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Abstract—The accurate simulation of Room Impulse Responses
(RIRs) is important in a variety of applications in acoustics
such as automatic speech recognition, speech enhancement,
and architectural acoustic design. While objective metrics for
evaluating RIRs have been researched extensively, the subjective
perceptual accuracy of the simulations is largely overlooked.
This paper seeks to address this gap, designing a subjective
testing methodology for evaluating the perceptual accuracy of
simulated RIRs. A framework is proposed that combines the
ABX testing methodology with a modified Multiple Stimuli with
Hidden Reference and Anchor (MUSHRA) approach, measuring
attributes such as clarity, warmth, environment, and reverbera-
tion. The study involved 50 participants evaluating audio samples
convolved with both real and simulated RIRs. Results seem to
indicate that participants could reliably distinguish between real
and simulated RIRs, with perceptual differences observed in the
“clarity” and “reverberation” attributes. The findings suggest
that current simulation methods for RIRs do not fully capture
the perceptual aspects of acoustic environments.

Index Terms—Room Impulse Response (RIR), ABX testing,
MUSHRA, Perceptual Accuracy, Subjective Evaluation

I. INTRODUCTION

Research on how humans perceive sound across various
environments has been ongoing for decades [1], and a thor-
ough understanding of this field has a range of applications.
Improving the robustness of our Automatic Speech Recogni-
tion (ASR) systems [2], implementing Speech Enhancement
techniques [3] and integrating an acoustic understanding into
the architectural design process [4] are but a few examples
of use-cases for this knowledge. Many more can be found
within the entertainment industry, specifically for cinema [5],
and for music; for both live performances and recordings [6].
One way of modelling these environments is through Room
Impulse Responses (RIRs), which is a “transfer function that
aims to characterize the acoustic environment of a room” [7,
p. 436], given specified source and listener positions. As such,
convolving an anechoic signal with the measured RIR for a
given room would model the room’s effect on the signal [8].

RIRs themselves have been extensively researched, with
different methods of construction and objective evaluation of
the simulation performance being the main focus [9] [10] [11].
What seems to be missing from the literature however, is an
understanding of the subjective component of the simulated
RIRs. Both gpuRIR presented in [9] and Fast-RIR in [10]
focus on purely on objective metrics such as the performance
speedup and the simulation accuracy. Objective methods such
as these tend to overlook the individuality of the auditory
experience, facilitating a need for subjective testing. Addition-
ally, for many applications, a physically accurate RIR isn’t
even required. Methods that attempt to achieve an accurate
and realistic simulation such as wave-based methods often
result in too high complexities, resulting in a trade-off between
accuracy and complexity [12]. This leads to further investiga-
tion into perceptual accuracy being prompted, as the focus of
many applications is to tailor to the auditory experience of
humans. As a result, this research paper aims to fill this gap
by exploring what constitutes a perceptually accurate Room
Impulse Response simulation and how its efficacy can be
tested. The main research question is: “How can subjective

testing methodologies be designed to evaluate the perceptual
accuracy of simulated room impulse responses?” The aim is to
have a repeatable and valid experimental procedure that could
be employed to ascertain a simulated RIR’s intersubjective
perceptual accuracy.

To address this, the paper is structured as follows. Firstly,
various subjective methodologies currently employed in acous-
tics are reviewed to identify common practices and essential
considerations. Subsequently, existing objective metrics are
examined to understand their development and application.
Thirdly, certain aspects of sound that a simulated RIR should
accurately preserve are detailed. Subsequently, a novel sub-
jective methodology designed to assess the perceptual accu-
racy of simulated RIRs is proposed, providing a framework
for evaluating their effectiveness in reproducing real-world
acoustic experiences. Finally, the experimental methodology
is employed and the results are analysed and interpreted.

II. BACKGROUND

This section discusses the background information based
on a literature review, decomposing the theoretical foundation
into three main components.

1) Which subjective methodologies are currently employed
in acoustics.

2) Existing objective/subjective metrics used for the evalu-
ation of audio.

3) Aspects of sound that a simulated RIR should accurately
preserve.

A. Current Subjective Methodologies

A book on Perceptual Audio Evaluation [13] was looked at,
in combination with a review of studies and standards applied
to the field [14] [15] [16], to elicit a testing methodology
workflow. This workflow considers the common practices and
considerations in perceptual evaluation of audio, building up
the methodology step by step. Figure 1 shows the elicited
workflow.

A more thorough explanation of each component is provided
in the Methods section, coupled with a description on how they
were applied in this paper. Additionally, a key insight made
in this theoretical component was that including a screening
section allows for the possibility of conducting listening tests
online, significantly speeding up data collection [17] and
improving the overall results [18].

B. Existing Metrics

This subsection is split into two parts: the purely objective
metrics that currently exist to evaluate RIRs, and the metrics
that incorporate subjectivity in some way, applied to other
domains.

1) Objective Metrics for RIRs: Existing objective metrics
for RIRs primarily focus on physical accuracy or RIR appli-
cability, without considering human perception. One approach
is applying the Mean Squared Error (MSE) between RIRs,
presenting the evaluation as a numerical physical difference
[19]. Another commonly used approach is evaluating an RIR
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Fig. 1: Perceptual Audio Evaluation workflow. Contains a
visual representation of the considerations to be made when
conducting an experiment on how people perceive various
aspects of audio. Section III concretely describes how the
paper implements these points.

simulation’s effectiveness for an ASR use-case, for example by
considering the Word Error Rate (WER) of ASR systems using
those simulation methods to account for the environment [20]
[21]. Additionally, a comparison of T60 times was employed
in the Fast-RIR paper [10], comparing the T60 acquired from
the paper’s simulation method with the method proposed in
[21]. The Reverberation Time (T60) is the “time taken for the
sound to decay to 60 dB below its value at cessation” [22, p.
2877].

Finally, it is worth noting that a paper conducting a per-
ceptual evaluation of simulated RIRs was found [23]. Expert
listeners as defined by the International Telecommunication
Union (ITU) standard ITU-R BS.1543-3 [24] participated in
an online listening test, with the results being analyzed with
an Analysis of Variance (ANOVA) test. The paper’s focus was
however on “perceptual thresholds of BRIR parameters”, using
purely simulated data in an attempt to distinguish simulated
RIRs from each other. The perceptual accuracy of the RIRs
themselves wasn’t properly considered however, since all the
RIRs used were simulated. Despite the paper’s approach
not being fully applicable to this particular use-case, key
components such as the staircase and AB testing methods were
considered for integration into the final methodology. The AB
method consists of giving participants two audios, having them
determine whether or not they are the same [25], whereas the
staircase method starts from a detectable difference between
the audios, reducing it in steps until the participant can no
longer perceive it [26].

2) Metrics that take Human Perception into account for
other Domains: In other domains such as evaluation of Basic
Audio Quality (BAQ) and Overall Listening Experience (OLE)
[27], metrics that incorporate human perception are more
comprehensive and interpretable. PEAQ [28], an ITU standard

[29], models human auditory perception and validates its
results against subjective listening tests using the Subjective
Difference Grade (SDG) metric. PEMO-Q [30] enhances
PEAQ with auditory and cognitive models to produce a
Perceptual Similarity Measure (PSM). PEASS [31] (Perceptual
Evaluation methods for Audio Source Separation) takes it
a step further, using PEMO-Q to determine the subjective
significance of specific error estimation components, then
refining them with subjective opinion scores collected through
listening tests.

Although these metrics exemplify the combination of sub-
jective and objective aspects of evaluation, the complexity
of the psychoacoustic models and the metrics’ correspond-
ing techniques led to them being deemed excessive to fully
research in the given time frame.

C. Attributes for Evaluating Perceptual Accuracy in Sound

In determining the final attributes for evaluating perceptual
accuracy in sound, several sources were considered. A variety
of works indicated that the main categories of attributes in
the perceptive domain that could be considered subjective
were timbral qualities and encoding of spatial information in
the sound [16] [14] [13]. A journal article by Łetowski [32]
formalizes these findings as a partition of sound into 5 com-
ponents: loudness, pitch, duration, spaciousness and timbre.
Pitch and duration can be objectively measured, significantly
reducing their relevance for this paper. Loudness, although
slightly more subjective [33], has methods such as the ITU-
R BS.1770 algorithm [34], a widely used objective metric for
loudness measurement [35]. Spaciousness and timbre however,
are considered complex n-dimensional concepts, and given
their subjective nature, further research into what they consist
of is prompted.

In order to determine the timbral attributes that were to
be considered in the methodology, the mural found in [36]
was looked into. The mural presents a set of concepts relating
to sound quality, and was used to elicit attributes such as:
clarity, brightness, coloration and richness. Although all of the
concepts could be worth looking into and could each provide
valuable insights into how sounds differ, due to time and
resource constraints only a select few are tested for. Brightness
is disregarded as it was found to be too correlated with pitch
[37]. Coloration seemed interesting but is slightly too similar
to the spatial attributes as it is caused by the interference
of the reflected sound with the original [38]. Richness and
Texture have the problem of being too complex, with Richness
being understood quite differently between different people
[39] and texture being too encompassing of a term [40].
The final chosen timbral attributes are Clarity and Warmth.
Clarity is the “perceived resolution of the auditory image”
[41, p. 41], and relates to how distinct and understandable
sounds are in a given acoustic environment [42]. It is highly
correlated with intelligibility [43], without being constrained
to communication. Warmth is related to pleasantness of the
auditory experience, and was presented as one of the main sub-
components of timbre in [44], alongside Roundness, Bright-
ness and Roughness. Since Roughness relates to Clarity and
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Brightness to pitch, Roundness and Warmth remain. Finally,
Warmth was selected as it is a simpler concept to explain and
has a significant overlap with Roundness as well, as they both
relate to the pleasantness aspect.

The spatial attributes were simpler to determine, as they
were more uniformly defined among sources. A paper on
“Spatial Quality Evaluation” [45] elicited twenty different at-
tributes grouped into three categories: dimensional, immersion
and miscellaneous spatial attributes. Due to the complexity
of considering all the above, the attributes in this paper
pertain to the categories themselves rather than some of the
twenty specific attributes. Additionally, the ITU-R BS.1116
standard [14] confirms these categories, classifying the main
important spatial attributes to be “Localization quality” and
“Environment quality” respectively. Including a localization
attribute in the experiment was deemed too complex due to the
intricate nature of Head-Related Transfer Functions (HRTFs),
which describe the acoustic transfer function between a point
sound source in an open environment and a specific location
within the listener’s ear canal [46]. HRTFs contain the acoustic
cues that are needed to localize sound sources and are highly
individual [47]. Thus, this attribute is marked as potential
future work and will be discussed further in the corresponding
Future Work section .

One final attribute that is added to the evaluation is Re-
verberation. Reverberation refers to the lengthening of the
sound duration due to the environment [48]. This attribute is
interesting as it relates to the the other projects within the
project group of this thesis, as they aim to explore different
aspects of the T60. Given that the T60 is an “essential factor
that reflects how reverberation affects a signal” [49, p. 1013],
reverberation is considered in this paper as a means to obtain
results that relate to the T60.

Through the decomposition of sound into the 4 subjective
components: Clarity, Warmth, Environment and Reverberation,
a variety of important subjective aspects of sound are covered.
Clarity for the overall auditory resolution, Warmth for the
pleasantness of experience, Environment for the immersion
and Reverberation for the T60. Although these by no means
cover the full range of elicitable attributes, they comprise of
the most relevant and interesting ones that were feasible to
accomplish.

III. METHODS

This section will discuss the methodology used for the
experimentation. The aforementioned workflow will be
iterated through, explaining the different considerations made
for this particular study. To understand the structure of this
section better, refer to the Perceptual Audio Evaluation
Workflow (Figure 1).

The Perceptual Evaluation Workflow 1 is split into four
main phases: the preparation phase, the experimental design
phase, the test execution and finally the post-execution phase.

Preparation Phase

In the preparation phase, the objectives are initially defined,
starting with the research question. As aforementioned, the
research question for the overall paper is “How can sub-
jective testing methodologies be designed to evaluate the
perceptual accuracy of simulated room impulse responses?”
Having looked at the theoretical sub-questions, the overall
research question can be de-composed into sub-components
for the experimentation. Firstly, one component is whether
or not the participants can perceptually distinguish between
the simulated and the real RIRs. If so, the question of what
attributes in which they differ is asked. Thus, the two main
things the experiment will attempt to answer is: whether or
not a simulated RIR is distinguishable from a real one, and
on what attributes (elicited in the previous section II-C). The
hypotheses of the experiment will thus reflect on these compo-
nents, with the null hypotheses being that participants cannot
reliably distinguish between real and simulated RIRs and that
the ratings for the subjective attributes on the simulated ones
are not significantly different enough from the real ones.

For the statistical considerations, the basic statistical ques-
tion applied to this paper is: “Is the observed variability in the
subjective impression a result of a perceptual distinguishability
between the simulated RIRs and the actual RIRs, or just ran-
dom fluctuations?” This basic statistical question summarizes
the efforts of the experiment; answering it is the main goal. As
a result, the Independent Variable is the type of RIR; whether
or not it is simulated, and what simulation method is used if
it is. The Dependent Variable is the detection accuracy, i.e
the participants’ ability to detect the real RIR, as well as
the ratings given by participants on the different subjective
attributes. There are many Confounding Variables, including
the listening environment, the audio reproduction system and
participants’ hearing ability.

Experimental Design

The experimental design section starts with selecting the
treatment design, which determines which stimuli will be
shown and in what configurations. A properly chosen treat-
ment design should control for the RIRs and the audio
samples, since these can impact the results in different ways.

Four real RIRs with varying speaker placements are se-
lected. Two of these are from the MeshRIR dataset [50], with
a 0.38 s T60, a fixed room dimension of 7 x 6.4 x 2.7 meters,
a fixed source position of [3.8 m, 2.9 m, 1.15 m] and the
receiver positions [3.8 m, 2.9 m, 1.15 m] and [2.7 m, 2.7
m, 1.15 m] respectively. The other two RIRs are made in an
audio lab at the Delft University of Technology, using time-
stretched pulses to measure the impulse response of the room.
The recording equipment used is:

• Microphones: AKG C417 PP
• Loudspeakers: Auratone 5C Super Sound Cube
• Audiocard: RME Fireface UFX+
• Microphone Preamp: RME OctaMic II
• Loudspeaker Power Amplifier: Auratone A2-30

The room dimensions for the audio lab are 8.1 m x 6.8 m
x 3.07 m, with a fixed [6.01 m, 2.019 m, 1.175 m] source
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position and a fixed [2.11 m, 3.33 m, 0.99 m] receiver position.
Two different configurations of the room are used, one with
curtains drawn and one with curtains open, to make one RIR
each. The T60s of the RIRs are 0.2 s and 0.42 s respectively.
The aforementioned parameters are then used to simulate RIRs
with two different methods, Pyroomacoustics [11] and the
Mirror Image Source Method [51] as implemented by Emanuël
Habets [52]. When simulating the RIRs, the room parameters
are kept the same, and the absorption coefficients are selected
such that the simulated RIR’s T60 matches the real one. This
calculation is done with the pyroomacoustics implementation
of the Schroeder method [53]. The code for generating these
simulations is made available in [54]. Four different anechoic
speech excerpts are taken from the Pyramic Dataset [55], with
two different male and female voices voicing phonetically rich
sounding sentences. Four anechoic classical music segments
are used as well, as classical music contains rich auditory
information that could aid participants in identifying the real
RIR. These classical music excerpts are found here [56]. Note
that the excerpts themselves contain individually recorded
instruments, so these are combined using “GarageBand for
Mac”. Finally, a sine sweep generated in python is the final
audio sample used. The code and the excerpts may be found
in [54].

Since the amount of participants is not enough, the treatment
design is fractional and random; each excerpt is convolved
with one of the real RIRs at random. The corresponding
simulated RIRs are then convolved with the same audio. The
sine sweep audio is convolved with two different RIRs, to
ensure that there was some variation within that audio sample
as well. The randomization combined with the choice of mul-
tiple stimuli and multiple RIRs should to some extent control
the influence of the confounding variables. The allocation
of stimuli design chosen is between-subjects design. This is
purely due to the infeasibility of having all participants go
through all nine samples. Instead, each participant is shown
three, one of the classical music audios, one of the speech
samples and the sine sweep. Each of these samples are shown
to the participants three times, as they are convolved with three
different impulse responses.

The experimental variables that are controlled are the test
signals, the reproduction system, the participants and the
environment. The controlling of the test signals is mentioned in
the previous paragraphs, as a variety of samples were selected.
The reproduction system used is the “Sennheiser HD-200
Pro”. Participants are recruited through university channels, so
neither the expertise level or the diversity is controlled. The
mean age of participants is 28.5, the standard deviation is 6.5
with an age range of 19-51, with 35 male participants and 15
female participants. The testing standards used are the ABX
testing methodology [57] in the first test, where participants
are given a reference audio, as well as two audios A and B
and asked to determine which one is an exact match with the
reference. The second standard used is the ITU-R BS.1543-
3 [24], otherwise known as Multiple Stimuli with Hidden
Reference and Anchor (MUSHRA). A modified version of this
standard is applied, where the participants rate the audio out of
one-hundred on the subjective attributes rather than on basic

audio quality, and no anchor is included, due to the complexity
of defining one.

The listening test itself is designed by modifying the ex-
isting webMUSHRA software framework [58]. The modified
code used for the test can be found here [54]. Ethical consider-
ations are elaborated on in the Responsible Research section.
In order to keep the test within a reasonable length, the ABX
testing and the MUSHRA test were split into separate tests.
The test flow of the software for the ABX test is as follows:

• Participants are prompted an explanation page that de-
scribes the test.

• Participants are then shown a training page to get them
accustomed to the User Interface.

• ABX testing is executed, such that the participant must
attempt to distinguish between an anechoic signal con-
volved with a real RIR and a simulated one for a classical
music excerpt, a speech excerpt and the sine sweep
excerpt. This will be repeated two times for each excerpt,
as each simulation method is tested.

• Participants’ age and gender are submitted and the test is
completed.

The test flow for the MUSHRA test is very similar, with an
additional explanation of the subjective attributes that were
being rated being included in the beginning of the test. The
orders of the appearances of the stimuli is randomized, to
control for learning effects. The tests themselves are accessible
by running the software in [54]. A ReadME.md file is provided
which explains how to reproduce and use both tests.

A. Test Execution

The test is conducted in a small room (3m x 3m x 2.5m)
in person, with the researcher present in case any questions
about the software arise. Initially, as mentioned in section II-A,
a screening section was considered such that the test could be
conducted online, but due to GDPR and server constraints
the tests are conducted in person instead. This is however
possible in theory and would allow for faster and more efficient
recruiting, allowing for more data to be gathered.

B. Post Execution

This component of the workflow will be discussed in detail
in the Results and Conclusion sections V VI, consisting of
a statistical analysis, interpretation of results as well as a
discussion of potential future improvements.

IV. RESPONSIBLE RESEARCH

Since this research involves human participants, additional
considerations are needed to ensure that the research con-
ducted is responsible. This section will detail these considera-
tions, describing what steps are taken to mitigate the different
kinds of risk.

Firstly, during the test execution itself, a variety of ethical
issues were addressed. Initially, the participants were handed
“Participant Information” and “Informed Consent Checklist”
forms, that served to ensure that participants were informed
of the nature of the study, as well as to explicitly obtain their
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written consent for participation and usage of the elicited data
in the study. These forms may be found in [54]. In both forms,
it is explicitly stated that the data will be anonymized, ensuring
confidentiality for the participant. The “Participant Informa-
tion” form also specifies that participation is entirely voluntary,
and that participants can withdraw from the study at any time.
To avoid potential bias in the results, participants were asked if
they had any medically diagnosed hearing impairments prior to
participating, and were omitted from the study in the event that
they did. This was also important as the test favors “typical”
hearing abilities over people with hearing impairments, which
would make the test unfair for this group of participants
had they been able to join. Throughout the test and after
test completion, the corresponding researcher was available
for questions and explanations on anything unclear. This also
opened up for the possibility of debriefing participants after
test completion, further describing the purpose and details of
the study, including what will be done with the data. The
debriefing was non-mandatory however, so mainly related to
participants who showed an interest and had further questions
out of curiosity.

Secondly, after the test execution, additional concerns such
as adhering to the Findable, Accessible, Interoperable and
Reusable (FAIR) principles [59] were addressed. In order to
do so, significant changes were made to the code used in
the study to ensure its readability and understandability. One
such example is the addition of “ReadME” files detailing the
structure of the published data, with clear comments in the
code explaining how future researchers could re-use it to either
achieve the same results, or to build on them. To allow for this,
a detailed description of the methodology is also presented
in the Methods section, promoting the replicability of the
attained results. An explanation of bias mitigation can also
be found in that section, as bias mitigation is a useful method
to increase the validity of the results [60]. The results and the
code themselves are findable in [54]. A “Data Management
Plan” (DMP) form was also made prior to test execution,
describing what would be done with the data. The DMP was
reviewed by a Faculty Data Steward on the 28/05/2024 and
was adhered to to the best of the corresponding researcher’s
ability. The DMP can be found in [54] in the corresponding
“Docs” folder. The documents in this folder were submitted
for approval to the Human Research Ethics Committee of the
Delft University of Technology.

Finally, one major consideration, given the amounts of soft-
ware and data taken from external sources, is licensing. A list
of external software/data in this study and their corresponding
licensing information is:

• WebMUSHRA software [58]. Modified and used for the
data collection, this software has its own license titled
“Software License for the webMUSHRA.js Software”.
In accordance with the license, it is made clear that the
software is a third-party modification, with an additional
file “modifications.md” being added specifying the mod-
ifications made to the code. Additionally, the software
has three inherent dependencies, two of them carrying the
MIT license and one of them with the Apache license.
These are also considered, but as the licenses are quite

permissive they didn’t contribute to additional constraints
for the purposes of this paper.

• MeshRIR Room Impulse Response Dataset [50]. This
dataset contains two of the four real room impulse
responses used, and goes under the CC BY 4.0 license.

• Pyramic dataset [55]. This dataset was used for the
anechoic speech segments listened to in the experiment,
and the data is under the CC BY 4.0 license.

• Pyroomacoustics library [11] and Habets’ implementation
of the Mirror Image Source Method [52], the libraries
used to simulate the simulated RIR conditions, both going
under the MIT license.

• “Anechoic recording system for symphony orchestra”
dataset [56], was used for the four anechoic classical
music recordings that were used in the experiment. The
audios are saved separately for each instrument, but
were combined in a digital audio workstation for the
experiment. No license is specified, but it is explained that
a citation is sufficient for academic research purposes.

Although this isn’t a comprehensive list of all the external
dependencies, it provides the ones that could potentially pro-
vide licensing restrictions. The license of the data published in
this paper will thus have to be of a similar level of restriction to
the aforementioned ones, so a CC BY 4.0 is deemed sufficient.

V. RESULTS

This section details the elicited results from the conducted
experiment. Firstly, the results of the paired comparison are
brought forth. Subsequently, the ratings of the subjective
attributes are analysed. Note that this section will not interpret
the results, as the interpretation is done in VI.

A. Paired Comparison (ABX) Results

27 participants for the paired comparison were shown 6
audio samples each (3 per simulation method), producing 81
samples per simulation method. The overall combined results
are given in the following table:

Pyroomacoustics Habets
Correct 56 61

Incorrect 6 6
Undecided 19 14

TABLE I: Overall results of paired comparison tests. The
“Pyroomacoustics” and “Habets” refer to the corresponding
simulation methods used to simulate the RIRs that were
convolved with the anechoic sound. The rows describe whether
the participant was able to correctly distinguish between the
simulated RIR and the real one. “Correct” implies that they
selected the correct audio as the reference, “Incorrect” means
the wrong audio was selected and “Undecided” means that the
participant selected the “I don’t know” option.

A binomial test [61] is conducted on the overall results
for the paired comparison tests to determine the extent to
which the results could be attributed to random error. The p-
value attained for the pyroomacoustics results for a binomial
test, where 56 out of 81 times the correct reference was
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identified, is 3.76 ∗ 10−4. Similarly, the binomial test results
for the “habets” simulation method gives a p-value of 3∗10−6.
Additionally, a chi-squared test [62] is conducted between the
two simulation method results, giving a chi-squared statistic
of 0.971 and a p-value of 0.615.

To provide a more in detail analysis of the RIR differen-
tiation based on the audio samples, an additional figure is
provided:

Classical Sine Sweep Speech
Pyroomacoustics Habets Pyroomacoustics Habets Pyroomacoustics Habets

Correct 20 17 12 18 24 26
Incorrect 2 2 4 3 0 1

Undecided 5 8 11 6 3 0

TABLE II: Results of paired comparison tests per audio sample
category. The columns “Pyroomacoustics” and “Habets” refer
to the corresponding simulation methods used to simulate the
RIRs that were convolved with the anechoic “Classical”, “Sine
Sweep” and “Speech” correspond to the audio categories the
used samples belong to. The rows describe whether the partic-
ipant was able to correctly distinguish between the simulated
RIR and the real one. “Correct” implies that they selected the
correct audio as the reference, “Incorrect” means the wrong
audio was selected and “Undecided” means that the participant
selected the “I don’t know” option.

A binomial test and chi-squared between simulation meth-
ods, conducted per attribute, elicits the following values:

• Classical:

– Pyroomacoustics binomial p-value: 9.6 ∗ 10−3

– Habets binomial p-value: 0.124
– Chi-squared statistic: 0.934
– Chi-squared p-value: 0.626

• Sine Sweep:

– Pyroomacoustics binomial p-value: 0.779
– Habets binomial p-value: 0.061
– Chi-squared statistic: 2.813
– Chi-squared p-value: 0.245

• Speech:

– Pyroomacoustics binomial p-value: 3 ∗ 10−5

– Habets binomial p-value: 2 ∗ 10−7

– Chi-squared statistic: 4.08
– Chi-squared p-value: 0.13

B. Subjective Attribute Results

For the subjective attributes, 23 participants were given 9
audio samples (3 per RIR comparison), leading to 69 samples
per RIR comparison. The table of results themselves can be
found in [54], but a summary of the data per attribute is seen
in the plots in Figure 2.

Upon visual inspection of the plots’ interquartile ranges,
medians and whiskers, reverberation appears to be the main
attribute that differs significantly between the conditions. As
such, it’s considered first in the further analysis. A “one-factor
ANOVA” (Analysis of Variance) [63] is conducted per attribute
to determine if post-hoc tests are relevant [64]:

1) Attribute Specific Results: Reverberation: The p-value
attained from a single factor ANOVA applied to the combined
reverberation data, which can be found in [54], is 1.2 ∗ 10−3.
The critical f-value is 3.04 and the measured f-value is 9.45.
Due to the potential implied significance of these results, post-
hoc analysis is conducted. A Bonferroni correction is used as
it is a simple, conservative adjustment that minimizes the risk
of attaining a type I error [65]. Applying pairwise t-tests to
the RIR conditions results in the following table:

Real Pyroomacoustics Habets
Real x 0.789 1.9 ∗ 10−3

Pyroomacoustics 0.789 x 4.5 ∗ 10−3

Habets 1.9 ∗ 10−3 4.5 ∗ 10−3 x

TABLE III: Results of pairwise t-tests between RIR conditions
for the “Reverberation” attribute. The “Pyroomacoustics” and
“Habets” rows and columns refer to the corresponding simu-
lation methods used to simulate the RIRs that were convolved
with the anechoic sound, with “Real” representing the real
measured RIR.

Applying the Bonferroni correction with 3 pair possibilities
leads to a corrected α value of 0.05/3 = 0.017, where α is
the highest p-value that leads to a null hypothesis rejection.

2) Attribute Specific Results: Clarity: The p-value attained
from a single factor ANOVA applied to the combined clarity
data, which can be found in [54], is 0.028. The critical f-
value is 3.04 and the measured f-value is 3.64. Similarly to
the reverberation attribute, the Bonferroni Correction post-hoc
test with α = 0.017 is conducted to verify the pairs in which
the potential statistical difference manifests, leading to the
following table:

Real Pyroomacoustics Habets
Real x 0.0441 0.0124
Pyroomacoustics 0.0441 x 0.525
Habets 0.0124 0.525 x

TABLE IV: Results of pairwise t-tests between RIR conditions
for the “Clarity” attribute. The “Pyroomacoustics” and “Ha-
bets” rows and columns refer to the corresponding simulation
methods used to simulate the RIRs that were convolved
with the anechoic sound, with “Real” representing the real
measured RIR.

Additionally, due to clarity being correlated to intelligibility,
as seen in II-C, the speech data could be of specific interest
for this attribute. As such, the same post-hoc test is conducted
on only the speech data as well, eliciting the following table:

Real Pyroomacoustics Habets
Real x 0.0347 2.76 ∗ 10−6

Pyroomacoustics 0.0347 x 3.5 ∗ 10−3

Habets 2.76 ∗ 10−6 3.5 ∗ 10−3 x

TABLE V: Results of pairwise t-tests between RIR conditions
for the “Clarity” attribute considering only the speech data.
The “Pyroomacoustics” and “Habets” rows and columns refer
to the corresponding simulation methods used to simulate
the RIRs that were convolved with the anechoic sound, with
“Real” representing the real measured RIR.
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(a) Plot representing the obtained rating results (0-100) for the
“Reverberation” attribute in the modified MUSHRA test.

(b) Plot representing the obtained rating results (0-100) for the
“Clarity” attribute in the modified MUSHRA test.

(c) Plot representing the obtained rating results (0-100) for the
“Warmth” attribute in the modified MUSHRA test.

(d) Plot representing the obtained rating results (0-100) for the
“Environment” attribute in the modified MUSHRA test.

Fig. 2: 2x2 Grid of “Box and Whisker” plots, representing the obtained rating results (0-100) per attribute in the modified
MUSHRA test. The boxes represent the interquartile range, showing the middle 50% of the data, with the line in the middle
representing the median. The “whiskers” demonstrate the range of the data excluding outliers, whilst the points that lie outside
of this range represent the outliers.

3) Attribute Specific Results: Warmth: For the warmth
attribute, the ANOVA test results in a 0.926 p-value and a
0.0772 f-value for a 3.04 critical f-value, implying that no
further post-hoc tests should be conducted. However, since
warmth is related to pleasantness of auditory experience, as
seen in II-C, an additional ANOVA was conducted with only
the classical music samples, as this concept is more applicable
to music than it is to speech or sine sweeps. Despite this
change, the p-value remains above the α = 0.05 threshold,
with a value of 0.105 and thus prompts no further exploration.

4) Attribute Specific Results: Environment: Similarly to the
warmth attribute, the environment attribute seems to indicate
a non-significant result with a 0.09 p-value and 2.42 f-value
based on a 3.04 critical f-value, when conducting a one-factor
ANOVA analysis. However, seeing as immersion as a criteria
could also be easier to distinguish for an orchestral classical
performance, another ANOVA is conducted purely with those
samples. As with the warmth attribute, a 0.066 p-value and
2.82 f-value for a 3.14 critical f-value prompts no further
testing.

VI. CONCLUSIONS AND FUTURE WORK

This section interprets the results elicited in V and discusses
them in relation to the paper’s context. Consequently, limita-
tions and potential future improvements are outlined. Finally,
the paper concludes, summarizing the work done.

A. Discussion of Results

Firstly, the paired comparison results are discussed. The low
p-values for the overall results, as seen in Table I, indicate
that the participants were able to tell the difference between
the reference audio (the anechoic sample convolved with the
real RIR) and the simulated versions, with a low probability
that the elicited results are achieved randomly. One can
notice that participants overall were better at determining the
simulated version when it was simulated using the “Habets”
method, which could suggest that Pyroomacoustics was harder
to distinguish in the experiment. However, the chi-squared
test values between the simulation method results implies
that there is no statistically significant difference between
the simulation methods themselves, which could mean that
perceptually one isn’t favored over another.

Considering the paired comparison results per audio sam-
ple category, as seen in table II, potentially interesting new
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interpretations arise. For the classical samples, it is clear that
the p-value is lower for “Pyroomacoustics” than for “Habets”,
indicating that for the classical samples the participants found
it easier to identify the simulated RIR reliably when it was sim-
ulated with Pyroomacoustics. This difference between them is
however not deemed statistically significant, as the chi-squared
statistic is low and the p-value is high. For the sine sweep
samples, interestingly participants struggled to differentiate the
pyroomacoustics RIR more than the habets one. It is also clear
however that this difference isn’t statistically significant either,
due to the chi-squared values. Finally, the speech samples had
the best overall results for identification of simulated RIRs,
with the lowest reported p-values by a large margin. This could
be because participants are most accustomed to hearing speech
in their day-to-day, suggesting that it is easier to hear subtle
differences in the audio samples when they’re more integrated
into real life scenarios.

For the subjective attributes, the main ones that are found
to be interesting within the results are “Clarity’ and “Rever-
beration”, as seen in Tables III, IV and V. “Warmth” and
“Environment” do not seem to yield statistically significant
results. This could be due to the complexity and subjectivity
of their experience, as both pleasantness of auditory experience
and environmental immersion are abstract concepts. Since the
participants weren’t required to have prior experience with
audio, they could have had a difficult time understanding what
was meant, as well as relying on fundamentally different pre-
conceived notions of what is “pleasant” or “immersive”. This
is further enhanced by the imprecise definitions provided in
the user interface, using subjective terms such as “full”, “rich”,
“envelopment” and “ambience”, highlighting the importance
of clear communication and training in studies involving
subjective attributes. On the other hand however, one must be
wary of doing so as specific definitions could bias participant
interpretations, not allowing them the freedom to fully grasp
the attribute as is.

The “Reverberation” results, as seen in III, indicate that
participants consistently rated the audio convolved with the
Habets RIR differently from the real one, which is also visible
in 2a. Given that the pairwise p-value of 1.9 ∗ 10−3 is well
below the 0.017 threshold, it’s reasonable to conclude that
participants rated the reverberation quite differently in the
Habets condition from the real one. There doesn’t seem to be
a significant difference between pyroomacoustics and the real
one however, suggesting that Pyroomacoustics could be better
at modelling reverberation effects than the Habets method. The
difference between the simulation methods themselves isn’t
too important of a result, but it does serve to back up the
claim that they are producing different results.

For the “Clarity” results, only Habets falls under the 0.017
threshold for the elicited overall p-value as seen in Table IV.
Participants rated the clarity of the audio convolved with the
real RIR as higher than the simulated ones on average, see
2b. In the subsequent table Table V, where only the speech
samples are considered, it is seen that the value for pyrooma-
coustics is reduced slightly, but not enough to fall beneath the
threshold, whereas Habets is reduced even more to indicate a
strong correlation well below the p-value. This could imply

that the Habets method is not sufficiently able to maintain
the clarity of the audio, especially when considering speech
samples. Although the Pyroomacoustics method doesn’t seem
to be able to model the Clarity well either based on this low
value, the results don’t suggest a statistical significance as the
p-value for both tables is over 0.017.

To summarize the results, this experiment suggests that both
the Habets and the Pyroomacoustics methods of simulating
room impulse responses can be perceptually distinguished
from a real room impulse response for a space. Additionally,
the main attributes that the simulated RIRs seem to fail to
preserve are perceived “Reverberation” and “Clarity”, due to
the difference in subjective ratings between the audio samples.
Despite this, it is not possible to definitively conclude that
these findings are properly statistically significant. The next
subsections will outline why this is the case, as well as provide
potential improvements to improve the robustness and validity
of the experiment.

B. Limitations of Findings

Although some of the results seen in VI indicate a sta-
tistically significant ability for participants to perceive the
simulated RIRs differently from the real ones based on certain
attributes, certain limitations hinder the paper from reaching a
definite conclusion. This subsection will elaborate on these.

One main limitation of this experiment lies in the selection
of participants. Since the experiment was conducted in person
in a controlled setting, the recruitment was more difficult and
thus the sample size isn’t sufficient to generalize. Additionally,
since the gender distribution is skewed, the data could have
a bias towards males. Finally, an additional concern that was
not addressed is the level of listener expertise, which wasn’t
asked for in the experiment. If the sample size was large and
diverse enough, then it would be possible to dismiss this as
the general level of listening expertise, but this is not possible
with this experiment.

Some more limitations lie within the experimental design
itself. One major consideration is the way in which the RIRs
were simulated, as it’s not guaranteed that the simulation
methods were used optimally. Although the room parameters
remained the same, the T60s were estimated and the individual
absorption coefficients of the walls weren’t considered. It is
thus conceivable that a better use of the simulation methods
could lead to better simulation results, improving the per-
ceptual accuracy of the RIRs. Additionally, the headphones
used were the same for all participants. All headphones have
a unique frequency response, which is a function of the
amplitude vs frequency for the output of the system [6].
Since different headphones have different frequency responses,
it isn’t necessarily guaranteed that the results with these
headphones will generalize to other ones. A similar argument
can be used for the listening environment, since the environ-
ment was mostly controlled, differing listening environments
aren’t accounted for. This limits the natural validity of the
experiment. Finally, although multiple T60s were used, the
low range of them from 0.18-0.42 s could also limit the extent
to which the T60’s effect on the results was controlled.
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The final concerns in validity relate to the attributes elicited
in the background section II-C. Considering differences in
audio only on 4 attributes is a major oversimplification and
was only done because it was infeasible and complex to do
more. For reference, the sound quality mural in [36] contains
eighteen different aspects, and it doesn’t even have all the
attributes that were elicited. It would thus be more valid
to have more attributes and also make them more specific.
The complexity of the attributes chosen is also an issue that
was highlighted throughout the experiment, as participants
struggled to fully understand the descriptions provided.

C. Future Work

As a consequence of the limitations described in VI-B,
potential future improvements and additions are elaborated on
in this subsection.

The first possibility for additional features for the experi-
ment would be testing for listener expertise. Since this directly
impacts the results, it would be helpful to control for this to
further analyse the results per listener group. It is possible
that an expert listener group would perform better overall,
especially for the classical music and sine wave audios, as
this target group would be exposed to more of these types
of audios. Additionally, including a larger sample size would
be a welcome addition, as ascertaining a proper statistical
significance would be easier in that case. One method that was
mentioned in section III is the possibility of deploying the test
online, rendering participant recruitment easier. This idea was
successfully implemented with the code as the webMUSHRA
software allows for simple deployment with Docker, but was
not possible to apply in practice due to server and GDPR
constraints imposed by the Delft University of Technology.
A larger sample size would also allow for the possibility of a
full factorial treatment design, increasing the robustness of the
experiment to the variance in audio samples and participants.

Some additional potential future work relates to including
more subjective attributes. Since audio can be decomposed
into many more subjective attributes than were tested for, it
would be interesting to see if there are any other, perhaps more
specific, attributes that describe the discrepancies between the
RIRs better. An example of such a subjective attribute is
“Localization” as mentioned in II-C.

Finally, as mentioned in II-A, the possibility of considering
the perceptual components of existing objective measures is
an interesting avenue for further research. Since these metrics
are extensively researched and incorporate aspects of human
perception, a thorough understanding of these could help guide
the direction of subjective evaluation of any aspect of audio.

D. Conclusion

This study aimed to investigate subjective methodologies
for the evaluation of perceptual accuracy of simulated room
impulse responses. To this end, a two-fold subjective method-
ology was proposed for RIRs simulated with two different
methods. Firstly, an ABX test to determine the extent to
which participants could differentiate simulated and real room
impulse responses was conducted. Subsequently, a modified

MUSHRA test was conducted to gain a deeper understanding
into what subjective attributes of the audio were perceived
to be different. The findings indicate that participants were
able to tell the simulated RIRs from the real one, with the
main perceptual differences being in the ”reverberation” and
”clarity” attributes. This seems to suggest that current RIR
simulation methods cannot accurately maintain the perceived
reverberation and clarity in the audio. Despite this, the results
must be considered with caution for a variety of reasons, and
future work can be undertaken to tackle the limitations with
the experimental methodology. In conclusion, this thesis has
contributed to a better understanding of how perceptual evalu-
ation of simulated room impulse responses can be conducted,
applying a simple experimental design to lay the groundwork
for future research. Thus, this work not only advances current
methodologies but also paves the way for more refined and
comprehensive studies in the perceptual evaluation of audio.
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