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Introduction

The motivation for this thesis

This thesis is written in order to obtain a Master degree in Applied Mathematics at

the Technical University of Delft. The research has been done at Hewitt Associates,

which is a global human resources, outsourcing and consulting firm. I worked at the

office in Amsterdam for a period of one year starting in March 2008. More specifically,

I did research at the department of Retirement and Financial Management (RFM).

This department deals with financial risks regarding retirement, and consults pension

funds about these risks. The scientific component of this discipline is called actuarial

science. Someone who earned a degree in actuarial science is called an actuary.

Nowadays people on average life longer than any period before in history. In the ac-

tuarial world this phenomenon is called longevity which literally means long life span.

Although longevity is a great achievement for humanity, it poses a risk to pension

funds. In order to avoid financial setbacks in the future, actuaries need to anticipate

on longevity. Hewitt wants to have more insight into this risk of longevity. Therefore

the core question of this study has been: What are the financial consequences of

longevity for pension funds?

The method of this thesis

In this thesis, current mortality and its development in the future is investigated.

Mostly we used death rates to measure mortality. A death rate of a given group

vii
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of people is defined as the percentage of that group that dies within one year. To

illustrate the development of death rates in the Netherlands, in Figure 1 we displayed

the observed death rates for males and females aged 65 for the period 1950-2006.
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Figure 1: Observed death rates of people aged 65 between 1950 and 2006

In the Netherlands, mortality data is collected by the National Bureau of Statistics

(in Dutch: Centraal Bureau voor de Statistiek (CBS)) since 1950. They provided the

data that was used as input for our model to predict mortality. The applied model

is designed by Lee and Carter in 1992. Nowadays, this is one of the most frequently

used models worldwide, e.g. it is used by the American Census Bureau and the OECD

to forecast future death probabilities.

The method of Lee-Carter is to capture age-specific trends from an observed period

and extrapolate these trends into the future. With the model a forecast that is most

likely to happen can be constructed, as well as a formulation for the uncertainty of

this forecast. This enables us to make the financial consequences of longevity risk

tangible. For a given level of certainty, we can predict the future expenses of a pension

fund by a range which is linked to this level, given that the model is correct. For

instance, when one wants to know the future expenses of a fund with a certainty

of 90%, a corresponding range can be determined in such a way, that the probability

that future expenses will lie within that range, is 90%, given that the model is correct.
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Outline of the thesis

The goal of Chapter 1 is to provide background on mortality models, such as notation

and concepts that will be frequently used, and the historic development of mortality

modeling. Chapter 2 describes the method of Lee and Carter step by step. First

the observed death rates are fitted using the Singular Value Decomposition (SVD),

then historic trends are extrapolated with an appropriate ARIMA time series model.

In Chapter 3 the Lee-Carter model is applied to Dutch death rates. We discuss the

quality of the fit and explain our choice for a specific ARIMA model. Chapter 4

is dedicated to construct a forecast using the model defined in Chapter 3. Special

attention is given to this topic because it directly influences the results of Chapter 5.

An analytical way to forecast mortality is compared with simulations. In Chapter 5

two mortality forecasts are introduced that are frequently used in the Netherlands, the

AG and the CBS prognosis. Two experiments are performed where these forecasts are

compared with the implementation of Lee-Carter, to illustrate the effects of longevity

on the financial situation of an average Dutch pension fund.
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Chapter 1

Mortality models

The objective of modeling is to draw conclusions from a given data set. A model

attempts to describe a pattern in the data by a number of factors, which are believed to

have a causal relation with this pattern. As a result, a low dimensional problem arises

in which an optimum has to be found. It is important that long term patterns (trends)

are separated from temporary events (noise) as a result of randomness, especially

when the model is used for forecasting.

We are interested in mortality probabilities and the prediction of these probabilities in

the future for doing actuarial calculations. The choice of a model to determine these

probabilities is essential because it will influence the outcomes of the study. In this

chapter we introduce notation and background in mortality models. In Section 1.1

we discuss the basic concepts from survival analysis, which will serve as a framework

to analyze mortality.

The first reliable censuses of an entire population and the registration of the total

number of deaths were done in Sweden around 1750 (Wilmoth, [29]). From this

data a table with estimated mortality probabilities could be derived. Explanatory

models of mortality are known from the early eighteenth century. Section 1.2 gives

an overview of the most influential models from the past. Since the 1950’s, data has

become abundant and more reliable than in any other period before in history. The

classic mortality models were replaced by more advanced ones that also described

1



2 Mortality models

the development of mortality in time, to make them suitable for forecasting purposes.

This resulted into a new type of mortality models qualified here as modern mortality

models. This is the subject discussed in Section 1.3. In Section 1.4 we discuss how

to order mortality data. We will explain the difference between period and cohort

effects and show several ways to determine death rates.

1.1 Basic concepts

We denote the age of a person by x, x ∈ R+, where x is expressed in years. The

random variable T is defined as the age at death, corresponding to a distribution

function F (x). The probability to survive until x is denoted by S(x),

S(x) = 1− F (x) = 1− P (T ≤ x), x ≥ 0.

The hazard rate µ(x) is the risk of instantaneous death at x,

µ(x) = lim
h↓0

P (T ∈ (x, x+ h]|T > x)

h
. (1.1)

When we assume F (x) to be a differentiable function, (1.1) can be written as

µ(x) =
1

1− F (x)

d

dx
F (x) = − 1

S(x)

d

dx
S(x) = − d

dx
logS(x). (1.2)

Integrating µ(x) from t1 to t2, 0 ≤ t1 ≤ t2 <∞ leads to∫ t2

t1

µ(s)ds = −
∫ t2

t1

d

ds
logS(s)ds = logS(t1)− logS(t2) = log

S(t1)

S(t2)
.

This is equivalent to:

S(t1)

S(t2)
= e

∫ t2
t1
µ(s)ds or

S(t2)

S(t1)
= e−

∫ t2
t1
µ(s)ds. (1.3)

Another way to derive (1.3), is to write µ(x) = − 1
S(x)

d
dx
S(x) as the boundary value

problem:

S ′(x) = −µ(x)S(x),

S(0) = 1.
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A solution of this problem, assuming that µ(x) is integrable between 0 and x, is given

by,

S(x) = e−
∫ x
0 µ(s)ds.

Taking t1, t2 as before we obtain the desired result,

S(t1)

S(t2)
=
e−

∫ t1
0 µ(s)ds

e−
∫ t2
0 µ(s)ds

= e
∫ t2
0 µ(s)ds−

∫ t1
0 µ(s)ds = e

∫ t2
t1
µ(s)ds. (1.4)

It is often convenient to consider the remaining life span of a person who is alive at

age x. We therefore define

Rx := T − x|T > x, x ≥ 0.

Note that R0 = T . The distribution function of Rx is denoted by Fx and can be

written in terms of F (x):

Fx(a) = P (Rx ≤ a) =
F (x+ a)− F (x)

1− F (x)
.

Let p(x) be the probability that a person aged x is still alive at x+ 1, i.e.,

p(x) = P (Rx > 1) = P (T > x+ 1|T > x) =
P (T > x+ 1)

P (T > x)
=
S(x+ 1)

S(x)
.

By choosing appropriate boundaries, it follows from (1.3) and (1.4) that,

p(x) = e−
∫ x+1
x µ(s)ds = 1− q(x), (1.5)

where q(x) is called the annual death probability of somebody alive at age x.

Life expectancy ex is the expected remaining lifetime of a person aged x. This can

be calculated by,

ex = E[Rx] =

∫
y≥x

yfx(y)dy, (1.6)

where fx(y) is the probability density function of Rx. Life expectancy from birth can

be written as

e0 = E[R0] = E[T ] =

∫
x≥0

xf(x)dx.
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where f(x) is the probability density function of T . For applications age is discretized

and restricted to be integer valued. This discretized life expectancy ẽx is defined as

the expected number of complete years that a person remains alive. Let us first

consider the probability that someone aged x lives another h complete years (before

dying):

P (h < Rx ≤ h+ 1) = P (Rx ≤ h+ 1|Rx > h)P (Rx > h).

Note that

P (Rx ≤ h+ 1|Rx > h) = P (Rx+h ≤ 1) = q(x+ h)

and

P (Rx > h) = P (Rx > 1)P (Rx+1 > 1) · · ·P (Rx+h−1 > 1) =
h−1∏
j=0

p(x+ j).

The expected number of complete years can be stated in terms of q(x):

ẽx =
∞∑
h=1

hP (h < Rx ≤ h+ 1) =
∞∑
h=1

hP (Rx ≤ h+ 1|Rx > h)P (Rx > h)

=
∞∑
h=1

hq(x+ h)
h−1∏
j=0

p(x+ j) =
∞∑
h=1

hq(x+ h)
h−1∏
j=0

(1− q(x+ j)). (1.7)

1.2 Classic mortality models

In the past there have been numerous attempts to describe mortality. Usually this

was restricted to small groups, such as the German nobility in the twelfth century.

After the Middle Ages, when trade expanded and welfare increased, there was a great

demand for reliable mortality data. In London, where life insurances emerged on the

market, John Graunt carried out a large study on mortality probabilities in 1662.

He influenced the brothers Lodewijk and Christiaan Huygens, who calculated a life

expectancy of 18.2 years for Dutch newborns. In Sweden reliable mortality data on a

national scale appeared around 1750. Abraham de Moivre was the first person who

tried to capture mortality with an analytical function, in 1729. He assumed a linear
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relation between survival and age:

S(x) = 1− x

ω
, (1.8)

where ω denotes the highest possible age (ω had to be determined by the modeler).

The concept of a hazard rate was unknown at that time (Bernoulli introduced it

in 1766). In order to compare de Moivre with the formula’s of his successors, who

usually modeled µ(x), we use (1.2) to rewrite (1.8) as,

µ(x) =
1

ω − x
De Moivre (1729).

Benjamin Gompertz (England, 1779-1865) introduced the first explanatory mortal-

ity model. He talked about man’s resistance to death, which he believed decreased

exponentially. His famous ‘law of mortality’ states:

µ(x) = BeΘx Gompertz (1825),

where B,Θ > 0. Every year, one gets ‘less resistance to death’ leading to an increase

of µ with a factor eΘ. His model greatly improved the fit with observed mortality

rates, especially for the ages over 35, the most important age group for (life) insurers.

Makeham took the work of Gompertz a little further, resulting into a model which is

later called the ‘Gompertz-Makeham law of mortality’,

µ(x) = A+BeΘx Makeham (1867),

where A is a positive constant. Makeham explained this new parameter as the risk of

dying that is independent of someone’s age. This could be certain diseases or (traffic)

accidents. Because of this extension, the fit for higher ages is generally better. Despite

the improvement, the real success of the model has always been the ‘middle’ ages,

which roughly comes down to the ages 35 to 70. Until 1997, Gompertz-Makeham

has been used by the Dutch actuarial society to estimate death probabilities. From

the observed death rates in 2006, displayed in Figure 1.1, we can see that mortality

between age 35 and 85 can be well approximated by an exponential function. This



6 Mortality models

0.00001

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Age

O
bs

er
ve

d 
de

at
h 

ra
te

Males Females

Figure 1.1: Observed death rates in 2006.

follows from the linearity in the chart between these ages and the logarithmic scaling

on the vertical axis, which transforms an exponential course into a linear one.

The Gompertz-Makeham model had great influence on his successors. New models

copied the exponential increase in µ, but improved the model, especially for lower

ages. Two examples are the models of Thiele and Perks,

µ(x) = A1e
−B1x + A2e

− 1
2
B2(x−c)2 + A3e

B3x Thiele (1872),

µ(x) =
A+BeΘx

Ke−Θx + 1 + CeΘx
Perks (1932).

All parameters in these models are positive. Thiele, a Danish actuary, designed a

model that involves three terms; besides the Gompertz term A3e
B3x, it has a sep-

arate term to describe high mortality rates for newborns: A1e
−B1x. The remaining

term A2e
− 1

2
B2(x−c)2 describes the ‘accident hump’. This term refers to the high risk

that adolescents face to die in an accident. The hump can also be observed by the

death rates for the ages between 16 and 25 (especially for male death rates) in Fig-

ure 1.1.

The British actuary Perks has been influenced by Gompertz’ model too. His model

is more simplistic than Thiele’s; it only has 5 parameters, against 7 for Thiele. In

the numerator we recognize Gompertz-Makeham. In the denominator, two terms are
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incorporated to achieve a better fit for lower (Ke−Θx) and higher (CeΘx) ages.

The latest adaptation to Gompertz is the model proposed by Heligman and Pollard

in 1980:

q(x)

1− q(x)
= A(x+B)c +De−E(log x−logF )2 +GHx Heligman and Pollard (1980).

Their model has 8 real-valued parameters which all have a demographic interpreta-

tion. It is heavily influenced by Thiele, as it has three terms to describe different

mortality patterns, including a Gompertz term. They believed that a model for q,

instead of µ, would result into a closer fit. This view was based on a research study,

done by the institute of actuaries in Australia ([18], p. 50). The formulation of their

model includes the term q(x)
1−q(x)

, the value for q(x) can be solved from this quotient.

The models discussed in this section can be qualified as classic. They have in common

that they consist of only one variable: age. Wilmoth writes that: “Life expectancy

has been increasing not just in industrialized societies but around the world. The rise

in life expectancy at birth probably began before the industrial era, . . .” [29], p. 1113.

By using a classical model to calculate the life expectancy of a population, people

will on average become older than expected. This will be discussed in more depth in

the next section.

1.3 Modern mortality models

The models described in the previous section were not designed to reflect the develop-

ment of mortality, which is a disadvantage. Actuaries attempt to make a projection

of future expenses of a pension fund. This projection is partly based on the life-

expectancy of the members and hence of future death probabilities. History shows

that the average age of death in the Netherlands is increasing at a fast pace. In 1970,

men died at an average age of 71 and women at age 75. In 2000, this gone up to

75 for men and 81 for women. However, until 2007 Dutch actuaries used current
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death rates as an estimate for future death probabilities and they calculated future

payments and premiums based on this information.

A consequence for a pension fund, when death rates turn out lower as expected, is

that it gets confronted with higher expenses which affect the financial situation. This

phenomenon is known as longevity risk. To protect a fund against longevity risk, ac-

tuaries used to conduct an age-shift. This means that a person is assumed to have the

survival chances of a younger person (usually a couple of years) in the future. Since

death rates show an upward trend with age, this age-shift obviously creates some

security against a decrease of death rates in the near future. The problem with doing

age-shifts is that it is arbitrary. An age shift can only be justified when the pattern

of time improvement is approximated by the difference between death rates of con-

secutive ages. Another problem with doing age-shifts is that another static estimate

is created; it might work well in the short run, but cannot be used in the long run

because mortality is dynamic in time. The problem of longevity risk was recognized

by the Dutch government, which imposed pension funds to take into account that

mortality rates will continue to decrease in the future. The law was implemented

on January 1st, 2007. Since then the demand for reliable forecasts has increased.

We will call a model that incorporates time development a modern mortality model.

An example is the Lee-Carter model, which will be discussed in the following chapters.

We conclude this section by extending the most important quantities of Section 1.1

to include a time variable. Let Tc be the time until death of an individual born at

time c. The time-dependent hazard rate can be stated as µc(x),

µc(x) = lim
h↓0

P (Tc ∈ (x, x+ h]|Tc > x)

h
.

The remaining life span Rx,t gives the time until death of a (living) person aged x at

time t:

Rx,t = Tt−x − x|Tt−x > x. (1.9)
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The probability that a person aged x at time t will survive until t+ 1 is given by

p(x, t) = P (Rx,t > 1) = P (Tt−x > x+ 1|Tt−x > x).

The annual death probability reads

q(x, t) = 1− p(x, t) = 1− e−
∫ x+1
x µt−x(s)ds. (1.10)

Finally, the expected number of complete years that a person aged x at time t remains

alive, is given by

ẽx,t =
∞∑
h=0

hP (h < Rx,t ≤ h+ 1) =
∞∑
h=0

hP (Rx,t ≤ h+ 1|Rx,t < h)P (Rx,t < h)

=
∞∑
h=1

hq(x+ h, t+ h)
h−1∏
j=0

(1− q(x+ j, t+ j)). (1.11)

1.4 Death rates

We have formulated a theoretical framework to analyze mortality in Section 1.1 and

(at the end of) Section 1.3. In real life these quantities cannot be computed exactly,

but estimates have be made by using data. In this research we are in particular inter-

ested in estimating q(x, t), which was defined in (1.10), for the purpose of forecasting.

Therefore time will be discretized into one year periods to determine observed death

rates. Because of this discretization, from now we will restrict x and t to be integer

valued.

The effect of time on mortality can be measured by period or by cohort. With a

period approach we look at the change of mortality within a period, for instance a

calender year. A cohort approach is used to observe the change of mortality on a co-

hort of people, like a group of people which all have the same year of birth. This is a

very small difference, but can nicely be illustrated by a Lexis diagram. This diagram,

founded by a German demographer, shows the relation between time and age on the

horizontal and vertical axis respectively. It enables us to see the difference between

the approaches. An example of a Lexis diagram is shown in Figure 1.2, where the
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solid line represents the (partially expected) course of life from the author, who is

born on 17-02-1983. A cohort is taken to be the group of people who have the same

year of birth and a period is chosen to be a calender year.

1983 1984 2007 2008 2009 2010
Calender year

A
ge

1

24

B

A

C

D

EF

25

26

27

0

Figure 1.2: A Lexis diagram. The course of life from the author is denoted by the solid
line.

For a given set of mortality data we can subdivide death cases according to one of

the following approaches to create different types of death rates.

• period-cohort. The number of deaths during year t from people who are born

in year c. In the Figure, deaths in ABCD denote the group of people in 2008,

who are born in 1983.

• period-age. The number of deaths in year t from people aged x. In the Figure,

deaths in AEBD denote the group of people aged 24 in 2008.

• age-cohort. This is the number of deaths from people, aged x, who are born

in year c. In the Figure, deaths in FABD denote the group of people aged 24,

who are born in 1983.



Chapter 2

The Lee-Carter model

The Lee-Carter model [20] was designed in 1992 to predict future mortality prob-

abilities of the US population. Nowadays the model is used by scientists around

the globe and some major institutions, such as the United Sates Census Bureau and

the OECD. Many modifications of the model have been proposed, among others by

Bell [1], Booth [3], and Wilmoth [28].

In this chapter we give an outline of the Lee-Carter model. In the following chapters

the model will be applied to Dutch mortality data to construct forecasts. The theory

of this chapter will help to understand the results that will be presented in these

chapters. Section 2.1 states the notation used and gives an outline of the method.

The implementation of the model can be divided in two parts. The first part is to

fit the model to the observed death rates, which will be described in Section 2.2.

Secondly a time series model is used to predict future death probabilities, which is

the topic of Section 2.3.

2.1 Outline of the method

Let us define the quantity that was originally modeled by Lee and Carter, the central

death rate M(x, t), which is a death rate based on the period-age approach (the

11
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different approaches were discussed in Section 1.4). It is obtained by

M(x, t) =
D(x, t)

N(x, t)
, (2.1)

whereD(x, t) is the number of people aged x that die during calender year t andN(x, t)

is the number of x years olds at midyear.

According to the Lee-Carter model, M(x, t) can be described as

M(x, t) = eax+bxkt+εx,t . (2.2)

The parameters ax and bx reflect age effects and kt the development of mortality in

time. The noise term εx,t is assumed to have mean 0 and variance σ2
x.

The implementation of the model can be divided in two parts,

• Fitting the model using the Singular Value Decomposition.

• Forecasting kt with an ARIMA time series model.

We first look for parameters that fit the observed data in the least squares sense. For

this purpose we define a set of age classes X and a set of observed calender years T .

Let p be the number of age classes and n be the number of observed years, lead-

ing to a total of 2p+ n parameters to be estimated. We label the elements x ∈ X
and t ∈ T in ascending order, so x1 is the youngest age group and xp denotes the high-

est age group. We use vector notation to write the parameters as a := (a1, · · · , ap)T ,

b := (b1, · · · , bp)T and k := (k1, · · · , kn)T , where x and t are removed from the sub-

script for simplicity.

It is easy to see that (2.2) is an underdetermined model. Suppose that ã, b̃, k̃ is a

solution, then ã− b̃c, b̃, k̃ + c is also a solution for every c ∈ R, since

ã− b̃c+ b̃(k̃ + c) = ã+ b̃k̃.

The same holds for ã, b̃c, k̃/c. The constraints∑
t∈T

kt = 0 and
∑
x∈X

bx = 1 (2.3)
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are added to make sure that a solution is unique.

These constraints give the parameters an actual interpretation. Summing over t gives

∑
t∈T

logM(x, t) =
∑
t∈T

(ax + bxkt + εx,t) = nax +
∑
t∈T

εx,t.

When we take expected value

E

[∑
t∈T

logM(x, t)

]
= nax ⇐⇒ ax =

E
[∑

t∈T logM(x, t)
]

n
, (2.4)

for every x ∈ X and conclude that ax is the time-average, age specific, log death rate.

The bx are normalized and give the pace of mortality change compared to other ages.

If bxs is high for some s, this means that relative to other ages, the mortality rate of

people aged xs changes rapidly. More specific, bx satisfies:

dE[log(M(x, t))]

dt
= bx

dkt
dt
.

The kt give the overall rate of change in mortality in time, which is typically a

decreasing sequence, since death rates show a decreasing trend for almost all ages.

The second part of the implementation concerns the forecast. The values k1, . . . , kn

are treated as a time series, which are extrapolated into the future to derive future

(central) death rates using (2.2). This is done using the theory of ARIMA models.

The construction of a forecast will be discussed in Section 2.3.

2.2 Estimating the parameters

In this section we describe how the parameters of (2.2) are estimated. We start with

a set of observed central death rates m(x, t), x ∈ X , t ∈ T . Equation (2.4) suggests

that ax can be estimated by

âx =

∑
t∈T logm(x, t)

n
,
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for every x ∈ X .

The other parameters b, k are estimated by the solution of the optimization problem

minb,k
∑
x∈X

∑
t∈T

(logm(x, t)− âx − bxkt)2 (2.5)

s.t.
∑
x∈X

bx = 1,
∑
t∈T

kt = 0.

The Singular Value Decomposition (SVD) can be used to find a solution. Let G be

the p× n matrix with elements gij = logm(xi, tj)− âxi . The elements of G give the

dispersion of the mean corrected logarithm of the observed central death rates.

The objective function of (2.5) can be rewritten as,

min
b,k
||G− bkT ||2F , (2.6)

where ||.||F denotes the Frobenius matrix-norm defined as,

||G||F =

(∑
i

∑
j

g2
ij

)1/2

.

The product bkT is a matrix of rank one, so as a first step we look for the best rank

one approximation of G. The SVD is a method to decompose a matrix of rank l into l

matrices of rank 1. It can be represented as

G = σ1w1v
T
1 + σ2w2v

T
2 + · · ·+ σlwlv

T
l . (2.7)

The scalars σ1 ≥ · · · ≥ σl > 0 are the singular values of G and l = Rank(G).

The vectors w1, . . . , wl and v1, . . . , vl are the left and right singular vectors of G

respectively, corresponding to these singular values.

The p×p matrix GGT and n×n matrix GTG are symmetric and nonnegative definite.

Moreover, they both are of rank l and share the same set of l positive eigenvalues

µ1, µ2, . . . , µl (not necessarily distinct). The singular values of G are the square root

of these eigenvalues. The left singular vectors are the orthogonal set of normalized

eigenvectors of GGT , corresponding to µ1, µ2, . . . , µl. The orthogonality property
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follows from the fact that any real symmetric matrix can be diagonalized by an

orthogonal matrix, for a proof see [24]. The right singular vectors, also orthogonal

and of unit length, are obtained in a similar way from GTG.

Let Gi := σiwiv
T
i , 0 < i ≤ l, to write

G = G1 +G2 + · · ·+Gl.

The Frobenius norm of Gi is equal to σi as can be concluded from,

||Gi||2F = σ2
i

∑
i

∑
j

(wiv
T
j )2 = σ2

i

∑
i

w2
i = σ2

i . (2.8)

The Frobenius inner product is defined as G · H =
∑

i,j gijhij, which gives us the

relation

G ·G = ||G||2F .

It is not hard to see that Gi ·Gj = 0 for i 6= j. Using this orthogonality property we

get that

||G||2F = ||G1 +G2 + · · ·+Gl||2F = ||G1||2F + ||G2||2F + · · ·+ ||Gl||2F ,

= σ2
1 + σ2

2 + · · ·+ σ2
l .

Together G1, . . . , Gl form an orthogonal basis of G. This suggests that the largest of

these components is the best rank 1 approximation of G. Indeed, it is proved in [19]

that G1 is the best rank 1 approximation of G. The norm of the error reads

||G−G1||2F = σ2
2 + · · ·+ σ2

l . (2.9)

The best rank 1 approximation is unique if σ1 > σ2.

We now return to problem (2.6) and conclude that the solution must satisfy

b̂k̂T = σ1w1v
T
1 ,

where we used the notation as in (2.7). This implies that b̂, k̂ are multiples of v1, w1.

Write b̂ = αw1 and k̂ = βv1, where αβ = σ1 and α, β ∈ R. The question arises
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whether we can always find α, β such that the constraints (2.3) are fulfilled.

Let H := GTG. The columns of H sum up to zero, because the rows of G sum

up to zero. This means that
∑

i(Hu)i = 0 for every vector u. In particular this

is true for every eigenvector corresponding to a nonzero eigenvalue, which we can

write as u = 1
λ
Hu. Recall that the right singular vectors are equal to the normalized

eigenvectors of H, thus the sum of the components of any right singular vector vi is

also zero. Thereby the second constraint of (2.3) is satisfied. The first constraint is

satisfied by choosing α and β in the following way:

α =
1∑
i(w1)i

and β = σ1

∑
i

(w1)i.

Hence, the desired least squares solution is obtained by

b̂ =
w1∑
i(w1)i

, k̂ = σ1

∑
i

(w1)iv1. (2.10)

So far the log of the observed death rates are minimized. Since

∑
x∈X

∑
t∈T

(logm(x, t)− log m̂(x, t))2 =
∑
x∈X

∑
t∈T

(
log

(
m(x, t)

m̂(x, t)

))2

,

where m̂(x, t) denotes the fitted central death rate, (the log of) the quotient m(x,t)
m̂(x,t)

is minimized, regardless of the actual difference |m(x, t) − m̂(x, t)|. In general this

results into a better fit for ages where death rates are low. The k̂t values are re-

estimated in order to correct this distortion, while the other parameters are left the

same. The new values of k̂t are a solution of the following equation:

∑
x∈X

d(x, t) =
∑
x∈X

n(x, t)m̂(x, t) =
∑
x∈X

n(x, t)eâx+b̂xk̂t , for all t, (2.11)

in which d(x, t) and n(x, t) are the realizations of D(x, t) and N(x, t) defined in (2.1).

Solutions can be obtained using a numerical solver. The adjustment (2.11) has two

advantages:
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i) The adjustment avoids large differences between actual and fitted deaths. The

re-estimation makes the total number of observed deaths in year t equal to the

total number of fitted deaths. Ages with high death rates (for which âx is high)

receive more weight in (2.11), which should lead to a better fit for these ages.

ii) Age groups n(x, t) which are large receive more weight in determining k̂t. This

is favorable since a larger age group implies a larger sample.

2.3 The forecast

When the parameters have been determined, a forecast can be made. Since ax and bx

are time-invariant, we will focus on kt. Its values are interpreted as a time series

which can be fit by an appropriate ARIMA model. We first consider a special class

of ARIMA models: the ARMA models. These can be applied to any second order

stationary time series {Yt}, which means that there exist µ and γ such that

(i) E[Yt] = µ, independent of t.

(ii) Cov(Yt, Yt+h) = γ(h), independent of t for each h.

Every ARMA model can be written in the following form:

Yt − φ1Yt−1 − · · · − φpYt−p = µ+ Zt + θ1Zt−1 + · · ·+ θqZt−q,

where p, q give the order of the Auto-Regressive (AR) and the Moving-Average (MA)

parts, respectively. Furthermore, the error terms Zt are independent of each other

and identically distributed. They will be called white noise innovations, with mean 0

and variance σ2
Z , notated as Zt ∼WN(0, σ2

Z).

When we observe a trend in a series of data, it might not be stationary. We can

apply the differencing operator ∇ to attempt to make it stationary. This operator

transforms the original sequence into a sequence of consecutive differences:

∇Kt = Kt −Kt−1. (2.12)
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When a time series {Kt} has a linear trend, one time differencing will produce a

stationary series {∇Kt}. The general idea of differencing is to apply the differencing

operator repeatedly until the trend has disappeared. After that, one can try to fit

an ARMA model to the differenced data. These two steps (differencing and ARMA

fitting) together give us an ARIMA(p, d, q) model, where p and q are the same as

before and d is the number of times the differencing operator is applied.

Lee and Carter mention that for U.S. data: “k declines roughly linearly from 1900-

1989” and: “. . .short run fluctuations in k do not appear much greater in the first part

of the period than they do in the second, with the exception of the influenza epidemic

in 1918.”([20], p. 662) The stable linear decline of kt is the reason why their method

is successful. The same pattern is observed by other countries of low mortality.

Lee and Carter fitted the estimated kt by an ARIMA(0, 1, 0) model, although it was

found that an extra AR component made the model marginally superior. Hence, the

model can be stated as

Kt = Kt−1 + µ+ Zt,

which is equivalent to a random walk with (linear) drift. Denote τ as the last year in

which death rates are known. A forecast of h years in the future is calculated by

E[Kτ+h] = E[Kτ+h−1 + µ+ Zτ+h] = E[Kτ + hµ+ Zτ+1 + · · ·+ Zτ+h]

= kτ + hµ. (2.13)

It was investigated by Lee and Carter how parameter uncertainty, i.e. the error that

is made by fitting the paramaters, accounted for the total uncertainty of the forecast.

Applying various methods, described in Appendix B of their article, they found that

most of the uncertainty is captured by the model. However, “. . . taking account of

parameter uncertainty increases the standard error of the forecast by less than 1%

in the first year, by 6% after 10 years, by 25% after 50 years, and by 36% after 75

years.”([20], p. 665)

The performance of the model was tested by using the data of the period 1900-1944
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to forecast kt for the known period 1945-1989, as well as the data from 1933-1962 to

forecast 1963-1989. Both forecasts performed well, the actual data stayed well into a

95% prediction interval from the forecasts without including parameter uncertainty

(the construction of prediction intervals will be discussed in Chapter 4). Another test

is performed to test the stability of the model. By constructing forecasts for different

base years, it was found that starting anywhere between 1930 and 1960 made little

difference for the value of kt in 2065. A lower value is found when starting at 1970

due to the rapid decline of death rates in the 1970’s.



Chapter 3

Lee-Carter applied to the

Netherlands

In this chapter we implement the model of Lee-Carter to mortality data from the

Netherlands. In Section 3.1 we give a brief outline of the construction of Dutch death

rates. The fitted rates and the estimated parameters âx, b̂x and k̂t are presented

in Section 3.2. In Section 3.3 we derive which ARIMA time series model is most

appropriate for the purpose of forecasting.

As far as we know the only one who studied future Dutch mortality probabilities

using the Lee-Carter model is F. Gregorkiewicz [17], albeit his approach deviates

from ours. In his research paper a number of steps is described to predict mortality

probabilities. Sometimes these steps differ from the original Lee-Carter model. The

most important one is that he applies the model to sex-specific death rates, while in

the original paper a forecast is constructed for the sexes combined. In Section 3.4 we

describe the difficulties when fitting Lee-Carter on sex specific rates and explain why

we have chosen to follow the original approach of Lee-Carter.

20
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3.1 Dutch mortality data

The CBS collects demographic information of the Dutch population from the munic-

ipalities. This data is freely available at StatLine, the data bank of the CBS; see [8].

A death rate can be constructed using the period-cohort approach (see Section 1.4

for the description of the different approaches). The number of registered deaths are

categorized by age on December 31st given that this person would have been alive on

that day. Population censuses are categorized by the age of a person on January 1st.

We need to synchronize these data in order to compute a death rate. We therefore

assume that people aged x on January 1st of year t, are born in year t − x − 1. At

the time of writing, the following periods and cohorts were available:

t = 1950, . . . , 2006, x = 0, . . . , 98, 99+,

where t denotes calender year and x the age that a person will have at the end of the

year given that he/she is alive. In this definition x is a cohort age, since all people

have the same year of birth. The cohort age 99+ consists of all people that are aged

99 or higher (at the end of the year). We use the following definitions:

• D(x, t): Number of deaths in year t of people that would have had age x at the

end of t, x ≥ 0.

• N(x, t): Number of lives aged x− 1 at the beginning of year t, x ≥ 1.

• N(0, t): Number of newborns during year t.

The period-cohort death rate is obtained by

M(x, t) =
D(x, t)

N(x, t)
, x ≥ 0. (3.1)

3.2 Quality of the fit

We are now ready to show some plots of the performance of the Lee-Carter model

applied to Dutch mortality data. We use observed values m(x, t), realizations of
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M(x, t) as was defined in (3.1), as input data and distinguish between ages x ∈ X
(we shall use the word age to denote the cohort age x) and calender years t ∈ T ,

where

X = {20, 21, . . . , 98, 99+}, T ={1950, 1951, . . . , 2006}.

In Figure 3.1 the fit of the model for people aged 25, 45, 65 and 85 is displayed to

give an idea of the accuracy. We see that most of the time the fit is good especially
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Figure 3.1: Death rates for selected ages. The observed rates (dots) and the fit by the
Lee-Carter model (line).

for the last 30 years. The data is more volatile in the first half of the period than in

the second half.

In Figure 3.2 the death rates are shown in a different perspective. Now we plotted

the death rates of 1950 and 2006 for all ages and added the forecast for 2050. We see

the best fit for old people except the very old ones, although this is partly due to the

logarithmic scaling. For ages higher than 90 death rates converge and show a large

variation because the number of people that reach these ages is limited.
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Figure 3.2: Death rates in 1950, 2006 and 2050 (forecast).

The parameters of the fitted model are shown in Figure 3.3. The first plot illustrates

that average death rates per age show a monotonically increasing pattern from age 20.

Looking at the trajectory of b̂x, we see that most improvement is realized for people
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Figure 3.3: The estimated parameters âx, b̂x (top) and k̂t (bottom).

between 20 and 45. A sharp decrease is noticeable for ages beyond 85. This reinforces

the earlier observation that death rates for the highest ages did hardly improve.

This was also reflected in the prognosis for 2050, where we see that only a small
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improvement is expected. The time parameter k̂t shows a decreasing trend which is

close to linear just as in the American case. In the last three years an acceleration

can be observed.

The measure R2 is used to test how the model accounts for the variation of the data.

Write the fitted rates as

m̂(x, t) = eâx+b̂xk̂t ,

then R2 for x ∈ X can be defined as

R2(x) = 1−
∑

t∈T (m(x, t)− m̂(x, t))2∑
t∈T (m(x, t)− m̄(x))2

,

where m̄(x) = 1
n

∑
t∈T m(x, t).

The values of R2(x), plotted in Figure 3.4, give the proportion of the sample variance

that is explained by the model sorted by age. For more than 88% of the age groups,
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Figure 3.4: The fraction of explained variance per age group.

more than 75% of the variation is explained by the model. For 25% this is more

than 90%. We see that the fit improves when x increases until age 75. An explanation

is that young people have large variation in death rates because the total number of

deaths is low. Another explanation is the re-estimation of kt which gives more weight

to ages with a high number of observed deaths. After age 75 the fit deteriorates.

This can be explained by the fact that the number of people that reach these ages

decreases quickly, which makes death rates more volatile (smaller sample). An overall
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measure for the goodness of fit method is obtained by calculating R2 for all data

R2 = 1−
∑

x∈X
∑

t∈T (m(x, t)− m̂(x, t))2∑
x∈X

∑
t∈T (m(x, t)− m̄(x))2

.

We find that 46.3% of the overall variation is explained by the model. When we leave

out the ages higher than 88, 90.4% is explained.

We can obtain information about the errors by looking at the estimated errors ε̂x,t,

which can be computed by

ε̂x,t = logm(x, t)− log m̂(x, t).

We calculated the correlation matrix and observed a strong correlation across con-

secutive age groups. This is unfortunate since it violates the assumption that the

errors are independent. Lee and Carter acknowledge this problem but argue that it is

undesirable to add extra parameters into the model to describe this interdependence,

because the effect would be marginal ([20], Appendix B).

3.3 Time series modeling

In this section we fit an ARIMA model to the estimated values k̂t in order to fore-

cast future values. Consider {k̂t}, t = 1950, 1951, . . . , 2006, which were plotted in

Figure 3.3. We can observe a decline that is approximately linear, so we apply the

differencing operator ∇, defined in (2.12), to remove the trend. The resulting values

are displayed in the top left chart of Figure 3.5. The horizontal line in the chart

denotes the sample mean of the series.

We do not detect any trend nor a change in dispersion so we assume that the dif-

ferenced values are stationary. The next step is to fit an ARMA(p, q) model to the

sequence {∇k̂t}. Appropriate values for p and q can be derived from the Auto Corre-

lation Function (ACF) ρ(h) and the Partial Auto Correlation Function (PACF) α(h),

h ∈ N, which can be defined in terms of the Auto CoVariance Function (ACVF) γ(h).

Let {Xt} be a time series, then γ(h) is defined as

γ(h) = Cov(Xt, Xt+h),
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Figure 3.5: Examination of the sequence {∇k̂t}. Top left: the values (markers) around
the sample mean. Top right: the Ljung-Box test statistic. Bottom left: the sample ACF.
Bottom right: the sample PACF.

where h denotes the lag. The ACF and PACF are given by:

ρ(h) =
γ(h)

γ(0)
= Cor(Xt, Xt+h), h ≥ 0, (3.2)

α(h) = (Γ−1
h γh)h, h ≥ 1, (3.3)

where (Γ−1
h γh)h is the the last element of the vector Γ−1

h γh which consists of

Γh =


γ(0) γ(1) . . . γ(h− 1)

γ(1) γ(0) . . . γ(h− 2)
...

...
. . .

...

γ(h− 1) γ(h− 2) . . . γ(0)

 and γh =


γ(1)

γ(2)
...

γ(h)

 .
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We immediately conclude from (3.2) that ρ(0) = 1, the correlation of an observation

with itself. For every h > 0, ρ(h) = 0 when the series Xt is uncorrelated. The ACF

of a MA(q) process is 0 when h > q. The PACF is used to determine the number of

AR components. For an AR(p) process, α(h) = 0 for h > p. For applications, the

ACF and PACF are usually unknown, as in our case, but they can be estimated from

the observations.

The sample ACF ρ̂(h) and PACF α̂(h) are determined in the same way as ρ(h)

and α(h) (in terms of the ACVF), but by replacing γ(h) by γ̂(h), the sample ACVF,

in (3.2) and (3.3) respectively. For a set of observations x1, x2, . . . , xn, γ̂(h) is defined

as

γ̂(h) =
1

n

n−h∑
t=1

(xt+h − x̄)(xt − x̄), h < n, in which

x̄ =
1

n

n∑
t=1

xt.

This estimator is biased even when we replace the factor 1
n

by 1
n−h . In order to draw

conclusions from ρ̂(h) and α̂(h) we need to make assumptions about its distribution.

For a large sample size n, it can be shown that when ρ(h) = 0, ρ̂(h) is approximately

normal distributed with E[ρ̂(h)] = 0 and Var(ρ̂(h)) = 1/n. Also, when α(h) = 0, α̂(h)

is approximately normal distributed with E[α̂(h)] = 0 and Var(α̂(h)) = 1/n. A proof

of these statements can be found in [4] p. 117. When we assume that our sample size

is large enough (which is the case when we follow Brockwell & Davis, who suggest

from n = 50 this assumption is reasonable, see [5] p. 60) we can construct confi-

dence bounds. The probability that ρ̂(h), α̂(h) fall between the bounds ±Φ1−α/2/
√
n,

where Φ1−α/2 denotes the 1− α/2 quantile of the normal distribution, is (1− α).

We used the statistical program ‘R’ to determine ρ̂(h) and α̂(h) for our differenced

series {∇k̂t} and plotted its values in the bottom charts of Figure 3.5, where the blue

dotted lines denote the 95% confidence bounds. Hence, we expect approximately 95%

of the values ρ̂(1), ρ̂(2), . . . ρ̂(20) to fall between these bounds. Besides the first lag,
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we see that five lags fall outside the bounds which suggests that there is correlation

between the observations. In the chart of the sample PACF we see that only one value

falls outside the bounds, which is the expected number for an uncorrelated series.

We can perform a statistical test whether {∇k̂t} is generated by an independent and

identically distributed (IID) sequence of random variables. If that is the case, an

ARIMA(0, 1, 0) is the most appropriate model. The null hypothesis is defined as:

H0 : {∇k̂t} is generated by an IID sequence of random variables. (3.4)

Under the null hypothesis, ρ(h) = 0 for all h, so that the test statistic

Q̃ = n
h∑
j=1

ρ̂2(j), (3.5)

is approximately distributed as a chi-square distribution with h degrees of free-

dom χ2(h). Here we test whether the first h autocorrelations are different from

zero, so for large values of Q̃ this hypothesis will be rejected. Ljung and Box show

in [22] that for finite sample size n the distribution of

Q = n(n+ 2)

j∑
h=1

ρ̂2(h)

n− h
,

is a closer approximation of χ2(h) then Q̃ from (3.5). When a Ljung-Box is test

performed, H0 is rejected when Q > χ2
1−α(h), where χ2

1−α is the 1 − α quantile of

the chi-square distribution with h degrees of freedom. We chose a significance level

of α = 0.05 and rejected the null hypothesis for lags h = 1, . . . , 10. Hence, we conclude

that the differenced data are correlated. The p-values are displayed in the top right

chart of Figure 3.5.

We can use R to calculate the Akaike’s information criterion (AIC) for several values

of p and q, which are displayed in Table 3.1. The AIC balances the likelihood of the fit

with the number of parameters. On the one hand we want a close fit with the observed

data and adding parameters will in general improve this fit. On the other hand, we

do not want an overdetermined model, because the series will be extrapolated to
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Table 3.1: the AIC criterion for p, q = 0, 1, . . . , 4

p/q 0 1 2 3 4
0 233.31 228.83 230.10 227.46 226.91
1 229.88 230.72 231.90 228.13 225.05
2 228.61 229.11 222.2 226.22 226.59
3 226.66 227.77 224.08 226.18 227.55
4 226.96 228.85 226.03 227.7 228.65

construct a forecast. Incorporating too many parameters will replicate noise from the

past into the future, which can cause idiosyncratic features to appear in the forecast.

The optimal AIC is given by the value closest to zero. The lowest AIC for our data

is obtained when (p, q) = (2, 2). This gives us an ARIMA(2, 1, 2) model

Kt −Kt−1 = µ+ Yt, (3.6)

where Yt is a zero mean ARMA(2, 2) model,

Yt = φ1Yt−1 + φ2Yt−2 + θ1Zt−1 + θ2Zt−2 + Zt, Zt ∼ WN(0, σ2
Z). (3.7)

In Table 3.2 we show the estimates and the standard errors for the mean µ, the AR

components φ1, φ2 and the MA components θ1, θ2 for our series.

Table 3.2: Estimates and standard erors for the coefficients of the ARIMA(2, 1, 2) model

µ φ1 φ2 θ1 θ2

Estimate −0.8291 −0.5239 −0.8836 0.2499 0.8754
se 0.1837 0.0868 0.0770 0.1007 0.1054

We plotted the fitted innovations ẑt, which result from plugging in the observed

values k̂t and the estimates from Table 3.2 into (3.6) and (3.7). We tested whether

there is dependence between the innovations ẑt in the same way as we did for ∇k̂t in

Figure 3.5, and displayed them in Figure 3.6.
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Figure 3.6: Examination of the residuals ẑ1951, ẑ1952, . . . , ẑ2006 after an ARIMA(2, 1, 2)
model is implemented. Top left: the values. Top right: the Ljung-Box test statistic.
Bottom left: the sample ACF. Bottom right: the sample PACF.

In both the sample ACF and PACF we see that only one lag falls outside the dotted

lines, which is the expected number for an uncorrelated series. The Ljung-box test

gives us p-values which are all well over 0.05, so we cannot reject the hypothesis

that ẑt is the realization of an IID white noise sequence.

3.4 Fitting Lee-Carter on sex-specific death rates

One could imagine to apply the Lee-Carter model separately on the death rates of

males and females to construct a sex-specific forecast, as Gregorkiewicz has done in

2006. However, Lee and Carter mention that the key to the success of their model is
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the steady, linear decline of kt, and for the sex-specific approach this does not hold (in

the Netherlands), as will be illustrated in this section. Fitting Lee-Carter on death

rates from the period 1950-2006 and ages 0, . . . , 98, 99+ leads to k̂t for males and

females that are displayed in Figure 3.7.

-75

-50

-25

0

25

1950 1960 1970 1980 1990 2000

Year

Es
tim

at
ed

 k
t

-50

-25

0

25

50

1950 1960 1970 1980 1990 2000

Year
Es

tim
at

ed
 k

t

Figure 3.7: The fitted parameters k̂t for males (left) and females (right).

We observe that the trend for males is different than for females. A linear trend for

the female k̂t seems reasonable but this is not the case for the males, which causes the

difficulties. Gregorkiewicz also came to this conclusion, and decided to compensate

for the non-linearity by leaving out a part of the observed period. For males he uses

observed death rates from 1971 to fit the model, for females the years from 1980

are used. Because of this, estimated drift terms that equal µ̂ = −1.68 for males

and µ̂ = −0.98 for females are found. The reason the drift for males is more than

1.5 times as large, lies in the development of mortality since 1950, as can be observed

from Figure 3.7. A strong improvement for females can be seen until approximately

1980, followed by a slower improvement until 2006. For males, this development was

the other way around. The question arises whether it is reasonable to expect that

male death rates will continue to decrease at a (much) faster pace than the female

death rates. We also tried several ways to extrapolate the male trajectory, but none

of them gave a satisfactory result. Let us present our experiences.

For our purposes the ages on which people do not accrue pension are not important.

The death rates of these ages influence the value of k̂t, so leaving them out might

alter k̂t in a favorable way. Unfortunately this was not the case, when we left out the
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ages 0-19 the trajectory became even worse as can be seen in Figure 3.8. We also

fitted the model on a shorter period. When the model is fitted only on 1975-2006 the

male trajectory slightly improved, albeit the female trajectory deteriorated, see the

right chart of Figure 3.8. We experimented with different periods and ages, which
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Figure 3.8: The fitted model where we left out ages 0-19 (left) or the period 1950-1974
(right).

leaded to the same conclusions.

We approximated the male trajectory by polynomials of low order to analyze its

trend. In Figure 3.9 the first and second order approximation in the least squares

sense are displayed. We see that the linear approximation is poor while the quadratic
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Figure 3.9: Trend approximation by a first and second order polynomial (left) and the
values ∇2k̂t (right).

approximation is fairly good. Also displayed in Figure 3.9 are ∇2k̂t, the values after

differencing twice. We cannot observe a trend in this data, so it is reasonable to
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assume that they are stationary. This suggests that the k̂t behave quadratically

and hence we examined fitting an ARIMA(p, 2, q) model. The lowest AIC value

is attained when (p, q) = (3, 0). In Figure 3.10 we have displayed forecasted k̂t

according to ARIMA(3, 2, 0) together with a forecast for the female k̂t, for which we

found that an ARIMA(0, 1, 3) is the most appropriate model. The forecasts quickly
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Figure 3.10: Sex specific forecasts for k̂t. For males an ARIMA(3, 2, 0) model is used, for
females an ARIMA(0, 1, 3) model.

diverge. In 2050 most forecasted death rates for males are lower than for females.

We compared these outcomes with the forecast of the unisex model, which will be

presented in the next chapter, and concluded that the quadratic trend produces a

forecast which is unlikely to happen.



Chapter 4

A forecast of Dutch mortality

In the previous chapter we implemented the Lee-Carter model on Dutch mortality

rates. The purpose of this chapter is to investigate how we, given this model, should

construct forecasts. Besides a forecast which is most likely to happen, we are also

interested in the volatility of future death rates. In Section 4.1 we shall discuss several

methods to determine a prediction interval for a given level α, 0 < α < 1, for which

the probability that the realization will lie within the prediction interval is (1 − α).

In Section 4.2 we test the model to see if it is suitable for forecasting. We fit the

model for various periods in the past and compare predicted mortality with observed

mortality.

4.1 Prediction intervals

In Section 3.3 we found that an ARIMA(2, 1, 2) is most appropriate, i.e. the smallest

AIC value, to model kt. The fitted innovations ẑt seem to be uncorrelated, based on

the sample ACF, the sample PACF and the Ljung-Box test. From now we will adopt

this model as the true model. Within the model, there are two aspects that have to

be further explored:

i) The distribution of the innovations Zt.

34
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ii) The effect of parameter uncertainty.

In this section we will examine different ways to construct forecasted values kτ+h,

where τ is the final year on which the model is fitted (in our case τ = 2006). At first

we ignore the effect of parameter uncertainty. The easiest way is to assume that Zt is

normally distributed with variance equal to the squared standard error σ̂2
Z . We fitted

our model in R and found

σ̂Z ≈ 1.571. (4.1)

In Figure 3.6 the estimated innovations ẑt were shown. A corresponding kernel density

estimator with kernel equal to the standard normal density is displayed in Figure 4.1.

Also plotted with dashed lines is the normal density with mean 0 and variance σ̂2
Z .
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Figure 4.1: A kernel density estimator on ẑt (solid line) compared with a normal density
with mean 0 and variance σ̂2

Z (dashed line).

The graphs are fairly close, so by the first generated forecast, in Subsection 4.1.1, we

shall assume that the innovations are distributed as Zt ∼ N (0, σ̂2
Z). A forecast with

minimum mean squared prediction error (MSPE) based on n observations, will be

derived. Moreover, we will show how a prediction interval can be determined for a
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given level α. A prediction interval gives an indication of the volatility of the forecast,

comparable to a confidence interval when an unknown parameter is estimated based

on a sample. In Subsection 4.1.2 we will perform a simulation where instead of

making an assumption on the distribution of Zt, a bootstrap method is used. Finally,

in Subsection 4.1.3 the effect of parameter uncertainty will be investigated by doing

another simulation. Instead of generating future forecasts with a fixed drift term µ̂,

at every iteration the drift will be drawn randomly as µ∗ ∼ N (µ̂, σ̂2
µ).

4.1.1 Analytical forecast

In this subsection we consider a special class of ARMA(p, q) models: the causal and

invertible ARMA models with zero mean. At every ARMA process {Xt} with nonzero

mean µ we can apply a mean correction: Yt = Xt − µ to obtain a nonzero process.

Causality and invertibility can be checked from the parameters φ1, . . . , φq, θ1, . . . , θp.

The ARMA(2, 2) process that was fitted on the ∇k̂t in Section 3.3 is a member of

this class.

When {Yt} is a zero mean, causal and invertible ARMA(p, q) process with corre-

sponding innovations {Zt}, there exists sequences {ψj}, {πj}, where
∑∞

j=0 |ψj| < ∞
and

∑∞
j=0 |πj| <∞, such that

Yt =
∞∑
j=0

ψjZt−j and (4.2)

Zt =
∞∑
j=0

πjYt−j, (4.3)

for all t. The sequence {ψj} can be found recursively from

ψj −
p∑

k=1

φkψj−k = θj, for j = 0, 1, . . . , (4.4)

where θ0 = 1, θj = 0 for j > q and ψj = 0 for j < 0. Similarly {πj} is found by

πj +

q∑
k=1

θkπj−k = −φj, for j = 0, 1, . . . , (4.5)
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where φ0 = −1, φj = 0 for j > p and πj = 0 for j < 0.

We write nPτYτ+h for a prediction of h years ahead based on a linear combination of

Yτ−n+1, Yτ−n+2, . . . , Yτ :

nPτYτ+h = a0Yτ + · · ·+ an−1Yτ−n+1,

with minimum MSPE,

E[(Yτ+h − nPτYτ+h)
2] = E[(Yτ+h − a0Yτ − · · · − an−1Yτ−n+1)2].

Note that from the way that nPτYτ+h is constructed, it follows that

E[Yτ+h − nPτYτ+h] = 0.

The MSPE can be interpreted as a quadratic function in a0, . . . , an−1 which is bounded

below by zero. We can find the minimum value by solving

∂E[(Yτ+h − nPτYτ+h)
2]

∂aj
= 0, j = 0, . . . , n− 1. (4.6)

By changing the order of (partial) differentiation and expected value, (4.6) can be

reduced to:

E

[
(Yτ+h −

n−1∑
i=0

aiYτ−i)Yτ−j

]
= 0, j = 0, . . . , n− 1. (4.7)

For some ARMA processes it is possible to derive the linear predictor with minimum

MSPE directly from (4.7). For instance, the one-step predictor nPτYτ+1, when {Yt}
is an AR(p) process with n > p,

Yt = φ1Yt−1 + · · ·+ φpYt−p + Zt. (4.8)

When we take ai = φi+1 for i = 0, . . . , p − 1 and ai = 0 for i = p, . . . , n − 1, (4.7)

becomes

E

[
(Yτ+1 −

p−1∑
i=0

φi+1Yτ−i)Yτ−j

]
= E[Zτ+1Yτ−j] = 0, j = 0, . . . , n− 1,
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since Zτ+1 is uncorrelated with Yτ+1−n, . . . , Yτ . The corresponding MSPE reads

E[(Yτ+1 − nPτYτ+1)2] = E[Z2
τ+1] = σ2

Z .

Now consider the case that h = 2. We can write

Yτ+2 = φ1Yτ+1 + · · ·+ φpYτ+2−p + Zτ+2 (4.9)

= φ1(φ1Yτ + · · ·+ φpYτ+1−p + Zτ+1) + φ2Yτ + · · ·+ φpYτ+2−p + Zτ+2

= (φ2
1 + φ2)Yτ + · · ·+ (φ1φp−1 + φp)Yτ+2−p + φ1φpYτ+1−p + φ1Zτ+1 + Zτ+2.

When we put a0, . . . , ap−1 equal to the coefficients of Yτ , . . . , Yτ+1−p from the last line

of (4.9) and put ai = 0 for i = p, . . . , n− 1, we obtain

E

[
(Yτ+2 −

p−1∑
i=0

aiYτ−i)Yτ−j

]
= E[(Zτ+2 + φ1Zτ+1)Yτ−j]

= 0, j = 0, . . . , n− 1.

The corresponding MSPE reads

E[(Yτ+2 − nPτYτ+2)2] = E[(Zτ+2 + φ1Zτ+1)2] = (1 + φ2
1)σ2

Z .

The coefficients for Zτ+1, Zτ+2 that are obtained in (4.9) can also be found from two

iterations of (4.4) (for an ARMA(2, 0) process, ψ0 = 1 and ψ1 = φ1). Therefore, we

can find nPτYτ+h for any h ≥ 1 as follows. First determine the coefficients a0, . . . , ap−1,

ψ0, . . . , ψh−1 to write Yτ+h as

Yτ+h = a0Yτ + · · ·+ ap−1Yτ+1−p + ψ0Zτ+h + · · ·+ ψh−1Zτ+1.

It follows that

E

[
(Yτ+h −

p−1∑
i=0

aiYτ−i)Yτ−j

]
= E

[(
h−1∑
j=0

ψjZτ+h−j)

)
Yτ−j

]
= 0, j = 0, . . . , n− 1.

Then the MSPE reads

E[(Yτ+h − nPτYτ+h)
2] = E

(h−1∑
j=0

ψjZτ+h−j

)2
 = σ2

Z

h−1∑
j=0

ψ2
j := σ2

Z(h). (4.10)
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When we assume that Zt ∼ N (0, σ2
Z),

Yτ+h − nPτYτ+h ∼ N (0, σ2
Z(h)). (4.11)

The probability that Yτ+h will fall between the bounds nPτYτ+h±Φ1−α/2σ
2
Z(h), where

Φ1−α/2 denotes the 1− α/2 quantile of the normal distribution, is (1− α). Therefore

we will call

[nPτYτ+h − Φ1−α/2σZ(h), nPτYτ+h + Φ1−α/2σZ(h)], (4.12)

a (1− α) prediction interval.

When {Yt} is an ARMA(p, q) process with q 6= 0, constructing a prediction interval

is more complicated. This can be illustrated by determining the one step predictor

for a MA(1) process,

Yt = θ1Zt−1 + Zt.

As usual, we need to find a0, . . . , an−1 such that

E

[
(Yτ+1 −

n−1∑
i=0

aiYτ−i)Yτ−j

]
= E

[
(θ1Zτ + Zτ+1 −

n−1∑
i=0

aiYτ−i)Yτ−j

]

= E

[
(θ1Zτ −

n−1∑
i=0

aiYτ−i)Yτ−j

]
= 0, j = 0, . . . , n− 1.

The problem is that we cannot construct Zτ by a finite number of observations

Yτ−n+1, . . . , Yτ . We can interpret Yτ as an infinite sum of past Zt, t ≤ τ with co-

efficients given by (4.4). Therefore we write

θ1Zτ −
n−1∑
i=0

aiYτ−i =
∞∑
j=0

ψ̃jZτ−j := Rn

where ψ̃0, ψ̃1, . . . depend on a0, . . . , an−1.

We state the prediction error as

Yτ+1 − nPτYτ+1 = Zτ+1 + (θ1Zτ − a1Yτ − · · · − anYτ+1−n) = Zτ+1 +Rn.
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When we define ai = θ1πi, i = 1, 2, . . ., with πi given by (4.5),

lim
n→∞

Rn = 0. (4.13)

This suggests that the MSPE converges to σ2
Z(1):

lim
n→∞

E[(Yτ+1 − nPτYτ+1)2] = σ2
Z(1). (4.14)

For details about this limit we refer to the textbook written by Brockwell & Davis [5],

in particular Section 2.5.

For the general case, let {Yt} be any zero mean, causal and invertible ARMA(p, q)

process. Using (4.2) we can write the prediction error of h steps ahead as

Yτ+h − nPτYτ+h =
h−1∑
j=0

ψjZτ+h−j +

(
∞∑
j=h

ψjZτ+h−j − nPτYτ+h

)

:=
h−1∑
j=0

ψjZτ+h−j +
∞∑
j=0

ψ̃2
jZτ−j.

:=
h−1∑
j=0

ψjZτ+h−j +Rn.

The corresponding MSPE can be written as

E[(Yτ+h − nPτYτ+h)
2] = σ2

Z

(
h−1∑
j=0

ψ2
j +

∞∑
j=0

ψ̃2
j

)
:= nσ

2
Z(h). (4.15)

For large n, we expect Rn ≈ 0 and hence nσ
2
Z(h) ≈ σ2

Z(h).

There exists algorithms that determine nPτYτ+h with corresponding MSPE from a

set of observations and a given model, such as the Innovations Algorithm ([5], p. 71).

It follows from (4.15) that when Zt ∼ N (0, σ2
Z),

Yτ+h − nPτYτ+h ∼ N (0, nσ
2
Z(h)).

A prediction interval can be obtained via (4.12).

We used the function predict from R on the fitted values of our process (3.7) to con-

struct nPτyτ+h, for n = 56, τ = 2006 and h = 1, . . . , 44. Using the recursion from (3.6)

we computed the corresponding forecast kτ+h, which is displayed in Figure 4.2 with

a 95% prediction interval, where σ̂Z from (4.1) is used as an estimate for σZ .
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Figure 4.2: Forecasted kt for the period 2007-2050 with a 95% prediction interval (dotted
lines).

4.1.2 Simulation without parameter uncertainty

In this subsection we describe a simulation in which the error that was made by fitting

the parameters is ignored and where innovations are generated by a bootstrap method.

The objective is to examine how much the resulting forecast deviates from the forecast

that was found in the previous subsection, where it was assumed that Zt ∼ N (0, σ̂2
Z).

By the simulation, future innovations z∗t are generated randomly from the observed

innovations ẑt. In our case this means that we define the set

Z = {ẑ1951, ẑ1952, . . . ẑ2006},

and draw z∗t independently from Z. Sequences y∗τ+1, y
∗
τ+2, . . . , y

∗
τ+h are constructed

with the usual recursion formula of ARMA models. We need the fitted values

ŷτ−p+1, . . . , ŷτ and ẑτ−n+1, . . . , ẑτ to start the process. In order for the simulation

to make sense we require n ≥ max(p, q). In Table 4.1 the construction of a single

sequence is illustrated. From the N generated sequences an empirical distribution

can be constructed.
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Table 4.1: Generating one sequence k∗τ+1, . . . , k
∗
τ+h.

Given estimates: φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q, µ̂

and fitted values k̂τ , ŷτ−p+1, . . . , ŷτ , ẑτ+1−n, . . . , ẑτ , n ≥ max(p, q).
Define Z = {ẑτ+1−n, . . . ẑτ}

for i = 1 : h do

y∗τ+i = φ̂1ỹτ+i−1 + · · ·+ φ̂pỹτ+i−p + θ̂1z̃τ+i−1 + · · ·+ θ̂qz̃τ+i−q + z∗τ+i.
k∗τ+i = k∗τ+i−1 + µ̂+ y∗τ+i.
end
where

ỹt =

{
ŷt if t ≤ τ ;
y∗t if t > τ ;

z̃t =

{
ẑt if t ≤ τ ;
z∗t if t > τ ;

k∗τ = k̂τ and z∗t independent drawings from Z.
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Figure 4.3: Forecasted kt constructed by: a) the analytical forecast (green lines) and b)
the 10000 simulations where parameter uncertainty is not included (black markers).
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We performed the simulation for our model with τ = 2006, h = 44, N = 10000 and

computed the median, the 0.025 quantile and the 0.975 quantile of the values k∗τ+h.

A comparison with the analytical forecast is displayed in Figure 4.3. We see that

the difference between the forecasts is marginal and hence we conclude that the

assumption that Zt ∼ N (0, σ̂2
Z), is reasonable.

4.1.3 Simulation with parameter uncertainty

In this subsection we describe a simulation to investigate how the forecast is affected

when the parameters of the model are slightly perturbed. The reason to do this is that

the fitted parameters are found by some optimization method, for instance maximum

likelihood, and will deviate from the exact parameters. It is therefore important to

know what the effects are on the forecast when the estimated parameters are a little

altered.

At the start of every iteration, a random perturbation is added to the drift term µ.

Instead of taking the drift equal to µ̂, forecasts are generated with µ∗ ∼ N (µ̂, σ̂2
µ).

The standard error σ̂µ can be found via the matrix of second derivatives of the log-

likelihood function of all parameters, its value for our model is displayed in Ta-

ble 3.2. The ARMA parameters θ̂∗1, . . . , θ̂
∗
p, φ̂

∗
1, . . . , φ̂

∗
q are obtained by fitting a zero

mean ARMA(p, q) model on k̂τ−n+2 − k̂τ−n+1 − µ∗, . . . , k̂τ − k̂τ−1 − µ∗. Future in-

novations z∗τ+i are generated as z∗τ+i ∼ N (0, (σ̂2
Z)∗). The reason we do not use a

random drawing of the set of fitted innovations to generate future innovations, is that

the mean of this set can be significantly different from zero. One iteration of this

simulation is illustrated in Table 4.2.

We performed this simulation for the same τ, h,N as before and displayed the median,

the 0.025 and the 0.975 quantile in Figure 4.4, together with the analytical forecast

from Subsection 4.1.1. The prediction bounds are more than 20% wider in 2030 and

almost 33% wider in 2050.
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Table 4.2: Generating one sequence k∗τ+1, . . . , k
∗
τ+h with parameter uncertainty.

Given drift estimates: µ̂, σ̂2
µ and fitted values k̂τ−n+1, . . . , k̂τ .

Generate µ∗ ∼ N (µ̂, σ̂2
µ) and fit an ARMA(p, q) model on

k̂τ−n+2 − k̂τ−n+1 − µ∗, . . . , k̂τ − k̂τ−1 − µ∗.

Store the parameters φ̂∗1, . . . , φ̂
∗
p, θ̂
∗
1, . . . , θ̂

∗
q , (σ̂

2
Z)∗,

and the fitted values: ŷ∗τ−p+1, . . . , ŷ
∗
τ , ẑ
∗
τ−q+1, . . . , ẑ

∗
τ

for i = 1 : h do

y∗τ+i = φ̂1ỹτ+i−1 + · · ·+ φ̂pỹτ+i−p + θ̂1z̃τ+i−1 + · · ·+ θ̂qz̃τ+i−q + z∗τ+i.
k∗τ+i = k∗τ+i−1 + µ̂+ y∗τ+i.
end
where

ỹt =

{
ŷ∗t if t ≤ τ ;
y∗t if t > τ ;

z̃t =

{
ẑ∗t if t ≤ τ ;
z∗t if t > τ ;

k∗τ = k̂τ and z∗t ∼ N (0, (σ2
Z)∗) for t > τ IID.
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Figure 4.4: Forecasted kt constructed by: a) the analytical forecast (green lines) and b)
the 10000 simulations where parameter uncertainty is included (black markers).
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4.2 Model evaluation

In this section we investigate whether the ARIMA(2, 1, 2) model, with parameters

from Table 3.2, will create reliable forecasts using the methods described in the pre-

vious section. Firstly, the volatility of the drift term µ̂ is examined between 1950

and 2006. Secondly, the model is fitted on several periods from the past and future

values for kt are forecasted until 2006. The values that are most likely to happen

and 95% prediction bounds will be displayed and compared with the fitted k̂t based

on the entire period 1950-2006. This gives us an indication whether future mortality

will be well predicted by our model. Thirdly, it is tested how these forecasts for kt

lead to forecasted values for the flat life expectancy, which is a measure of mortality

in one calender year, defined in (4.16).

4.2.1 The drift

We calculated µ̂ for different periods in the past and displayed them in Table 4.3.

Note that there is a large gap between the outcomes of the first two periods. The

Table 4.3: Comparison of the drift µ̂ for different periods.

period µ̂
1950-1959 −1.0613
1950-1969 −0.5305
1950-1979 −0.7572
1950-1989 −0.7163
1950-1999 −0.6686
1950-2003 −0.6929
1950-2006 −0.8291

drift term corresponding to 1950-1959 is −1.0613 which is far below average. The

drift from the period 1950-1969 reads µ̂ = −0.5305, which is relatively high. When

the period is 30 years or longer µ̂ is less volatile, which is fortunate. The estimate

of µ̂ declines from −0.6929 based on 1950-2003, to −0.8291 when the last three years
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are incorporated. This is due to the sharp decrease in the years 2004, 2005 and 2006,

as can be seen in the top left chart of Figure 4.5, where a scatter plot of k̂t together

with the best linear approximation in the least squares sense is displayed. We see that

the values in these years are extremely low, which is unprecedented since the 1970’s

where a deviation from the approximation of multiple years can be observed, albeit

in the opposite direction. The slope of the approximation equals −0.75 and when

1950-1976 is left out the slope is −0.78, which illustrates that overall the decline has

been steady.

4.2.2 Forecasting kt

Let us examine how the model predicts kt based on several periods in the past, for

years that have already been observed. For various τ , 1950 < τ < 2006, we fitted the

model on the data from 1950 up to end including τ and predicted kτ+1, kτ+2, . . . , 2006.

We compared these values with the fitted values k̂t from our complete set of data.

For τ < 1982 forecasted kt turned out to be unreliable, because when fitting the

parameters of the ARIMA(2, 1, 2) model the estimates vary a lot between consecu-

tive years. After 1982 these estimates were relatively stable over time, as was also

concluded about µ̂ in the previous subsection. In Figure 4.5 the forecasts starting in

1982, 1989 and 1996 are displayed. Two pairs of prediction bounds are constructed,

one using the techniques described in Subsection 4.1.1, and one using the empirical

distribution from the simulation with parameter uncertainty included, see Table 4.2.

The latter prediction bounds are wider than the former ones. For every year, k̂t stays

within all prediction bounds and is closely predicted until 2003. The value k̂2006 is

underestimated by all forecasts. The shape of the observed values is often replicated

by the forecasts, especially in the first ten years. This suggests that the AR and MA

terms improve the quality of the forecast compared to the original ARIMA(0, 1, 0)

from Lee and Carter.
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Figure 4.5: Top left: scatter plot of k̂t and a first order approximation. Top
right: k̂t (black line) and forecasted values based on data from 1950-1982 (green line)
with two pairs of 95% prediction bounds (green dotted). Bottom left: idem based on
1950-1989. Bottom right: idem based on 1950-1996.

4.2.3 Forecasting flat life expectancy

Another way to measure the performance of the model is by comparing the flat

life expectancy FLE(x, τ), which is equal to life expectancy ẽx,t, see (1.11), but by

postulating that q(x, t) = q(x, τ) for all t:

FLE(x, τ) =
∞∑
i=1

iq(x+ i, τ)
i−1∏
j=0

(1− q(x+ j, τ)). (4.16)

When we replace q(x, τ) by m(x, τ), a realization of M(x, τ) which was defined

in (3.1), we obtain the observed flat life expectancy from the Netherlands. Similarly

the fitted FLE can be computed for a given mortality model. For the Lee-Carter

model this means that q(x, τ) is replaced by m̂(x, τ), where

m̂(x, τ) = eâx+b̂xk̂τ . (4.17)
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In Figure 4.6 we plotted FLE(20, τ), 1950 ≤ τ ≤ 2006, for the observed death rates,

together with forecasts based on the same periods as in Subsection 4.2.2: 1950-1982,

1950-1989 and 1950-1996. The forecasts are obtained from plugging in the fitted

rates (4.17) into (4.16).
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Figure 4.6: Flat life expectancy for people aged 20, observed (black) and forecasted (green
and red), with 95% prediction intervals (green and red dotted), based various periods: Top
left: 1950-1982. Top right: 1950-1989. Bottom left: 1950-1996. Bottom right: 1950-
1996 (with a jump off correction).

The prediction bounds are constructed by plugging in the prediction bounds of kt

(from Figure 4.5) into (4.17), without including the fitting error εx,t. Lee and Carter

found that when forecasting the FLE, kt accounts for most of the uncertainty of the

forecast ([20], Appendix B) which justifies this omission. They conclude that if a

single death rate m(x, t) is forecasted, εx,t will add substantially to the uncertainty,

but since the FLE is calculated as a product of q(x, t) the fitting error is a product

of eεx,t which is negligible since errors with different signs will cancel.

Again all forecasts are accurate until 2003. The observed FLE stays within all pre-

diction bounds for the forecasts starting in 1982 and 1989. For the other forecast the
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observed FLE falls out of the analytical prediction bound for 2005 and 2006 and for

the empirical bound in 2006. Together these three forecasts predicted 51 years, where

only one or two values (depending on the bounds) have fallen outside the prediction

bounds, which is less than 5%.

Lee and Miller published an evaluation of the Lee-Carter model in 2001 [21]. They

propose an adaption for the estimate of ax and kt in the jump off year τ : “. . . the

model would not fit the age-specific mortality data exactly in the jump off year,

thus the initial conditions for the forecast would not be quite right. This situation

inevitably would lead to error, which would be particularly important in the early

years of the forecast”([21], p. 1113). Consider FLE(20, τ) with jump off year 1996.

The fitted value in that year is 58.12, while the observed value is 58.30. When we

apply the jump off correction we set âx equal to the log of the age specific death

rates of 1996 and put k̂1996 = 0. The resulting forecast is slightly altered as can be

seen in the bottom right chart of Figure 4.6. We see a small improvement in the first

few years, and now only one value falls outside of the analytical prediction bounds.

However, we expect that in the long run the forecast will not deviate a lot from the

forecast without jump off correction. A risk of applying the correction is that the

errors from the jump off year get extrapolated into the future.



Chapter 5

Financial consequences of using

different mortality models

In this chapter we illustrate the consequences of longevity risk. We shall compare the

forecast of our implementation of the Lee-Carter model applied to Dutch mortality

rates, with the forecasts of the CBS (Dutch Bureau of Statistics) and the AG (Dutch

Association of Actuaries). In Section 5.1 the method that is used by the CBS to

construct their forecast, is discussed. Medical and sociological information is incor-

porated together with extrapolative techniques. Only one scenario of future mortality

is provided. In Section 5.2 the forecast of the AG is described. For actuaries these

are the most important rates since they are used to determine future expenses of a

pension fund. Their method is, just like Lee-Carter, a purely extrapolative method.

Although they provide only one scenario of future mortality, they describe a method

to incorporate uncertainty in their forecast. The purpose of Section 5.3 is to give an

introduction to actuarial calculations. We derive a formula for the liabilities at time τ

of a pension fund, which can be defined as the expected future expenses of the fund

to its participants to fulfill the commitments that were made up to and including τ .

This formula will be used to compare the three mortality models in Section 5.4, in

which the liabilities for an average Dutch pension fund are computed. The results of

50
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Section 4.1 enable us to calculate the liabilities using the Lee-Carter model for dif-

ferent levels of uncertainty. In order to do this, the simulations defined in Table 4.1

and 4.2 will be extended to calculate the liabilities for every realization of mortal-

ity. Section 5.5 focuses on the difference between the AG forecast and the analytical

forecast of Lee-Carter with minimum MSPE. We designed an experiment where an

average fund is winding up and look at the financial consequences when mortality im-

provement is underestimated. In particular we shall focus on the disparity between

young and old people.

5.1 The forecast of the CBS

Every two years the CBS publishes a sex-specific prognosis of future death probabil-

ities. In 2000 and 2002 this forecast stretched until 2049, while in 2004 and 2006 the

final year was 2050. The expected flat life-expectancy from birth FLE(0, 2049) has

increased significantly between 2000 and 2006 as can be seen in Table 5.1. This is

due to the sharp decrease of death rates in 2004 and 2005.

Table 5.1: Development of the forecasted FLE(0, 2049).

2000 2002 2004 2006
Males 79.51 79.51 79.52 81.43

Females 82.6 82.51 82.61 84.13

The purpose of this section is to describe the method that is used by the CBS to

calculate future death probabilities. It is a summary of the official document [15],

which can be found on the CBS website.

Based on medical expertise, sociological arguments and historic development, a prog-

nosis for 2018, 2034 and 2050 is made for age groups until 80. Interpolation is used to

construct age and time specific death probabilities. For people older than 80, death
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probabilities are determined via extrapolation. A distinction is made between the

following causes of death:

• Cancer, subdivided in lung-, breast-, prostate cancer and a group of other forms

of cancer.

• Heart and vascular diseases.

• Diseases on the respiratory organs.

• Non-natural causes of death.

• Other causes of death.

A separate prognosis is made for age classes 0, 1-19, 20-49, 50-69, 70-79 and 80-99.

People older than 99 are left out of the forecast. For people in group 1-19 natural

death causes play a minor role. Non-natural causes like traffic accidents are the most

common cause of death. For the ages 20-49 natural causes are also insignificant com-

pared to the non-natural causes, in particular suicide. From age 50 the natural causes

become the dominant factor.

The death of a young person is called a premature death. In many cases we can

imagine that in the absence of a fatal cause, this person would have the same life-

expectancy as anybody else with the same age. On the other hand the CBS speaks

of a geriatric death, when the cause of death is less important for the remaining life

span. Usually old people suffer from a general decline of health, so in the absence

of the fatal cause of death a person would have died from something else within a

short time. Therefore, no distinction between causes of death are incorporated in the

forecast for the highest age group.

For illustration purposes, we now describe how the forecast for male deaths by lung

cancer is obtained (see [15], p.66). About 85% of these deaths is due to smoking.

In the fifties more than 90% of the male population smoked. This percentage has

dropped to 40% in 1990 and stabilized until the new millennium. Since 2000 a new

drop is visible. Anti-smoke advertisement and the right to work in a smoking-free
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environment, a law that took effect in 2002, are possible explanations for the lat-

est descent. The effect on mortality was not instantaneous. A downward trend has

started only 20 years ago. Survival chances for patients of lung cancer did hardly

improve since the seventies. Research has shown that only one out of every eight

people is alive five years after the diagnosis.

The CBS expects the current improvements to continue until 2018. Between 2018

and 2034 a slower trend is expected, due to the stabilization of the percentage of

smokers during the nineties. In the last interval 2034-2050 faster improvement is

expected due to the most recent descent of the number of smokers, and the possibil-

ity that better treatment is available. The forecast for people aged 80 and older is

obtained by linear regression to death rates of people from age classes 50-69 and 70-79.

The CBS method can be characterized as an explanatory method. They are con-

vinced that the best way to predict mortality is by making intelligent considerations.

“Examining different causes of death leads to more knowledge of the factors from

the underlying process of mortality change”([15], p. 62). The risk of an explanatory

method is the large amount of subjective judgement. Although our medical expertise

nowadays is vast, there is no consensus about future developments. Throughout the

past, explanatory models have tended to underestimate the improvement of the death

probabilities.

5.2 The forecast of the AG

Most actuaries in the Netherlands are member of the Actuarial Society (in Dutch:

‘Actuarieel Genootschap’ (AG)), the professional association of Dutch actuaries. The

AG was founded in 1888, and aims to encourage the sector and to maintain relations

with international actuarial organizations. Every five years, the AG publishes (cur-

rent) death probabilities based on mortality data of the CBS that can be used for

financial purposes.
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The mortality prognosis by the AG, which has been published only once so far (in

2007), differentiates between males and females. In next editions other factors will

be included to discriminate between smokers/non smokers and level of income. The

AG-prognosis and a description of their method can be found in [14]. It is interesting

to note that the board of the AG have considered the Lee-Carter- and the CBS mod-

els, but in the end they have picked the CRC model to construct their forecast. CRC

is an abbreviation of ‘Commissie Referentietarief Collectief’ which is a research team

founded at the end of the 1980s consisting of people from the insurance business. AG

motivates the choice of this model by the following arguments:

• CRC is a well known model to the Dutch market.

• CRC is transparent and relatively easy to understand.

• Outcomes of different models do not vary much.

• Trend uncertainty can easily be added.

The purpose of this section is to illustrate how the prognosis of the AG is constructed.

As in the case of the CBS model, we only used the official source which lacks the de-

tails needed to exactly replicate the model and to reconstruct the rates that are

published.

The CRC model assumes that for every age x the (sex-specific) annual death proba-

bility is reduced with a constant αx:

q(x, t) = αxq(x, t− 1), 0 ≤ x ≤ 120.

An error term is not included. Note that this is similar to Lee-Carter when kt has a

linear trend. The reduction factor αx is computed in four steps:

1. The Van Broekhoven algorithm is applied to the observed death rates from the

CBS from τ−n+1 up to and including τ , where τ is the final year of observation.

This algorithm transforms death rates for people aged x+ 1
2

to rates for people
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aged x. Van Broekhoven is a member of the CRC research team and also a

co-author of [14]; see [6] for a description of his algorithm .

2. For the selected ages, a moving average filter of length five is applied to the

adapted death rates.

3. The time-average reduction is computed.

4. The values resulting from 3. are smoothed by a moving average filter.

A future death rate of h years ahead is calculated from the last observed year τ ,

m(x, τ + h) = αhxm(x, τ). (5.1)

When for some x, the future death rate for males becomes smaller than for females,

the female reduction factor is adapted in a way that both death rates are equal in

the final year of the forecast. The model was implemented based on observed death

rates in 1988, . . . , 2005, the final year of their forecast is 2050. Data before 1988 are

not used because a split in the trend of historic death rates was observed. For the

ages 0-19 and 91-120, αx is determined from death rates between 2000 and 2005.

Although the CRC model is deterministic, the AG describes a way to construct a pre-

diction interval for FLE(x, τ) ([14], p. 44). First, the most likely estimatemml(x, τ + h)

is defined as the future death rate that is most likely to happen, given that the model

is correct. In this case

mml(x, 2005 + h) = αhxm(x, 2005), (5.2)

where αx is calculated as described above. A corresponding most likely estimate for

the flat life expectancy FLEml(x, 2005 + h) is computed by plugging (5.2) into (4.16).

Their 95% prediction interval is given by

[FLEml(x, 2005 + h)− 2.45S, FLEml(x, 2005 + h) + 2.45S] , (5.3)

where S is the trend uncertainty. This interval is constructed by generating predic-

tions for FLE(x, τ + h), denoted by FLE(x, τ + h)i, where it is assumed that

FLE(x, τ + h)i ∼ N (FLEml(x, τ + h), σ2
FLE(x,τ+h)), (5.4)
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and FLE(x, τ + h)i IID realizations of FLE(x, τ + h) for every i. A prediction is

obtained by computing reduction factors based on time intervals from the past. De-

note τi,nαx for the reduction factor that is based on mortality data from τi − n+ 1, . . . , τi.

Future death rates are computed using the latest available data:

m(x, τ + h)i = τi,nα
h
xm(x, τ),

and FLE(x, τ + h)i is computed in the usual way from m(x, τ +h)i. For k predictions

the sample variance S2
k , an estimate for σ2

FLE(x,τ+h), is defined by:

S2
k =

1

k − 1

k∑
i=1

(FLE(x, τ + h)i − FLE(x, τ + h)k)
2 where

FLE(x, τ + h)k =
1

k

k∑
i=1

FLE(x, τ + h)i.

Using (5.4) and the assumption that all predictions are independent, it follows that

FLE(x, τ + h)− FLEml(x, τ + h)

Sk
∼ t(k − 1),

where t(k − 1) is the Student’s t-distribution with k − 1 degrees of freedom. A

corresponding (1− α) prediction interval can be obtained by

[
FLEml(x, τ + h)− t1−α/2(k − 1)Sk, FLEml(x, τ + h) + t1−α/2(k − 1)Sk

]
(5.5)

where t1−α/2(k − 1) denotes the (1 − α/2) quantile of the t(k − 1) distribution.

The AG has picked seven historic intervals, with n = 20, which explains the value

t0.975(6) ≈ 2.45. Unfortunately only a few outcomes have been published, namely the

forecasted FLE(x, 2050) for x = 0, 65, which are shown in Table 5.2. We should

remark that the AG uses another formula to calculate the FLE than was stated

in (4.16). They assume that when somebody dies at age x, the life span has been (on

average) x + 1
2
. So in order to compare the results of the AG with ours, one could

subtract 1
2

from the values of Table 5.2.
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Table 5.2: Forecasted FLE(x, 2050).

x FLEml(x, 2050) 0.025 quantile 0.975 quantile
Males 0 82.80 77.48 88.12

65 19.81 15.89 23.73
Females 0 84.50 80.16 88.84

65 21.42 17.40 25.44

Unlike the CBS, the AG has decided to use an extrapolative model to forecast mortal-

ity. They share with the CBS that they have chosen to use a model which is familiar

to them. One of their arguments is that using another model will not lead to an

outcome that is very different, and thereby justify the decision to refrain from more

sophisticated models like Lee-Carter. Their prognosis stretches as far as 2050, which

is 45 years ahead, based on only 18 years of data. Their prediction interval is very

large compared to the prediction intervals we found, which will be discussed later.

In Figure 5.1 we displayed the FLE(20, t), t = 2006, . . . , 2050, for the forecasts of the

CBS, the AG and our implementation of the Lee-Carter model with prediction bounds

as in Figure 4.4. Since the AG and CBS have constructed a sex-specific forecast, we

took the average rate of males and females to produce a sex independent rate. The

Dutch population consists of more women than men (about 50.5% women in 2005)

and because death rates are lower for women, the resulting death probabilities are

slightly too low and hence the displayed FLE is a little too high. The most recent

year that is used for the forecasts of CBS and AG is 2005, while for Lee-Carter we

also included death rates that were observed in 2006. In order to make a fair com-

parison, we fitted Lee-Carter only on death rates between 1950 and 2005 to construct

a forecast. Let us compare the prediction intervals from the AG with our prediction

intervals. The length of their interval for FLE(0, 2050) is 10.64 for men and 8.86 for

women, while this is 5.01 for our interval where parameter uncertainty is included

and 3.76 when only the uncertainty from the innovations Zt is incorporated. It must

be noted that by this comparison the difference is overrated, because our prediction
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Figure 5.1: The FLE of a person aged 20.

interval does not include the ages 0-19. However this age group does not affect the

FLE a lot since the death rates are low. As a matter of fact, the length of our pre-

diction intervals for FLE(20, 2050) is still smaller than the AG prediction interval for

FLE(65, 2050), which is 7.84 for men and 8.04 for women. This is a contradiction

with the conviction of the AG, who say that forecasts of different models do not vary

much.

5.3 Calculating the liabilities of a pension fund

Pension is a periodical payment that is obtained under certain circumstances. The

most important are Old-age Pension (in Dutch: ’Ouderdoms Pensioen’ (OP)), issued

to people that have been retired and Spouse Pension (in Dutch: ’Nabestaanden Pen-

sioen’ (NP)), issued when a member passes away, to the surviving spouse. In the

former case these payments stop when the member passes away and in the latter case

when the widow(er) passes away. In this section we explain how the liabilities of a

pension fund can be calculated. Liabilities can be defined as the expected amount
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of money that is needed to cover future expenses as a result from financial commit-

ments that were made to the participants of the fund. We will focus on OP, the most

important pension, liabilities of the NP can be determined in a similar way.

When somebody retires, a pension funds starts to pay out. Let us assume that this

amount, which we call the total accrued benefits c, is paid at the beginning of each

year t, given that this person is alive. The value of c depends on the number of

years T that an employee has worked, his/her (annual) salary S and the pension plan

rules. The goal of a pension plan is that, when a person reaches the retirement age

(which is currently 65), he/she will have an income of αT × S, where α is called the

accrue rate. Often α is around 0.02, so that an employee who has worked 40 years will

receive 80% of its income as pension. Regardless of working history, everybody in the

Netherlands who reaches the age of 65 receives statutory old age pension (in Dutch:

’Algemene Ouderdomswet’ (AOW)) A. Because this income is guaranteed, for some

part of S no benefits have to be accrued to realize the income goal. This part is called

offset F , the value S − F is called the pension base which is needed to determine c.

For instance, when a pension plan has α = 0.02 with an offset of F = 10/8A the

annual accrued pension is 0.02(S−10/8A). Somebody who has worked 40 years then

receives

40 · 0.02(S − 10/8A) + A = 0.8S

as income. So far we stated salary, offset and AOW as if they are fixed in time, which

is off course unrealistic. They typically increase once every year, so from now we will

indicate the calender year when we use these quantities. We state two pension plans:

the final pay plan which was most popular until the new millennium and the career

average plan which is currently used by most pension funds. The aim of the career

average plan is that a person receives a percentage of its career-average salary. For a

person who has worked during the years τ − T + 1, . . . , τ ,

cτ =
T−1∑
t=0

α(Sτ−t − Fτ−t).
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The final pay plan is equivalent with the career average plan, but now (a percentage

of) the last salary that was earned is received:

cτ = Tα(Sτ − Fτ ).

We denote Lτ,τ+h as the liabilities, based on the information up to and including τ ,

of h years ahead. More specific, Lτ,τ+h is determined at the beginning of year τ + 1

and denotes the payments that a pension fund expects to make at (the beginning of)

τ + 2, τ + 3, . . . , τ + h+ 1, to cover the financial commitments that were made to the

participants of the fund until τ + 1.

Consider a person aged x ≥ 65 in year τ + 1, with total accrued benefits cτ . A

payment in the beginning of t = τ + 2 will be made to this person, only when he/she

is alive at that time. Therefore the expected payment equals

cτ · P (Rx,τ+1 ≥ 1), (5.6)

where Rx,τ+1 denotes the remaining life span of someone alive at the beginning of

year τ + 1 at an age of x. Since we are talking about a future payment, we can

invest the money and receive some return rate. The expected payments that are due

in τ + 3, . . . , τ + h+ 1 can also be invested. Denote by τrτ+t the expected annual

return rate, which is based on the information up to and including τ , with a yield to

maturity of t years. Every month the Dutch National Bank (DNB) publishes these

return rates which are in conformity with market prices. Since January 1st 2007

pension funds are obliged to use these rates to determine the liabilities. The methods

that are used to determine τrτ+t can be found in [12]. The liabilities h years ahead

can now be obtained by

Lτ,τ+h =
h∑
t=1

cτ · P (Rx,τ+1 ≥ t)

(1 + τrτ+t)t
. (5.7)

We now extend the analysis to a pension fund with ages x ∈ X in τ + 1. Let us

denote cx,τ as the total accrued benefits up to and including τ for all participants
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that were aged x in τ . The expected payment in τ + 2 for the group of people

aged x ≥ 65 in τ + 1 is given by cx−1,τ · P (Rx,τ+1 ≥ 1). The liabilities of the entire

fund can be calculated as

Lτ,τ+h =
∑
x∈X

h∑
t=1

I[65,∞)(x+ t)cx−1,τ · P (Rx,τ+1 ≥ t)

(1 + τrτ+t)t
, (5.8)

where I[65,∞)(x) is an indicator function to ensure that payments are only made to

people that have reached the retirement age.

5.4 The price of longevity

In this section we examine the financial consequences of using the described models

of the CBS, AG and Lee-Carter to calculate the liabilities Lτ,τ+h, where τ = 2005

and h = 1, . . . , 45. We create an imaginary fund which should resemble an average

Dutch pension fund, to make sure the outcomes of the experiment are realistic.

For the participants of our fund we assume that:

- Everybody’s working life lasts 40 years. A person starts working at the begin-

ning of the year in which he/she will become 25 years old. In 2006 the fund

consists of ages:

X = {26, . . . , 99}.

- The maximum age that a person can reach is 100.

- Everybody gets paid according to the career average plan with α = 0.02 and

offset F = 10/7× A.

- His/her salary has always been the modal salary.

To compute Lτ,τ+h, formula (5.8) is used. We have obtained τrτ+h and cτ,x using the

following information:

• Expected return rates τrτ+h, where τ = 2005 and h = 0, 1, . . . , 45, are obtained

from the DNB, see [12].
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• For A we have taken the AOW in 2006 for a married person, A = 8096.52 euros.

• For the modal income we used the results of a survey that was held in 2005 by

the CBS. The results are published in the StatLine data bank, see [8]. When

we denote Sx to be the modal salary of a person aged x and F the offset, then

the total accrued benefits for one person aged x is calculated by the sum

α(S25 − F ) + α(S26 − F ) + · · ·+ α(Smin(64,x) − F ).

• The average size of a Dutch pension fund is determined using the data from [13],

the quarterly update of economic statistical information of the Netherlands

provided by DNB. There we can find the number of people that accrue pension

and the number of retired people sorted by age. The average fund is created

by dividing these numbers by the total number of pension funds in 2006 which

was 792. As a result our imaginary fund has 9860 participants.

The only thing that needs to be defined in order to compute Lτ,τ+h is P (Rx,τ+1 ≥ t).

Since

P (Rx,τ+1 ≥ t) = p(x, τ + 1) · p(x+ 1, τ + 2) · · · p(x+ t− 1, τ + t) (5.9)

= (1− q(x, τ + 1)) · (1− q(x+ 1, τ + 2)) · · · (1− q(x+ t− 1, τ + t)),

model specific liabilities can be constructed, when q(x, t) is replaced by m̂(x, t). In

Figure 5.2 we displayed L2005,t for t = 2006, . . . , 2050, where the forecasts of the AG,

CBS and our implementation of Lee-Carter are used. The predictions by Lee-Carter

are constructed by simulations: a forecast that is most likely to happen and two pairs

of prediction bounds. Recall the simulations that were introduced in Section 4.1.1,

which can be used to generate sequences k∗τ+1, . . . , k
∗
τ+h. From every k∗t , corresponding

death rates m∗(x, t) can be computed by (4.17). Subsequently, when these m∗(x, t)

are plugged into (5.8), a realization of L∗τ,τ+h is obtained. In the chart, we have dis-

played the median of 10000 iterations, where L∗τ,τ+h is generated at each iteration

using the algorithm from Table 4.1. The first pair of prediction bounds is obtained
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Figure 5.2: The liabilities L2005,t.

by the 0.025 and 0.975 quantiles of this simulation. When the analytical forecast is

used to compute Lτ,τ+h, the outcome is close to the median from the simulations.

However the prediction interval that is obtained by plugging the analytical prediction

bounds for kt into (4.17) and then plug the resulting death rates into (5.8), is wider.

We think the prediction interval using the simulation is more useful, because it incor-

porates the uncertainty of the entire process: the uncertainty in m(x, t) together with

the uncertainty in Lτ,τ+h, while the analytical prediction interval only incorporates

the uncertainty in m(x, t). The second pair of prediction bounds, with parameter

uncertainty (wpu) included, are constructed by another simulation. Now the L∗τ,τ+h

are generated using the algorithm described in Table 4.2.

In Figure 5.4 we displayed L2005,2050 for the three models, and the levels of uncer-

tainty that were described above. We observe that the value that is predicted by the

AG is lower than for the CBS and the median of the Lee-Carter simulations. Also

displayed in Figure 5.4 is a histogram with the relative difference between the AG

and the other estimates for L2005,2050. This shows us that a pension fund, which has

used the prognosis of the AG to determine its liabilities, runs a significant risk to face

higher expenses in the future, given that Lee-Carter is correct. The expected value

of L2005,2050 according to Lee-Carter is more than 2% higher than the value that is
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predicted by the AG. The difference between AG and the upper bounds of Lee-Carter

is more than 5.5%. This means that when Lee-Carter is correct, the probability that

future expenses until 2050 will be more than 5.5% higher than the prediction of AG,

is 2.5%. In Figure 5.3 we have displayed kernel density estimators, which are based on

the simulations from the liabilities until 2051. We see that according to Lee-Carter,

the probability that future expenses will be higher than AG, is 94.3%, or 91.8% if

parameter uncertainty is included. For the CBS, these rates are 72.4% and 69.1%

respectively.
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5.5 A generational disparity

In this section we perform an experiment about a pension fund that is winding up

after year τ . In the future no new members nor premiums are accepted. However

the board of the fund stays committed to pay the participants their pension on the

beginning of the years τ + 1, . . . , τ + h+ 1. Moreover, they plan to pay an extra

annual rate to compensate for future money devaluation (inflation), which is called

the indexation rate i. The expected amount of money that is needed to cover these

expenses can be calculated by incorporating indexation into (5.8),

Vτ,τ+h =
∑
x∈X

h∑
t=1

I[65,∞)(x+ t)cx−1,τ (1 + i)t · P (Rx,τ+1 ≥ t)

(1 + τrτ+t)t
. (5.10)

After year τ the board has to decide which model it wants to use to obtain predictions

for P (Rx,τ+1 ≥ t), which determines the starting capital C(τ). After that, no more

money will be added to the fund. As a result, when in τ + 1 death rates turn out

differently as expected, it is possible that capital and expenses are no longer balanced.

In that case a new indexation rate needs to be chosen for the remaining years in

order to keep the financial situation healthy. When expenses are higher as expected

(because less people die), i will be lowered and when costs turn out to be lower as

expected, i becomes higher. Note that both situations are undesirable. When i is

lowered, people that are not retired are in disadvantage, because they did not profit

from the higher i in the previous year(s). On the other hand, retired people have

reason to complain when i becomes higher, because they received a lower rate in the

previous year(s). An interesting dilemma arises here. Young people, with many years

to retirement, want a prudent mortality forecast to avoid the risk that when they

retire, the capital has shrunk more than was anticipated, while older people rather

have a risky forecast, because this leads to higher payments in the short run.

At every t, t = 1, . . . , h − 1, the board has the opportunity to alter the indexation

rate in a way that the current capital equals the forecasted expenses,

C(τ + t) = Vτ+t,τ+h.
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For the implementation of this experiment the following principles are used:

• The same pension fund is used as was described in Section 5.4, with the same

accrued benefits cx−1,τ .

• The board has picked the forecasted mortality rates from the AG to pre-

dict P (Rx,τ+1 ≥ t), while in reality death rates will occur as predicted by the

Lee-Carter model (the analytical forecast with minimum MSPE).

• At every t an indexation rate is chosen such that, when future death rates equal

the expected death rates, C(τ + t + j) = Vτ+t+j,τ+h for j = 0, . . . , h − t. The

initial indexation rate is iτ = 0.015.

• The return rate τrτ+t is assumed to be constant during the entire experiment,

i.e., τrτ+t = r.

In the previous section we used return rates provided by the DNB. These rates are

constructed for the situation that part of the capital will be invested for a long pe-

riod. By this experiment the capital decreases and expenses are heavily influenced

by the observed death rates so we need to have access to a large part of the capital

at the beginning of every year. Therefore we decided to use a constant interest rate

of r = 0.04. This rate is used by many actuaries as a rule of thumb for an average

annual return rate.

We will denotemA(x, t) for the predicted death rates according to modelA andmB(x, t)

for death rates that are predicted by model B. For every t, the mA(x, t) are used

to calculate current expenses y(t) and the mB(x, t) are used to calculate expected

future expenses, both without indexation. Hence, in our case ’A’ stands for the AG

prediction and ’B’ for our implementation of Lee-Carter. When y(t) is determined,

we need to solve for which indexation rate iτ+t, expected future expenses and capital

are equal. In the end we have a sequence iτ , . . . , iτ+h, where iτ is the indexation

rate that was initially chosen. The algorithm that is used to run the experiment is

described in Table 5.3. In Figure 5.5 a plot of the indexation rates for the years
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Table 5.3: Generating the sequence iτ+1, . . . , iτ+h.

Input: r, iτ and cx−1,τ ,mA(x, t),mB(x, t) for τ < t ≤ h, x ∈ X .
Determine C(τ) via (5.10), where P (Rx,τ+1 ≥ t) is found by plugging mA(x, τ+t)
into (5.9), i = iτ and τrτ+t = r.

for t = 1 : h do
cx−1,τ = (1−mB(x+ t− 1, τ + t))cx−1,τ for x ∈ X .
y(τ + t) =

∑
x∈X I[65,∞)(x+ t)cx−1,τ .

Solve iτ+t in:
(1 + r)C(τ + t− 1) = (1 + iτ+t)y(τ + t) + Vτ+t,τ+h

with i = iτ+t. Update:
C(τ + t) = (1 + r)C(τ + t− 1)− (1 + iτ+t)y(τ + t).
cx−1,τ = (1 + iτ+t)cx−1,τ for x ∈ X .
end

2006-2044 is displayed. We can see that indexation drops to a very low level. From

2040 the pension fund is even obliged to lower the pension payments. We did not

show the indexation rates from 2045-2051 in the plot because these would disturb the

scale. The rate of 2045 is −2.40% and this rate even drops to −13.32% in 2051.

This experiment is not meant to mimic a realistic situation. In reality there are many

risks involved that influence future capital, most importantly investment risk, and

they can not be neglected compared to the risk of longevity. However, by this exper-

iment longevity risk is isolated to illustrate its effect when mortality improvement is

underestimated. The experiment shows the importance of making accurate assess-

ments when predicting mortality. We end this section by showing the relative benefit

per age of the course iτ+t from Figure 5.5. Let ι be the fairest indexation rate, which

can always be determined afterwards, because the realized death rates are known.

Fairest in this case means that it remains constant and C(τ + h) = 0. At our exper-

iment the fairest indexation would have been ι = 1.31%. Figure 5.6 shows per age

the relative benefits from the course iτ+1, . . . , iτ+h. It is a comparison of all payments

that are received with the realized indexation rates, relative to the payments someone
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Figure 5.5: The development of the indexation rate between 2006 and 2051

would have received when a constant indexation rate of ι was used.
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Figure 5.6: The relative benefit of the realized iτ+1, . . . , iτ+h compared to the fairest
indexation rate ι for people aged x at τ .

Everybody older than 53 benefited from the way that it has developed. The people

aged 61 the most, they have received 1.47% more than they would have done by a

fixed indexation rate of ι. On the other hand, the people of age 26 only received 68.3%

of what they would have received by fixed ι.



Conclusions and recommendations

for further research

The goal of this thesis was to investigate the consequences of longevity risk for pen-

sion funds in the Netherlands. In order to do that we used the model of Lee-Carter

to construct a forecast of Dutch mortality. We found that this model provides a

good fit with the observed death rates. The fitted values k̂t seem to have a linear

trend, which is important for the performance of the model. In Chapter 4 we have

examined several ways to construct a forecast. In Chapter 5 we used these forecasts

to calculate the liabilities of an average Dutch pension fund, which were displayed in

Figure 5.4. We observed that the expected amount of money that is needed to cover

these liabilities is more than 2% higher than when the liabilities are calculated using

the mortality prediction of the AG.

We have tested our model by applying it on death rates up to and including the years

1982, 1989 and 1996, and concluded that the forecasts from these years were close to

the observed values until 2003, but that the decrease of death rates was underesti-

mated in 2004, 2005 and 2006. This shows that the model has performed well over

the past 25 years, and that mortality has not been overestimated. In order to obtain

stable estimates for the parameters of the the model, we found that at least 30 years

of observed death rates are needed. The AG has fitted its model on only 18 years

of mortality data, to construct a forecast of 45 years ahead. This suggests that this

forecast is susceptible to a substantial amount of parameter uncertainty. We have

seen that the 95% prediction intervals that were published by the AG, are wider than

70
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the ones we found.

For most ages, death rates are still decreasing rapidly and currently there are no

signs that it is slowing down. Pension funds should therefore be aware that there is a

considerable risk of longevity. One of the consequences of longevity risk is that young

people will carry an unequal share of this burden in the future, as was illustrated in

Section 5.5. Our implementation of Lee-Carter can be used to determine the price of

longevity when future death rates are underestimated.

We can think of a couple of recommendations for further research. One of them

is to apply the modifications of the Lee-Carter model, that have been proposed for

instance by Wilmoth [28] or Renshaw and Haberman [26], to Dutch death rates. It

would also be interesting to compare the Lee-Carter forecast with the forecast of other

models that are popular at this moment, such as the mortality model constructed by

Cairns, Blake and Dowd [10]. For people that have an economic background it can

be interesting to investigate the risk of longevity on other financial products, such

as a life insurance. In the United Kingdom it is investigated whether longevity risk

can be traded, or hedged, with the risk of premature death. One could investigate

whether these kind of trades are also applicable to the Dutch market.
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