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Abstract. We develop a Korteweg–De Vries (KdV) theory for weakly non-

linear waves in discontinuously stratified two-layer fluids with a generally pre-
scribed rotational steady current. With the help of a classical asymptotic power

series approach, these models are directly derived from the divergence-free in-

compressible Euler equations for unidirectional free surface and internal waves
over a flat bed. Moreover, we derive a Burns condition for the determination

of wave propagation speeds. Several examples of currents are given; explicit

calculations of the corresponding propagation speeds and KdV coefficients are
provided as well.

1. Introduction. This work is concerned with the derivation of Korteweg–De Vries
(KdV) equations modeling the propagation of weakly nonlinear waves in a two-
dimensional stratified incompressible inviscid fluid consisting of two layers with
constant densities. The fluid domain is bounded by a free surface and a flat bed;
the two layers are separated by an impermeable interface. Additionally, a gen-
eral steady horizontal current with arbitrary vorticity profile is prescribed. As
underlying physical model serve the divergence-free incompressible Euler equations
equipped with the usual dynamic and kinematic boundary conditions.

The system under study is motivated by a similar geophysical model for wave-
current interactions with the Equatorial Undercurrent (EUC) proposed by Con-
stantin and Johnson [10], in which the presence of a background current and two
fluid layers with different constant densities are considered. This type of stratifi-
cation is mainly caused by a sharp temperature gradient at around 100 meters of
depth; the resulting interface is in this context referred to as thermocline. Mathe-
matically, there are only two differences between these two models. Firstly, instead
of using Euclidean coordinates, [10] applies the equatorial f -plane approximation
of Euler’s equations to account for Coriolis effects caused by the Earth’s rotation.
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Secondly, the background current in [10] is specifically chosen to mimic the EUC; its
profile is piecewise linear to facilitate the analysis and enable explicit solution for-
mulæ. In contrast, the present study considers more general background currents;
we only rule out scenarios which entail the formation of critical layers.

Several studies appeared in recent years, which address the derivation of weakly
nonlinear model equations for certain variations of the geophysical system in [10].
These derivations are based on Hamiltonian formulations of the governing equations
and their boundary conditions. A first step in this direction was made in [9], which
establishes a Hamiltonian formulation of the governing equations for the coupling
between surface and internal waves (Coriolis effects are not taken into account
and the background current consists of a simpler two component piecewise linear
flow profile). This Hamiltonian formalism was applied in [7] to derive a weakly
nonlinear model equation of KdV-type for the thermocline. Adaptations of this
approach to the equatorial f -plane approximation can be found in [16, 8], which
include derivations of KdV type equations as models for the thermocline. We refer
to [3] for a Hamiltonian formulation of a similar problem with a fixed flat surface;
the corresponding KdV approximation for the free interface was derived in [4]; for
a KdV and Benjamin-Ono approximation we refer to [11]. The periodic problem
and its Hamiltonian formulation for stratified currents in the equatorial f -plane
was established in [15]. Furthermore, related problems with an uneven bottom and
their Hamiltonian formulations have been addressed in [5] for surface waves over
irrotational flows and in [6] for surface waves over certain background currents in
the equatorial f -plane; both studies include KdV and Boussinesq approximations
for the surface and some numerical solutions.

Johnson [21] proposes an alternative approach for the derivation of (weakly) non-
linear model equations from the underlying geophysical system in [10]. It is based
on an asymptotic power series approach, which is directly applied to the governing
equations without the detour over Hamiltonian formalisms. This method has the
advantage of greater generality: the prescribed background current can in princi-
ple be any arbitrary function. The study at hand builds upon the ideas sketched
in [21] on the systematic establishment of asymptotic model equations describing
nonlinear wave-current interactions with the EUC. We refer to the related deriva-
tions in [13, 14], which are based on the same method being applied to far simpler
geophysical scenarios of one-layer fluids without the presence of a background cur-
rent. Let us finally refer to the recent papers [22, 23] concerning exact solutions
to the governing equations of geophysical fluid dynamics describing the EUC and
Antarctic Circumpolar Current as steady discontinuously stratified flows in spheri-
cal coordinates. Explicit solutions of this kind are of great interest and may serve
as suitable background currents in future investigations of geophysical wave-current
interactions.

The paper is structured as follows. Section 2 introduces the underlying physi-
cal system under study; its nondimensionalization is discussed in Section 3. The
corresponding setting for steady linear long waves is studied in Section 4. Particu-
larly, we derive the Burns condition from which the wave propagation speeds and
corresponding dispersion relations can be derived, and provide several explicit ex-
amples. The appropriate setting for weakly nonlinear long waves, whose asymptotic
solution yields the desired KdV models, is discussed in Section 5. KdV equations
are derived for the surface wave, interface, horizontal velocity and pressure. Some
explicit examples are provided as well.
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2. The underlying physical model. As underlying physical model we consider
the two-dimensional Euler equations for incompressible and divergence-free flows:

ūt̄ + ūūx̄ + w̄ūz̄ = −1

ρ̄
P̄x̄, (2.1)

w̄t̄ + ūw̄x̄ + w̄w̄z̄ = −1

ρ̄
P̄z̄ − ḡ, (2.2)

ūx̄ + w̄z̄ = 0. (2.3)

Dimensional variables are indicated by bars. The stratified fluid domain consists of
two layers; a sketch is depicted in Fig. 1a. The density ρ̄ is piecewise constant; ρ̄
takes the value ρ̄0 within the upper fluid layer, whereas ρ̄ = ρ̄0(1 + r), r > 0, in the
denser lower layer. Furthermore, the following boundary conditions are imposed.
At the free surface, which is located at z̄ = η̄(x̄, t̄), the pressure obeys

P̄ = P̄atm on z̄ = η̄(x̄, t̄), (2.4)

where P̄atm denotes the constant atmospheric pressure at surface level. This dy-
namic boundary condition states that the only force exerted by the fluid is due to
pressure. Furthermore, the kinematic condition

w̄ = η̄t̄ + ūη̄x̄ on z̄ = η̄(x̄, t̄) (2.5)

holds; it states that particles at the free surface remain there for all times. Similarly,
at the interface, which is located at z̄ = −h̄+ H̄(x̄, t̄), it holds that

w̄± = H̄t̄ + ū±H̄x̄ on z̄ = −h̄+ H̄(x̄, t̄). (2.6)

The subscripts “+” and “−” denote the limits at the interface from the upper and
lower fluid layer, respectively. At the interface, forces are balanced via

P̄+ = P̄− on z̄ = −h̄+ H̄(x̄, t̄); (2.7)

i.e., the pressure is supposed to be continuous across the interface. The kinematic
boundary condition at the flat bed, which is situated at z̄ = −d̄, states that

w̄ = 0 on z̄ = −d̄. (2.8)

z̄ = 0

z̄ = −h̄

z̄ = −d̄

z̄ = −h̄+ H̄(x̄, t̄)

z̄ = η̄(x̄, t̄)

(a) fluid domain

Ū(z̄)

z̄ = −d̄

z̄ = η̄max

(b) background current

Figure 1. Fig. 1a shows a sketch of the stratified fluid domain
bounded by a free surface at z̄ = η̄(x̄, t̄) and a fixed bottom at
z̄ = −d̄ with an interface at z̄ = −h̄ + H̄(x̄, t̄) separating the
upper fluid with density ρ̄ = ρ̄0 from the denser lower one, where
ρ̄ = ρ̄0(1 + r). Fig. 1b illustrates an example of a background
current Ū(z̄).
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Let Ū : [−d̄, η̄max] → R × {0} be a given steady flow, which we refer to as back-
ground current ; see Fig. 1b for an illustration. The height η̄max denotes the highest
elevation a realistic surface wave can reach, thus Ū is defined on the whole a priori
unknown fluid domain. For simplicity one may assume the background current to
be continuously differentiable; we note that our derivations also apply to continu-
ous piecewise smooth profiles with well-defined (finite) one-sided derivatives at each
point, such as the piecewise linear profiles considered in [10, 8]. In the following
we consider perturbations of Ū , which solve the governing equations and boundary
conditions (2.1)–(2.8). For this purpose, we write ū := ū− Ū , p̄ := P̄− P̄ , w̄ := w̄,
where P̄ : [−d̄, η̄max]→ R is the pressure necessary to maintain the background cur-
rent in the absence of waves. With this notation, equations (2.1)–(2.8) are rewritten
as follows:

ūt̄ + (Ū + ū)ūx̄ + w̄(Ū ′ + ūz̄) = − 1
ρ̄ p̄x̄

w̄t̄ + (Ū + ū)w̄x̄ + w̄w̄z̄ = − 1
ρ̄ (P̄ ′ + p̄z̄)− ḡ

ūx̄ + w̄z̄ = 0

in − d̄ < z < η̄(x̄, t̄); (2.9)

{
P̄ + p̄ = P̄atm

w̄ = η̄t̄ + (Ū + ū)η̄x̄
on z̄ = η̄(x̄, t̄), (2.10){

P̄+ + p̄+ = P̄− + p̄−

w̄± = H̄t̄ + (Ū + ū±)H̄x̄

on z̄ = −h̄+ H̄(x̄, t̄), (2.11)

w̄ = 0 on z̄ = −d̄. (2.12)

3. Nondimensionalization. Next, we transform the system (2.9)–(2.12) into a
dimensionless form. We apply the same nondimensionalization as in [10]. Let
therefore āη̄ and āH̄ denote average amplitudes of η̄ and H̄, respectively, and set
ā := max(āη̄, āH̄). The dimensionless variables x, z, t, u, U , w, p, P , η and H are
defined as follows:

x :=
x̄

h̄
, z :=

z̄

h̄
, t :=

t̄

h̄

√
ḡh̄, η :=

η̄

ā
, H :=

H̄

ā
,

(U + u,w) :=
1√
ḡh̄

(Ū + ū, w̄), P + p :=
P̄ + p̄

ρ̄0ḡh̄
.

(3.1)

Furthermore, we introduce the dimensionless parameter ε and constants h, P0:

ε :=
ā

h̄
, d :=

d̄

h̄
, P0 :=

P̄atm

ρ̄0ḡh̄
. (3.2)

Particularly, we infer from (3.1)–(3.2) that

P0 = P (0). (3.3)

With these variables, the governing equations and boundary conditions (2.9)–(2.12)
take the following dimensionless form:{

ut+(U+u)ux+w(U ′+uz)=−px
wt+(U+u)wx+wwz=−pz

in − 1+εH(x, t)<z<εη(x, t), (3.4){
ut + (U + u)ux + w(U ′ + uz) = − 1

1+rpx

wt + (U + u)wx + wwz = − 1
1+rpz

in − d < z < −1 + εH(x, t), (3.5)

ux + wz = 0 in − d < z < εη(x, t); (3.6)
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P + p = P0

w = ε
(
ηt + (U + u)

)
ηx

on z = εη(x, t), (3.7){
P+ + p+ = P− + p−

w± = ε
(
Ht + (U + u±)Hx

) on z = −1 + εH(x, t), (3.8)

w = 0 on z = −d. (3.9)

In (3.4)–(3.5) we already employed that the “background pressure” P necessarily
satisfies

P ′(z) = −1 in the upper fluid layer, (3.10)

P ′(z) = −(1 + r) in the lower fluid layer. (3.11)

Indeed, the Euler equations would otherwise be violated in the absence of waves,
i.e., when u, w, p, η and H vanish. Moreover, we infer that P is continuous at
z = −1.

From (3.7)–(3.8) it follows that w is proportional to ε. Furthermore, Taylor
expanding P about z = 0 in conjunction with (3.3) and (3.7) yields the same for p.
Thus u must be proportional to ε as well. This motivates the scaling

(u,w, p) 7→ ε(u,w, p), (3.12)

so that (3.4)–(3.9) and (3.12) yields the following set of governing equations and
corresponding boundary conditions in dimensionless scaled variables:{

ut + (U + εu)ux + w(U ′ + εuz) = −px
wt + (U + εu)wx + εwwz = −pz

in − 1+εH(x, t)<z<εη(x, t),

(3.13){
ut + (U + εu)ux + w(U ′ + εuz) = − 1

1+rpx

wt + (U + εu)wx + εwwz = − 1
1+rpz

in − d<z<−1+εH(x, t), (3.14)

ux + wz = 0 in − d < z < εη(x, t); (3.15){
P + εp = P0,

w = ηt + (U + εu)ηx,
on z = εη, (3.16){

P+ + εp+ = P− + εp−

w± = Ht + (U + εu±)Hx

on z = −1 + εH, (3.17)

w = 0 on z = −d. (3.18)

This system is the foundation for all subsequent considerations and formal asymp-
totic derivations. These apply to scenarios satisfying ε� 1, i.e., to stratified flows
where the average amplitude of surface and internal waves is small in comparison
to the upper fluid layer’s thickness, cf. (3.2).

3.1. Transformation of the boundary conditions. For later use we transform
the boundary conditions (3.16)–(3.17) to the fixed horizontal lines at z = 0 and
z = −1 via Taylor approximations. In view of (3.3) and (3.10) it holds that

P (εη) + εp(εη)− P0 = −εη + εp(0) + ε2pz(0)η +O(ε3). (3.19)

Similarly, employing (3.10)–(3.11) and the fact that P is continuous at z = −1
yields that

(P+ + εp+ − P− − εp−)
∣∣
z=−1+εH



2314 A. GEYER AND R. QUIRCHMAYR

= ε
(
p+(−1)−p−(−1)

)
+ ε2

(
pz+(−1)−pz−(−1)

)
H + εrH +O(ε3). (3.20)

To transform the kinematic boundary conditions, we use that

(ηt + [U + εu]ηx − w)
∣∣
z=εη

=ηt +
[
U0 + εU ′0η + ε

(
u(0) + εuz(0)η

)]
ηx − (w(0) + εwz(0)η) +O(ε2),

(3.21)

(Ht + [U + εu±]Hx − w±)
∣∣
z=−1+εH

=Ht +
[
U1 + εU ′1±H + ε

(
u±(−1) + εuz±(−1)H

)]
Hx

−
(
w±(−1) + εwz±(−1)H

)
+O(ε2),

(3.22)

where Ul := U(−l). In view of (3.16)–(3.17) and the approximations (3.19)–(3.22)
we obtain the following approximated boundary conditions:{

p = η − εpzη
w + εwzη = ηt + [U + εU ′η + ε(u+ εuzη)]ηx

on z = 0, (3.23){
p+ − p− = −rH − ε(pz+ − pz−)H

w± + εwz±H = Ht + [U + εU ′±H + ε(u± + εuz±H)]Hx

on z = −1. (3.24)

4. Linear long waves. In concordance with the classical theory for shallow water
waves on shear flows [12], we first discuss a suitable linearization of (3.13)–(3.18)
to infer the correct setup for nonlinear generalizations. We are interested in waves
propagating at a specific speed c ∈ R, which is a priori unknown due to stratification
and the presence of a background current. To determine c, we consider the steady
version of (3.13)–(3.18) for linear long waves, which is obtained via ∂t 7→ −c∂x, the
assumption that p does not change in z-direction, and by taking the limit ε→ 0:{

(U − c)ux + wU ′ = −px
0 = pz

in − 1 < z < 0, (4.1){
(U − c)ux + wU ′ = − px

1+r

0 = pz
in − d < z < −1, (4.2)

ux + wz = 0 in − d < z < 0; (4.3){
p = η

w = (U − c)ηx
on z = 0, (4.4){

p+ − p− = −rH
w = (U − c)Hx

on z = −1, (4.5)

w = 0 on z = −d. (4.6)

4.1. Solution, Burns condition and dispersion relations. In the following we
derive the solution of (4.1)–(4.6) in terms of an arbitrary function η(x). In the
upper layer, we obtain from (4.1) and (4.4) that

p = η, z ∈ [−1, 0]. (4.7)

Thus we infer from (4.1) in combination with (4.3) that

∂

∂z

(
w

U − c

)
=

ηx
(U − c)2

, z ∈ [−1, 0].
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Integrating over [z, 0] and employing (4.4) yields that

w = −(U − c)(I2 − 1)ηx, z ∈ [−1, 0], (4.8)

where

In(z) :=

∫ 0

z

ds

(U(s)− c)n
, z ∈ [−1, 0].

Differentiating with respect to z, invoking (4.3), and integrating with respect to x
yields that

u =
[
(U − c)(I2 − 1)

]′
η, z ∈ [−1, 0],

where we have set the integration constant to zero since we are assuming that
perturbations of the velocity field are caused only by the passage of waves and
therefore, u = 0 if η = 0, cf. [19]. From (4.5), (4.8) and by setting I21 := I2(−1),
we obtain the following proportionality between η and H:

H = (1− I21)η. (4.9)

Next, we investigate the lower layer. Since p is independent of z, we may write

p = (1 + r)A, z ∈ [−d,−1],

for some function A = A(x), which will be determined later. Analogously as in the
upper layer we deduce that

w = (U − c)(Hx − J2Ax), z ∈ [−d,−1], (4.10)

where

Jn(z) :=

∫ −1

z

ds

(U(s)− c)n
, z ∈ [−d,−1].

With the help of (4.3) we infer from (4.10) that

u =
[
(U − c)J2

]′
A− U ′H, z ∈ [−d,−1]. (4.11)

Since (1 + r)A = p− = p+ + rH = η + rH at z = −1 by (4.5), (4.9) implies

A(x) = Lη(x), L := 1− rI21

1 + r
. (4.12)

Thus, by (4.10), (4.11) and (4.12), u and w can be rewritten in the lower layer as
follows: {

u =
[
(U − c)(I21 + LJ2 − 1)

]′
η

w = −(U − c)
(
I21 + LJ2 − 1

)
ηx

z ∈ [−d,−1].

Finally, the above identity for w in conjunction with (4.6) implies

I21 + LJ2d = 1, (4.13)

where J2d := J2(−d). This is the so-called Burns condition [2] from which c, and
hence the dispersion relations, can be determined. In full detail this condition reads∫ 0

−d

ds

(U − c)2
− r

1 + r

∫ −1

−d

ds

(U − c)2
·
∫ 0

−1

ds

(U − c)2
= 1. (4.14)

It is clear from (4.14) that dispersion relations are generally non-explicit. Only
very specific background currents U will allow for exact formulæ; some examples
are considered below in Section 4.2.

Throughout the above derivations we implicitly used that

U(z) 6= c for all z ∈ [−d, 0] (4.15)
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to avoid singularities. It is known that scenarios, which violate (4.15), entail the
formation of critical layers—even in the case of arbitrarily small linear waves [17, 18].
To rule out critical layers we henceforth assume the validity of (4.15). We call c
non-critical if it satisfies (4.15).

4.2. Examples of explicit dispersion relations. In general, wave propagation
speeds c can only be computed numerically via (4.14). However, for certain simple
background currents U , explicit formulæ can be found; some examples are provided
in the following subsections. For unstratified flows, they coincide with the classical
results (cf. [19, ch. 3.4] and the references therein), while for the stratified cases
they turn out to be in agreement with the considerations made in [21] for Ω = 0,
d = O(1) and the particular examples of background currents U given below.

4.2.1. Uniform flows without stratification. Let U be a uniform background current,
say

U(z) := md, z ∈ [−d, 0], (4.16)

for some m ∈ R, and let r := 0, i.e., the fluid is not stratified. Then (4.14) yields
the two non-critical wave speeds

c = md±
√
d,

which correspond to upstream and downstream propagation. For the special case
d = 1 and m = 0 (absence of any current) we obtain the two wave speeds ±1
corresponding to right and left moving waves.

4.2.2. Constant vorticity shear flows without stratification. Let r = 0 and U be a
shear flow with constant vorticity, i.e.,

U(z) := γ(z + d) +md, z ∈ [−d, 0], (4.17)

with γ,m ∈ R. Then (4.14) yields the two wave speeds

c =
d(γ + 2m)±

√
d (γ2d+ 4)

2
,

which are both non-critical.

4.2.3. Uniform flows with stratification. Let r > 0 and U be given by (4.16). Then
(4.14) implies the following four non-critical propagation speeds:

c = md±

√
d

2
±
√
d2 + r(d− 2)2

2
√

1 + r
. (4.18)

4.2.4. Constant vorticity shear flows with stratification. Let r > 0 and U be given
by (4.17). Then the Burns condition (4.14) reads

d− (d−1)r

(r+1)(c+γ−d(γ+m))2

(c− dm)
(
c− d(γ +m)

) = 1, (4.19)

which can still be solved explicitly for c. However, the four roots of equation (4.19)
are analytically intractable—at least for the most general setting. Therefore, we
consider the special case where both fluid layers are equally thick, i.e., we set d := 2.
With this choice the four solutions of (4.19) are given by

c = γ + 2m± 1√
2

√
γ2 + 2±

√
(r + 1) ((γ2 + 4) γ2(r + 1) + 4)

r + 1
. (4.20)
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Generally, not all of the four values in (4.20) satisfy (4.15). Let us demonstrate this
numerically by means of the following choice of parameters: r := 1/100, γ := 1,
d := 2, m := 0. Then the four solutions of (4.19) are

c = 2.7310 . . . , c = −0.7310 . . . , c = 1.0574 . . . , c = 0.9425 . . . .

The latter two cause a formation of critical layers situated at zc ≈ −1 ± 0.0573
close to the interface. For comparison let us also consider the corresponding setting
without stratification (r = 0), which yields the two non-critical wave speeds

c = 1−
√

3 ≈ −0.732 and c = 1 +
√

3 ≈ 2.732.

5. Weakly nonlinear long waves. To obtain an appropriate nonlinear extension
of the linear system in Section 4, we follow the classical approach in [12], which is a
generalization of the seminal work [1] on solitary waves over shear flows, as well as
the more recent adaptations to discontinuously stratified equatorial flows in [21].

5.1. Far field variables. Let c be a non-critical wave propagation speed; i.e., c
is supposed to satisfy both (4.14) and (4.15). Guided by the considerations in [21,
Sec. 6.2], we employ the following spatial and temporal variables:

ξ :=
√
ε(x− ct), τ := ε3/2t, (5.1)

thus,

∂x =
√
ε∂ξ, ∂t =

√
ε(ε∂τ − c∂ξ).

Applying (5.1) and the scaling w 7→
√
εw (to maintain mass conservation) to the e-

quations (3.13)–(3.18), which are considered on the fixed fluid domain whose bound-
aries/interface are located at z = −d, z = −1 and z = 0 (recalling that (3.16)–(3.17)
are approximated by (3.23)–(3.24)), yields the following system:{

εuτ + [U − c+ εu]uξ + w[U ′ + εuz] = −pξ
ε
{
εwτ + [U − c+ εu]wξ + εwwz

}
= −pz

in − 1 < z < 0, (5.2){
εuτ + [U − c+ εu]uξ + w[U ′ + εuz] = − pξ

1+r

ε
{
εwτ + [U − c+ εu]wξ + εwwz

}
= − pz

1+r

in − d(ε) < z < −1, (5.3)

uξ + wz = 0 in − d(ε) < z < 0, (5.4){
p = η − εpzη
w + εwzη = εητ + [U − c+ εU ′η + ε(u+ εuzη)]ηξ

on z = 0, (5.5)
p+ − p− = −rH − ε(pz+ − pz−)H

w± + εwz±H

= εHτ + [U − c+ εU ′±H + ε(u± + εuz±H)]Hξ

on z = −1, (5.6)

w = 0 on z = −d. (5.7)

In the limit ε → 0, equations (5.2)–(5.7) reduce to (4.1)–(4.6), which explains the
particular choice of far field variables in (5.1).
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To obtain an asymptotic solution of this system in terms of η and H, we formally
expand the variables u, w, p, η and H near ε = 0 as follows:

u(ξ, τ, z) ∼
∑∞
n=0 ε

nun(ξ, τ, z),

w(ξ, τ, z) ∼
∑∞
n=0 ε

nwn(ξ, τ, z),

p(ξ, τ, z) ∼
∑∞
n=0 ε

npn(ξ, τ, z),

η(ξ, τ) ∼
∑∞
n=0 ε

nηn(ξ, τ),

H(ξ, τ) ∼
∑∞
n=0 ε

nHn(ξ, τ),


as ε→ 0.

Plugging this ansatz into (5.2)–(5.7) and collecting the terms of order εn, 0 ≤ n <
∞, yields an infinite hierarchy of systems, which can be solved recursively. To
obtain KdV equations describing the weakly nonlinear wave propagation of η0, H0,
u0 and p0, it is sufficient to consider the orders ε0 and ε1.

5.2. The zero order system. At order ε0 we obtain precisely the linear system
(4.1)–(4.6), but with x, u, w, p, η and H being replaced by ξ, u0, w0, p0, η0 and H0,
respectively. The τ -dependence does not play a role at this stage and will become
relevant at the next order. Therefore, we have at this order that

p0 = η0, z ∈ [−1, 0], (5.8)

p0 = (1 + r)A, z ∈ [−d,−1], (5.9)

w0 = −(U − c)(I2 − 1)η0ξ, z ∈ [−1, 0], (5.10)

w0 = −(U − c)
(
I21 + LJ2 − 1

)
η0ξ, z ∈ [−d,−1], (5.11)

u0 =
[
(U − c)(I2 − 1)

]′
η0, z ∈ [−1, 0], (5.12)

u0 =
[
(U − c)

(
I21 + LJ2 − 1

)]′
η0, z ∈ [−d,−1], (5.13)

H0 = (1− I21)η0, (5.14)

with A(ξ, τ) := Lη(ξ, τ); we recall that

In(z) :=

∫ 0

z

ds

(U(s)− c)n
, Jn(z) :=

∫ −1

z

ds

(U(s)− c)n
,

I21 := I2(−1), L := 1− rI21

1 + r
.

5.3. The first order system. At order ε1 we obtain the following system:{
u0τ + (U − c)u1ξ + u0u0ξ + w1U

′ + w0u0z = −p1ξ

(U − c)w0ξ = −p1z

in − 1 < z < 0, (5.15){
u0τ + (U − c)u1ξ + u0u0ξ + w1U

′ + w0u0z = − p1ξ
1+r

(U − c)w0ξ = − p1z
1+r

in − d < z < −1, (5.16)

u1ξ + w1z = 0 in − d < z < 0, (5.17){
p1 = η1

w1 + w0zη0 = η0τ + (U − c)η1ξ + (U ′η0 + u0)η0ξ

on z = 0, (5.18)
p1+ − p1− = −rH1

w1± + w0z±H0

= H0τ + (U − c)H1ξ + (U ′±H0 + u0±)H0ξ

on z = −1, (5.19)
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w1 = 0 on z = −d. (5.20)

We aim to derive a KdV equation for the free surface approximation η0 from (5.15)–
(5.20). The related model for H0 can then be obtained via (5.14); similarly, the
equations for p0 in the upper and lower fluid layer can then be deduced via (5.8)–
(5.9); the equations for u0(·, ·, z), where z ∈ [−d, 0] is fixed, will follow from (5.12)–
(5.13). For this purpose we will derive expressions for w1 in both fluid layers to
obtain the limits w1+ and w1− at z = −1. A comparison with the interface condition
for w1± in (5.19) will yield the desired KdV equation for η0.

Let us begin with the upper fluid layer. Employing (5.10), (5.15) and (5.18)
yields that

p1 =

∫ 0

z

(U − c)2
(
1− I2

)
ds η0ξξ + η1, z ∈ [−1, 0]. (5.21)

By differentiating (5.21) with respect to ξ and applying (5.10), (5.12), (5.15) and
(5.17) we obtain the equation∫ 0

z

(U(s)− c)2(I2(s)− 1) ds η0ξξξ − η1ξ

=[(U − c)(I2 − 1)]′η0τ − (U − c)w1z + U ′w1

+
[(

[(U − c)(I2 − 1)]′
)2 − (U − c)(I2 − 1)[(U − c)(I2 − 1)]′′

]
η0η0ξ,

which we recast in the form

(U − c)2 ∂

∂z

(
w1

U − c

)
=[(U − c)(I2 − 1)]′η0τ −

∫ 0

z

(U(s)− c)2(I2(s)− 1) ds η0ξξξ + η1ξ

+
[(

[(U − c)(I2 − 1)]′
)2 − [(U − c)(I2 − 1)]′′(U − c)(I2 − 1)

]
η0η0ξ.

Integrating both sides of the above equation over [z, 0] yields that

w1 =
U − c
U0 − c

w1(0)− (U − c)

{∫ 0

z

U ′(I2 − 1)− (U − c)−1

(U − c)2
η0τ

+

∫ 0

z

(
[(U − c)(I2 − 1)]′

)2 − [(U − c)(I2 − 1)]′′(U − c)(I2 − 1)

(U − c)2
ds η0η0ξ

−
∫ 0

z

∫ 0

z′
(U − c)2(I2 − 1) ds

(U − c)2
dz′ η0ξξξ + I2η1ξ

}
, z ∈ [−1, 0], (5.22)

where

w1(0) = η0τ + (U0 − c)η1ξ +
(
[(U − c)(2I2 − 1)]′

)∣∣
z=0

η0η0ξ

due to (5.10) and (5.18). Evaluating (5.22) at z = −1 yields that

w1+ = a1η0τ + a2η0η0ξ + a3η0ξξξ + a4η1ξ on z = −1, (5.23)

where

a1 = 2(U1 − c)I31 − (I21 − 1),

a2 = −3I41(U1 − c)− U ′1+(I21 − 1)2 + 2
I21 − 1

U1 − c
,
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a3 = (U1 − c)
∫ 0

−1

∫ 0

z
(U − c)2(I2 − 1) ds

(U − c)2
dz,

a4 = (U1 − c)(1− I21). (5.24)

Due to (5.19) it holds that

w1+ = c1η0τ + c2+η0η0ξ + c5H1ξ on z = −1, (5.25)

where

c1 = 1− I21,

c2+ = −U ′1+(I21 − 1)2 + 2
I21 − 1

U1 − c
,

c5 = U1 − c.

(5.26)

Combining (5.23) and (5.25) yields

H1ξ = (1− I21)η1ξ + 2I31η0τ − 3I41η0η0ξ +
a3

c5
η0ξξξ. (5.27)

Next, we consider the lower fluid layer. By (5.11) and (5.16),

p1 = −(1 + r)

∫ −1

z

(U − c)2(I21 + LJ2 − 1) ds η0ξξ + p1−, z ∈ [−d,−1],

where

p1− = p1+ + rH1 = −
∫ 0

−1

(U − c)2(I2 − 1) ds η0ξξ + η1 + rH1

due to (5.19) and (5.21). Therefore,

p1ξ

1 + r
=−

[ ∫ −1

z

(U − c)2
(
I21 + LJ2 − 1

)
ds+

∫ 0

−1

(U − c)2

1 + r
(I2 − 1) ds

]
η0ξξξ

+
η1ξ + rH1ξ

1 + r

for z ∈ [−d,−1]. With the help of (5.11), (5.13), (5.16) and (5.20) we compute that

w1 = (U − c)
∫ z

−d

1

(U − c)2

{[
(U − c)(I21 + LJ2 − 1)

]′
η0τ +

η1ξ + rH1ξ

1 + r

−
[ ∫ −1

z′
(U − c)2

(
I21 + LJ2 − 1

)
ds+

∫ 0

−1

(U − c)2

1 + r
(I2 − 1) ds

]
η0ξξξ

+

[([
(U − c)(I21 + LJ2 − 1)

]′)2

−
[
(U − c)(I21 + LJ2 − 1)

]′′
(U − c)

(
I21 + LJ2 − 1

)]
η0η0ξ

}
dz′

for z ∈ [−d,−1]. Evaluating this expression at z = −1, we find that

w1− = b1η0τ + b2η0η0ξ + b3η0ξξξ + b4η1ξ + b5H1ξ on z = −1, (5.28)

where

b1 = 1− 2(U1 − c)LJ3d − I21,

b2 = 3L2J4d(U1 − c) + 2L
I21 − 1

U1 − c
− U ′1−(I21 − 1)2,
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b3 =

∫ −1

−d

U1 − c
(U − c)2

[ ∫ −1

z

(U−c)2
(
1−I21−LJ2

)
ds+

∫ 0

−1

(U − c)2

1 + r
(1− I2) ds

]
dz,

b4 =
U1 − c
1 + r

J2d,

b5 = rb4. (5.29)

Due to (5.19) it holds that

w1− = c1η0τ + c2−η0η0ξ + c5H1ξ on z = −1, (5.30)

with ci, i = 1, 5, according to (5.26) and

c2− = −U ′1−(I21 − 1)2 + 2L
I21 − 1

U1 − c
. (5.31)

Combining (5.28) and (5.30) in conjunction with the Burns condition (4.13) yields

H1ξ = (1− I21)η1ξ +
b1 − c1
c5 − b5

η0τ +
b2 − c2−
c5 − b5

η0η0ξ +
b3

c5 − b5
η0ξξξ. (5.32)

5.4. KdV models. We are now in the position to directly deduce the desired
KdV model equations for the asymptotic approximations of the free surface η0

and interface H0, the horizontal velocity component u0 (evaluated at a fixed depth
z ∈ [−d, 0]) as well as the pressure p0 for both fluid layers.

5.4.1. The free surface. By subtracting (5.27) from (5.32), we deduce that η0 sat-
isfies the following KdV equation:

α1η0τ + α2η0η0ξ + α3η0ξξξ = 0 (5.33)

with

α1 = −2

[
I31 + J3d

1 + r − rI21

1 + r − rJ2d

]
,

α2 = 3

[
I41 + J4d

(1 + r − rI21)2

(r + 1)(1 + r − rJ2d)

]
,

α3 =
a3

c− U1
+

b3(r + 1)

(c− U1)(r(J2d − 1)− 1)

=

∫ 0

−1

∫ 0

z

∫ s

−d
V (z, s, ζ) dζ dsdz

− 1 + r − rI21

1 + r − rJ2d

∫ −1

−d

∫ −1

z

∫ −d
s

V (z, s, ζ) dζ dsdz

+
1

1 + r − rJ2d

∫ −1

−d

∫ 0

−1

∫ s

−d
V (z, s, ζ) dζ dsdz

− rI21

1 + r

∫ 0

−1

∫ 0

z

∫ −1

−d
V (z, s, ζ) dζ dsdz

− rI21

(1 + r)(1 + r − rJ2d)

∫ −1

−d

∫ 0

−1

∫ −1

−d
V (z, s, ζ) dζ dsdz,

(5.34)

where

V (z, s, ζ) :=
(U(s)− c)2

(U(z)− c)2(U(ζ)− c)2
.

In particular, we recover the KdV equation in [12, (4.15)] for the unstratified case,
where r = 0 and d := −1.
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5.4.2. The interface. From (5.14) and (5.33) we deduce that H0 satisfies the follow-
ing KdV equation:

β1H0τ + β2H0H0ξ + β3H0ξξξ = 0 (5.35)

with

βi = αi/(1− I21), β2 = α2/(1− I21)2, i = 1, 3. (5.36)

We observe that if I21 ∈ (0, 1), then H0 and η0 are in phase and the amplitude
of the interface is smaller than that of the surface. If, on the other hand, I21 > 1,
then the surface and interface are out of phase (H0 and η0 have opposite signs) and
the internal wave can be larger than the corresponding surface wave. This happens
if |U − c| is small (on average) in the upper fluid layer. Similar findings were made
in [10] (cf. Sections 5.2.1, 5.2.2 and Fig. 5 therein) for linear waves in the EUC.

5.4.3. The velocity field and pressure. From (5.12), (5.13) and (5.33) we deduce
that the horizontal velocity component u0 evaluated at z ∈ [−d, 0] satisfies

γ1u0τ + γ2u0u0ξ + γ3u0ξξξ = 0 (5.37)

with

γi(z) =

{
αi/[(U − c)I − U ]′, z ∈ (−1, 0],

αi/
(
L [(U − c)J ]

′ − U ′(1− I21)
)
, z ∈ [−d,−1),

i = 1, 3,

γ2(z) =

{
α2/

(
[(U − c)I − U ]′

)2
, z ∈ (−1, 0],

α2/
(
L [(U − c)J ]

′ − U ′(1− I21)
)2
, z ∈ [−d,−1).

From (5.8), (5.9) and (5.33) we deduce that the pressure p0 evaluated at z ∈
[−d, 0] satisfies

δ1p0τ + δ2p0p0ξ + δ3p0ξξξ = 0 (5.38)

with

δi(z) =

{
αi, z ∈ (−1, 0],

αi/
(
1 + r(1− I21)

)
, z ∈ [−d,−1),

i = 1, 3,

δ2(z) =

{
α2, z ∈ (−1, 0],

α2/
(
1 + r(1− I21)

)2
, z ∈ [−d,−1).

5.5. Examples for specific background currents. In the following subsections
we calculate the KdV coefficients for the particular background currents considered
in Section 4.2.

5.5.1. Uniform flows without stratification. Let r := 0, U(z) := md for some m ∈ R
and z ∈ [−d, 0], and c := md+

√
d. Then the coefficients αi in (5.34) for the surface

equation (5.33) take the values

α1 =
2√
d
, α2 =

3

d
, α3 =

d2

3
.

The case d := 1 yields precisely the standard KdV equation with coefficient ratio
2: 3 : 1

3 for shallow water long waves, cf. [19].
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5.5.2. Constant vorticity shear flows without stratification. Let r :=0, U(z) :=γ(z+

d) +md, z ∈ [−d, 0], for some m ∈ R, and set c := 2−1[d(γ + 2m) +
√
d(γ2d+ 4)].

Then the coefficients αi in (5.34) for the surface equation (5.33) read

α1 =
2γ2
√
d4∆− 2γ3d3 + 2(γ2 − 4)γd2 − 2γ2d

√
∆ + 4d

√
∆ + 8γd

d(γ(d− 2)−
√

∆)(γd−
√

∆)
,

α2 =
16d
(
γ6d4 − 6γ

√
d2∆ + 2

(
7− 3γ2

)
γ2d2 + 3γ

√
∆ +

(
6− 9γ2

)
d
)

(
√

∆− γd)4((γ2 + 2)d+ γ
√

∆)

+
16d
(
γ3(4
√
d2∆− 5

√
d4∆)− γ4(γ2 − 7)d3 + γ5(

√
d4∆−

√
d6∆)

)
(
√

∆− γd)4((γ2 + 2)d+ γ
√

∆)
,

α3 =

(
γ2d− γ

√
∆ + 2

)[√
d8∆ + γ

(
γ
(√
d8∆−

√
d6∆

)
− d̃d4 − γ2d̃(d− 1)d3

)]
6d
(
γ2(d− 1) + d

)(√
∆− γd̃

) ,

where ∆ := d(γ2d+ 4) and d̃ := d− 2. In the case d := 1 these coefficients coincide
with those of the classical KdV model equation for surface waves over a shear flow
with constant vorticity, cf. [20], i.e.,

α1 =
√
γ2 + 4, α2 = γ2 + 3, α3 =

1

6

(
γ2 + γ

√
γ2 + 4 + 2

)
.

5.5.3. Uniform flows with stratification. Let r > 0, U(z) := md for all z ∈ [−d, 0]
and some m ∈ R. In the following we demonstrate that the particular wave speeds

c = md±

√
d

2
−
√
d2 + r(d− 2)2

2
√

1 + r
, (5.39)

which reflect the slower propagation of internal waves, entail scenarios in which α2

vanishes (thus also β2, γ2 and δ2). The remaining two wave speeds in (4.18) do not
show this property as we will see below. Without loss of generality let (5.39) be
satisfied with a plus sign. Then the coefficients αi in (5.34) for the surface equation
(5.33) are given by

α1 =

√
2(
√

∆2∆1 + d− dr + 2r)(d2∆
3/2
2 − d(

√
∆1 + r(

√
∆1 + 4

√
∆2)) + 4r

√
∆2)

(d− 1)2r
√

∆2

(√
4(d−1)

∆2
+ (d− 2)2 − d

)3/2
,

α2 = 12

[
1−

(
√

∆3 − d+ 2)
(

2r√
∆3−d

+ ∆2

)2
2∆2

](
d−

√
∆3

)−2
,

α3 =
2(d− 1)2r

d(
√

∆2(d2 + (d− 2)2r) + r∆2)− d2∆2 + r(
√

∆2(d2 + (d− 2)2r)− 2∆2)

− 2(d− 1)r

(
√
d2 + (d− 2)2r − d

√
∆2)2

−
2(d− 1)3( 2r√

∆3−d
+ ∆2)

3(d(r − 1) + r(
√

∆3 − 2) +
√

∆3)

+
(1− 2d)(d− 1)

d(r − 1) + r(
√

∆3 − 2) +
√

∆3

+
1
3 − d√
∆3 − d

,

where ∆1 := d2 + (d − 2)2r, ∆2 := 1 + r and ∆3 := 4(d−1)
r+1 + (d − 2)2. From these

explicit expressions it follows that αi 6= 0 for i = 1, 3 and all r > 0, d > 1, whereas
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α2 = 0 if and only if

d =
1

6∆2

(
22/3 3

√
9
√

3
√
r(27r + 32) + 3r

(
−9r +

√
3
√
r(27r + 32) + 51

)
+ 16

+
2 3
√

2(4− 15r)

3

√
9
√

3
√
r(27r + 32) + 3r

(
−9r +

√
3
√
r(27r + 32) + 51

)
+ 16

+12r+4

)
.

If the wave propagation speed satisfies

c = md±

√
d

2
+

√
d2 + r(d− 2)2

2
√

1 + r
,

it holds that αi 6= 0 for all i = 1, 2, 3, r > 0 and d > 1.

5.5.4. Constant vorticity shear flows with stratification. Despite the relative sim-
plicity of this scenario (from an application point of view), exact computations—
although possible—are no longer practicable. For this reason we consider the con-
crete example in Section 4.2.4, compute the coefficients αi numerically, and compare
their values with those of the corresponding unstratified case.

Let r := 1/100, U(z) := γ(z + d) for z ∈ [−d, 0] with γ := 1, d := 2 and the
non-critical propagation speed

c := γ +
1√
2

√
γ2 + 2 +

√
(r + 1) ((γ2 + 4) γ2(r + 1) + 4)

r + 1
= 2.7310 . . . ;

cf. (4.20). Then the coefficients αi in (5.34) of the surface equation (5.33) take the
values

α1 = 1.7356 . . . , α2 = 2.5079 . . . , α3 = 0.3551 . . . .

The coefficients βi in (5.36) of the interface equation (5.35) take the values

β1 = 8.2706 . . . , β2 = 56.9463 . . . , β3 = 1.6922 . . . .

The corresponding unstratified setting, i.e., r := 0, γ := 1, d := 2, c := 1 +
√

3,
yields the values

α1 = 1.7320 . . . , α2 = 2.5, α3 = 0.3572 . . . .

Remark 1. We have seen in 5.5.3 that the KdV coefficient α2 vanishes for certain
configurations of the wave propagation speed c, the depth d and the stratification
parameter r (the unstratified examples in 5.5.1–5.5.2 generally yield αi 6= 0, i =
1, 2, 3). To obtain a nonlinear model equation for this scenario, a higher order
asymptotic approximation is required, so that e.g. the cubic order term η2

0η0ξ comes
into play.

Let us note that the examples in 5.5.1–5.5.3 do not allow for a vanishing KdV
coefficient α3. Thus, a nonlinear model equation without dispersive terms requires
a nonuniform background current U . Determining analytically whether α2 or α3

in (5.34) can vanish for such flows becomes very challenging (see 5.5.4) due to the
intricate relation between U , c, r and d, which are merely implicitly linked by the
Burns condition. In this context we refer to the derivation of an inviscid Burg-
ers equation in [8] for equatorial internal waves, which is based on a Hamiltonian
approach and uses a particular scaling.
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