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Abstract

QoS (Quality of Service) control is an important concept in computer networking as it is
related to end user experience. End-to-end QoS guarantees, in particular, can give firm
guarantees to end hosts. Unfortunately, it has never actually been used on the Internet since
it was deemed too complicated. With the emergence of Software Defined Networking (SDN)
and OpenFlow as its most popular standards, we have an opportunity to re-introduce the
QoS control concept. The centralized nature and programmability of OpenFlow allow more
flexible and more simple QoS control.

In this thesis, we propose an end-to-end bandwidth guaranteeing model for OpenFlow. The
primary design consideration of the model is to allow QoS flow to send more than its guaran-
teed rate. To further maximize the overall network utilization, best-effort flows are allowed
to use any unused bandwidth in the network. Bandwidth borrowing concept is employed to
achieved this. To ensure that it will not affect the guaranteed bandwidth for the QoS flows,
we analyze the reliability of the bandwidth borrowing concept in Linux HTB, which is used
as the underlying mechanism of OpenFlow queue. From the simulations, we found that the
borrowed bandwidth is returned instantly when a QoS flow requires the bandwidth. Thus, it
is possible to guarantee bandwidth and maximize bandwidth utilization at the same time.

We also explore the possibility of using OpenFlow meter table for traffic aggregation. The
aggregation only puts overheads in the first switch, but no other complexities added in the
subsequent switches. Therefore, it solves the scalability problem which commonly associated
with end-to-end QoS guarantees.
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Chapter 1

Introduction

1-1 Background

According to the QoS Forum, Quality of Service (QoS) is the ability of a network element
to have some level of assurance that its traffic and service requirements can be satisfied.
QoS reflects the performance an application may require and experience in a network. It
can be considered as subjective, as users might have different perspectives of quality [1].
QoS is particularly important for applications with strict requirements such as telephony and
multimedia delivery. Nevertheless, QoS control has never actually been used in the Internet.
End-to-end QoS such as Integrated Service (IntServ) [2] is deemed too complex and not
scalable. On the other hand, Differentiated Service (DiffServ) [3] with its aggregation model
does not provide QoS guarantees. Service providers prefer to over-provision their network
with more resources, simply because it is less complicated than QoS control. Unfortunately,
since most of the time the network is not running at full capacity, it leads to low network
utilization [4]. This is more apparent in the recent years where the emergence of throughput
intensive applications forces service providers to switch to Gigabit networks.

Software Defined Networking (SDN), as a new paradigm in networking offers the opportunity
to re-introduce QoS control in the Internet. The centralized nature of SDN significantly
reduces the complexity that is commonly associated with end-to-end QoS guarantees. With
its adoption and support by leading companies in the tech industry, SDN is well on its way
to be adopted as a de-facto standard. By having strong QoS control included in SDN, the
future Internet might have native QoS support.

1-2 Problem Description

The Internet Protocol (IP), the underlying technology for the Internet that we are using
today, was not designed with QoS in mind. It was initially designed to provide Best Effort
(BE) service only. Therefore, unlike Asynchronous Transfer Mode (ATM) [5], the Internet

Master of Science Thesis Hedi Krishna



2 Introduction

does not have a native QoS capability. Later, in order to accommodate applications that
require certain QoS, the Internet Engineering Task Force (IETF) defined two major QoS
control architectures, i.e.: Integrated Service (IntServ) and Differentiated Service (DiffServ).

IntServ provides an end-to-end QoS solution with bandwidth reservation and admission con-
trol at each network element. The IntServ reservation system ensures that the portion of
bandwidth reserved by a flow, in every link that is used by the flow, can only be used by that
particular flow. Nonetheless, IntServ has its problems. First, its reservation signaling system,
the Resource Reservation Protocol (RSVP) [6], is not scalable; thus, it is not fit for bigger
networks like the Internet. In Intserv, each network element needs to store flow states, and
it grows rapidly with increasing number of flows and network elements. To make it worse,
RSVP is a soft state protocol which requires periodic reservation-state refresh. Second, the
fact that the reserved bandwidth can only be used by the reserving flow might cause low
bandwidth utilization.

On the other hand, a soft-QoS architecture such as DiffServ only gives a loose notion of QoS.
Rather than providing an end-to-end guarantee for flow, DiffServ employs per-hop behavior
(PHB) with aggregation for different classes of traffic. Although DiffServ complexity is sig-
nificantly lower than IntServ, bandwidth is shared between flows; therefore, there are no QoS
guarantees in this architecture.

OpenFlow as one implementation of SDN supports QoS since its early versions with OpenFlow
queue. Using this support, researchers try to propose QoS models for OpenFlow. Many of
these models, such as [7], [8], [9] and [10], are loosely based on DiffServ; thus, they do not
provide end-to-end QoS guarantees. Other models, [11] and [12], give hard QoS guarantees
inspired by IntServ. These IntServ based models guarantee bandwidth to QoS flows with
strict separation between QoS flows and best-effort flows. Unfortunately, the strictness also
put limits on the maximum allowable rate of QoS flows. QoS flows in these models are not
allowed to send more than its guaranteed rate. Any excess (non-conformant) traffic of QoS
flow will be dropped. The reason for this restriction is because excess QoS traffic might
compete with conformant traffic of other QoS flows and best-effort traffic.

Nevertheless, putting a maximum rate limit to a flow might cause a loss of opportunity as
the utilization of network bandwidth is not maximized. In a link with low utilization, for
example, it will be better to let QoS flow to send more than its guaranteed rate. By doing
so, the flow’s data transfer process can be finished sooner, freeing the bandwidth to be used
by other flows that come next.

In this thesis, we propose a new end-to-end bandwidth guarantees model in which QoS flows
are allowed to send more than their guaranteed rates. The QoS guarantees is implemented
in both controller and switch level. In the controller, an admission process is performed to
make sure that the QoS flows get enough bandwidth. Then, in the switches, OpenFlow queue
is used for traffic shaping and policing to ensure bandwidth guarantees. We took our model
further by addressing the problem of contention between excess QoS traffic and best-effort
traffic. By arranging prioritization of the traffic, best-effort will have more priority than
excess QoS traffic.

We also explore the possibility of using OpenFlow meter table for traffic aggregation in our
model. The application of meters will reduce the number of queues used in switches by
aggregating flows; thus, alleviating the scalability problem. To the best of our knowledge,
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1-3 Research Objective 3

the implementation of meter table in end-to-end QoS guarantees and the prioritization of
best-effort over excess QoS have never been done before.

1-3 Research Objective

The main objective of this thesis is to enable end-to-end bandwidth guarantees in OpenFlow.
The system should have the following three features:

1. Give a per-flow level bandwidth guarantees.

2. Allowing excess QoS traffic.

3. Prioritize best-effort traffic over excess QoS traffic.

1-4 Research Question

From the research objectives, research questions for this thesis can be deduced as the following:

1. How to provide end-to-end bandwidth guarantees in OpenFlow?

2. How to allow excess QoS traffic while still providing firm guarantee for conformant QoS
traffic?

3. Does the excess QoS and best-effort traffic have adverse effects on the guaranteed traffic
performance?

4. How can the OpenFlow meter table be used to enhance our end-to-end bandwidth
guarantees model?

1-5 Thesis Structure

This thesis is structured as follows. Chapter 2 discusses the background on QoS, its imple-
mentation in the Internet, and SDN technology in general. OpenFlow, as the most popular
implementation of SDN, will be discussed in detail. Chapter 3 covers the current QoS sup-
port in OpenFlow, the underlying mechanism of QoS in OpenFlow, and how it is implemented
in Open vSwitch (OVS). Previous works on QoS in OpenFlow, particularly end-to-end QoS
guarantees, will also be reviewed in this chapter. Chapter 4 focuses on the proposed solution
for the research questions. Assumptions made and design considerations taken in this thesis
will be explained in this chapter. In Chapter 5, two simulations are conducted as proof of
concept for QoS admission control, reservation, and class prioritization. The result of the
experiments provides background for the main simulation in the next chapter. A simulation
for the proposed algorithm is conducted in the Chapter 6. Here, the “goodness of the system”
will be observed, analyzed and discussed. The simulations for Chapter 4 and 5 are conducted
in OVS.
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4 Introduction

While in the previous chapters our models only employs OpenFlow queue to give bandwidth
guarantees, in chapter 7 we will explore the possibility of using meter table to enhance our
model with traffic aggregation. The experiment is conducted with Pica8 hardware switch.
Chapter 8 finalizes this thesis by presenting conclusion and future work.

Hedi Krishna Master of Science Thesis



Chapter 2

SDN, OpenFlow, and QoS

In this chapter, a brief background of Software Defined Networking, OpenFlow, and Quality
of Service are given. The first section examines Software Defined Networking and compares
it to the “traditional” IP networking. The emergence of OpenFlow, its architecture, working
principle and implementation are discussed in the second section. A discussion about OVSDB,
which is fundamental for understanding OpenFlow queue, is also provided in this section.
Section 2.3 provides a discussion on QoS control in general, why is it important, and the
problem with today’s Internet QoS. This chapter finishes with a literature review on the
topic of QoS in OpenFlow. Several previous studies in this field and proposed OpenFlow QoS
models will be presented here.

2-1 Software Defined Networking

The control system of traditional IP networking that we are using today is distributed. Each
network element is a separate entity with its own control plane and forwarding plane. The
control plane is responsible for device configurations and path computation for data flow.
Decisions made by the control plane are then informed to the forwarding plane, in which
packets are forwarded to a specific port. The forwarding plane also handles input and output
control such as traffic shaping and policing whenever it is necessary. Having control and
forwarding plane in every network elements means that all devices in the network make their
own decision by using information that is shared with one another.

The distributed control system surely has its benefit. Each network element is autonomous;
thus, there is no single point of failure problem. Furthermore, this is a mature system which
has been used for decades, and every network administrator has been familiar with. But it
also comes with disadvantages. In a large traditional network with many devices, network
administrators should manually configure each of these network devices (routers and switches)
one by one. The process is tedious and prone to human error [13]. It also significantly increases
provisioning time.
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6 SDN, OpenFlow, and QoS

To make it worse, different products of various manufacturers typically have different configu-
ration interfaces. For example, Cisco uses Cisco IOS (Internetwork Operating System), while
Juniper products have Junos OS. Sometimes, even different products from a single vendor
have different configuration interfaces. Network administrators are forced to learn all these
different interfaces.
These adversities led to the idea of control plane - forwarding plane separation, which in
turn resulted in the invention of Software Defined Networking. In SDN, the control plane
is extracted from network devices. A network device becomes a “dumb” device that only
performs forwarding. The control function itself is performed by a single entity that is simply
called the “Controller”.
In most cases, the controller is a general purpose server. It can easily be upgraded whenever
necessary. The controller can even be distributed into several separate machines to improve
its scalability and reliability [14] [15] [16]. The network devices itself are less specialized. A
single SDN device can be whatever the network administrator wants it to be, whether it is a
switch, a router, or even a middlebox such as a firewall, NAT (Network Address Translator)
or load balancer.
Since the operating system, which is usually proprietary in traditional networking, is now
extracted into the controller, ideally the SDN system will be vendor agnostic. Network
operators can use any SDN-enabled network device available in the market, and incorporate
it into their network without any issue. In the long term, this will significantly lower the
operational expenditures.
The central processing allows network administrators to do more efficient network related
operations such as routing. New routing policies, or even a new routing algorithm, can be
easily deployed in the network. This increases the rate of innovation in the field of computer
networks.

SDN Controller

Forwarding device with 
decoupled control

Forwarding device with 
embedded control

Traditional Network Software Defined Network

Figure 2-1: SDN vs legacy network architecture [17]

Another important aspect of SDN is its programmability. The programmability of SDN
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2-2 OpenFlow 7

allows flexible and elastic networks. Applications such as cloud-based networks, virtualized
desktop and servers and remote storage can be easily deployed with SDN. Even security can
be embedded in the network application itself.
From a QoS perspective, having a centralized control system simplifies many things that
otherwise are difficult to perform. Central control allows the controller to have a global view
of the network. Network metrics such as hop count between switches, delays, jitter and
available bandwidth can be obtained efficiently in a near real time from the network. In QoS
routing, fresh values of network metrics are required, as opposed to static metrics in non-QoS
routing [18]. Therefore, SDN simplifies the QoS routing process.
Network administrators are now able to use any routing algorithm that fits their needs. They
can employ per-flow routing, using different routing metrics for different types of flow. A
delay sensitive flow such as telephony might be forwarded via a minimum delay path, while
a throughput sensitive application uses a path with highest available bandwidth. It is even
possible to compute paths based on multiple constraints [19].

2-2 OpenFlow

OpenFlow is, arguably, the first and most popular implementation of SDN. OpenFlow defines
a set of protocols that enables SDN controller to communicate directly with the forwarding
plane in network devices. It started as a research project at Stanford University in 2008. The
initial goal was to provide a method to do an experiment in a production network. The first
protocol specification, version 1.0, was released in 2009. OpenFlow is currently managed by
the Open Networking Foundation (ONF).
From there, it widespread, not only in the academic community but also in the computer
networking industry. One of the most successful deployments of OpenFlow in large scale is
Google B4 [20] in 2013. In this project, Google implements OpenFlow in their Wide Area
Network to connect their data centers all around the world.

2-2-1 The OpenFlow standard

OpenFlow protocol standardizes exchanged messages between the controller and switch. In
general, these messages contain instruction how switch should handle specific types of packets
and collect statistics of these flows.
An OpenFlow switch has one or multiple flow tables to determine how to forward incoming
packets. These tables are functioned as lookup tables, to whom the switch learns what to
do with the packets. When a new flow arrives, the switch looks to its flow table. If there
is no entry matching this flow, the packet is sent to the controller as a packet_in message.
Based on the controller’s application, the controller decides what the network should do with
this particular flow (it might be forwarded to a particular port, dropped, or sent back to the
sender). The controller then informs the switches about the decision by installing flow entries
in switch’s flow tables. While waiting for a decision from the controller, packets that do not
match any flow entries are stored in a buffer. When the buffer is full, the newly incoming
packets will be sent to the controller. If the link to the controller is full, or the controller
becomes overloaded, these packets will be dropped.
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8 SDN, OpenFlow, and QoS

Flow entry is used to identify and process packets. It contains a set of match fields, priority,
counters, timeout, and a set of instructions [21]. The match field is a field against which a
packet is matched. As of OpenFlow 1.3, it has 40 matching fields, varies from IP source/des-
tination address to MPLS label. A packet might match several entries in flow tables, in this
case, the entry with the highest priority will be used to process the packet. Instruction de-
scribes the processing that needs to be taken when a packet matches a flow entry. It contains
a set of actions that will be applied to a packet (such as rewrite IP header, or send to switch
output port) or modifies pipeline processing (such as direct the packet for further processing
in the next flow table).
There are two ways a flow entry removed from a flow table, either at the controller’s re-
quest (using OFPFC_DELETE message) or via flow expiry mechanism. Each flow entry has
idle_timeout and hard_timeout parameters attached to it. Idle_timeout causes flow entry
to be removed when it matched no packets after the time it specifies. On the other hand,
flow entry will always be removed after hard_timeout since the flow is installed, disregarding
of how many packets has been matched. When a flow entry is removed, the switch will send
a flow removal message to the controller. This message contains the description of the flow
entry, the reason for removal, and the flow statistics [21].
Started from OpenFlow 1.3, a switch might have multiple flow tables. The switch will always
start the lookup process from table 0. If there is a go_to instruction in the flow entry, the flow
will be processed further in the next flow table. The multiple tables and pipeline processing
allows more flexible flow matching and processing.

Secure 
Channel

Flow Table

OpenFlow 
Protocol SSL

sw

hw

ControllerSwitch

...

Figure 2-2: OpenFlow architecture [22]

Figure 2-2 shows the basic architecture of OpenFlow. The OpenFlow protocol runs over
OpenFlow channel between the controller and switch. In a typical setting, an OpenFlow
controller manages multiple connections, each with a different switch. The switch may be
connected to a single controller, or multiple controllers using multiple OpenFlow connections.
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2-2 OpenFlow 9

An OpenFlow switch can be hardware-based or software-based. Software switches such as
Open vSwitch [23] and ofsoftswitch [24] can be installed in a general-purpose computer, adding
switch functionality into it. One of the most interesting usages of software switch is in cloud
computing, in which it provides network virtualization for virtual machines.

On the other hand, hardware switch is a dedicated hardware with networking functionality. As
of 2016, big name vendors such as HP and IBM have released dedicated OpenFlow hardware
switch products. Other vendors like Cisco and Juniper support OpenFlow in some of their
legacy devices. Many hardware switches supporting OpenFlow also run Open vSwitch as a
process in the operating system. For example, in Pica8 switch, OVS is a process within its
PicOS operating system [25].

2-2-2 OVSDB

OpenFlow is a southbound protocol that enables communication between the controller and
switch. The management of the switch itself is not managed by OpenFlow. For that purpose,
two different protocols can be used, OVSDB and OF-Config.

OF-Config is management protocol developed by the ONF and is supposed to work with any
OpenFlow-enabled device, while OVSDB protocol is specifically developed for Open vSwitch.
OVSDB works with both software and hardware implementation of OVS, such as Pica8 [25].

+----------------------+
| Control & |
| Management |
| Cluster |
+----------------------+

| \
| OVSDB \ OpenFlow
| Mgmt \
| \

+============================================+
| +--------------+ +--------------+ |
| | | | | |
| | ovsdb-server |-------| ovs-vswitchd | |
| | | | | |
| +--------------+ +--------------+ |
| | |
| +----------------+ |
| | Forwarding Path| |
| +----------------+ |
+============================================+

Figure 2-3: OVSDB architecture [26]

OVSDB manages switches operations such as creating interfaces, setting QoS policies, or
shutting down a physical port. Figure 2-3 illustrates the architecture of OVSDB. An OVS in-
stance consists of a database server (ovsdb-server) and a vswitch daemon (ovs-vswitchd). The
management and control cluster are the OVSDB managers and OpenFlow controller, which
can be located in the same or different devices. While the controller communicates with
switches via OpenFlow channel, OVSDB server talks with its manager via OVSDB Man-
agement protocol. The OVSDB switch daemon, located in a switch, monitors the database
for additions, deletions, and modifications to this information. Any change in the database
is applied to the switch. The OVSDB server stores information about switches in database
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form. The configuration in OVSDB is permanent; the switch will not lose its configuration
in the event of switch restart.

OVSDB is formalized in RFC7047 [26]. Many OpenFlow controllers, such as Opendaylight
and Ryu has integrated API to communicate with OVSDB. This support allows switch man-
agement to be incorporated into OpenFlow application.

The switch configuration in OVSDB is stored in database form. Figure 2-4 shows the database
schema. Each node represents a table in the database, while the edges represent the relation
between tables. Tables that are part of the “root set” are shown with double borders. Root
set is tables whose entries will not be automatically deleted when is not reachable from the
Open_vSwitch table. Each edge in the graph leads from the table that contains it and points
to the table that its value represents. Edges are labeled with their column names. Symbols
next to the label shows the number of allowed values: ? for zero or one, * for zero or more,
+ for one or more.

Figure 2-4: Open vSwitch database schema [27]

2-3 Quality of Service

Quality of Service (QoS) control is a mechanism used in a network to ensure high-quality
performance. By using QoS control, network administrators can manage their resource more
efficiently and provide a high level of service without having to over-provision the network.

QoS is of particular importance in applications that need specific guarantees. An application
such as voice conversation or video streaming requires small delay and jitter to be as good as
traditional telephone and television, which is demanded by users. On the other hand, data
communication are less sensitive to delay and jitter, but more sensitive to packet loss. A
failure to meet this standard might lowers Quality of Experience. In the future, we may see
more of these “inelastic” applications.

The Internet Engineering Task Force (IETF) defines two major QoS control architecture, i.e.:
Integrated Service (IntServ) [2] and Differentiated Service (DiffServ) [3].
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We can classify rate guarantees into two categories, i.e: hard and soft guarantees. The hard
guarantees is a rigid system where there is a portion of bandwidth capacity that can only be
used by a specific flow. Typically, there is a reservation process in which a flow asserts how
many bandwidth it wants to use. Hard QoS guarantees also have a strict admission control;
when the requested bandwidth is not available, other flow requests are rejected. In that sense,
it is similar to connection oriented circuit switched network. Soft guarantees, on the other
hand, is more flexible but does not give strong guarantees.

2-3-1 IntServ

IntServ is the first attempt to establish QoS control in IP network. IntServ emulates the
resource allocation concept of circuit switching. The network elements are forced to allocate
resource for particular traffic flow, analogous to a circuit-switch call session.

There are three defined level of services in IntServ:

1. Guaranteed Service. The Guaranteed Service provides mathematically provable upper
bounds on end-to-end delay that allows bandwidth, delay and packet loss guarantees.
It is accomplished through a combination of packet classifiers, scheduler, and admission
control.

2. Controller Load. The Controlled Load service provides flow with QoS approximating
the QoS that it would receive from best-effort service in an unloaded network. This is
achieved through admission control.

3. Best Effort. The best-effort traffic does not provide any QoS guarantees whatsoever.
This service is similar to the current operation of the IP networking.

Intserv uses the Resource Reservation Protocol (RSVP) for resource reservation. RSVP is a
multicast based signaling protocol which is a separate standard from IntServ. It is a soft state
protocol. The state of reservation needs to be refreshed periodically; otherwise, the state will
be lost.

RSVP has two types of messages to establish a connection: Path and Resv message. The Path
message is sent by the sender. It contains information about previous hop IP address, traffic
specification (including sender’s address), traffic characteristic, and end-to-end QoS require-
ment. The Resvmessage is a “reply” to the Path message from the receiver to sender, traveling
in the reverse direction of the Path message. Along the route, it set resource reservation for
the flow.

To tear down a connection, RSVP uses PathTear and ResvTear message. The PathTear is sent
by the sender to the receiver following the route used by Path message, while the ResvTear
travels the reverse direction. The two tear messages remove path state installed and the
reservation state.

The main advantage of IntServ is that it provides service classes differentiation. Users can
define their traffic type and uses one service that fit their application. A critical and intolerant
application can use guaranteed service. While, a critical but more tolerant application can be
supported with Controlled Load service. Other elastic applications can use best-effort service.
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Figure 2-5: RSVP operation

The main disadvantage of IntServ is its scalability problem. RSVP requires an end-to-end
signaling and must maintain per-flow soft state at every node along the path. The periodic
refresh requires a significant amount of signaling message and only gets bigger when the
number of flows and nodes in the network are increasing. The other problem is that IntServ
has to store all flows information in all switches/routers in the path, which becomes expensive
in a network with many flows. Because of this problem, it has never been used on the Internet
and only thrives in local enterprise networks.

2-3-2 DiffServ

DiffServ was introduced to address IntServ’s scalability problem. Unlike IntServ, in which
flows are treated end-to-end, DiffServ applies its policy when traversing a hop, known as
per-hop behaviour (PHB). DiffServ also acts on aggregated flows, rather than treats flows
separately. Packets are classified based on its Differentiated Services Code Point (DSCP) bits,
which is located in the IP header. Packets with same DSCP bits received equal treatment in
router/switch, no matter to which flow they belong.

After the classification, each class is treated according to the applied PHBs. There are several
PHBs defined for DiffServ, the most common are:

1. Default PHB. Packets with DSCP bits 000000 and those that do not meet requirements
of other classes are forwarded with a best-effort characteristic.

2. Expedited Forwarding. EF PHB has a characteristic of low delay, low loss, and low
jitter. EF packets are given priority queuing above other traffic classes. Flows using
EF will still compete with each other.

3. Assured Forwarding. AF PHB is analogous to IntServ’s Controlled Load. It provides
assurance of delivery as long as the traffic does not exceed a particular rate.

4. Class Selector. This PHB is defined to preserve backward compatibility with IP-
precedence scheme that predates DiffServ.
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DiffServ is more scalable than IntServ since it uses flow aggregates and does not need per-
flow states, significantly reduces signaling needed. It is also readily available without setup
delay since there is no admission process. Nonetheless, DiffServ does not provide end-to-end
QoS guarantees. It is possible to give more priority to one class over other classes, but it is
impossible to provide certain QoS guarantees in a flow level.

2-4 Related research in OpenFlow QoS

OpenFlow QoS is said to be limited since it only realized with two features, i.e. queue and
meter table. There are no hard defined standards like IntServ and DiffServ in OpenFlow. In
one way, it can be seen as a flexibility for network administrators to implement their own
QoS algorithm, but on the other hand, it adds difficulty to implementing QoS in OpenFlow.
This lack of a QoS model in OpenFlow inspired some researchers to propose such models.
Some of these proposals are high-level frameworks covering complete QoS aspects, while
others cover specific areas, such as rate guaranteeing, automation of QoS control, and QoS
implementation in home networks.
[28][29] propose a high-level QoS framework. In [28], a QoS extension for the Ofelia [30]
testbed is proposed. The framework utilizes the Queue table in OpenFlow 1.3 to enable QoS
control in multiple types of OpenFlow-enabled hardware switches. The model focuses on
how a northbound interface management system is created to work with different switches
with nonuniform queue implementation. Jeong et al. [29] propose Service Level Agreement
(SLA)-conscious QoS control based on Multiprotocol Label Switching - Transport Profile
(MPLS-TP). However, these two papers only cover the high-level concept and do not discuss
in detail how QoS and bandwidth guaranteeing are performed in the framework.
Other papers [7][8][9][31][10] attempt to achieve QoS in OpenFlow by utilizing QoS routing
and rate guaranteeing.
HiQoS [7] investigates the usage of DiffServ and multipath QoS routing in OpenFlow. HiQoS
differentiates traffic into three categories, i.e. high throughput video streaming, low delay
interactive multimedia, and best effort data stream. In the switches, these three types of
traffic are forwarded via three preconfigured queues with fixed rates. This creates bandwidth
slicing. Routes for flows are calculated using current bandwidth utilization as weight, and
flows from the same class may use different paths. Although low delay traffic is categorized in
its own class, the author does not monitor real-time delay and only uses current bandwidth
utilization in the routing computation. This is based on an assumption that higher utilization
(bandwidth and queue) equals to higher delay. Rather than flow level guarantees, HiQoS
guarantees bandwidth per class level.
Another QoS framework called OpenQoS [8], focuses on end-to-end multimedia delivery.
OpenQoS does not use priority queueing and resource reservation. Egilmez et al. argue
that such technique has an adverse effect on non-QoS flows, as QoS flows are always priori-
tized over non-QoS flows. Instead, QoS control in OpenQoS is established using QoS routing.
QoS flows (multimedia traffic) use dynamic routing (Constrained Shortest Path), while non-
QoS flows (data traffic) always use shortest path routing algorithm. The authors extend
their research in [32], in which they proposed a distributed QoS architecture for multimedia
streaming.
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Wallner and Cannistra [9] implement soft QoS using the Floodlight controller. The paper
presents a proof of concept model for class-based QoS control. The model is similar to
DiffServ. First, packets are classified based on their ToS/DSCP bits in the IP header. Then,
egress traffic shaping is implemented in switches along the path using OpenFlow’s Queue.

Celenlioglu [10] suggests using precomputed paths for QoS routing to improve scalability in
a highly loaded network. Rather than being triggered by new flows, the routing algorithm
is computed offline every few seconds. The precomputed paths are then used to install flow
entries when there is a new flow request. Path resizing for load balancing also proposed in
this research.

End-to-end bandwidth guarantees in OpenFlow

Tomovic et al. [11] propose an IntServ-like hard QoS guarantees for OpenFlow. The hard
QoS is established using bandwidth reservation and admission control. A QoS flow begins by
announcing its bandwidth requirement. The controller then performs a Constrained Shortest
Path computation using the asked bandwidth as a constraint. The algorithm itself uses free
bandwidth that is not reserved by other flows as link weight. This ensures that only the
reserving flow can use the reserved bandwidth. If there is not enough bandwidth available
to establish a path between source and destination, the flow is rejected. The controller also
periodically checks all links used by the QoS flow. If the utilization is more than 80%, it
reroutes best-effort flow to another path with lower utilization. This is done to prevent
degradation of existing best-effort flow when new QoS flows arrives. In the switches, the
bandwidth guarantees are enforced using OpenFlow’s queue. For each flow, a queue is created
in the ingress switch and intermediate switches with min-rate and max-rate equal to the
guaranteed bandwidth.

A similar end-to-end guarantees model with per-flow bandwidth reservation and admission
control is proposed in [31]. Here, QoS and non-QoS traffic are identified by their DSCP bits.
On discovering a route for a flow, two flow entries (for QoS and non-QoS flow) are installed in
switches at the same time, but directed via two different queues. Bandwidth reservation for a
flow is performed in its ingress switch. How the bandwidth is guaranteed in other switches in
the path is not mentioned in the paper. The goal of this research is to investigate resiliency
of QoS in the case of link failure in both single and multiple domain networks.

In [12], Dwarakanathan et al. aim to solve the scalability problem of IntServ by combining it
with the aggregation of Diffserv, particularly in a cloud environment. In the ingress switch’s
port (which is located inside a VM, and managed exclusively by a controller), a queue is
created for all flows to reserve bandwidth. In the intermediate switches along the path, one
queue per port is used to forward all QoS flows forwarded via this port. The rate of these
queues is dynamic, with its initial value equal to zero. When a new flow arrives, the rate is
increased by the rate of the new reserving bandwidth. By using only two queues per port (one
for flows originated from the switch and one for transit flows), it is more simple compared to
[11] which uses one queue per flow.

In both Tomovic’s [11] and Dwarakanathan’s [12] model, QoS flows are not allowed to exceed
its guaranteed rate. In Tomovic’s the max-rate is set for all queues, making sure that QoS
flows will stay within the guaranteed rate. In Dwarakanathan’s paper, it is not mentioned
whether it uses a max-rate limiter for the queues or not. However, since only a single queue
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is used for multiple QoS flows, QoS flows may contend with each other if there are QoS flows
that send more than the guaranteed rate. A QoS flow with a lower rate than its guaranteed
that happens to be in the same queue with QoS flows that exceed it might get penalized
(the phenomenon is shown in section 6-1 of this thesis). In this case, the concept of rate
guaranteeing itself becomes overridden. That is a problem that we want to address in this
thesis. In this thesis, we allow QoS flows to send more than the guaranteed rate while still
providing strict bandwidth guarantees for each individual QoS flow. Furthermore, the excess
QoS traffic should not give adverse effect to the best-effort and conformant QoS traffic.
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Chapter 3

QoS support in OpenFlow

This chapter provides background on QoS support in OpenFlow. Queue, an OpenFlow feature
that is employed in this thesis, will be discussed in detail. The discussion is extended to
Linux’s Traffic Control (TC) application, which is used to implement OpenFlow queue in
Open vSwitch. Within the same section, we also examine the Hierarchical Token Bucket
algorithm. The last section of this chapter is discussing OpenFlow meter table.

3-1 QoS in the OpenFlow standard

OpenFlow has accommodated a notion of Quality of Service (QoS) since its earliest versions.
However, the support was limited to a simple queueing mechanism with minimum-rate guar-
antee. It is further improved in OpenFlow 1.2 with the implementation of a queue with a
maximum-rate limit mechanism. Later, in OpenFlow 1.3, similar rate-limiting functionality
through meter tables was introduced.

OpenFlow switches also have the ability to read and write Type of Service (ToS) bits in an
IP header. ToS is one of the fields that can be used to match a packet in a flow entry. The
combination of these features allows network administration to apply QoS in their network.

3-2 Queue

OpenFlow’s queue is an egress packet queuing mechanism in the OpenFlow switch port.
Queue is first supported in OpenFlow 1.0, with a guaranteed minimum rate property. Later,
it was extended in OpenFlow 1.2 with a maximum rate which limits the maximum through-
put of a queue. Although it is specified in the OpenFlow switch specification, the OpenFlow
protocol does not handle queue management. Queue management (creation, deletion, alter-
ation) is handled by the switch configuration protocol, such as OF-Config or Open vSwitch
Database (OVSDB). OpenFlow itself is only able to query queue statistics from the switch.
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Port

QoS

Interface

Queue

Figure 3-1: OVSDB database schema

Figure 3-1 shows the schema of Port table in OVSDB. Port table is related to interface table
and QoS table. The relation to the interface table is mandatory, which means that all ports
should have an interface. In contrast, the relation to QoS table is optional. A switch port
might or might not have QoS settings attached to it. It can only have at most one configured
QoS, while a QoS can have multiple queues.

A queue is used in the action field of a flow entry using the set_queue instruction. This
instruction forwards packets that match the flow entry via the aforementioned queue. One
single queue can be used to process several flows at the same time. In this case, the aggregate
of actual throughput of those flows will be used in the queue’s max_rate limitation and
min_rate guarantee.

cookie=0x0, duration=50.164s, table=0, n_packets=51, n_bytes=4998,
idle_timeout=2, hard_timeout=1600, idle_age=0, priority=1,
ip,in_port=2,nw_src=10.0.0.1,nw_dst=10.0.0.3,nw_tos=64
actions=set_queue:4,output:3

The example above shows a flow entry with action forwarding to a queue 4. Any packets from
10.0.0.1 to 10.0.0.3 with ToS bits equal to 64 will be processed via queue 4, before forwarding
to egress port 3.

The OpenFlow switch specification states the following properties for a queue:

1. min_rate. This property defines the guaranteed minimum data rate for a queue. If the
min_rate property is set, the switch will prioritize this queue (and any flow forwarded
via this queue) to achieved the mentioned minimum rate, at the cost of other flows’
rates. If there are more than one queue in a port, with total min_rate higher than the
capacity of the link, the rates of all those queues are penalized. The capacity is shared
proportionally based on each queue’s min_rate.

2. max_rate. Maximum data rate allowed for this queue. If the actual rate of flows using
this queue is more than the specified max_rate, the switch will delay packets or drop
them in order to satisfy the max_rate.

The OpenFlow specification only mentions these requirements for queue properties. How it is
implemented in the switch is decided by the switch manufacturers themselves. Open vSwitch,
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as a software switch based on Linux, implements OpenFlow queue with Linux’s Traffic Control
(TC) program.

3-2-1 Linux Traffic Control

Traffic Control (TC) [33] is a user-space utility program used to configure packet scheduling
in the Linux kernel. This program is commonly used by network administrators to manage
traffic entering and leaving servers or other network elements. In general, TC consists of
several control mechanisms, i.e., shaping, scheduling, policing and dropping. The traffic
processing itself is controlled with queuing discipline (qdisc), classes and filters.

TC supports both classless and classful queuing disciplines. There are two classful queuing
disciplines that are used in OVS, i.e., Hierarchical Token Bucket (HTB) and Hierarchical Fair-
Service Curve (HFSC). Both HTB and HFSC are hierarchical qdisc that allow bandwidth
“borrowing”. The main difference between the two is that HSFC balances delay-sensitive
traffic against throughput sensitive traffic [34]. Since our model only guarantees bandwidth
and not delay, HTB, as the first and more popular implementation, will be used in this thesis.

HTB

In the hierarchical token bucket algorithm, tokens are generated at a fixed rate, then stored
in a fixed capacity “bucket”. Packets can only be dequeued or sent to an output port if there
is available token in the bucket. HTB is a queuing discipline that uses the concepts of multi-
level token buckets to allow granular control over the outbound bandwidth on a given link.
It is intended to be a replacement for Class Based Queueing (CBQ) which was a standard in
older TC implementations.

Within an HTB instance, multiple classes may exists.

1:fffe

HTB root

1:1
inner class

1:2

leaf class
1:3

leaf class

1:12

leaf class

Figure 3-2: Example of HTB classes
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Figure 3-2 shows an example of HTB classes arrangement. Class 1:fffe is the HTB root
class, it has three child classes: class 1:1, 1:2 and 1:3. Class 1:1 is another HTB class which
has its own child, class 1:12. A class that is not a parent to another class is known as a leaf
class. Here, for each of the leaf classes, a First In First Out (FIFO) qdisc is attached.

In the OVS implementation of the OpenFlow Queue, a child class of a root can not have any
children. So, there exist only two levels of hierarchy.

HTB classes have several important properties.

1. rate. Maximum guaranteed rate for this class and its children. It is equivalent to
Committed Information Rate (CIR) [35].

2. ceil_rate. Maximum rate at which this class is allowed to send.

3. priority. Defines the priority of the class. Classes with higher priority (prio 0 has the
highest priority) are offered idle bandwidth first. This prioritization should not affect
other classes’ guaranteed rate.

HTB extends the traffic shaping system of token bucket with a token borrowing model.
Using this borrowing model, when a class uses less bandwidth than the amount assigned
(rate property), the idle bandwidth is available for any other classes to use. It is important
to note that the term “borrow” is not entirely accurate since the borrowing class does not
have any obligation to return the resource that was borrowed.

When a child class’ rate is exceeded, it is allowed to borrow tokens from its parent class until
it reaches ceil (maximum allowable rate). When it reaches the ceil, the system will begin
to queue packets. In the queue, packets will be dequeued (sent) if there are enough tokens, or
dropped when the queue is full. In Figure 3-2, class 1:1, 1:2 and 1:3 are allowed to “borrow”
tokens from the root class, while class 1:12 can borrow from 1:1.

3-2-2 Parallels between OVS’s queue and TC classes

Queues are created using the ovs-vsctl command. This command creates and entry in OVSDB
and then implements it in the switch using Linux TC.

hedi@node01:~$ ovs-vsctl set port eth1 qos=@newqos -- --id=@newqos create qos
type=linux-htb other-config:max-rate=10000000 queues:1=@newqueue1
queues:2=@newqueue2 -- --id=@newqueue1 create queue
other-config:min-rate=4000000 -- --id=@newqueue2 create queue
other-config:min-rate=4000000

The example above creates a “QoS” and “queues” in port eth1. In OVSDB, it is manifested
as new entries in QoS table and Queue table. OVSDB then puts a relation between entry
“eth1” in Port table and the newly created QoS entry. This relation indicates that eth1 should
behave according to rules stated in this QoS.
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During this process, the switch invokes the TC application to create qdisc and classes in the
background. The creation of qdisc and its classes can be verified by running the following
command in the switch’s terminal.

hedi@node01:~$ tc -s class show dev eth1
class htb 1:fffe root rate 10000Kbit ceil 10000Kbit burst 1500b cburst 1500b
class htb 1:1 parent 1:fffe prio 0 rate 12000bit ceil 10000Kbit burst 1563b
cburst 1563b
class htb 1:2 parent 1:fffe prio 0 rate 4000Kbit ceil 10000Kbit burst 1564b
cburst 1563b
class htb 1:3 parent 1:fffe prio 0 rate 4000Kbit ceil 10000Kbit burst 1564b
cburst 1563b

The queues created with the ovs-vsctl command are actualized in the switch’s port as TC
classes. Queue 1 and queue 2 in OVSDB correspond to class 1:2 and 1:3 in TC. Class 1:1 is
a default class which corresponds to queue 0 in OVSDB. When creating QoS with ovs-vsctl,
queue 0 is always created although it is not explicitly mentioned. Queue 0 is also used to
processed all flow entries without set_queue instruction in the flow entries.

In a similar fashion, we can also see that the max-rate attribute of QoS in the ovs-vsctl
command becomes ceil for the HTB root class.

burst and cburst are the amount in bytes that can be burst at ceil speed and theoretical
“infinite” speed respectively. Since in our model all ceil are set equal to the link capacity,
and it is unlikely to have any classes to transmit more than the link capacity, we do not
change these parameters from their default value.

All classes created with ovs-vsctl have a default prio equal to 0. It is possible to prioritize
one class over the other class by changing this value. In the next chapter we will see how
we prioritize best-effort traffic over excess QoS traffic in the forwarding plane by changing
queue/class priority.

3-3 Meter table

Meter table is a new feature introduced in OpenFlow 1.3. Metering allows ingress rate mon-
itoring of a flow and then perform operations based on the rate of the flow. Unlike queue,
which is a property of a switch port, meter is attached to the flow entries.

A meter table consists of meter identifier, meter bands, and counter. The meter band specifies
its rate and band type. If the flow’s rate is higher than the specified band’s rate, the
operation specified in the band type will be performed to the flow.

There are two band types that define how packets are processed. The first type is “drop”.
This band type drops packets that exceed the specified in the band’s rate. This operation is
similar to queue min_rate. The second band type is “dscp remark”. This band type increases
the drop precedence of the DSCP field in the IP header of the packet. For example, if there is
a 40 Mbps flows with ToS 64 processed via meter with 30 Mbps rate and prec_level equal
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to 1, the ToS bits of excess 10 Mbps packets will be remarked to ToS 32. The other 30 Mbps
packets will keep its ToS equal to 64.

Meter table is a complement to queue, which was developed earlier. There are several differ-
ences between the two.

1. OpenFlow queue can guarantee a minimum rate to a flow using traffic shaping and
policing in switches. It is not possible to achieve this with meter table, as meter table
only has maximum rate limiter.

2. Rather than just dropping packets like the queue’s min_rate, meter can perform DSCP
bits alteration. Thus, packets from a single flow might have different DSCP values,
allowing different processes for packets from a single flow.

3. Queue can not be configured with OpenFlow channel. On the other hand, meter is can
be installed, modified and removed at runtime using OpenFlow protocol.

While most OpenFlow hardware switches already support meter table, as of May 2016,
CPqD’s ofsoftswitch13 [24] is the only OpenFlow software switch that implements meter
table.
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Chapter 4

Enabling End-to-end Bandwidth
Guarantees in OpenFlow

The goal of this thesis is to propose an OpenFlow controller design with an end-to-end band-
width guaranteeing system. The bandwidth guarantees is accomplished in two levels. In
the controller, admission and bandwidth reservation are performed to limit how many QoS
flows can be admitted. In switches, a traffic shaping mechanism provides QoS traffic their
guaranteed rate. In this chapter, all design considerations taken and methods we are using
to achieve it are explained in detail. The end-to-end model used in this thesis is grounded on
IntServ’s Guaranteed Service, as our aim is to provide hard-QoS guarantees. Nevertheless,
some legacy problems that commonly associated with IntServ are avoided in our design. In
this chapter, we also propose a new approach in traffic prioritizing by giving more priority to
best-effort when contending for bandwidth with excess QoS traffic.

4-1 Assumptions

IntServ’s Guaranteed Service, proposed in RFC 2212 [36], guarantees both delay and band-
width. In QoS frameworks, delay guarantees (as well as other QoS metrics like jitter, loss
and minimum bandwidth) are provided using QoS routing, which selects a path that can
meet such requirements [19]. Currently, OpenFlow does not have native support to measure
throughput and delay. While it is easy to measure current flow throughput by comparing
flow statistics from time to time, measuring delay is more complicated. One study by van
Adrichem et al. [37] shows how this can be achieved in an efficient manner. To measure
delay, the controller needs to insert probing packets into the network and measure its Round
Trip Time (RTT). Recreating this monitoring function in our controller design requires much
work and is out of the scope of this thesis. Therefore, we decided to focus only on bandwidth
guarantees. Bandwidth is the key component for offering QoS, without which many services
cannot be delivered [1].
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The controller is designed using the Ryu OpenFlow controller [38]. Ryu was started in NTT
(Nippon Telegraph and Telephone), and is now freely available under Apache 2.0 license. Ryu,
as well as its controller applications, is fully written in Python. The application written for
this thesis uses the OpenFlow 1.3 standard. Topology discovery is performed using built-in
functionality in Ryu by activating the “-observe-links” flag. This functionality uses LLDP
(Link Layer Discovery Protocol) to learn links between switches and report it to the controller.

OpenFlow is a southbound interface standard, managing SDN communication between con-
troller and switch/router. Queue implementation and supporting protocols (such as OVSDB)
may be different from one switch to another. Our model is created for and tested with the
OVS software switch.

Additionally, our model and all simulations performed in this thesis are based on an assump-
tion that the system works without any failure in the links.

4-2 Traffic types

In our model, there are two kinds of flows: best-effort flows and QoS flows. A best-effort
flow is a flow without reservation and bandwidth guarantees, while a QoS flow is a flow
with guaranteed bandwidth, analogous to the Guaranteed Service. The system will try to
accommodate QoS flow to achieve its guaranteed throughput. This is accomplished by using
admission control and bandwidth reservation (in the controller), and rate guaranteeing (in
the switches).

Allowing excess QoS traffic

QoS flows are allowed to send packets with data rate more than the guaranteed bandwidth. In
this case, non-conformant traffic violating the contract are called “excess traffic”. In the net-
work, excess traffic is considered as a different type of traffic, and will get different treatment
from QoS traffic that stays within its guaranteed rate.

Using an analogy from Frame Relay, guaranteed (conformant) traffic is CIR, excess traffic
is Excess Information Rate (EIR), while the actual data rate sent is Peak Information Rate
(PIR). The relation is given by PIR = CIR + EIR.

From an economic point of view, allowing QoS flow to send more than what is allowed in
the contract is beneficial for both network provider and its customer. The customer gets
a higher throughput than the contract, while the network provider might charge a small
amount of fee to permit excess traffic without any guarantee. From a network perspective,
higher throughput enables data transfer process to finish sooner. When the flow is over, the
bandwidth is free to be used for other flows. This is particularly important in a data center,
especially in big data applications, where data of large size are moved from server to server.

In IntServ’s Guaranteed Service, excess (non-conformant) QoS packets are treated as best-
effort packets. In this case, both types of packets have the same priority. When the network
is congested, they will compete directly for resources. As excess QoS traffic is an additional
service given to customers with little importance, we believe that it should not hurt best-
effort traffic’s performance. Therefore, in this thesis, we propose a differentiation between
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best-effort traffic and excess QoS traffic. Best-effort traffic gets higher priority than excess
QoS traffic.

4-3 Per-flow, end-to-end bandwidth guarantees

Real bandwidth guarantees can only be achieved on a per-flow level. A class aggregation
model such as DiffServ does not provide a strong bandwidth guarantee since it forces flows
to share resources. In a case of congestion, these flows will have to compete for the available
resources. In our model, bandwidth is guaranteed per flow by using reservation, similar to
IntServ. Nevertheless, some modifications are made; described in the following.

Idle reserved bandwidth can be used by other flows

A QoS flow reserves a certain amount of bandwidth in all links along the path between source
and destination switch. In IntServ, reserved bandwidth can only be used by the reserving
flow. The reservation potentially causes low bandwidth utilization if the actual data rate is
less than the reserved bandwidth. This problem is described in [39] and [40].

According to a study by Rao [41], one of the most common strategies employed in video
streaming is ON-OFF cycles. During the ON period, the client downloads as fast as the
network allows. It is then followed by an OFF period, in which data transfer rates are much
smaller. This cycle ensures that the client buffer is not overloaded by the amount of data
transferred by the server. Similarly, Big Data applications tend to be bursty and varied.
Exclusive use of bandwidth for such traffic potentially leads to low link utilization.

The usage of OpenFlow’s Queue for rate guarantee can solve this problem. In OVS, the
queue is based on HTB Linux. HTB uses hierarchical token buckets that allow one class’ idle
bandwidth to be used by other classes. Thus, if no limited, best-effort traffic and excess QoS
traffic can “fill” the idle-reserved-bandwidth of a QoS flow.

Hard reservation state

One of the drawbacks of RSVP is that its QoS state is soft-state. PATH and RESV messages
require periodic refresh by sender and receiver with a typical interval of 30 seconds. If these
messages are not received, the end hosts will assume that the connection has ended. Reserved
resources are then will be released. The periodic refreshment can lead to an enormous number
of signaling packets, especially when there is a large number of flows.

In our model, we use hard-state reservation. QoS reservation begins when there is a QoS
flow request to the controller. The request is signaled with the OFPT_PACKET_IN message
with appropriate ToS bits. The resources are freed from reservation when the flow entry
is removed from the switches, signaled by the OFPT_FLOW_REMOVED message. Flow removal
messages are sent by switches to the controller after a flow reaches its lifetime limit, defined by
idle_timeout or hard_timeout. Both OFPT_PACKET_IN and OFPT_FLOW_REMOVED are standard
OpenFlow messages. There is no extra signaling exchanged between the switch and the
controller.
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26 Enabling End-to-end Bandwidth Guarantees in OpenFlow

Hard state reservation significantly reduces signaling, especially in a network with many flows.
The number of reservation signals s required in the hard-state with f number of flows and n
average switches on the path is s = 2× f × n. While for the soft-state, the number of signals
is s = 1 + (t/r)× f × n, with t the average flow lifetime and r the refresh interval.

Figure 4-1 shows the comparison of signaling messages per switch required by soft state and
hard state reservation, assuming RSVP’s default state refresh rate of 30s [6]. The four curves
in the graph show the number of signaling messages required for hard state and soft state
with a lifetime of 30s, 60s, and 450s. For the short-lived flows (equal or less than refresh
interval), the soft state system sends state signals twice, one in the beginning (Path) and one
at the end of the flow (PathTear). This is equal to the number of signals used in the hard
state system. But for long-lived flows, soft signals uses much more signals than hard state
system. The hard-state uses the same number of signaling messages no matter how long the
flow live.
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Figure 4-1: Comparison of reservation signals required for various flow lifetime

4-4 Routing, admission, and reservation

Route computation for QoS flows in our model is performed using the Widest-Shortest Path
(WSP) algorithm. The algorithm is based on a modified Dijkstra algorithm, proposed by Ma
and Steenkiste [42]. This algorithm selects the shortest path between two nodes. If there is
more than one path candidate, it will select the one with the biggest bandwidth.

Two network graphs are used in WSP algorithm. The first graph is adjacency matrix between
switches in the network, representing shortest path between nodes. The second graph stores
information about reservable bandwidth in links. Reservable bandwidth is a portion of the
bandwidth that is not currently reserved by other QoS flows; thus, available to be used by
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4-4 Routing, admission, and reservation 27

incoming QoS flow. In both graphs, if the available bandwidth of a link is less than the
requested bandwidth, the link is pruned.

WSP uses hop count as primary weight and Minimum Reservable Bandwidth (MRB) as
secondary weight. For a given path p, MRB is the minimum of the reservable bandwidth of
all links in the path, formally stated as,

MRBp = min
{

Rij |ij ∈ p
}

When selecting a node candidate to mark, the node with minimum hop count is used. If
there are several candidates with the same minimum hop count, the one with largest MRB
is selected. The algorithm is illustrated in Algorithm 4-4.1.

Algorithm 4-4.1 Widest Shortest Path Algorithm [42]
1: function Dijkstra(Adjacency graph G, Bandwidth graph B, source s, destination d):
2: Prune links if available bw less than requested bw
3: for each vertex v in G
4: dist[v]←∞
5: cap[v]← 0
6: prev[v]← ∅
7: add v to Q

8: dist[s] = 0
9: cap[s] =∞

10: while Q is not empty
11: x← vertex in Q with min dist[x]
12: if |X| > 1 \\if there are more than one candidate
13: x← vertex in Q with max cap[x] \\use link with bigger capacity
14: remove x from Q
15: for each neighbour y of x
16: altdist← dist[x] + G[x, y]
17: altcap← min(cap[x], B[x, y]
18: if alt > dist[y]
19: dist[y]← altdist
20: cap[y]← altcap
21: prev[y]← x

22: if prev[d] = ∅
23: Not enough bandwidth between s and d. Return.
24: else
25: return prev[]

To ensure bandwidth availability, admission control is performed when a QoS flow request
arrives. The admission process is directly related to the routing computation. When the
routing computation does not find a route from source to destination, it signals the admission
system that there is not enough bandwidth to satisfy this QoS flow. The admission system
then installs a flow entry in the originating switch to drop subsequent packets that match
this particular flow.
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28 Enabling End-to-end Bandwidth Guarantees in OpenFlow

In a successful QoS flow request, the reservation system reserves a certain amount of band-
width requested by the flow. The reservation is made by updating the reservable bandwidth
graph in all links on the path between sender and receiver. By doing this, when the next QoS
is coming, the system will know how much bandwidth is allowed to be used. The controller
also maintains a flow database, in which it keeps track of how many flows currently exist in
the system, and how much bandwidth each of them is reserving. Compared to IntServ, where
reservation states are stored in switches, storing reservation state in the controller is more
effective and efficient. Database design and database machines in which the states are stored
can be easily optimized to accommodate a high number of flows.

On the contrary, best-effort flow is not commenced with an admission process and uses Dijk-
stra’s shortest path algorithm. The shortest path algorithm ensures best-effort flows to use
minimum resources in the network.

4-5 Queue management

As mentioned in chapter 3, OpenFlow’s queue provides traffic shaping mechanism that we
use to guarantee QoS flow rate. All packets in the network are forwarded via queues before
being sent to the egress port of a switch. In our model, we categorize the queue into three
types. Each of these queues is used to forward a particular type of traffic.

1. Source QoS queue
For each QoS flow, a queue is created in the egress port of the source switch (switch
connected to sender host). The flow is forwarded via this queue to provide bandwidth
guarantees. Min-rate of this queue is set to be equal to the guaranteed bandwidth.
While the max-rate is equal to link capacity. This setup ensures the flow to achieve the
guaranteed rate, even when the links are congested. If the link is free, unused by other
flows, it is allowed to send packets as fast as the link capacity.

2. Intermediate QoS queue
Intermediate switches are switches between source switch and destination switch. A
flow with five switches between end hosts, has three intermediate switches. Similar
to the source QoS queue, each QoS flow transiting in a switch’s port is forwarded via
individual intermediate queue.

3. Best-effort queue
Queue 0 of all switch ports is designated to be used for best-effort flows. All best-
effort flows are forwarded through queue 0 in both originating switch and intermediate
switches. Min-rate for this flow is set very low, so the best-effort flows will not competing
for bandwidth with QoS flows.

The source queue arrangement is different from single queue model presented in [12]. In single
queue model, a single QoS queue is used for all QoS flows. With such arrangement, if there
is a QoS flow A sending more than its guaranteed rate, the excess traffic will contend with
QoS flows B originating from the same switch. Flow B’s rate cannot be guaranteed as the
queue will see both flow A and flow B as a single entity. This is of course, unfair for flow B.
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Figure 4-2: Example of queue arrangement

Figure 4-2 shows an illustration of queue arrangement. In this network, hosts h1-h5 send
packets to h6. Hosts h1-h3 are connected to switch s1, h4-h5 connected to s2, while h6 is
connected to s3. The network is a linear topology, the two links between switches are shared
by the flows. In port s1-eth1, two source QoS queues are used to forward QoS flows. Queue 1
is used by flow h1-h6, while queue 2 is used by flow h2-h6. In the second switch, these flows
are forwarded via queue 7 and queue 8, respectively. The min-rate of these queues are equal
to the guaranteed bandwidth; in this case, 30 Mbps.

In both s1-eth1 and s2-eth2, queue 0 is used to forward best-effort flows. The min-rate of
queue 0 is 1 Mbps, so it virtually has no guaranteed rate. Port s3-eth3, which is connected
to receiver h6, does not have any queue created on it. All the flows are forwarded without
set_queue action. The reason is that the traffic is already shaped in the previous switch
ports.

Max_rate of all queues in all switch ports is set to be equal to the capacity of the link. This
will allow any flows to send as much as possible when links are idle.

In our model, the queues are created when a switch joins the network. The queues are created
when a switch joins the network. After exchanging hello message, the controller sends an ovs-
vsctl command to create QoS and Queue table in the switch’s OVSDB. OVSDB supports
maximum 4,294,967,295 queues entry in the database [27]; however, due to a limitation of
Linux TC, only 65,535 queues can be created in a single port.

4-6 Prioritizing best-effort traffic over excess QoS

By default, all queues/classes have the same priority. It means that non-conformant QoS
traffic and best-effort traffic are competing for bandwidth that is not reserved by QoS flows.
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30 Enabling End-to-end Bandwidth Guarantees in OpenFlow

Since we want to offer idle bandwidth to best-effort traffic first, before offering it to excess
QoS traffic, we need to change its priority in the Linux TC application. This is done by
changing the other-setting:priority in the queue.

QoS traffic is given priority equal to 1, while best-effort priority is 0 (queue with smaller
priority number has higher priority). With this setting, the bandwidth will be offered to
QoS flow first to satisfy its minimum guaranteed rate. After the QoS flow achieves its rate
(conformant traffic), the idle bandwidth is then offered to best-effort flows. If there is still
bandwidth left unused, it is offered to excess traffic from QoS flow.

4-7 General program flow

Figure 4-3 shows the complete program flow of our model. When a new flow arrives at a
switch, the first packet is sent to the controller. This packet_in event triggers the admission
process in the controller. After the arrival of this packet, the controller checks ToS bits of
the packet to determine its traffic type. ToS equal to 0 means that it is a best-effort flow.
There is no admission process for best-effort flows; the controller simply computes a path
with shortest path algorithm and installs flow entries in switches along the path. In all of
these switches, the flow is processed through queue 0.

If ToS bits are not equal to 0, the flow is a QoS flow. The controller checks the database
to determine how much bandwidth B it requires according to contract. It then computes a
route for this packet with the widest-shortest path algorithm. Based on the current network
graph, the algorithm decides whether there is enough available bandwidth in the network.

The are two possible results of the algorithm. If the network does not have enough bandwidth,
the flow is rejected. The controller then installs a flow entry in the ingress switch to drop
subsequent packets of this flow. If there is enough bandwidth, the algorithm returns a path
for this flow. The controller checks for an unused queue in the egress port of the first switch
in the path to look for an idle queue. Idle queue q, which is not currently used to forward
any other QoS flows, is selected to forward this flow. The controller then installs flow entries
in switches. The same process also conducted for intermediate queues.

The last step is refreshing the network bandwidth graph and storing reservation in the flow
database. In the graph, the available bandwidth in all links in the path is decreased by the
requested bandwidth. The graph will be used for the next QoS flow path computation.
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Chapter 5

Proof of Concept

The two fundamental aspects of our model in this thesis, the admission-reservation process
and class prioritization, are demonstrated in this chapter. First, an experiment is conducted
to see how admission control and bandwidth reservation are working hand-in-hand to ensure
bandwidth guarantees. In the next section, we will see how class prioritization works and how
it increases link utilization. The experiments also demonstrate that our controller design is
working as expected.

5-1 Admission and Reservation

As already discussed in the previous chapter, the end-to-end bandwidth guarantees in our
model is established using bandwidth reservation in every link in the path between sender and
receiver. The bandwidth admission and bandwidth reservation are performed in the controller
for newly arrived QoS flows. On the contrary, best-effort flows do not require an admission
process. To demonstrate this concept, an experiment is performed. Figure 5-3 depicts the
topology for the experiment.

5-1-1 Experiment setup

The network consists of three switches in a ring topology and eight hosts. Both switch s1 and
s2 are connected to four hosts. Links via s3 provide an alternative path between s1 and s2.
Each host in s1 is paired with a host in s2 for traffic generation. The traffic is bidirectional
between these host pairs.
The switches are Open vSwitch software switches installed in TU Delft NAS group’s network
testbed. Each switch is run on a server with Quad Intel(R) Xeon(TM) CPU 3.00GHz proces-
sor and 4 GB memory. The Open vSwitch used is OVS version 2.3.2, supporting OpenFlow
1.3. All links have a bandwidth capacity of 100 Mbps.
There are two kinds of flows generated for this experiment, best-effort (BE) and QoS. QoS
flows have bandwidth requirements of 70 Mbps. If there is no path between two host pairs that
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34 Proof of Concept

Table 5-1: Traffic generated for admission test

Host pairs Type Guaranteed bandwidth Actual traffic from sender
h1 - h5 QoS 70 Mbps 70 Mbps
h2 - h6 QoS 70 Mbps 70 Mbps
h3 - h7 QoS 70 Mbps 20 Mbps
h4 - h8 BE N/A 20 Mbps

meets this requirement, the flow is rejected. Best-effort and QoS packets are differentiated
by their Type of Service (ToS) bits. The flow is identified by a matching field of three tuples,
i.e. IP source address, IP destination address and IP ToS bits.

Three pairs of hosts (h1-h5, h2-h6, h3-h7) generate QoS traffic, while h4-h8 generate best-
effort traffic. Although both ends of the flow are sending and receiving packets, for the sake
of clarity, the initiating host is referred to as “sender”, while its paired host is referred to as
“receiver”. All sender hosts are connected to switch s1, while receiver hosts are connected to
switch s2.

The traffic used in the experiment is UDP, generated with iperf [43]. Table 5-1 shows the
actual rate of traffic generated by sender hosts.

Figure 5-1: Topology for admission test

5-1-2 Experiment result

Figure 5-2 shows the result of the experiment. The left graph is the rate of traffic generated
in the sender hosts. The graph on the right is throughput captured in the receiver hosts.

The controller keeps track of how much bandwidth is available and how much is reserved by
QoS flows. In the system, this is represented by network graph metric, with a value equal
to available bandwidth (in Mbps). Metric in this graph is used in route computation and is
updated in the event of successful QoS flow request and QoS flow removal.

In the beginning of the experiment, the links are free from reservation. All links’ weights in
the network graph are equal to bandwidth capacity. The initial graph is as follows:
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5-1 Admission and Reservation 35

graph = {1: {1: inf, 2: 100, 3: 100}, 2: {1: 100, 2: inf, 3: 100}, 3: {1:
100, 2: 100, 3: inf}}

In this particular experiment, since the traffic is bidirectional with the same rate, link weight
from host A to host B is always equal to weight from host B to host A. Weight from a host to
itself is infinite; on the contrary, link from a host to another host without direct link is equal
to 0.
The experiment begins at time t = 0 when host h1 sends 70 Mbps QoS traffic to h5. Since
both paths have the same amount of available bandwidth, this flow is routed using the shortest
path (link s1-s2). The system reserves 70 Mbps in this link for flow h1-h5, and then updates
the graph weight. The new weight is 30 Mbps, equal to the currently available bandwidth.

graph = {1: {1: inf, 2: 30, 3: 100}, 2: {1: 30, 2: inf, 3: 100}, 3: {1:
100, 2: 100, 3: inf}}

At time t = 5, host h2 starts QoS flow to h6. The system routes this flow using the updated
graph shown above. Link s1-s2 no longer has enough available bandwidth to accommodate
the new QoS flow because it is less than 70 Mbps. Thus, flow h3-h5 is routed through the
alternative path (s1-s3-s2). After that, the graph is updated into the following.

graph = {1: {1: inf, 2: 30, 3: 30}, 2: {1: 30, 2: inf, 3: 30}, 3: {1: 30,
2: 30, 3: inf}}

Host h3 starts QoS flow to h5 at time t = 10. The throughput of this flow is 20 Mbps, which
is less than the available bandwidth in either path. However, as QoS flow, it requires 70 Mbps
available bandwidth in the path. Since no paths between sender and receiver can satisfy this
requirement, the flow is blocked by the admission control system. Switch s1 installs a flow to
drop this packet and subsequent packets that match this source-destination-ToS tuple.
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Figure 5-2: Admission-reservation test result

On the contrary, a 20 Mbps best-effort flow from h4 to h6 (starts at t = 15) is delivered via
link s1-s2 (shortest path). This flow is allowed because as a best-effort flow it does not have
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36 Proof of Concept

specific bandwidth requirement. Available bandwidth in this path is 30 Mbps, less than this
flow’s throughput; therefore, the traffic is received in h6 with a full rate of 20 Mbps. This
flow is routed via the shortest path s1-s2.

From the experiment, we see that the admission process ensures QoS flows not to compete with
each other. Therefore, guaranteed bandwidth is provided at the controller level. On the other
hand, best-effort flows bypass the admission process and excess QoS traffic is also allowed.
To ensure that these traffic do not disturb the conformant QoS traffic, traffic prioritization is
used.

5-2 Traffic Prioritization

As discussed in the previous chapter, OpenFlow Queue in OVS in established using Linux’s
TC application, which allows us to differentiate class priority. Class/queue prioritization is
employed in our model to allow unused reserved bandwidth to be used by other flows, while
still give a firm guarantee to the conformant QoS traffic. In this section, this concept is
demonstrated with an experiment.

5-2-1 Simulation environment

The simulation uses a network topology of three switches in a line topology and eight hosts,
illustrated in Figure 5-3. Hosts h5-h8 act as receivers, to which hosts h1-h4 send their traffic.
Hosts h1 and h5 form a best-effort traffic pair, while the other hosts use QoS traffic. All the
links have a bandwidth of 100 Mbps. Table 5-2 summarizes the traffic.

Figure 5-3: Topology for prioritization test

Each QoS flow has guaranteed bandwidth of 30 Mbps. QoS flows are allowed to send more
than their guaranteed bandwidth. In the simulation, h2 and h3 send 80 and 50 Mbps respec-
tively during the whole period of flow. Host h4 sends 20 Mbps at time t = 15 to t = 25, and
then increases to 30 Mbps for the next 10 seconds. Traffic from host h1 to h5 is best-effort,
with a rate of 20 Mbps. The min_rate for all QoS queues are set to 30 Mbps, equal to the
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Table 5-2: Traffic generated for prioritization test

Sender Receiver Traffic type Guaranteed bandwidth Actual traffic Queue id
s1-eth1 s2-eth1

h1 h5 BE N/A 20 Mbps 0 0
h2 h6 QoS 30 Mbps 80 Mbps 1 1
h3 h7 QoS 30 Mbps 50 Mbps 2 2
h4 h8 QoS 30 Mbps 20-30 Mbps 3 3

guaranteed rate. For the best-effort queue it is equal to 1 Mbps; so the system will only
guarantee a relatively low rate compared to QoS flow

Prioritization is established by changing the priority setting of queues. Queue 0 is given prior-
ity equal to 0 (highest priority). For QoS flows, all queues priorities (source and intermediate)
are equal to 1. With this arrangement, a switch will first try to satisfy the guaranteed rate
of QoS flows. The remaining bandwidth is then offered to best-effort flows since it has higher
priority value. If there is still bandwidth left unused in the link, it will be used by excess
traffic of QoS flows.

5-2-2 Experiment Result

Figure 5-4 shows the result of the experiment. The graph is analyzed second-by-second as
follows:

1. 0s to 5s. At time t = 0, h1 starts a best-effort flow to h5 with a rate of 20 Mbps. At
the receiving host h5, the flow throughput is measured at 20 Mbps.

2. 5s to 10s. Host h2 starts its QoS flow to h6 with a throughput of 80 Mbps. Although
only 30 Mbps are guaranteed, it is allowed to send more. The excess traffic is served as
long as link bandwidth is unused. At t = 5, there is exactly 80 Mbps free bandwidth (100
Mbps capacity minus 20 Mbps used by h1-h5 flow); therefore, no packets are dropped,
and h6 receives this flow with a throughput of 80 Mbps.

3. 10s to 15s. Host h3 sends QoS flow of 80 Mbps. The bandwidths of the links are now
insufficient to accommodate all flows at their full rate. The system tries to accommodate
QoS flows first by using 60 Mbps for h2 and h3. The bandwidth is then offered to the
best-effort flow from h1, which rate is 20 Mbps. The leftover bandwidth of 20 Mbps is
distributed equally to h4 and h5. In the end, the QoS flows get an average of 40 Mbps
(alternating between 30 and 50 Mbps, because of round robin scheduling when offering
the leftover bandwidth to source QoS queues). The best-effort flow is still received at
20 Mbps because it has higher priority than QoS flows.

4. 15s to 25s. At t = 15, there is 40 Mbps available bandwidth (not reserved by QoS
flows) in the links. However, the links are fully used by two QoS flows (2 x 40 Mbps)
and a best-effort flow (20 Mbps). When QoS flow from h4 to h8 starts (20 Mbps) at
t = 15, traffic shaping in port s1-eth1 is working to accommodate the newly arrived
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Figure 5-4: Prioritization test result

QoS flow. The switch drops excess traffic from QoS flows h2-h6 and h3-h7. Each of
them only gets 30 Mbps.

5. 25s to 35s. At t = 25, flow h4-h8 increases its throughput from 20 Mbps to 30 Mbps.
Switch s1 shapes traffic to ensure all QoS flows got the guaranteed 30 Mbps. By doing
this, it shapes the best-effort traffic (h1-h5) traffic to 10 Mbps.

From the example above, we can see how traffic shaping works in Open vSwitch. The property
of OpenFlow queue’s min-rate and priority are exploited to differentiate QoS flows into
conformant and non-conformant traffic, and give them different priorities.
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Chapter 6

System test

In the previous chapter, a proof of concept for our controller design is presented. In this
chapter, more simulations are performed to see the how the system works in comparison with
other hard-QoS models and to investigate the goodness of the system in general.

First, we compare our bandwidth guaranteed with the model presented in [12]. We choose
this paper as it has a similar underlying Hard-QoS concept with our model. In the next
section, a simulation is conducted to measure how bandwidth borrowing mechanism affects
QoS flow’s packet loss. In the third experiment a large scale experiment with thousands of
flows is conducted to see how the class prioritization limits excess (non-conformant) QoS and
increases the best-effort traffic rate.

6-1 Bandwidth guaranteeing in single and multiple queues system

As mentioned in chapter 2, the single queue model presented in [12] does not allow QoS
flows to send more than the guaranteed rate. In such model, all QoS flows are forwarded via
single queue model. On the contrary, in our model, each QoS flow is forwarded via individual
queue. In this section, an experiment is conducted to see how excess QoS traffic might override
bandwidth guaranteeing concept in a single queue model, and how our model can solve this
problem.

For this experiment, a network shown in Figure 6-1 is used. Hosts h1 and h2 send QoS traffic
to h4 and h5 with guaranteed rate of 30 Mbps. The actual rate sent by h1 and h2 are 50
Mbps and 20 Mbps respectively. Host h3 generates 90 Mbps best-effort traffic to h6. All flows
are generated with iperf. The received throughput is observed from iperf’s statistics.

Figure 6-2 shows the result of the experiment: the comparison of received throughput at end
hosts, measured by the receiving hosts. The left graph is throughput obtained using single
queue model, while the right graph is the result obtained using multiple queues system in our
model.
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Figure 6-1: Topology used in experiment 6-1
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Figure 6-2: Received throughput for experiment 6-1

In the left graph, the received throughput of flow h2-h5 is 18 Mbps, less than the transmitted
rate of 20 Mbps. Although it is only slightly less than the transmitted rate, it is unacceptable
because this is a QoS flow that is given a guaranteed rate. It happens because in the second
switch (s2), flow h1-h4 and h2-h5 are forwarded via single intermediate queue. The guaranteed
rate in this intermediate queue is 60 Mbps; however, the traffic shaping mechanism cannot
distinguish between the two QoS flows. Since the total rate forwarded via this queue is 80
Mbps (60 Mbps + 20 Mbps), the two QoS flows are competing for bandwidth and the smaller
rate queue is penalized.

The sum of the QoS flows’ rate itself is more than 60 Mbps (around 63-64 Mbps) because the
idle bandwidth is shared proportionally according to the queue/class rate. In this case, the
QoS queue/class rate is 60 Mbps, while the class/queue for best-effort flow is 10 Mbps. Thus,
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after the 60 Mbps guaranteed rate has been satisfied, the remaining bandwidth is given to
QoS and best-effort flow with 6:1 proportion.

This problem does not appear in our model. Exclusive usage of queue ensures bandwidth
separation between QoS flows in all switches. Received rate for flow h2-h5 is 20 Mbps, equal
to the transmitted rate. In addition, flow h1-h4 is received at 30 Mbps (equal to its guaranteed
rate) since the best-effort is prioritized over excess QoS traffic.

6-2 TC’s traffic shaping reliability

Linux HTB is used as traffic shaping mechanism for bandwidth guarantees in our model.
HTB employs bandwidth borrowing concept that allows child class to borrow tokens from its
parent class. Inherently, the QoS flow bandwidth reservation is “virtual”, as the “reserved”
bandwidth is not exclusive to the reserving flow. Therefore, it is necessary for this model that
the “borrowed” bandwidth should be returned instantly if a QoS flow requires the resource.
In this section, a simulation is conducted to investigate the adverse effect that might occur
as a result of bandwidth borrowing mechanism.

Figure 6-3: Topology used in experiment 6-2

For this simulation, a network shown in Figure 6-3 is used. The topology of the network is
linear with 10 hosts, shown in Figure 6-3. For each of these switches, one host is connected.
Switch s1 connected to host h1, switch s2 to host h2 and so on.

QoS flows is generated from host h2 to host h4 and h9. Flow h2-h4 has 2 hops in its path,
while flow h2-h9 flow has 7 hops. Both of these flow have guaranteed bandwidth of 30 Mbps.
The actual traffic sent by the sender is 30 Mbps, equal to the guaranteed bandwidth. For
each QoS flow, 5 MBytes of data is sent from sender to receiver. Flows h2-h4 and h2-h9
are generated alternately, one flow at a time, and repeated 1000 times. There is a 5-seconds
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Table 6-1: Traffic generated in experiment 6-2

Host pairs Traffic
Type

Guaranteed
rate

Actual
rate

Lifetime Remark

h1-h10 Best-effort N/A 100 Mbps Throughout the
simulation

Used to “disturb”
the QoS flows

h2-h4 QoS 30 Mbps 30 Mbps 5 MBytes data Sent alternately
with flow h2-h9

h2-h9 QoS 30 Mbps 30 Mbps 5 Mbytes data Sent alternately
with flow h2-h4

interval between flows to make sure flow entries from the previous flow is already removed.
Table 6-1 summarizes the traffic.

There are several scenarios performed in this simulation. In the first scenario, a best-effort
flow is generated between two end nodes, s1 and s10, before the QoS flows start. The rate of
this best-effort flow is 100 Mbps, equal to the capacity of the links. This flow is a long-lived
flow that alive during the whole period of simulation. Since the QoS flows uses a subset of
the best-effort flow’s path, we expect to see some disturbance in the guaranteed QoS flow.
We want to see how fast the “borrowed” bandwidth by the best-effort flow is “returned” to be
used by the QoS flow, and much it affects the performance of the QoS flow. For comparison,
in the other scenarios, the best-effort flow uses 90%, 50% and 0% capacity of the links.

Both BE flows and QoS flows are generated using iperf. Packet loss of the QoS flows is
measured as parameters of system goodness. The measurement is performed in the receiver
using iperf’s own statistics report. Figure 6-4 shows the results of the simulation.
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Figure 6-4: Packet loss in traffic shaping reliability simulation

For the scenario with no initial network load (0% load), the QoS flow is flowing normally with
relatively low packet loss. The loss occurs because of the time needed to install flow entries in
the switches, as happens in regular OpenFlow’s flow installation. Naturally, flow with more
hops in the path has higher packet loss, as it needs more time to install flow entries in the
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switches. As a reference, Figure 6-5 shows the time needed to install flow entries for a various
number of hops.
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Figure 6-5: Flow entries installation time for various number of hops

During the flow entries installation process, the arriving packets are buffered in the OpenFlow
switch’s buffer. These packets are waiting for this process to finish because the switch does
not know how to process this packet. The switch’s buffer has a limited memory. Because
the QoS flow rate is 30 Mbps, which is quite high, the switch’s buffer cannot accommodate
all of this newly arriving packets. When the buffer is full, some packets are dropped. Flow
with more hops needs to install flow entries in more switches; consequently, the switches drop
more packets and the packet loss is higher.

In the token bucket filter algorithm, which is used by Linux HTB, tokens are generated
at a rate that corresponds to the configured rate. In our case, the configured rate is 100
Mbps, while the actual rate (best-effort flows) at the moment is also 100 Mbps. Packets are
forwarded using token. If no tokens are available, packets are queued, up to the queue size. In
the scenario with no best-effort traffic (0% load), all the generated tokens are conserved, as no
other packets use the HTB instance. As soon as the flow entries are installed, the packets are
dequeued from the buffer and forwarded through the queue specified in the flow entry. The
HTB class has accumulated enough token in HTB to send the queued packets with minimal
loss.

For the scenario with 50% and 90% occupancy, the tokens are still generated and reserved.
But because some of the tokens are used by the existing best effort packets, the conserved
tokens are not as many as in the previous scenario. After the flow entry is installed and the
packets are moved from the switch’s buffer to the queue. Since the queue size is limited, and
there are not enough tokens to dequeued all the packets at once, some packets are dropped
resulting higher packet loss.

For the scenario with 100% link occupancy, no tokens are conserved, as the token generation
rate is equal to the usage rate. All the packets are moved to the queue after the flow entry is
installed. None of the packets are forwarded to the output port instantly; they have to wait
until new tokens are generated. The queue becomes full faster than the previous scenarios,
resulting more packet loss.
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Table 6-2: Packet loss comparison of QoS flows (100 Mbps BE flow)

Setting 2 hops 7 hops
With flow installation 7% 9.24%
Without flow installation 0% 0%

It is important to notice that the packet loss only occurs in the first few milliseconds of the
flow, during the flow entries installation. In this simulation, a single QoS flow only sends 5
MBytes of data. The lifetime is very short, around 1.5 seconds. Iperf statistic (with a time
resolution of 500 ms) shows that the high packet loss only occurs in the first 0.5 second. For
the next 1 second, the packet loss is zero.

For comparison, we conducted another experiment. The setup is similar to the previous
simulation; the network is initially 100% loaded with best-effort flow from host h1 to host
h10. 5 MBytes of data is sent from host h2 to h9 (7 hops). This flow is a QoS flow with 30
Mbps rate and 30 Mbps guaranteed rate. Different from the previous, prior to this simulation,
the flow entries are already installed. Thus, the controller does not have to install flows entries
in the switches.

The result and comparison with the previous simulation are shown in Table 6-2. Although
the bandwidth is fully used by other flow, the QoS flow has zero packet loss. There are no
signs of quality degradation caused by bandwidth borrowing process by the best-effort flow.
It means that the “borrowed” bandwidth is instantly returned when a QoS flow needs it.
With this result, it is safe to say that the traffic shaping process by TC is precise and reliable
enough to support our bandwidth guaranteeing model.
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Figure 6-6: Received throughput of long lived best-effort flow and on-off QoS flow

Figure 6-6 shows the throughput of the received packet in host h9 and host h10. This data is
obtained with tcpdump with a time resolution of 0.1 ms. It only takes 1.5 seconds to transfer
5 MBytes of data; yet, we can see in the graph that the QoS flow almost instantaneously
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increases its rate from 0 Mbps to 30 Mbps. On the other hand, the best-effort flow’s rate (as
the borrower of the bandwidth) decreases during this duration.

6-3 Loading test

One of the primary goals of this thesis is to prioritize best-effort over excess QoS traffic
by utilizing queue’s priority parameter. Without prioritization, excess QoS traffic in the
network will have the same priority as best-effort; thus, the two type of traffic will compete
for bandwidth.

In our model, best-effort traffic has higher priority than excess QoS. To see how much the
prioritization affects and benefits the best-effort flows, we conducted a loading test simulation.
In this test, the network is highly loaded with best-effort traffic. QoS flows are then generated
randomly from various hosts. The rate of QoS flows is random with average equal to the
guaranteed rate. Some flow’s rate are higher than the guaranteed rate, while the others are
lower. With this arrangement, we expect to see the effects of the prioritization. For QoS flow
with a lower actual rate, the difference between the actual and the guaranteed rate is “idle
bandwidth” which can be used by any other flow. While QoS flow with an actual rate higher
than the guaranteed will have excess packets. This excess traffic will be treated differently in
a system with and without best-effort traffic prioritization.

The network topology shown in Figure 6-7 is used for this experiment. There are 10 hosts,
each of them connected to two hosts. Hosts h1-h9 are generating QoS traffic, while hosts h11-
h19 generating best-effort traffic. Host h10 and h20, connected to switch s10, are designated
to be traffic sinks, to which all sender hosts send their packets. All links have a bandwidth
of 100 Mbps. To make sure that no packets are dropped by the last switch (s10), the links
between s10 and its hosts are enlarged to 200 Mbps.

Best-effort traffic from hosts h1-h9 is sent with a rate of 30 Mbps. This rate is constant during
the simulation run-time.

Each of the QoS flows is 10s long and repeated 200 times. For each iteration of the simulation,
there are 1800 QoS flows in total, generated by 9 hosts. All of the QoS flows has a guaranteed
rate of 30 Mbps; thus, any links in the network will only able to accommodate 3 QoS flow at
the maximum. Since there is only one sink in the network, this setup creates a bottleneck at
link s9-10 and s8-s10.

After a QoS flow is finished, there is a random backoff time (between 5-10s) before the sender
starts another QoS flow. The backoff time makes sure that every host has a random chance
to use the network despite the bottleneck.

There are two QoS flow rates, 20 Mbps and 40 Mbps, which is chosen randomly. These two
rates are 10 Mbps less or more than the guaranteed rate. By randomizing rate, we expect to
see both QoS flows with lower and higher rate than its guaranteed rate. More importantly,
we want to see how it affects the rate of BE flows.

Figure 6-8 shows the result of the simulation. The graph shows the average received through-
put in the sink hosts (h10 for QoS and h20 for best-effort). The total of average throughput
for both types of flows is 194 and 195 Mbps, which is only slightly less than the total capacity
of the two bottleneck links s8-s10 and s9-s10 (200 Mbps).
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Figure 6-7: Network topology for loading test
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Figure 6-8: Received throughput, loading test experiment

Consider the 100% loaded of link s8-s10 and s9-s10. In the system without prioritization,
best-effort and excess QoS traffic both have a chance to use the bandwidth even in a fully
loaded link. In the bandwidth borrowing mechanism, after the guaranteed rate is satisfied,
the parent class’ token are distributed proportionally to the child class’ rate. QoS class rate
is 30 Mbps, and the best-effort class rate is 10 Mbps. The tokens are given to excess QoS
and best-effort traffic in the ratio of 3:1. So, apart from the guaranteed rate of 30 Mbps, the
QoS flows are allowed to send excess packets three times more than the best-effort flow. Any
packet that does not get any token is delayed or dropped.

In the system with prioritization, it happens differently. After the guaranteed rates for QoS
flows are satisfied, only best-effort packets are allowed to borrow bandwidth. In a network
with 100% utilization, it means that all excess QoS packets are delayed or dropped. Conse-
quently, the average throughput for best-effort flows is higher, increases 20% from the previous
scenario.

From this experiment, we can see that the prioritization system give benefit to the best-effort
traffic because it has more priority than the excess QoS traffic. In the case of congestion,
excess QoS packets are the first to be dropped, allowing QoS flows to get higher throughput.
This result confirms that our controller works as the design consideration in Section 4-2.

6-4 Multi-queues system suitability

In our models, OpenFlow queues in the switch’s ports are created when the switch first
connected to the controller. The queues are created with the ovs-vsctl command. Figure 6-
9 shows the time needed to create a various number of queues.

The queue creation time is nearly linear. For 1000 queues, a total time of 800 ms is needed to
complete the queues creation. Although it seems to be lengthy, it is important to note that
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Figure 6-9: Queues creation time for various number of queue

this operation only performed once.

Compared to the “single queue” system, in which for multiple QoS flows are aggregated via a
single queue, the multi-queues system presented in this chapter requires a higher number of
queues. For every switch in the path, a flow requires one queue for bandwidth guaranteeing.
In this sense, the multi-queues system does not solve the scalability problem; flow states are
still stored in all switches in the path. However, if we want to allow excess QoS traffic in
Open vSwitch, this is the only way to guarantee a certain amount of bandwidth in every link
in the path.

In the next chapter, we will examine the aggregation concept using OpenFlow meter table.
The aggregation reduces the number of queues used. Because Open vSwitch does not support
meter table, the model is deployed using Pica8 hardware switch.

Hedi Krishna Master of Science Thesis



Chapter 7

Meter Table and Flow Aggregation

In the previous chapter, we see that our model requires one queue for every flow in every
switch in the path. To reduce the number of the queue, the QoS flows should be aggregated.
In this chapter, we explore the possibility of using meter table for flow aggregation. A proof
of this concept is presented by conducting an experiment with Pica8 switches.

7-1 Metering and Aggregation Concept

The basic idea is to classify a QoS flow into two different flows, i.e. conformant and excess
QoS flows. These two flows are then forwarded via different queues with different priorities.
Metering operation with dscp_remark allows the switch to split the flows by altering the
DSCP/ToS bits of excess packets. Each QoS flow is passed through a meter table entry with
the meter’s rate equal to the guaranteed rate. A QoS flow with an actual rate exceeding the
meter rate will have its excess packets’ DSCP/ToS bits remarked. This operation will change
the DSCP/ToS bits of the non-conformant packets while the conformant packets’ DSCP bits
remain the same.
Conformant QoS traffic from multiple flows are aggregated and forwarded via a single queue.
Aggregation also performed for excess QoS and best-effort traffic. The aggregation is possible
because conformant and excess packets now have distinct ToS bits; thus, they can be easily
identified. By using three separate queues for conformant QoS, excess QoS, and best-effort
traffic, we can easily arrange the priority for these traffic.
We took advantage of the multi-table pipeline processing in OpenFlow, which allows the
switch to process the packets multiple times in a sequential order. In this case, the metering
is performed in flow Table 0. Then, flow Table 1 matches ToS bits and forwards the packets
to the aggregation queue. With aggregation, every switch port will only need three queues,
i.e. one for conformant QoS, one for excess QoS, and one for best-effort traffic.

1. Conformant queue. The queue for conformant traffic of all QoS flows forwarded via
a particular switch port. This queue has the highest priority.
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Figure 7-1: Metering-aggregation concept

2. Excess queue. The queue for excess QoS traffic of all QoS flows forwarded via a
particular switch port. This queue has the lowest priority, as we want to give more
priority to the best-effort traffic.

3. Best-effort queue. The queue for best-effort traffic of all QoS flows forwarded via a
particular switch port. This queue has a priority between the two queues above.

Using this setting, we no longer have to set the min-rate for the queues. As now each traffic
types are forwarded via exclusive queues, we only have to set the priority of the queues.

Figure 7-1 gives an illustration of this arrangement. The two QoS flows (ToS 64), flow A and
flow B, are passed to meter table entries. The rate of the meter is 300 Mbps, which is equal
to the guaranteed rate of these QoS flows. The conformant packets keep the ToS of 64, while
excess packets change the ToS to 4. After the metering, all the packets are processed further
in the flow Table 1 using goto_table instruction. In Table 1, the packets are matched against
the ToS bits and then processed accordingly. Packets with ToS 64 are queued in queue 2
which has the highest priority, while packets with ToS 4 are queued in queue 0 which has the
lowest priority.

The following is the flow entries of QoS Flow A in the first switch.

ovs-ofctl -O Openflow13 add-flow br0
table=0,dl_type=0x800,nw_src=10.31.32.101,nw_dst=10.30.128.109,nw_tos=64
actions=meter:1,goto_table:1
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ovs-ofctl -O Openflow13 add-flow br0
table=1,dl_type=0x800,nw_src=10.31.32.101,nw_dst=10.30.128.109,nw_tos=64
actions=set_queue:2,output:5

ovs-ofctl -O Openflow13 add-flow br0
table=1,dl_type=0x800,nw_src=10.31.32.101,nw_dst=10.30.128.109,nw_tos=4
actions=set_queue:1,output:5

The aggregation significantly cuts down the number of queues that is used in the system. In
multiple-queues system, presented in the previous chapters, every single QoS flow uses one
queue in every switch in the path. As the number of flows grows, the number of queues also
increases. In contrast, with aggregation, we only need two queues for all QoS flows. The
complexity of the system becomes much lower and while the system’s scalability increases.

The aggregation system presented in this chapter makes a distinction between conformant and
non-conformant (excess) QoS flow. This aggregation is different from the model proposed in
[12]. In [12], a single queue is used to aggregate all QoS flows; there is no distinction between
the two types of traffic. In this system, it is not possible for a QoS flow to send more than
the guaranteed rate. In fact, there is a maximum limit for the queue. If there is one flow in
the aggregation exceeding its guaranteed rate, it will contend with other flows.

By differentiating three types of traffic with its DSCP/ToS bits, we can easily arrange the
traffic prioritization. In our model, we give priority to the best-effort over the excess QoS
traffic. But if we want different prioritization setting, it can be easily arranged. For example,
by forwarding best-effort and excess QoS traffic to a single queue, the two types of traffic will
have the same priority.

7-2 Metering in Pica8 switch

To prove the concept of metering and aggregation, we perform an experiment using Pica8
switches on the SURFnet SDN testbed [44]. The testbed uses Pica8 P5101 switches, running
PicOS 2.7.1. This hardware switch is based on the Broadcom Trident II ASIC (Application-
Specific Integrated Circuit) [25]. The switches are connected to OpenStack virtual machines
as hosts. All the virtual machines run Ubuntu 14.04 with 4 GB RAM and 2 VCPUs.

Figure 7-2 shows the network setup for the experiment. UDP traffic is sent from vm1-vm4
to vm5, generated with iperf. The capacity of the link between two switches is 1 Gbps. The
traffic generated by each host is shown in the Figure 7-2. This experiment is analogous to
the one we conducted in Section 5-2.

Unfortunately, we found that the ASIC implementation of OpenFlow in Pica8 switch has
limitations in its functionality. First, the multi-table implementation is still limited [45]. The
Pica8 switch uses a Broadcom Trident II ASIC, which is designed for a specific networking
application. This chip is mainly used in legacy networking (non-OpenFlow) devices and
designed to be used for legacy protocols. Its implementation in OpenFlow has allowed more
control on the forwarding planes; however, there are still several limitations such as in the
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Figure 7-2: Topology for the metering and aggregation experiment

multi-tables. It does not allow recirculation of packets via multi-tables pipeline. Thus, we can
not pass the result of metering to Table 1 of the ingress switch; the DSCP-remarked packets
will only appear in the next switch.

We also found a problem when forwarding multiple flows originating from a single ingress
port. Consider a scenario in which two flows are entering the same switch port. These two
flows are matched with two different flow entries and instructed to use two different queues.
Despite these explicit settings, the flows are still forwarded via a single queue (the one with
less priority). This anomaly is inconsistent with the OpenFlow standard. The set_queue
action sets the queue in which a packet should be processed, disregarding how the packet is
matched. As we demonstrate in Chapter 5, this problem does not occur in the Open vSwitch.

To overcome these problems, we use a workaround by making a self-loop in around the ingress
switch. Instead of being processed in multi-tables, the packets are processed in multiple
switches before entering the ingress switch again. When a flow exceeds the meter-rate, the
two different DSCP bits (original and remarked) appear at the egress port of the ingress
switch. We also arrange that the conformant and excess packets re-enter the ingress switch
from different ports to prevent them from using the same queue. The workaround setup is
described in Appendix A.

Figure 7-3 shows the data rate received in vm5. This result is similar to the one obtained
in Section 5-2. The only difference occurs in second 10-15. In the Section 5-2 experiment
(Figure 5-4b) flows from h2 and h3 get an equal rate. It happens because each QoS flow uses
an exclusive queue, and the idle bandwidth is distributed equally to the excess QoS traffic
using round-robin scheduling. In this experiment, it happens differently. All QoS flows share
a common excess queue. Since the excess traffic from vm2 is higher than the one from vm3,
more packets from vm2 are passed through the queue, resulting a higher received rate at vm5.
Nevertheless, the difference does not conflict our design consideration, since the main goal of
giving a 300 Mbps guarantee to the QoS flows is already achieved.
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Figure 7-3: Prioritization test with metering in Pica8 testbed

Analysis

The aggregation significantly reduces the number of queues needed in the intermediate switches.
No matter how many flows we have in the network, all switches in the network will only need
three queues. Other than the flow entries, there are no additional flow states stored in the
intermediate switches. The flow entries itself is an absolute OpenFlow requirement that exists
in any OpenFlow applications. Additional complexities only present in the first switch in the
form of meter table and pipeline processing which have to be added for every individual QoS
flow. Nevertheless, the additional complexity is relatively trivial compared to a multiple-
queues system. It also less complex compared to IntServ in which flow states are stored in
every switch in the path. Therefore, we can conclude that the model is scalable.

From the experiment, we see that the firm bandwidth guarantees are still holding when the
traffic are aggregated. It is important to notice that the problem we presented at Section 6-1
does not appear in our aggregation model. Although both our model and the model presented
in [12] use aggregation, our model differentiates conformant and excess traffic and puts them
in different queues. The queue differentiation provides separation between the two traffic;
ensuring excess traffic from one QoS flow will not interfere with other QoS flows.

Master of Science Thesis Hedi Krishna





Chapter 8

Conclusion and Future Work

8-1 Conclusion

In this thesis, an end-to-end bandwidth guarantee model is proposed. The guaranteeing
effort is implemented in both controller and switch level. In the controller, bandwidth for
QoS flows is guaranteed using an admission process. The controller always chooses a path
that can accommodate the required rate. If none available, the controller rejects the flow.
In the switch, OpenFlow’s queue guarantees data rate to QoS flows by using traffic shaping
and policing. From the simulation, we see that the model gives a per-flow level bandwidth
guarantees.

Our contribution in this thesis is a new model in which QoS flows are allowed to send more
than the guaranteed rate. In other OpenFlow hard-QoS guaranteed models, such as presented
in [11] and [12], QoS flows’ rates are strictly regulated. In these models, QoS flows’ rates are
not only guaranteed, but the maximum rates are also limited. QoS flows are explicitly not
allowed to send more than the guaranteed rate. The reason is because excess QoS traffic
might disturb best-effort and conformant traffic from other QoS flows, as they compete for
resources in the case of congestion. However, in a network with low utilization, this limitation
is a loss of opportunity. Allowing flows to send more than the guaranteed rate lets the flows
to finish earlier, freeing network resources for other flows that appear later.

Our model also gives new insight on traffic prioritization in which excess (non-conformant)
QoS traffic have lower priority than best-effort. This is a departure from IntServ’s Guaranteed
Service in which excess QoS traffic get a similar treatment as regular best-effort traffic. We
take an advantage of the min-rate and prioritization parameters of OpenFlow queues for
the prioritization. To put it in short: “the switch prioritizes a queue over other queues
after min-rate for all queues are satisfied”. This way, we can easily put a differentiation of
guaranteed traffic and excess traffic of QoS flow in a single queue.

While QoS flows go through the admission process, best-effort flows are routed via shortest
path and are allowed to use any of the idle bandwidth. However, when a new QoS flow appears,
the bandwidth should be “returned” immediately to satisfy the QoS flow’s guaranteed rate.
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In the simulation, we found that Linux TC’s traffic shaping is reliable enough to provide
bandwidth guarantee and traffic prioritization. The excess QoS and best-effort traffic do not
have adverse effects on the guaranteed flow’s performance. In addition, we also found that
the bandwidth borrowing concept in Linux HTB increases the network utilization by letting
other flows using the unused reserved bandwidth.

In Chapter 5 we explore the possibility of using meter table with dscp_remark for traffic
aggregation. The metering alters the DSCP/ToS bits of the excess packets. Having different
ToS bits for different traffic types (conformant QoS, excess QoS, and best-effort), we can easily
aggregate the traffic using only three queues in each switch port. For the proof of concept,
we conduct the experiment using Pica8 switches that support the OpenFlow meter table.
Compared to Intserv, this model uses less reservation signaling messages, since it does not
require periodic reservation state refreshment, as shown in Figure 4-1. By using aggregation,
a switch does not need to store every single flow state it forwards. These two improvements
solve the scalability problem commonly associated with IntServ. We believe that by having
the scalability problem solved, end-to-end QoS guarantees is ready to be implemented in a
larger network such as Internet.

Unfortunately, the different switch implementations of the OpenFlow standard are causing
difficulties in the deployment. In our experiment with Pica8 switch, we found several Open-
Flow features on the switch that are not working as they are supposed to. Also, Open vSwitch
as the most popular OpenFlow switch does not support the OpenFlow meter table in its soft-
ware implementation. In the future OpenFlow release, we strongly recommend the ONF and
OpenFlow vendors to put an effort to resolve these issues. Then, the OpenFlow can have
another advantage over the legacy IP network: a scalable end-to-end QoS guarantees.

8-2 Future work

In Chapter 5 we present a proof of concept of metering and aggregation using hybrid Open-
Flow switches based on ASICs. This kind of hardware has limited OpenFlow 1.3 functionality
and is proven to be problematic as there are several features that do not work according to
the standard. A further experiment needs to be conducted using OpenFlow-only switches.
An OpenFlow-only switch based on NPU (Network Processor Unit) based switches, such as
NoviFlow [46], does not implement hybrid features; therefore, it has better supports for the
features that we need in our model, i.e. multi-tables pipeline and meter table. The experiment
also needs to be extended to include other QoS parameters such as delay and jitter.
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Appendix A

Workaround for SURFnet Pica8
Testbed

There are two problems with the Pica8 switch when we implement our model. First, there is a
problem with multi-tables pipeline. This problem does not allow us to get the dscp_remarking
result in the same switch that performs the metering. Second, flows from the same ingress
port are forced to use a single queue in the egress port. These problems occur due to the
limited OpenFlow 1.3 functionality since the switch is ASIC based.

To overcome the problems, we make a workaround. The traffic is sent from a Lithium VM
(connected to switch Ledn001A) to a Boron VM (connected to switch Es001A). A loop is
created from Ledn001A to itself, so the traffic exits before re-renter the switch again. After
the re-enter, the packets are sent to Es001A.

Figure A-1 shows the loop that is made in the SURFnet’s Pica8 testbed. There are six switches
connected with ten links in the testbed. Unfortunately, at the time we are conducting the
experiment, there are several links down. These links are shown in red in the Figure.

The sender host generates packets with ToS 64. These packets are processed with a meter
table in Ledn001A, resulting packet with ToS 64 and 4, which are sent to Gn001A. From
Gn001A the packets go to Asd001A, then Es001A. Because we need ToS 64 and ToS 4 to
re-enter Ledn001A from different ports, the path is split here. Packets with ToS 64 go through
Dt001B, re-enter from port 11. Packets with ToS 4 go via link 5 -11 - 13 - 10 - 9, then re-enter
Ledn001A from port 9.
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Figure A-1: Workaround for Pica8 testbed
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Appendix B

Controller Source Code

The controller application consists of three files: shortest_route.py, network_aware.py and
qos.py. The network awareness function is based on a patch for Ryu
https://sourceforge.net/p/ryu/mailman/message/34275697/

shortest_route.py

1 import logging
2 import time
3 import struct
4 from operator import attrgetter
5 from ryu . base import app_manager
6 from ryu . controller import ofp_event
7 from ryu . controller . handler import MAIN_DISPATCHER , DEAD_DISPATCHER
8 from ryu . controller . handler import CONFIG_DISPATCHER
9 from ryu . controller . handler import set_ev_cls

10 from ryu . ofproto import ofproto_v1_3
11 from ryu . lib . packet import packet
12 from ryu . lib . packet import ethernet
13 from ryu . lib . packet import ipv4
14 from ryu . lib . packet import arp
15 from ryu . lib . packet import lldp
16 import qos
17 import uuid
18 from ryu . base import app_manager
19 import network_aware
20 import network_monitor
21
22 class Shortest_Route ( app_manager . RyuApp ) :
23
24 OFP_VERSIONS = [ ofproto_v1_3 . OFP_VERSION ]
25 _CONTEXTS = {
26 "Network_Aware" : network_aware . Network_Aware ,
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27 "Network_Monitor" : network_monitor . Network_Monitor ,
28 }
29
30 def __init__ ( self , ∗args , ∗∗ kwargs ) :
31 super ( Shortest_Route , self ) . __init__ (∗ args , ∗∗ kwargs )
32
33 self . network_aware = kwargs [ "Network_Aware" ]
34 self . network_monitor = kwargs [ "Network_Monitor" ]
35 self . mac_to_port = {}
36 self . datapaths = {}
37
38 self . link_to_port = self . network_aware . link_to_port
39 self . access_table = self . network_aware . access_table
40 self . access_ports = self . network_aware . access_ports
41 self . graph = self . network_aware . graph
42 self . graphshort = self . network_aware . graphshort
43 self . shortest_graph = self . network_aware . shortest_graph
44
45 self . route_db = {}
46 self . flow_db = self . network_monitor . flow_db
47 self . idle_time = 2
48 self . hard_time = 16000
49 self . queue_db = self . network_aware . queue_db
50 self . int_queue_db = self . network_aware . int_queue_db
51 self . int_queue_list = self . network_aware . int_queue_list
52 self . path_calc_counter = 0
53 self . timea=time . time ( )
54
55 @set_ev_cls ( ofp_event . EventOFPFlowRemoved , MAIN_DISPATCHER )
56 def flow_removed_handler ( self , ev ) :
57 msg = ev . msg
58 dp = msg . datapath
59 ofp = dp . ofproto
60 tos=qos . dscp_to_tos ( msg . match [ ’ip_dscp ’ ] )
61 db_key = ( msg . match [ ’ipv4_src ’ ] , msg . match [ ’ipv4_dst ’ ] , tos )
62 try :
63 first_sw=self . flow_db [ db_key ] [ 3 ]
64 except KeyError :
65 return
66 out_port=self . flow_db [ db_key ] [ 4 ]
67 path = self . flow_db [ db_key ] [ 0 ]
68 bw = self . flow_db [ db_key ] [ 2 ]
69
70 if dp . id==path [ 0 ] :
71 if tos==64:
72 self . queue_db [ ( first_sw , out_port ) ] [ self . flow_db [ db_key ] [ 1 ] ] = None
73 qos . update_graph_release_bw ( self . graph , path , bw )
74 if len ( path ) >2: #update intermediate queue if forwarded using

more than 2 hops
75 for i in range (2 , len ( path ) ) :
76 sw=path [ i−1]
77 via_port = self . network_aware . get_port_from_link ( path [ i−1] ,

path [ i ] ) [ 0 ]
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78 cur_rate=self . int_queue_db [ ( sw , via_port ) ]
79 if cur_rate==bw :
80 cur_rate=bw+1000000 #avoid setting rate to 0
81 self . int_queue_db [ ( sw , via_port ) ]=cur_rate−bw #reduce value

in int_queue_db
82 for i in range (5 , 15 ) :
83 if self . int_queue_list [ ( sw , via_port ) ] [ i ] == str ( msg . match [

’ipv4_src ’]+msg . match [ ’ipv4_dst ’ ] ) :
84 self . int_queue_list [ ( sw , via_port ) ] [ i ]=None
85 del self . flow_db [ db_key ]
86
87 @set_ev_cls ( ofp_event . EventOFPStateChange ,
88 [ MAIN_DISPATCHER , DEAD_DISPATCHER ] )
89 def _state_change_handler ( self , ev ) :
90 datapath = ev . datapath
91 if ev . state == MAIN_DISPATCHER :
92 if not datapath . id in self . datapaths :
93 self . logger . debug ( ’register datapath: %016x’ , datapath . id )
94 self . datapaths [ datapath . id ] = datapath
95 elif ev . state == DEAD_DISPATCHER :
96 if datapath . id in self . datapaths :
97 self . logger . debug ( ’unregister datapath: %016x’ , datapath . id )
98 del self . datapaths [ datapath . id ]
99

100 def add_flow ( self , dp , p , match , actions , idle_timeout=0, hard_timeout
=0) :

101 ofproto = dp . ofproto
102 parser = dp . ofproto_parser
103 inst = [ parser . OFPInstructionActions ( ofproto . OFPIT_APPLY_ACTIONS ,
104 actions ) ]
105 mod = parser . OFPFlowMod ( datapath=dp , priority=p ,
106 idle_timeout=idle_timeout ,
107 hard_timeout=hard_timeout ,
108 flags=ofproto . OFPFF_SEND_FLOW_REM ,
109 match=match , instructions=inst )
110 drop=dp . send_msg ( mod )
111
112 def install_flow ( self , path , flow_info , buffer_id , data , tos=0,

queue_id=0, int_queues=[ ] ) :
113 hard_time = self . hard_time
114 idle_time = self . idle_time
115 if tos !=64:
116 int_queue_id=0
117 queue_id=0
118 idle_time=self . idle_time
119 hard_time = 3000
120 dscp=qos . tos_to_dscp ( tos )
121
122 print "install flow , queue_id" , queue_id , " " , flow_info [ 1 ] , " to " ,

flow_info [ 2 ]
123 in_port = flow_info [ 3 ]
124 assert path
125 datapath_first = self . datapaths [ path [ 0 ] ]
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126 ofproto = datapath_first . ofproto
127 parser = datapath_first . ofproto_parser
128 out_port = ofproto . OFPP_LOCAL
129
130 if len ( path ) > 2 :
131 for i in xrange (1 , len ( path ) − 1) :
132 port = self . get_link2port ( path [ i − 1 ] , path [ i ] )
133 port_next = self . get_link2port ( path [ i ] , path [ i + 1 ] )
134 timea=time . time ( )
135 if port :
136 src_port , dst_port = port [ 1 ] , port_next [ 0 ]
137 datapath = self . datapaths [ path [ i ] ]
138 ofproto = datapath . ofproto
139 parser = datapath . ofproto_parser
140 actions = [ ]
141
142 if tos==64:
143 for swqu in int_queues :
144 if swqu [0]== datapath . id :
145 int_queue_id=swqu [ 1 ]
146
147 actions . append ( parser . OFPActionSetQueue ( int_queue_id ) ) # Queue

for intermediate switches
148 actions . append ( parser . OFPActionOutput ( dst_port ) )
149
150 match = parser . OFPMatch (
151 in_port=src_port ,
152 ip_dscp=dscp ,
153 eth_type=flow_info [ 0 ] ,
154 ipv4_src=flow_info [ 1 ] ,
155 ipv4_dst=flow_info [ 2 ] )
156 self . add_flow (
157 datapath , 1 , match , actions ,
158 idle_timeout=idle_time , hard_timeout=hard_time )
159 msg_data = None
160 if buffer_id == ofproto . OFP_NO_BUFFER :
161 msg_data = data
162
163 out = parser . OFPPacketOut (
164 datapath=datapath , buffer_id=buffer_id ,
165 data=msg_data , in_port=src_port , actions=actions )
166 datapath . send_msg ( out )
167
168 if len ( path ) > 1 :
169 # the first flow entry
170 port_pair = self . get_link2port ( path [ 0 ] , path [ 1 ] )
171 out_port = port_pair [ 0 ]
172
173 actions = [ ]
174 actions . append ( parser . OFPActionSetQueue ( queue_id ) ) #queue for

originating switch
175 actions . append ( parser . OFPActionOutput ( out_port ) )
176 match = parser . OFPMatch (
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177 in_port=in_port ,
178 ip_dscp=dscp ,
179 eth_type=flow_info [ 0 ] ,
180 ipv4_src=flow_info [ 1 ] ,
181 ipv4_dst=flow_info [ 2 ] )
182 self . add_flow ( datapath_first ,
183 1 , match , actions , idle_timeout=idle_time , hard_timeout=

hard_time )
184
185 # the last hop: tor -> host
186 datapath = self . datapaths [ path [ −1 ] ]
187 ofproto = datapath . ofproto
188 parser = datapath . ofproto_parser
189 actions = [ ]
190 src_port = self . get_link2port ( path [−2] , path [−1]) [ 1 ]
191 dst_port = None
192
193 for key in self . access_table . keys ( ) :
194 if flow_info [ 2 ] == self . access_table [ key ] :
195 dst_port = key [ 1 ]
196 break
197
198 actions . append ( parser . OFPActionOutput ( dst_port ) )
199 match = parser . OFPMatch (
200 in_port=src_port ,
201 ip_dscp=dscp ,
202 eth_type=flow_info [ 0 ] ,
203 ipv4_src=flow_info [ 1 ] ,
204 ipv4_dst=flow_info [ 2 ] )
205 self . add_flow (
206 datapath , 1 , match , actions , idle_timeout=idle_time , hard_timeout

=hard_time )
207
208 # first pkt_out
209 actions = [ ]
210 actions . append ( parser . OFPActionOutput ( out_port ) )
211 msg_data = None
212 if buffer_id == ofproto . OFP_NO_BUFFER :
213 msg_data = data
214
215 out = parser . OFPPacketOut (
216 datapath=datapath_first , buffer_id=buffer_id ,
217 data=msg_data , in_port=in_port , actions=actions )
218 datapath_first . send_msg ( out )
219
220 # last pkt_out
221 actions = [ ]
222 actions . append ( parser . OFPActionOutput ( dst_port ) )
223 msg_data = None
224 if buffer_id == ofproto . OFP_NO_BUFFER :
225 msg_data = data
226
227 out = parser . OFPPacketOut (
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228 datapath=datapath , buffer_id=buffer_id ,
229 data=msg_data , in_port=src_port , actions=actions )
230 datapath . send_msg ( out )
231
232 else : # src and dst on the same
233 out_port = None
234 actions = [ ]
235 for key in self . access_table . keys ( ) :
236 if flow_info [ 2 ] == self . access_table [ key ] :
237 out_port = key [ 1 ]
238 break
239
240 actions . append ( parser . OFPActionOutput ( out_port ) )
241 match = parser . OFPMatch (
242 in_port=in_port ,
243 ip_dscp=dscp ,
244 eth_type=flow_info [ 0 ] ,
245 ipv4_src=flow_info [ 1 ] ,
246 ipv4_dst=flow_info [ 2 ] )
247 self . add_flow (
248 datapath_first , 1 , match , actions ,
249 idle_timeout=idle_time , hard_timeout=hard_time )
250 msg_data = None
251 if buffer_id == ofproto . OFP_NO_BUFFER :
252 msg_data = data
253
254 out = parser . OFPPacketOut (
255 datapath=datapath_first , buffer_id=buffer_id ,
256 data=msg_data , in_port=in_port , actions=actions )
257 datapath_first . send_msg ( out )
258
259 def get_host_location ( self , host_ip ) :
260 for key in self . access_table :
261 if self . access_table [ key ] == host_ip :
262 return key
263 self . logger . debug ( "%s location is not found." % host_ip )
264 return None
265
266 def get_link2port ( self , src_dpid , dst_dpid ) :
267 if ( src_dpid , dst_dpid ) in self . link_to_port :
268 return self . link_to_port [ ( src_dpid , dst_dpid ) ]
269 else :
270 self . logger . debug ( "Link to port is not found." )
271 return None
272
273 def stats_req ( self , datapath ) :
274 self . logger . debug ( ’send stats request: %016x’ , datapath . id )
275 ofproto = datapath . ofproto
276 parser = datapath . ofproto_parser
277 req = parser . OFPFlowStatsRequest ( datapath )
278 datapath . send_msg ( req )
279 req = parser . OFPPortStatsRequest ( datapath , 0 , ofproto . OFPP_ANY )
280 datapath . send_msg ( req )
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281
282 @set_ev_cls ( ofp_event . EventOFPPacketIn , MAIN_DISPATCHER )
283 def _packet_in_handler ( self , ev ) :
284 msg = ev . msg
285 datapath = msg . datapath
286 ofproto = datapath . ofproto
287 parser = datapath . ofproto_parser
288 in_port = msg . match [ ’in_port ’ ]
289 pkt = packet . Packet ( msg . data )
290
291 eth_type = pkt . get_protocols ( ethernet . ethernet ) [ 0 ] . ethertype
292 arp_pkt = pkt . get_protocol ( arp . arp )
293 ip_pkt = pkt . get_protocol ( ipv4 . ipv4 )
294 lldp_pkt = pkt . get_protocol ( lldp . lldp )
295
296 if isinstance ( arp_pkt , arp . arp ) :
297 arp_src_ip = arp_pkt . src_ip
298 arp_dst_ip = arp_pkt . dst_ip
299 self . network_aware . register_access_info ( datapath . id , in_port ,

arp_src_ip )
300
301 result = self . get_host_location ( arp_dst_ip )
302 if result : # host record in access table.
303 datapath_dst , out_port = result [ 0 ] , result [ 1 ]
304 actions = [ parser . OFPActionOutput ( out_port ) ]
305 datapath = self . datapaths [ datapath_dst ]
306
307 out = parser . OFPPacketOut (
308 datapath=datapath ,
309 buffer_id=ofproto . OFP_NO_BUFFER ,
310 in_port=ofproto . OFPP_CONTROLLER ,
311 actions=actions , data=msg . data )
312 datapath . send_msg ( out )
313 else : # access info is not existed. send to all host.
314 for dpid in self . access_ports :
315 for port in self . access_ports [ dpid ] :
316 if ( dpid , port ) not in self . access_table . keys ( ) :
317 actions = [ parser . OFPActionOutput ( port ) ]
318 datapath = self . datapaths [ dpid ]
319 out = parser . OFPPacketOut (
320 datapath=datapath ,
321 buffer_id=ofproto . OFP_NO_BUFFER ,
322 in_port=ofproto . OFPP_CONTROLLER ,
323 actions=actions , data=msg . data )
324 datapath . send_msg ( out )
325
326 if isinstance ( ip_pkt , ipv4 . ipv4 ) :
327 time1=time . time ( )
328 ip_src = ip_pkt . src
329 ip_dst = ip_pkt . dst
330 tos = ip_pkt . tos
331
332 try :
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333 a = self . flow_db . get ( ( ip_src , ip_dst , tos ) ) [ 1 ] # check queue_id
in flow_db

334 except TypeError :
335 a = None
336 if a is not None : #Flow already Exists
337 return
338
339 result = None
340 src_sw = None
341 dst_sw = None
342
343 src_location = self . get_host_location ( ip_src )
344 dst_location = self . get_host_location ( ip_dst )
345
346 if src_location :
347 src_sw = src_location [ 0 ]
348
349 if dst_location :
350 dst_sw = dst_location [ 0 ]
351
352 if src_sw==dst_sw : #return if sender -sink belong to same switch
353 flow_info = ( eth_type , ip_src , ip_dst , in_port )
354 path=[src_sw ]
355 print "same sw"
356 self . install_flow ( path , flow_info , msg . buffer_id , msg . data )
357 return
358
359 bw = qos . tos_to_bw ( tos ) # map tos to bw
360 if tos==64:
361 result = qos . widest_shortest_path ( self . graph , src_sw , dst_sw , tos

)
362 else :
363 result = qos . shortest_path ( self . graphshort , src_sw , dst_sw )
364 path = result
365 if result=="NEB64" :
366 dscp=qos . tos_to_dscp ( tos )
367 actions = [ ]
368 datapath_first = self . datapaths [ src_sw ]
369 match = parser . OFPMatch (
370 in_port=in_port ,
371 ip_dscp=dscp ,
372 eth_type=eth_type ,
373 ipv4_src=ip_src ,
374 ipv4_dst=ip_dst )
375 self . add_flow ( datapath_first ,
376 1 , match , actions , idle_timeout=self . idle_time ,

hard_timeout=self . hard_time )
377 return
378
379 if result :
380 self . path_calc_counter +=1
381 print "calc counter" , self . path_calc_counter , " bw: " , bw , ", tos

: " , tos
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382 flow_info = ( eth_type , ip_src , ip_dst , in_port )
383 src_sw_out_port = self . network_aware . get_port_from_link ( src_sw ,

path [ 1 ] ) [ 0 ]
384 if a is None : #flow doesn’t exists yet
385 unused_queue=qos . check_unused_queue ( self . queue_db [ ( src_sw ,

src_sw_out_port ) ] ) #find unused queue
386 self . flow_db [ ( ip_src , ip_dst , tos ) ] = ( path , unused_queue , bw ,

src_sw , src_sw_out_port ) #update flow_db
387 int_queues=[]
388 if unused_queue==None and tos==64: #if queue is full
389 logging . critical ( "not enough queue %s %d"
390 % ( self . queue_db [ ( src_sw , src_sw_out_port ) ] , time .

time ( ) ) )
391 return
392 if tos==64: #for QoS flow update queue_db
393 self . queue_db [ ( src_sw , src_sw_out_port ) ] [ unused_queue ]=1 #

update queue_db (flag)
394 qos . update_graph_reserve_bw ( self . graph , path , tos )
395 if len ( path ) >2: #update intermediate queue if forwarded using

more than 2 hops
396 for i in range (2 , len ( path ) ) :
397 sw=path [ i−1]
398 via_port = self . network_aware . get_port_from_link ( path [ i

−1] , path [ i ] ) [ 0 ]
399 cur_rate=self . int_queue_db [ ( sw , via_port ) ]
400
401 selected_int=qos . check_unused_int_queue ( self .

int_queue_list [ ( sw , via_port ) ] )
402 int_queues . append ( ( sw , selected_int ) )
403 self . int_queue_list [ ( sw , via_port ) ] [ selected_int ]=str (

ip_src+ip_dst )
404 self . install_flow ( path , flow_info , msg . buffer_id , msg . data , tos

, unused_queue , int_queues )
405
406 else :
407 self . network_aware . get_topology ( None ) # Refresh the topology

database.
408 self . logger . info ( "-PATH[%s --> %s],%s" %(ip_src , ip_dst , path ) )

network_aware.py

1 import logging
2 import struct
3 from operator import attrgetter
4 import qos
5 import copy
6
7 from ryu . base import app_manager
8 from ryu . controller import ofp_event
9 from ryu . controller . handler import MAIN_DISPATCHER , DEAD_DISPATCHER

10 from ryu . controller . handler import CONFIG_DISPATCHER
11 from ryu . controller . handler import set_ev_cls
12 from ryu . ofproto import ofproto_v1_3
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13 from ryu . lib import hub
14 from ryu . topology import event , switches
15 from ryu . topology . api import get_switch , get_link
16
17 SLEEP_PERIOD = 2
18 IS_UPDATE = True
19 queue_num=4
20
21 class Network_Aware ( app_manager . RyuApp ) :
22 OFP_VERSIONS = [ ofproto_v1_3 . OFP_VERSION ]
23 _NAME = ’network_aware ’
24
25 def __init__ ( self , ∗args , ∗∗ kwargs ) :
26 super ( Network_Aware , self ) . __init__ (∗ args , ∗∗ kwargs )
27 self . name = "Network_Aware"
28 self . topology_api_app = self
29 self . link_to_port = {}
30 self . access_table = {}
31 self . switch_port_table = {} # dpid ->port_num
32 self . access_ports = {}
33 self . interior_ports = {}
34 self . outer_ports = {}
35 self . graph = {}
36 self . graphshort = {}
37 self . shortest_graph = {}
38 self . pre_link_to_port = {}
39 self . pre_graph = {}
40 self . pre_access_table = {}
41 self . port_qos = {}
42 self . discover_thread = hub . spawn ( self . _discover )
43 self . queue_db = {}
44 self . int_queue_db = {}
45 self . int_queue_list = {}
46
47 def _discover ( self ) :
48 i = 0
49 self . show_topology ( )
50 while True :
51 if i == 5 :
52 self . get_topology ( None )
53 i = 0
54 hub . sleep ( SLEEP_PERIOD )
55 i = i + 1
56
57 @set_ev_cls ( ofp_event . EventOFPSwitchFeatures , CONFIG_DISPATCHER )
58 def switch_features_handler ( self , ev ) :
59 datapath = ev . msg . datapath
60 ofproto = datapath . ofproto
61 parser = datapath . ofproto_parser
62 msg = ev . msg
63 self . logger . info ( "switch :%s connected" , datapath . id )
64 match = parser . OFPMatch ( )
65 actions = [ parser . OFPActionOutput ( ofproto . OFPP_CONTROLLER ,
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66 ofproto . OFPCML_NO_BUFFER ) ]
67 self . add_flow ( datapath , 0 , match , actions )
68
69 def add_flow ( self , dp , p , match , actions , idle_timeout=0, hard_timeout

=0) :
70 ofproto = dp . ofproto
71 parser = dp . ofproto_parser
72
73 inst = [ parser . OFPInstructionActions ( ofproto . OFPIT_APPLY_ACTIONS ,
74 actions ) ]
75
76 mod = parser . OFPFlowMod ( datapath=dp , priority=p ,
77 idle_timeout=idle_timeout ,
78 hard_timeout=hard_timeout ,
79 match=match , instructions=inst )
80 dp . send_msg ( mod )
81
82 def get_switches ( self ) :
83 return self . switches
84
85 def get_links ( self ) :
86 return self . link_to_port
87
88 def get_port_from_link ( self , src_sw , dst_sw ) :
89 #get port number from link of two switches
90 return self . link_to_port [ ( src_sw , dst_sw ) ]
91
92 def get_graph ( self , link_list ) :
93 for src in self . switches :
94 for dst in self . switches :
95 self . graph . setdefault ( src , {dst : 0})
96 self . graphshort . setdefault ( src , {dst : float ( ’inf’ ) })
97 if src == dst :
98 self . graph [ src ] [ src ] = float ( ’inf’ )
99 self . graphshort [ src ] [ src ] = 0

100 elif ( src , dst ) in link_list :
101 try :
102 weight = self . graph [ src ] [ dst ] # check queue_id in flow_db
103 except KeyError :
104 weight = None
105 if not weight : #avoid update at switch_enter event
106 self . graph [ src ] [ dst ] = qos . capacity
107 self . graphshort [ src ] [ dst ] = 1
108 else :
109 self . graph [ src ] [ dst ] = 0
110 self . graphshort [ src ] [ dst ] = float ( ’inf’ )
111
112 self . shortest_graph = copy . deepcopy ( self . graph )
113 return ( self . graph , self . shortest_graph , self . graphshort )
114
115 def create_port_map ( self , switch_list ) :
116 for sw in switch_list :
117 dpid = sw . dp . id
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118 self . switch_port_table . setdefault ( dpid , set ( ) )
119 self . interior_ports . setdefault ( dpid , set ( ) )
120 self . access_ports . setdefault ( dpid , set ( ) )
121
122 for p in sw . ports :
123 self . switch_port_table [ dpid ] . add ( p . port_no )
124 self . switch_port_table [ dpid ] . add (4294967294)
125
126 def create_interior_links ( self , link_list ) :
127 for link in link_list :
128 src = link . src
129 dst = link . dst
130 self . link_to_port [ ( src . dpid , dst . dpid ) ] = ( src . port_no , dst . port_no

)
131 if link . src . dpid in self . switches :
132 self . interior_ports [ link . src . dpid ] . add ( link . src . port_no )
133 if link . dst . dpid in self . switches :
134 self . interior_ports [ link . dst . dpid ] . add ( link . dst . port_no )
135
136 def create_access_ports ( self ) :
137 for sw in self . switch_port_table :
138 self . access_ports [ sw ] = self . switch_port_table [
139 sw ] − self . interior_ports [ sw ]
140
141 def create_outer_port ( self ) :
142 pass
143
144 @set_ev_cls ( event . EventSwitchEnter )
145 def get_topology_sw_enter ( self , ev ) :
146 #create qos and queue1 at switch enter event
147 msg = ev . switch . to_dict ( )
148
149 for port in msg [ ’ports’ ] :
150 dpid=int ( "0x"+msg [ ’dpid’ ] , 0 )
151 self . queue_db . setdefault ( ( dpid , int ( port [ ’port_no ’ ] ) ) , {1 : None })
152 self . int_queue_list . setdefault ( ( dpid , int ( port [ ’port_no ’ ] ) ) , {5 : None

})
153
154 for i in range (1 , queue_num ) :
155 self . queue_db [ ( dpid , int ( port [ ’port_no ’ ] ) ) ] . update ({ i : None })
156 self . int_queue_db [ ( dpid , int ( port [ ’port_no ’ ] ) ) ]=0
157
158 for i in range (5 , 15 ) :
159 self . int_queue_list [ ( dpid , int ( port [ ’port_no ’ ] ) ) ] . update ({ i : None })
160
161 switch_list = get_switch ( self . topology_api_app , None )
162 self . create_port_map ( switch_list )
163 self . switches = self . switch_port_table . keys ( )
164 links = get_link ( self . topology_api_app , None )
165 self . create_interior_links ( links )
166 self . create_access_ports ( )
167 self . get_graph ( self . link_to_port . keys ( ) )
168
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169 events = [ #event.EventSwitchEnter ,
170 event . EventSwitchLeave , event . EventPortAdd ,
171 event . EventPortDelete , event . EventPortModify ,
172 event . EventLinkAdd , event . EventLinkDelete ]
173
174 @set_ev_cls ( events )
175 def get_topology ( self , ev ) :
176 switch_list = get_switch ( self . topology_api_app , None )
177 self . create_port_map ( switch_list )
178 self . switches = self . switch_port_table . keys ( )
179 links = get_link ( self . topology_api_app , None )
180 self . create_interior_links ( links )
181 self . create_access_ports ( )
182 self . get_graph ( self . link_to_port . keys ( ) )
183
184 def register_access_info ( self , dpid , in_port , ip ) :
185 if in_port in self . access_ports [ dpid ] :
186 if ( dpid , in_port ) in self . access_table :
187 if ip != self . access_table [ ( dpid , in_port ) ] :
188 self . access_table [ ( dpid , in_port ) ] = ip
189 else :
190 self . access_table [ ( dpid , in_port ) ] = ip
191
192 def show_topology ( self ) :
193 switch_num = len ( self . graph )
194 if self . pre_graph != self . graph or IS_UPDATE :
195 print "---------------------Topo Link ---------------------"
196 print ’%10s’ % ( "switch" ) ,
197 for i in xrange (1 , switch_num + 1) :
198 print ’%10d’ % i ,
199 print ""
200 for i in self . graph . keys ( ) :
201 print ’%10d’ % i ,
202 for j in self . graph [ i ] . values ( ) :
203 print ’%10.0f’ % j ,
204 print ""
205 self . pre_graph = self . graph
206
207 if self . pre_link_to_port != self . link_to_port or IS_UPDATE :
208 print "---------------------Link Port ---------------------"
209 print ’%10s’ % ( "switch" ) ,
210 for i in xrange (1 , switch_num + 1) :
211 print ’%10d’ % i ,
212 print ""
213 for i in xrange (1 , switch_num + 1) :
214 print ’%10d’ % i ,
215 for j in xrange (1 , switch_num + 1) :
216 if (i , j ) in self . link_to_port . keys ( ) :
217 print ’%10s’ % str ( self . link_to_port [ ( i , j ) ] ) ,
218 else :
219 print ’%10s’ % "No-link" ,
220 print ""
221 self . pre_link_to_port = self . link_to_port
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222
223 if self . pre_access_table != self . access_table or IS_UPDATE :
224 print "----------------Access Host -------------------"
225 print ’%10s’ % ( "switch" ) , ’%12s’ % "Host"
226 if not self . access_table . keys ( ) :
227 print " NO found host"
228 else :
229 for tup in self . access_table :
230 print ’%10d: ’ % tup [ 0 ] , self . access_table [ tup ]
231 self . pre_access_table = self . access_table

qos.py

1 import subprocess
2 import copy
3 import logging
4 import operator
5 import network_aware
6 import time
7 capacity = 100000000
8 resv_bw = 30000000
9

10 def port_translation ( port ) :
11 switcher = {
12 1 : 0 ,
13 2 : 1 ,
14 3 : 2 ,
15 4 : 3 ,
16 5 : 5 ,
17 }
18 return switcher . get ( port , 0)
19
20 def clean_arp ( datapath ) :
21 server="node0"+str ( datapath )
22 if datapath==10:
23 server="node10"
24 shell_cmd="sshpass -p ****** ssh hedi@%s sudo ip -s -s neigh flush all"

%(server )
25 vsctl ( shell_cmd )
26
27 def check_unused_queue ( queue_db ) :
28 for i in queue_db :
29 if queue_db [ i ] == None :
30 return i
31 return
32
33 def check_unused_int_queue ( int_queue_list ) :
34 for i in range (5 , 15 ) :
35 if int_queue_list [ i ] == None :
36 return i
37 return
38
39 def tos_to_dscp ( tos ) :
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40 if tos==0: dscp=0
41 elif tos==64: dscp=16
42 elif tos==192: dscp=48
43 return dscp
44
45 def dscp_to_tos ( dscp ) :
46 if dscp==0: tos=0
47 elif dscp==16: tos=64
48 elif dscp==48: tos=192
49 return tos
50
51 def tos_to_bw ( tos ) :
52 # map tos to bw reservation
53 switcher = {
54 64 : resv_bw ,
55 }
56 return switcher . get ( tos , 0)
57
58 def update_graph ( graph , flow_db ) :
59 for x in graph :
60 for y in graph :
61 if x == y :
62 graph [ x ] [ y ] = float ( ’inf’ )
63 elif graph . get ( x ) . get ( y ) == 0 :
64 graph [ x ] [ y ] = 0
65 elif get_rsv_bw ( flow_db , x , y ) is None :
66 graph [ x ] [ y ] = capacity − 0
67 else :
68 graph [ x ] [ y ] = capacity − get_rsv_bw ( flow_db , x , y )
69
70 def update_graph_release_bw ( graph , path , bw ) :
71 for i in range (1 , len ( path ) ) :
72 sw1=path [ i−1]
73 sw2=path [ i ]
74 graph [ sw1 ] [ sw2 ] = graph [ sw1 ] [ sw2 ]+bw
75
76 def update_graph_reserve_bw ( graph , path , tos ) :
77 bw=tos_to_bw ( tos )
78 for i in range (1 , len ( path ) ) :
79 sw1=path [ i−1]
80 sw2=path [ i ]
81 graph [ sw1 ] [ sw2 ] = graph [ sw1 ] [ sw2 ]−bw
82
83 def is_flow_exists ( flow_db , ip_src , ip_dst ) :
84 for key in flow_db . keys ( ) :
85 if key [0]== ip_src and key [1]== ip_dst and flow_db [ key ] [ 0 ] != [ 0 ] :
86 print "flow exists , flow_db:" , flow_db
87 return 1
88
89 def widest_shortest_path ( graph , source , dest , tos ) :
90 bw = tos_to_bw ( tos )
91 graphcopy = copy . deepcopy ( graph )
92
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93 for key , value in graphcopy . iteritems ( ) :
94 for subkey , subvalue in graphcopy [ key ] . iteritems ( ) :
95 if key == subkey :
96 graphcopy [ key ] [ subkey ] = 0
97 elif subvalue < bw :
98 graphcopy [ key ] [ subkey ] = float ( ’inf’ )
99 elif subvalue == 0 :

100 graphcopy [ key ] [ subkey ] = float ( ’inf’ )
101 else :
102 graphcopy [ key ] [ subkey ] = 1
103 d = {}
104 p = {}
105 m = [ ]
106 q = {}
107 c = {}
108
109 for r in list ( graphcopy . keys ( ) ) : #range(1, len(graphcopy) + 1):
110 d [ r ] = float ( ’inf’ )
111 for r in list ( graphcopy . keys ( ) ) : #range(1, len(graph) + 1):
112 c [ r ] = 0
113 d [ source ] = 0 # the capacity of the best path from source to v
114 q [ source ] = 0 # insert source as initial candidate
115 c [ source ] = float ( ’inf’ )
116
117 while q :
118 a={}
119 b={}
120 z={}
121 for key in q . iterkeys ( ) :
122 a [ key ]=d [ key ]
123 b [ key ]=c [ key ]
124 min_a = min ( a . itervalues ( ) ) # best candidate in q
125 for key , value in a . iteritems ( ) :
126 if value == min_a :
127 z [ key ]=b [ key ]
128 x = max ( z . iteritems ( ) , key=operator . itemgetter (1 ) ) [ 0 ]
129 m . append ( x )
130 q . pop ( x )
131
132 for key , value in graphcopy [ x ] . iteritems ( ) :
133 if value != 0 and value != float ( ’inf’ ) and key not in m : # for

each x’s neighbor that is not in M:
134 minvalue = min ( c [ x ] , graph [ x ] [ key ] )
135 if d [ x ] + graphcopy [ x ] [ key ] < d . get ( key ) :
136 d [ key ] = d [ x ] + graphcopy [ x ] [ key ]
137 c [ key ] = minvalue
138 p [ key ] = x
139 if not q . get ( key ) :
140 q [ key ] = value
141 if not p . get ( dest ) and tos !=64:
142 logging . critical ( "NEB. install. %s to %s. tos: %d. %d" , source , dest ,

tos , time . time ( ) )
143 return "NEB0"
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144 if not p . get ( dest ) and tos==64:
145 logging . critical ( "NEB. reject. %s to %s. tos: %d. %d" , source , dest ,

tos , time . time ( ) )
146 return "NEB64"
147 path=[]
148 while 1 :
149 path . append ( dest )
150 if dest==source : break
151 dest = p . get ( dest )
152 path . reverse ( )
153 return path
154
155
156 def shortest_path ( graphshort , source , dest ) :
157 graphcopy2 = copy . deepcopy ( graphshort )
158 d = {}
159 p = {}
160 m = [ ]
161 q = {}
162
163 for r in list ( graphcopy2 . keys ( ) ) :
164 d [ r ] = float ( ’inf’ )
165 d [ source ] = 0 # the capacity of the best path from source to v
166 q [ source ] = 0 # insert source as initial candidate
167
168 while q :
169 a={}
170 for key in q . iterkeys ( ) :
171 a [ key ]=d [ key ]
172 x = min ( a . iteritems ( ) , key=operator . itemgetter (1 ) ) [ 0 ] # best

candidate in q
173 m . append ( x )
174 q . pop ( x )
175 for key , value in graphcopy2 [ x ] . iteritems ( ) :
176 if value != 0 and value != float ( ’inf’ ) and key not in m : # for

each x’s neighbor that is not in M:
177 if d [ x ] + graphcopy2 [ x ] [ key ] < d . get ( key ) :
178 d [ key ] = d [ x ] + graphcopy2 [ x ] [ key ]
179 p [ key ] = x
180 if not q . get ( key ) :
181 q [ key ] = value
182 if not bool ( p ) :
183 print " path not found"
184 return
185 path=[]
186 while 1 :
187 path . append ( dest )
188 if dest==source : break
189 dest = p . get ( dest )
190 path . reverse ( )
191 return path
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