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Summary
Solar sailing is a spacecraft propulsion method distinguished by the fact that no propellant is used, but instead
acceleration is the consequence of solar radiation pressure (SRP) on large, thin sails whose orientation can be
changed to control the acceleration magnitude and direction of the sailcraft. However, contrary to conventional
propulsion systems, the acceleration magnitude and direction are strongly correlated for solar sailing, which makes
solar-sail control a unique branch of satellite control theory. The characteristics of solar sailing lend themselves
well for space missions requiring long, continuous accelerations, a large ∆V and large flight times in the order of
years or decades. Examples include solar polar orbiters and interstellar flights, mission applications which are
very difficult or impossible with conventional propulsion systems.

This thesis work explores a different mission application, namely repeatable space debris removal, specifically
in the geostationary belt. Space debris is becoming a significant threat to satellites and more and more costly
collision avoidance manoeuvres are required to keep satellites safe. While this threat is mostly present in low-
Earth orbits, geostationary orbits and other high-altitude orbits see other dangers, such as the fact that debris in
these regions do not de-orbit naturally. To keep these environments safe for the present and future, dangerous
debris objects must be removed by an external satellite. This however is expensive, mostly because active debris
removal mission concepts only envision one removed debris object per mission due to fuel constraints. This thesis
work demonstrates how solar sailing could be employed as a main method of propulsion instead, with a focus on
minimising the total mission time of re-orbiting a debris object to a safe region and returning without the debris object
to geostationary orbit. For this goal, analytical control methods for the sail are used, contrary to numerical control
optimisation methods found in literature. The many-revolution trajectories combined with the strong correlation
between solar-sail acceleration magnitude and direction make numerical optimisation of the trajectory in terms of
mission time a lengthy procedure compared to the relatively simple approach of analytical control methods. The
applicability of these control methods to this specific test case is analysed in this work. Additionally, the possibility
of adding a solar-electric-propulsion (SEP) acceleration is analysed, for which the acceleration magnitude and
direction are not correlated.

The geostationary belt is a region protected through guidelines of the Inter-Agency Space Debris Coordination
Committee, defined through an altitude interval between 35,586 km and 35,986 km and a latitude interval between
-15° and 15°. At their end-of-life, geostationary satellites move themselves to a graveyard orbit above the geosta-
tionary belt with the remaining fuel they have, whenever possible. The altitude difference is at minimum 235 km
and determined through the area-to-mass ratio of the object. While this value is often unknown for debris objects
such as solar panel pieces or fuel tanks, a relation between the area and the mass can be employed instead. In
this work, a sailcraft for debris removal with a mass of 500 kg is used, debris masses are varied between 250 kg
and 1000 kg, sail sizes are varied between 7500 m2 and 15000 m2 and SEP-thrust levels between 0.5 and 2.5 mN
are used.

A perfectly reflecting solar-sail model and a simple discontinuous eclipse model are used. Modified equinoctial
orbital elements are used, along with a Runge-Kutta 4 (RK4) integrator. In the dynamical model the five accel-
erations with the largest magnitude at geostationary altitude (41267 km) are considered, namely the point-mass
gravity acceleration of the Earth, Moon and Sun, the SRP acceleration and the acceleration due to the J2-zonal
harmonic, along with the SEP acceleration when used.

Regarding the control methods, the accessibility-and-deficit (AnD) blending method is primarily analysed. This
is a method which combines several locally optimal steering laws based on the resulting thrust magnitude (acces-
sibility) and how much time it would take to achieve the target orbital element with this thrust direction (deficit).
The locally optimal steering laws themselves are the result of analytical optimisation using Lagrange’s variational
equations.

The results of this control algorithm are validated using literature results. Subsequently, a sensitivity analysis
is performed on the results from the AnD blending algorithm, in which the debris mass, sail area and propagation
starting time are varied. Comparison with three literature validation test cases and their results in terms of mission
time shows that analytical control methods such as the AnD blending method do not result in trajectories with mis-
sion times comparable to the ones obtained through numerical optimisation. Using initial conditions from literature,
the trajectories obtained by means of analytical control strategies showed round-trip mission times ranging from
630 days to 760 days, which is in the order of 1.4 to 5.1 times larger than mission times from literature. One reason
for this result is the inability of the AnD blending method to bound both the semi-major axis and the eccentricity
during the mission segment to the graveyard orbit. Subsequently, it takes a long time to decrease these values
again to match the orbital elements of the geostationary region. Additionally, it has been found that the locally
optimal steering laws on which the AnD blending method is based show a large seasonal variation in the resulting
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cone angles and therefore a large variation in mission times for different mission start dates. This result was not
found to such an extent for numerical control methods from literature.

The sensitivity of the mission time results from the AnD blending method for a variation of parameters like the
mission start date, sail area and debris mass has been studied. With these results, analytical control methods, such
as the AnD blending method, could be applied for preliminary analysis of mission time results for a range of relevant
parameters. Possibly, optimised mission times from numerical control could be predicted before propagation if the
factor difference between the analytical and numerical results is known, but more research is needed in this area.
For the mission start date, the shortest mission times are found for starting dates just after the solstices, while
starting dates just after the equinoxes lead to the longest mission times. A relationship between the sail size and
the time of flight is found which resembles an exponential relationship. A lack of dependence between the debris
mass and the time of flight is found, which is a consequence of the control of the AnD blending method and should
not be seen as a result which can be generalised.

The usage of an SEP acceleration has been found to be very influential on the results, halving the mission time
for an SEP acceleration of 1% of the maximum SRP acceleration. This result follows from the large cone angles
following the AnD blending control, though relatively large cone angles are seen in literature too.

It is recommended to perform further analysis on the relation between mission time results obtained through
analytical control with those obtained through numerical control. What is mostly lacking in the state-of-the-art is a
catalogue of realistic mission parameters and the associated optimised mission times obtained through numerical
control methods, as an optimised mission time is currently only known for one set of realistic mission parame-
ters. To increase the realism of this mission concept, it is recommended to also investigate solar-sail-assisted
rendezvous and debris capture dynamics further.
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1
Introduction

Traditionally, spacecraft have been very dependent on propellant consumption to move in a desired direction, just
like most vehicles need fuel to move forward. However, this is not the case for all vehicles. The energy required
for movement can come from fuel or other internally stored sources of energy, but there is also an abundance of
energy in the outside world. A clear example of this is sailing, where the wind is used to travel large distances
over sea or land without consuming any fuel. This method of propulsion has been used since prehistoric times [1].
Seemingly, this analogy does not fully transfer to the vacuum of space, without any air to allow wind flows or any
water to sail through.

This changed with the discoveries on electromagnetism by Maxwell in the 1860s, which showed that light itself
carries momentum and transfers it to objects upon collision [2]. It did not take long to realise the potential for space
flight, and the French writer Jules Verne is commonly attributed with the first recognition that light could be used
to manoeuvre spacecraft - almost 100 years before the first satellite was launched [3]. However, the very small
pressure (4.56·10−6 Nm−2 [4] at 1 AU) of solar radiation pressure made this idea of ’solar sailing’ still very futuristic.
With the discoveries by Konstantin Tsiolkovsky and Friedrich Tsander in the 1920s, the first technical papers about
solar sailing were written, as the spacecraft concepts introduced required ”tremendous mirrors of very thin sheets”
[5]. However, it took until the 1970s for solar sailing to be seen as a realistic option by a space agency, namely the
National Aeronautics and Space Administration (NASA). A rendezvous mission with Halley’s comet was planned
and a wide variety of options were discussed for initial selection. The solar-sail option, requiring an area of 0.6 km2,
was not selected and neither did the mission itself launch, but for the first time the concept of solar sailing was the
subject of practical research [4].

Only in 2010, the first solar-sail mission, named IKAROS, was launched by the Japanese Aerospace Explo-
ration Agency (JAXA). This was an interplanetary mission for technology demonstration. The following decade,
organisations like NASA, the Planetary Society and several universities have flown small solar sails with sail ar-
eas up to a few tens of square meters. All of them were technology demonstration missions, used to understand
the principles of solar sailing in orbit or to test the deployment mechanisms. Since the structure of a solar sail is
relatively simple, the development costs are very low compared to other space missions, allowing smaller organi-
sations to work on solar-sail development as well [4]. The Near-Earth Asteroid (NEA) Scout mission scheduled for
launch in November 2022 is expected to be the first mission where solar sailing is used to enable scientific mission
goals, namely the reconnaissance with a NEA [6].

However, the potential of solar sailing is much larger than this application alone. Theoretical research has
shown many novel applications for solar sailing and some of these are virtually impossible without the usage of
solar sails, such as solar storm warning missions [7], solar polar orbit missions [8] and interstellar travel [9]. One
of the advantages of solar sailing lies in the acceleration. While the acceleration due to solar radiation pressure
is very small even for large sails, the crucial difference with conventional methods of spacecraft propulsion is that
solar sails provide a continuous acceleration during the entire mission. Combined with the second advantage that
no propellant is needed, very long-lasting solar-sail missions are possible with large changes in the orbital energy.
While practical research on the engineering of solar sails does not enable most of these mission proposals yet,
many of these could be possible in the near future. One such example is the usage of solar sailing for space debris
removal.

Since the launch of the first satellite Sputnik I in 1959, objects have accumulated in Earth-centered orbits.
Collectively, these objects are known as ’space debris’, making a distinction with natural (micro)-asteroids. Space
debris cover objects such as defunct satellites, rocket stages and boosters, solar panels, paint flakes and any
other object which intentionally or unintentionally has been left in orbit. Approximately 30,000 debris objects are
currently tracked from Earth, but statistical models from the European Space Agency (ESA) estimate the presence
of 34,000 debris objects greater than 10 cm in orbit around Earth, 900,000 debris objects in between 1 cm and
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10 cm in size and 128 million objects in between 1 mm to 1 cm [10]. The danger associated to these space-debris
pieces is that they can collide with active satellites or other debris objects with relative speeds in the order of
10 km/s, thus creating even more space debris. At worst, there is a fear for the so-called Kessler syndrome, where
collisions will create a cascading effect resulting in a dense cloud of space debris around Earth, paralysing current
and future spaceflight activities [11]. Even when this would not occur, a growing number of space debris objects
results in much work for tracking these objects and preparing satellites to perform manoeuvres to avoid collisions.
This is especially problematic for regions in space which are dense in satellites, like the geostationary belt.

The geostationary belt has the unique property that the ground track of any object in this belt appears station-
ary from an observer on Earth, as the object orbits exactly at the same rate as Earth’s rotation rate. Orbits in
this belt are of particular interest for telecommunication satellites and this orbital region is actively managed by
the International Telecommunications Union (ITU), which allocates orbital slots here. While this is mostly needed
to avoid communication interference rather than to avoid collisions, there are many uncontrolled and dangerous
objects nearby active satellites which pose a significant risk [12]. Unlike objects in Low Earth Orbit (LEO), objects
in Geostationary Orbit (GEO) do not naturally de-orbit due to the absence of atmospheric drag. For active satel-
lites, international guidelines set up by the Inter-Agency Debris coordination committee (IADC) mention that any
satellite must be removed from this geostationary belt within 25 years of its mission end. This usually results in an
orbit-raising manoeuvre of approximately 240 km using propellant left over for this purpose specifically. However,
for older satellites and individual debris pieces, active debris removal by an external satellite is needed, and ad-
ditionally not all active satellites succeed in this orbit-raising manoeuvre at their end-of-life. One of the first such
active debris removal missions is ClearSpace-1, scheduled to launch in 2025 [13].

To achieve such an active debris removal mission using solar sailing as the method of propulsion, solar-sail
control algorithms are needed to determine the optimal acceleration magnitude and direction throughout the tra-
jectory. The usage of solar sails introduces some complications, as thrust in the direction of incoming sunlight
is impossible to achieve and the acceleration magnitude is strongly related to the acceleration direction. The tra-
jectories needed for GEO debris removal are also planet-centred and involve very small accelerations, leading
to tens or hundreds of revolutions before a successful re-orbit. This can complicate the control of solar sails and
optimisation of the trajectory in terms of mission time. For relatively simple mission goals, such as targeting one
specific orbital element, an optimal acceleration direction can be found analytically based on dynamical model
assumptions. Methods based on such assumptions are known as locally optimal steering laws and are applicable
to target any orbital element, or parameters based on these elements [14]. When instead two or more orbital
elements are targeted, these optimal acceleration directions can be combined using weight functions. Examples
include pericenter-semi-major axis blending [15] and blending based on accessibility and deficit scores with the
AnD blending method of Macdonald and McInnes [16]. These analytical methods rely on finding an optimal accel-
eration direction based on certain assumptions, though numerical optimisation methods including the constraints
necessary for solar sailing have also been used extensively in literature, for example for planet-centred solar sailing
includes usage of differential dynamic programming (DDP) techniques [17].

To make the concept of solar sailing for GEO debris removal even more feasible, a low-thrust propulsion system
like solar electric propulsion (SEP) can be added. These propulsion systems are commonly used in geostationary
satellites for station-keeping manoeuvres and end-of-life management. They are very propellant-efficient, though
can only provide very small thrust levels. Since SEP has an extensive flight heritage, it is conceivable that a first
prototype for a debris removal mission would also make use of such a method of propulsion to bridge the gap
between theory and application in the field of solar sailing. The concept of SEP-assisted solar-sail missions has
been researched previously [18], [19].

Determining the control law of this SEP engine can also be done numerically. However, this increases the
number of degrees of freedom from two (two solar-sail attitude angles) to five (two solar-sail attitude angles, two
SEP-thrust angles and an SEP-thrust magnitude), therefore drastically increasing the problem complexity. On
the other hand, this concept of adding SEP propulsion can be analysed analytically and implemented in existing
control blending methods. This makes the AnD blending method of Macdonald and McInnes especially interesting
to be considered, since the SEP acceleration can be implemented analytically in the control.

1.1. Research objective
To this day, the concept of active GEO debris removal using solar sailing has been studied to a limited extent in
literature, especially considering its potential for repeatable debris removal. With only one sailcraft, potentially tens
of debris objects can be removed in a single mission. This work aims to present a complete overview of mission
times for one removal cycle for various parameters such as debris mass, solar-sail area and mission starting date,
obtained through analytical control methods instead of numerical control methods. Through this analysis, the
potential of solar-sailing for repeatable GEO debris removal is mapped. Additionally, the added value of an SEP
engine for this type of mission case is studied. The feasibility of the AnD blending method compared to numerical
control techniques as the analytical solar-sail and SEP-control method is primarily studied in this work.
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1.2. Research questions
As discussed in Section 1.1, the focus of this work is onmapping the potential of solar-sailing/SEP-hybrid spacecraft
for repeated GEO space debris removal. This is done using the AnD blending method as a control algorithm to
assess its feasibility for this use case. To achieve this research objective, the following research questions must
be answered:

• 1. Do analytical control methods for solar sailing form a usable alternative to numerical control methods for
trajectory planning for one cycle from GEO to the graveyard orbit and back?

• 2. What is the minimal time required for re-orbiting geosynchronous debris to the graveyard orbit and ma-
noeuvring back to GEO using solar sailing as the only form of propulsion?

(a) How do parameters like mission start date, solar-sail area, debris mass and debris orbital parameters
influence the mission time results?

(b) How does additional usage of an SEP engine influence mission time results?
• 3. Is it possible to explain the influence of SEP thrust on the minimal-time results analytically?
• 4. Does solar sailing form an advantageous form of propulsion for GEO debris removal compared to existing
propulsion methods?

1.3. Report Outline
The main part of this thesis is written in the form of a journal article manuscript in Chapter 2, formally defining
the main case study and the control algorithms used as well as presenting an analysis of the results. Chapter 3
discusses the conclusions of this work related to above research questions and provides recommendations for
further work. Lastly, Appendix A presents the verification and validation under taken for this thesis to show that
the control algorithms are correctly implemented.
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Control methods for geostationary debris removal using solar
sailing

F.T. de Veld ∗

Delft University of Technology, Delft, 2628 CD, The Netherlands

This work considers active geostationary debris removal using solar-sail control. The

usability of the analytical accessibility-and-deficit blending method for providing this solar-sail

control is explored. This control method is compared with numerical methods from literature in

terms of the resulting round-trip mission times as well as the relevant control parameters. Using

a detailed dynamical model, it is shown that the outward transfers from a geostationary orbit to

the graveyard orbit and inwards transfers back to a geostationary orbit obtained using different

analytical control methods do not match with the results from literature obtained through

numerical optimisation. Using initial conditions from literature, the trajectories obtained

through analytical control result in mission times ranging from 630 to 760 days, which are a

factor 1.4 to 5.1 larger compared to results from numerical control. This difference is due

to changes in the semi-major axis and eccentricity during the transfer to the graveyard orbit

using analytical control methods which are larger than required. Despite the discrepancy with

literature, the analytical control methods could potentially be used for preliminary parameter

space reduction. A sensitivity analysis of the mission time results shows an approximately

exponential relationship with sail area, a strong seasonal coupling and little dependence on the

debris mass. A case with both solar radiation pressure acceleration and solar electric propulsion

acceleration is also analysed, demonstrating the large potential of solar electric propulsion

for this mission case. Round-trip mission times resulting from the accessibility-and-deficit

blending method can be halved from for example 765 days to 380 days, using SEP acceleration

magnitudes of approximately 1% of the solar-sail characteristic acceleration.

∗MSc Student, TU Delft Faculty of Aerospace Engineering, f.t.develd@student.tudelft.nl



Nomenclature

𝐴 Area [m2]

𝑎 Semi-major axis [km]

𝑎𝑐 Characteristic acceleration [m/s2]

𝐶𝑟 Reflectivity coefficient [-]

𝑑 Projection vector of 𝑛̂ on the (𝑠2, 𝑠3)-plane

𝑒 Eccentricity [-]

𝑒1, 𝑒2,𝑒3 First, second and third unit vectors describing

the ECI reference frame

𝑓 , 𝑔, ℎ, 𝑘, 𝐿 Second to sixth modified equinoctial orbital

elements [L: deg]

ℎ𝑎 Altitude [km]

𝐼 Retrograde factor

𝐼𝑠𝑝 Specific impulse [s]

𝑖 Inclination [deg]

𝑀𝑊,𝑎 Weight multiplier factor for 𝑊𝑎 [-]

𝑀𝑊,𝑒 Weight multiplier factor for 𝑊𝑒 [-]

𝑚 Mass [kg]

𝑛̂ Normal vector

𝑃 Solar radiation pressure at 1 AU [N/m2]

𝑝 Semi-latus rectum [km]

𝑟𝑝 Radius of pericenter [km]

𝑟1, 𝑟2, 𝑟3 First, second and third unit vector describing the

RTN reference frame

𝑆𝑎𝑐𝑐(k) Accessibility score for orbital element 𝑘 [-]

𝑆𝑑𝑒 𝑓 (k) Deficit score for orbital element 𝑘 [-]

𝑠1, 𝑠2, 𝑠3 First, second and third unit vector describing the

Sun-sail reference frame

𝑇𝑆𝐸𝑃 SEP thrust magnitude [N]

𝑡 Time [s]

𝑊𝑘 Weight function for orbital element 𝑘 [-]

𝛼 Solar-sail cone angle [deg]

𝛼̃ Ideal cone angle [deg]

𝛼∗ Optimised cone angle [deg]

𝛽 Solar-sail lightness number [-]

𝛾 SEP thrust in-plane angle [deg]

𝛿 Solar-sail clock angle [deg]

𝜖 SEP thrust out-of-plane angle [deg]

𝜆̂ Ideal thrust direction

𝜇 Gravitational parameter [km3 s−2]

𝜈 True anomaly [deg]

𝜎 Sailcraft areal density [kg m−1]

𝜙 Latitude [deg]

Ω Longitude of the ascending node [deg]

𝜔 Argument of periapsis [deg]

1𝐸𝑐𝑙𝑖 𝑝𝑠𝑒 Eclipse indicator function

1𝑖𝑛𝑤𝑎𝑟𝑑 Inward transfer indicator function
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I. Introduction
Solar sailing is an emerging space propulsion method in which thin, reflective membranes are employed to control

the reflection of incoming solar radiation. The transfer of impulse from the photons can be of sufficient magnitude to

result in a noticeable force, which can be controlled accordingly through active control of the membrane orientation

with relation to the incoming sunlight. Using large area-to-mass ratios for the membranes, low-thrust propulsion similar

to that of ion engines can be achieved, yet without consumption of any propellant. This advantage comes at a price

of strict constraints on the magnitude and direction of the force acting on the sail, as it can never be directed towards

the direction of sunlight and the solar radiation pressure (SRP) acceleration magnitude is strongly coupled with the

direction. Despite these constraints, the characteristics of solar sails allow for unique trajectories and mission goals [1].

The application of solar sailing to real missions has a relatively short history, as the first demonstration mission

IKAROS was successfully launched in 2010. A handful of additional missions have flown since then. However, solar-sail

technology has improved significantly in this time period and the variety of theoretical research on the potential of

solar sailing is coming closer to reality. The prospects of long-term acceleration and mission lifetimes not limited

by propellant usage have inspired much research, including applications such as solar storm warning missions at an

artificial Lagrange point [2] or interstellar probes [3]. A topic which has so far been rather underdeveloped is the usage

of solar sails for space debris removal, especially repeatable removal.

Space debris is rapidly becoming an urgent problem for the space industry because of the collision risk it poses

to active satellites. Space debris objects encompass objects as large as defunct satellites, but mostly small objects

originating from various satellite and rocket body parts. As these debris objects are uncontrolled, poorly tracked, and

can hit active satellites with velocities of multiple km/s, much attention is paid to the space debris situation to prevent

collisions. Despite growing efforts however, the number of planned missions for active debris removal is still minimal.

One of the first active debris removal missions is ClearSpace-1, scheduled to launch in 2025 for removing debris from

LEO [4]. It is also speculated that the Chinese space agency has recently successfully attempted an active debris removal

mission in the GEO region [5]. Despite these efforts, more work is needed especially for high-altitude orbital regions

such as the geostationary belt, as debris left in this region will naturally de-orbit only after millions of years [6].

Since the IADC Space Debris Mitigation Guidelines have been put into place, the geostationary belt has become a

protected orbital region in which satellites are not allowed to stay after their end-of-life [7]. There is a 25-year time

frame for satellites to move out of this region, often to a so-called graveyard orbit positioned at a higher altitude than the

protected region. Nevertheless, all satellites launched before these guidelines are still orbiting here in an uncontrolled

manner. Furthermore, not all satellites manage to complete a successful end-of-life plan and there are no (legal)

repercussions in case a defunct satellite does not move out of this protected region in time. Meanwhile, the risk of space

debris collisions continues to increase. The geostationary (GEO) satellites Olympus-1, Express-AM11, AMC-9 and

Telkom-1 satellites have all been hit by space debris and some of them have been rendered completely unusable [8–11].
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A GEO debris removal mission would form an excellent application for solar sailing. Not only is the ratio of solar

radiation pressure acceleration to other accelerations virtually maximum in GEO with relation to other Earth-centred

orbits, but also the risk of sail damage due to small debris is relatively low. Another advantage is that this mission case

lends itself for re-usability, which is easier to achieve using solar sailing than using other propulsion methods. Transfers

from the GEO region to the graveyard orbit and back can be repeated many times, but are in practice often limited by

the amount of propellant on-board of the satellite. This limitation is eliminated with solar sails.

The application of solar sailing to space debris removal is a niche field and most of the research is focused on

’passive’ de-orbiting of satellites from low Earth orbit (LEO) or medium Earth orbit (MEO) to burn up in Earth’s

atmosphere, meaning that a solar sail is integrated in the satellite as an end-of-life plan, rather than in an external satellite

[12] [13]. The control strategy often includes a method for constant eccentricity raising followed by an orientation to

maximise drag. Especially for satellites in MEO this concept can be of interest because of the high ΔV required for

de-orbiting. However, this concept does not easily allow for re-usability as the debris object burns up in the atmosphere

together with the sail. There is less research on solar-sail assisted debris removal in GEO, but foundations have been

laid by Kelly and Bevilacqua in a series of research articles about their TugSat concept, a 50 kg satellite with a sail

area of 750 m2 to capture objects up to 1000 kg, thus with a total area-to-mass ratio of 0.71 m2/kg during the outward

transfer to a graveyard orbit [14] [15]. Using multiple control strategies throughout their research, they manage to reduce

the time for the outward transfer, orbit circularisation and inward transfer back to GEO from approximately 450 days

in preliminary work [14] to approximately 150 days using Lyapunov control and particle swarm optimisation [15],

with similar solar-sailing parameters in the same order of magnitude. Based on earlier works of Kelly and Bevilacqua

which used pseudospectral methods, Mei et al. further developed their pseudospectral optimisation procedures for

sail-assisted debris removal with the Legendre-Gauss-Lobatto (Open Loop) method [16]. Their work focuses more on

the development of a non-linear controller based on pseudospectral methods than on finding minimum-time trajectories

as their work is still in an early stage. They assume an area-to-mass ratio of 0.14 m2/kg for the total structure during the

outward transfer mission and find transfer times of approximately 350 days, roughly in line with the early results of

Kelly and Bevilacqua [14]. However, Mei et al. do not investigate the return trajectory to GEO, which was found to be

more time-consuming by Kelly and Bevilacqua [14].

Solar-sail control depends on the mission goals. For simple goals such as targeting one particular orbital element,

locally optimal steering laws exist, which yield the ideal cone and clock angle for maximising the rate of change of

this orbital element. Despite their simplicity, in cases like Earth-escape trajectories these analytical methods tend to

result in excellent performance compared to numerical counterparts, requiring much less computational effort [1]. For

more complex or constrained mission goals, numerical as well as analytical methods exist for finding optimal control

variables. One such analytical method is called the ’accessibility-and-deficit (AnD) blending method’ developed by

Macdonald and McInnes [17], designed for combining multiple objectives, such as targeting multiple orbital elements.
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The applicability of the AnD-blending method to repeatable GEO debris removal missions is investigated in this paper.

This technique was developed in 2005 and since then many new control methods for solar sailing have been based on it.

Examples include additions based on improving realism [18], the combination with numerical methods such as genetic

algorithms [19] and usage of the AnD blending method with non-ideal sails [20].

The objective of this paper is threefold: firstly, this work aims to assess whether analytical control methods result in

minimum-time trajectories similar to numerical optimisation techniques from literature for re-orbiting GEO debris to a

graveyard orbit and returning the sailcraft to GEO. Usage of analytical control allows reducing the computational load

per analyses and thus a wider range of solar-sail parameters can be analysed. Secondly, the aim is to understand the

sensitivity of minimum-time results to various mission parameters, such as debris mass, sail area and the mission time

starting epoch. Lastly, this paper aims to understand the influence on the minimum-time results of additional solar

electric propulsion (SEP) acceleration next to existing SRP acceleration. The extension to hybrid solar-sail/solar electric

propulsion (SEP) thrust is performed to improve the performance of the GEO debris removal mission.

The remainder of this paper introduces the use case of this paper in section II and discusses the dynamics of this use

case in section III. A theoretical background of the solar-sail control method used is given in section IV, with a focus on

the AnD blending method and an extension of the AnD blending method into hybrid thrust. The tuning and validation of

the AnD blending method is discussed in section V. The mission time results are presented in section VI, both for the

solar-sail only case for the extension to hybrid thrust in subsection VI.D. Lastly the conclusions are drawn in section VII.

II. Use case: GEO debris removal
This research focuses on trajectories from the GEO region to the graveyard orbit and back. The protected GEO

region is defined by the Inter-Agency Space Debris Coordination Committee (IADC) through [21]:

0 deg ≤ 𝜙 ≤ 15 deg

35586 km ≤ ℎ𝑎 ≤ 35986 km

where 𝜙 is the latitude and ℎ𝑎 is the altitude. This means that this protected region can be defined by the semi-major axis

𝑎, the eccentricity 𝑒 and the inclination 𝑖 only. Most of the objects in the GEO region have inclinations and eccentricities

smaller than 10−4 and semi-major axes close to 42167 km [22]. The IADC guidelines mention that objects need to be

removed from this region within 25 years after their end of mission [7]. All manoeuvres resulting in the object being

outside this region after 25 years are permitted, but in practice moving the debris object to an orbit with a semi-major

axis slightly larger than the one of the GEO semi-major axis is the most common technique. Sending a GEO object to a

heliocentric orbit or letting it re-enter in Earth’s atmosphere are more sustainable options, but in practice infeasible from

an energy, time or reusability perspective [12].
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The minimum requirement is for the pericenter 𝑟𝑝 = 𝑎(1 − 𝑒) of the GEO orbit of the debris object to be raised by

[23]:

Δ𝑟𝑝 = 235 km + 1000
𝐶𝑟𝑑 𝐴𝑑

𝑚𝑑

km (1)

Δ𝑟𝑝 is the change in pericenter radius and 𝐶𝑟𝑑 and 𝐴𝑑

𝑚𝑑
are the reflectivity coefficient and the area-to-mass ratio of the

debris object respectively. Note that throughout this paper, the subscript 𝑑 refers to debris-related properties. Badhwar

et al. estimate the relation between 𝐴𝑑 and 𝑚𝑑 as follows [24]:

𝑚̃𝑑 = 37.97 · 𝐴̃1.86
𝑑 (2)

where 𝑚̃𝑑 and 𝐴̃𝑑 are the average mass in kg and cross-sectional area in m2 across all debris objects. The average is

used because the standard deviation of these parameters is rather large for GEO objects [24]. However, this standard

deviation decreases for larger debris mass values, which are the focus in this work. The vast majority of debris objects

in GEO have masses in the order of one gram or less [21], which makes it impractical to remove these objects from

GEO with a sailcraft with a mass of 500 kg, which is seen as a representative sailcraft mass [25]. Instead, debris objects

with masses of 250 kg to 1000 kg are studied. Substituting these values in Eq. (2) results in area-to-mass ratios ranging

from 0.006 m2/kg for 𝑚𝑑 = 250 kg to 0.02 m2/kg for 𝑚𝑑 = 1000 kg. A commonly used value for 𝐶𝑟𝑑 is 1 [26], which

results in a value Δ𝑟𝑝 ranging from 235 to 245 km, see Eq. (1).

For most of the analyses of this paper, solar sailing is the main method of propulsion. Sail areas are assumed to be

between 7500 and 15000 m2, a significant scale-up compared to current-day sail areas of solar-sailing missions, of

which IKAROS had the largest sail with an area of 196 m2 [27]. To achieve similar sail acceleration levels as for mission

that have already flown, the sail area needs to scale up due to the larger spacecraft mass and its payload, which includes

the debris object. The sailcraft mass is assumed to be 500 kg [25], and the mass of the debris object ranges between

250 kg and 1000 kg in this paper. For comparison, the mass of the heaviest sailcraft IKAROS was 307 kg including

payload [27]. The area-to-mass ratio of the sailcraft simulated in this work then lies between the ratios of flown missions

and the ratios found in literature for the GEO debris removal use case [27]. For a part of the analysis, propulsion is

assumed to be a hybrid between solar-sailing propulsion and SEP propulsion. The SEP engine is modelled after the

BepiColombo SEP thrusters, which have a specific impulse of 4000 s and a maximum thrust of 149 mN. While the SEP

acceleration magnitude is capped at 149 mN, in this work no SEP-thrust levels larger than 2.5 mN are used, based on

preliminary results [28]. An overview of all mission parameters for the GEO use case can be found in Table 1. This

table includes the target values for orbital parameters, meaning the final values of orbital elements at the end of a transfer.

The variable values from Table 1 are used throughout the paper, except for validation test cases in subsection V.B.
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Table 1 Constant simulation settings used throughout this paper

Parameter Value Parameter Value
Initial orbital parameters 𝑎 = 42167 km, 𝑒 = 0 Target value 𝑎 inward transfer [km] 42167
Initial epoch 𝑡0 June 21st, 2000 Target value 𝑒 inward transfer [-] 0
Sailcraft mass (unloaded) [kg] 500 Specific impulse 𝐼𝑠𝑝 [s] 4000
Reflectivity coefficient debris 𝐶𝑟𝑑 1 Range of Δ𝑟𝑝 [km] 235 - 245
Range of sail areas 𝐴 [m2] 7500 - 15000 Range of debris masses 𝑚𝑑 [kg] 250 - 1000
Range of 𝐴

𝑚
transfer out [m2 kg −1] 5 - 20 Range of 𝐴

𝑚
transfer in [m2 kg −1] 15 - 30

III. Dynamics
The state of the sail is described in modified equinoctial orbital elements (MEOE) throughout integration and

propagation. The MEOE set is based on the Kepler orbital elements 𝑎, 𝑒, 𝑖, the longitude of the ascending node Ω, the

argument of periapsis 𝜔 and the true anomaly 𝜈 as follows [29]:

𝑝 = 𝑎(1 − 𝑒2) (3)

𝑓 = 𝑒 cos (𝜔 + 𝐼Ω) (4)

𝑔 = 𝑒 cos (𝜔 − 𝐼Ω) (5)

ℎ = tan
(
𝑖

2

) 𝐼
cos (Ω) (6)

𝑘 = tan
(
𝑖

2

) 𝐼
sin (Ω) (7)

𝐿 = 𝜔 + 𝐼Ω + 𝜈 (8)

Here, 𝑝 is the semi-latus rectum, 𝑠2 = 1 + ℎ2 + 𝑘2 and 𝑤 = 1 + 𝑓 cos (𝐿) + 𝑔 sin (𝐿) are shorthand notations and 𝐼 is a

so-called ’retrograde factor’, which is equal to +1 for posigrade orbits and equal to -1 for retrograde orbits [29].

An advantage of the MEOE set is that it is nonsingular for all eccentricities and inclinations during propagation,

contrary to the regular Keplerian set of orbital elements. Additionally, it has advantages compared to Cowell propagation

with regard to computation efficiency for simulations including trajectories with slowly-changing orbital elements [30].

Throughout this research, MEOE propagation with an RK4 integrator using a time step of 50 s is used, following an

analysis on the accuracy of the propagation of Eq. Equation 9.

States ®𝑋 are defined in the ECI reference frame E𝐸𝐶𝐼 (𝑒1, 𝑒2, 𝑒3), which is formally defined using three unit vectors

𝑒1, 𝑒2 and 𝑒3, with the frame origin at the centre of the Earth. The 𝑒3 unit vector points in the direction of the polar axis

of the Earth and the 𝑒1-unit vector points towards the direction of the first point of Aries at J2000.0. The right-handed

coordinate system is completed with the 𝑒2-vector in the equatorial plane [31]. ®𝑋 can be directly propagated using the

equations of motion in Gaussian form [29]:
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¤®𝑋 =



¤𝑝

¤𝑓

¤𝑔

¤ℎ

¤𝑘

¤𝐿



=



2𝑝𝑇
𝑤

√︃
𝑝

𝜇⊕√︃
𝑝

𝜇⊕

[
𝑆 sin (𝐿) + ( (𝑤+1) cos (𝐿)+ 𝑓 )𝑇

𝑤
− 𝑔 (ℎ sin (𝐿)−𝑘 cos (𝐿) )𝑊

𝑤

]
√︃

𝑝

𝜇⊕

[
−𝑆 sin (𝐿) + ( (𝑤+1) cos (𝐿)+𝑔)𝑇

𝑤
− 𝑓 (ℎ sin (𝐿)−𝑘 cos (𝐿) )𝑊

𝑤

]
√
𝑝𝜇⊕

𝑠2𝑊
2𝑤 cos (𝐿)

√
𝑝𝜇⊕

𝑠2𝑊
2𝑤 sin (𝐿)

√
𝜇⊕ 𝑝

(
𝑤
𝑝

)2
+

√︃
𝑝

𝜇⊕
(ℎ sin (𝐿)−𝑘 cos 𝐿)𝑊

𝑤



(9)

𝑆, 𝑇 and 𝑊 are perturbing acceleration components explained further in this section. 𝜇⊕ is the gravitational parameter

for the Earth and its value can be found in Table 2. Dot-notation represents derivations with respect to time. The control

variables are summarized in a vector ®𝑌 = [𝛼, 𝛿, 𝛾, 𝜖, 𝑇𝑆𝐸𝑃]. 𝛼 and 𝛿 are the sail cone and clock angles, respectively,

providing the direction of SEP thrust (see subsection III.A for the definitions). 𝛾 and 𝜖 are two SEP thrust direction

angles (see subsection III.D for the definitions) and 𝑇𝑆𝐸𝑃 the SEP-thrust magnitude. Additionally, the spacecraft mass

𝑚 is a relevant parameter for the state ®𝑋 as it changes instantaneously after the debris object is released and changes

continuously during the propagations when using SEP thrust.

𝑆, 𝑇 and 𝑊 are the components of the perturbing accelerations in the radial, transverse and normal directions

respectively. Perturbing accelerations in this case refer to all accelerations which are not the acceleration caused by

the point-mass gravity of the Earth. These perturbing accelerations are defined in a new reference frame, denoted

by E𝑅𝑇𝑁 (𝑟1, 𝑟2, 𝑟3) with its origin at the sailcraft. The 𝑟1 unit vector points away from the centre of the mass of the

Earth (radial direction). The 𝑟3 unit vector is oriented normal to the orbital plane of the sail (normal direction). The

right-handed coordinate system is completed with the 𝑟2 unit vector (transverse direction), see Figure 1.

Fig. 1 The construction of the E𝑅𝑇𝑁 frame for a sailcraft in a zero-inclination orbit around the Earth.

Referring to Figure 2, the main perturbing accelerations in the dynamical model at GEO altitude are, in order of

magnitude, the acceleration caused by SRP, the acceleration due to the 𝐽2-zonal harmonic and the point-mass gravity

acceleration from the Moon and the Sun. Clearly, in case hybrid thrust is considered, the SEP acceleration also needs to
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Fig. 2 Graph of the relative maximum magnitude of various perturbing accelerations as a function of the
orbital radius, with GEO altitude marked by a dashed vertical line [31].

be accounted for. The sum of these perturbing accelerations appears in the equations of motions through the variables 𝑆,

𝑇 and 𝑊 . In the remainder of this section, the perturbing forces and all other vectors are described in the E𝐸𝐶𝐼 frame,

unless mentioned otherwise.

A. Solar radiation pressure

The solar-sail acceleration is modelled by assuming a flat and perfectly reflecting sail (i.e. ideal) model without

wrinkles and degradation and without diffuse reflection and thermal emission, rather than an optical or more advanced

model. It is known that this assumption can influence the time-of-flight results by up to 20% [32], yet as this paper

serves as a preliminary study, this assumption is not prohibitive.

To define the SRP acceleration, a new reference frame E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 (𝑠1, 𝑠2, 𝑠3) is used with its origin at the sailcraft.

The 𝑠1 unit vector points in the Sun-sail direction, 𝑠2 = 𝑒3 × 𝑠1 and 𝑠3 completes the right-handed coordinate system

[33], see also Figure 3. In case of ambiguities, the 𝑠3-vector is chosen such that the angle between the 𝑠3-vector of the

E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 reference frame and the 𝑒3-vector of the E𝐸𝐶𝐼 reference frame is minimal.
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Fig. 3 An overview of the Sun-sail reference frame

To define the sail attitude in E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 , the cone angle 𝛼 and the clock angle 𝛿 are defined. As can be seen from

Figure 3, 𝛼 is the angle between the 𝑠1-axis and the normal vector 𝑛̂ and 𝛿 is the angle between the projection vector ®𝑑

of 𝑛̂ on the (𝑠2, 𝑠3)-plane of the E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 reference frame and 𝑠3 of the same frame [33].

Following Figure 3, the normal vector ®𝑛 can be defined in the E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 frame as:

®𝑛E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 =



cos (𝛼)

sin (𝛼) sin (𝛿)

sin (𝛼) cos (𝛿)


(10)

As the solar radiation pressure is always directed away from the Sun, 𝛼 must be confined to the interval [−90, 90]

deg. There is no such constraint for 𝛿, which therefore has a width of 360 degrees and spans the interval [−180, 180]

deg.

For usage in the dynamical model, the normal vector ®𝑛E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 is transformed to the normal vector ®𝑛E𝐸𝐶𝐼 as follows:

®𝑛E𝐸𝐶𝐼 =

[
𝑠
E𝐸𝐶𝐼 ,𝑇

1 𝑠
E𝐸𝐶𝐼 ,𝑇

2 𝑠
E𝐸𝐶𝐼 ,𝑇

3

]
· ®𝑛E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 (11)

𝑠
E𝐸𝐶𝐼

𝑖
for 𝑖 = 1, 2, 3 is the 𝑖-th unit vector of E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 in the E𝐸𝐶𝐼 frame. The acceleration caused by solar radiation

pressure is then calculated as [27]:

®𝑎𝑆𝑅𝑃 = 𝛽
𝜇⊙

𝑟2
𝑆𝑢𝑛−𝑠𝑎𝑖𝑙

cos (𝛼)2
1𝐸𝑐𝑙𝑖 𝑝𝑠𝑒 ®𝑛E𝐸𝐶𝐼 (12)

𝛽 =
2𝑃𝑅2

𝐸𝑆

𝜎𝜇⊙
(13)

𝜎 =
𝑚

𝐴
(14)

Here, ®𝑎𝑆𝑅𝑃 is the SRP acceleration, 𝛽 is the lightness number, 𝑟𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 is the distance between the Sun and the
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sailcraft and 𝜇⊙ is the gravitational parameter of the Sun of which the value can be found in Table 2. 𝑃 = 4.56 · 10−6 N

m−2 is the solar radiation pressure at 1 AU [1], 𝑅𝐸𝑆 is the average distance between the Earth and the Sun equal to 1 AU

and 𝜎 is the sailcraft areal density or the mass-to-area ratio with 𝑚 the spacecraft mass and 𝐴 the area of the sail. Lastly,

1𝐸𝑐𝑙𝑖 𝑝𝑠𝑒 is an indicator function, equal to zero when the sailcraft is in eclipse and equal to one when it is not. The

sailcraft is assumed to be in eclipse when the distance of the Earth or Moon to the Sun-sail line segment is smaller than

their respective radius, see Table 2 for the values of these radii.

The lightness number 𝛽, as well as the characteristic acceleration 𝑎𝑐 = 2𝑃
𝜎

, the maximum possible solar-sail

acceleration at 1 AU when 𝛼 = 0, are typical parameters indicating the capabilities of the solar sail. 𝛽 ranges between

9.8 · 10−4 and 1.1 · 10−2 for existing solar-sail missions and 𝑎𝑐 between 5.8 · 10−6 and 6.3 · 10−5 m s−1 [27]. The sail

areas and debris masses from section II lead to ranges for 𝛽 and 𝑎𝑐 in a realistic order of magnitude for this paper,

namely ranging from 7.7 · 10−3 to 4.2 · 10−2 for 𝛽 and between 4.56 · 10−5 m s−2 and 2.5 · 10−4 m s−2 for 𝑎𝑐.

B. Lunar and solar point-mass gravity

The third-body perturbations from the Moon and the Sun respectively are modelled through the following equations

[30]:

®𝑎𝑃𝑀𝐺$ = −𝜇$
( ®𝑟𝑆𝑎𝑖𝑙 − ®𝑟$
|®𝑟𝑆𝑎𝑖𝑙 − ®𝑟$ |3

+
®𝑟$
|®𝑟$ |3

)
(15)

®𝑎𝑃𝑀𝐺⊙ = −𝜇⊙

(
®𝑟𝑆𝑎𝑖𝑙 − ®𝑟⊙
|®𝑟𝑆𝑎𝑖𝑙 − ®𝑟⊙ |3

+ ®𝑟⊙
|®𝑟⊙ |3

)
(16)

Here, ®𝑟$, ®𝑟⊙ and ®𝑟𝑆𝑎𝑖𝑙 are the position vectors of the Moon, the Sun and the sail in the E𝐸𝐶𝐼 frame respectively.

The position vectors of the Sun and the Moon are obtained through two-body propagations of the Earth in the Earth-Sun

system and the moon in the Moon-Earth system respectively. The value for the gravitational parameter of the Moon, 𝜇$

can be found in Table 2.

C. 𝐽2-zonal harmonic

The 𝐽2-zonal harmonic forms the most significant correction to the point-mass gravity model of the Earth. The

perturbing acceleration ®𝑎𝐽2 is described by the following equation [34]:

®𝑎𝐽2 = −
3𝜇⊕𝐽2𝑅

2
⊕

2𝑟5
𝑆𝑎𝑖𝑙



𝑒1 (1 − 5 𝑒2
3

| ®𝑟𝑆𝑎𝑖𝑙 |2
)

𝑒2 (1 − 5 𝑒2
3

| ®𝑟𝑆𝑎𝑖𝑙 |2
)

𝑒3 (3 − 5 𝑒2
3

| ®𝑟𝑆𝑎𝑖𝑙 |2
)


(17)
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𝑒1, 𝑒2 and 𝑒3 are the first, second and third position coordinates in the E𝐸𝐶𝐼 frame and 𝑟𝑆𝑎𝑖𝑙 is the distance between

the Earth and the sailcraft. 𝐽2 is the value of the J2-coefficient and 𝑅⊕ is the radius of the Earth, see Table 2 for their

values.

D. Additional low-thrust acceleration

Additional low-thrust acceleration is modelled for the propagations in which the solar-sail propelled spacecraft also

makes use of an SEP engine. This acceleration is described by [35]

®𝑎𝑆𝐸𝑃 =
®𝑇𝑆𝐸𝑃

𝑚
(18)

where ®𝑇𝑆𝐸𝑃 is the controllable SEP-thrust vector. The change in mass due to propellant consumption is described by the

following differential equation:

¤𝑚 = −𝑇𝑆𝐸𝑃

𝐼𝑠𝑝𝑔0
= −𝑚 · 𝑎𝑆𝐸𝑃

𝐼𝑠𝑝𝑔0
(19)

Here, 𝐼𝑠𝑝 is the specific impulse of the SEP engine and 𝑔0 is the terrestrial gravity constant, see Table 2 [35]. The thrust

angles 𝛾 and 𝜖 are defined analogously to the solar-sail angles in the E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 frame, see Figure 4. 𝛾 is the angle

between the 𝑠1-axis and ®𝑇𝑆𝐸𝑃 , spanning the interval [-90, 90] deg and 𝜖 is the angle between the projection of ®𝑇𝑆𝐸𝑃 on

the (𝑠2, 𝑠3)-plane of the E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 reference frame and 𝑠3 of the same frame, spanning the interval [-180, 180] deg.

Fig. 4 Definition of the SEP-thrust angles 𝛾 and 𝜖 in the E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 frame

Lastly, the equation for the spacecraft mass 𝑚 at time 𝑡 is as follows:

𝑚(𝑡) = 𝑚𝑠𝑎𝑖𝑙 + 𝑚𝑑 · 1𝑖𝑛𝑤𝑎𝑟𝑑 + ¤𝑚𝑡 (20)

Here, 𝑚𝑠𝑎𝑖𝑙 is the unloaded sailcraft mass and 1𝑖𝑛𝑤𝑎𝑟𝑑 is an indicator function equal to zero when the current trajectory

is an inward transfer to GEO and one when it is an outward transfer to a graveyard orbit.

The mass of the propellant at 𝑡0 is not considered separate from the sailcraft mass for this work, since one year of
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continuous SEP thrust of 2.5 mN would consume only 2.0 kg of propellant, following Eq. (19), which is very small

compared to the assumed sailcraft mass of 500 kg. When the amount of required propellant becomes e.g. 10% of the

sailcraft mass, for example during subsequent round-trip missions, the propellant mass should be considered during

simulations.

Table 2 Physical constants used in the dynamical model [30] [36] [37]

Constant Used value Unit
𝜇⊕ 3.98600441 · 105 km3 s−2

𝜇⊙ 1.32712440018 · 1021 km3 s−2

𝜇$ 4.9048695 · 103 km3 s−2

𝑅⊕ 6.3781363 · 103 km
𝑅$ 1.7374 · 103 km
𝑔0 9.80665 m s−2

IV. Solar-sail control
Acceleration due to solar radiation pressure is one of the two accelerations in the dynamical model which can be

controlled and the second one is the SEP acceleration, which is used only in part of the analysis. This section discusses

the control methods for the two controllable accelerations which are used in this paper. The locally optimal steering

laws for solar sailing are explained in subsection IV.A, as the AnD blending method explained in subsection IV.B is

based upon these. Another analytical control method called ’piecewise control’ is discussed in subsection IV.C. Lastly,

subsection IV.D discusses hybrid solar-sailing/SEP control.

A. Locally optimal steering laws

Locally optimal steering laws are control strategies to maximise the rate of change of an orbital element based on

the variational equations. Locally optimal steering laws exist for any orbital element (except the true anomaly 𝜈) and any

other parameter based on these orbital elements. In this paper, only the semi-major axis 𝑎, the eccentricity 𝑒 and the

radius of pericenter 𝑟𝑝 = 𝑎(1 − 𝑒) are of interest. While locally optimal steering laws for control lead only to a locally

optimal solution, in instances such as finding Earth-escape trajectories, near-optimal results in terms of mission time

can be obtained [1] [17].

The variation of any orbital element 𝑘 can be written in a general form as [17]:

𝑑𝑘

𝑑𝑡
= ®𝑓𝑠 · ®𝜆𝑘 (21)

with 𝑘 any orbital element, ®𝑓𝑠 the thrust vector and ®𝜆𝑘 an ideal direction of thrust. Writing out Eq. (21) for 𝑎 and 𝑒
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results in the variational equations [38]:

𝑑𝑎

𝑑𝑡
=

2𝑎2
√
𝜇⊕ 𝑝

[𝑆 𝑇 𝑊] ·



𝑒 sin (𝜈)

(1 + 𝑒 cos (𝜈))

0


(22)

𝑑𝑒

𝑑𝑡
=

|®𝑟𝑆𝑎𝑖𝑙 |2
𝜇⊕

[𝑆 𝑇 𝑊] ·



sin (𝜈)

𝑒 cos (𝜈)2+𝑒+2 cos (𝜈)
1+𝑒 cos (𝜈)

0


(23)

From Eq. (22) and Eq. (23) it can be seen that the perturbation acceleration components in the normal direction

have no effect on the semi-major axis and eccentricity variations. Additionally, the rate of change 𝑑𝑘
𝑑𝑡

is maximum when

the perturbation vector [𝑆 𝑇 𝑊] points in the same direction as



𝑒 sin (𝜈)

(1 + 𝑒 cos (𝜈))

0


for 𝑎 and



sin (𝜈)

𝑒 cos (𝜈)2+𝑒+2 cos (𝜈)
1+𝑒 cos (𝜈)

0


for 𝑒

and their inner product is maximum. As such, the ideal thrust directions ®𝜆𝑎

E𝑅𝑇𝑁 for 𝑎 and ®𝜆𝑒
E𝑅𝑇𝑁 for 𝑒 are as follows:

®𝜆E𝑅𝑇𝑁
𝑎 =



𝑒 sin (𝜈)

(1 + 𝑒 cos (𝜈))

0


(24)

®𝜆E𝑅𝑇𝑁
𝑒 =



sin (𝜈)

𝑒 cos (𝜈)2+𝑒+2 cos (𝜈)
1+𝑒 cos (𝜈)

0


(25)

These vectors are defined in the E𝑅𝑇𝑁 frame as is common in literature [1], [17]. Since the propagation is performed

in MEOEs, it is convenient to express these ideal thrust directions in these elements, as well as ®𝜆𝑟𝑝 [39]:

®𝜆E𝑅𝑇𝑁
𝑎 =



𝑓 sin (𝐿) − 𝑔 cos (𝐿)

1 + 𝑓 cos 𝐿 + 𝑔 sin 𝐿

0


(26)
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®𝜆E𝑅𝑇𝑁
𝑒 =



𝑓 sin (𝐿)−𝑔 cos (𝐿)√
𝑓 2+𝑔2√

𝑓 2+𝑔2+cos
(
𝐿−tan−1

(
𝑔

𝑓

))
(2+ 𝑓 cos (𝐿)+𝑔 sin (𝐿) )

1+ 𝑓 cos (𝐿)+𝑔 sin (𝐿)

0


(27)

®𝜆E𝑅𝑇𝑁
𝑟𝑝

=



( 𝑓 sin (𝐿) − 𝑔 cos (𝐿))
(

2
(
1−
√

𝑓 2+𝑔2
)

1− 𝑓 2−𝑔2 −
√︁
𝑓 2 + 𝑔2

)
2
(
1−
√

𝑓 2+𝑔2
)
(1+ 𝑓 cos (𝐿)+𝑔 sin (𝐿) )
1− 𝑓 2+𝑔2 −

(
𝑓 cos (𝐿)−𝑔 sin (𝐿)√

𝑓 2+𝑔2
+ cos (𝐸)

)
0


(28)

®𝜆𝑘 is a vector with its direction originating from the variational equations. Thus, maximising the component of ®𝑓𝑠 in

the direction of ®𝜆𝑘 is what maximises the rate of change of an orbital element 𝑘 . When the orbital element 𝑘 should be

decreased instead, ®𝜆𝑘 should be changed to −®𝜆𝑘 [17].

The ideal thrust direction ®𝜆 can be used to determine solar-sail angles for locally optimal sail steering. To enable

this, ®𝜆E𝑅𝑇𝑁 is transformed to the E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 frame and ®𝜆E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 = [𝜆𝑠1 , 𝜆𝑠2 , 𝜆𝑠3 ] is used instead. If the sail normal 𝑛̂

pointed in the same direction as ®𝜆, an ideal cone angle 𝛼̃ and ideal clock angle 𝛿 could be extracted from ®𝜆, see also their

definition in Figure 3 in subsection III.A. The ideal cone angle 𝛼̃ can then be obtained directly from ®𝜆E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 through:

𝛼̃ = sign(𝜆𝑠2 ) · cos−1 (𝜆𝑠1 ) (29)

Note that the sign of 𝛼̃ is equal to the sign of 𝜆𝑠2 to allow for negative cone angles.

Sails cannot necessarily provide thrust in the direction of ®𝜆 due to the solar-sail constraints on the cone angle and

they do not provide equal thrust in all directions. 𝑛̂ is therefore not necessarily equal to ®𝜆 and an optimisation scheme

based on maximising the inner product 𝑛̂ · ®𝜆 is used to optimise the component of ®𝑎𝑆𝑅𝑃 in the direction of ®𝜆. An

illustration of how an optimised cone angle 𝛼∗ can be obtained through maximising the projection of 𝑛̂ on ®𝜆 is shown in

Figure 5. This figure shows a contour in the (𝑠1, 𝑑)-plane which indicates the SRP-acceleration magnitude for different

cone angles, where 𝑑 is the projection of 𝑛̂ onto the (𝑠1, 𝑠2)-plane as shown in Figure 3.
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Fig. 5 An illustration of how the optimised cone angle 𝛼∗ is constructed from the ideal cone angle 𝛼̃. Image
adapted from McInnes (2004) [1].

The optimisation scheme to compute an optimised cone angle 𝛼∗ from an ideal cone angle 𝛼̃ is as follows [1]:

tan (𝛼∗) =
−3 +

√︃
9 cos (𝛼̃)2 + 8 sin (𝛼̃)2

4 sin (𝛼̃) (30)

The ideal clock angle 𝛿 can be found through [17]:

𝛿 = cos−1©­­«
𝜆𝑠3√︃

𝜆2
𝑠2 + 𝜆2

𝑠1

ª®®¬ (31)

The solar radiation pressure magnitude is independent from the clock angle and therefore 𝛿 = 𝛿∗. [17].

1. Seasonal effects

The orientation of the position vector of the Sun with respect to ®𝜆𝑎 and ®𝜆𝑒 changes during the year. This can

therefore lead to a seasonal variation in the cone and clock angles, which are defined with respect to the Sun-sail line.

An illustration of the orientation of ®𝜆𝑎 and ®𝜆𝑒 in the (𝑒1, 𝑒2) plane in E𝐸𝐶𝐼 during different seasons is shown in Figure 6

and Figure 7. This illustration is for the case Ω = 𝜔 = 𝑖 = 0 deg, 𝑒 << 1 and is not to scale. Note that when either 𝑎 or

𝑒 should be decreased instead, ®𝜆𝑎 and ®𝜆𝑒 flip direction.

It can be seen that the orientation of ®𝜆𝑎 with respect to the Sun-sail vector ®𝑟𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 displays no seasonal variation,

only daily variation. ®𝜆𝑎 is pointed towards the Sun as often as it is pointed away from the Sun, since the components

of ®𝜆𝑎 in E𝐸𝐶𝐼 oscillate during one revolution around the Earth. However, the orientation of ®𝜆𝑒 with respect to the

Sun-sail vector does show seasonal variation. The orientation of ®𝜆𝑒 in E𝐸𝐶𝐼 is constant during one revolution around

the Earth and as a result ®𝜆𝑒 is pointed away from the Sun during the winter solstice, but is pointed towards the Sun

during the summer solstice. Therefore, for Ω = 𝜔 = 𝑖 = 0 deg, 𝑒 << 1, ®𝜆𝑒 leads to small cone angles during the winter

solstice in a situation where the eccentricity should be increased, and during the summer solstice in a situation where
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Fig. 6 The orientation of ®𝜆𝑎 and ®𝜆𝑒 with respect to the Sun in the (𝑒1, 𝑒2) plane in E𝐸𝐶𝐼 for the summer solstice
(bottom), autumn equinox (right), winter solstice (top) and spring equinox (left). Not to scale.

the eccentricity should be decreased.

The 𝑒3-component of the Sun’s position vector in E𝐸𝐶𝐼 is not relevant during the equinoxes for Ω = 𝜔 = 𝑖 = 0 deg,

𝑒 << 1, as this component is zero. However, during the solstices it is relevant, since the Sun is then not located in the

(𝑒1, 𝑒2) plane and neither is the Sun-sail vector. Therefore, ®𝜆𝑒 is not pointed exactly towards the Sun during the summer

solstice or away from the Sun during the winter solstice in the situation where the eccentricity should be increased. In

that case, 𝛼 < 90 deg during the summer solstice and 𝛼 > 0 deg during the winter solstice and the 𝑒3 component of the

Sun’s position vector decreases the seasonal effects.

When either Ω or 𝜔 increases, ®𝜆E𝐸𝐶𝐼
𝑒 rotates counterclockwise in the (𝑒1, 𝑒2) plane and the situation shown in

Figure 6 occurs at an earlier time in the year, instead of the solstices and equinoxes. It is therefore difficult to make

optimal use of the orientation of ®𝜆𝑒 with respect to ®𝑟𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 .
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Fig. 7 The orientation of ®𝜆𝑎 and ®𝜆𝑒 with respect to the Sun in the (𝑒1, 𝑒3) and (𝑒2, 𝑒3) planes in E𝐸𝐶𝐼 for the
solstices and equinoxes. A cross indicates an out-of-plane vector pointed away from the reader, a circle indicates
an out-of-plane vector pointed towards the reader.

B. Accessibility-and-deficit blending method

Locally optimal steering laws are primarily meant for targeting one orbital element. When instead multiple orbital

elements are targeted, each prescribing a different ideal thrust direction ®𝜆𝑘 , a method is needed to combine these

directions into one direction which provides the cone angle 𝛼 and clock angle 𝛿 for solar-sail control. A commonly

used method is to average the ideal thrust directions based on weights, which can be defined in numerous ways. The

accessibility-and-deficit (AnD) blending method developed by Macdonald and McInnes is a fundamental example of

such a blending technique [17].

With any number of ideal thrust directions for orbital elements, the blended ideal thrust direction ®𝜆E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙
𝑏

is

obtained as follows:

®𝜆E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙
𝑏

=

∑
𝑘 𝑊𝑘

®𝜆E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙
𝑘

|∑𝑘 𝑊𝑘 |
(32)

where 𝑊𝑘 denotes the weight function of the ideal thrust direction for changing orbital element 𝑘 . By substituting

®𝜆E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙
𝑏

into equations (29), (30) and (31), one optimised cone angle 𝛼∗ and one optimised clock angle 𝛿∗ can be

derived, which is the goal of the blending method.

The weight functions 𝑊𝑘 from Eq. (32) indicate a form of priority for certain steering directions ®𝜆𝑘 , based on the

sailcraft state. These weight functions are composed of two scores: an accessibility score and a deficit score. The

accessibility score 𝑆𝑎𝑐𝑐(k) for the steering for an orbital element 𝑘 is unique to solar sailing, as it represents the utilisation

of the sail in terms of acceleration magnitude. The accessibility score is equal to [17]:
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𝑆𝑎𝑐𝑐(k) = cos (𝛼∗
𝑘)

2 (33)

Normalisation occurs with regard to the largest accessibility score, such that all individual accessibility scores are

between zero and one. 𝛼∗
𝑘

is the optimised cone angle for changing an orbital element 𝑘 . A larger accessibility score

indicates a larger solar-sail acceleration magnitude and therefore a more efficient usage of the sail.

The deficit score instead is based on the rate of change of an orbital element 𝑘 using optimised cone angles 𝛼∗
𝑘

and

clock angles 𝛿∗
𝑘

originating from an ideal thrust direction ®𝜆𝑘 . A longer required time to reach the target value leads to

a larger deficiency score. The target values are the same as mentioned in section II. From the resulting angles, the

direction of the sail normal 𝑛̂E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙
𝑘

can be found using:

𝑛̂
E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙
𝑘

=



cos (𝛼∗
𝑘
)

sin (𝛼∗
𝑘
) sin (𝛿∗

𝑘
)

sin (𝛿∗
𝑘
) cos (𝛿∗

𝑘
)


(34)

Through a conversion of this vector into the E𝑅𝑇𝑁 reference frame and multiplication with 𝑎𝑐 cos (𝛼∗
𝑘
)2, the

solar-sail acceleration ®𝑎E𝑅𝑇𝑁

𝑆𝑅𝑃
can be found. Together with the other accelerations of the dynamical model as well as the

mass, the thrust vector ®𝑓𝑠 can be found and Eq. (21) can be used to find the rate of change 𝑑𝑘
𝑑𝑡

. The deficit score 𝑆𝑑𝑒 𝑓 (k)

for the steering direction for an orbital element 𝑘 is then defined as [17]:

𝑆𝑑𝑒 𝑓 (k) = 𝑡𝑒𝑛𝑑(k) =
𝑘𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑘𝑡

𝑑𝑘
𝑑𝑡

(35)

with 𝑡𝑒𝑛𝑑(k) the time required to reach the target orbital element 𝑘𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑘𝑡 the value of an orbital element at the

current time 𝑡. Like for the accessibility score, the deficit scores for the individual orbital elements are normalised

according to the largest deficit score.

Following the method of Macdonald and McInnes, the normalised accessibility and deficit scores are added

to form the weight functions 𝑊𝑘 , resulting in a value between zero and two: 𝑊𝑎 = 𝑀𝑊𝑎
(𝑆𝑎𝑐𝑐(a) + 𝑆𝑑𝑒 𝑓 (a)) and

𝑊𝑒 = 𝑀𝑊𝑒
(𝑆𝑎𝑐𝑐(e) + 𝑆𝑑𝑒 𝑓 (e)). 𝑀𝑊𝑎

and 𝑀𝑊𝑒
are weight multiplier factors. Their usage is suggested by Macdonald and

McInnes in case of a lacking performance of the AnD blending method. These weight multiplier factors allow for better

tuning of the solar-sail angles behaviour and can be found through a numerical analysis. In practice, tuning of these

weight multiplier factors is often necessary when using the AnD blending method [17]. The rationale behind summation

of the accessibility and deficit scores instead of, for example, multiplication is that multiplication would give individual

scores too much influence over the weight functions 𝑊𝑘 , for example if one of the scores is zero [17]. From the weight

functions 𝑊𝑘 , one control vector ®𝜆E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙
𝑏

can be found through Eq. (34).
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There are a number of advantages and disadvantages of this AnD blending method, originating from its characteristics.

An advantage is that the calculations of the scores are only dependent on the current value of the orbital parameters

and are independent of the time since the first epoch. This independence of time greatly simplifies the calculation

process for the control, which speeds up the process of computing the solar-sail angles at each epoch compared to other

control methods. Another advantage, which is particularly relevant for this work, is that the AnD blending method

allows blending of any locally optimal thrust direction ®𝜆𝑘 , which makes it comparatively easy to adapt the method to

include SEP thrust control parameters. However, the optimality of the resulting solar-sail angles depends heavily on the

method of blending the locally optimal steering vectors ®𝜆𝑘 , which is also noted by Macdonald and McInnes [17]. While

the weight functions are already more robust than earlier work on Earth-escape trajectories, where they were defined

based on simple exponential relationships [39], the weight functions of the AnD blending method are still relatively

simple and sensitive to (changing) input. Despite the inherent simplifications of the AnD blending method, the method

is applicable for on-board controllers, as the controller would be able to automatically correct for anomalies [17].

C. Piecewise control

To compare the performance of the AnD blending method, another analytical method is defined for using multiple

different locally optimal steering laws, namely piecewise control. With this control method, orbital parameters are

targeted one by one, instead of at the same time like in the AnD blending method. In the GEO use case of this paper, the

semi-major axis and the eccentricity are targeted.

Using piecewise control, first the optimal steering direction for the semi-major axis ®𝜆𝑎 is used for control until

the semi-major axis target is reached and |𝑎 − 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 | < 𝑇inner(a) for a predefined inner tolerance level 𝑇inner(a).

Then, the optimal steering direction for the eccentricity ®𝜆𝑒 is employed until the eccentricity target is reached and

|𝑒 − 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 | < 𝑇inner(e) for another predefined inner tolerance level 𝑇inner(e). When |𝑒 − 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 | < 𝑇inner(e) holds, it is

checked whether |𝑎 − 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 | < 𝑇outer(a) still holds, with an outer tolerance level 𝑇outer(a) > 𝑇inner(a). If this is not the

case, the optimal steering direction for the semi-major axis ®𝜆𝑎 is employed again for control until |𝑎 − 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 | < 𝑇inner(a).

This procedure is followed iteratively until both |𝑎 − 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 | < 𝑇outer(a) and |𝑒 − 𝑒𝑡𝑎𝑟𝑔𝑒𝑡 | < 𝑇outer(e).

D. Hybrid solar-sailing/SEP control

When considering hybrid solar-sailing/SEP control, it is useful to augment the acceleration contour for the SRP

acceleration introduced in Figure 5 by adding the SEP acceleration to obtain the total acceleration contour. This

augmentation is similar to the inclusion of the aerodynamic acceleration contour by Carzana et al. (2022) [33]. Since the

SEP-acceleration magnitude is independent of the SEP-acceleration direction, adding the SEP-acceleration is equivalent

to placing circles with their centre along each point of the SRP-acceleration contour and tracing the contour of the

resulting figure, see Figure 8. The radius of these circles represents the SEP-acceleration magnitude | ®𝑎𝑆𝐸𝑃 |.
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Fig. 8 Construction of the total acceleration contour in dimensionless units (left) and visualisation of ®𝑎𝑆𝑅𝑃 ,
®𝑎𝑆𝐸𝑃 and ®𝑎𝑇𝑜𝑡 for a specific vector ®𝜆 (right).

Quantification of the total acceleration contour into an equation can be done through coordinate transformation. A

position vector ®𝜌𝑆𝑅𝑃 can be defined in the E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 frame, pointing to an arbitrary point (𝑠1, 𝑠𝑑) described by

𝑠1 = sin (𝛼) cos (𝛼)2 and 𝑠𝑑 = cos (𝛼)3 on the SRP-acceleration contour. 𝑠𝑑 is the coordinate of a vector in the

E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 frame along the 𝑑-direction, see Figure 3. The total acceleration contour can be described in the E𝑆𝑢𝑛−𝑠𝑎𝑖𝑙

frame through ®𝜌𝑇𝑜𝑡 = ®𝜌𝑆𝑅𝑃 + ®𝜌𝑆𝐸𝑃 pointing to a point (𝑠′1, 𝑠
′

𝑑
), see Figure 8. ®𝜌𝑆𝐸𝑃 is a vector centred at (𝑠1, 𝑠𝑑)

oriented perpendicular to the SRP-acceleration contour. The direction of ®𝜌𝑆𝐸𝑃 is described through the derivative 𝑑𝑠𝑑
𝑑𝑠1

of the SRP-acceleration contour as follows:

®𝜌𝑆𝐸𝑃 =

[
−𝜁 𝑑𝑠𝑑

𝑑𝛼
𝜁
𝑑𝑠1
𝑑𝛼

]𝑇
(36)

𝜁 =
|𝑎 |𝑆𝐸𝑃√︃

4 cos (𝑥)2 − 3 cos (𝑥)4
(37)

With this, ®𝜌𝑇𝑜𝑡 pointing to (𝑠′1, 𝑠
′

𝑑
) is constructed as:

𝑠
′

1 = 𝑠1 − 𝜁
𝑑𝑠𝑑

𝑑𝛼
= 𝑠1 − 𝜁 (−3 sin (𝛼) cos (𝛼)2) = (3𝜁 + 1) (sin (𝛼) cos (𝛼)2) (38)

𝑠
′

𝑑 = 𝑠𝑑 + 𝜁
𝑑𝑠1
𝑑𝛼

= 𝑠𝑑 + 𝜁 (cos (𝛼)3 − 2 sin (𝛼)2 cos (𝛼)) = (𝜁 + 1) cos (𝛼)3 − 2𝜁 sin (𝛼)2 cos (𝛼) (39)

The total acceleration magnitude is then:

| ®𝑎𝑡𝑜𝑡 | = | ®𝜌𝑇𝑜𝑡 | =
√︃
𝑠
′
1

2 + 𝑠
′
𝑑

2 (40)
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The shape of the total acceleration contour is equal to the shape of the SRP-acceleration contour only for infinitesimal

small SEP accelerations and is circular for infinitely large SEP accelerations. For other values, the shape is a blend

between the shape of the SRP-acceleration contour and a circle. For SEP accelerations in the same order of magnitude

as the SRP accelerations, the total acceleration contour has a shape very similar to the SRP-acceleration contour.

However, the total acceleration contour is not directly needed to determine the optimal control for the SEP acceleration

when locally optimal steering laws are used. Maximising ®𝜆 · ®𝑎𝑡𝑜𝑡 , the total acceleration component along the direction

of ®𝜆, leads to maximising ®𝜆 · ( ®𝑎𝑆𝑅𝑃 + ®𝑎𝑆𝐸𝑃) = ®𝜆 · ®𝑎𝑆𝑅𝑃 + ®𝜆 · ®𝑎𝑆𝐸𝑃 . These terms can be maximised individually. The

first term can be maximised following the optimisation procedure introduced in Eq. (30), while the second term directly

leads to an SEP-thrust direction along the direction of ®𝜆. This leads to 𝛾 = 𝛼∗ and 𝜖 = 𝛿∗, following their definitions

given in subsection III.D. The total acceleration contour itself is thus not used further in this paper. Analogously to

Figure 5, Figure 8 also shows a diagram showing ®𝑎𝑆𝑅𝑃 , ®𝑎𝑆𝐸𝑃 and ®𝑎𝑇𝑜𝑡 for a specific vector ®𝜆. Note that ®𝑎𝑆𝐸𝑃 is not

parallel to ®𝑎𝑆𝑅𝑃 .

V. Algorithm tuning and validation
This section presents the results of the tuning process for the AnD blending method to the GEO use case of this paper

in subsection V.A, as well as validation of single round-trip mission time results from the AnD blending method with

results from alternative control methods, both analytical and numerical, in subsection V.B. For all analyses, dynamical

model settings from Table 1 are used unless otherwise mentioned. Integration is performed using an RK4 integrator

with a fixed step size of 50 s, following an analysis based on integration errors for various step sizes. Computation

of the control as well as the integration and propagation is performed on a personal CPU with an Intel(R) Core(TM)

i7-6700 HQ CPU @ 2.60 GHz processor. Variable simulation settings for the different tuning and validation test cases

can be found in Table 3. A mission is seen as finished when |𝑎 − 𝑎target | < 1 km and |𝑒 − 𝑒target | < 5.0 · 10−4.

A. Algorithm tuning and typical behaviour

As mentioned in subsection IV.B, before a quantitative analysis of the mission time results is presented, first the

appropriate weight multiplier factors 𝑀𝑊 for the semi-major axis weight function 𝑊𝑎 and the eccentricity weight

function 𝑊𝑒 must be found to allow for optimal performance of the AnD blending method [17]. These weight multiplier

factors are multiplied by the AnD blending weight functions 𝑊𝑘 used in Eq. (32) to have more control over the weights

for ®𝜆𝑘 , as defining the weights based on the accessibility and deficit score alone often does not yield the desired effect.

Since there are only two weight functions, 𝑊𝑎 and 𝑊𝑒, the weight multiplier factor for 𝑊𝑎 can be defined with respect

to the weight multiplier factor for 𝑊𝑒. If the weight multiplier factor for 𝑊𝑎 has a value above one, the steering law for

the semi-major axis gains more priority, while a value below one results in more priority for the steering law for the

eccentricity.
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Table 3 Variable simulation settings used for the tuning and validation test cases of this paper. Mass 𝑡0 is
the sum of the sailcraft mass and the debris object mass. †: initial time not mentioned in literature, Eq./sols.:
equinoxes and solstices, *: literature also uses 𝐽3-perturbation. Base: baseline dynamical model explained in this
paper.

Setting Tuning Typical Anal. comp. Kelly (2017) Kelly (2021) Mei (2022)
Sail area [m2] 15000 15000 15000 800 1200 140
Mass 𝑡0 [kg] 500 + 500 500 + 500 500 + 500 50 + 1000 100 + 1100 500 + 500
Δ𝑟𝑝 [km] 243 243 243 350 250 300
Out/in Both Both Both Both Both Out
Out 𝛽 0.023 0.023 0.023 0.0012 0.0015 0.0022
In 𝛽 0.046 0.046 0.046 0.025 0.019 -
𝑇𝑆𝐸𝑃 [mN] 0 0 0 0 0 0
𝑡0 June 21st, 2000 June 21st, 2000 June 21st, 2000 June 21st, 2000 † Eq/sols. 2000 † Jan 1st, 2017
𝑎𝑡0 [km] 42 167 42 167 42 167 42 164 42 172 42 164
Dyn. model Base Base Base Base Base Base*
Propagator RK4 RK4 RK4 RK4 RK4 RK4

For the two separate parts of the mission, outward and inward, only two different weight multiplier factors 𝑀𝑊,𝑜

(outward) and 𝑀𝑊,𝑖 (inward) are then used. Finding the optimal values for these two weight multiplier factors is done

through a grid search and comparing the resulting mission times for a range of values for 𝑀𝑊,𝑜 and 𝑀𝑊,𝑖 . Simulation

settings for this weight multiplier factor analysis are found under the test case name "Tuning" in Table 3. The mission

time results of the weight factor multiplier analysis are shown in Figure 9.

Fig. 9 Mission time as a function of the 𝑀𝑊,𝑜 and 𝑀𝑊,𝑖 for the semi-major axis weight

Figure 9, which uses grid sizes of 0.25 for the vertical and 0.0005 for the horizontal axis, shows that the mission time

is dependent on both 𝑀𝑊,𝑜 and 𝑀𝑊,𝑖 . It is found that values for 𝑀𝑊𝐹,𝑖 larger than 0.0015 do not result in convergence

and the mission time shown in Figure 9 is equal to the maximum propagation time. It can be seen that 𝑀𝑊,𝑜 = 0.75 and
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𝑀𝑊,𝑖 = 0 are the optimal weight multiplier factors resulting in round-trip minimal time trajectories. A noteworthy

result from Figure 9 is that the control during the inward transfer reduces to using a locally optimal steering law for the

eccentricity. Further analysis with finer grids confirms these optimal values. The fact that results can be very dependent

on algorithm tuning settings is not unexpected for the GEO use case, as Kelly and Bevilacqua noted that 10% of their

simulations using numerically optimised control resulted in mission times longer than ten years, while mission times

of one year were expected [14]. Weight multiplier factors 𝑀𝑊,𝑜 = 0.75 and 𝑀𝑊,𝑖 = 0 are used for all subsequent

simulations using the AnD blending method.

Next, the general behaviour of the orbital elements and solar-sail angles following usage of the AnD blending

control are analysed, as the behaviour of these parameters in the GEO use case is not known from literature. Simulation

settings for this typical behaviour analysis are shown in Table 3 with the test case name "Typical". The behaviour of the

semi-major axis and the eccentricity throughout the outward and inward transfers when AnD blending control is used is

shown in Figure 10.

Fig. 10 Semi-major axis (left) and eccentricity (right) behaviour for a typical trajectory using AnD blending
control

These figures show the change of the semi-major axis and the eccentricity over time, as well as the parameter

boundary conditions for the outward and inward transfer and the end moment of the outward and inward transfers. It can

be seen that the outward transfer takes much less time than the inward transfer. This result shows that it is much quicker

to increase the semi-major axis and the eccentricity using AnD blending control than to decrease these parameters.

Note that the round-trip mission time in Figure 10 is 460 days, equal to the optimal value in Figure 9. The oscillations

visible in Figure 10 are due to seasonal variation in the steering direction ®𝜆𝑏. This phenomenon is further discussed

in subsection VI.A. Figure 10 shows one round-trip mission, though once GEO has been reached and a new debris
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object has been targeted, another outward transfer could be started. The mission time per round-trip can be significantly

reduced when the target value for the eccentricity for the GEO region is for example 0.005 instead of 0, as decreasing

the eccentricity is a time-consuming process with AnD blending control. However, as mentioned in section II, most

debris objects have orbits with eccentricities smaller than 0.0005.

The typical behaviour of the cone angle 𝛼 and clock angle 𝛿 with AnD blending control is shown in Figure 11. This

figure shows the behaviour in the intervals [4,5] days for the outward transfer and [290,291] days for the inward transfer,

which is seen as representative.

Fig. 11 Cone angles (left) and clock angles (right) for a typical outward (top) and inward (bottom) transfer using
AnD blending control, zoomed into the [4-5]-day (outward transfer) and [290-291]-day (inward transfer) intervals

It can be seen that both solar-sail angles change periodically over the course of approximately one day during the

inward transfer, or equivalently one revolution. There is no periodic behaviour visible during the outward transfer.

At some moments during the inward transfer, there are quick changes in the solar-sail angles. Here, the AnD scores
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𝑆𝑎𝑐𝑐,e and 𝑆𝑑𝑒 𝑓 ,e rapidly change due to changes in the dynamics, namely daily variation in the difference between

the ideal cone angle 𝛼̃ and the optimised cone angle 𝛼∗. Figure 11 shows that the locally optimal steering law for the

eccentricity results in large cone angles 𝛼, as the absolute value averages 80 deg. Large cone angles like these lead to a

small resulting SRP-acceleration.

Lastly, Figure 12 shows the accessibility and deficit scores for the semi-major axis and the eccentricity for the time

interval 290-291 days. Note that 𝑀𝑊,𝑖 = 0 and the AnD scores for the semi-major axis have no influence on the control

during this time interval.

Fig. 12 Accessibility (left) and deficit scores (right) for a typical outward (top) and inward (bottom) transfer
using AnD blending control, zoomed into the [4-5]-day (outward transfer) and [290-291]-day (inward transfer)
intervals

The accessibility score shows a differentiable behaviour for both the semi-major axis and the eccentricity. The

deficit score however shows several non-differentiable parts during the given time interval. These events occur when the

rate of change 𝑑𝑘
𝑑𝑡

of an orbital element 𝑘 is zero while calculating the deficit score. When this situation occurs for the

eccentricity, the control resulting from the AnD blending method does not lead to the desired change in the eccentricity.
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This result can be explained using Figure 13. The accessibility score for the eccentricity shown in Figure 12 reaches

much smaller values than the accessibility score for the semi-major axis. This result can be explained through the

direction of ®𝜆𝑒, which results in |𝛼̃𝑒 | > 90 deg during most of the inward transfer. Following the optimisation procedure

of Eq. (30), the magnitude of the optimised cone angle |𝛼∗
𝑒 | is then close to 90 deg. For ®𝜆𝑎 it holds that |𝛼̃𝑎 | < 90 deg

and |𝛼∗
𝑎 | < |𝛼∗

𝑒 |. The large difference between |𝛼̃𝑎 | and |𝛼̃𝑒 | results in a similar difference between 𝑆𝑎𝑐𝑐,a = cos (𝛼∗
𝑎)2

and 𝑆𝑎𝑐𝑐,e = cos (𝛼∗
𝑒)2.

Fig. 13 Illustration how different directions for ®𝜆𝑎 and ®𝜆𝑒 can lead to different SRP-acceleration magnitudes.
Image adapted from McInnes (2004) [1].

B. Validation

As one of the aims of the paper is to assess the usability of the AnD blending method to the GEO use case,

comparison of the mission time results from the AnD blending with mission time results from literature is performed, as

well as with mission time results for other analytical control methods described in section IV. This is done through

reproduction of specific test cases.

1. Comparison with other analytical control methods

In section IV, two analytical control methods have been discussed which could form an alternative to the AnD

blending method, namely piecewise control and usage of the locally optimal control law for the pericenter radius

increase, the latter only during the outward transfer. These control strategies are used to generate outward and inward

transfers and the resulting mission times are compared with the ones from the AnD blending method. Simulation

settings can be found in Table 3 under the name "Anal. comp.". These settings are identical to the ones for the AnD

blending algorithm tuning. The behaviour of the semi-major axis and the eccentricity for the AnD blending control can

be seen in Figure 10.

Usage of the locally optimal steering law for the pericenter during the outward transfer yields identical results to
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Figure 10. The overlap of results indicates that the control strategy of the AnD blending method leads to the quickest

possible increase for the pericenter during the outward transfer using analytical control, which is the result of tuning the

weight multiplication factor 𝑀𝑊,𝑜.

Piecewise control, introduced in subsection IV.C, can be used for both outward and inward transfers. Outer tolerances

of 𝑇outer(a) = 1 km and 𝑇outer(e) = 1 · 10−4 and inner tolerances 𝑇inner(a) = 0.1 km and 𝑇inner(e) = 1 · 10−5 are used for the

analytical comparison test case. The typical behaviour of the semi-major axis and the eccentricity using piecewise

control in the GEO use case is shown in Figure 14. Note that the semi-major axis and the eccentricity show a continuous

behaviour throughout the trajectory, though these elements occasionally change rapidly over time.

Fig. 14 Semi-major axis (left) and eccentricity (right) behaviour when piecewise control is applied

The outward transfer is completed within ten days, but the inward transfer takes almost 1300 days which is much

more than the 460 days shown in Figure 10 obtained with the AnD blending method with the same simulation settings.

During most of the inward transfer, the eccentricity steering law is applied, resulting in overshooting in the sense that

the semi-major axis decrease below the semi-major axis for GEO orbits. Another reason for the difference in mission

times is that the piecewise control results in larger semi-major axis and eccentricity values when the outward transfer

finishes compared to the AnD blending results. Therefore, it takes more time to reduce these relatively large values back

to the target values for the inward transfer.

2. Comparison with numerical control methods from literature

In literature, three test cases for GEO debris removal using solar sailing exist, using various numerical optimisation

techniques for finding minimum-time trajectories for the round-trip mission. Specifics regarding these three validation

test cases from literature can be found in Table 3. The first validation test case from literature analysed in this paper is
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from the work of Kelly (2017) [14], where Lyapunov control is used for optimisation. The second validation test case

from literature concerns the work of Kelly (2021) [15], where numerical control is much improved through a Gaussian

quadrature implicit integration method with collation applied at Legendre-Gauss-Radau points. Numerical optimisation

is then performed using SNOPT, a sparse nonlinear programming software package [15]. Both these validation test

cases from Kelly assume much smaller sailcraft masses than what is currently feasible. The third validation test case

from literature is from the work of Mei (2022) [16], where only the outward transfer to the graveyard orbit is discussed.

Pseudospectral control techniques are applied for trajectory optimisation and mission parameters which are possible

with current-day technology are used in the modelling. Validation test cases use the simulation settings from Table 1,

unless mentioned otherwise in Table 3.

The AnD blending method is applied to reproduce these three validation test cases from literature. The mission times

resulting from the AnD blending method are then compared to values from literature to understand how well the AnD

blending method performs for finding minimum-time trajectories. Additionally, the behaviour of control parameters and

orbital elements throughout the mission are compared wherever possible. All results are compared in Table 5 at the end

of this section.

The propagated results for the reproduction of the validation test case of Kelly (2017) are shown in Figure 15,

comparing the behaviour of the semi-major axis and the eccentricity originating from AnD blending control with

those from Kelly (2017) [14]. Note that for neither the AnD blending control nor the results from Kelly (2017), a zero

eccentricity is reached at the end of the mission. The behaviour of the orbital elements throughout the mission using

AnD blending control is very different from the results from Kelly (2017), since no orbit circularisation at the graveyard

orbit takes place using AnD blending control and orbital element oscillations are smaller compared to the results from

Kelly (2017). It can be seen that the Lyapunov control of Kelly results in shorter mission times, as the end of the inward

transfer is reached within 450 days, while this takes 640 days with the AnD blending control. One reason why the

mission times are different is that the AnD blending control leads to a larger change in the semi-major axis and the

eccentricity than with the control from Kelly (2017). However, the semi-major axis and eccentricity values lead to the

same pericenter value for both the AnD reproduction as the results from Kelly (2017), see also Table 3, but it takes much

time to decrease these parameters again. Unfortunately, Kelly and Bevilacqua did not share the cone and clock angle

profiles for this test case, which makes further in-depth validation difficult.

For the validation test case of Kelly (2021) [15], the total mission time composed of an outward and inward transfer

takes approximately 150 days, which is much less than the results of Kelly (2017) despite a smaller lightness number

during the inward transfer for the case of Kelly (2021) [14]. Table 3 shows the simulation settings for this test case. The

outward transfer takes 90 days, while the inward transfer takes 60 days. There is a seasonal effect visible on the mission

time results [15].
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Fig. 15 Behaviour of relevant orbital elements for the reproduced test case with AnD blending control (left) and
from literature (right), for the study of Kelly (2017) [14]

The behaviour of the orbital parameters and solar-sail angles using AnD blending control for the test case reproduction

of Kelly (2021) is very similar to the behaviour seen for the test case reproduction of Kelly (2017) and is therefore not

shown separately. The mission times for different mission starting dates are shown in Table 4. The average mission time

obtained using AnD blending control is 758.5 days, 5.1 times more than with the numerical control of Kelly (2021) [15].

Note that the variation in mission times in the results from Kelly (2021) is approximately 3% for different mission start

dates, but this variation is 20% for the results from the AnD blending method.

Thirdly, a comparison is performed with the results from Mei (2022) [16]. Simulation settings can be found in

Table 3. Their numerical control results in an outward transfer time of 350 days, reaching an eccentricity of 0.006 in the

graveyard orbit. A comparison between AnD blending control and literature for the semi-major axis and eccentricity

results is shown in Figure 16. Note that the first 20 days are cut off in the graphs from Mei (2022), as their optimisation

method shows poor convergence in this region [16]. The control of Mei (2022) makes it possible to raise the semi-major

axis nearly linearly while keeping the eccentricity below 0.003. However, eccentricity values below 5 · 10−4 are not
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Table 4 Mission times for different mission starting dates for the test case of Kelly (2021) [15]. All values are in
days. The inward transfer time for Kelly (2021) averaged 59 days.

Initial date Outward transfer time Kelly (2021) Outward transfer time AnD Total mission time AnD
Spring equinox 90.07 122.9 838.8
Summer solstice 93.30 100.2 611.7
Autumn equinox 89.10 101.9 753.4
Winter solstice 87.83 152.4 830.0
Average 90.00 119.4 758.5

reached in the results from Mei (2022) due to controller instability, while a zero eccentricity is targeted. The outward

transfer takes 350 days [16]. It takes approximately 625 days for the AnD blending control algorithm to complete the

outward transfer, approximately 1.8 times longer compared to the mission times from Mei (2022). Like for previous

validation test cases, the AnD blending method reproduction shows semi-major axis and eccentricity values which are

larger than in the case of Mei (2022). However, the eccentricity shows a different behaviour than for other test cases, as

near-zero values are reached during the outward transfer. This result is caused by the fact that the outward transfer takes

much more time than for previous test cases, and near the autumn equinox the eccentricity steering law results in much

larger AnD scores than in other seasons, which changes the control. This phenomenon is discussed in more detail in

subsection VI.A.

The cone and clock angles are also given in the research of Mei (2022), though the cone angle 𝛼 in their work is

defined in the interval [0, 90] deg instead of [−90, 90] deg of this work. Following a conversion of the cone angles, it is

found that |𝛼 | is on average approximately 40 deg for Mei (2022), but approximately 61 deg for results with the AnD

blending control. This difference in average |𝛼 | results in an average value for |𝑎𝑆𝑅𝑃 | which is a factor 2.3 larger for the

research of Mei (2022) than for the AnD reproduction following Eq. (12). This difference in |𝑎𝑆𝑅𝑃 | is influential for

understanding the difference in mission time between literature and the AnD reproduction.

Table 5 Results from literature compared with results from the AnD blending method [14–16]. Reprod.:
reproduction

Parameter Kelly (2017) Reprod. Kelly (2021) Reprod. Mei (2022) Reprod.
Max Δ𝑎 [km] 350 800 390 780 305 445
Max Δ𝑒 [-] 7.8 · 10−3 1.0 · 10−2 3.2 · 10−3 1.2 · 10−2 3.0 · 10−3 4.2 · 10−3

Δ𝑟𝑝 [km] 350 350 250 250 300 300
Transfer time (out) [days] 220 165 90 119 350 625
Transfer time (in) [days] 250 465 60 640 - -
Transfer time (tot) [days] 450 630 150 759 350 625
Factor difference w. literature - 1.4 - 5.1 - 1.8
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Fig. 16 Behaviour of relevant orbital elements for the reproduced test case with AnD blending control (left) and
from literature (right), for the study of Mei (2022) [16]

The factor difference with literature shown in Table 5 is significantly different among the test case reproductions.

However, this difference is partially due to the usage of different numerical optimisation techniques in literature as well

as the usage of different pericenter boundary conditions for the different test cases. The sensitivity of mission time

results using the AnD blending control to mission parameters is further discussed in section VI.

For the analysis further in this work, it can be concluded that the AnD blending method is not as well suited as

numerical control from literature for finding minimum-time trajectories for the GEO use case described in this paper.

VI. Results
This section discusses the results of using the AnD blending method to obtain mission times for the GEO use case

discussed in this paper. A sensitivity analysis of the mission time results for various mission parameters is presented,

namely the time of the initial epoch, the sail area, the debris mass and the SEP acceleration magnitude. Table 6 shows

the simulation settings for the simulations of this section.
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Table 6 Variable simulation settings used for the test cases throughout this paper. Mass 𝑡0 is the sum of the
sailcraft mass and the debris object mass. Base: baseline dynamical model explained in this paper, sol.: solstices,
eq.: equinoxes.

Setting Seasonal sensitivity Sail area sensitivity Debris mass sensitivity SEP acceleration sensitivity
Sail area [m2] 15000 7500 to 15000 7500 to 15000 7500 to 15000
Mass 𝑡0 [kg] 500 + 500 500 + 500 500 + 250 to 1000 500 + 500
Δ𝑟𝑝 [km] 243 243 241 to 246 243
Out/in Both Both Both Both
Out 𝛽 0.023 0.012 to 0.023 0.0058 to 0.023 0.012 to 0.023
In 𝛽 0.046 0.023 to 0.046 0.023 to 0.046 0.023 to 0.046
𝑇𝑆𝐸𝑃 [mN] 0 0 0 0 to 2.5
𝑡0 Jan 1st - Dec 30th 2000 Sol. + Eq. in 2000 June 21st/Sep 22nd 2000 Jan 1st - Dec 30th 2000
Dyn. model Base Base Base Base
Propagator RK4 RK4 RK4 RK4

A. Seasonal Variation

As mentioned in subsubsection IV.A.1, the control originating from the locally optimal steering law for 𝑒 shows a

seasonal dependence. This seasonal effect is visible in earlier test cases as a non-constant decrease of the eccentricity

and semi-major axis. The sensitivity of the mission time results on the seasonal variation is analysed by repeating the

baseline simulation resulting from the tuning of the AnD blending method for a range of times for the initial epoch. The

simulation settings can be found in Table 6 under the name "Seasonal sensitivity". The results are shown in Figure 17.

Fig. 17 Mission time as a function of the mission start date using the AnD blending method.

Figure 17 shows that the mission times resulting from starting dates between the summer solstice and the winter

solstice are approximately equal to the mission times resulting from starting dates between the winter solstice and the

summer solstice and therefore a periodicity is present. The spread of mission times for different starting epochs 𝑡0 is

large: the mission time has a variation of 25% depending on the initial epoch. Figure 6 shows that for a mission starting
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time during the winter solstice, the orientation of ®𝜆𝑒 with respect to ®𝑟𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 is optimal, assuming Ω = 𝜔 = 𝑖 = 0 deg,

𝑒 << 1 and 𝑒 > 𝑒target.

From the visualisation of Figure 6, it is expected that starting dates near the winter solstice lead to the shortest

mission times, while starting dates near the summer solstice lead to the longest mission times, explained by a difference

in cone angle. However, that situation only holds for Ω = 𝜔 = 𝑖 = 0 deg, 𝑒 << 1. From the simulations which are

performed for investigating the effect of seasonal variation on the mission time results, it is seen that both Ω and 𝜔

change significantly during the propagation. This change of orbital elements occurs in such a way that starting dates near

the spring and autumn equinoxes lead to longer mission times, while starting dates near the winter and summer solstices

lead to shorter mission times. Thus, the significant difference in behaviour of Ω and 𝜔 during the outward transfer for

different mission start dates is the main cause for the strong seasonal variation of mission times seen in Figure 17.

B. Sail area

While the relation between the sail area and the mission time is generally well understood, it is known from literature

that even for relatively simple cases such as Earth-escape trajectories with solar sailing, the curve of the time of flight as

a function of the sail area or lightness number is not a smooth curve [39]. Simulations are performed to analyse the

mission time behaviour for varying sail areas. Table 6 shows the simulation settings used for this test case under the

name "Sail area sensitivity”. The mission time results for starting times during different equinoxes and solstices are

shown in Figure 18.

Fig. 18 Sensitivity of the mission time to the sail area using the AnD blending control, for starting times 𝑡0
during different solstices (sol.) and equinoxes (eq.).

Figure 18 shows that a larger sail area leads to a smaller mission time. It can be seen that the behaviour of the

mission time as a function of the sail area is similar for starting times during either solstice on one side and either

equinox on the other side. Further analysis shows that the relationship between the sail area and the mission time
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does not follow an exponential trend seen in the research on Earth-escape trajectories by Macdonald [39]. The lack of

exponential trend can be explained by the seasonal dependence of the orientation of ®𝜆𝑒 to ®𝑟𝑆𝑢𝑛−𝑠𝑎𝑖𝑙 , while ®𝜆𝑎, used for

Earth-escape strategies, does not show this seasonal dependence.

C. Debris mass

The debris mass is a relevant parameter during the outward transfer, as it influences both the lightness number and

the boundary conditions for the end of the outward transfer. Therefore, a sensitivity analysis is performed for the debris

object mass 𝑚𝑑 . Simulation settings can be found in Table 6 under the name "Debris mass sensitivity". The resulting

mission times for a variety of debris object masses 𝑚𝑑 and sail areas 𝐴 are shown in Figure 19. The mission time

results of this graph are averaged for starting times at the summer solstice and the autumn equinox, as Figure 17 shows a

dependence between the mission time and the time of the initial epoch.

Fig. 19 Sensitivity of the mission time to the sail area and debris object mass using the AnD blending control.
Mission times are averaged for start dates at the summer solstice and the autumn equinox.

Figure 19 shows mostly horizontal lines for the mission times as a function of debris mass. Therefore, usage of the

AnD blending method for the GEO use case leads to mission times which are almost independent of the debris mass.

This debris mass independence stems from the relatively short duration of the outward transfer using the AnD blending

control. The short duration of the outward transfer is not seen in other literature regarding solar-sailing applications

for GEO debris removal and as such, the fact that mission times are independent of the debris object mass cannot be

generalised [14, 15].

D. SEP acceleration

The mission times for a repeatable GEO debris removal mission using only SRP acceleration have been shown

to be relatively large, even using the numerically optimised control of Kelly and Mei [15] [16]. The coupling of the

35



SRP-acceleration magnitude and direction have been shown to be impactful for the mission design for the GEO use case.

In this section, a hybrid SEP/SRP-propulsion system is analysed instead and the influence of additional SEP acceleration

on the mission time results is investigated. The control of the direction of SEP acceleration has been discussed in

subsection IV.D. Simulations are performed for the same range of sail areas as in subsection VI.B for various SEP

thrust levels and are averaged over different times for the first epoch. Simulation settings can be found in Table 6 under

the name "SEP acceleration sensitivity". The mission time results are shown in Figure 20.

Fig. 20 Sensitivity of the mission time to the sail area and the SEP-thrust level using AnD blending control.
Mission times are averaged for different mission start dates during the year 2000.

Figure 20 shows that mission times decrease for increasing SEP thrust levels, though the difference between the

mission time results using 0 mN of SEP thrust and 0.5 mN of SEP thrust is larger than the difference between, for

example, the mission time results using 2 mN of thrust versus 2.5 mN of thrust, both in an absolute and in a relative

sense.

One reason which has been found for this behaviour concerns the direction of ®𝑎𝑇𝑜𝑡 = ®𝑎𝑆𝑅𝑃 + ®𝑎𝑆𝐸𝑃 . An increase in

| ®𝑎𝑆𝐸𝑃 | changes both the magnitude and the direction of ®𝑎𝑇𝑜𝑡 . However, the values for the SEP thrust have been chosen

such that 𝑎𝑆𝑅𝑃 >> 𝑎𝑆𝐸𝑃 for most configurations, in order to focus on the potential of solar sailing on the GEO use

case, not on the potential of SEP propulsion. SEP acceleration can therefore not significantly change the direction of

®𝑎𝑇𝑜𝑡 and this can become problematic when the direction of ®𝑎𝑇𝑜𝑡 does not lead to the desired increase or decrease of an

orbital element 𝑘 . For these instances, it is seen that also for larger magnitudes | ®𝑎𝑆𝐸𝑃 |, ®𝑎𝑇𝑜𝑡 cannot be pointed in a

direction leading to the desired change of 𝑘 . Despite a larger acceleration magnitude, no progress is then made to reach

the target. This behaviour is illustrated by a simplified example in Figure 21, where total accelerations ®𝑎𝑇𝑜𝑡 in the red

region would lead to 𝑑𝑘
𝑑𝑡

having the wrong sign considering the target value and the current value of an orbital element.

Using thrust levels much larger than the ones used in this work would bring the total acceleration vector ®𝑎𝑇𝑜𝑡 into the

green region and the behaviour seen in Figure 20 would likely change.
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Fig. 21 Illustration how a changing magnitude of ®𝑎𝑆𝐸𝑃 does not always lead to a larger rate of change 𝑑𝑘
𝑑𝑡

.
Simplified example.

With the addition of SEP acceleration, propellant consumption is introduced. The amount of consumed propellant

has a relation with the SEP thrust via Eq. (18) and Eq. (19). The relation between the amount of consumed propellant

and the mission time for various SEP-thrust levels is shown in Figure 22. Figure 22 shows a linear trend for the amount

of consumed propellant as a function of the mission time with larger slopes corresponding to larger SEP thrust levels.

Since the amount of consumed propellant is directly proportional to the duration of thrust and therefore the mission

time, a larger amount of consumed propellant for the same thrust level is associated with a longer mission time, as

a smaller sail area is used and the analysis concerns a constant maximum thrust magnitude. Mission time variation

in Figure 20 is therefore a result of varying sail area only. It can also be concluded that even for the largest SEP

thrust, during one round-trip mission a maximum of 1.3 kg of propellant is consumed. Therefore, only for tens of

consecutive round-trip debris removal missions, the SEP-propellant consumption could become prohibitive, following

the assumptions mentioned in subsection III.D.
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Fig. 22 The reduction in mission time compared to no usage of SEP versus the amount of consumed propellant
for different SEP-thrust levels. Different points of the same colour and shape refer to results for different sail
areas from Figure 20.

VII. Conclusions
In this paper, the potential of solar sailing for repeatable GEO debris removal was analysed using the accessibility-

and-deficit blending (AnD) method developed by Macdonald and McInnes to determine the optimal solar-sail angles

that minimise the round-trip time between GEO and the graveyard orbit. The AnD blending method performed relatively

well compared to other analytical control methods with a similar complexity, such as a piecewise-constant attitude

approach or using the locally optimal steering law for optimally changing the pericenter. However, the AnD blending

method was unable to replicate trajectory solutions like the ones obtained through numerical optimisation methods,

such as particle swarm optimisation or pseudospectral control as seen in literature. The resulting trajectories from the

AnD blending method resulted in round-trip mission times ranging from 630 to 760 days, which are a factor 1.4 to

5.1 larger than the results found in literature using similar simulation settings. Two reasons which were found for this

discrepancy were that on average relatively large cone angles and smaller sail accelerations resulted from the AnD

blending control compared to numerical control methods. Additionally, the AnD blending control resulted in large

values for the semi-major axis and the eccentricity once the outward transfer was completed to satisfy the pericenter

altitude constraint imposed on the graveyard orbit. Consequently, it took more time using the AnD blending control to

reduce the values of these orbital parameters to return to the GEO region. Additionally, it was found that the mission

times were very dependent on tuning parameters for the AnD blending method and that they were subject to seasonal

variations. The results from literature showed a variation in mission times of 3% for various mission start dates, while

this variation was 25% for the results from the AnD blending method. Therefore, numerical control methods perform

better in terms of handling the change in dynamics throughout different seasons. It can be concluded that the usage

of the AnD blending method for a preliminary mission analysis for repeatable GEO debris removal trajectories poses

38



challenges because of the inconsistency of the mission time results for different initial conditions.

It was found that mission times can be significantly reduced using an additional low-thrust propulsion system such as

solar electric propulsion (SEP). It was derived that the accelerations due to solar radiation pressure and the SEP engine

can be optimised independently. Using the locally optimal steering laws as a basis, the optimal SEP thrust direction was

found to be equal to the direction of ideal thrust ®𝜆𝑘 for changing a particular orbital element 𝑘 . Mission times were

reduced from a range of 560-765 days without SEP acceleration to 385-520 days with 0.5 mN of SEP thrust. This

situation represents an SEP-acceleration magnitude equal to 0.5% of the characteristic acceleration of the sail.
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3
Conclusions and recommendations

The aim of this work was to assess different analytical control methods for solar sailing regarding the use case of
repeated geostationary debris removal, with a focus on the accessibility-and-deficit blending method developed by
Macdonald and McInnes [15]. With a well-performing analytical method resulting in reliable mission times, a wide
parameter space can be analysed in terms of their resulting mission times in a much shorter time span than with
computationally intensive numerical control methods, based on numerical optimisation methods. Assessment was
performed mostly on mission times, but also on the behaviour of control variables and relevant orbital parameters.
A secondary aim of this work was to investigate the influence of the additional usage of a solar electric propulsion
(SEP) engine on the results. The conclusions of this work are described in Section 3.1 and the recommendations
for further research in Section 3.2.

3.1. Conclusions
Section 1.2 presented six research questions: one regarding the comparison between analytical and numerical
control laws, two regarding the resulting mission times and mission time dependencies, two about the influence
of the addition of SEP acceleration, and one general research question about solar sailing. Beneath, they are
answered individually.

• Do analytical control methods for solar sailing form a usable alternative to numerical control meth-
ods for trajectory planning for one cycle from GEO to the graveyard orbit and back?
The trajectories from GEO to the graveyard orbit and back resulting from the usage of analytical control meth-
ods, in particular the AnD blending method, have significantly longer mission times than their counterparts
originating from numerical control, using the same initial parameters. A comparison between the results from
this thesis and results from literature is shown in Table 3.1, where ’out’ refers to the outward transfer from
GEO to the graveyard orbit, and ’in’ to the inward transfer from the graveyard orbit to GEO. Looking at the
results from Kelly (2017), who used Lyapunov control to simulate a solar-sail assisted return mission from
GEO to the graveyard orbit, resulted in a mission time of 450 days for numerical control and 630 days for
analytical control. This difference between analytical and numerical control is even larger with the results
from Kelly (2021), who used a Gaussian quadrature implicit integration method for optimisation of the con-
trol. The AnD blending method resulted in a mission time of 759 days, compared to 150 days from numerical
control. Lastly, comparison with the mission time of Mei (2022), who used pseudospectral control, resulted
in a mission time of 625 days with analytical control and 350 days using numerical control.
While the mission times are larger using AnD blending control, the AnD blending method results in valid
trajectories which can be followed by a spacecraft. During these trajectories, the cone and clock angles
are relatively large compared to values from literature. The debris removal trajectories resulting from the
analytical control method do not appear to have benefits over the trajectories from literature, obtained through
numerical optimisation.
The AnD blending method could potentially be used for parameter space reduction for preliminary mission
analysis, in the sense that the mission time for a set of parameters could roughly be estimated before a
full control optimisation takes place. Based on the resulting mission time, a decision can be made whether
numerical optimisation would yield interesting results. Two main issues persist prohibiting the usage of the
AnD blending method for preliminary mission analysis. Firstly, the trajectories resulting from the AnD blend-
ing control are dependent on the mission start date and seasonal variation throughout the trajectory in a
complex way, leading to variations in the resulting mission time up to 25% for equal mission parameters. In
literature, the variation in mission times for different mission start dates is found to be only 3% [20]. Mission
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time results using AnD blending control are therefore difficult to generalise, even more so than for mission
time results using numerical control methods. Secondly, only three test cases from literature could be used
for validation during this thesis, which all make use of different numerical control methods, and these test
cases do not provide mission time results for a variety of mission parameters. The lack of results for com-
parison made it impossible to understand whether analytical control methods can be successfully used for
preliminary mission time analysis. Additionally, the mission parameters of two test cases from literature were
not realistic, except for the results from Mei (2022). This realism mostly refers to the sailcraft mass, which is
much smaller in the work of Kelly (2017) and Kelly (2021) than what is currently feasible. A wider catalogue
of mission time results using numerical control methods for realistic mission parameters is needed to make
a complete comparison between numerical and analytical control methods for the GEO use case.

Table 3.1: Results from literature compared with results from the AnD blending method [20]–[22]. A/M-ratio: Area-to-mass ratio, reprod.:
reproduction

Parameter Kelly (2017) Reprod. Kelly (2021) Reprod. Mei (2022) Reprod.
A/M-ratio (out) [m2 kg −1] 0.76 0.76 1 1 0.14 0.14
A/M-ratio (in) [m2 kg −1] 16 16 12 12 - -
Transfer time (out) [days] 220 165 90 119 350 625
Transfer time (in) [days] 250 465 60 640 - -
Transfer time (tot) [days] 450 630 150 759 350 625
Factor difference w. literature - 1.4 - 5.1 - 1.8

• 2. What is the minimal time required for re-orbiting geosynchronous debris to the graveyard orbit
and manoeuvring back to GEO using solar sailing as the only form of propulsion?
Table 3.1 shows the mission time results for various area-to-mass ratios for the outward and inward trans-
fers, with the round-trip mission time varying between 630 days and 760 days. However, from the results
of this work and the comparison with values from literature, it can be concluded that analytical control meth-
ods based on locally optimal steering laws do not result in truly minimal time trajectories, and the mission
times of the trajectories originating from analytical control methods can be much reduced using numerical
control methods. Thus, minimum times for the GEO use case are still only found in literature. The fact that
analytical control methods do not lead to minimum-time trajectories can be explained based on the relatively
simple control compared to complex numerical optimisation. Contrary to mission cases like Earth-escape
trajectories, the mission case of GEO debris removal has proven to be too complex for analytical control to
match the results of numerical control. The AnD blending method, even when calibrated for the GEO use
case, is not able to limit the increase in semi-major axis and eccentricity to satisfy the pericenter altitude con-
straint imposed on the graveyard orbit to the same extent that numerical control methods do. It takes much
time to decrease these relatively large values for the semi-major axis and eccentricity again to return to GEO.

• 2a. How do parameters like mission start date, solar-sail area, debris mass and debris orbital param-
eters influence the mission time results?
Seasonal variation has been shown to be influential for the mission time results. The orientation of the lo-
cally optimal steering direction for the eccentricity compared to the Sun-sail line varies significantly during
one year, which results in large variations of the cone and clock angle. It was seen that a different starting
epoch t0 can either increase or decrease the mission time by 25%. The influence of the seasonal variation
on the mission time is difficult to predict, since the longitude of the ascending node Ω and the argument of
periapsis ω vary considerably throughout the trajectory.
The relation between the mission time and the solar-sail area was found to resemble an exponential relation-
ship, though the seasonal variation throughout the trajectory creates a deviation from this type of relation.
Averaged for different initial epochs t0, the mission time was 560 days for a sail area of 15000 m2, a solar-sail
satellite mass of 500 kg and a debris mass of 500 kg, while it was 765 days for the same situation with a sail
area of 7500 m2.
The dependence of the mission time on the debris mass was almost none. Differences between simulations
with different debris masses are caused by seasonal variation. The expectation was a slight decrease in
mission time for constant sail area and larger debris masses, since the graveyard orbit is defined based on a
pericenter requirement. A larger debris object mass leads to a smaller required pericenter value for releasing
the debris object, after which the sailcraft returns to GEO. However, the main reason why the debris mass
has little influence on the mission time results is because the mission segment before releasing the debris
object, when the debris object mass has an influence on the lightness number, is much shorter than the
mission segment after the release, using AnD blending control as the control method. This same mission

48



profile was not seen in literature and thus the result that the debris object mass has no influence on the
mission time cannot be automatically extrapolated.
Lastly, the dependence on the target orbital elements for the inward transfer was found to be significant. The
eccentricity target value was found to be the most influential, as orbit circularisation took more time than
semi-major axis reduction. A target eccentricity of 0.005 instead of 0.0005 can reduce the mission time by
30%. However, most debris objects in GEO have orbits with eccentricities in the order of 0.0005 or smaller.
The mission time difference in targeting an eccentricity of 0.0005 and smaller eccentricities is very minor.
Therefore, the variation in target orbital elements for GEO debris objects for realistic cases has little influ-
ence on the mission time.

• 2b How does additional usage of an SEP-engine influence the mission time results?
It was found that usage of SEP thrust has a significant effect on the mission time. For a sail area of 7500 m2,
a debris mass of 500 kg and a sailcraft mass of 500 kg, an SEP thrust of 0.5 mN decreased the mission time
from 765 with no usage of an SEP engine to 520 days, while the solar-sail characteristic acceleration is 200
times larger than the acceleration provided by the SEP engine. The cone angle of the sail is relatively large
throughout most of the trajectories following the AnD blending control, averaging over 60 deg. This means
that the SRP acceleration for most of the trajectories is only a small fraction of the characteristic accelera-
tion. Since the magnitude of SEP acceleration is not dependent on its direction, the SEP engine can directly
thrust in the ideal direction of thrust, which greatly reduces the mission time. Relatively large cone angles
throughout the trajectory were also seen in literature, though still much smaller than the cone angles found
in this thesis, giving an indication that for numerical control too, the addition of an SEP engine would be very
influential on the mission time results.

• 3. Is it possible to explain the influence of SEP-thrust on the minimal-time results analytically?
Like the relationship between the mission time and the sail area without SEP acceleration, the relationship
between the mission time and the sail area with SEP acceleration resembles an exponential relationship.
However, different SEP accelerations result in different trends. The reduction in the mission time is not con-
stant for a constant increase in SEP acceleration. A reason for this discrepancy is the direction of the SRP
acceleration a⃗SRP . If the cone angle α is small and the inner product of a⃗SRP and the ideal direction of
thrust λ⃗k is large, a⃗SRP is a beneficial direction of thrust, since this direction leads to the desired increase or
decrease of an orbital element k. However, when α is large, a⃗SRP is not necessarily a beneficial direction
of thrust, and for periods during the trajectory, the total acceleration does not lead to the desired increase or
decrease of an orbital element. For these short periods during the trajectory, the total acceleration magnitude
is then still larger compared to the case without SEP acceleration, but the SEP acceleration does not lead
aid in changing the orbital elements. Overall, the SEP acceleration still leads to a decrease in mission time
however.

• 4. Does solar sailing form an advantageous form of propulsion for GEO debris removal compared to
existing propulsion methods?
This question cannot be fully answered following the results of this work, but some important notions were
gained. Firstly, the nature of the GEO use case leads both in this work and in existing literature to remarkably
large cone angles and thus small sail accelerations. This is an indication that the GEO use case is not ideal for
solar sailing. However, in recent years, significant advancements have been made in decreasing theoretical
mission times in the GEO use case with solar sailing, leading to mission times with realistic solar-sailing
parameters in the order of a few years. It has not been explicitly shown that unfavourable dynamics are
the direct cause of a large average cone angle throughout the trajectory. Advancements in the state-of-the-
art of optimisation algorithms for solar-sailing could lead to different trajectories with much smaller average
cone angles, which would make solar sailing for GEO debris removal an attractive option. Therefore, small
sail accelerations are not necessarily prohibitive for applying solar sailing for geostationary debris removal.
However, the main advantage of solar sailing is its potential for repeatable debris removal. While this concept
has not been investigated much in this thesis, a subsequent debris removal mission has minimal relation
with the previous mission part. The only connection is that the end and start orbital parameters must match.
Therefore, solar sailing is an attractive method of propulsion in terms of sustainability and re-usability. For
existing methods of propulsion, during each round-trip mission additional fuel is consumed. It was found that
for the largest thrust values used in this thesis, 1.3 kg of propellant is consumed. More research is needed
to assess what propulsion method is more advantageous for repeatable GEO debris removal: solar sailing,
SEP or a hybrid.
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3.2. Recommendations
Since the research of this thesis is in the relatively new area of active space debris removal using solar sails, much
research is still left to explore, and this thesis has resulted in several recommendations for further research. If
followed, these can lead to mission time results which are more generally applicable and reliable. More insight
can be given into truly minimum-time trajectories, since the trajectories found in this research have been the result
of analytical control rather than numerical control using optimisation algorithms. The recommendations are given
in several categories, namely satellite control, mission context and dynamics.

3.2.1. Sailcraft control
The main recommendation regarding the satellite control is to perform numerical optimisation to find minimum-
time trajectories for a range of mission parameters, instead of using analytical control, as it was seen that the
results coming from numerically optimised control resulted in much smaller mission times than the ones found in
this thesis based on analytically derived control. The optimised mission times for the GEO use case using the
analytical optimisation methods of this thesis do not match the optimised mission times using numerical control
from literature. It would be interesting to apply global optimisation methods to this GEO use case, contrary to local
optimisation methods which are used in this thesis. Especially when the trajectories themselves become more
complex, for example through the addition of more constraints, numerical optimisation is crucial to obtain minimum-
time trajectories. Once a wider variety of mission parameters and the corresponding optimised trajectories is
obtained, a better understanding of the relationship between the results coming from numerical control methods
and analytical control methods can also be obtained. With this, the usefulness of analytical control methods for
preliminary parameter search can be investigated, as this is not fully possible using current literature.

SEP acceleration throttling
In this research, only two advantages of the addition of SEP acceleration have been investigated, namely the ability
to thrust in an arbitrary direction and the extra acceleration that SEP provides. One other important advantage is
the possibility to control the SEP-acceleration magnitude independently of the SEP-acceleration direction, which
is impossible with SRP acceleration only. Since the total acceleration along an optimal thrust direction λ⃗ was
always maximised during this research, purposely decreasing the SEP acceleration magnitude was never relevant.
For more realistic mission analyses, throttling the SEP thrust is expected to be advantageous when preventing
overshooting and reducing propellant consumption.

3.2.2. Mission context
In practice, a significant part of a GEO debris removal mission would consist of rendezvous and capture of the
debris object. While this concept has been studied for some use cases, this has never been studied in the context
of solar sailing, and little in the context of GEO debris removal [23]. During this thesis, phasing, rendezvous and
capture has not been considered because of the additional complexity this yields. It is recommended to study
these steps in detail in the context of solar sailing.

Something which did not come up during this thesis is the targeting of specific debris objects, rather than only
the semi-major axis and eccentricity of their orbit. Preliminary work was performed by Kelly and Bevilacqua, but
only for one hypothetical object [20]. Targeting debris objects with known ephemerides data and analysing which
debris objects pose the most risk to satellites would be an important step towards realising a solar-sailing debris
removal mission.

3.2.3. Dynamics
Significant improvements in the accuracy of the results can be obtained through increasing the fidelity of the
dynamical model and the accuracy of the integrator. This thesis used an ideal solar-sail model, although optical
sail models or more advanced models are more realistic. Using a more realistic sail model, as well as implementing
additional features such as temperature-dependent solar-sail accelerations and technical constraints for cone and
clock angles, can influence the results for variables such as mission time by up to 15% [24].

Assumptions were also made regarding the dynamical model. High-fidelity dynamical models, including for
example the Earth spherical harmonics coefficients up to degree and order four and the implementation of a more
advanced eclipse model than the currently used discontinuous eclipse model, can become a useful addition to the
simulation environment. It is important to note that these additions are only a useful addition when assumptions
leading to larger errors in the results have been accounted for, such as the choice of the solar-sail model.

An interesting idea which could reduce the computational time is to use the Earth-Centred, Earth-Fixed ref-
erence frame (EECEF ) for propagation instead of the EECI reference frame. The EECEF frame is a co-rotating
reference frame with the rotation rate equal to the one of the Earth. The rotation rate of the Earth is not necessarily
relevant to this research work, but trajectories from GEO to the graveyard orbit would be much less complex than
in the EECI reference frame. In the EECEF frame, the trajectory for a total round-trip mission would only likely cover
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a fraction of a revolution in this frame, compared to hundreds of revolutions in the EECI reference frame. Possi-
bly, defining the problem in the EECEF reference frame could then reduce the computational load of performing
propagations. In literature, the EECEF frame is seen in the work of Kelly (2021) [20].
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A
Appendix Verification and Validation

This appendix shows the various analyses performed regarding the verification of the implemented simulation
environment of the thesis and the validation of the generated results, though most of the validation is performed in
the journal article in the thesis through comparison with literature. The dynamical model is verified in Section A.1,
the analytical control laws in Section A.2 and the implementation of SEP acceleration in Section A.3.

A.1. Dynamical model
The dynamical model of this work has been implemented completely by the author, and as such the individual parts
of the dynamical model require verification. First, the acceleration verification is discussed in Subsection A.1.1 and
afterwards the integration and propagation is discussed in Subsection A.1.2.

A.1.1. Accelerations
Solar-sail acceleration
Since this thesis work is based on solar sailing, a different solar radiation pressure model is used than in most
literature not related to solar sailing, where cannon-ball radiation pressure models are commonplace. These
solar-sail dynamics must be verified independently of other accelerations. The unique contour shape of the solar
radiation pressure acceleration magnitude depending on the direction is one characteristic which can be verified,
as well as characteristics as the optimised cone angle for certain ideal directions λ⃗. The results of this verification
are shown in Figure A.1, using information from literature from Caruso et al. [25]. As can be seen, the shapes
match perfectly, and the cone angle that maximises the traverse acceleration was found to be α = 35.26°, matching
the value from literature [26].

Perturbing accelerations
For the perturbing accelerations, a comparison between the acceleration values and orders of magnitude resulting
from the simulation environment and the ones from Wakker is made [27], specifically for geostationary altitude. In
Table A.1, the comparison is shown between values obtained from simulations and values from literature.

Table A.1: Comparison between literature and simulation values for acceleration magnitudes. PMG: Point-mass gravity, E: Earth, TBD:
Third-body dynamics. M: Moon, S: Sun

Acceleration Magnitude, sim [m s−2] Magnitude, lit [m s−2]
PMG, E 3.1 · 10−1 3 · 10−1

J2, E 8.3 · 10−6 8 · 10−6

TBD, M 3.7− 12.1 · 10−6 8 · 10−6

TBD, S 4.8− 7.3 · 10−6 6 · 10−6

The variation seen in the values obtained through simulation of Table A.1, especially for the third-body-perturbation
of the Moon, are caused by the fact that the distance between the Moon and the satellite varies considerably dur-
ing the simulation. Despite the fact that no exact comparison can be made between literature and simulation, the
behaviour, order of magnitude, and direction of the simulated accelerations all match expectations, validating the
implementation of SRP acceleration.
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(a) SRP-acceleration contour from literature, obtained from [25]. (b) Reproduced SRP-acceleration contour from simulations

Figure A.1: Comparison between reproduced and literature values for SRP acceleration

Eclipsing
The eclipse model used in this work is rudimentary. In this model, a configuration is considered to include an
eclipse if the distance of the Earth or Moon to the Sun-sail line segment is smaller than their respective radius. In
Figure A.2, verification for the implementation of eclipses is shown for two elementary fictional cases where the
Sun is in-plane with the Earth and the sail, where a lightness number of 0.01 is used, a constant cone angle of
45 deg and a constant clock angle of 90 deg. If the Sun is not in or very near to this plane, eclipses at GEO altitude
are not possible.

Figure A.2: Eclipse implementation verification with the Sun on the negative e1-axis (left) and the negative e2-axis (right)

As can be seen from the colour bar, for one segment of the trajectory, the SRP acceleration is zero. The
variation in SRP acceleration along the orbit apart from eclipses is negligible for a constant cone angle, set to
45 deg in this test case. Therefore, Figure A.2 shows a correct behaviour for the eclipse model.

Ephemerides
In the thesis, the position of the Sun and the Moon are obtained through propagation of the Earth in the Sun-Earth
system and the Moon in the Earth-Moon system. Modelling of the positions in this manner lead to errors with
respect to the true ephemerides. A comparison is made between the positions used in the thesis simulations and
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the values from NASA’s SPICE toolkit [28]. The errors in the distance of the Sun and the Moon to the sail are
shown as a percentage of the distances obtained from the SPICE toolkit in Table A.2.

Table A.2: Error quantification between simulated ephemerides and NASA’s SPICE ephemerides

Moment during year Error position Sun [%] Moment during month Error position Moon [%]
Spring equinox 2.2 · 10−2 0 weeks 3.8 · 10−1

Summer solstice 2.3 · 10−2 1 week 5.1 · 10−1

Autumn equinox 2.1 · 10−2 2 weeks 2.9 · 10−1

Winter solstice 2.3 · 10−2 3 weeks 3.4 · 10−1

As can be seen from Table A.2, the position errors are relatively minor, though larger for the position of the
Moon de to nutation, precession and similar effects. However, the differences between simulated positions and
positions from ephemerides are small enough that the errors are not a point of concern.

A.1.2. Integration and propagation
RK4 integrator
A comparison between propagator accuracies for a propagation without disturbing accelerations is shown in Fig-
ure A.3. Since only terrestrial point mass gravity is used, a circular orbit should stay circular indefinitely. A circular
orbit with a semi major axis of 4.2167 · 104 km forms the benchmark solution and propagated orbits after a number
of revolutions are compared to this circular orbit. A Runge-Kutta 4 integrator was used with a simulation time of
50000 seconds for both a Cowell propagator and an MEOE propagator. The results are shown in Figure A.3.

Figure A.3: Comparison between propagation accuracy for different time steps for Cowell propagation and modified equinoctial element
propagation for a circular orbit without perturbations.

It can be seen that from time steps of 1000 seconds and above, a linear correlation in the log-log plot between
time step and propagation error is present for the Cowell propagator, while for time steps smaller than 1000 seconds
the propagation error oscillates in the same order of magnitude. In this constant region, the error is due to rounding
errors, while in the linear region the error is mostly due to inherent propagator errors. For the MEOE propagation,
there is no inherent propagator error visible.

Propagation
Next, a comparison is performed between the benchmark situation and simulations with different simulation set-
tings and time steps. The complete dynamical model with a longer propagation time is used to assess the error
in more practical cases. The propagation time is extended to 500000 seconds. For these simulations, a lightness
number of 0.005 is used. Step sizes between 1 and 500 seconds are used, and the results were compared with
a simulation with a step size of 0.1, representing the benchmark solution. The results are shown for a Cowell
propagator and an MEOE propagator in Figure A.4.

The results from the Cowell propagation and the MEOE propagation closely match with no significant differ-
ences, as the region between one and twenty seconds for the time step is dominated by random rounding errors.
Figure A.4 nevertheless gives important information about the transition between the region of rounding error and
propagator error, which is visible at time steps of approximately thirty seconds. In the context of this thesis and
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Figure A.4: Comparison between propagation accuracy for different time steps for Cowell propagation and modified equinoctial element
propagation for a representative propagation.

based on additional simulations, a time step of 50 seconds is used.

A.2. Control laws
A.2.1. AnD blending law
Regarding the AnD blending law, few examples from literature are deemed suitable for reproduction for verification
purposes, as few test cases include only semi-major axis and eccentricity steering. A related example is found
in Macdonald (2005), where a preliminary version of the AnD blending law is used for determining realistic Earth-
escape trajectories [16]. In this case, the locally optimal steering law for semi-major axis steering is used in
combination with a locally optimal steering law for pericenter change.

The locally optimal steering law for the pericenter is used to prevent close encounters between the sail and the
Earth, especially near the end of the Earth-escape trajectory. Blending these control laws occurs like described in
the thesis:

λ⃗ERTN

b =

∑
k Wk · λ⃗ERTN

k

|
∑

k Wk|
(A.1)

As in the thesis, λ⃗ERTN

b is the blended steering vector, λ⃗ERTN

k is the steering vector for the orbital element k
and Wk is the weight function for the orbital element k. The weight functions are defined differently for the case of
Earth-escape trajectories compared to the AnD blending method. For this Earth-escape case, the weight functions
are a function of the radius of pericenter in the following way:

Wf =
rp
106

− 2.5 (A.2)

Wa = exp
(
Wf

10

)
(A.3)

Wrp =
2500

exp (Wf )
(A.4)

(A.5)

These weight functions are illustrated by Figure A.5 for different values of rp. The weights are of equal magni-
tude at an altitude of 10000 km. For smaller altitudes, especially smaller than 7500 or 5000 km, the weight function
for the radius of pericenter Wrp is completely dominant. Due to exponential decay of Wrp , the weight function for
the semi-major axis steering law Wa is completely dominant for altitudes above 15000 km. This guarantees that
the main steering law, which is the one of the semi-major axis, is used whenever possible.

The simulation environment used for verification is focused on Earth-escape trajectories starting from geosta-
tionary orbit. A sailcraft has escaped Earth when e > 1. An ideal solar-sail model is used by Macdonald and
apart from the SRP acceleration and the point-mass gravity of Earth, no additional accelerations are included in
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Figure A.5: Weight dependence on the radius of pericenter

the simulation. Propagation is done through MEOEs and a variable step-size DOPRI-78 integrator with absolute
and relative tolerances of 10−9.

The simulation environment used in this thesis does not include a DOPRI-78 integrator, and thus a RK4 in-
tegrator with a small step size is used, namely 50 seconds. Using smaller step sizes did not make a noticeable
difference. The results of the Earth-escape times for a variety of sail areas are shown in Figure A.6.

Figure A.6: Reproduced results for the Earth-escape times as a function of characteristic acceleration with overlaid the results as published
in Macdonald (2005) [16].

Figure A.6 shows the Earth escape time for different characteristic accelerations, both for the reproduction and
for the values from literature. The reproduction is evidently not perfect, but shows the general behaviour of the
Earth-escape time as a function of the characteristic acceleration. The peaks, which are due to the fact that the
semi-major axis can only be raised during half of the orbit, are generally reproduced well. Only with characteristic
accelerations above 5 mm/s, there is a slight discrepancy between reproduced results and the results from litera-
ture. This discrepancy is more obvious with larger values of the characteristic acceleration as the simulation times
are shorter here and the accelerations in the dynamical model are larger, which causes differences between the
simulations to become more obvious.

A.3. Hybrid SEP/SRP thrust
In this section, the shape of the contour for the total acceleration is analysed for small values of |⃗aSEP |. For this
analysis, the value of dsd

ds1
for each point on both the SRP-acceleration contour and the total acceleration contour

is calculated and the difference is taken. The total acceleration contour is described as follows:
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s
′

1 = s1 − ζ
dsd
dα

= s1 − ζ(−3 sin (α) cos (α)2) = (3ζ + 1)(sin (α) cos (α)2)) (A.6)

s
′

d = sd + ζ
ds1
dα

= sd + ζ(cos (α)3 − 2 sin (α)2 cos (α)) = (ζ + 1) cos (α)3 − 2ζ sin (α)2 cos (α) (A.7)

The SRP-acceleration contour can be described by the following formula:

s1 = sin (α) · cos (α)2 (A.8)

sd = cos (α)3 (A.9)

The value dsd
ds1

is obtained by discretising sd and s1 and taking the difference sdi+1
−sdi

s1i+1
−s1i

with i ranging from one
to the number of discretisation points minus one. The results for the cone angle α ranging from −90 to 90 deg and
step sizes of π

106 with the value |⃗aSEP | = ac

2 is shown in Figure A.7.

Figure A.7: Relative difference in magnitude of dsd
ds1

over the SRP-acceleration contour and total acceleration contour.

Most of the graph shows values for the relative difference in the range of 10−8 %or smaller, except for α = −90°,
α = −35.26°, α = 0°, α = 35.26° and α = 90°. For α = +/ − 35.26°, it holds that the value of dsd

ds1
approaches

infinite, while for the other mentioned values for α it holds that the value of dsd
ds1

approaches zero. From Figure A.7
it can be deducted that for |⃗aSEP | = ac

2 and smaller, the total acceleration contour has a very similar shape to the
SRP-acceleration contour.
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