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Abstract

The Leslie model considers age-specific birth and survival rates to describe how a population size and
age distribution changes over time. This thesis investigates the long-term dynamics of the Leslie model
for population growth, utilizing mathematical theorems such as Perron-Frobenius, Doeblin’s theorem,
and Branching processes.

The Perron-Frobenius theorem guarantees the existence of a dominant eigenvalue. This dominant
eigenvalue and its corresponding eigenvector represent the long-term behaviour of a population; The
dominant eigenvalue indicates the long-term population growth, and the corresponding eigenvector in-
dicates the long-term age distribution. Furthermore, the Perron-Frobenius theorem implies that a pop-
ulation asymptotically reaches a stable age distribution that is independent of its initial age structure.
Once this stable age distribution is reached, the population continues to grow exponentially, exhibit-
ing Malthusian behaviour. Doeblin’s theorem, although not directly applicable to the complete Leslie
model, provides valuable insights into the long-term behaviour of Markov chains. As Doeblin’s theo-
rem can not be applied to the complete Leslie model, the reproduction process of the Leslie model is
formulated as a Branching process. Introducing the Leslie model as a Branching process allows for the
consideration of demographic stochasticity. Simulations reveal that for larger populations, the Branch-
ing process closely mirrors the Leslie model, while disparities become more pronounced in smaller
populations. These results illustrate the impact of probabilistic factors in population dynamics, as well
as the strength of the Leslie model for larger populations.
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Chapter 1

Introduction

Population projections are hypothetical scenarios that aim to show developments of the population size
and structure. These population projections are based on a set of assumptions for future levels of fertility
and mortality. The projections provide information about how the population size and structure would
change if the assumptions made regarding fertility and mortality remained true. As a result, population
projections help the public, statisticians and policymakers to understand population dynamics [23].

Thomas Malthus was an English economist and is well known for his influential essay "An Essay on
the Principle of Population," first published in 1798. Malthus’s work laid the foundation for what is now
known as Malthusian theory or Malthusianism. In this essay, Malthus argued that populations tend to
grow at an exponential rate, in the absence of significant checks on its growth, such as food scarcity,
disease, or other limitations on resources [20].

This research is focused on the Leslie model for population growth, a commonly used model in
population demography. Similar to the Malthusian theory, the Leslie model assumes that a population
can grow in an unlimited environment.

The Leslie model is a mathematical framework used to study population dynamics. The Leslie model
represents how a population’s size and age distribution change over time. By quantifying age-specific
reproductive and survival rates, researchers gain insights into the ways different age groups contribute
to population growth or decline. Thereby, the Leslie model is a valuable tool for ecologists and demog-
raphers to analyze and project population changes, providing insights into how factors such as birth
rates, mortality, and age structure influence overall population trends.

The goal of this thesis is to investigate the long-term behaviour within the Leslie model for popu-
lation growth, utilizing various mathematical theorems. Various mathematical tools allow for comple-
mentary insights that can increase our understanding. Chapter 2 provides an in-depth exploration of
the Leslie model, offering insights into its historical development, key assumptions, and mathematical
foundations. Then, in Chapter 3, the Perron-Frobenius theorem is introduced, a mathematical tool to
analyze the Leslie model’s long-term population growth dynamics. Chapter 4, introduces Doeblin’s
theorem and discusses its application to the Leslie model, shedding light on the model’s behaviour as a
Markov chain. Chapter 5 formulates part of the Leslie model as a branching process. This approach con-
siders demographic stochasticity, and evaluates how it compares to the Leslie model. Finally, Chapter 6
provides a summary of the findings and a discussion of the limitations within this research.



Chapter 2

Leslie model for population growth

2.1 Patrick Holt Leslie

Patrick Holt Leslie was born in 1900 in Scotland. Leslie studied at Oxford University and obtained a
bachelor’s degree in physiology, in 1921. Due to health problems, he could not continue his studies
in physiology and instead turned to statistics. In 1935, Leslie joined the Bureau of Animal Population,
a new research centre set up by Charles Elton. The purpose of this research centre was to study the
fluctuations of animal populations through field studies and laboratory experiments. Elton suggested
to Leslie, that it would be valuable if the mortality and fertility schedules of an organism could be
combined into a single expression. Accordingly, Leslie studied and experimented with rodents from
Canada, to analyse the patterns of their population growth. Leslie used methods developed by Alfred
Lotka, who researched human demography.

In 1945 Leslie published his most famous article in Biometrika, a journal, founded by Galton, Pear-
son and Weldon in 1901. The article was entitled On the use of matrices in certain population mathematics.
The article is focused on the growth of the female population of different rats of different age categories.
Though Leslie has brought an enormous contribution to modern environmental science, it took 25 years
for ecologists to adopt Leslie’s matrix population models [6]. After computer science improved, soft-
ware was available to execute matrix calculations necessary to apply the Leslie model [1].

2.2 Applications of the Leslie model

The Leslie model is frequently used in population dynamics. Population dynamics is the branch of
ecology that deals with the variation in time and space of population size and density for one or more
species [2]. The Leslie model considers age-specific birth and survival rates to describe how a population
size and age distribution changes over time. The Leslie model provides a method for understanding and
projecting the patterns of a population, through the analysis of age-specific vital rates and application
of matrix algebra. The Leslie model has applications in various fields, including wildlife management,
conservation biology and human demographics.

There is a crucial distinction between forecasting and projecting. Whereas a forecast predicts what
will happen, a projection describes what would happen, given certain hypotheses. Thus, the Leslie
model is used to project a population if the present conditions were to be maintained. Indeed, one of the
most powerful ways to examine present conditions is to examine their consequences if they were they
to remain as they are [5]. The Leslie model is a method to project the present state of a population into
the future.

The model is applied to ecology, to examine present conditions model changes in a population of
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organisms over a period of time. Since the growth and dynamics of a population directly affect the
state of the economy, politics and the environment, population projections are important, as they assist
government and researchers to make decisions about the future.

As the Leslie model can demonstrate the consequences of present demographic trends, it allows
researchers to examine how plans to manage populations affect the vitality of a population [6]. Thus
population projections may indicate that existing trends and policies are likely to lead to undesirable
outcomes. For this reason there is often interest in examining which demographic features of a popu-
lation influence the realized rate of increase or how certain changes in demographic parameters would
ultimately influence population growth [24].

2.3 Derivation of the Leslie model

The Leslie model is a discrete, age-structured model of population growth, in which a population is
divided into discrete age classes of equal size. The structured model describes how individuals move
in time among the defined classes. The model thereby describes the dynamics of the population class
distribution and, as a result, the dynamics of the population as a whole.

Given the age distribution of a population on a certain date, the Leslie model provides a method to
determine the age distribution of the survivors and descendants of the original population at subsequent
time intervals [18, 19].

2.3.1 Assumptions

The Leslie model for population growth is based on various key assumptions.

¢ The Leslie model requires age specific population numbers, fertility rates and mortality rates. In
order to simplify the problem, the model assumes that the age-specific birth and survival rates
remain constant over a period of time [18, 19]. Though in reality birth and survival rates are more
likely to change through time or change depending on the population density.

e Since the Leslie model is a discrete model, it discards all information on the ages of individuals
within age classes. Thus, it is assumed that all individuals in an age group have the same birth
and survival rates.

¢ In the Leslie model, a population is considered to be closed to migration.

¢ Inthe Leslie model, one sex of the population is considered. This is usually the female component
of the population. Therefore, the model assumes there is no shortage of males that could inhibit
reproductive potential [24].

* There is no maximum size that the population can reach, assuming the population can increase
in an unlimited environment.

¢ The birth rates, survival rates and initial population distribution are known.

2.3.2 Constructing the Leslie model

The Leslie model divides age, which is a continuous variable, into distinct classes. Let i represent an age
class in a population consisting of m age classes. Then define P;(t) as the number of individuals at time
tin an age class i with i € {1,...,m}. For each age class i, there is a constant birth rate b; and constant
survival rate s;. Birth rate b; is the average number of offspring produced by individuals in age class .
Survival rate s; is the rate of individuals from an age class i at time ¢ to the age class i + 1 at time ¢ + 1.



Chapter 2. Leslie model for population growth 7

The survival rate represents the probability that an individual in age class i survives to the subsequent
age class. Therefore, the age-specific death rates d; are defined as d; = 1 —s;. It is assumed that a unit of
time is the same as an age interval.

Since the Leslie model considers only the female sex of the population, the birth rates b; consist of
female offspring and the survival rates s; represents the survival rates for female offspring. Moreover,
P;(t) represents female individuals at time ¢ in age class i.

In this model, a female population is divided into age classes of the same length. So if the maximum
age attained by any women in a female population is denoted by A years and the population is divided
into m age classes, then each class has a duration of A/m years. Table 2.1 shows the age classes with
their corresponding age ranges for each age classi € {1,...,m}.

Age Class Age Range

1 [0,2)

2 A, 24

3 E
m—1 [(m:nZ)A, (m;l)A)

m [(m=DA A

Table 2.1: Age classesi € {1,...,m} and corresponding ranges.

Processes between two consecutive observation times can be explained using the demographic pa-
rameters b; and s;. By definition, itis obtained thatb; > Ofori =1,..,mand0 <s; <1fori=1,..,m—1.
We defined P;(t) as the number of females in age group i at time t. Then P(t), the total population at a
time ¢, is defined as

P(t) = f Pi(t). @.1)

)
P(t):= | P3(B) ] 2.2)

2.3)

The objective is to project the population from time ¢ to ¢ + 1. The number of offspring produced
by each class can be calculated by multiplying the reproductive rate by the number of females in that
particular age class. The sum of all these values gives the total number of offspring produced.
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Py (t) = blpl(t - 1) + bzpz(t - 1) +.+ bmpm(t - 1) = i bipi(t — 1) (2.4)
i=1

The number of females in the second age class at time ¢, are those in the first age class at time t — 1,
who are still alive at time f. In general, if at time + = 0 there are P;(0) females alive in age group i to
i+ 1. Then the survivors of these females will form the group of females in age group i + 1 to i + 2 at
time f = 1. Thus P;(1) = s;P;(0). For the calculation of Py, (t), the population in age class m at time ¢,
Sm Py is added. This represents the possibility of surviving beyond the last age group of the model. The
following equations are obtained:

Pi(t) =s;i 1P_1(t—1), i=2,..,m—1

2.5
Pm(t) :Smflpmfla—l)+Smpm(t—1). ( )
From Equation (2.4) and (2.5), we get the following system of equations
Pi(t)= biP(t—1)+bPa(t —1)+ ... + by Pu(t — 1)
P(t) = s1Pi(t—1)
P3(t) = spPa(t—1) (2.6)
Pu(t) = sy 1Pu1(t—1)4+suPu(t—1).
The system of linear equations (2.6) can be rewritten in matrix form as
O N S A L
st 0 0 0 0
Py(t) Py(t—1)
(1) 0 s, O 0 0 Pyt —1)
3' =10 0 s3 --- 0 0 3 ‘ . (2.7)
Pn®] 1o 0 o st 5| (D)
In matrix notation,
P(t) =LP(t—1), (2.8)
where _ -
bl by b3 bmfl b
s 0 O 0 0
0 s 0 - 0 0
L:=10 0 s --- 0 0 (2.9)
|10 0 0 Sm—1 Sm

The Matrix L in Equation (2.8) is called the Leslie Matrix, consisting of m rows and m columns. All
elements of the matrix are zero, except those in the first row and the subdiagonal below the principal
diagonal of the matrix. The Leslie matrix is a projection matrix and can be described by the addition
(2.10) of a Fertility matrix F, and Survival matrix S. The Fertility matrix describes the reproduction
dynamics of a population, consisting of the age specific birth rates of a population. The survival matrix
describes the transitions between age classes, consisting of the age specific survival rates of a population:

L=F+S (2.10)
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by by by bp_1 b 0 0 0 0 0
0 0 0 0 0 ss 0 0 0 0
0 0 0 0 0 0 s, 0 0 0
F:=10 0 0 0 0|, S=1]0 0 s3 0 0 (2.11)
0 0 0 0 0] 0 0 0 Sm_1  Sm

In this research, we will consider s;; = 0, meaning that the probability of surviving from age class
m is zero. This causes the Leslie model to capture a population as a whole and implies that individuals
do not age indefinitely. So the maximum age reached by any female in a population is in age class m.
As a result, an adjusted Leslie matrix is obtained as follows:

(b1 by b3 -+ by_1 by
s 0 0 -~ 0 0
0 s 0 --- 0 0
L:=10 0 s3 - 0 0 (2.12)
0 0 0 -+ Syuq O]

P(k) = LP(k—1) = L*P(0).

Thus, if the starting age distribution P(0) and the Leslie matrix L are known, the age distribution
of females at any later time can be determined using the following equation:

P(k) = LFP(0). (2.13)

2.4 Eigenvalues and eigenvectors of the Leslie matrix

Equation (2.13) gives the distribution and size of a population at any given time, it does not however
give an insight into the dynamics of the population growth process. In order to do so, the eigenval-
ues and eigenvectors of the Leslie matrix (2.12) will be analysed. We will first recall the definitions of
eigenvalues and eigenvectors.

Definition 2.1. [10] Let A be an n x n matrix. A scalar A is an eigenvalue of A if there is a non-zero column vector
v in R" such that Av = Av. The vector v is then an eigenvector of, A corresponding to A. The equation Av = Av
can be written as Av — AIv = 0, where 1 is the n x n identity matrix. This is equivalent to (A — AI)v = 0. Thus,
eigenvector v must be a solution of the homogeneous linear system

(A— Al)o = 0. (2.14)
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An eigenvalue of A is therefore a scalar A for which system (2.14) has a non-zero solution v. The eigenvalues are

the solution of the characteristic equation
det(A— AI) = 0. (2.15)

An eigenpair, denoted as (A,v) consists of an eigenvalue A and its corresponding eigenvector v.

24.1 Derivation of the characteristic equation of the Leslie model

Leslie aimed to comprehend the system’s behaviour over time by seeking a solution P(t) = rfv [1], that
exhibits geometric growth or decline. Geometric growth or decline occurs when a population experi-
ences a consistent proportional increase or decrease in size from one age class to the next age class. Thus,
the objective is to determine the age distribution v such that it is consistently multiplied by a constant
value, r, at each time step. Hence, the number r and v must satisfy

Lv = ro. (2.16)

The objective is to find the age distribution, v which at each time step is multiplied by a constant r.
Such distributions are called stable. Therefore, by Definition 2.1, we are looking for eigenvalue r and its
corresponding eigenvector v. By using Equation (2.12), Equation (2.16) can be rewritten as

bivy + byvy 4 - - - 4+ by = 101, 2.17)
$101 = 10, SpUp = 103, ..., 8m—10m—1 = 'O
Now, vy, ..., vy can be expressed as
$10 $1590 $182 ...8;—10
=19 ., 21029 v, — 21°2---om-1Y1 (2.18)

(%] 7 ’ 3 7’2 7o Um 7””71

Substituting vy, . .., v, from Equation (2.18) into the first Equation from (2.17), dividing by v; and
multiplying by 7”1, Leslie obtained the characteristic equation

P =™ £ s by 2 45150 .. Sy 1bim. (2.19)

Dividing by " and simplification gives the characteristic equation of a Leslie matrix L.

1—byr P —sbor 2 — - - —8159...8y_1bmr ™ = 0. (2.20)



Chapter 3

Perron-Frobenius theorem

Chapter 1 provided a description of the Leslie model for population growth, and the key assumptions
underlying its formulation. In this chapter, eigenvalues and eigenvectors of the Leslie matrix will be
utilized to explore the long-term dynamics of a population, through the implications of the Perron-
Frobenius theorem.

3.1 Derivation of the Perron-Frobenius theorem
3.1.1 Perron’s theorem

Definition 3.1. Let 0(A) denote the set of all eigenvalues A of a matrix A. Then p(A), the spectral radius of a

matrix A, is defined as
p(A) = max{|A| : A € 0(A)}. (3.1)

Definition 3.2. A matrix A € R™*"™ is said to be a non-negative matrix whenever each a;; > 0. It is said to be
a positive matrix whenever each a;; > 0.

Theorem 3.3. Perron’s theorem[22] If A is a positive matrix with r = p(A), then the following state-
ments are true.

e r>0.

e r € 0(A), and r is called the Perron root.

alg mult, (r) = 1.

There exists an eigenvector x > 0 such that Ax = rx.

* The Perron vector is the unique vector p defined by
Ap=rp, p>0, and |pli=1,

and, except for positive multiples of p, there are no other non-negative eigenvectors for A.

Perron’s theorem applies to positive matrices, giving conditions for the existence of a dominant eigen-
value: the eigenvalue with the greatest absolute value. However, since the Leslie matrix (2.12) is a non-

11
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negative matrix, Perron’s theorem cannot be applied to the Leslie model. Frobenius extended Perron’s
theorem to non-negative matrices, by incorporating the additional requirement of irreducibility.

Definition 3.4. The dominant eigenvalue A4 is the eigenvalue with the largest absolute value: |Az| > |A|. The
eigenvalue is called strictly dominant if |A4] > |A|.

3.1.2 Irreducibility of matrices
Definition 3.5. [9] [11] Matrix A is reducible if there exists a permutation matrix P such that

X Y} , (3.2)

T —
PAP—{O 7

where X and Z are both square matrices. Thus, a matrix A is reducible if and only if it can be transformed into block
upper-triangular form through permutations of rows and columns. If no such P exists, A is called an irreducible
matrix.

Definition 3.6. [22] Let G(A) denote the graph associated with matrix A. Then G(A) is defined to be the graph
on n nodes {Ny, ..., Ny} in which there is a directed edge leading from N; to Nj if and only if a;; # 0.

Definition 3.7. [22] G(A) is called connected if, for each pair of nodes, (N;, Ni) there is a sequence of edges from
N; to N .

Lemma 3.8. [22] A non-negative matrix is irreducible if and only if it is connected.

Lemma 3.8 implies that the graph associated with the non-negative irreducible matrix contains a
path from every node to every other node [4]. In the context of the Leslie matrix for population growth,
this then indicates that the life cycle graph, associated with the Leslie matrix, contains a path from
every age class to every other age class. This implies that individuals in one age class, have a positive
probability to eventually reach all other age classes in the model, through a series of birth and survival
rates.

Thus, for a reducible matrix, this implies that the life cycle must contain at least one age class,
for which there exists another age class that is impossible to be reached through a series of birth and
survival rates. An example of this is a Leslie model for a population that includes post-reproductive age
classes; age classes for which b; = 0 and thereby cannot contribute to younger age classes. Hence, in
order for the Leslie matrix L in Equation (2.12) to be irreducible, it should hold that b, > 0.

To derive the Perron-Frobenius theorem, the utilization of the following lemmas is necessary.

Lemma 3.9. [22] If a non-negative n x n matrix A is irreducible, then (I+ A)"~1 > 0, where I is the n x n
Identity matrix.

Proof. Let A be a non-negative irreducible matrix of size n x n. Let ag() denote the (i, j)-entry in matrix
AF. Since matrix A is irreducible, there exists a path of length k from state i to state j in the directed

graph associated with matrix A. Thus, there exists 0 < k < n — 1 such that ai(;() > 0. Now, (I+A)"!
can be expanded by the Binomial theorem:

n—1 _ n—1 _
(I_i_A)nfl — Z <7’l k 1>I(nlk)Ak — Z <7’l k 1)Ak
k=0

Thus, for each (i, j)- entry in (I + A)"~! this implies

{(I+A)”‘1} = [”Zl (n ; 1)Ak

gl k=0

n— —
= Z (n ' 1)»11(]1.{) > 0.
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Since each (i, ) entry in (I + A)"~! is positive, the matrix (I + A)"~! > 0 is positive. O

Lemma 3.10. [22] Let matrices A,B € R"*". If A < B, thus a;; < b;; for each i and j, then p(A) < p(B).

Lemma 3.11. [22] Let A be a non-negative matrix of size n x n. The following statements are true

r=p(A) € c(A).

Az = rz for some nonnegative vector z such that (z); >0 andz #0 Vie {1,---n}. (3.3)

Proof. Let A be a non-negative matrix of size n x n and let r = p(A). Consider the sequence of positive
matrices Ay = A + (%)E, where E is the nn x n matrix in which each element equals to 1. Then A, > 0.
Since Ay is a positive matrix, Perron’s theorem for positive matrices 3.3 can be applied. Let r, > 0 denote
the Perron root and pj > 0 denote the Perron vector.

Since for all Perron vectors py, ||pk|li = 1, the sequence {py};° ; is bounded. By the Bolzano-Weierstrass
theorem, each bounded sequence in IR", has a convergent subsequence:

lim {py, }i2y =z wherez >0, and z # 0. (34)
1—00
Since Ay > Ay > --- > A, Lemma 3.10 implies that r; > 1, > --- > r. Therefore, {r}{2, is

a monotonic sequence of positive numbers and is bounded from below by r. Then by the monotone
convergence theorem

lim r, = r* exists, and r* > r. (3.5)
k—ro0

Thus, for a subsequence {ry, }
lim ¢, = r* exists, and r* > r (3.6)
1—00
Note that limy_,o, Ay = limy_, A + (%)E = A, implying also that lim;_,, Ay, = A. Then by Perron’s
theorem 3.3 and using that the limit of a product is the product of the limits, we obtain

Az = lim Ay, pr, = lim r pr, = 1"z.
isoo i—oo T

Thus, by definition of an eigenvalue 2.1 r* € ¢(A). From the definition of the spectral radius 3.1, it
follows that r* < r. Now, since r* < r and r* > r, we can conclude that r* = r and Az = rzwithz > 0
and z # 0. O

3.1.3 Perron-Frobenius theorem

The Perron-Frobenius theorem states that a nonnegative irreducible matrix has a positive algebraically
simple dominant eigenvalue. This eigenvalue corresponds to a unique positive eigenvector.

Theorem 3.12. (Perron-Frobenius theorem) [22] If A is a nonnegative irreducible matrix, then the fol-
lowing statements are true.

e r=p(A) €c(A)andr > 0.

o alg mult,(r) = 1.
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¢ There exists an eigenvector x > 0 such that Ax = rx.
* The unique vector defined by
Ap=rp, p>0, and |[plh=1,

is called the Perron vector. There are no non-negative eigenvectors for A except for positive mul-
tiples of p, regardless of the eigenvalue.

Proof. Let A be a non-negative irreducible matrix of size n X n. From Lemma 3.11 it follows that r =
p(A) € o(A).

Now to prove that r has algebraic multiplicity 1, define B = (I + A)"~!. Then, by Lemma 3.9, matrix B
is positive.

Lemma 3.13. [22] Let f be a polynomial. if A € 0(A), then f(A) € o(f(A)). Thus, if A is an eigenvalue for
matrix A, then f(A) is an eigenvalue for f(A), whenever f(A) exists. Furthermore, it holds that alg mult , (A) =

alg mult ) (f(A)).

From this spectral mapping property, it follows that

Aeo(A) < (1+A)"ea(B). (3.7)

alg mult , (A) = alg multg((1+A)"1). (3.8)

Now, denote i = p(B). Using the definition of the spectral radius 3.1, i can be expressed as

pu=max{|(1+21)""1: (1+2)""" € o(B)}
=max{|(1+A)]"1: (1+1)" ! eco(B)}
=max{|[(1+A)["1:A€0(A)}, by the equivalence relation in equation (3.7) .
= (max|(1+A)]: A € a(A))" !

= (1+p(a)"!

— (141!

Now, since matrix B is positive, Perron’s theorem (3.1) can be applied. Therefore, alg multg (1) = 1. Thus
alg multg((1+4r)"~1) = 1. Then it follows by Equation (3.8) that alg mult ,(r) = 1.

To show that there exists a positive eigenvector, corresponding with r, note that by Lemma 3.11, Az = rz
for some z > 0 and z # 0. So there exists a non-negative eigenvector x associated with r, that form the
eigenpair (r, x) for matrix A. By the spectral mapping property, it then follows that (y, x) is an eigenpair
for matrix B. By Perron’s theorem for positive matrix B, there are no non-negative eigenvectors for ma-
trix B, other than the Perron vector and its positive multiples. Therefore, x must be a positive multiple
of the Perron vector of B and thus x must be positive.
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To show that this vector is unique, let (A, y) be an eigenpair for A, such that y > 0. Then for the left
Perron vector x > 0 of A, xy > 0. We obtain that
rxl =xTA, (3.9)
rxly = xTAy = xTAy = AxTy. (3.10)

Since xTy > 0, it follows that r = A. Thus, there is no other non-negative eigenvector other than the
Perron vector and its positive multiples.

Now it can be proved that r > 0. Suppose r = 0, then Ax = rx = 0. Since A > 0 and x > 0, we obtain
Ax = 0, only if A is the Null matrix. However, this gives a contradiction for the assumption that matrix
A is irreducible. O

3.2 Analysis of Leslie model via the Perron-Frobenius theorem

For irreducible and non-negative Leslie matrix L from (2.12) the Perron-Frobenius theorem 3.12 can be
applied to guarantee that there is a dominant eigenvalue, that is the spectral radius p(L) = r. The
application of Perron-Frobenius theorem 3.12 to the Leslie model for population growth, will provide
insight into the long-term behaviour and stability of the population. The limiting behaviour of the Leslie
model, as a result of Perron-Frobenius theorem, will be demonstrated. Let us assume Leslie matrix L is
diagonalizable. Thus, there exist an invertible matrix S and diagonal matrix D such that L = SDS™ 1,
where D is the diagonal matrix with eigenvalues A4, ..., A;; on its diagonal and matrix S consists of the
eigenvectors corresponding to the eigenvalues in matrix D. Then L can be expressed as follows:

LF = spFs—. (3.11)

Now, substituting L¥ into Equation (2.13) gives
P(k) = SDFs~1p(0), (3.12)

For D* the following matrix is obtained

AAoo0 - 000
0 A5 0 0 0
pk.— |0 0 A% 0 0 (3.13)
0 0 0 --- 0 Ak
Dividing Equation (3.12) by )\’f gives
1 0 0 -+ 0 0]
/\k
0 7% 0
Pk) <lo o & ... 0 0lct
T,{_s Ak $~1pP(0). (3.14)
Do .
0 0 0 - 0 ]

Since A; is the dominant eigenvalue, by definition it holds that [A;| > |A;|. Then |))\‘—i < 1| for

. . . . Ak .
i = 1,...,m. Therefore strict dominance of A1 ensures that limy_,, /\—;( =0fori = 2,...,m. Therefore
1

taking a limit from both sides of (3.14) gives
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1 0 0 T
k
0 5 0
1 /\k
1imillf):hms 0 0 3 -+ 0 01gs7p). (3.15)
k—o0 )\1 k—o0 . . .
: Ak
00 0 0 2w
L Ak

k
Then using that limy_, % =0fori=2,...,m, Equation (3.15) is simplified as follows:
1

100 00
Pk 0 00 00
1im¥:s 000 0 0| s-1p(0). (3.16)
k—o0 )\1 .
0 00 00
The multiplication S~1P(0) is a vector with constant entries
€1
2
s7lp(0)= |3, (3.17)
Cm
Using Equation (3.17) we obtain
1 00 0 0 €1
000 0 0 0
s|0 00 0 0ls1p0)=51|9]| = ¢y05. (3.18)
000 0 0 0

Substituting Equation (3.18) into Equation (3.16), the following equation, known as the strong Er-
godic theorem [8], is obtained.

lim P(k) = Jim Akero (3.19)

k—o0

Simplifying (3.19) and denoting the constant ¢; as c gives

lim P(k) = lim A¥coy. (3.20)
k 1
—00

k—oc0

Equation (3.20) remains true for non-diagonalizable Leslie matrices L [13]. For large values of k, (so
long-term), Equation (3.20) provides the following approximation

P(k) = Akco;. (3.21)
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From this approximation, it can be observed that the population vector P(k), thus the total popula-
tion at time k, will increase exponentially if A; > 1.

If A1 = 1, Equation (3.21) results in P(k) = cv; for all k. Thus, the population is stable and stationary.
Thus, if a population, with Leslie matrix L, has a dominant eigenvalue A that equals 1, the long-term
behaviour of the population is stable. This implies that the births exactly compensate the deaths in a
population per time interval.

If \; < 1, the total population P(k) is declining exponentially. Since limy_,,, AX = 0, the population
will eventually face extinction.

Equation (3.21) yields an equation that provides an approximation of the population at time k — 1.

P(k—1) = A leoy. (3.22)

Combining Equations (3.21) and (3.22), we obtain

P(k) = APk —1). (3.23)

Equation (3.23) indicates that for large time values, each age distribution vector is approximately a scalar
multiple of the previous age distribution vector. This scalar multiple A; is the dominant eigenvalue of
the Leslie matrix. Thus, the asymptotic growth rate of a population is given by the dominant eigenvalue
A1

The dominant eigenvalue and corresponding eigenvector represent the long-term behaviour of a
population; the dominant eigenvalue indicates the long-term population growth, and the correspond-
ing eigenvector indicates the long-term age distribution. Hence, the asymptotic growth rate of the pop-
ulation is given by this dominant eigenvalue. Equation (6) implies that the population distribution will
remain constant. So, even though the total population can increase or decrease, the age distribution of
the population will remain constant. Thus, the proportion of females in each age group will be constant.

The dominant eigenvalue determines the ergodic properties of population growth. A population
is said to be ergodic if its eventual behaviour is independent of its initial state [7]. Regardless of the
initial population, the population will grow with a rate A; and with a population distribution that is
proportional to v, the corresponding eigenvector of A;.

Thus, the stable population is the age distribution to which a population will evolve to, if its age
specific rates of birth and survival were to continue indefinitely. The growth rate A, is defined as the
factor that the stable population is multiplied by each year. Therefore, each age class will change by the
same constant.

The dominant eigenvalue is the growth rate of a population after the population reaches a stable
distribution. It can be concluded that a population described by a Leslie matrix (2.12), thus with con-
stant age specific birth rates and survival rates, asymptotically reaches a stable age distribution that
is independent of its initial age structure. Once a population reaches this stable age distribution, the
population continues to grow in the rate of the dominant eigenvalue A1, while keeping the same age
distribution.
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3.3 An example 4 x 4 Leslie model

Consider the 4 x 4 example Leslie model described by the Leslie matrix in Equation (3.24) and initial
age distribution vector at time ¢ = 0 in Equation (3.25).

by by, by b 1 2 3 4
s 0 0 o] fo5 0 0 o
L:=10 s, 0 ol |0 03 0 o (3.24)
0 0 s3 0 0 0 02 0
P, (0) 100
_p(0)] |20
PO = | 20)| = |200 (3.25)
P (0)| |00

In order to apply Perron-Frobenius theorem 3.12, two conditions must be met: non-negativity and
irreducibility. Firstly, the matrix in Equation (3.24) satisfies the non-negativity condition. Secondly,
as it is possible to reach every age class from every other age class through a sequence of transitions,
the Leslie matrix also fulfills the irreducibility criterion. Consequently, with the Leslie matrix meeting
both non-negativity and irreducibility criteria, the Perron-Frobenius theorem implies the existence of a
dominant eigenvalue that is both real and positive.

Calculations show that the dominant eigenvalue is 1.744. Once the population reaches a stable
distribution, using the result in Equation (6), it follows that the population will grow with a rate of
1.744, since the dominant eigenvalue A = 1.744 > 1. The asymptotic growth rate is given by 1.744

Furthermore, by Perron-Frobenius theorem, there corresponds a unique positive eigenvector to
this dominant eigenvalue. Once the stable population is reached, future age distributions are scalar
multiples. Therefore, the population will grow with a distribution proportional to the eigenvector cor-
responding to 1.744, whichis v = [176.808 50.691 8.720 1] " This eigenvector indicates that the first

age class will contain the majority of individuals in the stable age distribution. This can be explained by
the fact the older age classes exhibit the higher birth rates while having the lower survival rates.
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Doeblin’s theorem

To gain more insight into the long-term analysis of the Leslie model, Doeblin’s theorem for ergodicity
will be investigated in the following chapter. Doeblin’s theorem is a mathematical result that provides
insight into the long-term behaviour and convergence properties of Markov chains. Markov chains
have proven to be important mathematical tools in modelling various processes, including population
dynamics. In this chapter, the application of Doeblin’s theorem in the context of the Leslie model will
be explored.

This chapter will provide a detailed examination of the assumptions and implications of Doeblin’s
theorem. By analysing the Leslie model, using Doeblin’s theorem, we can gain understanding of the
stability, convergence and potential patterns that can emerge within population dynamics. This chapter
will illustrate the practical utility of Doeblin’s theorem, while aiming to enhance our understanding of
the Leslie model. Additionally, this allows us to see that different theorems and mathematical tools can
provide complementary perspectives, compared to insights gained by Perron-Frobenius theorem.

4.1 Derivation of Doeblin’s theorem

Doeblin’s theorem facilitates the study of the long-term distribution of Markov chains. For this reason,
the following section will introduce key concepts and definitions of Markov chains, fundamental to
understanding and deriving Doeblin’s theorem.

4.1.1 Markov chains

Markov chains model systems, that are characterized by transitions between different states. A discrete
Markov chain is a discrete time stochastic process taking its values in a finite or countably finite set S,
called the state space. These states represent the possible conditions of the system being modelled. The
system moves from one state to another over discrete time steps. These transitions are governed by
transition probabilities, which determine the likelihood of moving from one state to another [12].

Definition 4.1. [12] Let S be a countable state space and let X = (X,, : n > 0) be a sequence of random variables
taking values in S. The sequence X is called a Markov chain if it satisfies the Markov property

]P(XH—H = in—i—l‘XO = iO/X1 = il/-' Xy = in) = ]P(Xn—H = in+1|Xn - in) (4-1)

foralln > 0andall ig, iy, ...,i,41 € S.

19
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A stochastic process is said to have the Markov property if, conditional on its present value, its
future is independent of its past [12]. Once in a certain state at a given time, the way in which the
system reached that state does not at all affect its future evolution [14].

The transition probabilities of a Markov chain are organized in a transition probability matrix. This
matrix captures the probabilities of transitioning from one state to another in a single time step. Each
element of the matrix represents the probability of moving from the corresponding row state to the col-
umn state. The sum of probabilities in each row of the matrix is equal to 1, reflecting the fact that the
system must move to one of the possible states. So, the probabilities in Equation (4.1) can be summa-
rized in a transition probability matrix P.

Definition 4.2. [12] The transition probability matrix P is defined as
P= (Pi,j : l,] S S), given b]/ pij = ]P(Xn+1 = ]|Xn = l) (4.2)

The probability transition matrix is a stochastic matrix as the following holds:
* pij > Ofori,j€S,and
* Yijes pij = 1fori € Sby the total law of probability, so that P has row sums 1.

Definition 4.3. A Markov chain is called time homogeneous, if P(X,y1 = j|Xy = i) = p;;, ¥n > 0.
The transition probabilities remain constant and are independent of the specific time step n. So The transition
probabilities are not changing as a function of time.

The initial distribution, denotes as y, represents the probabilities of starting the Markov chain in
each state. It is a probability vector where the entry p; corresponds to the probability of beginning in
statei € S.

Definition 4.4. The initial distribution y is defined as a row vector

= (puj:i€S) where y;="P(Xy=1). 4.3)

To determine the probability distribution of the Markov chain after multiple time steps, we intro-
duce the n-step transition probability matrix P"). This matrix describes the probabilities of being in

(n)

various states after n time steps. Each entry p; j represents the probability of transitioning from state i

to state j in exactly n steps.

Definition 4.5. The n-step transition probability matrix P is defined as

P = (pl(j") 11i,j €S) given by p,(]) =P(Xintn = j|Xm = i). (4.4)

Then it follows that:
P(Xy=j)=(uP"); n>0 and j€S 4.5)

Theorem 4.6. (Chapman-Kolmogorov equations) [12] Let P be a transition probability matrix and let
P") be the n-step transition probability matrix. Then

pl]n+m) Z plk pk] , fori,jeSandm,n>0. (4.6)

Therefore P("+") = p(")P(") In particular P?) = P(UP() = PP = P?. Thus P") = P".
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The system’s distribution in future time steps can be determined by iterative multiplication of the
initial distribution by the transition probability matrix. Theorem (4.6) implies the n-step transition prob-
abilities can be determined by calculating the nth power of transition probability matrix P.

4.1.2 Convergence of Markov chains

Definition 4.7. [12] Let X be a Markov chain on state space S, with transition probability matrix P. The vector
= (m; i €8S) is called a stationary distribution of the chain if

e ;> O0foralli € S,and Y jeg 71, =1,
e T =rP.

Definition 4.8. A state i is recurrent if, starting from i, the chain returns to i with probability 1. Furthermore, a
state i is called positive-recurrent if the mean recurrence time is finite. If the mean recurrence time is infinite, the
state i is called null-recurrent.

Definition 4.9. [12] The period of state i is given by
d; = ged{n : p;;(n) > 0}. 4.7)

A state i is called aperiodic if d; = 1, and periodic if d; > 1.

By Definition 4.9, a period of a state is defined by the greatest common divisor of the lengths of all
possible oaths from this state back to itself. Hence, a state is aperiodic if it does not exhibit a repeating
pattern in the number of steps it takes to return to itself.

Theorem 4.10. (Convergence theorem for discrete Markov chains) Consider a Markov chain X = (X, :
n > 0) on state space S. If X is aperiodic, irreducible, and positive recurrent, then

nlgrolo pij = 7T for i,j€S, (4.8)
where 77 is the unique stationary distribution of the Markov chain.

The Convergence Theorem for discrete-time Markov chains states that if a Markov chain is ape-
riodic, irreducible, and positive recurrent, then it converges to a unique steady-state distribution. As
the transition probabilities converge to the stationary distribution, it shows that for big enough n, the
distribution becomes independent of its initial state.

In the context of the Leslie model, we are interested in a finite discrete Markov chain due to the
finite number of age classes involved. In the case of a finite Markov chain, irreducibility implies positive
recurrence. By section 3.1.2 it follows that for a finite Markov chain, irreducibility signifies that any state
can be reached from any other state within a finite number of steps. This implies that each state can also
return to itself within a finite number of steps. Thus, by Definition 4.8, this also implies that all states
are positive recurrent. By irreducibility, any state can be reached from any other state in a path. Using
that the Markov chain is finite, then there cannot be infinite paths. As irreducibility of a finite Markov
chain implies positive recurrence automatically, Theorem 4.10 can be rewritten.

Theorem 4.11. (Convergence theorem for finite discrete Markov chains) Consider a finite Markov
chain X on state space S. If X is aperiodic and irreducible, then

lim pij = T for i,j €S, (4.9)

n—oo

where 77 is the unique stationary distribution of the Markov chain.
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The convergence theorem for finite Markov chains, gives insight into the long-term behaviour of a
finite discrete Markov chain, by providing conditions for the existence of a unique stationary distribu-
tion. Whereas one of these conditions is irreducibility, Doeblin’s theorem facilitates long-term analysis
of a Markov chain that need not be irreducible.

Both the convergence theorem for discrete Markov chains and Doeblin’s theorem provide condi-
tions that imply the existence of a stationary distribution for a Markov chain. Thus, the Convergence
Theorem and Doeblin’s theorem share the objective of identifying conditions under which a Markov
chain converges to a stable, long-term distribution. Despite their similarities, they offer distinct crite-
ria for achieving this convergence, making them complementary mathematical tools for exploring the
asymptotic behaviour of Markov chains.

Where Theorem 4.10 requires aperiodicity, irreducibility and positive recurrence, Doeblin’s the-
orem is more flexible in terms of the types of Markov chains it can analyze. As it does not require
irreducibility, Doeblin’s theorem is applicable to Markov chains that may include an absorbing state.
Moreover, Doeblin’s theorem provides additional information on the convergence rate to the stationary
distribution, which characterizes how quickly the chain approaches its limiting distribution.

4.1.3 Doeblin’s theorem

While Doeblin’s theorem does not impose the condition of irreducibility, it does necessitate the existence
of a state, denoted as jy, such that from any other state i, there must exist a positive probability of
transitioning to state jy within a single step. Under this condition, state ’j’ will be visited repeatedly over
time. Consequently, as time progresses, the influence of the initial distribution of the chain gradually
decreases.

Studying the long-term behaviour of a Markov chain, we are interested in pP", the distribution of
the Markov chain after n steps, as n goes to infinity. The distribution of the Markov chain after n steps
uP" can be expressed as the distribution after n — m steps uP"~™, followed by m additional steps P"

upP" = (uP"")P" (4.10)

As m increases, the effect of the initial distribution y on the distribution after n steps becomes less
significant compared to the effect of P™, the m-step transition matrix. This is because, as time progresses,
the chain gets influenced more by the transitions between states governed by P™. Thus, as the number of
steps increases, the distribution of the Markov chain becomes increasingly influenced by the transition
matrix P itself, rather than its initial distribution. This implies that uP" = (uP"~™)P™ will closely
approximate yP" as m grows significantly. Consequently, it follows by Cauchy’s convergence criterion
[17] that the limit 77 = lim,, . uP" exists.

7= lim uP"*! = lim (uP")P = P (4.11)

n—o0 n—o0

As m grows larger and larger, the distribution yP" approaches a stable distribution, and the influ-
ence of the initial distribution diminishes. As a result, the distribution of the Markov chain after a very
long time (1 — oo) tends to converge to a fixed distribution by Cauchy’s convergence criterion [17],
denoted as 7. Thus, as n tends to infinity, the difference between uP" and 7 decreases. To measure this
difference, the definition of the variation norm is introduced.

Definition 4.12. [25] Let p € R® be a row vector. Then the variation norm ||p||, is defined as

lollo =Y loil - 4.12)

ieS
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Doeblin’s theorem in states that if, regardless of the initial state, a Markov chain has a positive
probability of visiting some fixed state, the chain will eventually reach a stable state. Additionally, it
provides a bound on how quickly the chain converges to this stationary distribution. We will apply
and prove the theorem for Markov chains that have an immediate, one-time-step, positive probability
of visiting a fixed state, as demonstrated in Stroock [25]. To derive Doeblin’s theorem, the utilization of
the following two lemmas are necessary.

Lemma 4.13. Let p be a row vector, such that p € RS, and ||o||, < co. Then,

Y (oP); =Y (p)i- (4.13)

jes =

Proof. We have that

p) - ¥ (oms)
jeSs jeS \ieS
-L (£
i€S \jeS
= <PiZ:F@>
ies \ jes
= Zpi, using that ZPU =1foralli €S. (4.14)
ics j€s
O
For the proof in Lemma (4.15) the Kronecker delta function will be used.
Definition 4.14. The Kronecker Delta function 6;; is defined as
- 1, forz = ]
0ij = { 0, fori#j (4.15)

Lemma 4.15. Let p be a row vector, such that p € R®, and ||p||, < oo. Let P be a transition probability matrix
with the property that, for some state jo € S, and € > 0, P;;, > € foralli € S. Then if Y ;cs(p)i =0,

ifo

loP™|o < (1 —€)"||pllo, forn > 1. (4.16)

Proof. Assume that ) ;.5 p; = 0. For the base case, we will show that the inequality holds for n = 1. By
definition of the variation norm in Equation (4.12),

loPllo = ) _ [(oP)j]. (4.17)
jes
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Using the Kronecker delta function in Definition 4.14, we obtain
[(oP)j| = |} piP;j
i€S
= Zp,- ij Zpl ijo| - by the assumption that Zpi =0.
ieS i€S i
= Zpl ij — €9jo)
i€eS
< ) [pi(Pyj — €5y, )|
i€S
=) loil [Pij — €5, (4.18)
i€S
= Z loi| (P;; — €d;,), since Vi € S we have that P;j; > e. (4.19)
i€s
Using the derived bound for [(pP);|, in Equation (4.17), Equation (4.16) is obtained for n = 1.
[oP|l» < Z (Z loi| (P ij — ]]o)>
jesS \ieS
=) loil (Z(Pif —65]',]'0)>
ieS jes
=) loil (ZPU ) €8 )
i€S jE€S jES
= (1-¢)llpllo (4.20)

The last expression follows from the definition of the variation norm 4.12 and using that } jjcs P;; = 1

for all i € S, by definition of the transition probability matrix P from 4.2.

For the induction hypothesis, suppose that the bound in Equation (4.16) holds for some n = k > 1 and

for all p for which Y ;c5(p); = 0.
loP 1o < (1= €)*lpllo-

Then for n = k + 1 we obtain

[P o = X | (0P|

= Y |((oP)PY)|

=Y. |(PY);

Now, note that } ;.5 #; = 0, since

,  Wheren = pP.

(4.21)

4.22)
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Y ni=Y (oP);

ieS ieS

=) <Z Pini>

i€S \jeS

=) (Pj ijz)

jes i€S

=) p; (Lemma (4.13)) (4.23)
j€s

=0 by assumption. (4.24)

Applying the induction hypothesis (4.21) to Equation (4.22) yields

P o = Y [(rPF);| < (1 =€) [l (4.25)
€S
j€

Using that 7 is defined as 7 = pP together with equation (4.20), the following inequality for ||7]|,
can be derived as follows

[7llo = lloPllo < (1 =€) [lplo- (4.26)

Combining Equations (4.26) and (4.25), Equation (4.16) is obtained for n = k + 1:

1Pl < (1 =€) I
<(1-ef1—e)lpllo
= (1) |pll. (4.27)

By mathematical induction, if } ;.5 p; = 0, then ||oP" ||, < (1 —€)"||p||o, for n > 1. O

Theorem 4.16. (Doeblin’s theorem) [12] Let P be a transition probability matrix with the property that,
for some state jo € S, and € > 0, P;j; > € forall i € S. Then P has a unique stationary probability vector
T, Ty > €, and, for all initial distributions y,

|juP" —7mt)ls < (1 —e)'|\p— 7|l <2(1—¢€)", n>0. (4.28)

Proof. Let P be a transition probability matrix, such that for some state jo € S, and € > 0, (P);j, > € for
alli € S. Let p be a row vector, such that p € RS, and llollo < oo. Then, by Lemma (4.13) and (4.15)

* Yies(pP)j = Lies(p)i

* If Yies(0)i = 0, then [P [, < (1 —€)"[|p[lo, forn >1.
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Let u be a probability vector, thus 4 > 0 and } ;.5 t; = 1. Denote u,, = uP" for all n > 0. Then for
m<mn,

[0 = tmllo = [|#P" — uP™ ||,
= [|pP" P — uP™f,
= |[pn—mP™ — uP" |,
= | (n—m — ) P" || (4.29)

Note that since y,—, and p are probability vectors, ) jcs pn—m = 1 and Y ;g = 1. Therefore
Yics (#n—m — p); = 0. Using this result, Lemma 4.15 with p = p,_» — p, can be applied to Equation
(4.29), to obtain

= pmllo < (1 —€)"[[pn—m — pllo- (4.30)

By definition of the variation norm 4.12, ||py—m — tllo < [[Hn—m|| + ||}]|o = 2. Therefore Equation
(4.30) transforms as follows

[ — pmllo < (1 —€)"[[pn—m — pllo <2(1—€)", forl<m <n. (4.31)

Thus {1, }{° is Cauchy sequence and therefore convergent [17]. This means that the distance be-
tween two consecutive terms becomes arbitrarily small as # increases. Hence there exists a vector 7
such that the distance between y, and 7t approaches 0 as n increases, thus ||y, — 7| — 0.

So the sequence {1, }{° converges to the vector 7. Since each yi, is a probability vector, the limiting
vector 71 must also be a probability vector. Furthermore, the limit is also unique by the uniqueness of
limits. This gives the following result

7 = lim uP"*! = lim (uP")P = nP. (4.32)

n—oo n—oo

Equation (4.32) implies that the probability vector 7r is stationary by Definition 4.7. Using that

P;j, > eforalli € S, Equation (4.32) implies that (77);, > e:

o
(71’)]'0 = Zﬂ.’ipijo > 627'[,‘ = €. (433)

i€S i€S
Letting p be an arbitrary probability vector, we can establish the following bound for the distance

between the probability distribution after n steps when starting in initial distribution vector u, and
stationary distribution vector 7.

[#P" = 7tllo = [[(u = )P [lo = |pP" — P [[o < (1 —€)"||p — 7llo <2(1 —€)", forn > 1. (4.34)

To derive Equation (4.28), we need to derive the bound for the case n = 0, as Equation (4.34) gives
the result forn > 1. Forn =0,

InP" = 7tllo = |[uP° = 7tllo = |luI = 7o = [l = 7tllo < [lpllo + 7)o = 2. (4.35)

Therefore, it has been proven that (4.28) holds for n > 0. O
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Doeblin’s theorem states that if there exists a state jp such that the probability of transitioning from
any state i to this state jy is positive and greater or equal than some € > 0, then there exists a unique
stationary distribution. In addition, the Markov chain converges to that stationary distribution with an
exponential speed. As the number of time steps increases, the difference between the chain’s distribution
and the stationary distribution diminishes exponentially. The rate of convergence is determined by the
constant €, with larger values of € indicating faster convergence. Thereby, Doeblin’s theorem gives an
indication of the convergence speed to its stationary distribution.

4.2 Leslie model as a Markov chain

Doeblin’s theorem 4.16, cannot be directly applied to the Leslie model. In order to utilize Doeblin’s the-
orem in the context of the Leslie model for population growth, the Leslie model needs to be formulated
as a Markov chain.

Similar to Markov chains, the Leslie model adheres to the Markov property (4.1). As the popula-
tion distribution at a particular time solely depends on the population distribution in the previous time
step. The survival rates, capturing the probabilities of individuals transitioning from one age class to the
next, align with the Markov-property inherent in Markov chains. Similarly, the birth rates, determining
the offspring of individuals in specific age classes, maintain an independence that resonates with the
memory-less characteristic. Indeed, in the Leslie model, the number of offspring produced by an indi-
vidual in an age class 7, does not vary depending on whether an individual in the age class i — 1 has
had 10 offspring or none. Every individual within a specific age class has an equal expected number
of offspring or probability of transitioning to the next age class, regardless of their past reproductive
history.

There is a distinction in what the transitions represent in the context of Markov chains versus the
Leslie model. In a Markov chain, the transitions typically represent the movement or transitions of an
individual or entity from one discrete state to another. Each transition is associated with a probability,
and the Markov chain describes how these individual transitions occur over time.

In the Leslie model, the transitions describe how a population as a whole transitions from one
age group to another over discrete time intervals. These transitions are driven by age-specific birth
and survival rates. The Leslie model does not focus on individual entities but rather on the average
behaviour of groups of individuals in different age categories within a population.

Whereas, Markov chain transitions typically relate to individual-level changes between states, Leslie
model transitions pertain to group-level changes between age groups based on birth and survival. The
Leslie model deals with averages and population dynamics rather than individual-level transitions.

The complexity of formulating the Leslie model as a Markov chain, arises from the fact that the
Leslie model involves two distinct processes and thereby contributes in two ways: survival and repro-
duction. A Markov chain typically models the transitions of individuals or entities from one state to
another based on transition probabilities. However, in the Leslie model, the dynamics involve not only
the transitions of individuals but also the addition of new individuals through births. These births are
not simply transitions of existing individuals but the introduction of entirely new individuals into the
population. Incorporating these new entities into a Markov chain is challenging. For example, transi-
tion probability 15, refers to the probability that an individual in age class i transitions to age class 2 in
a single time step. This transition probability t1,, cannot capture both the probability that this individual
survives to age class 2 and the probability that an individual in age class 1 produces offspring.

The survival process, thus the transitions between age classes of existing individuals can be mod-
elled by a Markov chain. However, using a Markov chain to model the entire Leslie model, thereby also
capturing the introduction of offspring, is not directly feasible.
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4.2.1 Leslie matrix as Transition matrix

To formulate the Leslie model as a Markov chain, we need to transform the Leslie matrix into a transition
probability matrix. By Definition 4.2 this entails that the elements in the matrix represent probabilities
and thus must be bounded by 1. Each state must represent a specific age class or population group,
and transitions must capture the probability of individuals moving from one age class to another over
time while considering both birth and death rates. This again indicates the challenge of incorporating
the reproduction process in a Markov chain. As the birth rates, b; in the Leslie matrix L (2.12), are the
average number of offspring produced by individuals in age class i, they do not directly correspond
with probabilities of producing offspring.

To formulate the Leslie matrix as a transition probability matrix, only using the survival process,
we will use that the Leslie matrix can be written as the addition of the Fertility matrix F and the Survival
matrix S (2.10). The Survival matrix S (2.11) can be reinterpreted as a transition matrix, allowing for the
application of Doeblin’s theorem. For the Leslie matrix we had age classes i € {1, s, m}, thus state
spacei € {1,...,m}. For the transition matrix, we will introduce an additional state m + 1, representing
the state of "death". Consequently, the transition matrix will consist of m + 1 rows and m + 1 columns,
defining the state space S = {1,...,m +1}.

Adding this extra state ‘death’ is crucial for satisfying the second property of a stochastic matrix,
which states that } ;s p;j = 1fori € S. In the context of the Leslie model, it ensures that, for each age
class, the probabilities of individuals either transitioning to the next age class or die sum up to 1.

The Leslie model incorporates a Leslie matrix denoted as L and an age distribution vector repre-
sented by p. Besides a Transition Probability matrix P, a Markov chain involves an initial probability
vector y (4.4). This initial probability vector is established by normalizing the age distribution vector p
obtained from the Leslie model at time t = 0.

4.3 Analysis of the Leslie model via Doeblin’s theorem

Doeblin’s theorem requires that the transition probability of a Markov chain has some state jy € S, and
€ >0, Pjj, > eforalli € S. In order to satisfy this property we need the condition that for alli € S,
s; #1,sothat1 —s; #0, foralli € S.

This condition reflects a realistic scenario, acknowledging that in a population, the chance of sur-
vival within an age class is never guaranteed to be 100%. There always exists a small probability of
mortality.

4.3.1 An example 4 x 4 Leslie model

Consider an example Leslie matrix with 4 age classes. Leslie matrix L, where s; # 1 foralli € S.

by by by by 1 2 3 4

sy 0 0 o] fo5 0 0 o0
=10 s, 0 ol=]0 03 0 o (4.36)

0 0 s;3 0 0 0 02 0
L=F+§ (4.37)

123 4 0 0 0 0

000 0 05 0 0 0
F:=10 000" 5|0 03 0 0 (4.38)

000 0 0 0 02 0
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For the formulation of the transition probabilities consider for example s, the survival rate of age class
1. This signifies the rate of individuals that survive from age class 1 at time ¢ to age class 2 at t + 1.
This corresponds with the probability of transitioning from state 1 to state 2 in the transition probability
matrix, and thus p;, = s;. Conversely, when an individual in age class 1 does not survive to age class
2, it dies and consequently transitions to the death state m + 1 = 5 with probability 1 — s;.

Let T be a transition matrix corresponding to the matrix S, where states i = 1,2, 3,4 are the four age
classes and i = 5 represents the state of death. Then Survival matrix S (4.38) can be represented as a
5 x 5 transition matrix T and is defined as

t11 tr1 t31 ta1 51 0 0 0 0 0 0 0 0 0 0
t1p typ t3p tgp s $1 0 0 0 0 05 0 0 0 0
T:= |t13 ty3 t3z tg3 ts53| = 0 So 0 0 0Ol =10 03 0 O 0,
t1g toa t3g4 tas sy 0 0 S3 0 0 0 0 02 0 0
t15 tos f35 f45 ts5 1- S1 1-— S2 1-— 53 1 1 05 07 08 1 1
where
tij = P(Xyy1 = j| Xn = 1) (4.39)

The transition matrix T = (; ;) is a column stochastic matrix satisfying
e 0<tifori,jeS= {1,2,3,4,5}, and
° Zjes ti,]‘ =1forie€S.

For purpose of notation in the context of Markov chains, we denote the transpose of matrix T as P,
ensuring that matrix P is row stochastic.

t11 tip tiz tis t15 0 51 0 0 1- 51 0 05 0 0 0.5
trr try taz trg o5 0 0 s, 0 1—sp 0O 0 03 0 07
P=T' = |ty tp t33 t3s t5| =10 0 0 s3 1—s3/ =10 0 0 02 08|. (440
tn tep tiz ta g 0 0 0 O 1 0 0 0 o0 1
t5s1 tsp t53 t54  ts5 0O 0 0 O 1 0 0 0 0 1
Computations for matrix P give that
0 0 015 0 085 0 0 0 0.03 097 0 00 01
0 0 0 0.06 09 000 O 1 0 00 01
PP=00 0 0 1|,PP=1]0 00 0 1|,P*=10 0 0 0 1 (4.41)
0 0 O 0 1 000 O 1 0 00 01
0 0 O 0 1 000 O 1 0 00 01

Equation (4.41) shows that the population transitions into state 5, the death state. The computations
indicate that, after four time steps, the probability of being in state 5 reaches 1. Thus, the population
converges to the population distribution vector [0 0 0 0 1].
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If the age distribution vector at time ¢t = 0 (2.3) is given by

P1(0) 100
P,(0) 200
P(0):= | P5(0)| = |200],
P4(0) 300
P5(0) 0

where P5(0) = 0 refers to the fact that there are no dead people at time t = 0. Then by normalizing P(0),

the initial distribution vector y can be defined as y = [% % % % 0].

The probability vector 7 = [0 0 0 0 1] serves as a stationary distribution, denoted by 7.
According to Definition (4.7), it should hold that 7 = 7P. Applying this to the transition probability
matrix P in Equation (4.40), it can be verified that the vector [0 0 0 0 1] indeed is a stationary
distribution.

005 0 0 05
0 0 03 0 07

7P=[0 0 0 0 1[0 0 0 02 08/ =[0 00 0 1]=mn (4.42)
00 0 0 1
00 0 0 1

Using Doeblin’s theorem, the uniqueness of the stationary probability vector 7t is given. We will
apply Doeblin’s theorem 4.16 to the transition probability matrix P specified in Equation (4.40). Note
that the requirement that for some state j) € Sand e > 0, P, > ¢ foralli € Sis met, since this condition
is fulfilled by state jo = 5. Irrespective of the age class an individual belongs to (states 1,2, 3, 4, or 5),
there is always a positive probability of transitioning to state 5. There exists a positive probability of
death for individuals in any age class.

Let € be the minimum of p;5s for i € S. So, for the transition probability matrix P in Equation
(4.40), € = 0.5. Then indeed P;5 > 0.5 for all i € S. Hence, Doeblin’s theorem implies that the transition
probability matrix P, has a unique stationary probability distribution vector 7, such that 7;, = 715 > 0.5.
Additionally, for all initial distributions ||uP" — 7|, < (1 —€)"||u — ||, <2(1 —¢€)" forn > 0.

Note that for the previously determined stationary distribution (4.42), it holds that 75 = 1 > 0.5.
By Doeblin’s theorem we can assert the uniqueness of this stationary distributionr= [0 0 0 0 1]
and that with € = 0.5 we obtain the following

|uP" — 7tl|, < 2(1—€)" =2(1—0.5)" =2(0.5)" for n > 0.

As nincreases, (0.5)" decreases exponentially, resulting in

|uP" — 7|, — 0, which implies that uP" = 7.

Note that computations of the transition probability matrix P in Equation (4.41) give a more specific
result than Doeblin’s theorem as it indicates that the population converges to the stationary probability
vectorr=1[0 0 0 0 1]atn=4

4.3.2 The generalized Leslie model

In the subsequent analysis, Doeblin’s theorem will be applied to a generalized Leslie model. Again
L = F + S, where the Survival matrix S will be used to formulate a Markov chain. Consider the general
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Leslie matrix L (2.12) consisting of m states in the Leslie matrix. Adding state m -+ 1 to representing
death, the Survival matrix S can be formulated as a (m + 1) x (m + 1) transition probability matrix T.

11
13

tlm
LE1,mr1

51
0
0

0
_1—51

21
£22
£23

t2m
b2 m1

1—52

f31
£32
£33

t3m

t3,m+l

o O O

53

0

1—53

fm—1,1
Fm—1.2
fm—1,3

tm—l,m
tmfl,erl

S O OO

Sm—1
1—=sm

Fm b1
tm,Z tm+1,2
tm,S tm+1,3
tm,m tm+1,m

tm,m+1 tm+1,m+l_

00
00
00
00
00
1 1]

(4.43)

Again, for the purpose of notation in the context of Markov chains, we denote the transpose of
matrix T as P, ensuring that matrix P is row stochastic.

0
0
0

o

51
0
0

o

S3 - 0
o --- Sm—1

1—51 i
1—52
1*53

1—sm1
1
1

(4.44)

In general p;;11 = s;and p; 41 = 1 —s; fori = 1,...m. For the last row, state m + 1, element
Pm+1,m+1 = 1 and all other elements are zero. Since if an individual is deceased, thus in state m + 1, it
will remain in this state with probability 1.

Appendix A includes some computations for P¥, where k > 2. From these computations, an expression
for P* with a general k can be formulated. We will prove this expression with the use of mathematical

induction.

Lemma 4.17. Let P be a transition probability matrix defined as in Equation (4.44). Then for 1 < n < m, the

n-step transition probability matrix, P" =

(pf}l)) is defined as
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i n) (n)
0 0 pg,n-ﬁ-l 0 0 0 - Pl,n+1
n (n)
0 0 0 Pg/n)ﬂ 0 0 ~ Pont2
0 0 0 0 pi(:rg-&-?) 0 - P:(’:zr2+3
(n) (n)
P 0 0 0 0 0 Pm=n,m 1- Pm=n,m (4.45)
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
For1 <n < m — 1 it holds that pl(;?ﬂ = 5iSi11 " - - Sitn—1 and P" can be expressed as
[0 0 s1---sp 0 0 0 1—s1- sy ]
0 0 0 52 Sp+1 0 0 1—Sz~~~Sn+1
0 0 0 0 53 Sp42 0 1—53"-Sn+2
n._ |10 - 0 0 0 0 Sm—n-*"Sm—1 1 —Sm—pn- " Sm_1
Pt = 0 ... 0 0 0 0 0 1 . (4.46)
o --- 0 0 0 0 0 1
o -~ 0 0 0 0 0 1
o --- 0 0 0 0 0 1 ]
Moreover, for n = m, P" satisfies
0 0 1
0 0 1
P = | ) (4.47)
0 0 1

Proof. Using that py—nm = Pm—1,m for n = 1, Equation (4.45) and (4.46) yield the following result,

0 0

0 0 Péls)

0 0 0
P= :

0 0 0

0 0 0

0o 0 o

0
0
0

1.
pEn)—l,m
0

0

.
L-rp
1—py

1—pa(1)

‘1
1- pEn)—l,m
1

1

0
0
0

o

51
0
0

0
0

53

0 1—51

0 1—52

0 1—53
Sm—1 1—Sm—1

0 1

0 1]
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Since this matrix corresponds with the expression in Equation (4.44), the base case holds.

For the induction hypothesis, suppose that the expression holds for some n = kwith1 < k <m — 1.
Then

Pk+1 — PkP —
r (%) (k) ]
0 - 0 Py « 0 1= p%ﬂ
0 0 Pt 0 o 0 T=poppn |
0 0 0 p(k) 0 1_P 0 s 0 0 --- 0 1—s1
3k+3 3k+3 0 0 s, 0O --- 0 1—s
: : : : : : : 00 0 s -~ 0 1—s3
k k . : :
o -~ 0 0 0 o - P,(n),k/m 1- P,(ﬂ),k,m S : :
0 -~ 0 0 0 0o .- 0 1 00 0 0 - s, 1 1—s,1
. . . : . . . 00 0 0 --- 0 1
0 0 0 0 0 0 1 o 0 00 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1]
_ . . -
0 - 0 p" s 0 0 o 0 1-p sin
0 --- 0 0 (k) 0 0 1_p®
P2 k+25k+2 P2 k+25k+2
0 -+ 0 0 0 ®) 0 1—plb)
P3 k+35k+3 P3 jc435k+3
(k) (k)
= 0 -0 0 0 0 0 Pm—kmSm 1= Pin—tmSm (4.48)
0o --- 0 0 0 0 . 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1

(k)

Note in the above equation that since s, = 0, we obtain that p, "~

sm = 0 and thus equivalently
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(k)

1-— pnfik,msm = 1. As a result, the matrix in Equation (4.48) can be computed as

. k
0 --- 0 P§,13+2 0 0o .- 0 1- pg,k)Jrz
) k
0 --- 0 0 P§,13+3 0o - 0 1- pg,k)Jrs
‘ k
0 --- 0 0 0 P§,12+4 e 0 1- Pg,12+4
(k) (k)
_ o --- 0 0 0 0 0 Pumk—tm 1T Pu—k—1m (4.49)
0 --- 0 0 0 0 s 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1

Equation (4.49) gives the expression for P" with n = k 4+ 1 in (4.45). Furthermore, for1 <k <m —1,
k+1 k 1 k
plg,k-&-l)-&-i = PE,k)JriPz(,k)Jrl = pz(,k)—&-isiﬂf = S8iSit1" " Sitk—1, (4.50)
which aligns with the expression pf’;)H =5iSi41 - Sigp—1forl <n <m—1,withn =k+1.

By mathematical induction, the expression in Equation (4.45) and (4.46) hold for 1 <n <m — 1.

For n = m — 1 we find that

0 - pim 1—pim
0 e 0 1
0 0 1

Then it follows that P = PP"~!, resulting in the following computation

0 S1 o --- 0 1-— S1 i
0 0 sp --- 0 1—5; 0 -+ pim 1—pim
.. .. . . o --- 0 1
P" = Ppmfl — |: . . . . . . . . . (452)
0 0 0 -+ suq 1—sp1 : . : :
o o0 o0 --- 0 1 o --- 0 1
o o 0o - 0 1 ]
[0 0 1
0O --- 0 1
=|. . .. (4.53)
10 01
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For n > m we have that P" = P"~™"p™,
[0 51 0 0 1- 51
0 0 11 [0 0 s 0 1—sp 0 1
: 0 O 0 Sp—1 1—5m,_1 Lo
0 0 110 0 O 0 1 01
0 0 O 0 1

Hence, for all n > m, it becomes evident that the transition probability matrix remains stable, and the
entire population has transitioned to state m + 1, signifying mortality, with a probability of 1. O

The expression for the n-step transition probability matrix holds a logical interpretation. It repre-
sents the probability of transitioning from age class i to age class i + n in n-time steps. To achieve this
transition, an individual must have survived through all intermediate age classes between i and i + n
represented by the survival rates s;.

Now that we have formulated an expression for P", we can apply Doeblin’s theorem, similar to the
4 x 4 Leslie model. The stationary distribution vector is denotedas 1 = [0 0 0 0 1], withjp
representing the death state, corresponding to state m + 1. Doeblin’s theorem implies that || uP" — 7t||, <
2(1—¢€)"forn > 0,and asn — oo, uP* = 1.

Consider a transition probability matrix P defined as in (4.44). For state jo = m+1and € =
max{pjm41 : i € S}, it is guaranteed that P;,, ;1 > € for all i € S. Consequently, by Doeblin’s theo-
rem, P has a unique stationary probability vector 7r, with 71,11 > €. For all initial distributions y, the
inequality ||uP" — 7|, < 2(1 —€)" holds for n < 0, and thus, as n — oo, uP" = 7.

While Doeblin’s theorem offers insights into the long-term behaviour as n — oo, we have estab-
lished a more specific result for this case. Specifically, it is not only that the distribution converges to
the stable distribution 7t as n approaches infinity, but it does so in no more than m steps. This outcome
aligns with expectations: with m 4 1 states, individuals in age class 1 have transitioned to state m + 1,
and the same progression applies to all older individuals. This model studies a population that ages
without any new reproduction. As a result, extinction occurs after a time span equivalent to the length
of the age classes has passed. The following proposition proves this using induction.

Proposition 4.18. Let P be a transition probability matrix defined as in (4.44) on state space S = {1,--- ,m +1}.

Then for all initial distribution vectors y and unique stationary distribution vector = [0 0 0 0 1],
it holds that uP" = m, for n > m.
Proof. Let the initial distribution vector y be denoted as y = [j1 iz 1)
For the base case n = m,
0 01
" 0 01
uP" = [y p2 Ty : =[0 0 0 0 1] =mn (4.55)
0 01

Using that y is a probability vector and therefore ) ;.5 yt; = 1. The computation in Equation (4.55) yields
the unique distribution vector 7t. Hence, the base case holds.
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For the Induction Hypothesis, assume that the proposition holds for some k > m. Then,
uPl = ypkp = 7P = 7 (4.56)

By mathematical induction, the proposition holds for all n > m. O

In this particular scenario, the application of Doeblin’s theorem provides insights into a situation
where the transition matrix is solely characterized by the survival rates of a Leslie model. This specific
case offers a straightforward illustration, and the outcomes align with our prior expectations. As the
population ages without any new births, it naturally converges to the population distribution vector
0 0 0 --- 0 1],signifying the ultimate extinction of the entire population. Therefore, while this
case may not reveal unexpected dynamics, it serves as a valuable example of how Doeblin’s theorem
can validate anticipated outcomes in the context of the Leslie model as a Markov chain.



Chapter 5

The Leslie model as a Branching
process

Formulating the entire Leslie model as a Markov chain proved challenging due to the inherent complex-
ity of including the reproductive process. As it is limiting to focus solely on the Survival matrix S within
the Leslie model, this chapter introduces an alternative approach to gain insights into the asymptotic
behaviour of the complete Leslie model. Representing part of the Leslie model as a branching process
not only complements the insights derived from Perron-Frobenius theorem but also has the potential to
provide a more realistic representation of population dynamics, as it accounts for demographic stochas-
ticity.

5.1 Branching process

Branching processes were invented by biologist Francis Galton and mathematician Henry Watson, who
used them to study the extinction of family names. Lotka was the first to apply branching processes to
demographic data, calculating the extinction probabilities for family names in the United States. The
idea of connecting branching processes to matrix population models was first explored by Pollard [5].

The theory of branching processes is an area of mathematics that describes situations in which an
entity exists for a time period and then may be replaced by zero, one, two or more entities of a similar
or different type [16]. The Galton-Watson process is the oldest and simplest branching process, in which
each individual produces offspring and then dies after one time step. In a branching process, each
member of the nth generation produces a number of offspring that is independent of past generations
and independent of the number of offspring produced by other members of the same nth generation. As
branching processes are examples of Markov chains, this independence aspect of the branching process
relates to the Markov property (4.1).

Definition 5.1. (The Galton-Watson Branching process) [12] Starting with a single individual at time n =
0, every individual in the branching process lives exactly one unit of time, then produces offspring and dies.
The number of offspring produced by an individual is determined by a discrete random variable Y following a
probability distribution. Thus, the family-sizes of individuals are random variables Y. These are independent
random variables are identically distributed.

Denote Z,, for the population size at time n, and label the individuals at timenas 1,2,3,...,Z,. ThenYy,...,Yz,
denote the family sizes of the individuals. The number of offspring at time n + 1, Z,,1 1, is equal to the total number

37
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of offspring of the individuals 1,2,3, ..., Z,. Thus,

ZH
Zpi1 = Z Y; (5.1)
i=1

Then the branching process is {Zo, Z1,Z2,...} = {Zy : n € NUO}

5.1.1 Demographic Stochasticity

In the Leslie model, where vital rates like survival and birth rates are assumed to be constant over
time, the projection of future populations is deterministic. This means that given a Leslie matrix with
a survival probability of, for instance s;; = 0.5, exactly 50% of individuals in age class i are expected to
transition to age class j. This transition is deterministic, as it is precisely defined by the Leslie matrix [5].

Demographic stochasticity is the term used to describe the inherent randomness in demographic
processes, like births and deaths, when applied to individuals within a population.When considering
demographic stochasticity, the projections become probabilistic. Branching processes incorporate de-
mographic stochasticity by modelling demographic events as random variables instead of deterministic
values. Instead of a fixed 50% transition rate for each individual, the transition is treated as a random
variable. In that case, each individual in age class i has an independent 50% chance of transitioning
to age class j. The introduction of randomness, achieved by applying a probability to each individual,
leads to variability in the number of individuals transitioning from age class i to j. In cases where birth
rates are non-zero, even when survival rates are set to zero, and the initial population is non-zero, ac-
cording to the Leslie model, there is no possibility of the population extinction in the immediate time
step. Considering demographic stochasticity in Branching processes, there is always a small chance,
however minimal, that the population might face extinction in the subsequent time step.

Though demographic stochasticity introduces randomness into population dynamics, its impact
depends on the size of the population. In large populations, the effects of demographic stochasticity
average out, by the law of large numbers. As a result, the overall population dynamics appear more
deterministic. The random fluctuations in transition numbers for individual members cancel each other
out, and the population’s behaviour aligns closely with the Leslie model projections. Conversely, in
small populations, demographic stochasticity plays a more prominent role. With fewer individuals, the
random variability, introduced by probability distributions of the vital rates, has a more significant im-
pact on the population’s dynamics. This can lead to greater unpredictability and deviation from Leslie
model projection. Therefore, for small populations, a model that takes demographic stochasticity into
account can provide a more accurate or at least realistic representation of population dynamics com-
pared to a population projection determined by the Leslie model. Branching processes allow for an
analysis of the effects of demographic stochasticity while considering the probabilistic nature of repro-
duction and survival.

5.2 Leslie model as a Branching process

The Galton-Watson branching process is often used to describe the population growth of certain organ-
isms, such as bacteria. However, when dealing with populations of organisms that age and progress
through distinct life stages, like humans or many animals, the branching process model needs to be
adapted to account for this. So we need a more complex branching process to incorporate the process
of aging. So a branching process where individuals progress through age classes, reproduce based on
age-specific fertility rates, and die based on age-specific survival rates, all within the same time step.
This involves creating a branching process for each individual within the initial population.

5.2.1 Reproduction: birth rates to birth probabilities

The Fertility matrix F in the Leslie model contains expected births per individual, not probabilities. Con-
verting these expectations into probability distributions necessitates specifying the appropriate distri-
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bution parameters. Since different age classes have distinct birth rates, a unique probability distribution
is needed for each age class.

At each time step, individuals in each age class contribute offspring according to their age-specific
reproductive rates b;. To incorporate the stochastic nature of reproduction, we need to select a suitable
probability distribution. The elements in the Fertility matrix F are not probabilities but expected births
per individual. Turning these expectations into probability distributions requires extra information.
This information could come from data, detailing the likelihood of producing 0,1, 2, ... offspring. When
such data is not available, reproduction will be modelled by specifying a distribution appropriate to the
life history of the species [5].

Using the expected births b;, we can determine the parameter for this specified probability distri-
bution. Assume that the number of offspring produced by an individual in age class i follows a random
distribution with a mean of b;. This aligns with the definition of the birth rate in the Leslie model, rep-
resenting the average number of offspring produced by individuals in age class i. As each age class has
different birth rates, we will have different probability distributions for each age class.

For example, denote the random variable representing the number of offspring produced by an
individual in age class i as Y;. As indicated by the Leslie matrix, the expected or average number of
offspring from an individual in age class i is b;. An appropriate choice of probability distribution for this
scenario is the Poisson distribution, characterized by the parameter A [3]:

e MAx

PlY=2="—"— x=012... (5.2)

The mean of a Poisson distribution equals A, and thus for this particular distribution we have that
A = b;. As a result, this leads to the formulation of the probability mass function for the Poisson distri-
bution, with b; as its parameter:

P[X =] = L x=0,12,... (5.3)

5.2.2 Aging: Incorporating age-specific survival rates.

At each time step, individuals move from one age class to another based on their age-specific survival
probabilities s; in the Leslie model. To introduce demographic stochasticity into the survival rates, the
survival probabilities can be modelled using a Bernoulli distribution with probability s;. In this rep-
resentation, each individual either survives to the next age class or does not. This way, the survival
probabilities s; can be applied to each individual in each age class to determine which individuals sur-
vive to the next generation as they move to the next age class. Repeating this process for each individual
within the population will simulate the progression of the entire population over time. For simplifica-
tion, this iterative process, can be replaced by introducing the Binomial distribution with parameter s;_;
and the population size of age class i — 1 in the preceding time step.

5.2.3 Simulation of the Branching process

At each time step, the process begins with individuals in each age class represented in a population
vector. For each individual within an age class, the number of offspring they will produce is determined
independently using the Poisson distribution. This Poisson distribution has a mean offspring defined
by the birth rate for that age class. This process of determining offspring is repeated for each individual
within every age class, considering their specific birth rates. Then, the offspring from all individuals
within each age class are summed. This total represents the offspring produced in the current time step
for the entire population.

Next, for each age class, the number of individuals that will survive to the next time step is deter-
mined using a Binomial distribution. This process is repeated for each age class, determining how many
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individuals from each age class will survive and move to the next age class. The result is an age vector
representing the population distribution in the next time step.

The above process is repeated for each time step in the simulation. To project the population at a
specific time, as n = 10, the process starts at n = 0 and iteratively performs these reproduction and aging
steps for each time step until reaching n = 10. Appendix C includes a simulation of the x4 Leslie model
formulated as a branching process in Python. This code calculates and displays the population growth
and distribution over time using the branching process approach. In addition, Appendix B includes
Python code, that provides a simulation using the Leslie model approach to allow for comparison. In
the codes for both Appendix B and C, the birth rates, death rates, initial populations and desired time
steps, can be modified.

5.3 Analysis of the Leslie model in comparison to Branching process

5.3.1 An example 4 x 4 Leslie model

We will consider the 4 x 4 example Leslie model as in the previous chapters with the Leslie matrix in
Equation (3.24) and initial age distribution vector at time ¢t = 0 in Equation (3.25).

by by by by 1 2 2 3 P1(0) 100
st 0 0 of o5 0 o0 0 | Py(0)] _ |200

L=15 5 0 ol=|o 03 o ol PO=p0)| = {200 54
0 0 s3 0 0 0 02 0 P4(0) 300

Simulation depicted in Figure 5.1 and 5.2 illustrate the exponential growth of the Leslie model,
with the total population demonstrating a growth rate of 1,744 as it gradually approaches stability. This
outcome aligns with the findings from the Perron-Frobenius theorem.

The computations show that from time step 6 and onwards, the population growth stabilizes and
has a consistent growth rate for each age class of 1.744. While from the Perron-Frobenius theorem we
determined that the population growth would eventually stabilize with a growth rate of 1.744, it did
not offer insights into the number of time steps required for this convergence to occur. Additionally, as
anticipated by the Perron-Frobenius theorem, we observe that regardless of any adjustments made to
the initial population, the population ultimately converges to the same stable distribution

Population distribution over time using Leslie Model

2500004 —— Ageclass 1

Age class 2
—— Ageclass 3
— Ageclass 4

200000 4

150000 ~

Population

100000 -

50000

T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Time step (n)

Figure 5.1: Simulation of population distribution over time for example 4 x 4 Leslie model (5.4), initial
population P(0) = [100 200 200 300]".
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Total population over time using Leslie Model

350000

—— Total population

300000

250000 4

200000 4

150000 -

Total population

100000 4

50000

Time step (n)

Figure 5.2: Simulation of total population over time for example 4 x 4 Leslie model (5.4), initial popula-
tion P(0) = [100 200 200 300] T

To compare the Leslie model with the Branching process, we need to take into account that the
simulations within the Branching process vary each run, as they depend on probability distributions to
determine outcomes. Consequently, each simulation run presents a unique trajectory, sometimes closely
resembling the deterministic Leslie model and at other times deviating from it.

Figure 5.3 and 5.4 illustrate an example simulation for both the Leslie model and Branching process,

with a very small initial population P(0) = [1 2 2 3] T The simulation using the Branching pro-
cess deviates from the exponential growth in the Leslie model. Unlike the constant growth factor in
the Leslie model, it shows how the population also decreases at time step n = 9. Additionally, the cal-
culated growth rate factors exhibit fluctuations at each time step, reflecting the dynamic nature of the
Branching process and the influence of demographic stochasticity on population dynamics. This shows
how demographic stochasticity influences the projection of a small population.

Total population over time using Leslie Model Population distribution over time using Leslie Model

— Total population 2500 — Age class 1
—— Age class 2
— Ageclass 3
— Ageclass 4
2000

2000 1500

Population

1000

Figure 5.3: Example 4 x 4 Leslie model: total population and population distribution over time with
initial population vector P(0) = [1 2 2 3}T.
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Figure 5.4: A simulation of example 4 x 4 Leslie model as Branching process: total population and
population distribution over time with initial population vector P(0) = [1 2 2 3] T

Figure 5.5 and 5.6 illustrate an example simulation for both the Leslie model and Branching process,

with a very small initial population P(0) = [1000 2000 2000 3000] T Comparing both simulations
indicates that the influence of demographic stochasticity diminishes as the population size increases.
The total population at n = 10 using the Leslie model results in 3366834.3 and the total population at
n = 10 by this Branching process sample simulation equals 3399919.

During this sample run, computations reveal that starting from time step 5, the growth rates among
different age classes exhibit fluctuations within the range of approximately 1.72 to 1.77. These values
closely align with the expected growth rate of 1.744 derived from the Leslie model. This observation
shows that the sensitivity of population dynamics to demographic stochasticity decreases as population
size increases. It indicates the convergence of the Branching process toward the behaviour predicted by
the deterministic Leslie model as the population size increases.
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— Ageclass 4
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Figure 5.5: Example 4 x 4 Leslie model: total population and population distribution over time with
initial population vector P(0) = [1000 2000 2000 BOOO]T
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Total population over time using Branching process Population distribution over time using Branching process
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Figure 5.6: Example 4 x 4 Leslie model as Branching process: total population and population distribu-
tion over time with initial population vector P(0) = [1000 2000 2000 3000 T

Table 5.1 demonstrates the percentage range between simulations of the Branching process com-
pared to those of the Leslie model for different population sizes. As population sizes increase, it becomes
clear that the Leslie model closely approximates the outcomes predicted by the Branching process, de-
spite the Leslie model’s lack of consideration for demographic stochasticity. It highlights the power of
the Leslie model, particularly when applied to larger populations.

Additionally, this observation shows the effectiveness of the Perron-Frobenius theorem. It high-
lights how a relatively straightforward computation of an eigenvector can yield highly accurate growth
factor predictions, avoiding the need for extensive calculations within the Branching process frame-
work. Particularly for larger populations, where the computational demands of the Branching process
can be substantial, this theorem offers an efficient and reliable alternative for estimating population
growth rates.

Initial population vector Deviation total population at n = 10
PO)=[1 2 2 3]" 5 — 35%

P(0)=[10 20 20 30]" 5—15%

P(0) = [100 200 200 300]T 0—5%

P(0) = [1000 2000 2000 BOOO]T 0—2%

P(0) = [10000 20000 20000 3OOOO]T 0—0.5%

P(0) = [100000 200000 200000 300000]" | 0 — 0.2%

Table 5.1: Deviation of total population at # = 10 Branching process simulation compared to original
Leslie model in percentage, for initial population distribution vectors

In this chapter, we explored both a deterministic Leslie model and a stochastic Branching process
to simulate population growth under diverse initial conditions. While the Leslie model provides a con-
stant and predictable trajectory of population growth, the Branching process introduces stochasticity. In
the Branching process, birth and survival rates are determined by random Poisson or binomial distri-
butions in each iteration, leading to inherent variability from run to run. This stochasticity reflects the
real-world uncertainty in demographic processes. As a consequence of this randomness, when starting
with small initial populations, computations showed that the future population and growth patterns
can exhibit variability across different simulations. Sometimes, the results closely resemble the predic-
tions of the deterministic Leslie model, aligning with its constant outcomes. However, in other runs,
the Branching process has revealed more unpredictable growth projections.This variability underlines
the importance of considering demographic stochasticity in population projections when dealing with
small populations. Thus, the simulations demonstrate the need to account for probabilistic factors when
analysing and predicting population trends for small populations.
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Deterministic models like the Leslie model tend to provide overly optimistic predictions for popu-
lations, especially for small populations [15] [21]. They may underestimate the risk of extinction because
they do not consider the possibility of demographic stochasticity and random events that could possi-
bly lead a population to extinction. Therefore, in scenarios concerning small populations, such as those
encountered in conservation biology, where populations near extinction are often analysed, the deter-
ministic Leslie model may not provide as accurate or realistic results as the Branching process model.



Chapter 6

Conclusion and Discussion

The aim of this thesis was to investigate the long-term behaviour within the Leslie model for popula-
tion growth, utilizing various mathematical theorems. We investigated how Perron-Frobenius theorem,
Doeblin’s theorem and Branching processes can be applied to the Leslie model.

The Perron-Frobenius theorem guaranteed the existence of a dominant eigenvalue for an irreducible
Leslie matrix. By diagonalization of the Leslie matrix L, we derived the following equation for the
population at time k, for large values of k

P(k) = Akcoy.

From this approximation we observed that for a dominant eigenvalue A; > 1, the population at time k
will increase exponentially. If A1 < 1, the population faces extinction, and for A; = 1, the population is
stable and stationary, indicating that the births exactly compensate the deaths. Furthermore, we derived
equation

P(k) =2 AP(k—1).

This implied that each age distribution vector is approximately a scalar multiple of the previous age dis-
tribution vector, illustrating that the population distribution will remain constant. This scalar multiple
Aq is the dominant eigenvalue of the Leslie matrix. Thus, the asymptotic growth rate of a population is
given by the dominant eigenvalue A;. The dominant eigenvalue and corresponding eigenvector thereby
represent the long-term behaviour of a population; the dominant eigenvalue indicates the long-term
population growth, and the corresponding eigenvector indicates the long-term age distribution. Fur-
thermore, this implied that a population described by a Leslie matrix, asymptotically reaches a stable
age distribution that is independent of its initial age structure.

The practical utility of Doeblin’s theorem applied to the Leslie model was investigated. Doeblin’s
theorem provided insight into the long-term behaviour of and convergence properties of Markov chains.
However, due to the complexities of describing both the survival rates s; and birth rates b; within the
transition probabilities of the corresponding transition probability matrix, it was not feasible to formu-
late the complete Leslie model as Markov chain. Doeblin’s theorem could be applied to a simplified
version of the Leslie model, which exclusively considered the Survival matrix. An additional state
was introduced to represent "death". This "death" state was chosen to be state jy in Doeblin’s theorem.
In this context, the application of Doeblin’s theorem provided a realistic confirmation that the popu-
lation would ultimately converge to a stationary population distribution, specifically represented as
m=1[0 0 0 --- 0 1], where the final element signifies that everyone within the population has
passed away. Moreover, it was observed that in this specific scenario involving a population divided
into m age classes, the convergence to this state 77 would occur over the course of m time steps.

In order to include the Fertility matrix in the analysis of the Leslie model, we then formulated the

45
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Fertility matrix as a Branching process. The birth expectations were converted into birth probabilities
through the use of a Poisson distribution and survival probabilities were modelled with a Binomial
distribution. Various initial population sizes were tested in simulations for both the Leslie model and
the Branching process model. The results of these simulations revealed some important insights into
the behaviour of these models under different conditions. For larger populations, we observed that
the Branching process closely resembled the Leslie model. The growth rates exhibited relatively minor
fluctuations. In other words, when dealing with substantial population sizes, the Branching process
and the Leslie model produced comparable results, indicating that the stochastic elements introduced
by the Branching process did not significantly affect the overall population dynamics in these cases.
Conversely, for smaller populations, a more significant difference appeared between the Branching pro-
cess and the Leslie model. This difference became more pronounced as population size decreased. The
introduction of demographic stochasticity shed light on the importance of considering probabilistic fac-
tors in the context of small populations, where deterministic models potentially fall short in capturing
the intricacies of real-world dynamics. This emphasized the strength of the Leslie model, as well as the
utility of the Perron-Frobenius theorem for larger populations.

One of the fundamental assumptions of the Leslie model is that it considers a closed population,
which means it does not account for immigration or emigration. This assumption limits its applica-
bility to real-world scenarios. Consequently, in situations where populations are highly volatile due
to emigration, the Leslie model may provide less accurate predictions and a limited understanding of
population dynamics. Furthermore, the Leslie model describes a population under the assumption of
constant demographic parameters, which may not hold in all real-world scenarios. Future research
could incorporate time-varying parameters to capture more dynamic population dynamics. Moreover,
real-world populations are influenced by various other factors besides the birth rates and survival rates.
Integrating additional ecological variables and environmental influences into the population models
could lead to a more realistic model. Another constraint in our investigation relates to the exclusive
focus on a single gender within the Leslie model. In many species, gender-based differences in birth
and survival rates, significantly influence population dynamics. Therefore, expanding the Leslie model
by including both the male and female sex could create more realistic population projections. Addi-
tionally, it is important to acknowledge that effectively applying the Leslie model necessitates precise
estimations of age-specific birth and survival rates, which can be challenging to obtain.

The Leslie model, with its assumption of an unlimited environment, demonstrates that populations
tend to reach a stable age distribution and can exhibit exponential growth, resembling Malthusian be-
haviour. Though Malthus claimed a population can grow exponentially, he also argued that the Earth’s
ability to provide subsistence, like food, increases at a slower linear rate. This fundamental imbalance
implies that population growth can surpass the Earth’s capacity to sustain it, leading to "checks" such as
famine, disease, or war, as expressed in Malthus’s famous quote, "The power of population is indefinitely
greater than the power in the earth to produce subsistence for man.” [20].
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Appendix B: Python code Leslie model

import random
import numpy as np
import matplotlib.pyplot as plt

# Define birth rates and survival rates
bl =1

b2 =
b3 =
b4 =

S W N

sl =
s2 =
s3 =
s4 =

O O O O
w

# Define the initial population in each age class

pl = 100
p2 = 100
p3 = 100
p4 = 100

# Create the Leslie matrix and Initial population vector
L = np.array([[bl, b2, b3, b4],

[s1, 0, 0, O],

[o, s2, 0, 0],

(o, o, s3, 011)

p = np.array([[pl],
[p2]1,
[p3]1,
[p4]], dtype=np)

# Lists of birth rates and survival rates
list_birth_rates = [bl, b2, b3, b4]
list_survival_rates = [sl1l, s2, s3, s4]
list_initial_population = p.tolist ()

print ("Leslie matrix:", L)
print("initial population", p)
print ("Birth Rates:", list_birth_rates)

# Computation population after n time steps and corresponding growth

rate using original Leslie model
n = 10

51
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total_population_list = []

population_vectors = []

growth_rates = []

age_class_growth_rates = [] # List to store age class-specific growth
rates

for n in range(n + 1):
population_at_n = np.linalg.matrix_power (L, n).dot(p)
total_population = np.sum(population_at_n)
total_population_list.append(total_population)
population_vectors.append(population_at_n)
print (f"Population at n={n}: {population_at_n}")
print (£"The total population after {n} time steps using the Leslie

model is", total_population)

if n > 0:
growth_rate = ((total_population) / total_population_list[n -
1D
growth_rates.append(growth_rate)
print (£"The total population has grown with growth rate: {
growth_rate:.4f}")

# Calculate age class-specific growth rates
age_class_growth_rate = (population_at_n / population_vectors/[n
- 11

age_class_growth_rates.append(age_class_growth_rate.tolist ())

# Print age class-specific growth rates for each time step in the Leslie
model
for time_step, rates in enumerate (age_class_growth_rates):
print (f"At time step {time_stepl}:")
for i, rate in enumerate(rates):
print (f" Age class {i + 1}: {rate[0]:.4f}")

# Plot the total population over time using the Leslie model

plt.figure(figsize=(10, 6))

plt.plot(np.arange(n + 1), total_population_list, label="Total
population", color="Black")

plt.xlabel ("Time step (n)")

plt.ylabel("Total population")

plt.legend )

plt.xticks(range(0, n + 1))

plt.title("Total population over time using Leslie Model")
plt.grid (True)

plt.show ()

# Plot the distributions over time using the Leslie model
population_vectors = np.array(population_vectors)

# Plot the population distribution over time
plt.figure(figsize=(10, 6))

age_classes = np.arange(len(list_birth_rates))
for i in range(population_vectors.shapel[1l]):
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plt
plt
plt

plt

plt.plot(np.arange(n+1), population_vectors[:, i], label=f"Age {i +
1}”)

.xlabel ("Time step (n)")
plt.

ylabel ("Population")

.legend (["Age class 1", "Age class 2", "Age class 3", "Age class 4"])
plt.

xticks (range(0, n + 1))

.title("Population distribution over time using Leslie Model")
plt.
.show ()

grid (True)
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Appendix C: Python code Leslie model
as a Branching Process

import random
import numpy as np
import matplotlib.pyplot as plt

#Define birth rates and survival rates
bl =1

b2 =
b3 =
bd =

S W N

sl =
s2 =
s3 =
s4 =

O O O O
w

#Define the initial population in each age class
p1=100
p2=200
p3=200
p4=300

#Create the Leslie matrix using the defined rates
L = np.array([[bl, b2, b3, b4],

[st, 0, 0, O],

[o, s2, o, 01,

[0, o, s3, 011)

#Create the Initial population vector
p = np.array ([[pl],

[p2]1,

[p3]1,

(p4ll)

#Create lists of birth rates and survival rates
list_birth_rates= [bl, b2, b3, b4]
list_survival_rates= [sl, s2, s3, s4]
list_initial_population= p.tolist ()

print ("Leslie matrix:", L)
print("initial population", p)
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n=10

#Formulating the Branching process

def Population(mn):
generation_vector = p
generation = 0

while generation < n:
generation_vector = BranchingStep(generation_vector)
generation += 1

return generation_vector

def BranchingStep(generation_vector):
offspring=0
for i in range(0,len(list_birth_rates)):
y= list_birth_rates([il]
individual=0
while individual < generation_vector [i]:
newOffspring = np.random.poisson(y)
offspring += newOffspring
individual += 1

generationNew= np.zeros(len(list_birth_rates))
generationNew [0]=offspring
for i in range (1, len(list_birth_rates)):
generationNew[i]= np.random.binomial (generation_vector[i-1],
list_survival_rates[i-1])
return generationNew

total_population_list_branching = []
population_vectors_branching = []
growth_rates_branching = []
age_class_growth_rates_branching=[]

# Calculate and store the total population and distributions for both

models

for n in range(n + 1):
population_at_n_branching = Population(n)
total_population_branching = np.sum(population_at_n_branching)

total_population_list_branching.append(total_population_branching)

population_vectors_branching.append(population_at_n_branching.
flatten())

print (f"Population at n={n}: {population_at_n_branchingl}")

print (£"The total population after {n} time steps using the

Branching process is", total_population_branching)
if n > O:
growth_rate_branching = ((total_population_branching) /

total_population_list_branching[n - 1])
growth_rates_branching.append(growth_rate_branching)
print (£" (The total population has grown with growth Rate: {

growth_rate_branching:.4f})")

age_class_growth_rate_branching= (population_at_n_branching /
population_vectors_branching[n-1])
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age_class_growth_rates_branching.append/(
age_class_growth_rate_branching.tolist ())

# Print age class-specific growth rates for each time step
for time_step, rates in enumerate (age_class_growth_rates_branching):
print (f"At time step {time_stepl}:")
for i, rate in enumerate(rates):
print (f" Age class {i + 1}: {rate:.4f}")

#plot the total population over time using Branching process

plt.figure(figsize=(10, 6))

plt.plot(np.arange(n + 1), total_population_list_branching, label="Total
Population", color="green")

plt.xlabel ("Time step (n)")

plt.ylabel("Total population")

plt.legend ()

plt.xticks(range (0, n + 1))

plt.title("Total population over time using Branching process")
plt.grid(True)

plt.show ()

#plot the distributions over time using Branching process
population_vectors_branching = np.array(population_vectors_branching)

plt.figure(figsize=(10, 6))
age_classes = np.arange(len(list_birth_rates))
for i in range (population_vectors_branching.shape[1]):
plt.plot(np.arange(n + 1), population_vectors_branching[:, i], label
=f"Branching Model (Age {i + 1})")

plt.xlabel ("Time step (n)")

plt.ylabel ("Population")

plt.legend (["Age class 1", "Age class 2", "Age class 3", "Age class 4"])
plt.xticks(range(0, n + 1))

plt.title("Population distribution over time using Branching process")
plt.grid(True)

plt.show ()
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