATC, without making an explicit distinction between
the air traffic controller he or she has contact with and the
broader sociotechnical ATC system that includes the air traf-
fic controller. This means that the MA-SA relation of a pilot
does not need to point to a specific element of the state of
the air traffic controller, but rather to some imaginary state
that may not be maintained by any individual agent on the
ground. A similar issue applies to a controller, who may
maintain SA of the composite of a crew and their aircraft
systems rather than of each of them separately. In the future,
the mathematical framework will be extended to capture
these kinds of composite and imaginary MA-SA relations.

Although the proposed MA-SA framework has been
developed in support of both prospective and retrospec-
tive analysis, the current paper demonstrated only the latter.
Hence another important direction for follow-up research
is to explore how the proposed MA-SA framework can
be applied within Agent Oriented Software Engineering
methodologies, e.g. [17, 18]. In doing so, we may benefit
from the experience gained in applying [13]’s early MA-SA
version to agent-based safety risk modelling and analysis of
novel operations in air traffic management [19, 20]; the for-
mal modelling language used in these applications is a high
level Petri net formalism that supports compositional multi-
agent modelling within the theoretical setting of stochastic
hybrid automata [21, 22].

Glossary of Symbols

A0 Collection of non-agent entities
Ai Agent i
εName
t,i,k Random error which influences the outcome of f Name

i,k

f Name
i,k Function Name to update SA of agent Ai about Ak

Hi Human i
Ri,k Set of SA elements that have to be shared between Hi and

Hk

Sk
i MA-SA relation of Ai regarding Ak

σt,i SA of Hi or Ai

σ i
t,i Self-awareness of agent Ai at moment t

σt,i (s) s-th element of σt,i

σ k
t,i SA at moment t of Ai about Ak

xt,i state of Ai at moment t

xt,i (s) s-th element of xt,i

ξt,i Base state components of xt,i

yk
t,i Observation at moment t by agent Ai about Ak

zk
t,i Message received at moment t by agent Ai from Ak
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