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Physics-Guided Machine Learning-Based
Forward-Modeling of Radar Observables: A Case
Study on Sentinel-1 Observations of Corn-Fields

Tina Nikaein , Member, IEEE, and Paco Lopez-Dekker , Senior Member, IEEE

Abstract—Artificial neural networks have the potential to model
the interaction of radar signals with vegetation but often do not
follow the physical rules. This article aims to develop a new
physics-guided machine learning approach that combines neural
networks and physics-based models to leverage their complemen-
tary strengths and improve the modeling of physical processes.
We propose a data-driven framework to model synthetic aperture
radar observables by incorporating physical knowledge in two
ways: through the network architecture and the loss function. A key
aspect of our approach is its ability to integrate knowledge encoded
in physics-based models. The results show that by using scientific
knowledge to guide the construction and learning of the neural
network, we can provide a framework with better generalizability
and stability.

Index Terms—Constraint, forward model, neural network,
physics-guided, radar backscatter, synthetic aperture radar (SAR).

I. INTRODUCTION

FORWARD models, or observation operators, are important
for the analysis and interpretation of remote sensing data,

for the conceptualization and development of observational
concepts, and for the assimilation of measurements in numerical
models. As in many other fields of study, traditional approaches
use either simple empirical models, simplified physical models,
or a mixture of both (e.g., physical models with empirically
tuned parameters). While robust and easy to work with, these
types of models often fail to account for many of the phenomena
present in the full physical system.

To address this shortcoming, remote sensing scientists are
increasingly adopting machine learning (ML) algorithms. These
algorithms can learn complex relations and patterns that are not
well captured by theoretical models due to the complexity of the
underlying physics [1], [2]. On the other hand, supervised ML
algorithms, particularly deep learning networks, often require
vast amounts of training data and can sometimes yield results
that, while statistically accurate, may not always align with
physical laws [3]. Another issue with purely data-driven models
is that they may work well for the region of input vector-values
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covered by the training data, but often fail to generalize for input
values outside this region [4].

An emerging trend in physical sciences is to use the robust
theoretical foundations of physics to guide and constrain ML
models, leading to predictions that are not only more accu-
rate, but also physically plausible. In this work, we follow this
approach to model satellite-based radar observables over crop
fields. While we apply the methodology to the particular case
of Sentinel-1 [5] Normalized Radar Cross Section (NRCS) over
corn fields, the approach should apply to other crops and other
observables.

Recently, there has been an increasing interest in the in-
tegration of physics with machine learning, as discussed in
detail in [6] and [7]. Previous studies demonstrated that physics-
informed machine learning can improve the accuracy and gen-
eralizability of the model in different applications. For exam-
ple, in [8] an improvement in the prediction of the chemical
reflectance signature was studied using a physics-guided neural
network (PGNN). In another study to predict lake tempera-
ture [9], PGNN was used in two different approaches: 1) the
simulated output of the physics-based model was fed into the
neural network as additional inputs; and 2) including physics
knowledge into the loss function. Their results showed better ac-
curacy and lower physical inconsistency. Jia et al. [10] pretrained
a model using simulated data from a generic physics-based
model to improve prediction accuracy with limited observed
data. An effective method for guiding the initialization process
to aid in model training and avoiding local minima is to em-
ploy transfer learning, an ML approach. With transfer learning,
a model can be first pretrained using simulated data from a
physics-based model and subsequently fine-tuned with a limited
amount of training data to adapt to the specific task at hand.
Their results show that using physical model data for pretrain-
ing, even with imperfect parameters, can reduce the training
data requirements. They incorporate the knowledge encoded in
the physical model with a recurrent neural network model to
leverage their complementary strengths to predict lake water
temperature. Zhong et al. [11] developed a physics-informed
deep learning model to simulate runoff changes in alpine catch-
ments under climate change, outperforming traditional models.
Their model combines deep learning techniques with the physics
of hydrological processes, providing more credible projections.
Previous studies showed the efficiency of including physical
knowledge into the architecture of the model, for example in [12]
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and [13], where prior system knowledge was incorporated in the
architecture, for lake temperature modeling and dynamic system
modeling, respectively. In all state-of-the-art applications, the
integration of ML with physical knowledge has led to significant
improvements in adaptability. To the best of our knowledge,
the application of these advancements to modeling microwave
signals from vegetation remains unexplored. This gap presents
a unique opportunity for research, where methodologies devel-
oped in other contexts could be adapted to enhance the accuracy
and efficiency of remote sensing in vegetative environments.

The advantages of direct assimilation of microwave satellite
observation, which circumvents the need for retrievals, were
studied in [14] and [15]. Forward models are required to map bio-
geophysical parameters to satellite observations. In the context
of this article, our aim is to model the dependence of NRCS, σ0,
on crop and soil-related parameters, in order to use this model for
direct assimilation. A commonly used radiative transfer model
is the so-called water cloud model (WCM) [16], which often
serves as a forward operator. There are more complex models to
simulate radar backscatter, like the Tor Vergata model [17] and
the Michigan microwave canopy scattering model [18]. While
these models offer detailed simulations, their use is often limited
due to the difficulty in parameterizing them accurately. These
models require a large number of input parameters, many of
which are challenging to measure or estimate with high precision
in real-world conditions. More recently, the advantage of using
machine learning as an observation operator has been studied
by [19], [20], [21], and [22]. The challenge in accurately pre-
dicting NRCS lies in the complex interplay of numerous factors
influencing the returned signal, including surface roughness,
moisture content, vegetation cover, and geometric properties of
the observed scene. The study by Nikaein et al. [22], highlights
the difficulties in using data-driven models alone to simulate
synthetic aperture radar (SAR) observables, such as backscatter,
during anomalous conditions, e.g., drought years. This chal-
lenge arises when the model encounters scenarios for which
it has not been trained, such as vegetation parameters under dry
conditions, resulting in predictions that are not representative
of the actual conditions. This research builds on these insights
and seeks to address these limitations by demonstrating how the
integration of physical knowledge into ML models can improve
their performance as an observation operator. Specifically, the
focus is on the development of physics-guided machine learning
frameworks that incorporate domain knowledge into both the
architecture and learning process of ML models. By doing so,
this approach not only ensures that the predictions remain con-
sistent with fundamental physical principles, but also enhances
the ability of the model to generalize to previously unseen
conditions, such as drought or other environmental anoma-
lies. We used machine learning as an observation operator to
map biogeophysical parameters from crop growth models, such
as the Decision Support System for Agrotechnology Transfer
(DSSAT), to SAR observables. This approach provides a more
robust framework for simulating SAR observables.

The main aim of the article is to investigate how incorporating
physical constraints into ML models can enhance their robust-
ness, generalizability, and interpretability. Rather than focusing

on developing the best-performing ML model, our objective is
to understand how physical principles can be embedded into
the modeling process. To achieve this, we explore two comple-
mentary approaches. The first approach incorporates physical
knowledge directly into the learning process by adding a custom
constraint to the loss function. A positive gradient constraint
enforces consistency with the expected relationship between
radar backscatter and soil moisture. The second approach mir-
rors the structure of the WCM, decomposing radar backscatter
into physically meaningful components (soil and vegetation)
and constraining their contributions to the total signal. This
implementation enables explicit modeling of attenuation effects,
providing deeper insights into the physical processes governing
SAR observables.

The contributions of this work are multifold and are as
follows.

1) We demonstrate that incorporating physical constraints
improves model robustness and transferability across dif-
ferent environmental conditions, such as year-to-year vari-
ability.

2) We highlight the potential of gradient-based constraints,
as an effective way to embed physical principles into ML
models for modeling radar observables.

3) We show that mirroring the WCM structure in the neural
network architecture allows for intermediate outputs that
are physically interpretable, enabling the analysis of spe-
cific contributions from soil and vegetation to backscatter.

4) By using synthetic data derived from the WCM, we val-
idate the accuracy and behavior of the proposed models
under controlled conditions, providing a benchmark for
real-world applications.

This article provides a practical framework for integrating
physical principles into ML models, with the dual goal of
improving performance and gaining deeper insights into the
underlying processes. The findings contribute to advancing the
state of physics-informed machine learning and its applications
in remote sensing.

II. STUDY AREA AND DATA

Building on the work presented in [22], we select maize fields
in the province of Noord-Brabant, The Netherlands for our study.
The Crop Environment Resource Synthesis (CERES)-Maize
model, which is among the various crop models included in the
DSSAT [23], [24], were used to simulate crop growth for each
field. This model uses input data on soil characteristics, climatic
conditions, crop genetics, and management practices to simulate
daily growth stages, biomass development, and crop yield. Our
research focuses on key biophysical parameters of maize, such
as the Leaf Area Index (LAI), Above-Ground Biomass (AGB),
surface soil moisture (SMS), and root zone soil moisture (SMR),
to simulate SAR observables. More details, including details
about the study area and the crop growth modeling steps, can be
found in [22].

Following [22], we utilize Sentinel-1 C-band data acquired
in the Interferometric Wide Swath mode with a six-day repeat
cycle (relative orbit 37). NRCS values in both VV and VH
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polarizations were retrieved from the Agricultural SandboxNL
database [25]. In order to to validate the rationale of our proposed
approach, we generate synthetic data based on the principles
of WCM. This synthetic data allows us to test and validate
the accuracy, robustness, and ability of the model to generalize
across different scenarios in an idealized case.

III. METHODOLOGY

In this section, we describe the two main approaches to in-
corporate physical knowledge into neural networks: 1) physics-
based loss function; and 2) physics-guided network topology.

A. Physics-Based Loss Function

One way to incorporate physical knowledge into ML al-
gorithms is by enforcing constraints on the outputs of these
algorithms. This can be accomplished through the formulation
of a custom loss function, as shown in [9]. Consider a learning
system characterized by a function f , which operates on a set of
input parameters X that possess a physical relationship with the
target variable Y . In this context, we can express the relationship
as Ŷ = fNN(X), where fNN denotes the neural network function
approximating the mapping from X to Ŷ across our training
samples. In the conventional training paradigm, the goal is to
minimize the discrepancy between the predicted values (Ŷ )
and the observed values (Y ). However, while this standard
approach is effective in reducing predictive error, it may not
ensure that predictions are in accordance with the underlying
physical principles. To address this gap, the custom loss func-
tion comes into play, integrating physical constraints directly
into the learning process. By doing so, the loss function not
only penalizes deviations from observed data points, but also
incorporates penalties for violations of known physical laws.
This dual-purpose loss function ensures that the learning process
is not merely data-driven but is also guided by the underlying
physical principles. The modified learning objective, incorpo-
rating this physical constraint, is defined as

argmin
f

(
Ldata(Y, Ŷ ) + λLphys(Ŷ )

)
with

Ldata(Y, Ŷ ) =
1

n

n∑
i=1

(yi − ŷi)
2 (1)

where f is the model, Ldata is the data term of the loss function,
Lphys is the physical constraint term, and λ is a hyperparameter
that balances the contributions of Ldata and Lphys to the overall
loss function. For the data term of the loss function, we use the
mean square error (MSE) function. To operationalize this physi-
cal constraint within our machine learning model, we developed
a custom loss function with an additional term specifically
designed to ensure the partial derivative of backscatter with
respect to surface soil moisture remains positive [26], as

Lphys(Ŷ ) =
1

n

n∑
i=1

ReLU

(
− ∂ŷi
∂SMs

)
(2)

where index i iterates over the training samples, and ReLU(·) is
a Rectified Linear Unit function applied within the Lphys term to
enforce the positive partial derivative constraint by penalizing
negative values of the predicted partial derivative.

This adjustment is critical for maintaining the physical in-
tegrity of the predictions of the model, ensuring they are con-
sistent with the known behavior of microwave radar signals
interacting with varying levels of soil moisture.

B. Physics Guided Network Topology

In this case, we are constraining the internal architecture
of ML models with physical insights to enhance their inter-
pretability. This approach involves integrating physical prin-
ciples directly into the structure of neural network, as shown
in Fig. 1. By doing so, we give an implicit physical meaning
to some intermediate outputs, which also means that we can
apply physical constraints to them. In this framework, we try
to limit the existing freedom of a standard neural network to
simulate NRCS. For this approach, we tried two steps: 1) bound
the freedom of the model in the architecture; and 2) incorporate
the physical knowledge through the loss function. The network
topology tested follows the architecture of the WCM [16], a
widely used model for backscatter. Here, the total NRCS during
the growth period (from planting to harvest) is decomposed in
a vegetation component, and underlying soil term, and a term
representing their interaction. The general form of the WCM
equations is represented in (3) to (6), where the WCM neglects
the interactions between the ground and vegetation, implicitly
assuming that it is small compared to the other terms

σ0
total = σ0

veg + σ0
soilT

2, (3)

σ0
veg = AV1 cos θ(1− T 2) (4)

T 2 = exp

(−2BV2

cos θ

)
(5)

σ0
soil = C +D · SMs. (6)

Here, θ is the incidence angle,σ0
total is the total backscattering co-

efficient,σ0
veg is the backscatter contribution from the vegetation,

σ0
soil is the backscatter contribution from the soil, and T 2 is the

two-way transmissivity of the vegetation layer. There are more
sophisticated ways to estimate σ0

soil (e.g., [27]) but generally,
it is a reasonable assumption that there is a linear relationship
between backscattering coefficient and soil moisture over bare
soil. σ0

soil influenced by soil moisture, surface roughness, and
the incidence angle of the radar signal. The attenuation term
depends on the density and water content of the vegetation. Scat-
tering from the vegetation depends on vegetation water content,
structure, and orientation of leaves and stems [28]. The WCM
contains four coefficients, A, B, C and D related to vegetation
scattering, vegetation attenuation, surface roughness, and soil
moisture respectively. All of these coefficients are polarization-
and frequency-dependent. A and B depend on vegetation type,
while C and D are related to soil texture. Several quantities can
be used to describe the vegetation by setting V1 and/or V2 to
quantities such as vegetation water content (VWC), vegetation
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Fig. 1. A depiction of the WCM-inspired NN, where prior knowledge from physics is embedded in a structured format.

optical depth, AGB, or LAI. As LAI is readily available from
the DSSAT model outputs, we follow [29] and [30] by assuming
V1 = V2 = LAI.

We defined a multiple input network that separates the in-
puts for the vegetation component from the inputs for the soil
component. The vegetation components inputs are LAI, AGB,
and SMR (as an indication of the availability of root zone
moisture to replace transpired water) and SMS is the input for the
soil component. As illustrated in Fig. 1, the network produces
internal outputs denoted as σ0

veg and σ0
soil. We anticipate that

any increase in σ0
veg will result in a diminished direct impact

from σ0
soil. This modulation effect is represented by the term T 2

within the framework and multiplied by NRCS from the soil
term. Note that in the attenuation term of the constrained model
architecture, we prescribe a behavior inspired by the reverse
exponential nature of attenuation and vegetation effects as it is
shown in (7). This term has a trainable coefficient α, which is
defined by the training procedure.

T 2 = exp(−ασ0
veg). (7)

The proposed framework incorporates physics-based prior
knowledge into the structure of the neural network and imposes
constraints on the internal states of the model and the output
values. In this architecture, the loss function constraint is applied
to σ0

soil rather than σ0
total. This choice is based on the observation

that the partial derivative with respect to SMS for σ0
soil is con-

sistently positive. The sensitivity of σ0
total to SMS can approach

zero when the LAI is high, so in the presence of noise, this can
lead to excessive penalties for slightly negative values.

The rest of this article is devoted to analyzing the outcomes,
testing, and comparing the four combinations discussed: Stan-
dard NN and WCM-inspired NN, each with either a regular or
modified loss function. As mentioned in Section II, synthetic
data were generated using the WCM formula, which allows the
extraction of intermediate layer output. This data enables us to
validate the performance of the WCM-inspired NN model. In
this study, we formulate three key hypotheses that we aim to test
and validate through our results as follows.

1) When training and testing on consistent data sets, adding
any constraints would lead to a higher MSE, given that
this is our default (unconstrained) loss function.

2) Both our positive partial derivative and topology constraint
should enhance the robustness of the model and, conse-
quently, its transferability.

3) We anticipate that our WCM-inspired neural network will
learn to produce meaningful intermediate results.

C. NN Implementation

We implemented the neural network models using the Keras
library [31]. The dataset was partitioned field-wise into training
and testing subsets, following a 70:30 ratio to ensure indepen-
dence between the two datasets. We used the Adaptive Moment
Estimation (Adam) optimization algorithm to minimize the loss
function. To mitigate the risk of overfitting, we incorporated
an early stopping mechanism, adjusting the patience parameter
to 50. The input features were rescaled between 0 and 1 to
prevent saturation at the tails of the activation functions; the same
transformation was applied to the test data. Our fully connected
network architecture consists of 3 hidden layers and neuron
numbers of 32, 16, 4 with ReLU activation functions in each
hidden layer. In the constrained model architecture, ReLU was
used in the hidden layers, while the sigmoid activation function
was used in each output layer to produce outputs between 0 and 1.
The weights of the neural network were randomly initialized and
each experiment was run 50 times where the standard deviation
of accuracy was around 2% .

We present results and compare outcomes in the following
scenarios: standard NN, standard NN with constraints, WCM-
inspired NN, and WCM-inspired with constraints.

IV. EXPERIMENT WORKFLOW

In this section, we present the results from each approach for
two scenarios: 1) when the model is tested on data from the same
year, incorporating the environmental conditions present in the
training phase; and 2) when the model is tested on data from
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Fig. 2. General workflow of our proposed framework. The simulated data from the crop growth model was fed to the model. The details of data simulation and
modeling the NRCS using machine learning are discussed in [22]. (The map of The Netherlands is sourced from [25]).

a different year, which includes different environmental condi-
tions not represented in the training data. The details of these
environmental differences are detailed in [22]. Fig. 2 illustrates
the general workflow of our proposed framework, demonstrating
the simulation of NRCS using ML for corn parcels. The dashed
arrows in this figure highlight the added value of this method to
the data-driven study, enhancing it with physical principles not
addressed in our previous work [22].

As mentioned in the previous section, these models aim
to improve transferability. Specifically, the proposed method
is tested in two distinct situations: 1) training and testing on
the same year; and 2) testing on a different year with varying
meteorological conditions. The lack of separate signals for soil
and vegetation in satellite data limits the ability to validate the
model effectively. To address this limitation, synthetic data can
be used to understand better whether the model behaves as
expected. We expect that the model performs optimally under
these controlled conditions. We generate synthetic data by using
soil and vegetation states modeled by DSSAT for both years
as inputs to the WCM. The values for WCM parameters were
optimized by the range provided in [21].

V. RESULTS

A. Synthetic Data

Fig. 3 shows the results obtained by training the physics-
guided model on synthetic data for 2017, testing on data for
the same year Fig. 3(i) and on data for 2018 Fig. 3(ii). This

figure illustrates how constraints on the network topology by
physical properties such as soil moisture and vegetation char-
acteristics can improve remote sensing models’ accuracy. The
figure provides insight into the contributions to total backscatter.
Fig. 3(ii)(a) illustrates a rapid decrease in LAI during July, along
with lower maximum AGB and greater variability across the
parcels (indicated by the shaded area). In Fig. 3(ii)(b), T2σ0

soil is
overestimated in late-June/early-July; however, this has limited
impact on σ0

total since σ0
veg dominates during this period. Sim-

ilarly, while σ0
veg is overestimated in June, it has a negligible

effect on σ0
total because σ0

veg is much smaller than σ0
soil at that

time. The graph highlights that the largest deviation between
the estimated and synthetic truth σ0

total occurs from mid-July
onwards, coinciding with an anomaly in the LAI, which leads
to a poor estimate of σ0

veg. However, this difference remains
minimal, as shown in Fig. 3(ii)(d). The inclusion of a constraint
in the loss function helps to reduce this deviation, bringing the
estimate slightly closer to the synthetic truth, and improving
the accuracy of the model despite the anomaly. In subplot (c),
while the difference between synthetic (WCM) and estimated
backscatter looks large prior to June 2017, note that in linear
units, these initial values are all close to zero, so the absolute
difference is very small.

The physics-guided network topology [Fig. 3(d)] with R2 ≈
0.99 and an MSE close to zero, effectively captures the inter-
actions between the soil and attenuation [Fig. 3(b)] and the
vegetation [Fig. 3(c)]. This integration is consistent with the
principles of the WCM. The variability and trends observed
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Fig. 3. Time series of synthetic and estimated NRCS values are presented, based on training using synthetic data generated from 2017 vegetation and soil
parameters. The models were tested on (i) synthetic data from the same year (2017) and (ii) synthetic data generated from 2018 vegetation and soil parameters.
(b) to (d) illustrate the following: Blue lines represent unconstrained estimations, red ones indicate constrained estimations, and the black lines represent the
estimated backscatter from WCM.

in Fig. 3(d) are direct results of the dynamic changes in soil
moisture and vegetation properties captured in Fig. 3(b) and (c).
Maybe the most salient observation is that our WCM-inspired
model produces accurate values of σ0

soil and σ0
veg without be-

ing trained with corresponding data. This happens because the
WCM-inspired topology cannot find another way to minimize
the MSE in a situation where the NN topology is a perfect
match to the actual model. It would be risky to conclude that the
same behavior will automatically happen with real data given
the simplifying assumptions of the WCM.

B. Sentinel-1 Data

After assessing the performance of the proposed method on
synthetic data, we now proceed to evaluate its performance using
satellite data. Fig. 4 provides a comparison of the NRCS in
VV polarization between the two approaches that incorporate
physical knowledge into neural networks, with each model
trained and tested on data from 2017. Fig. 4(a) illustrates
the simulated biogeophysical parameters of maize fields in
2017, which are important to understand the subfigures (b), (c),
and (d). Fig. 4(b)–(d) show the T2σsoil, σveg, and σtot gener-
ated by our trained WCM-inspired neural network. Fig. 4(e)

shows the total NRCS for the regular fully connected dense
network.

Fig. 4(b) shows the contributions of NRCS from the interac-
tion between soil and attenuation. The blue line corresponds
to the model trained without physical constraints, while the
red line corresponds to the model trained with the modified
loss function. Both models follow a similar trend, but the
constrained model shows more variability, particularly from
early June onward. This suggests that the constrained model is
more responsive to fluctuations in soil moisture. Fig. 4(c) shows
the NRCS contributions from vegetation. Both models show
an increasing trend from June, are aligned with the growing
season, and follow the same behavior as LAI. Fig. 4(d) shows
the overall NRCS simulated by the physics-guided network
topology. The variability seen in subplot (b) due to soil and
attenuation interactions directly impacts the overall NRCS in
subplot (d). Peaks and troughs in soil moisture (subplots (a)
and (b)) correspond to similar variations in the total NRCS,
highlighting the sensitivity of the model to soil moisture dy-
namics. The increasing trend observed in subplot (d) from
mid- to late-2017 aligns with the progression of the growth
season, as indicated by increasing LAI and AGB in subplot (a).
This demonstrates that the physics-guided network effectively
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Fig. 4. Time-series of observed and estimated NRCS for training and test data on the same year data (2017). Solid lines indicate the mean value of the feature
over maize parcels in the test set, and the bounded area shows the 20th-80th percentiles. (a) Vegetation and soil parameters during the growing season in daily steps
in 2017. (b) to (e) illustrate the following: blue lines represent unconstrained estimations, red ones indicate constrained estimations, in (d) and (e), the black lines
represent the observed backscatter. The dashed rectangle around subplots (b), (c), and (d) highlights that these are related to the physics-guided network topology
method.

integrates the seasonal growth patterns of vegetation and
changes in soil conditions. Fig. 4(e) illustrates the NRCS values
obtained using a standard neural network. It compares the ob-
served NRCS (black line) with estimates from the standard neu-
ral network without constraints (blue line) and with constraints
(red line). The constrained model shows a closer alignment with
the observed NRCS data. The constraint enforces a positive gra-
dient with respect to soil moisture, improving the responsiveness
of the model to changes in soil conditions. Interestingly, the total

NRCS from the WCM-inspired NN does not improve much
with the additional constraint. However, the primary effect of
incorporating the constraint into the loss function is to reduce
the T2σ0

soil term and increase σ0
veg as soon as LAI begins to rise.

Notably, throughout most of the growing season, the estimates
of σ0

total from both the WCM-inspired NN and the standard NN
are quite similar. The notable exception occurs during the bare
soil period, where the standard NN appears to perform slightly
better.
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Fig. 5. Time-series of observed and estimated NRCS for training on 2017 data and testing on 2018 data. (a) Vegetation and soil parameters during the growing
season in daily steps in 2018. (b) to (e) illustrate the following: blue lines represent unconstrained estimations, red ones indicate constrained estimations, in (d) and
(e), the black lines represent the observed backscatter. The dashed rectangle around subplots (b), (c), and (d) highlights that these are related to the physics-guided
network topology method.

Now we turn our attention to how the different models, trained
on 2017 data, behave and perform on test data corresponding to
2018. As discussed before, the 2018 period includes combina-
tions of input values not seen in 2017. This cross-year analysis
helps to evaluate the transferability and robustness of the model
under different environmental conditions.

Fig. 5 shows the model inputs and outputs in this case.
Fig. 5(a) presents the DSSAT generated SMS, LAI, and AGB
over time in 2018. A comparison with Fig. 4(a) immediately
reveals the severe drought during the summer months, as noted
in [32], and its impact on the LAI and AGB. Panel (b) shows

that the constrained WCM-inspired model predicts significantly
lower values for the T2σ0

soil term during the drought period.
Subplot (c) shows that, as in the 2017 case, the constrained
model produces higher contributions of the vegetation to the
total NRCS and, more importantly, a sharper contrast between
the bare-soil period and the growth period. The estimated NRCS
without constraint in Fig. 5(d) follows the observed data but
shows some deviations, especially between mid-June and Au-
gust. The constrained model aligns well with the observed data,
demonstrating improved accuracy in capturing NRCS variations
due to changes in soil moisture and vegetation. The NRCS
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TABLE I
COMPARISON OF MODEL’S PERFORMANCE WITH AND WITHOUT CONSTRAINTS FOR TESTING ON DATA FROM 2017 AND 2018

values obtained using the standard neural network are shown
in Fig. 5(e). In the standard NN, the estimate is poor during the
LAI anomaly, and the constraint brings the estimate closer to the
observed σ0

total. When both NNs include a constraint in the loss
function, the overall performance is better for the WCM-inspired
NN.

Table I provides the performance metrics for different models
for both years. As it was shown and discussed in [22], if the
trained model is applied to sets of inputs corresponding to
conditions (e.g., severe drought) for which it has not been trained
we expect decreased model performance. The fully connected
dense neural network demonstrates higher accuracy in predict-
ing NRCS values when trained and tested on data from the
same year. Although constraints improve the performance of the
standard network, the improvement is less pronounced than in
the physics-guided network case. When trained on 2017 data and
tested on 2018 data, the WCM-inspired network predicts NRCS
values with a higher accuracy. The correlation coefficients for
2018 are relatively low. However, it is crucial to emphasize that
these metrics are calculated for the entire period under consid-
eration. Notably, a significant improvement in these metrics is
observed during the anomaly in late summer 2018. Constraints
further improve both models, but the physics-guided network
remains superior in terms of accuracy and robustness.

The results indicate that our physics-constrained method im-
proves the forward modeling of SAR observables, demonstrat-
ing the potential to combine machine learning with scientific
knowledge for advanced remote sensing applications.

VI. CONCLUSION

In this article, we introduced a physics-guided neural network
to model SAR observables over vegetation. Unlike traditional
black-box neural networks, our approach integrates physical
principles directly into the network architecture and the loss
function, resulting in a model that is not only data-driven
but also physically consistent. Specifically, we incorporated
physics-guided constraints into the neural network by: 1) adding
a physics-based term to the loss function; and 2) modifying
the network architecture to reflect the underlying physical pro-
cesses.

Our proposed network topology follows that of the WCM,
which is widely used to model NRCS over crop fields. Through
data-driven training, the model learns behaviors that are not
reflected in a standard analytical WCM formulation. At the
same time, the model inherits some simplifications embedded
in the WCM. For example, the WCM does not represent double
bounce (e.g., stem-ground) scattering. It is therefore possible
that a network topology inspired by more sophisticated physical
models would produce better results. However, a more complex
topology may gravitate towards a fully connected dense NN,
which as our results showed, is harder to train and generalizes
worse.

For our physics-guided loss function, we added a single
constraint, requiring the partial derivative of the NRCS with
respect to the soil moisture to be positive. This constraint makes
sense from a physical modeling point of view and is consistent
with the WCM topology. It is also a very simple constraint, and
therefore easy to implement, which we assume to be valid at all
times. However, in reality, there can be a correlation between
the SMS and the VWC which can affect the NRCS in complex
ways. More importantly, there is additional physical knowledge
that could be incorporated into the loss function.

Back to our key hypotheses, according to our results, we can
see the following.

1) In line with expectations, the WCM-inspired model does
perform worse than the regular dense network when
trained and tested on data from the same year. The WCM-
inspired limits what the model can learn, e.g., hidden
correlations between SMS and VWC. However, contrary
to our expectations, but in line with the literature, the
results produced by the constrained models have a lower
MSE for both training and test datasets. This suggests that
these constraints not only prevent overfitting but also aid
the training process. Our interpretation is that constraints
can effectively reshape the loss landscape, potentially
smoothing out poor local minima and leading the opti-
mizer toward more generalizable and accurate solutions.
Thus, when constraints align well with the underlying
physical or statistical realities of the data, they can be a
powerful tool to enhance the learning process and overall
model performance.
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2) As expected, both proposed approaches produce models
that generalize better to completely unseen situations.

3) With synthetic data, the results are encouraging; the sim-
plicity of the WCM model suggests that the neural network
should learn it perfectly, yet achieving this was nontrivial
and required considerable effort. This success highlights
the capabilities of the network. With actual data, the inter-
mediate outputs appear reasonable and generally consis-
tent with typical WCM behavior. In particular, the outputs
in the constrained case are quantitatively better, indicating
a potential advantage of incorporating constraints.

Looking ahead, one promising direction for further research
is the application of transfer learning techniques, which could
leverage pretrained models to improve performance on new
datasets or under different environmental conditions. In addition,
addressing the challenge of local minima in neural network
training remains a critical area of focus. Various strategies,
including fine-tuning the network architecture and optimizing
hyperparameters, may mitigate these issues and lead to more
optimal solutions.

We also recommend that future studies research expand this
work by extending the area of interest to cover a broader range of
agricultural landscapes and by including multiple seasons to bet-
ter capture seasonal dynamics. Furthermore, future efforts could
focus on integrating the developed method in data assimilation
or anomaly detection to enhance the practical applications of the
model in agricultural monitoring. If possible, simulate the model
under controlled conditions in which the expected behavior of
the soil and vegetation components is known. This can help
identify whether the model systematically biases towards one
component or another.
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