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Abstract

A significant growth of the world’s population together with fast growing urbanization is causing
challenges for cities in the future. One of these challenges is how to deal with waste production
and therefore the waste collection in such areas. Smart waste collection is a promising solution
since it optimizes an already excising infra structure including vehicles and since the collection
and transportation of the produced waste accounts for roughly 70% of the waste management
costs. Smart waste collection is a routing problem and can be categorized both as a vehicle
routing problem (VRP) or as an inventory routing problem (IRP) depending on which container
selection method is used. Smart wast collection uses sensors to measure and communicate the fill
levels of the waste containers. This data can be used to optimize the process of waste collection
and optimize the chosen KPIs. When all fill levels are known, routes can be optimized and
containers can be collected at exactly the right time. However, literature shows a shortcoming
in data treatment and the use of real data. This article will use real data obtained from the
containers collected by OMRIN with the help of AMCS and their software. Another gab in
literature has to do with the collection methods. Containers can be selected for collection,
roughly based on three methods. The first works by setting a threshold level on the fill level of
the containers. When a fill level exceeds the threshold level is will be selected for collection. The
second method is called attractiveness. Attractiveness bases the collection of containers on how
attractive they are. The attractiveness of a container can however be specified in many different
ways. The third and last method is called must-go may-go, as named in literature. This method
combines the previous ones and containers that pass the threshold level have to be collected and
therefore are called must-go containers. Other containers can, based on their attractiveness, be
added to a route when it is cheaper or quicker to collect that container today instead of tomorrow.
The interesting thing is that these three methods have not yet been compared to each other.
Therefore the main goal of this research is to compare the three aforementioned methods based on
real data and investigate certain tuning parameters to optimize each model based on the chosen
KPIs. The models discussed in this research are build using basic concepts used in VRPs an
IRPs as well as many details, enable to represent a real SWCP as close as possible. Many details
used by AMCS are also applied to the models of this research. The models are first individually
optimized by changing their tuning parameters and keeping the overflow in an acceptable range
of the baseline, calculated based on real data. Overall a strong negative correlation is found
between the total traveled time and the amount of overflows. Furthermore a warm-up period
of three days is used, meaning the first three days of a test instance will be removed in order
to capture only the steady state of the models. The individual optimization shows the best
solutions for a 1% threshold buffer for the threshold model, a three-day horizon with 110%
upper limit for the attractiveness model and a three-day horizon with an threshold buffer of
7% and a 110% upper limit for the must-go may-go model. When compared the attractiveness
model shows to have the smallest total travel time. However, its computational time exceeds
the total travel time. Meaning it takes longer to calculate the collection of containers than to
actually collect them in real life. The must-go may-go model shows a slightly higher total travel
time, but has a significant lower computational time. Therefore making it more suitable for real
world application. This research as well shows that the two-day horizon instances of both the
attractiveness model and the must-go may-go model barely improve the solution of the one-day
horizon. Finally a true forecasting model was used to see what potential lies with designing a
detailed forecasting model, which shows to be in the same order of improvement as was obtained
by tuning parameters of each model.
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1 Introduction

1.1 Smart waste collection

At the moment, more than half of the world’s population lives in urban areas. By 2050, the United
Nations expects this amount to have increased to two-thirds of the world’s population (Nations,
2014; of-Economic-and Social-Affairs, 2017). Add to this the forecast of population growth from
7.7 billion people now to 9.7 billion in 2050 and a major challenge arises for the cities of the
future. The concept of smart cities arises to solve the problems expected in the future. Smart
cities use the Internet Of Things (IoT), an extension of the internet in which devices, sensors, and
machines form a network in which the exchange of data can take place, to be able to manage and
efficiently use assets, resources and services. One of these services or challenges is how to deal
with the increasing amount of waste production. By realizing that most of our waste is composed
out of materials that are not inexhaustible and could be recycled and/or re-used, waste no longer
is a leftover which we dump and need to get rid of. The European Union (EU) has, as part of
its Circular Economy, set targets for recycling 65% of municipal and 75% of packaging waste by
2030 (EuopeanCommissionEnviroment, 2019). By increasing awareness that our waste can have
environmental and economical benefits that could be taken advantage of, the interest in waste
collection has grown as well. Generally, municipalities are responsible for the complete waste
management system, which consists of collecting, transporting, processing, recycling, disposing,
and monitoring of the waste materials. The costs of collection and transportation alone accounts
for about 70% of the waste management costs (Tavares et al., 2009). These high collection and
transportation costs combined with the forecast of increased waste production in cities demand
a smart solution to deal with this problem.

The current method in which the vast majority of waste is collected is a static or periodic
collection that is using fixed routes and is also revered to as blind collection. Here each truck
follows specific routes on specific days and picks up all containers along its route, see Figure
1. This method often already includes some work of optimization, because some containers are
emptied more often than others and routes are matched to a truck’s capacity, but there is still
a lot of room for improvement. Ramos et al. (2018) shows an example in which on average
10% of all bins on a route is empty, even reaching a maximum of 38% of the bins being empty.
Furthermore, approximately 66% of the fill-levels was registered below or equal to 50%.

=y ' L 8S% ]
Figure 1: Unoptimized route Figure 2: Optimized route

Waste-insight (2017) Waste-insight (2017)



This paper will discuss the topic of smart waste collection and routing problems. The basic
idea of smart waste collection starts with the use and implementation of sensors into the waste
containers to measure their fill-levels. Because these sensors can be integrated into the Internet of
Things, (IoT) the acquired data-points can be sent to servers where they are stored, processed and
used for forecasting, supervision, and finally making smart decisions to optimize the collection
of waste. Figure 2 shows that when the fill-levels are known, not all containers need to visited
and routes can be optimized. The optimisation is often based on a objective function, which
generally minimizes the total cost and could include traveling costs, labour costs, truck-related
expenses, penalties and maximizes profits obtained from the collected waste. The variables that
are to be calculated based on the acquired data, are the number of trucks needed per collection
day and which route each truck will follow at a specific moment. Figure 3 depicts the different
sequential step in the management of smart waste collection.

2, Transform data
into insights

3. Match collection volume and
disposal process sensors for
optimal operational efficiencies

1. Gather data
from devices

4. Enable smart, intelligent
collaboration with edge

devices, sensors & align ¢
Ingsti: volume oy
-

5. Take corrective action
anytime, anywhere

Figure 3: Steps in smart waste collection ORCA-Media (2019)

The process of smart waste collection can be optimized and solved in many different ways and on
many levels of difficulty depending on the chosen system, chosen approach and chosen constraints.
The simplest version of such an optimization problem is the Traveling Salesman Problem (TSP).
A TSP is characterized by the use of only one vehicle, with a sufficing capacity to fulfil the
demands of all customers (in this case the waste bins), which are known beforehand. A step up
from the TSP is the Vehicle Routing Problem (VRP). The VRP is characterized by the use of a
fleet of vehicles, which can have a limited capacity. The capacity is the strongest constraint and
it determines how many customers each vehicle could visit before returning to the depot. All
customers and their demands are again known beforehand. Notice that nor in the TSP’s, nor
in the VRP’s basic formulation, time is considered what so ever. In both problems, the demand
is set by the customers and the customers need to be known from the start. This is similar to
the threshold method discussed in section 3.2. Due to the threshold constraint, all customers
are known before a route optimisation is started, the only variable therefore is the route per
vehicle and so both the TSP as the VRP have an objective of minimizing routing costs, -distance
or -time. Having said this, both the TSP and the VRP have multiple variations in which time
and other constraints can be introduced. A different type of routing problem is the Inventory
Routing Problem (IRP). In this problem the inventory of customers is being managed, but in
contrast with the TSP and VRP, the IRP is in charge of deciding via which route, at what time
and how much inventory has to be delivered to which customer, preventing any stock-outs. This
relates to the attractiveness method and the must-go may-go method in section 3.3 and 3.4, as
these methods have the option of choosing the moment of collection as well. The IRP minimizes
the sum of the inventory and routing costs.



In general, we could say that one could build an IRP out of multiple VRPs, one per day or unit of
time. Depending on the chosen approach and time horizon for which a Smart Waste Collection
Problem (SWCP) will be solved, a SWCP can be categorized as a VRP, as well as an IRP. The
SWCP could be described as a revers IRP, as generally VRPs and IRPs deliver 'goods’ to the
customer, while in the SWCP the waste is collected from the customer and overflow should be
prevented instead of stock-outs. To summarize, the IRP, attractiveness method and must-go
may-go method, differ from the VRP and the threshold method in the way that the first three
methods are in charge of customer selection. Meaning, the set of customers to visit each day
is no longer given but will be determined based a certain conditions. Also the quantity is no
longer set by the customer. For the SWCP it is slightly easier than for the IRP, since a collection
means that instead of delivering goods, they are collected and instead of determining how much
to deliver, the whole volume of the container is collected. To summarize, a VRP only decides
which route to travel, a SWCP decides with route to travel and which customers to visit. Last,
a IRP decides which route to travel, which customers to visit and how much inventory to deliver
to each customer. However, vehicle capacity and time windows are used in this research, making
it comparable to the CVRPTW (Capacitated Vehicle Routing Problem with Time Windows).
The growing population and urbanization forecast challenges for cities and urban areas. One
of these challenges, the one this paper will focus on, is how to deal with the growing waste
production in these urban areas. As technology improves, it allows optimization of already
existing processes of which waste collection could be one. By using sensors to measure the fill
level of waste containers an optimization program could be used to minimize overall costs, time,
CO2 emissions. Although the foundation on which the WCP builds, (TSP, VRP and IRP) is

thoroughly researched, the research into smart waste collection is actually quite new.



1.2 Research gap

In smart waste collection, sensors are used to measure the fill levels of waste containers. These
measurements are used to decide which containers need to be collected on that specific day. Lit-
erature provides examples which show significant errors and uncertainties in these measurements.
However, except for one article, no data treatment is discussed or proposed at all. Every paper
assumes the data from the sensors can be used straight away. Another issue that has to do with
the use of data is the type of data that is used for test cases. Test cases are used to prove the
potential of a certain optimization method. The problem lies in the data that is used. This data
is in most cases far from realistic, which makes the results unrealistic as well.

From literature it shows that the concept of smart waste collection is used on different types
of containers and in different areas, using different types of container selection methods. Which
container, area and container selection method provides the highest savings is hard to say as no
comparison has been made yet. However, large containers appear to be more beneficial than the
smaller ones, rural areas more beneficial than urban ones and combined use of threshold and
attractiveness more beneficial than any of the two separate.

Table 1: Comparison between literature and this research with synthetic data (SD), Reality
based data (RB), real data (R), threshold based collection (TH), attractiveness based collection
(AC) and must-go may-go based collection (MGMG)

Paper SD RB R TH AT MGMG
Mes et al. (2014) v’ v’
Ramos et al. (2018) v’ v’

Markov et al. (2016) v’ v’
Bueno-Delgado et al. (2019) v

Abdallah et al. (2019) v’
Lozano et al. (2018) v’
Akhtar et al. (2017) v’

Hannan et al. (2018) v’

This paper v’

COCCCK

1.3 Research questions

The aforementioned research gab has let to the formulation of the main research question. This
will therefore be the main focus of this research. To structurally help answer the main research
question, a set of sub questions was formulated as well.

Main research question:

How will different container selection methods impact the KPIs of the smart waste collection
system, using a realistic data set?

Sub questions:

1: What are the container selection methods available in the literature and in practice?

2: What are the KPIs in a smart waste collection system?

3: How can the smart waste collection system be modeled for different methods of container
selection?

4: What is the performance of different container selection methods based on the KPIs of the
smart waste collection system?



1.4 Research approach
1.4.1 General approach

The double diamond method was originally created by the Design Council to reflect the design
process. It was inspired on the design department of eleven big companies such as Microsoft,
Starbucks, Sony and LEGO. Although this methodology was used for design processes, it helps
to get a general overview of any project and the four faces of discovering, defining, developing
and delivering appear in many different projects, one of them being a master thesis. The discover
phase is in general used to gain insight in the problem. For this master thesis it will consist of
the start of the literature research, with the aim of getting a good understanding of the subject.
This phase is the beginning of the diamond and is about divergence. When the subject is well
understood and a specific section is investigated in a more detailed way, the next phase is already
underway. This is called the define phase. In the define phase the goal is to converge and focus
on a specific area. This phase could end with defining a well formulated problem or research
question. For this master thesis, this part will focus on finding the gab in literature and to
formulate the main- and sub research questions. When the problem is formulated it is time to
start to work on solutions. In the develop phase, the idea is to diverge again and consider all
potential solution. This phase will be used to develop the methods proposed in this research.
This phase is followed by the deliver phase, were the goal is to converge again to one solution. For
this research this will mean testing the models, comparing the results and drawing conclusions
from them.

10
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1.4.2 Question specific approach

Sub question 1:
What are the container selection methods available in the literature and in practice?

To be able to answer sub question 1, both literature and practice need to be researched for
the used container selection methods. After which a comparison can be done to see if literature
and practice use similar methods. For literature, section 2 shows the articles that were read and
compared and section 2.2 shows which container selection methods are used. In section 3.1 the
comparison with AMCS is made and their used method is mentioned.

Sub question 2:
What are the KPI’s in a smart waste collection system?

To determine the KPIs for a smart waste collection system, again both literature and practice
need to be researched. For most literature articles the objective together with some constraints
will show what the KPIs are for that specific smart waste collection problem. This can be found
in section 2.4. As for practice, AMCS and OMRIN will be contacted to find their KPIs, their
KPIs are discussed in section 3.1.

Sub question 3:
How can the smart waste collection system be modeled for different container selection methods?

This question requires both literature research and the acquired knowledge from doing the pro-
gramming. First literature needs to be examined for different ways of modeling the smart waste
collection system, after which positive aspects will used in the models of this research as well
and other ideas will be adapted or removed. The insights from literature can be found in section
1.1 and the final results in section 3.2, 3.3 and 3.4.

Sub question 4:
What is the performance of different container selection methods based on the KPI’s of the smart
waste collection system?

Enable to answer this question many steps have to be taken. The main steps required to answer
this question are: acquire data sets, read data sets into python, clean data sets, acquire distance
and time matrix, make a simplistic forecasting model, write a pseudo code, make a mathematical
model, build the model in python, test the model and finally evaluate the results, which can be
found in section 4.2 and the conclusions in ?77.

Main research question:
How will different container selection methods impact the KPIs of the smart waste collection
system, when compared using real data?

The main research question can be answered after individual evaluation of the container se-
lection methods and comparing the results. When compared and evaluated additional tests
can be done to investigate certain correlations. All results are shown in section 4.2 and the
conclusions in section ?77?.

12



2 Literature review

This section will go through literature on the topic of smart waste collection. The research papers
will be compared on the way the gather and treat data, the multiple methods for container
selection and the methods that are used to solve their specific smart waste collection problem.

2.1 Data

The optimization of routing problems is generally based on the number of trucks available and
more importantly on the set of customers, i.e. containers that are selected for the collection. The
set of containers ready for collection could in the future be based on the data coming from sensors,
that measure and communicate the fill levels of all containers. This data is the foundation on
which the route optimization will be built. Therefore, the level of success of route optimization
depends on the accuracy of the data. This chapter will cover the topic of data for smart waste
collection, from the way it is obtained to the way it is used for route optimization.

2.1.1 Sensors and data gathering

The fill level of waste containers can be obtained in many different ways, i.e. by many different
sensors, each sensor measuring other physical properties. Each has different pros and cons. The
most discussed type of sensor in literature on the topic of smart waste collection is the volumetric
sensor. As the name suggests this sensor measures the volume of waste in the container, also
called the fill level. It measures the height difference between the surface of the waste and the
location of the sensor, often placed in the upper part of the container. Examples of volumetric
sensors are capacitive, infrared, radar and ultrasonic sensors. Based on range, accuracy and
angle of operation the ultrasonic sensor is often the product of choice (Abdallah et al., 2019;
Lozano et al., 2018; Markov et al., 2016; Mes et al., 2014; Papalambrou et al., 2015). Other
sensors which are mentioned in literature are load sensors, gas sensors and magnetic proximity
sensors. These sensors measure respectively, the total weight of the waste in the container, the
concentration of CO2 or the number of times the lid is opened. Regardless of the type of sensor
that is used, the sensors measure a certain value which will always contain a level of uncertainty,
created by different errors. The uncertainty is something which can not be eliminated, i.e. it
will always be there. The errors that cause, or define the range of uncertainty can sometimes
be minimized but never completely eliminated (NDT-ResourceCenter, 2006). Environmental
conditions inside the container, e.g., dust, humidity and temperature, can strongly affect the
accuracy, i.e the lack of errors, as well as the reliability of the sensor’s measurement due to
a large variety in material types and shapes Papalambrou et al. (2015). Data obtained from
sensors should, therefore, contain two components, the numerical /measured value and the degree
of uncertainty. Strictly, it should even be followed by the level of confidence but this is often
neglected. It should be noted that neither errors nor uncertainties have anything to do with
mistakes, data obtained via mistakes should be explained and excluded from the data set. In
Mamun et al. (2016) an experiment is executed to find the errors in a set of ultrasonic sensor
measurements. During 36 measurements the errors are found to be between -7.8% and +14.4%
of the true fill level. Here 34 out of the 36 measurements, measured a fill level higher than
the actual fill level, thus showing a systematic error. Furthermore, a trend is observed in the
measurements that show a decrease in the magnitude of the errors with increasing fill levels.
Factors such as the aforementioned should be taken into account to make the errors smaller and
make the measurement more accurate as well as mistakes made in the measurements. Although
most articles don’t deal with uncertainties, data treatment or mistakes in the measurements, as
will be further discussed in the next paragraph, some articles propose simple methods to reduce
the errors and improve the accuracy of the obtained data. In the work of Papalambrou et al.
(2015), a higher accuracy to cost ratio is obtained by the use of two sensors to measure the fill

13



level of each bin.
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The methodology of the use of two or more sensors is used by many articles such as Akhtar et al.
(2017); Catania and Ventura (2014); Hannan et al. (2018); Johansson (2006). The use of LEDs
is also suggested as the additional light enables the sensor to obtain more information about
the area, height and shape of the waste inside the container. By this illumination, the volume
estimation should increase in accuracy according to Johansson (2006).

2.1.2 Data treatment for optimization methods

As discussed in the previous section, data obtained from the sensors is not always reliable.
Therefore it is wise to deal with these uncertainties and errors and try to find a way in which
the reliability can be enhanced. This section will discuss the proposed ideas in literature on how
to deal with the data coming from the sensors in the smart waste containers. Remarkably, in
literature hardly any data treatment is proposed. Mes et al. (2014) are the only ones that do not
directly propose using the measurements obtained by the sensors. They suggest to use estimates
for the deposit volumes, the waste levels in the containers and the amount of waste overflow.
Although the way these estimates are made is not described in their article, the purpose of the
estimates is to cope with uncertainties in waste deposits. The lack of detail in this article about
the way sensor data is treated and the pure absence of it in the rest of literature articles shows a
discrepancy between academic work and reality, taking into account the lack of validation given
for the direct use of the data.

2.1.3 Data generation for test cases

Due to the fact that installing hundreds or thousands of sensors is a time consuming and costly
process, artificial data is often generated to be able to run test cases in order to prove the success
of an optimization method for the WCP. Throughout the articles which are reviewed, a large
variety of methods have used simulated data, one being more realistic than the other.

Using direct data from the sensors is most often not possible as aforementioned, although
the data could be based on the actual fill levels of the containers in question. A good example
of this is the article of Ramos et al. (2018), they have let the collection team track the fill levels
of 3 routes for a time span of 30 days. Due to time windows in between pickups, the fill levels
are averaged over this time window to obtain a daily deposit rate. This method captures the
general deposit rates in the studied area but is not able to capture and use daily variations in
the deposits. Abdallah et al. (2019) take it a step further. A similar approach is used, only now
the fill levels are checked daily. The authors even include the field survey in the article, where
the objectives were to understand the typical daily variations in the fill-levels of waste bins and
use the collected data of single-family dwellings for the waste bins in the simulation. This is
done by tracking the daily fill levels of 115 containers for different types of households (high-rise
buildings, mid-rise buildings and single-family dwellings), in April in 2018. The month of April
has been chosen, expecting it to represent regular data. By doing such an extensive field survey
this article is able to use realistic data for their case study and actually determine how well their
system would function in this area.

15



Not all articles need realistic data though, it depends on the goal of the article. When the
goal is to test the proposed work in a test case, the data should give a realistic representation
of the studied area. Mes et al. (2014), on the other hand, focuses on parameter tuning and
for this reason chooses to make assumptions when generating data, consciously simplifying the
tested case. They simplified the test case by using deterministic deposit volumes, but on the
other hand, still uses stochastic inter-arrival times between deposits. The example of Mes et al.
(2014) shows that simplifying the test case is acceptable when justified. The counterexample is
Bueno-Delgado et al. (2019), here the fill levels are randomly set to levels between 1 and 100%.
The lack of installed sensors is the only reason given for this assumption. This is an example of
a generated data set in which more effort could have been made to justify the assumption or to
generate a more realistic data set.

In the examples presented above, both ends of the ’realistic data’ spectrum are discussed but
many possibilities lie in the middle. Lozano et al. (2018) generates data based on statistics of
selective waste production in local towns. The regional administration of Castilla y Ledén was
the source from which the historical data was derived. The same is done by Markov et al. (2016)
who creates a set of IRPs, which are derived from real data obtained from the canton of Geneva,
Switzerland. Instead of generating new data sets, already existing data sets can also be used.
Akhtar et al. (2017) and Hannan et al. (2018) use renowned data sets which allow comparison to
the work of others. The comparison of different types of heuristic can be made using these data
sets of which many varieties exists. The drawback of these existing data sets is that these where
also generated at some point in time and have certain imperfections such as randomly chosen
container locations or the lack of a geographical information system (GIS). Waste deposit rates
are randomly generated considering a mean waste generation rate with a standard deviation.

2.1.4 Summary

In smart waste collection, sensors are used to measure the filling levels of waste containers.
These measurements are used to decide which containers need to be collected for that specific
day. Literature provides examples which show that significant errors and uncertainties in these
measurements. However, except for one article, no data treatment is discussed or proposed at
all. Every paper assumes the data from the sensors can be used straight away. Another issue
that has to do with the use of data is the type of data that is used for test cases. Test cases are
used to prove the potential of a certain optimization method. The problem lies in the data that
is used. This data is in most cases far from realistic, which makes the results unrealistic as well.

2.2 Containers

Waste containers come in all shapes, sizes and for many different types of waste such as fruit /vegetables
and garden waste, general waste, metal, paper and plastic. In this chapter, we will focus on smart
waste containers, i.e. a waste container fitted with a sensor that can measure the waste volume

or weight and share the data so it can be used for optimization purposes. The technology to
turn a 'normal’ container into a smart one, can be applied to almost any container imaginable.
Although it can be applied to any container does not mean it is useful to apply it everywhere.
This chapter will discuss the different types of containers that are used, which containers and
areas are most suitable for smart waste collection and finally, the procedure of container selection
carried out by the different methods used in literature. The type of waste, collected per scenario

is neglected as the same methodology can be applied regardless of the type of waste.
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2.2.1 Types of containers and suitability

The most discussed containers in literature are the following three:
e Mini containers, 1 per household, often 140 or 240 liters
e Block containers, 1 per large building or block, varies between 500 to 5000 liters
e Underground containers, 1 per large building or block, varies between 3000 to 5000 liters

Although the growing interest in smart waste collection is mainly driven by forecasted prob-
lems for cities in the future, this is not the only application for smart waste management. Looking
at it from an optimization point of few, when many containers are placed relatively close together,
i.e. in cities, the damage being done by collecting a container which is almost empty is relatively
low. The damage being: additional costs, additional CO2 emissions, lost time, etc. This damage
will significantly increase when travel distances between containers become larger, as in rural
areas. Using this reasoning, Lozano et al. (2018) confirms multiple times that a smart waste
collection management could be especially useful in rural areas. Quoting Lozano et al. (2018),
"Journeys from one town in a region to another may sometimes be several kilometres long and
skipping some towns may mean important savings on fuel and time over a year.". However, the
economical capacities in rural areas are not efficient enough for the implementation. For this
reason Lozano et al. (2018) plea for an energy-efficient, little maintenance and low-cost technolo-
gies to make smart waste collection interesting for rural areas. Mes et al. (2014) back up the
argument of Lozano et al. (2018) and show that the highest gains are obtained in rural areas
where the network is considered to have a size of 150 x 150 min driving time. Here the savings
vary between 24% and 40%. In urban areas, however, with size 30 x 30 min, the saving are
between 17% and 23%. This shows that although most papers in literature focus on urban areas,
the highest savings can be realized in rural areas.
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Smart waste collection is based on the data coming from the sensor and the decisions that can
be made based on this data. Many papers use forecasting models to predict each daily or weakly
waste deposit. When containers become smaller they become more vulnerable for perturbations
in the behaviour of the deposit, making it harder to predict the ideal moment for collection and
increasing the risk of overflows. Another, important decision variable for smart waste collection
is the moment a container is emptied. This means that the trucks should be able to reach a
container any time a day. Finally the smaller the container, the easier it is to empty them and the
less damage is done when it appears to be empty. The three aforementioned arguments make
mini containers and smaller city trash bins less attractive for smart waste collection. Larger
containers have the benefit of being less vulnerable for perturbations in the deposit behaviour,
being available for trucks to collect them 24/7 and cause higher damage when being emptied
during collection. Underground and block containers are thus the most suitable candidates to
be used for smart waste collection.

2.2.2 Container selection

As mentioned in the introduction of Chapter 2 the route optimization is based on the number of
trucks available and more importantly, on the set of containers that are selected for pickup. The
general idea of smart waste collection is the use of sensors, that collect and communicate the fill
levels of all containers. Based on these fill levels, decisions are made about which containers and
via which route they are collected. In the discussed literature, three main methods for container
selection are proposed:

1. Based on a pre-determined threshold level of a container
2. Based on the attractiveness of a container

3. Based on both the threshold level and the attractiveness

Threshold based collection

The use of threshold levels is by far the easiest of all methods and most used in literature. How-
ever, a wide variety of it is used in literature. The simplest way is to set the threshold level equal
to a percentage of the bin’s capacity and collecting every container whose level is equal of higher
than the threshold. Taking it one step further, Abdallah et al. (2019) and Lozano et al. (2018)
include the predicted deposit volume for that day and add it to the fill level already present in
the bin and measured by the sensor. Abdallah et al. (2019) does not mention the value of the
threshold level or used safety margin and Lozano et al. (2018) obtained the used 80% threshold
level, from a technical public tender document. However, Abdallah et al. (2019) does not inves-
tigate the optimal fill level but uses a preset threshold level to compare different deposit volumes
and show the benefits compared to the conventional method of collection. More interesting and
often done in literature is the optimization of the threshold level. Many articles include their
own research in finding an optimal threshold level for which the total cost, costs/kg, amount of
CO2 produced or amount of trucks is minimized. Bueno-Delgado et al. (2019) investigates these
results for three different types of trucks, namely 1500kg, 2600kg and 6700kg. Their research
shows a reduction of costs for the 6700kg truck up to threshold levels of 70%, above 70% the
cost /kg exceeds the current path of the test case. Interesting is the fact that trucks of 2600kg
only show a reduction in cost when fill levels are used between 50% and 70%. Akhtar et al.
(2017) and Hannan et al. (2018) both optimize the threshold level using different data sets based
on the tightness, i.e. the ratio of the total capacity of the used fleet over the total amount of
weight collected. The optimum value found for the threshold level is between 70% and 75% for
both articles.
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Attractiveness based collection

Another method to select containers is based on the attractiveness of a container. Ramos et al.
(2018) defines a container to be attractive when the fill level is maximized and the transporta-
tion costs incurred to collect them are minimized. Both factors are included in the optimization
function as well as the penalty for the usage of a certain amount of vehicles. The objective
function thus maximized the profit. In other words, it maximizes the amount of collected waste,
the negative amount of distance travelled and the negative amount of trucks needed for the col-
lection. Although Markov et al. (2016) does not use the word attractiveness, the method used
in their article is closest related to the pickup decisions made, based on attractiveness. Using
historical data, a statistical model is used to calculate estimate point demand forecasts for each
day of the horizon including its error which is used to calculate the risk of overflowing or route
failures. The objective function, that consists of three distinctive parts is minimizing each of the
three parts and does not include a profit acquired from the amount of collected waste as done
by Ramos et al. (2018).

Instead, Markov et al. (2016) uses an adaptive large neighbourhood search to find the moment
for each container to be picked up for the smallest cost possible. The objective function consists
of the Expected Overflow and Emergency Collection Cost (EOECC), the Routing Cost (RC)
and the Expected Route Failure Cost (ERFC). The EOECC is used to capture the costs belong-
ing to emergency collection and penalties for overflowing containers. The first happens when a
sensor sends information about a container passing its maximum capacity and thus is starting
to overflow. When this happens the container in question has to be collected during that day,
possibly even when it is not included in any planned routes to be executed that day. The second
is the penalty imposed by the municipality to the collector when any container overflows. The
second part that the objective function is minimizing is the Routing Costs, which need little ex-
planation. And thirdly the Expected Route Failure Cost, which are the additional costs required
when the capacity of a collection vehicle is reached before completing its entire route. Using a
set of operators, Markov et al. (2016) ’destroys’ and ’repairs’ single containers, vehicles, entire
routes and even days. By destroying or removing containers, vehicles, etc. a newfound solution
if found and it is compared with the previous one. Operators who found better solutions and
thus lower objective functions are 'rewarded’ by increasing their weights and are ’punished’ if
the solution did not improve.

Must-go may-go based collection

The last of the three methods is a combination of the other two. The only article that combines
the two methods is Mes et al. (2014). Here containers are labelled as one of the following three
categories: 'Must Go’, 'May Go’ and 'No Go’. The 'Must Go’ containers are based on the first
method, the one based on threshold levels. Interesting is the fact that Mes et al. (2014) do not
set a threshold on the fill level of the container as other articles do (Abdallah et al., 2019; Lozano
et al., 2018; Akhtar et al., 2017; Hannan et al., 2018). Instead, Mes et al. (2014) puts a threshold
on the number of days in which a container is expected to be full. This threshold is included in
one of the tunable parameters and can be different for different days of the week as waste is not
collected during the weekends. 'May Go’ containers are selected based on their attractiveness
and are added to a route of 'Must Go’s’ if it is beneficial to do so. Here the attractiveness is
defined as the insertion cost needed to add a ’May Go’ container to a route based on 'Must Go’s’,
divided by the estimated fill level of the container. However, this causes a more distant container
to be less likely to be added compared to a container which is less distant. Mes et al. (2014) try
to solve this problem by dividing the previous ratio by a historical smoothed average of it. In
this way, each container’s attractiveness is scaled individually instead of being compared to the
attractiveness of others.
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2.2.3 Summary

This chapter shows that the concept of smart waste collection is used on different types of
containers and in different areas, using different types of container selection methods. Which
container, area and container selection method provides the highest savings is hard to say as
no comparison has been made yet. However, large containers appear to be more beneficial than
the smaller ones, rural areas more beneficial than urban ones and combined use of threshold
and attractiveness more beneficial than any of the two separate. Future research has to provide
better insides in which method is better suited for a specific situation.

2.3 Optimization methods

Solving any variation of a VRP or IRP is a challenging task. Basic versions of the VRP are
the TSP and the Chinese Postman Problem (CPP). The TSP can be categorised as an NP-hard
problem, which means it can not be solved within polynomial time. The CPP, on the other hand,
is not a NP-hard problem, only when capacity constraints are added and the problem becomes
a capacitated-CPP, it can be classified as a NP-hard problem. NP-hard problems are difficult
to solve and the goal is to find a good to an optimal solution within a relatively short amount
of computational time (Santos et al., 2008). This due to the fact that the time between data
transfer and waste collection should be kept within a short time span. Depending on the size
of the container network, the extent to which stochastic waste deposits are used, the length of
a planning horizon, the chosen constraints and many other factors, this challenging task is not
suitable for every solution approach. Many authors use heuristics to solve these types of problem,
other simplify by using assumptions, which allows again for exact solutions, but the assumption
often makes the problem less realistic. Roughly speaking, a solution approach belongs or to
the set of mathematical programming solutions or to the set of heuristics, with a few exceptions
belonging to nether. This chapter will discuss some of the used methods in smart waste collection,
both mathematical and heuristics.

2.3.1 Mathematical programming

Exact solutions, e.g. mathematical programming, produce accurate and optimal results. But
these excellent results come at a price, they are not suitable for medium-large practical problems
such as a complicated WCP (McLeod and Cherrett, 2008). The design of a mathematical solution
approach is that it guarantees to find the optimal solution in a certain amount of time. The
problem is that the computational time could exponentially increase with increasing dimensions
of the problem that needs to be solved (Akhtar et al., 2017). Examples of methods that belong to
the set of mathematical solutions are linear, mixed-integer, non-linear and dynamic programming.
Bueno-Delgado et al. (2019) implements integer linear programming (ILP) in an open-source
network planner, named Net2Plan. The formulation of the problem is written in such a way that
it calculates the number of trucks that result in the shortest collection routes. These routes are
assigned to specific trucks and the data of the city infrastructure is used via a GIS database.
Both the number of trucks and their travel distance are minimized. A similar approach is used
by Ramos et al. (2018), they also minimize the resources and the travel distance. Instead of
ILP, a mixed-integer linear programming (MILP) is used, which limits only specific parts of the
code to use integers. Ramos et al. (2018) combine their MILP with a heuristics that calculated
at what time during the day the model should be run to be able to obtain a maximum profit.
Heuristics often offer a quick and good solution to the problem when computational times of
mathematical programming becomes too long.
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2.3.2 Heuristics

Heuristics are often problem-dependent and therefor very specific. There are two types of heuris-
tics that or most often used. The first type is construction heuristics, which find the final solution
by interactions. The second type is descending heuristic, which tries to find the local optimum
for a given solution. In contrast with heuristics, meta-heuristics are problem-independent. This
means that meta-heuristics make few to no assumptions about the problem and therefore have
large spaces of candidate solutions. Examples of meta-heuristic methods are ant colony optimiza-
tion, local /neighbourhood search, tabu search and genetic algorithms. Some of these methods
are not flexible enough for waste collection in real and smart cities, where these methods have
to deal with different start and endpoint in routes, the maximum number of times streets can
be crossed by a vehicle, the decision on the number of trucks to use and which routes to appoint
to them (Bueno-Delgado et al., 2019).

Heuristics, meta-heuristics and combinations of the two are all used for solving the WCP. The
goal of Mes et al. (2014) is to develop a heuristic for the WCP, or IRP as they call it. This heuristic
should specifically be fast (the goal of every heuristic) and parameterized, the latter also including
a methodology to determine the best parameter settings using optimal learning techniques. While
Mes et al. (2014) is using a single heuristic, Lozano et al. (2018) is using different heuristics and
local search methods. All these heuristics and local search methods compete to find the best
solution within 24 hours, which likely guarantees good results but is quite a time consuming for
a WCP that relies on real-time data. Markov et al. (2016), on the other hand, rely on a single
meta-heuristics. They use an adaptive large neighbourhood search (ALNS) algorithm, where the
total cost is minimized over a rolling time horizon. Their objective function includes penalties
for overflow, additional costs for route failures, costs for emergency collection and finally routing
costs that also include a time component. The ALNS uses many destroy and repair operators,
that change current solutions up to 30-40%. The success rates of the operators are continuously
updated and influence the next iteration. Another meta-heuristic is used by Akhtar et al. (2017).
They use a backtracking search algorithm (BSA), which is a population-based meta-heuristics
and is relatively new. In contrast with Mes et al. (2014), this meta-heuristic only has one control
parameter, which simplifies the algorithm. Finally, Hannan et al. (2018) also uses a population-
based algorithm but they use a particle swarm optimization (PSO) algorithm. This PSO starts
with generating initial particles by using a sweep algorithm, after which particles are dragged
towards the optimal solution with a randomly generated velocity. The algorithm keeps track of
the two best solutions per iteration.

2.3.3 Summary

As routing problems developed from simple travelling salesman problems to the complex vehicle-
and inventory routing problem, methods for solving them also developed. Where heuristics
provide good to optimal solutions, mathematical programming guarantees to find the optimum
solution. However this comes at a price, mathematical programming includes large computational
times. This makes them unsuitable for complex problems or problems that need to be solved in
a relatively short amount of time, such as the waste collection problem. Heuristics offer quick
and good solutions making them better suitable for the waste collection problem. Nowadays,
often meta-heuristics are used or even multiple heuristics of meta-heuristics at the same time.
In the latter, these heuristics compete for the best solution within a set time limit.
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2.4 Synthesis of the literature

Is smart waste collection as profitable and efficient as it appears to be? And if so, what are the
trends and most promising, realistic methods for optimizing the WCP. This chapter will be the
foundation up on which the discussion and conclusion will build to answer the questions. This
chapter will discuss the most relevant articles and is organised per article. It will show the details
and specifications per article.

2.4.1 Results per article
Mes et al. (2014), Inventory routing for dynamic waste collection.

Specifications per article

Type of sensor: Volumetric

Type of container: Not specified

Type of container selection: ~ Must-Go May-Go

Optimization method: Mathematical (MILP)

Area of focus: Both rural and urban (simulated)
Results:

By optimization of the tuning parameters the weighted costs per unit of volume are decreased
by 40% compared to the default settings. Default settings perform reasonably well in other net-
works. When more realistic networks are considered, where more variables are day dependent,
savings can be higher than 40%.

Note: The maximum saving of 40% was obtained in one of ten test cases. The average sav-
ing was 23.8% with a minimum in one test case of 16%. Especially the large virtual networks
scored above average, and thus better than the small virtual networks. The larger ones cor-
respond to a province while the smaller ones correspond to urban areas. This appears to be
evidence that larger-scale operation would be more beneficial than smaller ones.

Ramos et al. (2018), The smart waste collection routing problem: Alternative
operational management approaches.

Specifications per article

Type of sensor: Ultrasonic
Type of container: Block container
Type of container selection: Both threshold and attractiveness
Optimization method: Parameterized heuristic
Area of focus: Provincial
Results:

The third method that is proposed has the most potential and shows the highest savings com-
pared to the current way of working. A potential profit increase of 7% is found. The kg/km
ratio is increased by 19%, distance travelled is reduced by 33% and the vehicle usage rate stays
approximately the same.

Note:

In the third scenario, an overflow percentage of 1% is allowed, with a maximum overflow of
20% of the bin’s capacity. Furthermore, the daily deposit rate was determined by dividing the
total amount of collected waste by the 30 days in which it was collected. Any trends or day
timedependent variations are removed in this way, making it less realistic. What adds to this is
that distances between containers were calculated using Fuclidean distance, but were corrected
with a factor to adjust for roads not being straight lines.
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Markov et al. (2016), Inventory routing with non-stationary stochastic de-
mands.

Specifications per article

Type of sensor: Ultrasonic
Type of container: Block container
Type of container selection: Attractiveness
Optimization method: Meta heuristic (ALNS)
Area of focus: Urban

Results:

Although the algorithm of Markov et al. (2016) performs very well when compared to IRP and
VRP benchmarks from literature, the results of the test case is quite disappointing. Compu-
tational times of their algorithm are good and the problem can be solved in around 10 to 15
minutes and the amount of collected waste is on average more than twice as many containers.
But the costs of solving the WCP for their complete objective function in terms of expected cost
are 50 to 60% higher, compared to the routing-only. Which is strongly influenced by the emer-
gency collection cost. Not all increase in cost is caused to the emergency collection cost when
the complete objective function is compared to the routing-only an increase in the cost of 30 to
35% is observed. The difference in cost between the percentages above is due to the expected
overflow cost. This also shows that the route failure cost is practically zero in both situations.
Apparently, including probabilistic information and forecasting in the objective function led to
an increase in cost.

Note:

Although this article comes closest to capture a realistic version of the WCP their result is not
very promising at this moment. A comparison with the current way of the waste collection could
have provided a reference for the routing-only solution as well. As mentioned in the article, when
more accurate forecasting models are used, the gap could be reduced significantly.

Bueno-Delgado et al. (2019), Optimal path planning for selective waste col-
lection in smart cities.

Specifications per article

Type of sensor: Not specified
Type of container: Block container
Type of container selection: Threshold
Optimization method: Algorithm (Net2Plan-GIS)
Area of focus: Urban
Results:

In the comparison, the influence of multiple truck sizes and threshold levels on the average waste
collected in kilograms, the number of trucks that are needed, the CO2 emissions in kilograms and
finally the total cost in /kg, is investigated. The results show that the larger the truck the less
of an influence the threshold level is. Large trucks (6700 kg) have lower costs than the current
way of collection between 0 and 70% threshold levels. The higher the threshold level the lower
the CO2 emission, which is almost equal for all truck sizes. Smaller trucks (2600 kg) can also
decrease the cost in comparison to the current way of waste collection, but it is limited to the
threshold range of 50 to 70%. Also, a single truck is no longer sufficient, while two truck is not
used to full capacity.
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Note:

Although the methodology of this article is admirable, the way waste deposit rates and volumes
are used is not even close to realistic. Container volumes are randomly generated each day with
a fill level between 0-100%. Using realistic deposit rates and volumes would make a much more
interesting article.

Abdallah et al. (2019), Simulation and optimization of dynamic waste collec-
tion routes.

Specifications per article

Type of sensor: Ultrasonic
Type of container: Block container
Type of container selection: Threshold
Optimization method: Algorithm (Decision making)
Area of focus: Urban
Result:

The shortest path algorithm for route optimization, GIS based, acquired a operational cost re-
duction of 19% when compared to the current way of waste collection. By investigating the
reduction of fill rate, a decrease of 40% in fill rate showed a decrease in operational cost of only
25%. Showing that the amount of waste is not directly linked to the operational costs.

Note:

Because 88% of the population are ex-pats and travels back to home countries, also lower waste
deposit rates, 90, 80, 70 and 60% where used. This makes the studied area very susceptible to
drastic changes in waste deposits. This could be an interesting follow-up study, to see if such
drastic changes can be managed and what would be the differences between current and smart
waste collection.

Lozano et al. (2018), Smart waste collection system with low consumption
LoRaWAN nodes and route optimization.

Specifications per article

Type of sensor: Ultrasonic
Type of container: Block container
Type of container selection: Threshold
Optimization method: Multiple (meta-)heuristics
Area of focus: Provincial
Results:

The developed sensor can be in operation for more than a year and measure weight, temper-
ature and volume of the container. The coverage of the area by antennas also proved to be
feasible. Route optimization resulted in an average saving of 28% in terms of travelled distance.
These savings will create financial savings due to saving of time, truck usage and workforce costs.

Note:

The results show a clear pattern in the length of collection routes and thus in waste deposits. It
is surprising that such a pattern was not noticed by the collection company. The result would
have been much smaller when the collection company had alternated between long and short
routes each day.
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Akhtar et al. (2017), Backtracking search algorithm in CVRP models for
efficient solid waste collection and route optimization.

Specifications per article

Type of sensor: Multiple

Type of container: Not specified

Type of container selection: Threshold

Optimization method: Meta-heuristic (BSA)

Area of focus: Not specified
Results:

By using a BSA in a CVRP a distance reduction of 36.80 % was observed. This will lead to
reduction of fuel consumption and CO2 emissions by 50% and 44.68%, respectively.

Note:

These results look promising, but a few side notes have to be added. First of all the time span in
which waste was collected and on which the results are based is to short. By using only a single
day of collection and later on a week from Monday to Monday, trends and uncollected waste are
neglected i.e. the start-up period is not finished and no stable state has been reached. With
longer time spans these trends would have been captured.

Hannan et al. (2018), Capacitated vehicle-routing problem model for sched-
uled solid waste collection and route optimization using PSO algorithm.

Specifications per article

Type of sensor: Multiple
Type of container: Not specified
Type of container selection: Threshold
Optimization method: Meta-heuristic (PSO)
Area of focus: Not specified

Result:

By using a PSO algorithm and a number of renowned data sets, a 70-75% threshold level is found
to create the highest savings.

Note:
As being written by a co-author of Akhtar et al. (2017) and being published after the aforemen-

tioned article, the result is exactly the same. The only new thing here is that a PSO is used
instead of a BSA.
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3 Methodology

In this section the basic concepts, details and mathematical models of all three container selection
models are presented. The verification and validation of each model is also included in this
section.

3.1 Conceptual model

As explained in section 1, the SWCP can be both categorized as a VRP or an IRP. This solely
depends on the selection of customers. When it is known which customers to visit on which
day this model will be categorized as a VRP. When it still has to be decided when to visit each
customer, it is categorized as an IRP. For each model, the goal is the same. Namely, optimize
the objective function, i.e. minimize total travel time, and stay within an acceptable amount of
overflows during the 12 day test period. All three models discussed in this research will have
many things in common. All of the models have common indices, sets, parameters, a common
objective function and common constraints. sections 3.2, 3.3 and 3.4 will go into the specifics.

3.1.1 Comparison to AMCS and OMRIN

From literature, it became clear that not many articles use real data or real scenarios, although
statements were made about how their models would perform under real circumstances. This
was the main motivation to get the models in this research as realistic as possible within the
available time frame. Some details were left out, but overall the models posses many real fea-
tures copied from or based on the AMCS models and information gained from OMRIN, which
are successfully used in practice. The following details are also used by AMCS and OMRIN:

e The use of the must-go may-go method
e Real fill levels for the starting day

e Real daily deposit rates
(except for some due to collection in real- time)

e Real network of containers, terminal and depot, including locations and volumes
e Realistic travel times calculated using the actual road network

e Same time windows for a subset of containers in the city centre

e Same amount of trucks/routes

e Same volumetric truck capacity

e Same starting times for the trucks

e Same service times for the containers and the depot

Some features were to time-consuming to include in the models, or unnecessary to include. The
models described in this research differ by the following details from AMCS and OMRIN:

e Breaks at the terminal from 12:45 to 13:00

In this model, all routes start at the terminal, visit the depot and end at the terminal.
In reality, the first routes of the day start at the terminal, visit a depot and from here a
new route will start. Meaning in reality trucks do not always go back to the terminal in
between routes. However, the trucks of OMRIN do go to the terminal for a 45 minute
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lunch break. The assumption is that the additional travelled time by ending each route at
the depot will compensate for the time needed to drive to the terminal for the lunch break.

Additional orders besides the 408 containers

Besides the 408 containers considered in the Leeuwarden area, also custom orders can
be added. These are additional waste collections, e.g. collect extra waste at a company.

Visits to Harlingen twice a week, with 1 truck

The models in this research contain two trucks which can both do two routes. A de-
tail which was not included is that twice a week one of the two trucks used will visit
Harlingen to collect containers. Such detail would, of course, be possible to integrate, but
due to time limitations was ignored.

An additional depot outside Leeuwarden

The above-mentioned reasoning holds as well for a second depot. Since Leeuwarden is
the area of focus, not only the visit of Harlingen but also the additional depot was left out.

Limited collections on Saturday and no collections on Sunday

Since most people do not work during the weekend, the collection is minimized in weekends
as well. On Saturday, only 1 truck does one route of necessary collections. On Sunday,
no collection is done at all. This detail is not applied to the models of this research, as
collection is performed every day.

Smaller network

The initial goal of this research was to compare the designed models also with the re-
sults from AMCS. The whole network of 408 nodes would therefore be used in the models.
Unfortunately, the computational time for solving the threshold model with 408 nodes
passed the time of 100 hours without getting close to a result. Since the threshold model is
the simplest model to solve, and therefore needs the smallest computational time in order
to be solved the other models had to be scaled down as well.

No deposits between measurement and collection

Since the data is recorded around 6:00 AM and the trucks will start there route at 6:45
AM, it is possible that waste will be deposited in the meantime. This is almost guaranteed
for containers that will be collected in the afternoon. In reality, this could lead to route
failures. A route failure occurs when the maximum capacity of the vehicle is reached before
it finished its planned route. In such a case the vehicle has to first visit the depot before it
can continue and finish its old route, which increases the total driving time considerably.
Since in this research no real collection is done, the collected waste volumes will always
match the predicted waste volumes. When the models of this research would be tested
in reality, then an appropriate buffer could be taken on the truck’s capacity to prevent
route failures. Note, both the threshold model and the must-go may-go model have built
in buffers on top of there threshold levels.
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3.1.2 Key performance indicators

In order to compare the performance of the different models, some indicators have to be selected.
In the case of the SWCP, there is a wide variety of KPIs being used in literature and practice. The
performance of the SWCP can be evaluated based on minimizing travelling distance, travelling
time, CO2 emission, total cost, the number of vehicles used, the amount over overflows or
maximizing the vehicle capacity rate or the amount of collected waste. The most common KPI
used in literature is by far a form of cost. An objective function for cost can be as simple assigning
some monetary value to the number of driven kilometres or to the time taken for collection. It
can also be very complex, as the objective function of Markov et al. (2016). Most of the other
variables can easily be transformed to be included in a cost objective function. However, total
travel time is chosen as the main KPI for this research. The main reason being that it is also
the KPI used by AMCS and OMRIN, therefor being able to compare results. Although other
KPIs are not explicitly incorporated in the objective function, they are very much related to
the total travelled time. It is easy to understand that by minimizing the total travelled time,
travelled distance is also roughly minimized and therefore as well to the emitted amount of CO2.
Collecting the same amount of containers with multiple trucks will always result in higher total
travel times, and therefore will be avoided, since each truck has to start at the terminal, visit
the depot and end at the terminal again. The usage of fewer trucks will also translate into an
increase in truck capacity utilization. Another KPI being maximized by minimizing travelled
time is the number of overflows. When no threshold or upper limit is set, containers will never
be collected. Therefore a negative relation arises between the total travelled time and number
of overflows. The amount of overflows will be monitored for all test runs and a baseline will
be determined, using the number of overflows present in the data of AMCS and OMRIN. To
conclude, total travel time will be the main KPI while the amount of overflows is kept
close to the amount observed in the used data. Note that the total travel time is specified in the
objective function of each model as being the summation of all travel times, plus the summation
over all service times.

3.2 Threshold based model

This section will discuss the threshold model. This threshold based model uses container specific
threshold levels for container selection. Container specific threshold levels mean that containers
are divided into groups, depending on their average daily deposit rate. If the average deposit
rate is low, only small deposits are made and this container can be collected at a high fill level
without risking large overflows. When a container has a large average daily deposit rate, this
means that a container could be completely filled in only two or three days. This will result
in a low threshold level. After the selection of containers, which only for this model can be
carried out separately from the route optimization, the route optimization performed to find the
smallest total travel time possible, in which these containers can be collected by two trucks with
a maximum of two routes per truck per day. Figure 5 shows how the threshold model progresses
from day to day. For each day the container selection is performed based on the threshold levels,
after which the optimal route can directly be executed. No (rolling) horizon is used as in contrast
with Figure 7. This means that no future information is used during the container selection and
route optimization.
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Figure 5: Visualisation of threshold based method

3.2.1 Differences from literature

Based on literature research, certain decisions were made when developing this model. The goal
was to learn from literature, reject the bad ideas such as random fill levels and use the ones
with potential such as a rolling horizon approach. An important difference from literature is
that this research was carried out, using real data, obtained from smart waste container that are
already in use. Many articles use generated data and in most cases even unrealistic data such
as Bueno-Delgado et al. (2019). By using the real fill levels on the first day and daily deposit
rates after this, this research is able to capture both a real starting point and a real deposit
rates. Besides the usages of real data, this research also acknowledges the fact that real data
contains errors. Therefore the data is screened, different errors where observed and dealt with if
necessary. As for the model itself, the threshold model uses container specific threshold levels to
distinguish between fast and slow running containers. Still, many articles use one threshold level
for all containers like Akhtar et al. (2017) and Hannan et al. (2018). Limiting there possibilities
for optimization. The threshold levels in this research are also considering the deposits that
could be made in between the measurement and the moment of collection, following the example
of Abdallah et al. (2019) and Lozano et al. (2018). Therefore providing a buffer to prevent
overflows.

3.2.2 Mathematical model

Indices and sets:

i index for each node in the network. 1 € ned,nid, early or visit
7 index for each node in the network. 1 € ned,nid, early or visit
k: index for the number of routes. ke K

ned : set of nodes excluding depot and terminal [0, ..., 406]

nid : set of nodes including depot(408) and terminal (407, 409) [0, ..., 409]

early : set of nodes that need to be collected before 9:00 AM [23,57,71,72,..]

visit set of nodes which need to be collected [y eey o]

K : set for the number of routes needed [0, ..., total volume/Q)]

30



Decision variables:

Ti gk Binary variable which is 1 if arc i->j is used by vehicle k and 0 otherwise.

se; i Integer variable which is 1 for the first node, 2 for the second etc.

Wi k- Continues variable which equals the collected volume of truck k at node i.

Ui i Integer variable which equals the time a node is visited, lower bound = 24300.

Starting time = 24300 sec => 6:45 AM.

Parameters:

time_matriz; ;: Travel time between node i and node j, in seconds.
threshold_level;: Threshold levels for node i, in percentages.

container _volumes;: Total volume of the container for node i, in liters.
fill_level list;: Fill level of node i, in percentages.

sty Service time of node i, in seconds.

Q : Maximum load of each vehicle.

T: Time before all containers in early need to be collected.

Objective function:

MIN > > > x5 * time_matrix;; + st; * x;
ienid jenid ke K
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Constraints:

In ascending order, constraint (1) ensures that all nodes that should be visited will be vis-
ited. Constraint (2) will prevent arcs from and to the same node. Constraints (3-7) forces each
route to start at node 407, visits node 408 and ends at node 409. Note that node 407 and 409
are two nodes representing the same terminal and node 408 is the deposit site. Constraint (8)
ensures flow conservation at each node. Constraint (9) prevents nodes to be visited that should
not be visited. Constraints (10-14) prevent sub tours by numbering of nodes and only allowing
the visit of nodes with higher numbers. Constraint (15) sets the load at start point equal to
0. Constraints (16 and 17) ensure load continuity and constraint (18) limits the load of each
vehicle. Constrains (19 and 20) ensure visit time continuity and finally constraint (21) makes
sure all nodes in early are collected before 9.00AM. Note that in constraints (16), (17), (19) and
(20) the big M method is used. The M displayed in the constraint represents the number 100000.
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3.2.3 Model optimization

To optimize the threshold model, only one parameter can be changed that will influence the
selection of containers. Since this model already uses container specific threshold levels, the
question arises ’how to change all these threshold levels to optimize the total travel time for the
whole system?’. This will be done using a threshold buffer to prevent overflows. The threshold
buffer is the difference between a full container (100%) and the summation of the measured fill
level and the forecasted average deposit rate. Since almost all forecasting models have some
error, it is common to have a buffer larger than zero to avoid many overflows. Note that this
research will also use negative threshold buffers to increase the number of overflows. Below,
figure 6 is a small piece of Python code and it shows an example of how this threshold buffer
is defined and used. For containers that have an average daily deposit rate is between 0 and 5
percent, the threshold level is set to 90%. This means that when around 6:00AM one of these
container with an average daily deposit rate between 0 and 5 percent, is measured to have a
fill level of 90% or more, the forecasted deposit rate, it was to be collected that day. This also
implies that if the measured fill level was exactly 90% and the forecasted maximum of 5% was
deposited before collection, a buffer of 5% would remain as a buffer. The same is done for average
daily deposit rates between 5 and 10% and so on. In short, the threshold buffer is the buffer to
prevent overflows, which is the same for all containers, regardless their threshold level.

threshold levels = | |
for x in average dailydepositrate:
if x> 0and x < 5:
i=90
if x > 5 and x < 10:
i=85
if x > 10 and x < 15:
i=80
if x > 15 and x < 20:
i=175
if x > 20 and x < 25:
i="70
if x > 25 and x < 30:
i=65
if x > 30 and x < 35:
i=60
if x > 35:
i=>55
threshold level.append(i)

Figure 6: Threshold buffer

Since the buffer influences all fill levels it also has an influence on the KPIs, which are the
number of overflows and on the total traveling time. When the value of the threshold buffer is
increased, a higher buffer is created, minimizing the number of overflows. On the other hand a
larger buffer will limit the system more, since containers need to be collected earlier. The entire
struggle of waste collection is the trade off between minimizing overflows and minimal travel time.

To conclude, the threshold model has only one tuning parameters:
° Threshold buffer
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3.2.4 Verification

The verification of a model is the step where the researcher tests to what extend the conceptual
model has been correctly transferred into a computerized model. Besides the debugging of the
code this means checking if generated outputs will match the expected outputs. Examples of
such tests are event tracing, continuity tests, degeneracy tests, consistency tests and fault injec-
tion.

In this subsections the verification of the threshold model will be discussed and visualised. Fur-
ther on in this report also the two other models will be verified. Each model is verified with
the 10 tests listed below. Each test was performed using the same data set, and only critical
parameters where added, removed or adjusted.

Continuity test: runs with slightly different parameters.
1) Basic run, with all constraints to test if the result is logic ( bigger than 0).

Event tracing: check event order, causal relations, event times
2) Does the total time equals the service times and travel times.
3) Checking if order of visited nodes is in order and is equal to total visited nodes.

Degeneracy test: extreme cases.

4) Test without vehicle capacity constraint (only one vehicle should be used).

5) Test with vehicles capacity at 0.

6) Test with fill levels = 0 ( no container should be collected)

7) Test with fill levels at 110 ( all should be collected.

8) A test run where we remove the threshold level constraints, no container should be collected.

Consistency checks; e.g., doubled capacity a halved utilization.
9) Half the vehicles, double their capacity.

Fault injection: check whether faulty input is detected by the model.
10) Run without vehicles.

The table below contains the results of the verification tests. It describes the tested condi-
tion, the expected result, the obtained result and if the verification test was passed. This test
was ran, using the AMCS data of all 408 containers on 14=06-2020. From left to right it shows
what is tested, what the expected result/behaviour is and what the actually measured result
was. If the expected result meets the measured result, the test is passed.
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Table 3: Verification results threshold model

Test Expected results Obtained result Pass/Fail
1) Normal conditions/full model | Total time >0 Total time = 33436 s Pass
Total volume > 0 Total volume = 249911 L
Nr. of containers > 0 Nr. of containers = 74
K >0 K=3
2) Check event order se[terminal, k| = 1 se[terminal, k|=1 Pass
selj, k| - se[i, k] =1 selj, k| - seli, k] =1
3) Total time check Travel + service time = 33436s Travel + service time = 33436s Pass
4) No vehicle capacity limit K=1 K=1 Pass
Nr. of containers = 74 Nr. of containers = 74
5) Vehicle capacity at 0 Infeasible Infeasible Pass
6) All fill levels are 0 Total time = 0 Total time = 0 Pass
K=0 K=0
7) All containers are in early All collected before 9:00AM 11 collected before 9:00AM Pass
Or infeasible
8) No threshold level constraint | Total time = 0 Total time = 0 Pass
9) Double truck capacity K=2 K=2 Pass
10) Run without vehicles Infeasible Infeasible Pass

3.2.5 Validation

The validation of a model is the step where the researcher tests to what extend the computerized
model represents the real system. Section 3.1 describes all the simplifications and details applied
in the models of this research. As already mentioned, a full case study and comparison to AMCS
was not possible. This limits the option to compare the model to reality and that way validate
the models discussed in this research. However, all total driving times of AMCS for the test
period are known, as well as the number of nodes visited. These can be used to see if the models
presented in this research, provide solutions in the same order of magnitude as the solutions of
AMCS. AMCS visited in the 12 days of the test period, 1006 nodes in a total travel time of
569580 seconds. However, the AMCS network consists of 408 containers and the one used in
this research 151. The table below shows the comparison between the AMCS solution and the
solutions of the threshold model.

Table 4: Validation results threshold model

Total travel time [s] Nr. of nodes visited

AMCS 569580 1006
AMCS Scaled 210800 416
Threshold 10% 158717 328
Threshold 5% 156354 318
Threshold -1% 147097 298

Firstly, Table 4 shows that the results of this research are in the same order of magnitude as
the results of a model which is successfully applied in real life. However, AMCS shows to have
a higher scaled total travel time and a higher scaled number of visited nodes. Both of which are
not necessarily positive. Visiting more nodes leads to higher total travel times, which for both
AMCS and this research is the minimized KPI. It is, however, important to note that AMCS also
schedules custom orders and has to deal with more regulations than the models of this research
and visits the city of Harlingen. As already mentioned, a comparison with AMCS at this point
is very hard and therefore only used to show that the results are of the right order of magnitude.
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3.3 Attractiveness based model

This section will discuss the attractiveness based model. The idea behind an attractiveness model
is to collect containers at the most attractive point in time. However, attractiveness is an opinion.
It can differ from person to person or from company to company. Some articles and companies
focus on minimizing cost, others on minimizing overflows and other on minimizing time. Since
AMCS and OMRIN use total travel time as an KPI, this will also be the main KPI in this
research. The attractiveness based model combines container selection and route optimization
to determines the best moment to collect a container, with the goal of minimizing the total travel
time for the entire horizon. It determines on which day a container is the most attractive, i.e.
when it costs the least amount of time. This enables the model to collect a container one day
earlier than normal, if it is on the route of the previous day. The model calculates all routes for
all days during the horizon, but only executes the routes of the first day. After collection the fill
levels of the collected containers are set to zero and the true deposit rates are added to all fill
levels. These new fill levels are the input for the next day. Again the containers are collected by
2 trucks with a maximum of 2 routes per truck per day.

Fill levels Average
—»  after deposit  —
collection rates

J I Fill levels
Fill levels | Forecast | Forecast | Forecast after
day 1 day 2 day 3 day 4 collection
Excecution
day 1 +
Fill levels | Forecast | Forecast | Forecast dgsai:git
day 2 day 3 day 4 day 5 —
Excecution
day 2

Fill levels | Forecast | Forecast | Forecast
day 3 day 4 day 5 day G

Excecution
day 3

Time

>

Figure 7: Rolling horizon approach for attractiveness and must-go may-go method

3.3.1 Differences from literature

The points about the use of real data and data cleaning were already made in the previous section.
The only difference is the container selection method. Most articles use cost objective functions,
which from a financial stand point makes sense. However, since AMCS and OMRIN use total
travel time as the main KPI, this will also be used in this research. Since computational time is
often an issue when large problems like the SWCP are solved mathematically, this research tries
to minimize computational time by excluding containers with low fill levels. Over complicating a
model also leads to high computational times and sometimes even to unwanted results. Therefore
a simplistic forecasting model is used, in contrast to Markov et al. (2016). Ramos et al. (2018)
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included a profit, obtained from the collected amount of waste, in their objective function. This
was neglected in this research as containers will always be emptied rather later than sooner. This

again simplifies the objective function and the model as a whole.

3.3.2 Mathematical model

Indices and sets:

i index for each node in the network.

J: index for each node in the network

k- index for the number of routes.

day : index for the number of days in the horizon.

ned : set of nodes excluding depot and terminal

nid : set of nodes including depot(408) and terminal (407, 409)
early : set of nodes that need to be collected before 9:00 AM
K set for the number of routes needed

days : set for the days in the horizon

Decision variables:

Vi € ned, nid or early
Vi € ned, nid or early
ke K

Yday € days
.., 406]
0 .., 409]

0, ..., total volume/Q]

[0,

[

23,57, 71,72, ..
[

[0,1,2,3]

Ti gk Binary variable which is 1 if arc i->j is used by vehicle k and 0 otherwise.

se; i Integer variable which is 1 for the first node, 2 for the second etc.

Wi k- Continues variable which equals the collected volume of truck k at node i.

Uj kit Integer variable which equals the time a node is visited, lower bound = 24300.
Starting time = 24300 sec => 6:45 AM.

hfli day: Continues variable which equals the fill level of container i on a day in the horizon

Parameters:

time_matriz; ;:
Threshold_level;:
Container wvolumes;:
Fill _level list;:

st;:

Q:

T :

Objective function:

MIN >0 >0 > X

1enid jenid k€K day€days

Travel time between node i and node j, in seconds.

Threshold levels for node i, in percentages.

Total volume of the container for node i, in liters.

Fill level of node i, in percentages.
Service time of node i, in seconds.

Maximum load of each vehicle.

Time before all containers in early need to be collected.

T4 j k,day*tiMe _matrir; j+St;*x; j i day
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Constraints:

In ascending order, constraint (1) copies the fill levels of the total fill level list to the first
day of the horizon. Constraints (2-4) fill the rest of the fill levels within the horizon with the in-
fluence of the collection of a container. Constraint (5) prevents overflows, constraint (6) reduces
computational time by excluding containers with low fill levels. Constraint (7) will prevent arcs
from and to the same node. Constraints (8-12) forces each route to start at node 407, visits
node 408 if waste was collected and end at node 409. Note again that node 407 and 409 are two
nodes representing the same terminal and node 408 is the deposit site. Constraint (13) ensures
flow conservation at each node. Constraints (14-18) prevent sub tours by numbering of nodes
and only allowing the visit of nodes with higher numbers. Constraint (19) sets the load at start
point equal to 0. Constraints (20 and 21) ensure load continuity and constraint (22) limits the
load of each vehicle. Constrains (23 and 24) ensure visit time continuity and finally constraint
(25) makes sure all nodes in early are collected before 9.00AM. Note that in constraints (20),
(21), (23) and (24) the big M method is used. The M displayed in the constraint represents the
number 100000.

hflio= total _fill _level _list;q Vi € nid
hflia= hfliox(1— > > xijko) + add; Vi € nid,
ienid ke K
hflio=hfliix(1— > > @jk1) + add; Vi € nid,
ienid ke K
hflio= hfliix(1— > > 33i,j,k,1) + add; Vi € nid,
i€nid keEK
hfl; 1< 100 Vi € nid,Vday € days\0
hfliday>40% Y > Zijkday Vi € nid,Vday € days
jenid ke K
Ti 4 k,day= 0 Vi € nid,Vk € K,Vday € days
E Tterminal,j,k,day=— 1 Vk € K,Vday € days
jenid
Z Zi terminal,k,day= 0 Vk € K,Vday € days
i€nid
Z Tj terminal,k,day = 1 Vk € K,Vday € days
i€nid
Z Lterminal,j,k,day= 0 Vk € K,Vday € days
jeNnid
Z wz,k*(l — Tdepot,terminal,k,day = 0 Vk € K, Vday € days
i€nid
Yo Tijkday— . Tijikday=0 Vi € nid,Vk € K,Vday € days
jeNnid j€eNid
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S€terminal k,day= 1
8€; k.day=> 2
5€; kday< |nid|

8€4 k,day — 5€j.k,day+|1id| * T j g day < (|nid| — 1)

Sei,k,day_sej,k,day+|nid‘ * (1 - -Ti,j,k,day) > -1

Wterminal k,day= 0

Wj k day> Wik,day+ (NSl /100) % cvj—M * (1 — 4 j k. day)

W ke day < Wi k+(Af1;/100) x cvj+M * (1 — i j k day)

wi,k,dayg Q

W) kday> Wik day+Sti+time_matriz; j—M * (1 — ; j k. day)

W) kday < Wik day+Sti+time_matriz; j+M * (1 — ; j k. day)

Ui k,day= T
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3.3.3 Model optimization

The concept of the attractiveness model is to set a minimum amount of restrictions on the model
and let the computer figure out what the best moment is to collect a container. In order to select
the best moment for collection, a forecasting model is included in this model. This forecasting
model will be used on every day. When a three day horizon is used, the fill levels for the next
three days are examined and routes are suggested for all of them. After the optimization of this
horizon the first day is executed and the horizon is moved up to the next day. The term rolling
horizon is therefore used to describe a horizon that moves along in time. The number of days
within the rolling horizon can be set from one, up to three days. This research will investigate the
influence of the length of the rolling horizon on the attractiveness and the must-go may-go model
and investigate if one of the models benefits more from a rolling horizon than the other. Since
an attractiveness model like this is hard to solve, some restrictions on the model are necessary.
Since containers need to be collected at some point and large overflows should be prevented.
Therefore, an upper limit on the volume of a 100% is set for all containers. In some specific
cases this upper limit will be set above 100%. Although this will cause more overflows, it will
also give the model more possibilities to optimize. To minimize computational time we exclude
certain containers from being considered of being collected. The constraint is set to exclude, for
example, all containers that have fill levels below 60%. Note that in this research the exclusion
level will not go above 60% since it will be in conflict with the set threshold levels. However, due
to time limitations the exclusion level was not investigated. It showed to reduce computational
times and therefore it was set to 60% for all runs.

To conclude, the attractiveness model has three tuning parameters:

° Rolling horizon length
° Upper limit
o (Exclusion level)
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3.3.4 Verification

In this subsections the verification of the attractiveness model will be discussed and visualised.
Each model is verified with the 10 tests listed below. Each test was performed using the same

data set, and only critical parameters where added, removed or adjusted.

Continuity test: runs with slightly different parameters.
1) Basic run, with all constraints to test if the result is logic ( bigger than 0).

Event tracing: check event order, causal relations, event times
2) Does the total time equals the service times and travel times.
3) Checking if order of visited nodes is in order and is equal to total visited nodes.

Degeneracy test: extreme cases.
4) Test without vehicle capacity constraint (only one vehicle should be used).
5) Test with vehicles capacity at 0.
6) Test with fill levels = 0 ( no container should be collected)
7) Test with fill levels at 110 ( all should be collected.
)

8) A test run where we remove the threshold level constraints, no container should be collected.

Consistency checks; e.g., doubled capacity a halved utilization.
9) Half the vehicles, double their capacity.

Fault injection: check whether faulty input is detected by the model.
10) Run without vehicles.
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The table below contains the results of the verification tests. It describes the tested condition,
the expected result, the obtained result and if the verification test was passed. This test was ran,
using the AMCS data of 151 containers on 22=06-2020, obtained by the attractiveness model
with a 1 day horizon and an absolute threshold level of 100%. These specifics were used due to
large computational times when all 408 nodes were used and the fact that the 9th day of the
aforementioned model used multiple vehicles to collect a reasonable amount of containers. From
left to right it shows what is tested, what the expected result/behaviour is and what the actually
measured result was. If the expected result meets the measured result, the test is passed.

Table 5: Verification results attractiveness model

Test Expected results Obtained result Pass/Fail
1) Normal conditions/full model | Total time >0 Total time = 15827 s Pass
Total volume > 0 Total volume = 128426 L
Nr. of containers > 0 Nr. of containers = 27
K >0 K=2
2) Check event order se[terminal, k, day| = 1 se|terminal, k, day| = 1 Pass
selj, k, day]| - seli, k, day| = 1 selj, k, day]| - seli, k, day| = 1
3) Total time check Travel + service time = 15827 s Travel + service time — 15827 s Pass
4) No vehicle capacity limit K=1 K=1 Pass
Nr. of containers = -+ /- 27 Nr. of containers = 28
5) Vehicle capacity at 0 Infeasible Infeasible Pass
6) All fill levels are 0 Total time = 0 Total time = 0 Pass
K=0 K=0
7) All containers are in early All collected before 9:00AM All collected before 9:00AM Pass
Or infeasible
8) No threshold level constraint | Total time = 0 Total time = 0 Pass
9) Double truck capacity K=1 K=1 Pass
10) Run without vehicles Infeasible Infeasible Pass
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3.3.5 Validation

The validation of a model is the step where the researcher tests to what extend the computerized
model represents the real system. Section 3.1 describes all the simplifications and details applied
in the models of this research. As already mentioned, a full case study and comparison to AMCS
was not possible. This limits the option to compare the model to reality and that way validate
the models discussed in this research. However, all total driving times of AMCS for the test
period are known, as well as the number of nodes visited. These can be used to see if the models
presented in this research, provide solutions in the same order of magnitude as the solutions of
AMCS. AMCS visited in the 12 days of the test period, 1006 nodes in a total travel time of
569580 seconds. However, the AMCS network consists of 408 containers and the one used in
this research 151. The table below shows the comparison between the AMCS solution and the
solutions of the attractiveness model.

Table 6: Validation results attractiveness model

Total travel time [s] Nr. of nodes visited

AMCS 569580 1006
AMCS Scaled 210800 416
Attractiveness 133129 288
(1 day horizon)

Attractiveness 133083 302
(2 day horizon)

Attractiveness 123868 294

(3 day horizon)

These results show first of all that the results of this research are in the same order of magnitude
as the results of a model which is successfully applied in real life. However, AMCS shows to have
a higher (scaled) total travel time and a higher (scaled) number of visited nodes. Both of which
are not necessarily positive. Visiting more nodes leads to higher total travel times, which for
both AMCS and this research is the KPI that should be minimized. It is, however, important
to note that AMCS also schedules custom orders and has to deal with more regulations than
the models of this research and visits the city of Harlingen. As already mentioned, a comparison
with AMCS at this point is very hard and therefore not very useful. These results only show
that the results are of the right order of magnitude.
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3.4 Must Go May Go model

The must-go may-go model combines the tho previous ones. As the name suggest containers
can be collected based on one of two decisions. The first being its fill level passing the threshold
level, this is called a must-go and it is threshold level based. The second is the collection of a
container that has not yet passed its threshold level, but it costs less time to collect it today
instead of tomorrow. This is called a may-go container and it is based on attractiveness. The
idea it that the must-go may-go model has the best of both, previously mentioned, models. Due
to the threshold levels the computational time should be reduced, while the attractiveness part
allows for better optimization.

3.4.1 Differences from literature

The only article to compare with is the one of Mes et al. (2014). Mes et al. (2014) explicitly divide
containers, each day, in one of three categories: must-go, may-go, or no-go. The algorithm uses a
forecasting model to calculates the number of days till collection for each container. The models
in this research do a similar thing, only constraints are used to determine which containers are
must-gos, may-gos and no-gos. A deliberate decision was made to change the way attractiveness
is defined, to differ from Mes et al. (2014). As Mes et al. (2014) compare the insertion cost of a
container with its historically smoothed average, they calculate if the container is more attractive
today then on average. But this is not the question. If a container has to be collected within
the horizon, the question is when it is most beneficial to collect it. This should be completely
independent of historical values.

3.4.2 Mathematical model

Indices and sets:

i index for each node in the network. Vi € ned, nid or early
j: index for each node in the network Vi € ned, nid or early
k: index for the number of routes. ke K

day : index for the number of days in the horizon. Vday € days

ned : set of nodes excluding depot and terminal [0, ..., 406]

nid : set of nodes including depot(408) and terminal (407 and 409) [0, ..., 409]

early : set of nodes that need to be collected before 9:00 AM [23,57,71,72,...]

K : set for the number of routes needed [0, ..., totalvolume/ Q)]
days : set for the days in the horizon [0,1,2,3]

Decision variables:

Ti gk Binary variable which is 1 if arc i->j is used by vehicle k and 0 otherwise.

s€; k: Integer variable which is 1 for the first node, 2 for the second etc.

w; Continues variable which equals the collected volume of truck k at node i.

Uj Integer variable which equals the time a node is visited, lower bound = 24300.

Starting time = 24300 sec => 6:45 AM.

hfl;: Continues variable which equals the fill level of container i troughout the horizon.
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Parameters:

time_matriz; j: Travel time between node i and node j, in seconds.
Threshold_level;: Threshold levels for node i, in percentages.

Container _volumes;: Total volume of the container for node i, in liters.

Fill level list;: Fill level of node i, in percentages.

st;: Sevice time of node i, in seconds.

Q: Maximum load of each vehicle.

T: Time before all containers in early need to be collected.

Objective function:

MIN Z Z Z Z X5,k day * time_matrixi,j + st; * X5,k day
1€nid jEnid ke Kday€days

Constraints:

In ascending order, constraint (1) copies the fill levels of the total fill level list to the first
day of the horizon. Constraints (2-4) fill the rest of the fill levels within the horizon with the in-
fluence of the collection of a container. Constraint (5) prevents overflows, constraint (6) reduces
computational time by excluding containers with low fill levels. Constraint (7) forces containers
to be collected if their fill level exceeds their threshold level. Constraint (8) will prevent arcs
from and to the same node. Constraints (9-13) forces each route to start at node 407, visits node
408 if waste was collected and end at node 409. Note again that node 407 and 409 are two nodes
representing the same terminal and node 408 is the deposit site. Constraint (14) ensures flow
conservation at each node. Constraints (15-19) prevent sub tours by numbering of nodes and only
allowing the visit of nodes with higher numbers. Constraint (20) sets the load at start point equal
to 0. Constraints (21 and 22) ensure load continuity and constraint (23) limits the load of each
vehicle. Constrains (24 and 25) ensure visit time continuity and finally constraint (26) makes
sure all nodes in early are collected before 9.00AM. Note that in constraints (21), (22), (24) and
(25) the big M method is used. The M displayed in the constraint represents the number 100000.
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hflio= total _fill _level list;g

hfli,lz hfli,O*(l — Z E xi,j,k,o) + add;
ienid ke K

hfli,2: hfli,l*(l - Z Z mi,j,k,l) ~+ add;
ienid ke K

hflig=hflipx(1— 35 > @ijk1) + add;
ienid ke K

hfl@l lequO

hfli,dayz 40 = E Z Li,j,k,day
jenid kEK

hfl; o< threshold_levels;+100% > > x; ko
jenid ke K

Ti i k,day= 0

z Tterminal,j,k,day=— 1
j€Enid

Z Tj terminal k,day = 0
i€nid

Z Ti terminal k,day = 1
i€Enid

z Tterminal,j,k,day = 0
jEnid

Z wi,k*(l — Ldepot,terminal k,day = 0
i€nid

Z T jk,day — Z xj,i,k,day:O
j€Enid j€Enid

S€terminal k,day= 1
8€; k,day=> 2
5€; k.day< |nid|

8€i k,day—S€j k,day T |M1d| * Ti j g day < (Inid| — 1)

S€; & day—S€j k,day+|10d] * (1 — 24 j k. day) > —1

Wterminal k,day = 0

Wj kday> Wi k,day+ (RS /100) * cvj—M * (1 — 4 j k. day)
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Vi € nid

Vi € nid,

Vi € nid,

Vi € nid,

Vi € nid,Vday € days\0
Vi € nid,Vday € days

Vi € ned

Vi € nid,Vk € K,Vday € days

Vk € K,Vday € days

Vk € K,Vday € days

Vk € K,Vday € days

Vk € K,Vday € days

Vk € K,Vday € days

Vi € nid,Vk € K,Vday € days

Vk € K,Vday € days
Vi € nid\terminal, Vk € K,Vday € days
Vi € nid\terminal, Vk € K, Vday € day

Vi € nid\|nid|-1,Vj € nid\terminal
Vk € K,Vday € days

Vi € nid\|nid|-1,Vj € nid\terminal
Vk € K,Vday € days

Vk € K,Vday € days

Vi € nid,Vj € nmid,Vk € K
VYday € days

(19)

(20)

(21)



Wik day < wi,k,day+<hflj/100) * C’Uj—l-M * (1 — miyjyk,day) Vi € nid,Vj € mid,Vk € K (22)

Vday € days
Wik, day <= Q Vi € nid,Vk € K,Vday € days (23)
W) koday > Wik day+Sti+time_matriz; j—M % (1 — ; j k.day) Vi € nid,Vj € nid,Vk € K (24)
W) koday < Wi day+Sti+time_matriz; j+M * (1 — ; j k. day) Vi € nid,Vj € nid,Vk € K (25)
Ui ko, day= 1’ Vi € early,Vk € K (26)

3.4.3 Model optimization

Since the must-go may-go model is a combination of the previous two discussed models, also
the tuning parameters are similar. Since the upper limit threshold level is redundant, it is not
necessarily used as a tuning parameter. However, if it is left unchanged it will limit the system
even if the threshold buffer is changed. The must-go may-go model results will therefore be
characterised by four tuning parameters:

. Threshold buffer

. Rolling horizon length
. (Exclusion level)

° Upper limit

3.4.4 Verification

In this subsections the verification of the threshold model will be discussed and visualised. Fur-
ther on in this report also the two other models will be verified. Each model is verified with
the 10 tests listed below. Each test was performed using the same data set, and only critical
parameters where added, removed or adjusted.

Continuity test: runs with slightly different parameters.
1) Basic run, with all constraints to test if the result is logic ( bigger than 0).

Event tracing: check event order, causal relations, event times
2) Does the total time equals the service times and travel times.
3) Checking if order of visited nodes is in order and is equal to total visited nodes.

Degeneracy test: extreme cases.

4) Test without vehicle capacity constraint (only one vehicle should be used).

5) Test with vehicles capacity at 0.

6) Test with fill levels = 0 ( no container should be collected)

7) Test with fill levels at 110 ( all should be collected.

8) A test run where we remove the threshold level constraints, no container should be collected.

Consistency checks; e.g., doubled capacity a halved utilization.
9) Half the vehicles, double their capacity.

Fault injection: check whether faulty input is detected by the model.
10) Run without vehicles.
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The table below contains the results of the verification tests. It describes the tested condition,
the expected result, the obtained result and if the verification test was passed. This test was ran,
using the AMCS data of 151 containers on 17=06-2020, obtained by the attractiveness model
with a 1 day horizon and an absolute threshold level of 100%. These specifics were used due to
large computational times when all 408 nodes were used and the fact that the 9th day of the
aforementioned model used multiple vehicles to collect a reasonable amount of containers. From
left to right it shows what is tested, what the expected result/behaviour is and what the actually
measured result was. If the expected result meets the measured result, the test is passed.

Table 7: Verification results must-go may-go model

Test Expected results Obtained result Pass/Fail
1) Normal conditions/full model | Total time >0 Total time = 15858 Pass
Total volume > 0 Total volume = 132942
Nr. of containers > 0 Nr. of containers = 30
K >0 K=2
2) Check event order se[terminal, k| = 1 se[terminal, k| = 1 Pass
selj, k| - seli, k] = 1 selj, k| - seli, k] = 1
3) Total time check 15858 = travel + service time 15858 = travel | service time Pass
4) No vehicle capacity limit K=1 K=1 Pass
Nr. of containers = + /- 30 Nr. of containers = 31
5) Vehicle capacity at 0 Infeasible Infeasible
6) All fill levels are 0 Total time = 0 Total time = 0 Pass
7) All containers in early All collected before 9:00 AM  All collected before 9:00 AM  Pass
Or infeasible
8) No threshold level constraints | Total time = 0 Total time = 0 Pass
9) Double truck capacity K=1 K=1 Pass
10) Run without vehicles Infeasible Infeasible Pass
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3.4.5 Validation

The validation of a model is the step where the researcher tests to what extend the computerized
model represents the real system. Section 3.1 describes all the simplifications and details applied
in the models of this research. As already mentioned, a full case study and comparison to AMCS
was not possible. This limits the option to compare the model to reality and that way validate
the models discussed in this research. However, all total driving times of AMCS for the test
period are known, as well as the number of nodes visited. These can be used to see if the models
presented in this research, provide solutions in the same order of magnitude as the solutions of
AMCS. AMCS visited in the 12 days of the test period, 1006 nodes in a total travel time of
569580 seconds. However, the AMCS network consists of 408 containers and the one used in
this research 151. The table below shows the comparison between the AMCS solution and the
solutions of the must-go may-go model.

Table 8: Validation results must-go may-go model

Total travel time [s] Nr. of nodes visited

AMCS 569580 1006
AMCS Scaled 210800 416
Must-go may-go 135115 294
(1 day horizon)

Must-go may-go 147589 335
(2 day horizon)

Must-go may-go 137379 319

(3 day horizon)

These results show first of all that the results of this research are in the same order of magnitude
as the results of a model which is successfully applied in real life. However, AMCS shows to have
a higher (scaled) total travel time and a higher (scaled) number of visited nodes. Both of which
are not necessarily positive. Visiting more nodes leads to higher total travel times, which for
both AMCS and this research is the KPI that should be minimized. It is, however, important
to note that AMCS also schedules custom orders and has to deal with more regulations than
the models of this research and visits the city of Harlingen. As already mentioned, a comparison
with AMCS at this point is very hard and therefore not very useful. These results only show
that the results are of the right order of magnitude.
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4 Experiments

In order to evaluate the three methods, numerical experiment were performed, based on real
data obtain from AMCS. The details of this data will be discussed as well as the cleaning of it
and the use of it in order to build the three models.

4.1 Data processing

The data used in this research originates from 408 general waste containers that are managed
by Omrin. Two data sets were used, one for building the model, verification and for gaining
insights. The other one was planed to be used for a test case to compare the three models of this
research with the one of AMCS. This however was not possible due to very large computational
times. The sets of data contain data recorded from 14-06-2020 to 13-07-2020 and respectively
20-10-2020 to 20-11-2020. This data consists of percentage fill levels of 408 containers, located
in Leeuwarden and surroundings. Once per day the data is transferred in the form of an XML
file, which contains information about each container, foremost its fill level. The term data will,
from now on, refer to these fill levels and the daily deposit rates obtained from them.

4.1.1 Uncertainties and errors

As is the case with almost any data, it will contain some sort of errors. This section will explain
which type of errors were observed in the data, which are accounted for and which are neglected.
Some errors will not cause significant problems while others do. In reality, most of these errors
cause problems and should be dealt with. For this research only certain errors need fixing, others
can be neglected or removed entirely by removing that specific container from the network, if
necessary. This is due to the fact that this research works with several computer models, instead
of a real waste collection system.

An example of an error that will cause issues in reality but not necessarily for the models in
this research if not dealt with quickly, is a zero reading. This is an error where the container
sends wrong information, a fill level of 0%, and avoids the collection of this specific container.
In case of a zero reading, it is more likely that the sensor or container is defect than that indeed
no deposits have been made over a time span of multiple days. In such a case the container will
never be selected for collection by any model. If the sensor is broken, the container could already
be overflowing for many days when this error is not observed and fixed by the company. A similar
thing occurs with readings of constant fill levels. One container showed a constant fill level of
26% throughout the entire data set. Since this research uses the daily deposit rates, containers
like the one just mentioned will stay on their initial fill level and will never be collected. Another
container showed a fill level of 139% for 14 out of the 31 days of the collected data and 0 for the
last 15 days. Since its fill level is above any threshold level and above 100% it will be collected on
the first day and be simulated as empty from that point on. Because this research works with the
daily deposit rates and not directly with the fill levels obtained from the XML file these errors
will not cause a major problem for the models discussed in this research. For every containers’
data it holds, if the containers’ fill level is higher than the threshold level, this container will be
collected on the first day and remains uncollected for the rest of the test period. If its fill level
is below the threshold level it will remain uncollected anyway. In reality, this container needs
to be visited and fixed to prevent overflows and ensure correct collection. The data also shows
cases where a container exceeds its threshold level but is not collected. Meaning the container
overflows for multiple days in a row. A cause for this is when a container is not collectable,
meaning the collection truck can not reach it. Streets can be closed and cars or construction
work can block entrance to the container. If more information is obtained by the truck driver,
it could be arranged that the container is removed from collection by a certain amount of time.
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In this research, these containers do not cause any problems since the daily deposit rates can
still be obtained and these models are not limited by physical obstacles. To be able to compare
results with AMCS, a second data set (14-06-2020 to 13-07-2020) was cleaned and used. This
data set showed constant fill levels for all containers over a period of 2 days. As it is unlikely
that all 408 containers had a malfunction during these 2 days, for some reason old measurements
were repeatedly sent to AMCS. Since fill levels show a highly linear relation, as can be seen in
the graph below, inter- and extrapolation was used to fill up these wrong data points.
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Figure 8: Linear relation fill levels

When the fill level of a container was lower before the two-day malfunction than after, linear
interpolation was applied to these data points. This method uses the linear trend of the known
data points and calculates the missing values accordingly. In this case, interpolation was far
easier than extrapolation as the trends are not continuous, they range approximately from 0 to
100%. When the fill level of a container was higher before the two-day malfunction than after,
this container had to be emptied in the mean time, but the day and the fill level at the time of
collection are unknown. If possible, extrapolation was applied first, using the trend of the data
before the malfunction. Data points were created using this method up to the point of collection,
which is often close to 100%. If any data points were still open, extrapolation was used using
the trend from data point after the malfunction. If no or to little data point were available
before the malfunction, first the extrapolation was done using data points after the malfunction.
Often the final missing data points could now be filled. Especially for fast running containers,
i.e. a container with high daily deposit rates, not a lot of data points were available to use for
inter- or extrapolation. In these cases, data point were created based on the rough trend-line
multiple days ago, but still from the same container. As the first day of the malfunction was a
Sunday, and on Sundays no collections are performed, the collection had to be made before the
malfunction, on the second day of the malfunction or later.

Uncertainty always plays a role when measurements are performed. In the case of waste
containers, managed by OMRIN, the uncertainty is caused by errors in the measurement but in
the calculation. The number of valve movements is a measurement that can be done with almost
zero uncertainty. What does have a contribution to the uncertainty, is the used volume or density
of the average deposit. Since this is an average, the volume in most containers will differ from the
calculated value, even if it is just a little bit. Another contribution to the uncertainty is caused
by the fact that the measurement and the collection do not occur at the same time. As the
time between measurement and collection increases, the chance that deposits are made increases
as well and therefore the uncertainty of the containers’ volume grows as well. Apparently, the
average deposit volume used by OMRIN per valve movement works sufficiently , as they do not
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recall having route failures and have an acceptable amount of overflows. Note that route failures
will occur when uncertainty is present but not taken account for. Safety margins often are the
go-to solution. OMRIN also measures the weight during collection. By lifting the underground
containers out of their foundations the total weight is measured. Subtracting the weight of a
container and the total weight of the waste is determined. They are therefore able to check if the
measured /calculated weight was indeed in the container. Since OMRIN uses a calculation to go
from valve movements to weight /volume the are also able to influence the average uncertainty
over all containers.

4.1.2 Cleaning sensor data

To be able to clean data it should be clear for what purpose the data will be used. For this
research, the data consist of one XML file per day containing information about each container,
the fill levels of all containers being the most important. Figure 9 shows the fill levels for three
different containers, for 10 consecutive days. The models discussed in this research will be tested
for a given time period. To start this period, all fill levels during the start-day should be known
and will be directly copied from the XML file, into each model. After the start-day, the models
will deviate not only from each other but foremost from the measured fill levels, measured by the
sensors in each container, for the consecutive days. For all consecutive days, the daily deposit
rates can be obtained by subtracting two consecutive fill levels for the same container. These
daily deposit rates can be used for each model and are shown in Figure 10, for the same containers
as Figure 9. When a model decides to collect a container its fill level will be set to 0 after which
the daily deposit rate for that container during that day will be added. When a container is not
emptied, the daily deposit rate will be added to the initial fill level of that container for that day.
A problem arises when a container is emptied in real life. Now the new fill level will be lower
than the previous and this results in a negative daily deposit rate, as shown in red in Figure 10.
To solve this problem negative daily deposit rates are replaced by the average daily deposit rate,
calculated for all other days where positive daily deposit rates were known.

Table 9: Fill levels

14-jun 15-jun 16-jun 17-jun 18-jun 19-jun 20-jun 21-jun 22-jun 23-jun

135817 | 62 76 91 15 27 43 61 72 83 101
143773 | 56 60 64 69 5 14 19 21 25 30
158743 | 89 103 4 9 15 21 32 41 52 60
Table 10: Daily deposit rates
14-jun 15-jun 16-jun 17-jun 18-jun 19-jun 20-jun 21-jun 22-jun 23-jun

135817 | 14 15 -76 12 16 18 11 11 18 16
143773 | 4 4 5 -64 9 5 2 4 5 6
158743 | 14 -99 5 6 6 11 9 11 8 3

At first, an area in Arnhem, where Sues is responsible for the collection of was proposed to use

as a test case and to use its data in general. Due to the size of this area, 257 containers, it seemed
to be ideal for my thesis. Unfortunately, analysis of the data of Sues showed otherwise. Many
containers gave 0 readings, meaning the sensor does not measure anything in the container
throughout the test period of 30 days. Other containers showed varying fill levels which also
decreased from time to time. In general, this is due to one of three reasons: First, the collection
of a container, which would show a significant drop in fill level, + /- 40% and up. Second, a
collapse of the pile of waste, which should show a small drop of the fill level +/- 10% or less.

53



And third, a wrong reading of the sensor. As long as the first and second reasons are far apart
in terms of fill level drops, they should be easily distinguishable. But in the range between 10
and 40% it is hard to say which is which. This can be checked by comparing these drops to the
actual list of collected containers.

Another issue with the Sues data is that it shows no fill levels above 80%. This is apparently
due to a mistake in the sensor settings. The depth of the container is not equal to the range of
the sensor, explaining the gap of 20%.

A supposedly better test area would be parts of the province of Friesland. Here Omrin
is responsible for the container collection and the areas AMCS is involved in are Harlingen,
Heereveen and Leeuwarden. Harlingen is quite small and is limited by only having 2 collection
days, Heereveen is not yet operational, leaving Leeuwarden, including its surroundings as the
only option. Leeuwarden has 408 containers that need to be collected making it a larger area
than Sues in Arnhem. Omrin works with a valve movement sensor instead of an ultrasonic
volumetric sensor. Of course the valve movements have to be translated to fill percentages but
apparently, Omrin is quite successfully capable of doing this, since they do not recall having
route failures and the number of overflows is acceptable. OMRIN is using an average of 37,5
Liters per valve movement. This is derived from a 4,5 m? container, which can hold 120 garbage
bags, which should equal to an amount of 360 kg of waste. On the first glance the data of
Omrin shows sigificant improvement when zero reading containers and constant fill levels are
considered. Also the fill levels above 80% are measured and recorded. As discussed above, the
two-day malfunction needed to be fixed however.

Although AMCS receives 1 set of measurements per hour (24 times a day), the set of con-
tainers only communicate their fill level once a day. I came across this result when I wanted to
check at what times most deposits were being done. The resulting table showed only one positive
change in fill level per day and these were mostly between 10 PM and 3 AM. After discussing
these strange results with my supervisor, he and other employees of AMCS remembered that the
containers only communicate their fill level once a day.

To create a usable set of daily deposit rates two successive fill levels where subtracted and
when the result was negative, meaning it was emptied, it was replaced by the average daily
deposit rate of that container.

4.1.3 XML files

In this research, all data is acquired through AMCS group Rotterdam in collaboration with
OMRIN. The data consists of XML files that contain fill levels and other general information
of waste containers such as location, type and size. These containers are located in Friesland in
the cities of Harlingen, Heereveen and Leeuwarden. The XML files of OMRIN contain over a
thousand containers with many different attributes. Depending on the specific area and part of
this thesis certain containers and certain attributes need to be read from the XML file and used.
For the area of Leeuwarden, 408 containers out of 1043 need to be considered and used.

A python script was build to read and copy container ids, coordinates, waste types, waste volumes
and fill levels from these XML files. After obtaining the ids, coordinates, waste types and waste
volumes, only the fill levels need to be copied from the XML files. And as explained in the
previous section, the fill levels were used to obtain the daily deposit rates.
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4.1.4 Distance and time matrices

To be able to minimize travel distance, distances between all nodes (containers, disposal sites
and terminals) need to be known. Using the Here routing API distances between two nodes
can be calculated when coordinates are given. For the test case of Leeuwarden, 411 nodes are
taken into account, 408 containers, 1 disposal sight and 2 nodes for the terminal. A functional
way of storing and displaying this information is in a distance matrix. This matrix contains
distances from n nodes to n nodes, giving a n x n matrix. Since the length of a route from node
A to node B is not necessarily equal to the length of the route from node B to node A, the
distance matrix is not entirely symmetric. Note that some specific parts of the distance matrix
are symmetric. Another thing to notice, is that all diagonal elements are zero since the distance
from node n to node n is always zero. The final result is a 411 x 411 matrix, containing 168.921
elements. The python script used to calculate the distance and time matrices first makes a list
of all coordinates of all the 411 nodes. Now the Here routing API is included in a loop which
first fills a row with all distances from node i to all nodes 1 to n. This row is added to a list
and this continues until 411 rows are added to this list. The result is a 411 x 411 distance and
time matrix. The data was validated by a small check to see if the results would be generally
acceptable and by comparing the results of the Here API with results from Google maps. Tables
11 and 12 show that the results of the Here API are acceptable, both tables show zeros on the
diagonals and values within an acceptable range, considering the size of Leeuwarden. When
compared to the results of Google maps, 13 and 14, there are some differences. First of all, the
results from Google maps are less accurate than those of the Here API. Other differences can be
due to specific settings in both programs, as both calculations were not executed simultaneously.

Table 11: HERE API travel distances [m]

TO
node 0 node 1 node 407 node 408
FROM node O 0 2532 5185 3635
node 1 1970 0 5132 3571
node 407 | 5157 5646 0 3577
node 408 | 3594 4027 3592 0
Table 12: HERE API travel times |s]
TO
node 0 node 1 node 407 node 408
FROM nodeO 0 387 592 481
node 1 391 0 623 537
node 407 | 583 631 0 454
node 408 | 436 541 475 0

Table 13: Google maps travel distances [m|

TO
node 0 node 1 node 407 node 408
FROM node 0 0 2500 4800 3300
node 1 2000 0 5700 2700
node 407 | 5100 5600 0 3600
node 408 | 3400 2400 3600 0
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Table 14: Google maps travel times ||

TO
node 0 node 1 node 407 mnode 408
FROM node O 0 420 540 420
node 1 420 0 540 420
node 407 | 540 540 0 360
node 408 | 480 360 360 0

4.1.5 Forecasting

Forecasting is an often used and very helpful tool. In the case of waste collection and in particu-
lar smart waste collection, we consider quantitative forecasting. Quantitative forecasting is used
when historical data is known and it can be assumed that the trends of this historical data in
some form will continue into the future. For smart waste collection and this research, the first
condition is definitely satisfied as a lot of data is recorded. The second condition is satisfied as
well since all fill levels follow the same basic pattern, they will be emptied at some point and
from then on the container will fill up gradually. Of course, different containers will fill up at
different speeds but according to the data, most containers follow roughly the same trend over
and over. Although it sounds and seems like forecasting always improves the solution this is
definitely not always the case. The example of Markov et al. (2016) shows that it can also lead
to less favourable results. And to quote of Margaret Heffernan:

“Efficiency works really well when you can predict exactly what you’re going to need. But
when the anomalous or unexpected comes along, kids, customers, coconuts, well than efficiency
is no longer your friend”

In case of a perfect forecasting model, which exactly predicts the fill levels for the coming days,
the optimal solution for the SWCP should be found. Of course, the idea of perfect forecasting
is nice, but in reality, it is also almost impossible. In this research, simplistic forecasting will be
used which consists of an average daily deposit rate. The forecasting is kept simplistic, firstly
due to time constraints and secondly because a detailed forecasting model is not necessary to
answer the main research question. However, since for this research all daily deposit rates are
known upfront, it is possible to run the models with a forecasting model that is 100% correct.
Instead of only forecasting with an average deposit rate, a true forecasting model will be used as
well. This true forecasting model will only differ in the fact that the average deposit rates will
be swapped for the actual daily deposit rates. This model therefore should set an upper limit,
and show how much improvement could be made by improving the forecasting model. For now,
an average of the daily deposit rate per container will be used as the forecasted daily deposit
rate. Note, this is container depended. Since data is lost due to the collection of containers, i.e.
showing as negative deposit rates, the average is calculated using only positive deposit rates.
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4.2 Results

This section will show the results of the models, both individually and in comparison to each
other. The section will start with general results that apply to all models. Then each model
is optimized and finally, the models are compared to each other based on total travel time and
number of overflows, as the KPIs for the SWCP.

4.2.1 Used devices

During this research two devices were used to obtain results. This was mainly done due to large
computational times. This section will first show the details of the devices and later explain
what the consequences are of the usage of multiple devices.

HP ZBook Studio G5 Laptop

Operating sytem: Windows 10

Processor: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, 2208 MHz
6 core(s), 12 logische processors)

Installed RAM: 16 GB

Used software: Python 3.8 and Gurobi 9.0.3

ASUS PC

Operating system: Windows 8

Processor: Intel(R) Core(TM) i7-4470H
CPU @ 3.50GHz, 3.50 GHz

Installed RAM: 32 GB

Used software: Python 3.8 and Gurobi 9.0.3

Although codes and inputs are completely identical, the use of multiple devices can cause different
results for the same model. This phenomenon is called the Performance Variability. Gurobi
makes many decisions and therefore the branch-and-bound tree path can vary, for example, due
to difference in computer hardware. To show however that the difference is minimal, on both
devices the same must-go may-go instance was calculated, with a one- and two-day horizon.
Table 15 and 16 show that in some instances, the outcomes can be identical except for the
computational time which is a bit faster for the PC. In the two-day horizon a slight difference in
container selection can be observed. Here the HP Zbook selects three additional containers that
influence the route slightly.

Table 15: Results device comparison must-go may-go 1 day horizon

ASUS PC HP Zbook

Total travel time [s] 6765 6765

Total volume [L] 36193 36193

Nodes visited]-] 47,50, 150, 47, 50, 150,
133, 118, 17, 133, 118, 17,
94,25, 56, 94, 25, 56,
143, 110 143, 110

Computational time [s] 221 276
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Table 16: Results device comparison must-go may-go 2 day horizon

ASUS PC HP Zbook

Total travel time [s] 8343 8895
Total volume [Lj] 45335 51510
Node visited|-] 47, 50, 133, 47, 55, 60

150, 56, 94, 50, 150, 118
97, 118,17, 97, 90, 94
90, 25, 143, 7, 21, 133,

110, 79 110, 25, 143,
56
Computational time [s| 816 583

4.2.2 Overflow limit

As OMRIN recorded 120 overflows in the time period from 14-06-2020 to 28-06-2020 and 86
overflows when the warm-up period was excluded. This will be used as a baseline for the ac-
ceptable amount of overflows. However, since this research uses a network of only 151 nodes
instead of 408, the number of allowed overflows has to be scaled down as well. Multiplying the
86 overflows with the ratio of 151/408 nodes it shows that the acceptable number of overflows
for a network of 151 nodes and a time span of 12 days is 32. All models will be optimized to a
level where the number of overflows will be around 32 and the total time is minimized. To verify
this number also the amount of overflows were counted for 15 days in the data set of 20-10-2020
to 03-11-2020. This data shows 124 overflows for 408 containers during a 15 day period and 96
for a 12 day period. The number of overflows are important since there is a relation between
the number of overflows and the total travel time. As parameters are set in such a way that the
model gets more 'freedom’ the amount of overflows increase. However, this allows the model to
make more, and therefore better decisions and obtain a lower total travel time. The next section
will show the relation between the number of overflows, the total travel time and the changing
parameters.

4.2.3 Warm up period

As can be seen in the Figures 9 to 14, all models show a low collected volume of waste for the
first day. Some even for a second day and others a high amount on the second or third day to
compensate for the previous. These values are caused by a change of models. The original data,
i.e. the fill levels of the first day, is influenced by the model or system that was used during
the collection up to that point. This is the model AMCS uses to select containers for collection.
Since from that point, other models are used a so-called warm-up period is shown. This is a
period in which the data is not yet typical for the new model and this can be seen in the results.
After some time the influence of the previous model is no longer present. To be able to draw
the right conclusions and show the true effect of these models a warm-up period of 3 days is
removed from the data. This means that the first 3 days of results will not be taken into account
for analyzing the results of any of the models.
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4.2.4 Threshold based model

To optimize the threshold model, only one parameter can be changed that will influence the
selection of containers. The threshold model instances were therefore calculated, using a network
of 151 nodes and different values for the threshold buffer. One set of results of the threshold
model is shown in Table 20. As can be seen, the first 3 days of the run are removed as mentioned
above. All results are listed in Appendix B, in the same format as table 20. These results are
combined in bar graphs, which will be used to represent the results of all three models.

Table 17: Results threshold model
Threshold buffer = 5%

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 11932 104031 2 8 23
Day 5 17718 114626 0 23 26
Day 6 11842 97176 0 11 27
Day 7 15084 119680 1 10 23
Day 8 13318 97088 2 7 25
Day 9 12209 599543 1 2 17
Day 10 10816 92238 2 6 20
Day 11 11460 78591 1 10 21
Day 12 12586 96501 1 7 26
Day 13 14468 117643 1 24 22
Day 14 12110 82292 0 8 23
Day 15 12811 88870 0 10 19
Sum 156354 1148279 11 126 272

Since for the threshold model, the fill levels can be calculated without finishing the entire route
optimization, the results for many different buffer values could be calculated. Table 18 shows
that a -1% buffer fits the baseline for overflows best and also shows a lower total travel time.

Table 18: Number of overflows for different buffer values

Amount of overflows [-] 69383224115
Value for threshold buffer [%] | -5 | -2 |-1 |0 |5 | 10

Not all instances were fully calculated, but for the ones that were, the results are shown in Figure
15. This figure clearly shows a negative correlation between the number of overflows and the
total travel time, i.e. when the number of overflows goes up, the total travel time goes down.
Note that the threshold buffer step is not always equal to 5%.
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Figure 15: Results threshold model

4.2.5 Attractiveness based model

To optimize the attractiveness model, two parameters will be changed that will influence the
selection of containers, namely the length of the horizon and the upper limit.
threshold model all calculated instances are joined in Figure 16. In contrast with Figure 15, here
the total travel time does not show a clear negative correlation with the number of overflows.
This is probably due to the fact that in this figure multiple variables are changed. It makes more
sense for the attractiveness model and must-go may-go model to keep the horizons separate as

well. Figure 17, 18 and 19 show the results per horizon.
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Figure 16: Results attractiveness model all instances
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Figure 19: Results attractiveness model with a three-day horizon

The first calculated instances of each horizon length were run with an upper threshold limit is
set to 100% and the exclusion level is set to 60% in order to reduce computational times. When
the total travel time is observed, for the one-, two- and three-day horizon with an upper limit
of 100%, it is odd to see that the model with the two-day horizon performs worse than both
the model with the one-day horizon and the three-day horizon instance. This can be explained
since the number of overflows is observed as well. The model with the one-day horizon already
reached the baseline set for the number of overflows, while the other two models can possibly
improve there total travel time by allowing more overflows.

For the one-day horizon instance the upper limit is decreased since the overflow baseline is
already reached. For the two- and three-day horizon instances the upper limit is increased to
allow more overflows for the models. The results show a significant improvement in the form
of a 6% decrease in the total travel time, for both the two and three-day horizon attractiveness
models. This came at the cost of an increase of overflows by 300% and 650% respectively. To
conclude, the attractiveness model shows the lowest total travel time for the instance with a
three-day horizon and an upper limit of 100%, while staying below the baseline of 32 overflows.
All detailed results are displayed in Appendix B.
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4.2.6 Must-go may-go based model

To optimize the must-go may-go model, three parameters can be changed that will influence the
selection of containers. The overall results of the must-go may-go model are shown in Figure
20. The same as was true for the attractiveness model, also here no clear negative correlation
between the number of overflows and the total travel time can be observed.
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Figure 20: Results must-go may-go model

Note that while the one-day instances in 21 shows a clear negative correlation between the
amount of overflows and the total travel time, the two- and three-day horizon instances in 22
and 23 show that increasing the number of overflows can also result in an increase of total travel
time.
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Figure 21: Results must-go may-go model with a one-day horizon
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The three-day horizon instance shows the lowest total travel time when a threshold buffer of
-5% is used and an upper limit of 110%. It stands out that the one-day horizon of the must-go
may-go model reaches the overflow baseline already at a threshold buffer of -1%, while the two-
and three-day horizon models do not even reach the overflow baseline at a threshold buffer of
-7%. The negative threshold buffer means that the expected amount of waste for the next day
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exceeds the 100% and thus overflows are expected to occur more often.
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4.2.7 Comparison of models

Figure 24 shows clearly that for now the must-go may-go model has the best performance consid-
ering the chosen KPIs. It also shows that more overflows are allowed for both the attractiveness
and must-go may-go model and therefor other instances could still hold better solutions.
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Figure 24: Results model comparison

In order to estimate how much improvement can be made using a very detailed forecasting
model, a true forecasting model was used to compare to both the attractiveness model and
the must-go may-go model. This true forecasting model only differs from the fact that the
normal attractiveness and must-go may-go model use average daily deposit rates for their rolling
horizon forecasts, while the true forecasting model uses the actual daily deposit rates. Therefore
its forecasting is 100% accurate. The true forecasting model was only used for the one-day
instances of both the attractiveness and the must-go may-go model. Below, Figure 25 and 26
show the results of these instances.
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Figure 26: Results model comparison

With this comparison it shows that the best attractiveness instance up to now still can be
improved. The comparison with the true forecasting shows that both the total travel time and
the computational time can be reduced. Note that this instance of the true forecasting allows
no overflows. Since we would allow up to 32 overflows, also the true forecasting model could be
optimized to see its full potential. Again, due to large computational times these instances could
not be calculated yet. Although the must-go may-go model shows a smaller total travel time,
again remember, it is compared to an unoptimized true forecasting model.
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5 Conclusion and Recommendations

This section will summarize all the results and discuss the conclusions that are based on them.
This will be split up into three parts. First general conclusions, that apply to all models. This
will also include the first three sub-questions of this research. Secondly the conclusions for each
individual model optimization, which includes sub-question 4. And finally, the conclusions that
come from the comparison of the models, which will show the answer to the main research
question.

5.1 General conclusions

To start, sub questions 1, 2 and 3 were already discussed and answered in section 2.2 and 3.1, 2.4
and 3.1, and 1.1, 3.2, 3.3 and 3.4 respectively. To summarize, the container selection methods
used in literature and practice can be categorized as threshold level based, attractiveness based
and must-go may-go based. The KPIs of the waste collection system are total cost, total trav-
elled distance, total travelled time, emitted CO2, number of vehicles used, amount of overflows,
vehicle capacity rate or the total amount of collected waste. This research focuses on minimizing
the total travel time while keeping the number of overflows in an acceptable range of a baseline
of overflows, based on real data. The SWCP can be modelled as a VRP when only threshold
levels are taken into account. The moment also a horizon is used and the container selection
is integrated into the route optimization, it can be modelled as an IRP. Specific details of the
modelled SWCPs are given in section 3.

Besides the sub-questions, other conclusions can be drawn from this research as well.

e There exists a strong negative correlation between the amount of overflows and the total
travel time. When the constraints are "loosened" the solution becomes better. As the
constraints are loosened, the number of overflows increases.

e The relative increase in overflows is much larger than the relative decrease in total travel
time. Depending on the company or regulations, a baseline or target number of overflows
can be set in order to minimize the total travel time accordingly.

e The use of more vehicles enlarges the computational time significantly. The fact that the
use of only 1 or 2 routes and a network of 151 containers already takes such a long time
makes it impossible to do calculations on the whole network (408 containers and possibly
4 routes).

e A start-up period or + /- 3 days was observed for almost any model. Since it is very hard to
point down when precisely the steady-state of the smart waste collection system is reached,
a visual estimate was used. The collected amount of waste will always oscillate around the
deposited amount of waste, which also shows a slight oscillation.

5.2 Conclusions on model optimization

The optimization of each model was done by changing tuning parameters in such a way that
the total travel time was minimized and the number of overflows was kept within a reasonable
distance from the overflow baseline. Due to the long computational times, only a small set of
instances was run. More instances could be calculated in the future to investigate certain details
more specifically and possibly even improve on the found solutions.

As for the threshold model, the smallest total travel time of 147097 seconds was found for
the instance with a threshold buffer of -1%. This was concluded keeping in mind that with a
threshold buffer of -1% the number of overflows was found to be 31. The attractiveness model
shows the best results for the instance with a three-day horizon and an upper limit of 100%. Here
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a total driving time of 132259 seconds was found, with 6 overflows. Finally, the must-go may-go
model shows a minimal total travel time of 126828 seconds for the instance with a three-day
horizon, a threshold buffer of -5% and an upper limit of 110%, with 22 overflows.

So far, both the attractiveness model and must-go may-go model show the best results for
the three-day horizon instances. Strangely, the two-day horizon instances do not show significant
improvements when compared to the one-day horizon.

5.3 Conclusions on model comparison

When comparing the models, it is observed that the must-go may-go model obtains the best
results when it comes to total travel time. However, both the attractiveness model and the
must-go may-go model have room for improvement since the number of overflows is allowed to
increase.

5.4 Recommendations

After the literature review, the first recommendation has to be about data. If data is generated, it
should be done in such a way that it is realistic, or even better, the use of real data. Smart waste
collection is already employed in multiple countries and this data should not be too confidential.
The main point of improvement for the models discussed in this research is the computational
time. The large computational times limited the depth of research. For further research into the
SWCP, the use/development of a heuristic is highly recommendable. Reducing computational
time will allow for quicker and therefore more detailed research. The first step for the models
in this research would be to be compared to a model which is used in real life, for example,
the one of AMCS. When it is proven that the performance of the models of this research are
acceptable other details can be investigated as well. A small detail which could be added is the
division of overflows in two categories, small and large overflows. Since most overflows are only
just above 100% and based on valve movement, it is not sure this directly translates to a physical
overflow. To follow up on this research, the influence of each tuning parameter could be further
investigated, including the exclusion level. After which, if still present the under-performance of
the two-day horizon could be investigated, both for the attractiveness model and the must-go
may-go model, as well as the true forecasting model. The latter can be used to show the potential
of the forecasting also for a horizon of multiple days. Topics that were not touched upon by this
research, but still very interesting to investigate are the influence of the type of network, i.e.
rural vs urban and small vs big, to see which model performs best under which conditions.
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Abstract

The topic of smart waste collection (SWC) is the optimization of the waste collection process using sensor
containing waste containers, that can measure and communicate the fill levels. These fill levels can be used to
optimize a system based on the chosen key performance indicators (KPI’s). This paper focuses on minimizing
the total travel time whilst keeping the number of overflows below a baseline, which is based on real data.
Furthermore, this paper compares three different container selection methods, using real data obtained from
AMCS. The first method is threshold level based, the second attractiveness based and the third one is must-go
may-go based. The later is a combination of the first two. Optimization shows promising results for both the
three-day horizon instances of the attractiveness and the must-go may-go model. Although the attractiveness
has a slightly smaller total travel time, the must-go may-go is more suitable for application due to an acceptable
computational time and a smaller number of overflows.

1 Introduction

At the moment, more than half of the world’s popu-
lation lives in urban areas. By 2050, the United Na-
tions expects this amount to have increased to two-
thirds of the world’s population (Nations, 2014; of-
Economic-and Social-Affairs, 2017). Add to this the
forecast of population growth from 7.7 billion people
now to 9.7 billion in 2050 and a major challenge arises
for the cities of the future. By increasing awareness
that our waste can have environmental and econom-
ical benefits that could be taken advantage of, the
interest in waste collection has grown as well. Gen-
erally, municipalities are responsible for the complete
waste management system, which consists of collect-
ing, transporting, processing, recycling, disposing,
and monitoring of the waste materials. The costs
of collection and transportation alone accounts for
about 70% of the waste management costs (Tavares
et al., 2009). These high collection and transporta-
tion costs combined with the forecast of increased
waste production in cities demand a smart solution
to deal with this problem.

The current method in which the vast majority
of waste is collected is a static or periodic collec-
tion that is using fixed routes and is also revered to
as blind collection. Here each truck follows specific
routes on specific days and picks up all containers
along its route. This method often already includes
some work of optimization, because some containers
are emptied more often than others and routes are
matched to a truck’s capacity, but there is still a lot
of room for improvement. Ramos et al. (2018) shows
an example in which on average 10% of all bins on a
route is empty, even reaching a maximum of 38% of
the bins being empty. Furthermore, approximately
66% of the fill-levels was registered below or equal to
50%.

This paper will discuss the topic of smart waste
collection and routing problems. The basic idea of
smart waste collection starts with the use and im-
plementation of sensors into the waste containers to
measure their fill-levels. Because these sensors can
be integrated into the Internet of Things, (IoT) the
acquired data-points can be sent to servers where
they are stored, processed and used for forecasting,
supervision, and finally making smart decisions to
optimize the collection of waste. Figure 1 shows that
when the fill-levels are known, not all containers need
to be visited and routes can be optimized. The op-
timisation is often based on an objective function,
which generally minimizes the total cost and could
include travelling costs, labour costs, truck-related
expenses, penalties and maximizes profits obtained
from the collected waste.
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Figure 1: Optimized route
Waste-insight (2017)



2 Literature review

2.1 Data

The optimization of routing problems is generally
based on the number of trucks available and more
importantly on the set of customers, i.e. contain-
ers that are selected for the collection. The set of
containers ready for collection could in the future be
based on the data coming from sensors, that measure
and communicate the fill levels of all containers. This
data is the foundation on which the route optimiza-
tion will be built. Therefore, the level of success of
route optimization depends on the accuracy of the
data. The fill level of waste containers can be ob-
tained in many different ways, i.e. by many different
sensors, each sensor measuring other physical prop-
erties. Each has different pros and cons. The most
discussed type of sensor in literature on the topic of
smart waste collection is the volumetric sensor. As
the name suggests this sensor measures the volume
of waste in the container, also called the fill level.
Regardless of the type of sensor that is used, the sen-
sors measure a certain value which will always con-
tain a level of uncertainty, created by different errors.
The uncertainty is something which can not be elim-
inated, i.e. it will always be there. The errors that
cause, or define the range of uncertainty can some-
times be minimized but never completely eliminated.
In Mamun et al. (2016) an experiment is conducted
to find the errors in a set of ultrasonic sensor mea-
surements. During 36 measurements the errors are
found to be between -7.8% and +14.4% of the true fill
level. Therefore proving that data should be cleaned,
and errors should be minimized if possible. Never
the less, most articles do not deal with uncertainties,
data treatment or mistakes in the measurements, as
they should have. Mes et al. (2014) are the only
ones that do not directly propose using the measure-
ments obtained by the sensors. They suggest using
estimates for the deposit volumes, the waste levels
in the containers and the amount of waste overflow.
Although the way these estimates are made is not de-
scribed in their article, the purpose of the estimates
is to cope with uncertainties in waste deposits. The
lack of detail in this article about the way sensor data
is treated and the pure absence of it in the rest of
literature articles shows a discrepancy between aca-
demic work and reality, taking into account the lack
of validation given for the direct use of the data.
Due to the fact that installing hundreds or thou-
sands of sensors is a time consuming and costly
process, artificial data is often generated to be able
to run test cases in order to prove the success of
an optimization method for the SWCP. Using direct
data from the sensors is most often not possible as
aforementioned, although the data could be based
on the actual fill levels of the containers in question.
A good example of this is the article of Ramos et al.

(2018), they have let the collection team track the
fill levels of 3 routes for a time span of 30 days. Due
to time windows in between pickups, the fill levels
are averaged over this time window to obtain a daily
deposit rate. This method captures the general de-
posit rates in the studied area but is not able to
capture and use daily variations in the deposits. Ab-
dallah et al. (2019) take it a step further. A similar
approach is used, only now the fill levels are checked
daily. The authors even include a field survey in the
article. Not all articles need realistic data though,
it depends on the goal of the article. When the goal
is to test the proposed work in a test case, the data
should give a realistic representation of the studied
area. A counterexample is shown in Bueno-Delgado
et al. (2019), here the fill levels are randomly set to
levels between 1 and 100%, and the lack of installed
sensors is the only reason given for this assumption.
Mes et al. (2014), on the other hand, focuses on pa-
rameter tuning and for this reason chooses to make
assumptions when generating data, consciously sim-
plifying the tested case.

2.2 Container selection

The general idea of smart waste collection is the use
of sensors, that collect and communicate the fill lev-
els of all containers. Based on these fill levels, deci-
sions are made about which containers and via which
route they are collected. In the discussed literature,
three main methods for container selection are pro-
posed:

1. Based on a pre-determined threshold level of a
container

2. Based on the attractiveness of a container

3. Based on both the threshold level and the at-
tractiveness

The use of threshold levels is by far the easiest of
all methods and most used in literature. However,
a wide variety of it is used in literature. The sim-
plest way is to set the same threshold level, for all
containers, equal to a percentage of a bin’s capacity
and collecting every container whose level is equal or
higher than the threshold. This can be improved by
giving different groups of containers, different thresh-
old levels. Containers that get large deposits have a
lower threshold level and the ones with small deposit
rates have high threshold level. Taking it again one
step further, Abdallah et al. (2019) and Lozano et al.
(2018) include the predicted deposit volume for that
day and add it to the fill level already present in the
bin and measured by the sensor.

Another method to select containers is based on
the attractiveness of a container. This method aims
to collect each container on the best day possible.



Ramos et al. (2018) defines a container to be attrac-
tive when the fill level is maximized and the trans-
portation costs incurred to collect them are mini-
mized. Both factors are included in the optimization
function as well as the penalty for the usage of a
certain amount of vehicles. The objective function
thus maximized the profit. In other words, it max-
imizes the amount of collected waste and minimizes
the amount of distance travelled and the number of
trucks needed for the collection. Although Markov
et al. (2016) does not use the word attractiveness,
the method used in their article is closest related to
the pickup decisions made, based on attractiveness.

The last of the three methods is a combination
of the other two. The only article that combines the
two methods is Mes et al. (2014). Here containers
are labelled as one of the following three categories:
"Must Go’, 'May Go’ and 'No Go’. The 'Must Go’
containers are based on the first method, the one
based on threshold levels. Interesting is the fact that
Mes et al. (2014) do not set a threshold on the fill
level of the container as other articles do (Abdallah
et al., 2019; Lozano et al., 2018; Akhtar et al., 2017;
Hannan et al., 2018). Instead, Mes et al. (2014)
puts a threshold on the number of days in which a
container is expected to be full.

2.3 Optimization methods

As routing problems developed from simple travel-
ling salesman problems to the complex vehicle- and
inventory routing problem, methods for solving them
also developed. Where heuristics provide good to
optimal solutions, mathematical programming guar-
antees to find the optimum solution. However this
comes at a price, mathematical programming in-
cludes large computational times. This makes them
unsuitable for complex problems or problems that
need to be solved in a relatively short amount of
time, such as the waste collection problem. Heuris-
tics offer quick and good solutions making them bet-
ter suitable for the waste collection problem. Nowa-
days, often meta-heuristics are used or even multiple
heuristics of meta-heuristics at the same time. In the
latter, these heuristics compete for the best solution
within a set time limit.

3 Problem description

As aforementioned, the SWCP can be categorized as
both a VRP or an IRP. In the case of a VRP, the list
of customers (in this case the containers) that will be
visited should be known before the route optimiza-
tion starts. This significantly simplifies the prob-
lem and is the case for the threshold discussed in
this paper. When the selection of customers is com-
bined with the route optimization we categorize our

SWCP’s as IRP, only now instead of replenishing the
customers, the containers will be emptied. This is
the case for the attractiveness model and the must-
go may-go model. For all models discussed in this
paper, the network consists of 154 nodes, of which
151 are containers, one is the depot and two are used
for the terminal. All nodes are located in or around
the city of Leeuwarden, the Netherlands. The collec-
tion will be carried out by two homogeneous vehicles
that both can carry out two routes a day. Each ve-
hicle will start at the terminal, visit a certain set
of containers, visit the depot and drive back to the
terminal. The chosen KPI’s for this research are to-
tal travel time and the number of overflows. The
total travelling time consists of actual driving times
and times spent emptying containers, so-called ser-
vice time. An overflow occurs when the fill level of
a container exceeds the 100%. The objective func-
tion of each model formulated to minimize only total
travel time. The number of overflows will be recorded
for each model and will allow up to a certain base-
line. This baseline of overflows is calculated using
real container data, obtained from AMCS (a com-
pany that develops software to optimize a SWCP,
amongst other things) and OMRIN (a waste collec-
tion company in charge of the Leeuwarden area).
Listed below are the details that are identical to the
AMCS/OMRIN case and help to make the models
discussed in this paper as realistic as possible:

e Real fill levels for the starting day

e Real daily deposit rates (except for some due
to collection in real time)

e Real network of containers, terminal and de-
pot, including locations and volumes

e Realistic travel times calculated using the ac-
tual road network

e Same time windows for a subset of containers

in the city centre

Same amount of trucks/routes

Same volumetric truck capacity

Same starting times for the trucks

Same service times for the containers and the

depot

Listed below are all assumptions and simplifications
that were made in the models and cause deviation
from the AMCS/OMRIN case and reality:

e No breaks at the terminal from 12:45 to 13:00

e No custom orders besides the 408 containers

e No visits to Harlingen twice a week, with 1
truck

e No use of an additional depot in the city of
Franeker

e Collection during every day of the week (Sater-
day and Sunday as well)

e Smaller network, 151 in stead of 408

e No deposits between measurement and collec-
tion



4 Mathematical models

4.1 Threshold model

The detailed mathematical model showed in this
paper represents the must-go may-go model. This
differs from the threshold model in multiple ways.
The main difference between the threshold model
and the must-go may-go model is that the threshold
model selects containers separately from the route
optimization. The fill levels of the containers are
compared with specific thresholds levels, if a fill level
is above its threshold level it will be added to the
list called wisit. The constraints (1) to (7) from the
must-go may-go model can therefore be replaced by
the following:

oY wige=1 Vi € visit (1)
jEnid keK
Constraint (13) of the must-go may-go model is re-
placed by:
T408,409,k= 1 Vk e K (6)

Constraint (21) and (22) of the must-go may-go
model are replaced by:
Wy > Wi p+cc;—M * (1- a:i7j7k)

Vi € nid,Vj € nid,Vk € range(K) (16)
w5 < Wy gpec;+M x (1 —x; 5 k)
Vi € nid,¥j € nid,Vk € range(K) (17)

4.2 Attractiveness model

The detailed mathematical model showed in this
paper represents the must-go may-go model. This
differs only slightly from the attractiveness model.
Ounly constraint (7) needs to be removed from the
must-go may-go model to obtain the attractiveness
model. This removes the specific threshold levels,
only the overall upper limit, constraint (5) of the
must-go may-go model is used in the attractiveness
model to force the collection of containers.

4.3 Must-go may-go model

The must-go may-go model is the largest model of all
the models discussed in this paper and therefore it
is displayed in more detail. Note that the objective
function and all constraint who were not mentioned
in the other models, apply to all three the model.

Objective function:

MIN 35 > > >

i€nid jenid k€ KdayEdays
< *
+ sty ™ X4 .k, day

Xijk,day * time_matrix; ;

Constraints:

In ascending order, constraint (1) copies the fill levels
of the total fill level list to the first day of the horizon.
Constraints (2-4) fill the rest of the fill levels within
the horizon with the influence of the collection of a
container. Constraint (5) prevents overflows, con-
straint (6) reduces computational time by excluding
containers with low fill levels. Constraint (7) forces
containers to be collected if their fill level exceeds
their threshold level. Constraint (8) will prevent arcs
from and to the same node. Constraints (9-13) forces
each route to start at node 407, visits node 408 if
waste was collected and end at node 409. Note again
that node 407 and 409 are two nodes representing
the same terminal and node 408 is the deposit site.
Constraint (14) ensures flow conservation at each
node. Constraints (15-19) prevent sub tours by the
numbering of nodes and only allowing the visit of
nodes with higher numbers. Constraint (20) sets the
load at start point equal to 0. Constraints (21 and
22) ensure load continuity and constraint (23) limits
the load of each vehicle. Constrains (24 and 25) en-
sure visit time continuity and finally, constraint (26)
makes sure all nodes in early are collected before
9.00 AM. Note that in constraints (21), (22), (24)
and (25) the big M method is used. The displayed
in the constraint represents the number 100000.
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Vi € nid,Vj € nid,Vk € range(K) (22)
Yday € days

Wik, day <= @ Vi € nid,Vk € K,Vday € days (23)
Uj ke, day > Wik, day+Sti+time_matriz; j—M * (1 — ; j k.day) Vi € nid,Vj € nid,Vk € K (24)
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Ui k,day= 32400 Vi € early,Vk € K (26)

5 Results

This chapter will show results for each of the devel-
oped models, as well as the comparison between the
models. Note again that the main KPIs are the total
travel time and the number of overflows. The later
needs to be below the set baseline.

5.1 Threshold model

Since for the threshold model, the fill levels can be
calculated without finishing the entire route opti-
mization the results for many different buffer val-
ues could be calculated. To get a reference for all
other parameters a first instance was calculated for
a threshold buffer of 5%, this is shown as 'Threshold
1’ in Table 1. A threshold buffer of -1% was found to
fit the baseline of 32 overflows best and also shows
a lower total travel time. This instance is shown in
Table 1 as "Threshold 2’. All threshold results show
a strong and clear negative correlation between the
total travel time and the number of overflows.

5.2 Attractiveness model

To optimize the attractiveness model, two parame-
ters will be changed that will influence the selection
of containers, namely, the length of the horizon and
the upper limit. The first three calculated instances
all have an upper limit of 100% and one-, two- and
three-day horizons. These are shown as ’Attrac-
tiveness 17, "Attractiveness 2’ and ’Attractiveness 4.
Note that the one- and three-day horizon are com-
petitive, whilst the two-day horizon underperforms.
However, the one-day horizon already exceeds the
overflow baseline and will not be further minimized.
The three-day horizon is further optimized with an

upper limit of 110% and shown as ’Attractiveness 5’.
The two-day horizon is also optimized using a 110%
upper limit and shown as ’Attractiveness 3’, but it
has a significantly higher total travel time than the
three-day horizon instance, which shows the lowest
total travel time. Note however that it does exceed
the overflow baseline and has a computational time
which is larger than the actual time needed to collect
the containers in real life.

5.3 Must-go may-go model

"Must-go may-go 1" and 'Must-go may-go 2’ show the
initial and optimized instances for a one-day horizon.
More interesting to see is that again, the two-day
horizon is performing worse than the one- and three-
day horizon. Although the must-go may-go model
never shows a total travel time lower than ’Attrac-
tiveness 5, it is however very competitive as ’Must-
go may-go 6’ shows. This instance has a three-day
horizon, a -7% threshold buffer and an upper limit
of 110%. The true benefit of this latest instance is
the smaller computational time, as well as a drop in
overflows of 33%.

5.4 Model comparison

As already mentioned. Although the optimized at-
tractiveness model with a three-day horizon shows
the lowest total travel time, it is not applicable to
reality due to the mathematical way in which it is
solved. If a mathematical solver is used, the op-
timized three-day instance of the must-go may-go
model shows an almost equal total travel time with
a significant reduction in both computational time
and overflows.



Table 1: Results all models

Total volume [L]

Overflows [-] Run time [s]

Total time [s]
Threshold 1.1 158717 1142441
Threshold 1.2 156354 1148279
Threshold 1.3 147097 1139260
Threshold 1.4 145436 1125687
Attractiveness 1.1 133129 1116266
Attractiveness 1.2 136419 1107914
Attractiveness 1.3 134551 1095706
Attractiveness 2.1 141952 1138836
Attractiveness 2.2 133083 1127281
Attractiveness 2.3 128585 1075896
Attractiveness 3.1 132259 1106995
Attractiveness 3.2 123868 1052929
Must-go may-go 1.1 | 135115 1102161
Must-go may-go 1.2 | 134498 1084729
Must-go may-go 1.3 | 131647 1107676
Must-go may-go 2.1 | 147589 1137935
Must-go may-go 2.2 | 131162 1191881
Must-go may-go 2.3 | 139786 1134688
Must-go may-go 3.1 | 137379 1100168
Must-go may-go 3.2 | 126828 1069053
Must-go may-go 3.3 | 129456 1130697

6 Conclusions and Future
research directions

The main conclusion that can be drawn from this
research is that the 3 day horizon instance of the
must-go may-go model shows the best result while
staying below the overflow baseline. Note that the
attractiveness model shows potential to outperform
the must-go may-go model, however these instances
still need to be calculated. Furthermore, the results
can help decision makers choose the right method for
their SWCP. For example, the computational times
of the attractiveness model are significantly larger
than those of the must-go may-go model which could
be an important factor if time for calculations is lim-
ited. More general conclusions are listed below:

e There exists a strong negative correlation be-
tween the amount of overflows and the total
travel time. When the constraints are "loos-
ened" the solution becomes better. Note that
this is most often the case, but there are excep-
tions where the number of overflows increases
as well as the total travel time.

e The relative increase in overflows is much larger
than the relative decrease in total travel time.
Depending on the company or regulations, a
baseline or target number of overflows can be
set in order to minimize the total travel time
accordingly. But preventing overflows comes at
a relatively small cost.

e The use of more vehicles enlarges the computa-
tional time significantly. The fact that the use

) 39 283
11 126 272
31 176 253
69 65 238
35 62514 243
28 20897 244
13 47436 459
9 44456 282
27 70323 260
39 35591 248
6 134255 281
39 165932 255
7 2347 258
16 29265 252
33 6676 242
2 84235 287
24 11200 231
28 48545 262
10 76732 283
22 58444 236
31 66777 271

of only 1 or 2 routes and a network of 151 con-
tainers already takes such a long time makes it
impossible to do calculations on the whole net-
work (408 containers and possibly 4 routes).

e A start-up period or +/- 3 days was observed
for all the models. Since it is very hard to point
down when precisely the steady-state of the
smart waste collection system is reached, a vi-
sual estimate was used. The collected amount
of waste will always oscillate around the de-
posited amount of waste, which also shows a
slight oscillation.

The first recommendation, for further research
into this topic, has to be about data. If data is
generated,it should be done in such a way that it
is realistic, or even better, the of real data. SWC is
already employed in multiple countries and this data
should not be too confidential. Secondly, the compu-
tational times turned out to be larger than expected.
These large computational times limited the depth of
this research. For further research into the SWCP,
the use/development of a heuristic is highly recom-
mendable. Reducing computational time will allow
for quicker and therefore more detailed research.
Finally, when computational times are reduced and
larger networks can be investigated, a comparison to
a real life SWCP could be made. When it is proven
that the performance of the models of this research
are acceptable other details can be investigated as
well. To follow up on this research, the influence of
each tuning parameter could be further investigated,
including the exclusion level.

Nr. nodes [-]
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Appendix B - Experimental results

Threshold model

Table 19: Results threshold model
Threshold gab = 10%

Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 10633 97351 0 2 18
Day 5 18418 123214 0 6 29
Day 6 12768 86740 0 2 25
Day 7 14743 121976 1 5 25
Day 8 12749 75737 0 2 21
Day 9 10226 62642 0 2 19
Day 10 11207 91057 1 2 22
Day 11 12715 100509 2 3 28
Day 12 19080 141872 1 9 31
Day 13 11365 73940 0 2 21
Day 14 13820 76135 0 2 22
Day 15 10993 91268 0 2 22
Sum 158717 1142441 ) 39 283
Table 20: Results threshold model
Threshold gab — 5%
Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 11932 104031 2 8 23
Day 5 17718 114626 0 23 26
Day 6 11842 97176 0 11 27
Day 7 15084 119680 1 10 23
Day 8 13318 97088 2 7 25
Day 9 12209 599543 1 2 17
Day 10 10816 92238 2 6 20
Day 11 11460 78591 1 10 21
Day 12 12586 96501 1 7 26
Day 13 14468 117643 1 24 22
Day 14 12110 82292 0 8 23
Day 15 12811 88870 0 10 19
Sum 156354 1148279 11 126 272
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Table 21: Results threshold model
Threshold gab = -1%

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 11466 93458 3 15 23
Day 5 11347 95732 2 7 19
Day 6 15580 106279 2 26 22
Day 7 10908 89863 0 13 22
Day 8 13496 112941 4 26 23
Day 9 12094 94010 3 11 20
Day 10 12443 82681 ) 10 21
Day 11 9929 83395 4 13 16
Day 12 11942 87701 0 14 22
Day 13 9226 67447 2 6 17
Day 14 15272 131235 2 27 24
Day 15 13394 94518 4 8 24
Sum 147097 1139260 31 176 253

Table 22: Results threshold model
Threshold gab = -5%

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 16487 121327 8 15 26
Day 5 10019 85454 4 3 16
Day 6 12205 98940 7 3 19
Day 7 12286 91297 ) ) 22
Day 8 13229 112708 6 7 22
Day 9 11859 86024 3 4 21
Day 10 12090 100904 7 3 19
Day 11 9779 73853 9 3 18
Day 12 11452 95606 4 4 18
Day 13 9342 60481 4 ) 14
Day 14 13052 87684 4 ) 21
Day 15 13636 111409 8 8 22
Sum 145436 1125687 69 65 238

Attractiveness model

Note that the days displayed in yellow are days with an exceptionally high computational run
time. This is due to the use of two vehicles on these days, increasing the complexity of the model
for that day significantly. The large computational times are mostly due to the fact that the
total volume is larger than the vehicle capacity and two vehicles are necessary, but not always.
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Table 23: Results attractiveness

Horizon length = 1 day, exclusion level = 60%, upper limit = 100%.

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 12974 102894 2 220 25
Day 5 11064 102503 1 347 20
Day 6 10257 89226 2 244 17
Day 7 9475 78039 4 162 19
Day 8 13917 130897 2 44410 27
Day 9 9640 69463 6 84 17
Day 10 14511 115196 5 3677 23
Day 11 9805 88105 1 104 17
Day 12 8719 72672 3 189 18
Day 13 7245 54700 2 133 13
Day 14 11989 101977 4 1518 25
Day 15 13533 110594 3 11426 22
Sum 133129 1116266 35 62514 243
Table 24: Results attractiveness
Horizon length = 1 day, exclusion level = 60%, upper limit = 99%.
Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 10534 94910 2 256 23
Day 5 10523 95208 2 294 19
Day 6 11681 102692 1 364 21
Day 7 9905 82776 3 228 20
Day 8 13595 116851 3 794 24
Day 9 10169 68087 5 277 17
Day 10 14392 114407 3 597 23
Day 11 9972 88504 1 256 17
Day 12 9698 67821 1 348 17
Day 13 6576 49111 3 282 12
Day 14 15401 119731 2 16559 29
Day 15 13973 107816 2 642 22
Sum 136419 1107914 28 20897 244

82



Table 25: Results attractiveness
Horizon length = 1 day, exclusion level = 60%, upper limit = 95%.

Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 10106 94239 0 20 228
Day 5 10604 71892 0 306 19
Day 6 14069 114161 0 6386 25
Day 7 10013 83356 2 557 21
Day 8 14489 122793 2 5589 26
Day 9 10493 78599 3 404 17
Day 10 11312 81870 1 1004 21
Day 11 9106 86193 0 293 17
Day 12 11354 87778 2 339 23
Day 13 8646 69606 1 472 18
Day 14 14068 126808 1 31835 24
Day 15 10291 78411 1 231 20
Sum 134551 1095706 13 47436 459

Table 26: Results attractiveness

Horizon length = 2 days , exclusion level = 60%, upper limit = 100%.

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 10354 86882 0 377 19
Day 5 14952 109818 0 3513 25
Day 6 11960 94436 0 495 28
Day 7 7419 83414 3 318 15
Day 8 10872 94578 0 1693 25
Day 9 13554 97105 0 437 27
Day 10 12171 98449 0 382 24
Day 11 7481 42225 2 456 12
Day 12 16218 139448 1 9122 35
Day 13 8403 60996 1 208 12
Day 14 11443 90755 2 2134 25
Day 15 17125 140730 0 25321 35
Sum 141952 1138836 9 44456 282




Table 27: Results attractiveness (ASUS PC)
Horizon length = 2 days, exclusion level = 60%, upper limit = 110%.

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 13323 120036 2 65415 26
Day 5 14985 99311 1 462 27
Day 6 8884 86919 1 342 18
Day 7 9447 72326 6 245 18
Day 8 15629 145571 2 1721 32
Day 9 10472 85974 4 308 19
Day 10 9275 71091 3 331 18
Day 11 9366 89910 1 274 18
Day 12 11344 93523 3 275 25
Day 13 9852 68737 2 160 17
Day 14 9008 88154 1 321 19
Day 15 11498 105729 1 469 23
Sum 133083 1127281 27 70323 260

Table 28: Results attractiveness (ASUS PC)

Horizon length = 2 days, exclusion level = 60%, upper limit = 111%.

Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 9938 87278 2 1780 22
Day 5 11032 102479 5 2639 22
Day 6 10736 102222 1 1260 21
Day 7 9898 84998 7 997 21
Day 8 15103 131243 2 19784 28
Day 9 10328 87740 4 1611 19
Day 10 10233 74733 5 1074 19
Day 11 10612 96488 1 897 20
Day 12 12561 97997 2 706 26
Day 13 7450 51202 2 1676 13
Day 14 10400 72900 2 1176 19
Day 15 10294 86616 6 1991 18
Sum 128585 1075896 39 35591 248
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Table 29: Results attractiveness

Horizon length = 3 days, exclusion level = 60%, upper limit = 100%.

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 10681 96949 1 2803 26
Day 5 12502 83177 0 2709 24
Day 6 7627 63616 0 12834 15
Day 7 11938 106033 1 28352 25
Day 8 11550 105005 1 41349 29
Day 9 12083 108327 1 28352 25
Day 10 7467 51708 0 1876 14
Day 11 11445 89161 1 3538 22
Day 12 13475 130690 1 18039 31
Day 13 8679 65240 0 3006 18
Day 14 12434 110761 0 3618 27
Day 15 12378 96328 0 9508 25
Sum 132259 1106995 6 134255 281 height

The Figure 30 shows a combination of two colors for the 13" day. The yellow color is still used
to mark the day for using multiple vehicles, explaining the very high computational time. The
orange is used to indicate that this day was run for a two day horizon, instead of a three day
horizon. This was decided after the run with a three day horizon did not find a solution after
more than 100.000 seconds. Shortening the rolling horizon showed to decrease the computational
time significantly and a solution was found. However, the computational time is still very high
with respect to the other days. Note that this was also used in Table 37.

Table 30: Results attractiveness

Horizon length = 3 days, exclusion level = 60%, upper limit = 110%.

Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 9856 96451 1 1604 25
Day 5 8726 78544 6 8552 17
Day 6 13853 105798 1 22237 28
Day 7 11139 105006 2 6672 24
Day 8 8477 86621 3 13578 18
Day 9 11806 73313 0 5918 22
Day 10 12226 99579 3 2736 26
Day 11 5484 43508 3 5094 11
Day 12 7898 70231 9 9173 15
Day 13 13865 111665 2 41727 29
Day 14 7566 79496 6 41477 15
Day 15 12972 102717 3 7164 25
Sum 123868 1052929 39 165932 255
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Must-go may-go model

Table 31: Results must-go may-go
Horizon length = 1 days, threshold gab = 5% , exclusion level = 60%, upper limit = 100%.

Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 10215 93303 0 156 20
Day 5 13095 103791 0 155 23
Day 6 11593 86529 0 153 24
Day 7 8995 93392 2 209 20
Day 8 13309 105101 1 159 27
Day 9 10473 76584 1 159 17
Day 10 10443 93425 1 223 20
Day 11 10100 74897 1 198 20
Day 12 12840 100053 1 267 27
Day 13 10054 86037 0 169 18
Day 14 12396 99515 0 300 23
Day 15 11602 89534 0 199 19
Sum 135115 1102161 7 2347 258

Table 32: Results must-go may-go

Horizon length = 1 days, threshold gab = 2% , exclusion level = 60%, upper limit = 100%.
Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 9322 95199 1 309 20
Day 5 12723 105623 0 1487 23
Day 6 11123 86804 0 451 23
Day 7 9869 74955 3 301 19
Day 8 15275 123433 3 22668 26
Day 9 10724 69638 3 385 19
Day 10 8735 82415 2 506 16
Day 11 10606 95208 0 766 19
Day 12 12717 99244 1 600 26
Day 13 10334 96086 0 416 20
Day 14 11670 89427 1 672 23
Day 15 11400 66697 2 704 18
Sum 134498 1084729 16 29265 252
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Table 33: Results must-go may-go
Horizon length = 1 day, threshold buffer = -1%, exclusion level = 60%, upper limit = 100%.

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 9915 89702 2 156 22
Day 5 10873 99555 1 160 20
Day 6 12510 106012 1 273 22
Day 7 10304 86826 ) 415 20
Day 8 12538 118654 3 617 21
Day 9 9321 63550 7 468 16
Day 10 12632 105644 6 224 21
Day 11 8686 88729 1 179 17
Day 12 11275 83226 2 514 21
Day 13 8452 64152 2 196 16
Day 14 13150 110398 2 2919 23
Day 15 11991 91228 1 955 23
Sum 131647 1107676 33 6676 242

Table 34: Results must-go may-go (ASUS PC)
Horizon length = 2 days, threshold gab = 5%, exclusion level = 60%, upper limit = 100%.

Total time [s] Travel volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 8923 72850 0 492 16
Day 5 16231 119589 0 59023 28
Day 6 12570 100641 0 102 30
Day 7 9631 104280 0 238 21
Day 8 10677 71822 0 390 20
Day 9 11807 77942 1 531 23
Day 10 14012 107296 0 9416 26
Day 11 9427 56397 1 131 17
Day 12 14620 121451 0 7561 30
Day 13 9979 83513 0 195 18
Day 14 12988 99309 0 891 29
Day 15 16724 122845 0 5265 29
Sum 147589 1137935 2 84235 287
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Table 35: Results must-go may-go (ASUS PC)
Horizon length = 2 days, threshold gab = -5%, exclusion level = 60%, upper limit = 110%

Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 11194 193952 1 1465 22
Day 5 11541 84316 1 131 23
Day 6 11440 105374 1 554 23
Day 7 9870 76358 6 185 19
Day 8 15631 141959 3 3835 31
Day 9 10090 85302 3 166 19
Day 10 9475 69632 4 284 18
Day 11 9005 90177 1 349 18
Day 12 11107 90037 2 309 24
Day 13 8071 59452 1 153 15
Day 14 9973 87889 1 245 19
Day 15 13765 107433 0 3524 23
Sum 131162 1191881 24 11200 231

Table 36: Results must-go may-go (ASUS PC)
Horizon length = 2 days, threshold gab = -7%, exclusion level = 60%, upper limit = 110%

Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 9160 80323 4 4291 20
Day 5 16833 131387 1 18184 30
Day 6 10485 91669 1 1109 19
Day 7 9097 71686 5 778 18
Day 8 15824 140830 3 13855 31
Day 9 10137 86064 4 738 19
Day 10 11453 74061 5 811 19
Day 11 9599 84325 1 1124 17
Day 12 12183 101713 2 1222 27
Day 13 10562 70918 1 961 18
Day 14 10968 94279 1 2207 21
Day 15 13485 107433 0 3265 23
Sum 139786 1134688 28 48545 262
hline

88



Table 37: Results must-go may-go
Horizon length = 3 days, threshold gab = 5%, exclusion level = 60%, upper limit = 100%.

Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 9430 60417 0 3411 17
Day 5 13925 95099 0 9429 27
Day 6 10289 94078 0 2791 23
Day 7 11149 104344 0 5431 26
Day 8 13531 100455 0 6670 27
Day 9 12060 89216 1 3201 22
Day 10 9615 73405 1 1986 23
Day 11 10443 88039 1 1808 22
Day 12 10549 104592 1 27608 24
Day 13 10600 95122 6 7848 21
Day 14 12551 92343 0 2928 27
Day 15 13237 103058 0 3621 24
Sum 137379 1100168 10 76732 283

Table 38: Results must-go may-go (ASUS PC)

Horizon length = 3 days, threshold gab = -5%, exclusion level = 60%, upper limit = 110%.
Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 9724 78202 0 3672 17

Day 5 6964 36215 3 2023 10

Day 6 17047 148096 0 3490 42

Day 7 5295 47597 4 4008 9

Day 8 13627 142036 1 1514 33

Day 9 9436 74048 3 8503 17

Day 10 8299 58458 5 8925 15

Day 11 14484 118154 1 8757 31

Day 12 10479 95635 1 3781 23

Day 13 4629 51405 1 5522 9

Day 14 14039 112953 3 2985 30

Day 15 12805 106254 0 5264 31

Sum 126828 1069053 22 58444 236
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Table 39: Results must-go may-go (ASUS PC)

Horizon length = 3 days, threshold gab = -7%, exclusion level = 60%, upper limit = 110%.

Total time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 11341 101752 5 1851 27
Day 5 16728 131996 1 6929 30
Day 6 11599 83757 1 1869 23
Day 7 8270 85419 3 3254 19
Day 8 10407 103258 3 4940 23
Day 9 7644 80074 7 4046 18
Day 10 12793 105831 3 5264 27
Day 11 11639 92673 1 3387 26
Day 12 6372 43288 2 2487 12
Day 13 14172 101858 0 22981 28
Day 14 8174 99655 2 6739 16
Day 15 10317 101136 3 3030 22
Sum 129456 1130697 31 66777 271
hline

True forecasting model
Table 40: Results attractiveness true forecasting

Horizon length = 1 day, exclusion level = 60%, exclusion level = 100%.

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]
Day 4 11959 103866 0 164 26
Day 5 10311 90855 0 70 18
Day 6 10958 98716 0 148 21
Day 7 10614 88594 0 64 22
Day 8 13756 122511 0 29928 26
Day 9 10561 90391 0 326 19
Day 10 11957 86541 0 288 22
Day 11 7467 67858 0 397 13
Day 12 11419 92816 0 412 24
Day 13 10902 84248 0 231 22
Day 14 10140 68874 0 380 17
Day 15 8805 101419 0 334 15
Sum 128849 1096689 0 32742 245
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Table 41: Results must-go may-go true forecasting
Horizon length = 1 day, threshold gab = 5%, exclusion level = 60%, upper limit = 100%.

Travel time [s] Total volume [L] Overflows [-] Run time [s] Nr. nodes [-]

Day 4 9347 85644 0 310 18
Day 5 15670 113717 0 5136 26
Day 6 10250 79692 0 225 22
Day 7 9744 103224 0 156 23
Day 8 15085 124723 0 33597 28
Day 9 9778 55330 0 156 16
Day 10 11812 94718 0 256 21
Day 11 10399 71712 0 163 21
Day 12 14717 107626 0 979 29
Day 13 9611 80025 0 149 17
Day 14 11023 91043 0 110 20
Day 15 11067 89162 0 208 19
Sum 138503 1096616 0 41445 260
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