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1

Introduction

1.1 Linear optimization

This thesis deals with linear optimization (LO), which amounts to the problem
of minimizing or maximizing a linear function subject to some linear constraints.
LO is a branch of Mathematical Programming which in turn is a part of Opera-
tions Research. Economically speaking, an optimization problem is a formalized
version of the economic principle, i.e., depending on the viewpoint of the decision
maker, it either maximizes the output for some given input (e.g., profit maximiz-
ation), or minimizes the input for some required output (e.g., cost minimization).
Nowadays, LO has a wide range of practical applications. In [28], a list of a variety
of those applications is provided among which are The Diet Problem, Allocation
Problem, Cutting Stock Problem, Crew Scheduling and Data Envelopment Ana-
lysis.

Neglecting the primitive works on the solution of a system of linear inequalit-
ies, done by such people as J. Fourier [49] and J. Farkas [48], the modern concept
of LO problem traces back to L. V. Kantorovich in 1939'. As a consultant for
the Laboratory of the Plywood Trust, Kantorovich dealt with the problem of dis-
tributing some initial raw materials in order to maximize equipment productivity
under certain restrictions. His studies were interrupted by World War IT (WWII)
during which his results remained unknown?. Postwar, in 1947, this problem
was studied also by some other people like G. B. Dantzig and T. C. Koopmans.

I Here we mention only a few of the highlights which directly influenced the field of LO. For
a comprehensive history of operations research and LO, we refer to [70] and [34]. The personal
reminiscences of Dantzig [19] are also interesting. A collection of personal reminiscences of
contributors in the field of mathematical programming can be found in [59].

2 Nobel Lectures, Economics 1969-1980, Editor Assar Lindbeck, World Scientific
Publishing Co., Singapore, 1992. One may also find an autobiography of Kan-
torovich at  http://nobel prize. org/ nobel _prizes/economni cs/| aureates/ 1975/
kant or ovi ch- aut obi 0. ht n .
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Dantzig introduced his well-known simplex method for solution of LO problem.
We refer to, e.g., [20] for an extensive description of the simplex method.

Associated with any LO problem there is another LO problem, called its dual
problem. In [19, pages 45-46] it is mentioned that existence of the dual problem
was conjectured first by John von Neumann, also in 1947 (during a conversation
with Dantzig)®. A rigorous proof of the duality theorem was published later by
Gale, Kuhn and Tucker in 1948.

In an LO problem, the constraints may be equalities and /or inequalities. There
may be some variables constrained as nonnegative and some unconstrained. How-
ever, any LO problem can be transformed into the so-called standard form which is
the LO problem with only equality constraints and nonnegative variables. There-
fore, most literature on LO, e.g., [60, 98, 103, 115, 118], deals with the standard
form which is defined as follows:

(P) min {c’z: Az =b, x>0},

where A € R™*" c € R", x € R™ and b € R™. Without loss of generality, it can
be assumed that A has full row rank. The dual problem, associated with (P), is
given by:

(D) max {bTy: ATy+s=¢c, s>0},

with y € R™. After introduction of the dual problem, Dantzig named the problem
(P) primal problem.

In this thesis, we deal with the standard form of the LO problem and, unless
otherwise stated, ‘LO problem’ stands for the ‘standard LO problem’.

The feasible regions of (P) and (D) are denoted by P and D, respectively:

P:={z:Ax=0b, >0}
D:={(y,s): ATy+s=c, s>0}.

The problem (P) is called feasible if P is nonempty and otherwise infeasible. If

¢’z is unbounded below over P, we call (P) unbounded, otherwise bounded. We

use similar terminology for the dual problem (D).
The relative interiors of P and D are denoted by P° and D°, respectively:

Pei={x:Ax=0b, x>0}
D° = {(y,5): ATy+s=c¢, s>0}.

We say that (P) and (D) satisfy the interior-point condition (IPC) if both P°
and D° are nonempty.

3The theory which Neumann suggested for the dual problem was analogue to his theory for
Game Theory.
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1.2 Duality results

We recall the well-known weak duality result for LO problem.

Proposition 1.2.1. (Weak Duality)(cf. [98, Proposition I1.1]) Let = and (y, s)
be feasible for, respectively, (P) and (D). Then ¢’z — bTy = 27s > 0. Con-
sequently, cTx is an upper bound for the optimal value of (D), if it ewists, and
bTy is a lower bound for the optimal value of (P), if it exists. Moreover, if the du-
ality gap x7's is zero then x is an optimal solution of (P) and (y, s) is an optimal
solution of (D).

It can be concluded from Proposition 1.2.1 that if one of the problems (P)
and (D) is unbounded then the other is infeasible. As we mentioned in Section
1.1, the duality theory was introduced by van Neumann [83], and later explicitly
formulated and proven by Gale, Kuhn and Tucker [33]. The classical duality
theorem for LO can be stated as follows.

Theorem 1.2.2. (Strong Duality)(cf. [98, Theorem II.2]) If (P) and (D) are
feasible then both problems have optimal solutions. Then, if x € P and (y,s) € D,
these are optimal solutions if and only if x7s = 0. Otherwise neither of the two
problems has optimal solutions: either both (P) and (D) are infeasible or one of
the two problems is infeasible and the other one is unbounded.

Below we state another duality theory result for LO which is due to Goldman
and Tucker [41].

Theorem 1.2.3. (Goldman-Tucker Theorem)(cf. [98, Theorem I1.3]) If (P)
and (D) are feasible then there ewists a strictly complementary pair of optimal
solutions, that is an optimal triple (x,y, s), with x € P and (y, s) € D, satisfying
z+s>0.

Recall that by Theorem 1.2.2, a primal-dual feasible triple (z, y, s) is optimal if
and only if 27's = 0. This is called the complementarity condition for (P) and (D)
(see e.g., [98]). Because the vectors x and s are nonnegative, the complementarity
condition is equivalent to s = 0*. In short, any primal-dual optimal solution
(x*,y*,s*) of (P) and (D) satisfies the following conditions:

Ax = b,
ATy +s=c,
Y (1.1)
z>0,s >0,
xs = 0,

4Throughout this thesis, we denote by 0 and e (used later) the zero and the all-one vectors,
respectively, of appropriate size. Moreover, if z,s € R", then zs denotes the componentwise (or
Hadamard) product of the vectors = and s.
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where the first three lines require that * € P and (y,s) € D and the last line is
the complementarity condition. The system (1.1) is known as the Karush-Kuhn-
Tucker (KKT) optimality conditions for LO.

1.3 Algorithms

In order to solve LO problem, various methods have been introduced. In this sec-
tion we briefly discuss the most important methods, thereby focusing on interior-
point methods because these are the methods studied in this thesis.

1.3.1 Simplex method

As mentioned in Section 1.1, the simplex method was introduced by Dantzig in
1947. It starts from a vertex of the feasible region, which is actually a polyhed-
ron, and moves along an edge to a vertex with non-increasing (for a minimization
problem) values of the objective function; this is repeated until an optimal vertex
is reached. In unbounded problems, some feasible ray is detected during the sim-
plex procedure along which the objective function is decreasing. Despite its nice
practical performance, there is an example, given by Klee and Minty [53], having
2n inequality constraints and n variables for which the simplex method needs
2" iterations. This means that the simplex method may not have a polynomial
worst-case iteration bound.

Indeed, for many variants of the simplex method, according to their different
pivoting rules, exponential running time examples have been found.

1.3.2 Ellipsoid method

A polynomial-time algorithm for LO remained unknown until Khachiyan [52] in-
troduced his ellipsoid method in 1979. The ellipsoid method generates a sequence
of ellipsoids enclosing an optimal solution, if any exists, whose volumes uniformly
decrease at every step. If there is no optimal solution, the method stops when
the ellipsoid is so small that it can be established that no optimal solution ex-
ists. The iteration bound of the ellipsoid method is O(n?L) with L denotes the
length of input data bits. However, the ellipsoid method turned out to be too
slow for practical purposes (see e.g., [15, 40]) and the simplex method remained
the favorite method in practice.

1.3.3 Interior-point methods

Another polynomial algorithm for LO was presented by Karmarkar [51] in 1984.
The iteration bound of Karmarkar’s algorithm is better than that of Khachiyan’s
algorithm by a factor O(n). Although some initiatory implementations of Kar-
markar’s algorithm were disappointing (see e.g., [61, 109]), some authors, like
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Adler et al. [1], Monma and Morton [79] and McShane et al. [71], implemented
variants of Karmarkar’s algorithm which favorably competed with the simplex
method in practice. Karmarkar’s algorithm is within the class of interior-point
methods (IPMs). In contrast with the simplex method, IPMs move through the
interior of the feasible region to find the optimal solution®.

Although, IPMs have been known since 1960 in the form of barrier methods
[30], they received renewed attention after Karmarkar’s result. This has led to
the following categories of algorithms:

e projective methods, as proposed by Karmarkar [51] and studied by others in
4, 5, 22, 29, 31, 35, 43, 84, 94, 107, 109, 116],

e affine-scaling methods, as proposed by Dikin [26], and investigated further
in [1, 13, 27, 73, 79, 81, 110, 113, 114],

e path-following methods (PFMs), which can be divided in small-update al-
gorithms, as studied in [10, 39, 42, 56, 80, 92, 95, 96, 100, 108, 111], large-
update algorithms, as studied in [10, 13, 24, 25, 99|, and predictor-corrector
(PC) methods, as studied in [74, 77],

e potential-reduction methods (PRMs), as described in [7, 32, 44, 57]. See also
[6, 106] for a survey on potential-reduction methods.

Karmarkar’s iteration bound, namely O(nL), was improved a couple of years
later by Renegar [92] by a factor of \/n.

IPMs have shown their efficiency in solving LO problem in both practice and
theory. For a survey of IPMs, we refer to e.g. [23, 45, 98, 115, 118].

IPMs are divided into feasible IPMs (FIPMs) and infeasible IPMs (IIPMs).
FIPMs start from a primal-dual strictly feasible triple (z°,3°,s%), i.e., 2° € P°
and (y°,s%) € D°, and generate a sequence of strictly feasible triples (z,y, s) con-
verging to an optimal solution of (P) and (D). In contrast, in ITPMs the iterates
are not feasible, and apart from reaching optimality one needs to strive for feas-
ibility. Precisely speaking, IIPMs start from a triple (z°,7°,s%), where 20 > 0
and s > 0, and generate triples (x,y,s) satisfying # > 0 and s > 0 but not
necessarily (1.2a) and (1.2b). IIPMs attempt to obtain feasibility and optimality
simultaneously.

The current chapter deals with FIPMs. IIPMs are extensively considered in
Chapter 2. Because projective methods, PRMs and affine-scaling methods are
beyond the scope of the thesis we do not explain them in detail. We concentrate

51t is worth mentioning that, nowadays, both simplex-based algorithms and primal-dual
IPMs are used in commercial packages as SeDuMi, COIN, CPLEX, MOSEK and LINPROG
(in MATLAB). In LINPROG, the default algorithm is based on the simplex method. If the
problem is labeled as “Large-Scale”, the well-known LIPSOL package is used which is the best
known IPM-based software for solving LO problems.
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on PFMs. To be more specific, we deal in this chapter with the feasible full-
Newton step PFM which was introduced and discussed in [98]. We are interested
in this algorithm because the full-Newton step IIPM of Roos [97], to be discussed
in Chapter 3, is inspired by this algorithm. The main result of this thesis, i.e.,
the algorithm, explained in Chapters 5 and 6, is actually a large-update variant
of the above mentioned full-Newton step IIPM.

PFMs use a virtual path inside the feasible region of (P) and (D) as a guideline
to an optimal solution of (P) and (D). The next section is devoted to the definition
of this so-called central path.

1.4 Central path

Most IPMs consider the parameterized KKT system, defined as follows:

Az =D, (1.2a)
ATy +s=c, (1.2b)
z>0,s >0, (1.2¢)

xs = pe, (1.2d)

where 1 > 0 is a positive parameter which is called the barrier parameter (see
e.g., [565, 56, 80]). The system (1.2) is called the KKT system with respect to p.
Because of (1.2d), any solution of the system (1.2) will satisfy > 0 and s > 0.
Therefore, a solution exists only if (P) and (D) satisfy the IPC. Surprisingly, it
has been shown (see [98, Theorem II.4 or Remark IL.5]) that if the IPC holds
then, for any g > 0, the system (1.2) has a (unique) solution. It follows that
(P) and (D) satisfy the IPC if and only if the system (1.2) has a unique solution
for any 1 > 0. This unique solution is denoted by (z(u),y(u),s(n)). The vector
x(p) is called the p-center of (P) and (y(u), s(u)), the u-center of (D). The set of
the primal-dual p-centers (x(p), y(p), s(p)), as p runs through R4+, is called the
central path of (P) and (D). Megiddo [72] established that as p tends to zero, the
central path converges to a primal-dual optimal solution®.

Unfortunately, the system (1.2) is nonlinear because of the equation (1.2d),
which makes obtaining the u-center rather difficult. IPMs overcome this issue by
using a numerical iterative procedure based on the well-known Newton-Raphson’s
method. This is the subject of the next section.

6The notion of analytic center of a bounded convex set was introduced by Sonnevend [102].
If the feasible region of an LO problem is bounded, then its analytic center is the limit of the
central path if p tends to infinity. On the other hand, if the optimal set of an LO problem is
bounded, then its analytic center is the limiting point of the central path as u tends to zero [98].



1.5 SEARCH DIRECTIONS 7

1.5 Search directions

Given a triple (z,y, s) and some p > 0, to obtain the p-center, we need displace-
ments (Az, Ay, As) such that z + Az, y + Ay and s + As coincide with the
p-center of (P) and (D):
Az + Ax) = b,
AT(y+Ay) + (s +As) = ¢,
x+Ax >0, s+ As > 0,
(x + Az)(s + As) = pe.

Defining the primal and dual residual vectors r, and r. as
ry:=b— Az and 71.:=c— ATy —s, (1.3)

and ignoring the inequalities for the moment, the last system can be rewritten as
follows:

AAx = 1y,
AT Ay + As = 7, (1.4)
sAx 4+ xAs + AxAs = pe — zs.

By neglecting the quadratic term AxzAs from the third equation, according to
Newton’s iterative method for solving nonlinear systems, one obtains the following
system in Az, Ay and As:

AAx = 1y,
AT Ay + As = 7, (1.5)
SAx + xAs = pe — xs.
The directions (Az, Ay, As), given by (1.5), are called the primal-dual Newton
directions at the triple (x,y, s). Because A has full row rank, it can be verified (see
[98, Theorem I1.42]) that the primal-dual Newton step (Az, Ay, As) is uniquely
defined by the system (1.5).

In FIPMs, i.e., if x € P° and (y,s) € D°, then one has r, = r. = 0. As a
result, the system (1.5) is reduced as follows:

AAzx =0,
AT Ay + As = 0, (1.6)
SAz + xAs = pe — xs.
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By the first two equations of the system (1.6), it can be easily verified that
the vectors T, ¥y and s, given by

2T = x4+ Az,
y* =y + Ay, (L.7)
st = s+ As,

satisfy the equations (1.2a) and (1.2b). However, they may not satisfy the in-
equality conditions (1.2c¢). Hence, some step size a € (0,1] may be required such
that

T =z 4+ alAzx € P°,
yt =y +aly e D°,
sT = s+ als € D°.

As we mentioned above, the quadratic term AxAs is neglected from the third
equation of the system (1.4). This causes the equation (1.2d) to be not satisfied,
i.e., the pairwise products x;"s:r, 1 =1,--- ,n may not be equal to u, except in
the ideal case that AxAs = 0. This means that PFMs follow the central path
approximately and do not stay exactly on the central path. The next section is
devoted to definition of the so-called prozimity measure which is used to measure

the deviation of the iterates from the p-centers.

1.6 Proximity measure

The proximity measure which we introduce in this section was first used by Jansen
et al. [50] and later, with some minor modification, by Roos, Terlaky and Vial
[98].

Given the iterates x and s and some p > 0, the variance vector v of the iterates
x and s with respect to u is defined as follows:

TS
vi=, [ —. (1.8)
1
Note that
v=es xs = e,

which means that the variance vector is the all-one vector if and only if the iterates
z and (y, s) are the p-centers.
Using v, the proximity measure §(v) is defined as follows:

—. (1.9)
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It can be easily verified that §(v) = 0 if and only if v = e, which means that §(v)
vanishes only at the p-center. In other words, one has

dv) =0 v=es s =pe. (1.10)

In [98], the proximity measure §(v) was motivated as follows. Defining the
scaled Newton directions d, and dg as

4, =BT a4, = 088
X

s
the system (1.6) can be rewritten as below:
Ad, =0,
ATd, +ds = 0, (1.11)

dy +ds = v71 — v,

with d, = A—\/% and A := AV !X where V = diag (v) and X = diag ().
Because the vector d, belongs to the null space of A and d, to the row space

of A, the vectors d, and d, are orthogonal, i.e., (dr)Tds = 0. This implies that
ldall* + llds)1? = [lv™" — .
Due to this, the vectors d, and ds are zero if and only if
||'U71 - U“ =0,

which is the case only at the p-center, according to (1.10).

The quantity ||[v=! — v|| seems to be a natural tool for measuring ‘distance’
between the iterates and the p-center. The idea of using this quantity is due to
Jansen et al. [50]. However, Roos et al. [98] used this quantity divided by 2, i.e.,
§(v), given by (1.9)7.

"In many papers on IPMs, e.g., [55, 80], one does not measure proximity to the yu-center, but
to the central path. A popular way is to use the following expression:

s

2 e, (1.12)
Hg
where ||.|| is some norm and pg4 is the average value of the iterates, i.e.,
T
z's
fg == —. (1.13)
n
Recall that on the central path the pairwise products z;s; for ¢ = 1,--- ,n are identical and
their common value is their average value pg4:
zTs

zs:ue:>,u:T:,u,g.

In the literature, e.g., [115] and the references therein, both the 2-norm and the co-norm were
used. The 2-norm variant was introduced by Kojima, Mizuno and Yoshise [55] and also used by
Monteiro and Adler [80] to derive primal-dual algorithms for LCP and LO problem, respectively.
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In order to express the proximity measure in terms of the iterates and the
barrier parameter p, the following notation will also be used:

0(z, sy ) :=9(v).

We now proceed with explaining the feasible full-Newton step PFM which was
introduced and discussed in [98].

1.7 A feasible full-Newton step PFM

It is convenient to start with a formal description of the algorithm, as below.

Algorithm 1.1 A full-Newton step PFM

Input:
an accuracy parameter € > 0;
a barrier update parameter 6 € (0, 1).

begin
r=s=e,y:=0,and p:=1;
while ny > e,
Newton step:
(z,,5) = (x,y,5) + (Az, Ay, As);
p-update:
pi= (1= 0)u;
endwhile
end

Assume that a primal 2° € P° and a dual pair (y°,s°) € D° and a p° > 0 are
given such that z9s” = u’e. Without loss of generality, it can be assumed that®

(a0)" 50

n

P =s"=e y*=0 and pu°=

— 1 (1.14)

Moreover, let a barrier-update parameter 6 € (0, 1) be given. In Subsection 1.7.2
we discuss how to obtain #. At the beginning of an iteration of the algorithm
the system (1.6) is employed to compute Newton steps (Az, Ay, As) and then
the new iterates (x*,y™,sT) are calculated using (1.7). After that the barrier
parameter p is reduced to g™ := (1 — @)u. This process is repeated until the
duality gap is less than or equal to a prescribed tolerance ¢.

8This can be realized by embedding the given (P) and (D) into a homogenous self-dual
problem.
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Because Az and As are orthogonal®, i.e., ATzAs = 0, then, using the third
equation of (1.6), after a full Newton step the duality gap is computed as follows:

(z+Azx) (s + As) = 2Ts + (2T As + sTAz) + ATzAs =
aTs+pele —aTs =np. (1.15)

This means that after each iteration of the algorithm the duality gap is identical
to nu, and hence that each iteration reduces the duality gap by a factor 1 — 6.

The difficult part of the analysis of the algorithm is the analysis of the Newton
step. In the next subsection, we recall a condition under which the Newton step
is (strictly) feasible and quadratically convergent.

1.7.1 Properties of the Newton step

We start this subsection with the following lemma.

Lemma 1.7.1. (cf. [98, Theorem IL.50]) Denote 6 := 6(x,s;u). If § < 1 then
after each full Newton step the new iterates (z7,y™,s™) are feasible, i.e., T € P
and (yT,sT) € D. Moreover, if 6 <1 then x+ € P° and (y*,sT) € D° and '°

52
V2(1 = 62)

Lemma 1.7.1 defines a certain neighborhood of the p-center where the full
Newton step (Axz, Ay, As), obtained from (1.6), certainly yields a primal-dual
strictly feasible point.

By slightly narrowing the neighborhood of the u-center, one gets a region
where the Newton’s method is quadratically convergent: if 6 < 1/ V2 then it can
be verified that

8z, st ) < (1.17)

S(zT, st ) <62 (1.18)

This means that, given a p > 0, if the current triple (z,y, s) satisfies d(x, s; ) <
1/v/2, then Newton’s method quadratically converges to the p-center. The set
of primal-dual (feasible) pairs (z,s) satisfying d(x,s;p) < 1/4/2 is called the
quadratically convergent region of the p-center.

The algorithm generates a sequence of strictly feasible pairs (z, s) in the quad-
ratically convergent region of the u-centers. This means that the parameter 6
should be such that after reducing u to u* := (1 — ), the current pair (z, s) lies
in the quadratically convergent region of the p*-center. In the next subsection
we explain how to derive such a 6.

9Az and As belong to the null space and the row space of the matrix A, respectively.
10We would like to mention that a slightly sharper than (1.17) was proven in [98, Theorem
I1.52] which says:

52
V201 = 6%
Since this result has no impact on the order of the convergence rate of the algorithm, for the
sake of simplicity, we present an analysis which is based on (1.17).

Sz, 5T p) < (1.16)
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1.7.2 Value of the barrier-updating parameter

Given a primal-dual feasible pair (z,s) and u > 0, satisfying 6(z,s; 1) < 1/v/2,
(1.18) implies that after a (full) Newton step, the new iterates (z,y™, s™) satisfy
1
Sz, sTip) < 3 (1.19)
The aim is to derive the barrier-updating parameter 6 such that §(z ™, st; p™) <
1/+/2. We first recall the following lemma which investigates the influence of a
p-update on 4.

Lemma 1.7.2. (cf. [98, Lemma I1.54]) Given a primal-dual pair (z,s) and p > 0
such that x7s = np, one has

2
st = (1= (e, se) + o with it o= (1 O
41 —0)
By Lemma, 1.7.2 and using (1.19), one gets
1-6 0%n
+ oot )2 <
O(x™, s um)* < 1 —|—4(1_9).

Using this, 6(z*, s*; u) < 1/V/2 certainly holds only if

1—t9+ 0°n
1 T 11-9)

IN

1
5"
It can be verified that this inequality holds for all # satisfying

1
\/n+1'

In the sequel, the barrier-updating parameter 6 is taken as follows:

0<¥

IN

In the next subsection we explain how to estimate the number of iterations of
the algorithm.

1.7.3 Iteration bound

An iteration of Algorithm 1.1 consists of one Newton step plus a p-update. After
a Newton step, the duality gap is identical to nu, according to (1.15). On the
other hand, the parameter p is reduced by a factor 1 — 6 per iteration. The
algorithm stops if the duality gap is less than or equal to a prescribed tolerance
€ > 0. A natural way to estimate the number of iterations is to count the number
of the p-updates before nu < ¢ is satisfied. We recall the following lemma.
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Lemma 1.7.3. (cf. [98, Lemma II.17]) If the barrier parameter y has the initial
value u° and is repeatedly multiplied by 1 — 0, with 0 < § < 1, then after at most

1 nu°
Zlog -
{9 e W
1

Using 0 = NCESE Lemma 1.7.3 implies that the total number of iterations of
the algorithm is bounded above by

vn+ 1logﬁ.
€

iterations we obtain nu < €.

1.8 Motivation

Recently, an infeasible PFM for LO has been introduced by Roos [97]. This al-
gorithm uses a virtual path outside the feasible region of (P) and (D), namely
the homotopy path (See Chapter 4), as a guideline to an optimal solution. The
algorithm can be considered as a generalization of the full-Newton step PFM
presented in Section 1.7 to the case where the starting point is infeasible. There-
fore, in addition to the optimality, Roos’ algorithm strives for the feasibility of
the iterates. In this algorithm, as usual, the duality gap!' is measured by z”'s
and the primal and the dual infeasibility by the size of the residual vectors r; and
¢, respectively. The algorithm is designed in such a way that a full-Newton step
reduces the sizes of the residual vectors with the same speed as the duality gap.
Precisely speaking, after a full-Newton step, the quantity e(z,y, s), defined as

e(z,y,s) = max{||7"b|| el ,sz} , (1.20)

is reduced by a factor 1 — 6 where 6 € (0,1) is the barrier-updating parameter.
Analogue to its feasible counterpart, the algorithm is a so-called small-update
approach, in the sense that the barrier-updating parameter 6 is inversely propor-
tional to the problem dimension n. Precisely speaking, one has'? § = O(1/n).
Using this 6, Roos establishes that in order to obtain an e-solution for a prescribed
e >0, i.e., a triple (z,y, s) satisfying

e(z,y,s) <e, (1.21)
at most

o ,0 .0

117t should be mentioned that, in an ITPM, in general the iterates = and s are not feasible
for the original primal-dual pair of problems, and hence the quantity z”s can not be called the
duality gap at = and s (with respect to the original primal-dual pair of problems). However, as
it will be mentioned in Chapter 2, x and s are always feasible for a perturbed pair of problems
and with respect to this pair z”s is the duality gap at = and s. Therefore, when dealing with
IIPMs, the quantity z”'s can still be called the duality gap at = and s.

12Note that in the full-Newton FIPM, presented in Section 1.7, we have 6§ = O(1//n).
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iterations of the algorithm are required. This iteration bound coincides with the
best known iteration bound ever obtained for ITPMs, which is due to Mizuno
[75]'3.

Despite their nice theoretical iteration bound and the feature of using full
Newton steps, small-update methods have the disadvantage that they are too
slow in practice. PFMs that use a fixed barrier-updating parameter 6 € (0, 1),
independent of n, e.g., 0 = %, turned out to be more efficient in practice. These
methods are known as so-called large-update methods. In large-update methods,
full Newton steps may not be feasible!* (z + Ax and s+ As might have negative
components). Therefore, one has to use damped Newton steps. The step size is
calculated using a line search with respect to some barrier function (see e.g., [98]).
Precisely speaking, starting from a point z = (z,y, s), after updating the barrier
parameter p to p* := (1 — 0)u with e.g., 0 = %, in searching for the u*-center
2(pt) == (x(ph),y(ut), s(u")), a finite number of (feasible) points {z*} | are
generated where K is such that 2’ is a good approximation of z(uT) (with respect
to a barrier function). Unfortunately, regardless of their nice practical behavior,
large-update methods have worse theoretical iteration bounds than small-update
methods. This phenomenon, i.e., IPMs with nice theoretical properties are inef-
ficient in practice and the other way around, has been called the irony of IPMs
[93, page 51].

1.9 Outline

Based on the aforementioned motivation, we designed a class of infeasible PFMs.
Our ITPMs can be considered as large-update variants of Roos’ full-Newton ITPM.
However, they differ from feasible large-update PFMs, in the sense that 6 is
no longer arbitrary; it has to be computed at each iteration. In practice, our
algorithm has the advantage that the parameter 6 is larger than O(1/n), even
6 = O(1), which yields a larger amount of reduction on the quantity €(x,y, s) at
a so-called outer iteration of the algorithm. However, the above mentioned irony
of IPMs is still present in our algorithm, meaning that despite its nice practical
behavior, it has worse theoretical iteration complexity than its full-Newton step
counterpart. For a variant, we obtain the bound
0,0 0

o (n\/ﬁ(log n)®log 6(3;‘,75,8)) ,
which is a factor y/n(logn)® worse than the iteration bound of Roos’ full-Newton
step IIPM, presented in [97]. The best-known iteration bound for large-update

13We would like to mention that a simplified version of Roos’ algorithm was given by Mansouri
and Roos [66], to be followed by a slightly improved version which was given by Gu, Mansouri,
Zangiabadi, Bai and Roos [46]. Both versions, i.e., those presented in [46] and [66], have the
convergence rate O(n).

MThroughout this thesis, we call displacements Az, Ay and As (strictly) feasible if the triple
(z + Az,y + Ay, s + As) is primal-dual (strictly) feasible.
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ITPMs is o o 0
O <n\/ﬁ(logn) log Lﬁ’s)) : (1.22)

which is due to Salahi, Peyghami and Terlaky [101]. Note that the iteration
complexity of our algorithm is a factor (logn)? worse than (1.22).

Before dealing with the new algorithm, in Chapter 2, we first survey theor-
etical properties of some IIPMs presented by several authors within the last two
decades, with the hope of getting some clue which might be helpful in improv-
ing the iteration complexity of our algorithm. We studied global convergence and
polynomiality of the ITPMs, starting from Lustig’s algorithm [62], to the infeasible
potential-reduction methods of Mizuno, Kojima and Todd [76].

Our algorithm is inspired by a slightly improved version of Roos’ algorithm
which was given by Gu et al. [46]. We devote Chapter 3 to a description of
this algorithm as a preparation to our large-update algorithm. As we mentioned
above, Roos’ algorithm and our algorithm share the property that they approx-
imately follow the homotopy path to find an optimal solution. In Chapter 4
we introduce the notion of the homotopy path and argue that if (P) and (D)
are both feasible, then the homotopy path converges to an optimal solution of
these problems. Chapter 4 is based on [8]. The main result, namely a class of
large-update IIPMs for LO, is presented in Chapters 5 and 6. Chapter 5 deals
exclusively with the theoretical properties of our algorithms which amount to ob-
taining a default barrier-updating parameter 6 and estimating the total number
of iterations. Unfortunately, the outcome of Chapter 5 is disappointing as the
best convergence rate of a variant is O(ny/n(logn)?). This is because we were
not able to get rid of n in the expression of §. One might ask then why we call
our algorithm a large-update algorithm. To justify this we rely on our numerical
test. We ran the algorithm to solve a subset of the NETLIB problems and com-
pared the iteration numbers with those of the well-known LIPSOL package, the
best existing software for the solution of LO problems. The iteration numbers
of our algorithm seem promising; the outcome was in favor of LIPSOL, though.
We obtain substantial larger values of 6 than its default (theoretical) value, even
0 = O(1), during our implementations. Moreover, we often observe that § = 1
within a few iterations after the start of the algorithm, which means that we have
reached feasibility. Obviously, one then may proceed with a feasible large-update
approach. Details regarding the implementation of the algorithm can be found in
Chapter 6. Chapters 5 and 6 are based on [9]. We offer some concluding remarks
and topics for further research in Chapter 7.






2

The state-of-the-art in IIPMs

2.1 Introduction

As we made clear in Chapter 1, FIPMs assume that some strictly feasible point is
at hand and generate a sequence of strictly feasible points converging to an optimal
solution. In real-life problems it more often happens that no strictly feasible point
is known a priori; moreover, the problem may not be feasible at all. Therefore,
most existing practical algorithms allow positive but infeasible starting points!.
These algorithms are referred to as infeasible interior-point methods (IIPMs).
The current chapter deals extensively with the state-of-the-art in the theory of
ITPMs.

As we mentioned in Chapter 1, IIPMs generate a sequence of infeasible triples
(z,y,s) with (z,s) > 0. As usual, the duality gap is measured by z”'s and the
primal and the dual infeasibility by, respectively, ||rp|| and ||r.| where r, and r.
are given by (1.3). The infeasibility and the duality gap are decreased at about the
same rate, i.e., the quantity e(z,y, s), given by (1.20), is monotonically decreasing.
For a prescribed € > 0, a triple (z,y, s) is an e-solution of (P) and (D) if (1.21) is
satisfied.

Starting from initials (2, y°, s°) with 2 > 0 and s° > 0, most IIPMs for LO,
e.g., those studied by Lustig [62], Kojima, Megiddo and Mizuno [54], Mizuno,
Kojima and Todd [76], Mizuno [75], Potra [91] and Roos [97], use, implicitly or
explicitly, the following system to solve the pair (P) and (D):

b— Az =uvr), x>0, (2.1a)
c—ATy—s=uvr? >0, (2.1b)
s = pe, (2.1c)

IE.g., LIPSOL package of Zhang [120], PCx package of Czyzyk et al. [18], LOQO package of
Vanderbei [112] and etc., all of which are available on the web site of Network Enabled Optim-
ization Server (NEOS Server: http://neos. nts. anl . gov/ neos/ sol vers/index. htm ).

17
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where > 0, v € (0,1], and r§ and rQ are, respectively, the primal and the
dual initial residual vectors. It can be noticed from the system (2.1) that the
parameters v and p control the feasibility and the optimality, respectively. For
1 =0 and v = 0, the system coincides with the KKT system (1.1). Now consider
the perturbed problem (P,) (see e.g., [78, 97]), defined as

(P,) min{(c—urg)Tx: Az =b—vr), xZO},
and its dual (D, ), given by
(D,) max{(b—wg)Ty: ATy +s=c—uvr?, 520}.

It can be easily verified that the system (2.1) is the parameterized KKT system
with respect to p, of the perturbed pair (P,) and (D, ). Because triple (2°,9°, s%)
is strictly feasible for the pair (P,) and (D, ) if v =1, then (P7) and (D) satisfy
the TPC. As a result, if v = 1, the system (2.1) has a unique solution for any
@ > 0. It has been proven (see e.g., [97, Lemma 3.1]) that (P) and (D) are
feasible if and only if the perturbed pair (P,) and (D,) satisfies the IPC for any

€ (0,1). It follows that (P) and (D) are feasible if and only if the system
(2.1) has a unique solution for any v € (0,1) and g > 0. Denoting this unique
solution by (z(u,v),y(u,v),s(u,v)), x(u,v) is called the p-center of (P,), and
(y(p,v), s(u,v)) the p-center of (D,). The set of these u-centers of (P,) and
(Dy), for all 0 < v < 1 and g > 0, form a 2-dimensional surface outside the
feasible region of (P) and (D) which is called the surface of centers (see [78]).
In order to improve the feasibility and the duality gap with the same speed, it
is assumed that the ratio £ is a constant. Under this assumption, the above
mentioned surface is reduced to a path of centers which is called the homotopy
path of (P) and (D). Moreover, for the sake of notational simplicity, we denote
the p-centers (z(u, v), y(u, v), s(p, v)) by (x(v),y(v), s(v)). It is worth mentioning
that existence of the homotopy path does not require (P) and (D) to satisfy the
IPC. In Chapter 4 we establish that as ¢ — 0 (and v — 0), the homotopy path
converges to an optimal solution of (P) and (D).

2.2 A brief overview of IIPMs

In this section we briefly discuss some existing ITPMs that will be discussed more
in detail in the subsequent sections. Table 2.1 shows the methods that we discuss.
The origin of modern ITPMs is due to Lustig [62]. Lustig’s algorithm was inspired
by the “big M” method for the initialization of IPMs. The “big M” method for
IPMs was introduced by Megiddo [72] and inspired by a well-known initialization
method for the simplex method, introduced by Charnes, Cooper and Henderson
[16]. In the “big M” method, some huge coefficients are introduced and they may
cause severe numerical instabilities. The motivation of Lustig for designing his
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Author Contribution of the paper Conv. rate Ref. | Sec.

Lustig | primal-dual IIPM (1990/91) - [62] | 2.4

Kojima

Megiddo | global convergence of IIPMs (1993) - [54] | 2.5

Mizuno

Zhang polynomiality of ITPMs (1994) O(n?) [119] | 2.6

Mizuno | improvement of the convergence O(n) [75] 27
rate of IIPM by a factor of O(n)

Potra | PC IIPM (1996) O(n) [91] | 2.8

Mizuno . . Alg. I: O(n?y/n)

Kojima ‘E}ll;(;%)potentlal—reductlon IIPMs Alg. T:: O(n2y/n) | [76] 2.9

Todd Alg. IIL: O(n)

Table 2.1: Progress in IIPMs

algorithm was to overcome this issue. Lustig’s achievement was elimination of the
role of M in his computations by taking M infinitely large. We explain this in
Section 2.4. To facilitate understanding of Lustig’s method, we briefly describe
Megiddo’s “big M” method in Section 2.3.

Lustig implicitly solves the system (2.1) at an iteration. The Newton directions
corresponding to this system are calculated from the following system:

AAz = vrd,
AT Ay + As = vr? (2.2)

cH

sAx + xAs = ue — xs.

By choosing some proper step size a € (0,1], the parameter® v reduces by a
factor 1 — a. Although, from this monotonic reduction of v, one can expect
convergence of the algorithm to a feasible point, but no theoretical proof was given
concerning global convergence because it was difficult to deal with the following
two situations:

(i) when the optimality occurs before the feasibility,

2Tt is worth mentioning that, Lustig’s algorithm is a two-phase approach. Phase I cares more
about the feasibility than the optimality. This means that the algorithm attempts to reduce
the parameter v while the parameter 1 may be decreasing or increasing (the optimality may
improve or worsen). Once a (strictly) feasible point has been found (v is small enough or v = 0),
the algorithm enters Phase II which is a FIPM.
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(ii) when P° = and/or D° = {.

In the case (i), some infeasible iterates may be obtained at which the duality gap
is zero, and in the case (ii), the parameter v can not be set to zero at any iteration.

It is worth to mention that despite its drawback of having no theoretical
convergence proof, practically efficient variants of Lustig’s algorithm were given
by several authors such as Lustig, Marsten and Shanno [63, 64] and Choi, Monma
and Shanno [17].

Inspired by the primal-dual FIPM, studied in [56], Kojima, Megiddo and
Mizuno [54] designed a variant of Lustig’s algorithm which has a global con-
vergence proof. In this variant, the Newton steps are obtained from the system
(2.1) with the parameter p set a priori to a fraction of u,, i.e., Bz7s/n for some
B € (0,1). The use of this u yields some improvement of the duality gap at an
iteration. Different step sizes ap € (0,1] and ap € (0,1] are used in the primal
and the dual spaces, respectively. They are calculated in such a way that the fol-
lowing two properties are guaranteed: first, the feasibility improves with the same
speed or slightly faster than the duality gap at an iteration of the algorithm?, i.e.,
the iterates satisfy

max {||7p ], [|7e]|} < AzT's for some A > 0; (2.3)

this is useful to overcome the issue described in (i). Second, the iterates stay
always away from the boundary (either outside or inside the feasible region of (P)
and (D)) until the optimality is obtained. Precisely speaking, the iterates satisfy

aT's
xs > e for a v € (0,1). (2.4)

This is useful when P° = () and/or D° = ), which concerns the issue described in
(ii). In the FIPM, presented in [56], strictly feasible points are generated which
satisfy (2.4). The set of strictly feasible points of a pair (P) and (D) satisfying
(2.4) is referred to as the infinity neighborhood of the central path of (P) and (D)
and denoted by N_o(7):

T
N_w(y) = {(x,s):xEP,SED & xszv%, withvE(O,l)}.

The ITPM presented in [54], generates iterates in the infinity neighborhood of the
central path*. If the feasibility is satisfied, the algorithm reduces to the FIPM,
presented in [56]. Kojima et al. [54] prove that the duality gap® is monotonic-
ally decreasing by a constant factor, whence global convergence of the algorithm

3Unlike Lustig’s algorithm, the optimality and the feasibility both improve at an iteration of
Kojima et al.’s algorithm [54].

4In the sequel of the current chapter, unless otherwise stated, by ‘central path’ we refer to
the central path of either the original pair (P) and (D) or some perturbed pair (P,) and (D).

5As we mentioned in Chapter 1, throughout this thesis, unless otherwise stated, by ‘duality
gap’, we refer to the duality gap with respect to either the original pair (P) and (D) or to some
perturbed pair (P,) and (D).
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follows. In the case of infeasibility, the algorithm detects a region where no primal-
dual feasible solution is available. We explain Kojima et al.’s IIPM in Section 2.5.

The first polynomial-time ITIPM was presented by Y. Zhang [119]. He considers
a variant of the algorithm studied in [54] for solving the so-called Horizontal Linear
Complementarity Problem (HLCP). The convergence proof of this algorithm is
more or less the same as [54]. However, these algorithms are different in some
minor aspects: in Zhang’s algorithm, identical step sizes in a primal and the dual
spaces are used, i.e., ap = ap = « with some « € (0,1]; and moreover, the
duality gap and the infeasibility are reduced with the same speed, i.e., 1 — a. It
is established that the step size is inversely proportional to the initial residual
norms. Hence, by introducing an initial point at which the residual norms are
O(n), Zhang obtains o = O(1/n?) which gives rise to the convergence rate O(n?)
for the algorithm®. We describe this algorithm for the case of LO (which is a
special case of the HLCP) in Section 2.6.

Inspired by the algorithm of Zhang [119], Mizuno [75] presented a modification
of the algorithm studied in [54] with O(n?) convergence rate. As in [54], this
variant reduces the infeasibility slightly faster that the optimality. Later on,
Mizuno realized that by further tightening the neighborhood of the central path, a
larger fraction of the Newton steps could be used. Precisely speaking, by replacing
the the neighborhood N_ o () by N2(7), defined as

No(y) = {(.8) > 0:  [las — pgell < g}, with a vy € (0, 1),

he established that the step size can improve to o = O(1/n). This yielded the
convergence rate O(n). We explain this algorithm in Section 2.7.

After the release of Mizuno’s O(n) IIPM [75], Potra [91] also published an
O(n) predictor-corrector IIPM7. Potra’s algorithm uses the same neighborhood
as the algorithm of Mizuno [75]. However, they are different in some aspects. The
predictor step of Potra’s method consists of two types of Newton steps rather
than one. The first predictor step which is an affine-scaling step improves the
duality gap preserving the current feasibility, and the second one improves the
feasibility and has a tiny impact on the duality gap. As in Mizuno’s PC algorithm,
the outcome of the predictor steps is a point in the neighborhood N3(27). The
corrector step leaves the duality gap and the residual norms unchanged and brings
the iterates generated during the predictor step to the neighborhood Na(7). An

6Roughly speaking, the polynomiality of the algorithm is obtained by using some narrower
neighborhood than the one used in [54]. This can be justified as follows. To prove polynomiality
one needs to set the step size to its lower bound, i.e., O(1/n2). Therefore, the neighborhood of
the central path which covers the iterates becomes smaller than the one used by Kojima et al.
[54].

7 After the release of the first version of Mizuno’s paper [75], Potra [90] introduced a predictor-
corrector (PC) IIPM with the convergence rate O(n+/n). Before Potra’s result got to be pub-
lished, Mizuno published the second version of the paper [75] which contained an O(n) PC
algorithm. After that, Potra realized that by a slight modification of his algorithm, he could
prove the convergence rate O(n).
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iteration of the algorithm improves the feasibility and the duality gap with the
same speed. We describe Potra’s algorithm in Section 2.8.

So far, the algorithms we mentioned above are path-following methods. Pre-
cisely speaking, the generated iterates stay in a certain neighborhood of the ho-
motopy path of (P) and (D) which consists of the p-centers of the perturbed
pairs (P,) and (D, ) as the parameter v and the barrier parameter u tend to zero,
simultaneously. It can be established (see e.g., [98, 115]) that these p-centers
are the minimizers of a barrier function which depends on the iterates and pu.
Potential-reduction methods (PRMs) also use a barrier function which is called
potential function. A potential function depends only on the iterates and has
no minimizer. It is mainly used to determine the step size and an upper bound
for the number of iterations. The step size is chosen such that the potential
function decreases by some positive value per iteration. As the potential func-
tion approaches —oo, the iterates converge to an optimal solution. We refer to
[51, 57, 117] for some feasible PRMs. Mizuno, Kojima and Todd [76] presented an
infeasible potential-reduction method for LO problem. They introduce three vari-
ants of such algorithms, namely Algorithm I, IT and III. Algorithm I decreases the
potential function of Tanabe-Todd-Ye [104, 108] under a condition which makes
the duality gap to improve not faster than the feasibility. This condition has been
already used in the polynomial-time IIPMs presented by Zhang [119] and Mizuno
[75]. Algorithm I is called a constrained potential-reductrion IIPM. Mizuno et
al. prove the convergence rate O(n?,/n) for this variant. Algorithm II decreases
a new potential function which is obtained by embedding the constraint of Al-
gorithm I into the Tanabe-Todd-Ye function. The iteration bound for variant II is
the same as for variant I. Algorithm IIT is an O(n) variant of Algorithm II. Unlike
Mizuno’s O(n) PFM, Algorithm IIT does not confine the iterates to any neighbor-
hood of the homotopy path. We refer to Section 2.9 for a detailed description of
these algorithms.

2.3 The “big M” method in IPMs

Megiddo [72] was the first who applied the logarithmic barrier approach for simul-
taneous solution of the primal and the dual problem. He proposed to reformulate
the problem using an artificial variable so that a starting point became available.
To this end, a “big M” multiplier of an artificial variable was added to the object-
ive function along with a new constraint with right-hand side M. This method
was developed to a primal-dual algorithm by Kojima, Mizuno and Yoshise [56].
For a sufficiently large M, as in the simplex method, an optimal solution for the
original pair can be obtained if and only if the optimal value of the artificial vari-
able is zero. For arbitrary initials 2° > 0, y° and s > 0, the primal artificial
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problem (Pj;) is defined as

min Tz +Mxpi1

s.t. Ax +Tg$n+1 =b,
oT (Par)
—re T +Zpto = M,
z, Tp41, Tng2 2> 0,
and its dual problem (D,y) is given by
max by +My,, i1
st. ATy —1r%,41 +s =c,
TETZ/ +5n41 =M, (D)
Ym+1 +sn42 =0,

S, Sn+1, Sn+42 Z 07

where z,11 and z,42 are primal artificial real variables, y,,41, Spt1 and S,12,
dual artificial variables, r) and r?, the primal and dual initial residual vectors and
M is a sufficiently large real number. The latter means that M is so large that
the inequality

M > max{—rngO,rgTyo}, (2.5)

is satisfied, according to Kojima et al. [56].
It is worth noting that the pair (Py;) and (D) was also used later by Kojima,
Mizuno and Yoshise [56] and Monteiro and Adler [80].
We recall from [56, Theorem 2.3] that if, in addition to the condition (2.5), M
satisfies the condition
M > max{—rSTx*,rgTy*},
where (z*,y*, s*) is an optimal solution of (P) and (D), then one has

(a) A feasible solution (x, 241, Zny2) of (Pas) is optimal if and only if x is
optimal solution of (P) and z,41 = 0.

(b) A feasible solution (y, Ym+1) and (s, Spt1, Snt2) of (Dar) is optimal if and
only if (y, s) is optimal solution of (D) and y,,+1 = 0.

A nice feature of the pair (Pj;) and (D) is that strictly feasible solutions are
at hand. Taking

r=12% 2,1 =1 and Zn40=M+ TSTLCO, (2.6)
we have a primal strictly feasible solution for (Pjs), and taking

T
s=5" spp1=M—710"y° and s,40 =1, (2.7)
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we have dual strictly feasible solutions for (D).

An implementation of the algorithm of Kojima et al. [56] was first presented
by McShane, Monma and Shanno [71] which proved to be favorably comparable
with the past implementations like that of Monma and Morton [79] or MINOS?®
910 " software based on the simplex method designed by Murtagh and Saunders
[82].

2.4 Lustig’s algorithm

Lustig [62] aims at solving the pair (P) and (D), starting from an arbitrary triple
(29,9°,5%) with 2° > 0 and s > 0. His algorithm is a two-phase approach.
Phase I is devoted to obtain the feasibility and Phase II improves the duality
gap. As we mentioned in Section 2.1, he implicitly solves the system (2.1) at an
iteration of Phase I. The Newton step corresponding to this system is obtained
from the system (2.2). Using some step size a € (0, 1], he obtains strictly feasible
iterates  + aAz > 0, y+ aAy and s+ aAs > 0 for the new perturbed pair (P,+)
and (D,+), with v* = (1 — @)v. In other words, the feasibility improves by a
factor 1 — « at an iteration of Phase I. Once the parameter v is small enough the
algorithm enters Phase II which is a FIPM.

A nice feature of Lustig’s algorithm is that Phase I of the algorithm does not
involve any computations with huge coefficients like ‘big M’, and therefore it is
more stable than other implementations of IPMs such as the one given in [71]. He
achieved this by applying some FIPM to solve the artificial pair (Pys) and (D)
and then taking M infinitely large. In this way, he managed to eliminate ‘M’
from the Newton steps. He named the new Newton directions the limiting search
directions; as we will show in Subsection 2.4.2, these directions coincide with the
Newton steps obtained from (2.2).

The next subsection deals with the definition of the Newton directions of the
artificial pair (Pps) and (Day).

2.4.1 Newton steps for the artificial pair

Throughout this section, we will make frequent use of the following notations:

_ A )0 - b B
A= , b= , ¢= (¢ M;0),
—rY 0 1 M

and the vector of variables

T=(2;Tnq15Tn42)s J= UiYms1) and 5= (8;8n41;5n+2)-

8User’s guide: htt p://www. st anf or d. edu/ gr oup/ SOL/ gui des/ m nos55. pdf
9ht t p: / / www. st anf or d. edu/ gr oup/ SOL/ ni nos. ht m
Oht t p: / / www neos. nts. anl . gov/ neos/ sol ver s/ nco: M NOS/ AMPL. ht mi
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Using these notations, the pair (Pas) and (Djs) can be rewritten as follows:
min {ETi . Az =b, z2>0}, (2.8)

and
max {b'y: ATy+s=¢, 5>0}. (2.9)

As we mentioned in the previous section, strictly feasible solutions are avail-
able for the pair (Pas) and (Djs) given as in (2.6) and (2.7). Thus, Lustig [62]
applies the generic feasible interior-point algorithm, introduced by Megiddo [72]
and further studied by Kojima et al. [56] and Monteiro and Adler [80], to this
pair. It turns out the Newton search directions (A%, Ay g, AyS), defined as

Ax As
_ _ Ay _
Ay = A$n+1 s AMy = , and Ays= A8n+1 s
Aym—i-l
Axn+2 A5n+2

can be calculated from the system

AN, Z =0, (2.10a)
ATA LG+ A5 =0, (2.10b)
SALT + TALS = Tys, (2.10c)

where
Tys = e — TS5, for some p > 0.

Lustig does not deal with the last system directly. Instead, by solving this
system for rys = —Z§ to obtain (A%z, A%y, A%35), and for rys = e to get
(AS,z, AS,7, A¢,5), he calculates the solution of the system (2.10) by using the
following relation:

(An; Ay, Aus) = (ALT, ALY, ALS) + 1 (ALT, ALY, ALS) .

In the next subsection, we describe how Lustig succeeded in eliminating M.

2.4.2 Limiting search directions

D:diag( ),

AD?ATA g =,

Defining

it can be verified that
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Substituting A, b and D, after some simplifications and reductions, the last equa-
tion turns out to be equivalent to

AD?AT 4 Zmia 0,07 —AD*0 b
Sp41 DD AC y _
TOTDQAT D2 0 + Tn42 M M ’
c Sn+42

where D := diag (\/x/s). It can be verified that the last system is equivalent to
the following system of equations:

T 2 AT 2 0
24T | @ng1.0,.07  AD*r2r0" D%A MAD?r
AD*AT + Snt1 Ty TOTD2T0+ “nt2 0 b+ TOTD2T0+ ]
’ Sn42 A¢ g= Sn42
0 D2AT 1 M M
oT 2 04 Int2 0T 2,04 “nt2
r9* D?%r +g ) r9t D2r +g )
(2.11)

Note that M appears also in the artificial variables z,42 and s,41, and this
dependence is:
T T
xn+2:M+r2 z and an:M—rg Y.

Hence, when driving M to infinity, the system (2.11) boils down to

AD?AT 0 b+ Spy0AD?*r?
lim A% g = e e (2.12)
0 1 M—o0 Snt2

Denoting
Jim A%LG = (Afy, Afymin)”
— 00

the relation (2.12) implies that
Aty = (AD*AT) " (b+ 5,124AD%0)  and  Afymi1 = Snto.

Obviously, the expressions for Afy and A%y,,41 do not depend on M. Using
(2.10b), one may write

AT —7"2 .
J\4hin A4 5= hm —ATAY gy = — z?T 0 ey
) 0 ]\

—ATAe 2y + Spyord

0T Aa
- Ty By

—Sn+42
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In a similar way, we eliminate M from the primal direction. Using (2.10c)
with r,s = —Z35, one has

Thus, one gets

Substitution of D, # and A% 3 implies that

—z 4+ D*(AT A%y — s,,4210)
[ — T T
AMx - —Tp4+1 + 9:111 7’2 A‘;y

0

By driving M to infinity, one gets

—z — D?A¢s
o st | | 212
0
where A¢s = —ATAYy — y, 170, Since, by (2.9), spi2 = —Ym+1, the search

directions (Afxz, Afy, Afs) are defined as follows:
Abx = —x — DzAgs,
A%y = (AD2AT) ™" (b= y 1 AD%0)
Afs

—ATAZy — ym_,_lrg.

Lustig named these directions the limiting search directions. It can be easily
verified that these limiting directions satisfy the relations

AAfx = anrg,
ATAGy + AYs = —ymi172, (2.14)
sAfx + xAfs = —xs.
Similarly, denoting
lim A7 = (Afy: Afym),
M—o0

it can be verified that

Aby = —(AD’AT) ' As™' and Ay = 0. (2.15)
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Substitution in (2.10b), after setting r,s = e in (2.10), implies that
lim A$,s= (—ATAZQ; —T?TAﬁy;O) .
M—ro00
By replacing A¢,5 in (2.10c), after setting 7,5 = e in (2.10), we arrive at
: [ -1 2 AC 1
lim A, z={s"" — D*Afs;0; — |, (2.16)
M —00 Sn+2

where

Afs = —ATAfy.

As a result, the limiting centering steps (Afz, Afy, Afs) are calculated as fol-
lows:!!

ASz = s71 — D?A¢s,
by = —(AD2AT) ' As,
¢s = —ATA%y.

It can be easily verified that these limiting centering directions satisfy

AAGz = 0,
ATAGy + A¢s = 0, (2.17)
sAfx + xAfs = e.

Now given the directions (Afx, Afy, As) and (Afx, Afy, Ajs) as defined,
respectively, by (2.14) and (2.17), Lustig calculates the parameters x4 and « such
that new iterates (z*,y™", sT) defined as

zt =2+ a(Afx + plAjx),
y" = y+a(Afy + udjy), (2.18)
s+ a(Afs + pAgs),

satisfy (z7,s) > 0 and
[I75]] < 100][r|] (2.19)

The condition (2.19) serves to assure that the primal and dual feasibility are
achieved at a close rate. Moreover, in some LO problems with empty dual interior,
some dual variables tend to zero while their complementary variables blow up.
This causes some numerical instabilities. This condition serves to overcome this

11We dub the search directions obtained in this way “limiting centering steps” to make it clear
that they are obtained by driving M — oo. This term was not used by Lustig [62].
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issue too, by keeping the amount of primal and dual infeasibility close to each
other.

By (2.13) and (2.16), one has Afz,41 = —x,41 and Afz, 41 = 0. This implies
that after an iteration of the algorithm the artificial variable x,11 is updated as
follows:

zh =1 - )zpi1. (2.20)
Moreover, (2.9) and (2.12) imply that Afym+1 = Snt2 = —Ym+1- By (2.15),
AfYm+41 = 0. Therefore, after an iteration of the algorithm the artificial variable
Ym+1 is updated as follows:

Y1 = (1 = QY. (2.21)

Because 20, = =y, .1 = 1, r) # 0 and r? # 0, the variables z,, 1 and —yum, 11

remain equal throughout the algorithm according to (2.20) and (2.21). Thus, one
may assume Tpy1 = —Ym+1 = v for some v € [0,1].

Note that according to the definition of (Pys) and (Dyy), the iterates always
satisfy the relations
Az =b—vr), x>0,
(2.22)
ATy+s=c—uvrl, 5>0,

which means that the iterates (z,y, s) are strictly feasible for some perturbed pair
(P,) and (D,). On the other hand, the parameter v reduces by a factor (1 — «).
It follows that after a Newton step (Ax, Ay, As) of Lustig’s algorithm, defined as

Ax = Afr + pAjz, Ay =Ajy+ pAjy and As=Afs+ uAjs, (2.23)

the new iterates (z7,y™, s1), given by (2.18), are strictly feasible for the perturbed
pairs (P,+) and (D,+) with v+ := (1 — @)v. This means that Lustig’s algorithm
generates a sequence of strictly feasible triples (z,y,s) of the perturbed pairs
(P,) and (D,) for decreasing values of v. If &« =1 occurs at some iteration, then
one has v+ = 0 which means that the primal and the dual feasibility have been
obtained.

By (2.14) and (2.17), it can be easily verified that the Newton step (Ax, Ay, As),
given by (2.23), solves the system (2.2) which defines the Newton step correspond-
ing to the perturbed pair (P,) and (D,).

By (2.22), at an iteration of the algorithm, the residual vectors r, and r.
satisfy

ry =vry) and 7. =uvrl. (2.24)

Using these, the system (2.2) can be rewritten as follows:

AAx = 1y,
ATAy + As = 7, (2.25)

SAx + xAs = ue — xs,
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which coincides with the Newton search directions for the system (1.2).

Although Lustig established a monotonic reduction of the parameter v which
seems to be sufficient to prove global convergence, however, as mentioned in Sec-
tion 2.1, he could not present any theoretical convergence proof because of two
reasons: first, in the case where (P) or (D) is infeasible or unbounded or has empty
interior, the parameter v could not be set to zero at any iteration; and second, it
was not easy to guarantee simultaneous occurrence of feasibility and optimality.
In the next section, we explain the algorithm of Kojima, Megiddo and Mizuno
which is a globally convergent variant of Lustig’s algorithm. They present some
solutions to the above two issues which guarantee global convergence.

2.5 The algorithm of Kojima et al.

Kojima, Megiddo and Mizuno [54] consider the algorithm of Lustig [62], described
in the previous section. Just as Lustig, they allow different step sizes ap and ap
along the primal and dual directions, respectively. They establish that there is
an o* € (0,1) for which min{ap,ap} > o*. Without loss of generality, for the
sake of simplicity, we feel free to assume that ap = ap = « for some « € (0,1).
As mentioned in Section 2.1, « is chosen such that the iterates satisfy (2.3) and
(2.4). The condition (2.3) serves to overcome the issue (i), described in Section
2.1 and the condition (2.4) is useful when dealing with the issue (ii). In short,
in the algorithm presented in [54], the iterates belong to the modified infinity
neighborhood N of the central path!'? of (P) and (D), defined as

N = {(Z‘,y,S) 1T, 8 € ]R/i+7 s > YHg€,

ry|| < gp OT T <xT5,
[roll < ep or v [|7s| < (2.26)

[rell < eaor vqre < a™'s,
v € (07 1)’ (PYP”ydvgpvgd) > O}

Under the assumption that a primal-dual optimal solution exists, global con-
vergence follows by showing that in each iteration both the infeasibility and the
duality gap are decreasing by a constant factor. Their algorithm is able to detect
a region where no feasible point exists.

They also presented an extension of their algorithm to LCP; this is discarded
because it is beyond the scope of this thesis.

We proceed with explaining how the authors obtain a lower bound a* of the
step size a.

121t is worth mentioning that Kojima et al. call A the neighborhood of the central path of
(P) and (D). This statement may not be correct in general because if (P) and (D) have empty
interior then there is no central path. However, one can find some v € (0,1) for which the
iterates belong to the neighborhood N_o(7) of the central path of the perturbed pair (P, ) and
(D).
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2.5.1 Global convergence

As Lustig [62], Kojima et al. calculate the Newton directions (Ax, Ay, As) from
the system (2.25). A minor difference between Kojima et al.’s directions and
Lustig’s is that in Kojima et al.’s algorithm, the barrier parameter p is set a
priori to

p=Pipg, 0<p1 <L

with p, given by (1.13). This guarantees improvement of both the feasibility and
the duality gap at an iteration. Recall that, in [62], as long as the infeasibility
insists, Lustig cares more about the feasibility than the optimality and the para-
meter © may increase or decrease, whilst in [54], the authors push the algorithm
to reduce both the duality gap and the infeasibility at an iteration.

Kojima et al. reduce the duality gap slightly slower than the infeasibility. To
this end, they choose the step size a such that the following two relations hold:

(x,y,8) + a(Ax, Ay, As) e N, (2.27a)
(z+alz)” (s+als) < (1—a(l—p))aTs, (2.27h)

for a B2 € (B1,1). As in Lustig’s algorithm [62], one has:
I Il =@ =a)lre]l and [rf] = (1 —a)llre]l, (2.28)

where r;" and r} are the primal and the dual residual vectors at (z*,y*,s™),
with
(gt 5% = (2,9.5) + oA, Ay, As). (2.29)

This means that the residual norms are reduced by a factor 1 — « which is smaller
than 1 — a (1 — Ba).

If o > 0 is a lower bound for the step size a (see Theorem 2.5.1), then (2.27b)
implies that the duality gap is decreased as follows:

(z+a*Az)" (s+a*As) < (1 —a* (1 — B)) 27 s. (2.30)

Assuming that an optimal solution exists, this monotonic reduction on the
infeasibility and the duality gap implies that after a finite number of iterations
they reach or bypass a prescribed accuracy. Precisely speaking, there exists some
K such that Vk > K one has

o — Aka <ep and |c-— ATyF — sk|| <ey and (xk)Tsk <e,  (2.31)

for some positive €,,c4, €, where (z*, y¥, s*) are the iterates generated at the k-th
iteration of the algorithm.

The authors implicitly prove the following theorem which says that after a
finite number of iterations the algorithm arrives at either a primal-dual optimal
e-solution or at some iterates whose 1-norm is very large. We briefly explain its
proof because it yields a positive lower bound «* for the step size a which is
needed in the proof of convergence.
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Theorem 2.5.1. Let € > 0 and w* > 0 be given. There exists a K such that
Vk > K, the iterates (xk,yk, Sk) generated by the algorithm satisfy either (2.31)
or
||(xk,sk)||1 > w*. (2.32)
Proof. The proof goes by contradiction. Assume that neither (2.31) nor (2.32)
is satisfied throughout the algorithm. Then for any %, one should have

(xk)Tsk >e* and ||(xk,sk)||1 < w*, (2.33)

with
e = min {ypep, Yaca, €} - (2.34)

Hence, the sequence {(xk, yk, sk) }1;.11 lies in the following compact set:
N*={(z,y,5): 2Ts>c" and |/(z,9)], <w*}.

On the other hand, both the left-hand side coefficient matrix and the right-hand
side vector of the system (2.25) are continuous over N™* for any (x,y,s). As a

consequence, the Newton search directions (Ax, Ay, As) are bounded above over
N*. That is,

ATzAs

n

dn st |Az;As; — <7 and |ATxAs| <. (2.35)
Kojima et al. derive an o* for which the iterates certainly lie in A and the
duality gap is decreasing to zero. But this is inconsistent with (2.33), which says
that the duality gap is always strictly positive. This leads to a contradiction.
They obtain a* as follows.
The iterates belong to N if the step size a satisfies (i), (i) and (iii) below:

(i) fi(@) = (z; + alw;)(si + als;) — ylotetea (uhods) 5 o 1. p
(i) gp(@) = (z + aAz)" (s + als) = (1 —a) ]| 2 0 or (1—a)|r] <&,
(iii) ga(e) = (z + aAz)" (s + alAs) —vq(1 — ) [[re] >0 or (1 —a)|re|| < ea.
Assuming that g,(0) > 0 and g4(0) > 0, Kojima et al. prove that f;, i =1,--- ,n,
gp and gq are bounded below as follows:'3
fl(a) 261 (1_7)(5*/’”’)05_7]052) izlv"'anv
gp(a) > Bre*a —na?, (2.36)

ga(@) > Bre*a —na’.

13Due to their less relevance to the goal of the section, the details regarding the proof of the
inequalities (2.36) have been omitted here.
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If either g,(0) > 0 or gq(0) > 0 does not hold, they consider (1 —«) ||rp|| < € or
(1 — @) ||re]| < e, instead of the second or the third inequality, respectively.

One needs « such that the relations (2.27) are satisfied. It can be easily verified
that the right hand side expressions in (2.36) are nonnegative for the following «:

L { Bi(l—y)e* 516*}
& =min < 1, ) .
nn n

This means that by putting o = &, the iterates certainly lie in A, i.e., (2.27a)
holds. On the other hand, the authors establish that

(1—a(l—p))a"s — (x4 arz)” (s+ als) > (B, — 1) e*a — na’.
It can be easily verified that for all « satisfying

a< (B2 — Br)e”
n

3

the right-hand side is nonnegative. Thus (2.27b) is satisfied for this a.
As a result, by choosing

a* = min {d, W} , (2.37)

since 0 < a* < 1, the equation (2.30) implies that the duality gap is converging
to zero. This is in inconsistent with the first condition of (2.33). Thus the proof
is complete. O

Now we explain the algorithm in a more formal way in the next subsection.

2.5.2 The algorithm

Algorithm 2.1 Globally convergent ITPM of Kojima et al. [54]

Input:
parameters: € >0, 0 <y <1,7,7 >0,0< 5 <1, w* > 0
begin
initial points: 2° > 0, y° and s° > 0;
while (||ry] > e, or ||[re]| > eqor 2Ts > ) & ||(z,9)];, < w*
p-update: = B1pg;
(z,y,5) = (2,y,5) + a(Az, Ay, As);
endwhile
end
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As it can be noticed from the description of Algorithm 2.1, it starts at (2, y°, s°)
with 2 > 0 and s° > 0. The parameters 7,7, and 74 are chosen such that
(2°,4°,s%) lie in N. The system (2.25) with u = B1u, is solved to obtain the
Newton search directions. After calculating the step sizes «, the new iterates
(xt,y*,st) are obtained using (2.29). This process is repeated until the con-
dition for the while statement is violated. If the algorithm stops because of
(2.31), then a primal-dual optimal solution has been found; if it stops because
of (2.32), then one arrives at a region which does not contain any primal-dual
feasible solution. For more details on the latter we refer to the next subsection.

2.5.3 Detecting infeasibility

We start with a theorem.

Theorem 2.5.2. ([54, Theorem 4.1]) Let ¢ > 0 and w > 0 be such that
(@%,y°,5%) € S(o,w) = {(w,y,8) = (235) > o (ese) & [|(a;3)]; <w}.

Let w* satisfy

If the algorithm terminates by (2.32), then the region S(o,w) contains no primal-
dual feasible solution.

Theorem 2.5.2 does not necessarily imply infeasibility as there may be a feas-
ible solution outside the given region. In particular, if (P) or (D) has empty
interior, there is no o > 0 for which S(o,w) contains a feasible solution. To over-
come this deficiency of Theorem 2.5.2, Kojima et al. modify their algorithm as
follows. If at an iteration, one has |ry|| < &, and/or ||r.| < &4, then the sys-
tem (2.25) is used with r, = 0 and/or 7. = 0 during the subsequent iterations.
In this way, one avoids further improving the residual norm(s). Therefore, The-
orem 2.5.2 continues to satisfy. The global convergence of the modified algorithm
follows after a slight modification of the proof of Theorem 2.5.1 [54, Section 5].

Assume that the algorithm stops at the k-th iteration because of condition
(2.32). Then

[(z%,s%)|| >w* and (27)"s* > &7,

with £* given by (2.34). As a result, one may have several options: if both
residuals are less than or equal to the prescribed accuracy parameters, then using
a feasible IPM the duality gap is reduced until an approximate optimal solution
to the original pair (P) and (D) has been obtained. But, if either of the primal
or the dual residuals (or both) are larger than the prescribed tolerances, then by
way of some theorems the authors derive some region where no feasible point is
available [54, Section 5].
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Ongoing efforts on theoretical aspects of the IIPMs were pursued by Zhang
[119] who was the first to establish that IIPMs could be polynomial-time. He
applied the algorithm studied by Lustig [62] and Kojima et al. [54], to the HLCP
and proved that the algorithm has an O(n?) convergence rate. Since we focus on
LO, we present in the next subsection a restriction of this algorithm to LO.

2.6 The algorithm of Y. Zhang

Zhang [119] considers the HLCP, defined as follows:

Mx+ Ns = h,
xs = 0, (2.38)
(z,s) >0,

where x,s,h € R™ and M, N € R"*". It can be easily verified that by setting

A 0 b
M= , N= and h= ,
0 B Be

where B € R("~™)*" is full row rank and BAT = 0, the system (2.38) becomes
equivalent to the KKT system (1.1).
Following Kojima et al. [54], Zhang deals with the system (2.25) with

p=opg, fora oe(0,1).

He uses an initial point which has a special property. Let (z°,%°,35°) be such
that
A’ =b and ATy +3° =¢,

but not necessarily (z%,5%) > 0. The initials (2%, 7%, s%), with 2° > 0 and s° > 0,
are taken such that
(2°,8%) > (2°,3°). (2.39)

It is worth mentioning that, later on, the above restriction on the starting
point was relaxed by Stephen Billups and Michael Ferris [14].

Unlike Lustig [62] and Kojima et al. [54], Zhang [119] uses equal primal
and dual step sizes. The common step size « is chosen so that new iterates
(xt,y*,sT), given by (2.29), satisfy (z+,sT) > 0 along with the following condi-
tion:

atlst > (1—a)zTs. (2.40)

Following the general policy in IIPMs, the condition (2.40) is considered to assure
that the duality gap is reducing not faster than the infeasibility. It can be verified
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as follows. Using (2.28), one may say

4T 4 0 .0
+ o+ o €T S +T +||(rb T )H
Iyl = (A = a)ll(re,re)| < —z =N, 7e)ll <277 s 733()};(] :

This means that the residual norms are always bounded above by a fixed multiple
of the duality gap and, therefore, the optimality can not be achieved before the
feasibility has been obtained. Therefore, the condition (2.40) coincides with the
condition (2.3), used by Kojima et al.’s [54].

To prevent the iterates from premature approach to the boundary, the author
imposes the following condition on the iterates:

min(zs) > ypg, fora0 <y < 721(3(;5;082, (2.41)

which is the condition (2.4) of Kojima et al. algorithm [54]. It is worth men-
tioning that the iterates of Zhang’s algorithm are actually captured by a neigh-
borhood N resembling that of Kojima et al. (see Section 2.5) with v, = v4 =

T
(@°)" /N (g, )l

We proceed with showing how Zhang proved global convergence of the al-
gorithm.

2.6.1 Global convergence

The goal is to achieve complementarity and feasibility of the iterates, simultan-
eously. Note that the most popular tools to measure the duality gap and the
infeasibility are, respectively, #7's and the residual norm ||(ry,7.)||. By embed-
ding these two quantities in a so-called merit function ®, defined as

®(z,y,5) = a"s + || (7o)l (2.42)

the author tries to fulfill his goal by assuring some constant reduction on ®. Note
that as ® tends to zero, so do the residual norms and the duality gap. Let us
explain this. The value of the merit function after each Newton step is given by

d(zt,yt,sT) =1 —a+ac)zTs+ a?AzTAs+ (1 —a) || (ry, re) || -
This can be rewritten as follows:
Pt yt,sT) = (1 - p(a)@(z,y,s) (2.43)
where
a((1—0)zTs — alAz" As+ || (ro, re)||)
= . 2.44
o(a) B(z.9.5) (2.44)

Naturally, the value of « for which the function ¢(«) reaches its maximum
value in (0,1) may be the best option. This is equivalent to obtaining the max-
imizer of ¢(«) subject to the conditions (2.40) and (2.41). Existence of such an
a was established in [119, Lemma 5.1].
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Lemma 2.6.1. (cf. [119, Lemma 6.3]) Let @ be the mazimizer of p(c) with re-
spect to (2.40) and (2.41). Then, one has

(1) o> min {1, (1 —~)opg/w?} where ¢ = min{o,1 — o} and

wi=\/IDAD? + D As|

(2) o(a) > a(l —o—alATzAs|/2Ts).

By [119, Lemma 6.2], at each iteration one has

w? < taT's, (2.45)
for some ¢ > 0 and that the sequence {¢x} satisfies
t = limsupty < oo. (2.46)
k—oo
It can be easily verified that
2
IATzAs| < | DAz||| D~ As|| < % (2.47)
By Lemma 2.6.1, and (2.45), one has
1— 5
N e (2.48)
nt

Moreover, by (2.45) and (2.47), one has
|ATzAs|
= 22« 2
s = 2

Using this, Lemma 2.6.1, part (2), implies that

o(a) >a(1—o—%t).
It is assumed that o satisfies
0<o<o< %
Then it follows that 1 — o > 3. As a result, one has
pla) > (1 —af).

Substituting « from (2.48), and noting that « is a maximizer of ¢(«), one con-
cludes that

pla) > ¢ <M) >@i= <1 i 7)) A=), (2.49)

nt n 2nt

This proves that the merit function is reduced by a factor ¢ € (0,1) at each
iteration. Thus, the global convergence of the algorithm follows.

Polynomiality of the algorithm is obtained by slightly modifying the starting
point. The next subsection deals with this subject.
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2.6.2 Polynomiality of the algorithm

Letting
(z°,7°,5°%) = arg mym Z|b — Azl +Z|Cﬂ iy -5,
where A;, for j =1,--- ,m, is the j-th row of the matrix A, the author chooses

the starting point (2,9, s%) as follows:

' =5s"=Ce and 9° =", (2.50)

with ¢ satisfying B
¢z [|@ ]

Note that for an optimal solution (z*,y*,s*), one has ||(zf0,§0)|| < |I(z*, s*)||.
The following lemma is critical.

Lemma 2.6.2. (cf. [119, Lemma 7.2]) Let
¢ =min{||(z",s")||: (z*,y",s")is an optimal solution} ,

and  be such that

. G
> 2.51
with \ independent from n. Then t, defined as in (2.46), turns out to be O(n).

Using Lemma 2.6.2, (2.49) implies that

_ 1

which means that the merit function is decreasing by a factor of O(1/n?). There-
fore, one concludes that if a primal-dual optimal solution exists, after at most

1
O <n2 log g) : (2.52)
iterations of the algorithm, the following condition holds:

D] < e. (2.53)

Thus, the latter is used as the stopping criterion.

But what if no optimal solution exists? Because the sequence {®;};—, of
the merit function values then converges to a positive number instead of zero,
the condition (2.53) will never be satisfied. Zhang proposes some other stopping
criterion in addition to (2.53), similar to that of Kojima et al. [54], which gives
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some information about the region where no feasible solution exists. In short,
the extra stopping criterion is constructed as follows. In the proof Lemma 2.6.2,
the author proves that if an optimal solution (x*,y*, s*) satisfying ||(z*, s*)|| < ¢
exists, then the following inequality certainly holds:

I(rs, o) (@ = 2°)"s + (s° = 5°)"

€T
< 4N +5.
1) a’'s

He uses this in getting information about the infeasibility by terminating the
algorithm if the latter does not hold at some iteration [119, Theorem 8.1].

So far, it has been proven that ITPMs are polynomial, i.e., there is a variant
whose iteration bound is given by (2.52). This bound was improved later by a
factor of O(n) by Mizuno [75]. In the next section, we describe the algorithm of
Mizuno [75] which enjoys an O(n) convergence rate.

2.7 The algorithm of Mizuno

Mizuno [75] considers the algorithm of Kojima et al. [54] described in Figure 2.1.
By slightly modifying the starting point and the stopping criteria, he proves that
the algorithm of Kojima et al. is of O(n?) convergence rate. His starting point is
the same as that of Zhang, namely (2.50). A variant with O(n) convergence rate
is also presented.

2.7.1 Another ITPM with the convergence rate O(n?)

Mizuno starts from the following point:
¥ =5 =~gCe and y° =0,
where 79 € (0,1] is a constant and ¢ is such that

¢ >min {||(z,5)]o0 : Az =b, ATy + s = ¢ for some y}.

The iterates are forced to stay in the neighborhood N defined by (2.26) in which
the parameters «, and 4 are specified as follows:

Z‘OTSO d xOTSO
Y=g and Ya= g
S (721l

Following Zhang [119], Mizuno allows equal primal and dual step sizes, i.e.,
oy = ag = & where & is obtained as described in Subsection 2.5.1.
Let n be defined as in (2.35). In [75, Section 3], the author proves that

n=0(n)z"s.
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By substituting in (2.37), one gets

as>ar :min{l,ﬁl (1—7)5*7516*7 (52—51)5*} :O<i2).
nn n n n

Recall from Subsection 2.5.1 that the primal and dual feasibility are controlled
by a parameter v which is updated by the factor (1 — a*). Precisely speaking, at
each iteration (2.24) is satisfied. Moreover, (z,y,s) € N and (2.24) imply that

T
] = v(2°)" s

0T .0 0\T .0
aTs > @) s and zTs> (z) s lrell = V(xO)TSO.
I8l 721l

Besides, by (2.30) the duality gap is decreasing by a factor of (1 —a* (1 — 33)) at
each iteration. Thus, the algorithm decreases the amount of infeasibility and the
duality gap by a factor of O(1/n?). As a result, if a primal-dual optimal solution
exists, after at most O(n?L’) iterations, with

T 0 0
£ = e g 22t 21121,
€ Ep €d

the algorithm obtains an e-solution of (P) and (D) [75, Theorem 2.1].

2.7.2 An ITPM with convergence rate O(n)

Mizuno [75, Section 4] obtains a variant of the algorithm described in the last
subsection which has O(n) convergence rate. This algorithm is inspired by the
predictor-corrector (PC) FIPM of Mizuno et al. [77]. The iterates are captured
by the following neighborhood:

NQ(ryl) = {(xvya S) ST > 075 > 07 ||Z‘S - /’Lge” < 71/“Lg}7 (254)
for a y1 € (0,1). Mizuno takes 71 = 1. An iteration of the new variant is as
follows. First, Mizuno calculates the step size « such that new iterates (Z, 7, 3),

defined as

T:=rx+alAzx, y:=y+alAy and 5:=s+ aAs,

satisfy
(if,g, 5) € N2(2’yl)v
75 < (1—a(l—pB))als, (2.55)
=T oT .0

775> (1—awr §,

where the parameter v is controlling the feasibility and decreases by the factor
(1 — @) in each iteration. Next, putting u = 7 5/n, the system (1.6) is applied
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r282

r1s1

Figure 2.1: Mizuno’s O(n)-variant IIPM: v, = 1.

to obtain a centering step (Afx, Ay, A¢s). The new iterates (z+,y*,sT) are
calculated as follows:

(x-‘r? y+7 S+) = (‘,'f’ Zja §) + (Acx’ Acy’ ACS)'

In [75, Lemma 4.2] is it established that (z7,y™,sT) € N2(0.25).

It is worth mentioning that, as we made it clear in the last subsection, the
feasibility is improving at a rate (1 — a); while due to (2.55), the optimality is
improving at slightly slower rate, namely, (1 — « (1 — f2)).

An illustration of an iteration of the algorithm is given in Figure 2.1. The
algorithm starts with a point inside the narrow neighborhood AM2(0.25) and then
derives a point inside the wider one, namely N3(0.5). After that using a full-
Newton centering step the point is restored into the narrow neighborhood.

In [75, Lemma 4.3], the author proves that the feasibility step size is bounded
below as follows:

. . 1 [2Ts prats (Ba— B1)aTs
a>a ;=ming =,/ —, , ,
2 8nn n n

where 7 = O(n)xTs. This implies a* = O(1/n). By [75, Theorem 4.1], the
convergence rate the algorithm turns out to be O(n).

So far it has been established that the IIPMs are globally convergent and
polynomial and the best known convergence rate, i.e., O(n), is due to Mizuno
[75]. We proceed with a PC IIPM with the same convergence rate which is due
to Potra [91].
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2.8 A PC algorithm of F. Potra

Inspired by Mizuno’s PC IIPM, described in the previous section, Potra [91]
designed another PC algorithm with the same convergence rate. An iteration of
Potra’s algorithm consists of three types of Newton steps: two predictor steps
and one corrector step. The first predictor step uses an affine-scaling direction
which decreases the duality gap while keeping the feasibility unchanged whilst the
second one serves to improve feasibility at the same rate as the optimality. The
predictor step sizes are chosen in such a way that the generated iterates belong
to some wider neighborhood than N5(0.25). The corrector step serves to restore
these iterates to the narrower neighborhood N2(0.25).

2.8.1 The algorithm

The algorithm designed by Potra [91] is presented in Algorithm 2.2. The starting
point slightly differs from that of Mizuno and is as follows:

" =¢e, s°=ce and y°=0,
where the parameters £ and o satisfy

|ATb]| <€ and |lcl| <o,

with AT denoting the pseudoinverse of A, which is defined as At = AT(AAT)_l.
Notice that the initials (2°,9°, s) given above are perfectly centered; i.e.,

(a%)"'s

n

5% = pe with p=

The first predictor affine-scaling search direction (A%z, A%y, A%s) is calculated
from the following system:

AA%x = 0,
ATAY + A%s =0, (2.56)
sA%r + zA%s = —us,
along which only the optimality improves. Next, the second predictor step (Afz, Afy, Afs)
is calculated from the system
AN ¢ = 1y,
ATAfy + Afs =1, (2.57)
sA g+ xAfs =0,
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which improves feasibility. Their effect on the optimality is not significant. The
step sizes @ > 0 and 6 € (0,1] are calculated such that the iterates (Z,7,3),
defined as

(7,9,5) = (2,y,5) + a(A%, A%, A%) + (A2, ATy, Als), (2.58)

belong to M2(8) where 8 € (0.25,0.5]. In Subsection 2.8.2 we discuss in detail
how to obtain these parameters.

The centering step (A¢x, Ay, A¢s) is given by

AAcx = 0,
AT Ay + A¢s = 0, (2.59)
SA°x + TA°s = [ie — T3,

2’5 The new iterates (x*,yT,sT), defined by

n

with f:=
(zt,yt,sT) = (2,7,5) + (A%, A%, A%s),

are such that (z7,y™,sT) € N2(0.25). See [91, Proposition 2.2] for a proof.
This procedure is repeated until an e-solution (z,y, s) is obtained.

Algorithm 2.2 The PC algorithm of Potra [91]

Input:
accuracy parameter: € > 0;
constants: ¢ > 0, £ > 0;
begin
20 :=¢e; s¥ :=oce; Yy :=0; pu = xOTso/n = o¢;
while e(z,y,s) > ¢
(z,y,5): = (2,9,5) + (A%, A%, A%S) + 0(AFz, Aly, Als);

zTs.
n ?

p-update: p:=
centering step:
(z,y,2) := (2,9, 5) + (A%, A%, A%);
endwhile
end

In the next subsection, we explain how the step sizes § and « are obtained
and how convergence of his algorithm is derived.
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2.8.2 Convergence of the algorithm

Define
z(a,0) := x4+ aA% + ATz,
y(a,0) ==y + aA% + ATy, (2.60)
s(a,0) := s+ alA% + AT s.

Denoting the primal and dual residual vectors at (z(a,0),y(a,0),s(a,0)) by
rp(a, 0) and r.(«, 0), respectively, it can be verified that

rp(a,0) = (1 —0)r, and 7r.(a,0) = (1—0)re.

Moreover,
z(o, 0)" s(a, 6)

- :(1—a+'ya9—|—792)u,

(o, 0) =

with . . ’
a f a f f f
Py:(Ax)Ax—i—(As)As and 7_:(Aac)As.

nu nu

(2.61)

It follows that

if and only if

1
_ —|—7'00

a:X(G):_l—TG :

(2.63)
On the other hand, one has
z(a, 0)s(a,0) = (1 — a)zs + a’h + abg + 6%,
where
h=A%A%, g=A%%A's+AsATz and t=AlzAls.
Thus, one may write
2(0,0)(c,0) — pi(,0) = (1 — a?) f + a®h + g + 671,

where
eT eTt

f=xs— pe, g:g——gg and t=t— —*¢.
n n
In order to obtain (x(c, 0),y(a, 0), s(x, 0)) € N2(B), we need to have
[2(c, 0)s(a, 0) — p(e, O)el| < Bu(a,0).

Potra shows that by replacing “<” by “=" in the last inequality, the resulting
equation is equivalent to the following;:

0P;(0) = *1° — | /1 (2.64)
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where P;(6) is a polynomial of order seven in . Since || f|| < 0.25 p, one has

Bt — || £ = (8% — 1/16)* > 0.

On the other hand, 6P;(6) = 0 for # = 0. This means that there exists an 6y > 0
such that
VO €[0,60], OP:(0) <’ —| [ (2.65)

If the equation (2.64) has no zero point in the interval (0, 1), then (2.65) holds for
all 6 € [0, 1]. Hence, the largest value of 6 is
0 = min{1,é} (2.66)

where 0 solves the equation (2.64). This means that, (2.65) holds for all 8 € [0, ).
Due to (2.63), for the sake of simplicity, the author denotes

(x(0),y(0),5(0)) := (z(a,0),y(, 0), (e, 0)), and p(0) := p(a, ), (2.67)

where (z(«, 0),y(a, 0), s(,0)) and p(«, ) are given by (2.60) and (2.62), respect-
ively. The goal is to show that

VO € [0,6], (x(0),y(0),s(0) € Na(B). (2.68)
Note that (2.65) is equivalent to
[[2(0)s(8) — p(O)ell < Bu(d).
On the other hand, it has been proven in [91, page 25] that
Vo € [0,6], x(0)s(h) >0,

meaning that (z(0),s(#)) > 0. Thus (2.68) holds.

In [91, Theorem 2.4] is it established that the algorithm generates a sequence
of points inside N5(0.25) and the residual vectors, r, and r., and the barrier
parameter p, satisfy

207 50

ry=vry, re=uvrY and p=uvu’, with u° = , (2.69)
n

where the parameter v is reducing at least by a factor (1 — 6).
The following lemma confirms that the generated sequence of iterates is bounded.

Lemma 2.8.1. (cf. [91, Lemma 3.1]) If (P) and (D) are feasible then the sequence
{(z*, y*, sk)}:il generated by the algorithm satisfies

£||sk||1 —|—<7||ac’“||1 <onp® + Ejz*|| + o ||z, ,

for an optimal pair (z*,s*).
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He proceeds with obtaining a lower bound for the step size # which is a con-
sequence of a couple of lemmas.

Lemma 2.8.2. (cf. [91, Lemma 3.4]) Let (z*,y*,s*) be a primal-dual optimal
solution for (P) and (D). Consider

1 1 1 1
* * * * _ T _
o =l 6 = el =g [AT, and e = el

One has

DA || < (m + n2) /i,
|[DASs|| < (m + m2) /it

where D = diag (1/x/s) and
71+ 1

m = m@ +0" +&)n, (2.70a)
e = %(2 +o* 4+ &) (2.70D)

Lemma 2.8.3. (cf. [91, Lemma 3.5]) Let (z*,y*,s*) be a primal-dual optimal
solution for (P) and (D). Then the step size 0 satisfies

- 1 1
) > 0 := min 15—7—779 )
{ 21 7 }

with v and T given by (2.61), and

B A(B — 0.25)
P 5025+ /(B - 0252 1403 —0.25)7s
where
¥8 = 2|y + 7|+ 4vs+ 275 + V6,
with

7= V2n(1+/I7))%,
Y5 = 2v/n(m + ) (1 + /I7)), (2.71)
Y6 = 17 +vV2mnz + 13,
with n1 and ne given by (2.70).
Lemma 2.8.3 along with (2.69) imply
e(xt,yt,sT) < (1—0)e(x,y, s).

We conclude that, the duality gap and the infeasibility are reduced at least by

the factor (1 — #). Thus, the following theorem follows.
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Theorem 2.8.4. (cf. [91, Theorem 3.6]) Suppose that (P) and (D) are feasible.
Then after at most

‘1og%
|log(1 — §)| ’

iterations with ¢ = €(z%,4°, s0), the algorithm ends up with an c-solution of the
pair (P) and (D).

2.8.3 Polynomial iteration bound

In [91, Section 4], the author shows that for large enough ¢ and o one gets a
polynomial algorithm. He chooses the quantities £* and ¢*, defined in Lemma
2.8.2, such that

& =0(), o =0(1). (2.72)

By (2.70) and (2.72),
3)\1 Z 1, m S )\1 n, 2 S )\1 n. (273)
In [91, page 29], Potra proves that

2 2
mtn o4 TZ_U1+772,

N n

Iv] <

which implies by (2.73) that

Iv| < 2Mv/n, —2X\n <7 <0.
Due to (2.71), this implies that

1=00%), 75=0®n%), 7 =0(n%).

Hence, for 75 and 79, defined in Lemma 2.8.3, one can say

7 =O0(n%) and 9 =O0(n"").
According to this, we deduce that

0>0=0(mn".

Using 6 > —log(1 — 6) and Theorem 2.8.4, the iteration bound for the algorithm

turns out to be .
[O(n) log ?OW .

It is worth mentioning that the argument given in this subsection does not
imply polynomiality of the algorithm as to calculate 6 involves the solution of
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the equation (2.64) for which there is no polynomial algorithm yet. In [91, Sec-
tion 4], the author proposes to set  to a lower bound 6 = Q(1/n) that can be
obtained in polynomial time. Such a bound can be obtained as follows. Let
w € {m,n2,|7|, ||} and I, be the smallest integer such that w < I,,. Then, as
we establish in Subsection 2.8.3, one has

m < Iy, =0(n), n2 <Ip, =0(n), || <Ijr=0(n) and |y| < Iy = O(v/n).

By replacing w € {n1,72, |7], 7|} by I, in (2.71), a lower bound 6 = Q(1/n) can
be obtained in polynomial time.

Note that if there is no optimal solution, then the inequality (1.21) will never be
satisfied. This causes the algorithm to hang. To overcome this issue, he proposes
the following solution through which the algorithm detects a region where no
optimal solution exists.

Theorem 2.8.5. (cf. [91, Theorem 4.2]) Let £ and & be positive constants. If
Ellslly + o llzll, > 2néo + &5 + o€,
holds at some iteration, then there is no optimal solution (z*,y*, s*) such that
lz*ll, <& ™l <o

Although Potra [91] could not improve the convergence rate O(n) of Mizuno’s
algorithm [75], however, Potra’s algorithm has the advantage that the feasibility
and the duality gap improve at the same rate.

So far, we have been dealing with ITPMs which are classified as PFMs. We pro-
ceed with presenting a potential-reduction IIPM which is due to Mizuno, Kojima
and Todd [76].

2.9 Potential-reduction ITPMs of Mizuno et al.

Before going into the potential-reduction algorithm of Mizuno et al. [76], we would
like to explain briefly a difference between PFMs and PRMs. As we mentioned
in Subsection 1.3.3, PFMs follow the central path which consists of the unique
solutions of the system (1.2) for > 0. It can be verified (see e.g., [115]) that the
central path is nothing else as the set of the minimizers of the classical primal-dual
logarithmic barrier function, defined as

Flrssin) = 22 = 3 log(os), (2.74)
=1

for 4 > 0. In PRMs, the potential function has the property that it does not have
a minimizer, i.e., it goes to —oo as the iterates approach an optimal solution.
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Tanabe-Todd-Ye [104, 108] introduced the following potential function:
é(z,s) :== plogaTs — Zlogxisi, for a p > n. (2.75)
i=1

The following lemma is relevant.

Lemma 2.9.1. If (P) and (D) satisfy the IPC, then ¢(x,s) — —oo if and only
if the iterates (z,s) approach a primal-dual optimal solution.

Proof. We define the logarithmic barrier function ®(x, s; i) as follows:

which is up to the term n log u—n, equal to f(x, s; 1) as defined by (2.74). For any
fixed p > 0, ® is strictly convex with the minimum value of 0 and its minimizer
occurs at the u-center, i.e., a primal-dual strictly feasible (x, s) satisfying s = pe.
The function ¢ can be rewritten as below:

T
b(x,8) = ®(x, ;1) + plogaTs — % +n —nlog u, (2.76)
T

for some p > 0. On the central path, we have ®(z, s; 1) = 0 and hence z* s = npu.
Thus (2.76) implies that

o(x,s) = plogn + (p — n)log .

This implies that ¢ goes to —oo if and only if 4 — 0, showing that the central
path converges to an optimal solution when p — 0.

If the iterates are not on the central path, their strict feasibility implies that
there is a p for which the following is satisfied:

D(x,s;pn) <7 forsome 0<7<o0. (2.77)

Let us assume that this property is always maintained for some fixed 7. In other
words, we assume that the iterates stay in a certain neighborhood of the central
path.
It can be easily verified that ® is strictly convex in p with the minimizer
p = pg := x¥s/n. Thus, for any u satisfying (2.77), the following is certainly
true:
0 < O(x, 8, p9) < O(z,85) < T

As a result, without loss of generality, one may take y = u4 in (2.76). Hence, one
gets:
d(z,s) = @(x, s, 1g) + plogn + (p — n)log p1g.
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Because 0 < ®(z, s, 1tg) < 7, the following is always true:

plogn + (p—n)loguy < ¢(x,s) < 7+ plogn+ (p —n)log .

As 7 and p are constant, this implies that ¢ goes to —oo if and only if pg — 0,
showing that the iterates approach an optimal solution if y — 0. g

We would also like to mention that global convergence of both path-following
methods and potential-reduction methods has been established by Kojima, Noma
and Yoshise [58] for monotone LCP.

We proceed with explaining the algorithm of Mizuno et al. [76]. Basically, the
idea is more or less the same as that of the previously described algorithms in the
current chapter, specially those described in [75, 91, 119]. The authors use the
following starting point:

(xoa y07 SO) = C’YO (ea 07 e)a
in which vy € (0,1] and ¢ is a number satisfying
[z + s < ¢, (2.78)

for some optimal pair (z*,s*). Moreover, the duality gap is decreasing with at
most the same speed as the infeasibility. The Newton search directions (Axz, Ay, As)
are slightly different and obtained from the system (2.25) with p = p, where

T
with 7 > /n. (2.79)

Hn = nt7

It is worth mentioning that according to [57] and [106], by this choice of y, the
gradient vectors of the potential function ¢, given by (2.75), and the logarithmic
barrier function f, given by (2.74), coincide. As a result, one can make sure
that the potential function ¢ is decreasing along the Newton directions (2.25). It
was also established that if n = O(y/n), then the convergence rate of the feasible
potential-reduction algorithm studied in [57] becomes O(y/n).

They present two O(n?y/n)-variants of the algorithm, namely, Algorithm I
and II, and an O(n)-variant, namely, Algorithm IIL.

In Algorithm I, the step size « is calculated such that the potential function
#1(x, s), defined as'4

é1(z,5) :== (n+n)loga’s — Z logz;s; —nlogn, foramn> /n. (2.80)
i=1
decreases by at least a constant and, in addition, the following condition holds:

(z + aAz)(s + alAs) > (1 — a)zTs. (2.81)

L4Notice that ¢1 is, up to the term —n logn, precisely the Tanabe-Todd-Ye potential-function
(2.75).
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As we make clear in the sequel, this condition guarantees that the infeasibility
decreases at least as much as the duality gap.

In Algorithm II, the step size « is obtained in such a way that a modified
version of the above function, defined by

92(2,y,5) = b1 (z,5) +logaTs —log (a7s — o [, 7)), (2.82)

decreases by at least a constant. In this variant no extra condition is considered;
in other word, by adding the extra term logz”'s —log (#'s — o [|ry, 7c||) to ¢1, the
extra condition (2.81) was relaxed.

The variant III is actually an O(n)-variant of the previous variants.

We proceed with explaining the three variants in more detail.

2.9.1 Algorithm I: a constrained potential-reduction ITPM

In this section, we discuss Algorithm I in a more detail. As described above,
the step size « is calculated such that (2.81) holds and the value of the potential
function ¢, decreases with a constant § > 0, i.e., one has

o1(x + oAz, s + als) — ¢1(z,s) < —0. (2.83)

If such an « does not exist, then it is concluded that there is no optimal pair
(x*, s*) satisfying (2.78).

By this amount of reduction, Mizuno et al. [76] establish that after a finite
number of iterations, the algorithm arrives at either a point (z,y,s) such that
xTs < ¢, or a region where there is no optimal solution. See Theorem 2.9.2.

Letting {¢/*}° | be such that

v!'=1 and vF = (1 - "k,
where o is the step size in k-th iteration, the residual vectors ry, and r. satisfy
(ri,re) = V¥ (g, ),
and, by (2.81), the duality gap satisfies

T T
2P s > ka0 0.

This means that the iterates generated by the algorithm have the property that
the infeasibility is decreasing at least as much as the duality gap.
It is assumed that at k-th iteration the following holds

T T
xk Sk Z’YkaO SO,

for a 1 € (0,1]. Then, they establish that by taking & = & where

_ iytminas)
" 100n(n +mn)zTs’
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the potential function ¢, decreases with at least the amount of § where

_ Wi
300 (n +1n)*’

after each Newton iteration with size a.

It can be easily verified that ¢1(x,s) > nlogz’s. Thus, assuming that a
primal-dual optimal solution exists, z7's < ¢ holds if ¢ (z,s) < %log . This will
be the case after a finite number of iterations because the potential function is
decreasing by 4. As a result, one may conclude that after at most

E (¢1<w0,s0> - %bgaﬂ |

iterations, the condition ¢1(x,s) < %logs holds. The following theorem gives a
more accurate iteration bound for Algorithm I by imposing some further restric-
tions on the parameters ¢ and €.

Theorem 2.9.2. (cf. [76, Theorem 1]) Let L > logn (L may be the binary size of
the input data), n > \/n, v € (0,1], and assume that there exists an optimal pair
(z*,s*) satisfying (2.78) with log¢ = O(L). Letting  be such that log X = O(L)
and assuming that the potential function is decreasing at least with §, then after at
most O(n(n + n)2L) iterations, Algorithm I stops with either a point (z,y,s) for
which 2Ts < e, or with an optimal pair or we may conclude that that no optimal
solution x* of (P) and (y*,s*) of (D) ewist satisfying (2.78).

By (2.79), letting n = O(y/n), the last theorem implies that Algorithm I has
O(n?y/n) convergence rate.

2.9.2 Algorithm II: a pure potential-reduction algorithm

In this variant, the step size « is calculated such that the function ¢o decreases
with at least 0. By replacing the function ¢; by ¢, the condition (2.81) is relaxed.
In [76, Lemma 8], the authors establish that if « satisfies (2.81) and (2.83), then
one has

d2(x + alAz,y + aly, s + alAs) — pa(z,y,s) < —0

Moreover, like Algorithm I, it is established that if ¢o(2°,4°,s%) = O(nL) then
#2(x,y,s) < nloge implies s < e [76, Lemma 7.
In [76, Theorem 6], the authors prove that putting
_ n@®)’s
b, rell

in (2.82), Theorem 2.9.2 can be applied to this version of the algorithm as well.
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Unfortunately, the iteration complexity of the algorithms I and II is worse
than the other ITIPMs, described in the previous sections, i.e., O(n?v/2) vs. O(n?)
or O(n). Mizuno et al. [76] present variants of the algorithms I and II which have

an O(n) convergence rate. In the next subsection, we describe an O(n) variant of
Algorithm II.

2.9.3 Algorithm III: a potential-reduction ITPM with O(n)
convergence rate

An O(nL)-variant of Algorithm II is described in Algorithm 2.3. A difference
between Mizuno’s PC algorithm [75] and Algorithm 2.3 is that the iterates are
not confined to stay in any neighborhood of the homotopy path (see Section 2.7).
As it can be noticed, each iteration of the algorithm consists of two types of

Algorithm 2.3 The potential-reduction algorithm of Mizuno et al. [76]

Input:
a tolerance ¢ > 0;
constants v € (0,1], A € (0,1], 61 > 0,02 > 0, > 0;
begin
consider 20 = s° = ~g(e with ¢ given by (2.78), y° = 0;
while z7s > ¢
if min(xs) > M\zTs/n
Step A:
p-update: p = fin;
(z,y,5) = (z,9,5) + a(Afz, Afy, Afs);

else
Step B:

p-update: p = fig;
(z,y,8) == (z,9, 5) + a(A%, A%, As);
endif
endwhile
end

steps. Step A serves to improve the optimality and the feasibility, and Step B is
a centering step.
If the following condition holds:

min(xs) > Apg, (2.84)

for a A € (0,1], the algorithm enters Step A by calculating the Newton search
directions (A/z, ATy, Afs) from the system (2.25) for u = p,, with u, as defined
in (2.79). Then, a step size « is computed in such a way that the following holds:

d2(x 4+ alA z y+ ary, s + aA s) < go(x,y,s) — 0 (2.85)
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for some 01 > 0. In [76, Lemma 11], it is proven that if there exists an optimal
pair (x*,s*) satisfying (2.78), then there is a step size « for which (2.85) holds
with 61 = 0.001A2~3~?2.

If (2.84) does not hold, the algorithm performs Step B by calculating Newton
search directions (A°x, A%, A®s) from the system (1.6) with u = p14. Note that
Step B maintains the current infeasibility as well as the duality gap 27s. A step
size « is chosen such that the following holds:

p2(x + oAz, y + alAy, s + aAs) < ¢a(z,y, ) — 02, (2.86)
for some d2 > 0. By [76, Lemma 12], (2.86) holds for d; = %.
The performance of the algorithm is summarized in the following theorem.
Theorem 2.9.3. (cf. |76, Theorem 9|) Let L > logn and v € (0,1] and 11 €
(0,1). Suppose that log¢ = O(L), logL = O(L), n > n,

oT 0 1—)\)2
- % §1:=0.001A*5yf, and &, = % (2.87)
br'c

Then Algorithm III terminates in O(nL) iterations.

By setting n = O(n), the convergence rate of Algorithm III turns out to be
O(n) which coincides with the best known convergence rate obtained by Mizuno
[75].

2.9.4 Detecting infeasibility

It has been established in [76, proof of Lemma 4] that if there are optimal solutions
z* of (P) and (y*, s*) of (D) satisfying ||z* + s*|| ., < ¢, then the following holds:

22T s
o1 .

00 || (2, )], <

This means that if the last inequality is violated then there is no optimal solution
satisfying [|z* + s*|| < C.

2.10 Conclusion

This chapter dealt with the theoretical aspects of the IIPMs. After the release
of Lustig’s algorithm [62], several researchers attempted to derive some globally
convergent or polynomial-time variants of Lustig’s algorithm. Kojima et al. [54]
managed to design a globally convergent variant of Lustig’s algorithm by cap-
turing the iterates by the infinity neighborhood of the homotopy path. Using a
suitable starting point and a slightly narrower neighborhood, Zhang [119] derived
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a polynomial-time ITPM. After that Mizuno [75] realized that by further tighten-
ing the neighborhood such that the iterates stay very close to the homotopy path,
the convergence rate could be improved to O(n). This motivated Potra [91] and
Mizuno et al. [76] to design predictor-corrector and potential-reduction ITPMs,
respectively, with the convergence rate O(n).

The ITPMs described in this chapter use damped Newton steps. Recently,
Roos [97] introduced a primal-dual path-following ITPM which has the advantage
that a full-Newton step improves the feasibility and the duality gap with the same
speed. Roos achieved this by restricting the iterates to some small neighborhood
of the p-centers of the pairs (P,) and (D,) as p and v reduce with the same
speed. The convergence rate of this algorithm coincides with the best known
convergence rate for IIPMs, i.e., O(n). Another nice feature of this algorithm
is that it has a simple analysis compared with those presented in this chapter.
Unfortunately, in practice Roos’s algorithm is painfully slow. A simplified version
of Roos’ algorithm was given by Mansouri and Roos [66] and slightly improved
by Gu et al. [46]. Because our large-update IIPM, presented in Chapter 5 is a
large-update variant of Roos’ algorithm, we describe Roos’ algorithm in detail in
Chapter 3.






3

A full-Newton step IIPM for LO

3.1 Introduction

Inspired by the full-Newton step FIPM described in Section 1.7, C. Roos [97]
presented a full-Newton step IIPM for LO. The strategy is more or less the same
as for the other ITPMs, namely to decrease the infeasibility and the duality gap
with the same speed. The algorithm is designed in such a way that this can be
done using full-Newton steps. The algorithm is also able to detect infeasibility
and/or unboundedness. This chapter is devoted to the slightly improved version
of Roos’ algorithm which is introduced by Gu et al. [46].

Without loss of generality, we assume that both (P) and (D) are feasible. We
discuss infeasibility or unboundedness in Section 3.5.

As in other polynomial-time ITPMs, e.g., those studied in [75, 119], Gu et al.
use the initials (29,79, s), given by

2°=5"=¢e, y°=0, (3.1)
where ( is a number satisfying

(s <, (3.2)

for some primal-dual optimal solution (z*,y*, s*) of (P) and (D).

This algorithm generates a sequence of triples (z,y, s) in a small neighborhood
of the p-centers of the perturbed pairs (P,) and (D, ) where the parameters x4 and
v are simultaneously reduced by a factor 1 — 6 with a 6 € (0,1). The iterates are
obtained by approximately solving the system (2.1).

As we mentioned in Section 2.1, if the original pair (P) and (D) is feasible
then, for any v € (0, 1), the perturbed pair (P,) and (D,) satisfies the IPC and
hence the system (2.1) has a unique solution for any v € (0,1) and p > 0. This
is the content of the following lemma.

o7
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Lemma 3.1.1. (cf. eg., [97, 118]) The original pair (P) and (D) is feasible if
and only if for each v satisfying 0 < v < 1, the perturbed pair (P,) and (D, )
satisfy the IPC.

In order to improve the feasibility and the duality gap with the same speed,
throughout the algorithm, the parameters p and v are related as follows:

(a0)" s°

= (2

n
As in Algorithm 1.1, the closeness of a triple (x,y, s) to a p-center is measured
by d(z, s; i), as defined in Section 1.6.

p=vu’ with p®=

3.2 The algorithm

In this section, we describe an iteration of the algorithm. At the beginning of each
iteration, it is assumed that a strictly feasible triple (x,y,s) of (P,) and (D,),
with v € (0,1], is given which satisfies z7s = nu and §(x, s;p) < 7 for p = v(?
and a (small) threshold" 7 > 0. Roos [97] uses 7 = £ while in Gu et al.’s variant
T = & is used. It can be verified that the initials (z°,3°,s°), given by (3.1), are
strictly feasible for (P;) and (D) and 6(2°, s, u%) = 0 which means that at the
beginning, §(z, s; 1) < 7 certainly holds.

An iteration of the algorithm consists of two types of full-Newton steps: a
feasibility step and some centering steps. A feasibility step generates a triple
(x/,y7,s) in the region of quadratical convergence of the uT-center of (P,+)

and (D,+) with (u*,v7) := (1 — 0)(p, v), in the following sense?:

ogfoy < L
Oz’ s’ pm) < 7 (3.3)
A few centering steps restore the iterates to the T-neighborhood of the u*-center
of (P,+) and (D,+). This procedure is repeated until an e-solution is obtained.
See Algorithm 3.1 for a formal description of the algorithm.

A graphical illustration of an iteration is given by Figure 3.1. The straight
lines represent the central paths of the pairs (P,) and (D,) and (P,+) and (D,+).
The dark gray circles depict the 7-neighborhoods of the u and p*-centers. The
region in light gray shows the quadratically convergent region of the " -center of
(P,+) and (D,+). The Newton steps are shown by the arrows and the iterates
by the circlets. Each iteration starts at a point inside the 7-neighborhood of the
u-centers of (P,) and (D,). Using a feasibility step one obtains iterates inside
the light gray region. After using some centering steps we get iterates in the dark
gray neighborhood of the pT-center of (P,+) and (D,+).

n the sequel we call the set of triples (x,v, s) satisfying (z, s; u) < 7, the T-neighborhood
of the p-center.

2By (1.16), if §(z, s; 1) < 1/ v/2 then after a full Newton step, new triple (z1, 3y, sT) satisfies
§(zt,sT;p) < 8(x, s;u)? which means that Newton’s method is quadratically convergent.
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Algorithm 3.1 The full-Newton step IIPM due to Gu et al. [46]

Input:
a threshold parameter 7 > 0;
an accuracy parameter € > 0;
a fixed barrier update parameter 6, 0 < 6 < 1;
initials (2%, 1%, s%) = ((e,0,e) for a ¢ > 0.
begin
r=2y=19%s=s"% andv=1; p= (%
while 27s > ¢
feasibility step:
(z,y,8) = (z,y,s) + (AT x, Aly, ATs);
update of p and v:
pi=(1—0)u;
v:=(1-0);
centering steps:
while 6(x,s;p) > 7
(x’ Y, S) = (x’ Y, S) + (Axv Ay, AS)?
endwhile
endwhile

end

The next section deals with the analysis of the algorithm. The hard part of
the analysis is the analysis of the feasibility step which yields a suitable value of
the barrier updating parameter 6.

3.3 Feasibility step

At the start of an iteration we have a triple (z,y, s), strictly feasible for a per-
turbed pair (P,) and (D, ), satisfying §(x, s; u) < 7 and 27's = ny where p = v¢2.
The algorithm seeks for displacements (Afz, Afy, Afs) for which new iterates
(xf,y/, s7), defined as

ol =x+ AN,y =y+Aly and s =54 A5,

are as close as possible to the uT-center of the pair (P,+) and (D,+). In other
words, we want the displacements to satisfy the system
Al + Az) =b— v,
AT(y+ Aly) + (s + AT s) = e — v,
(x+ AT2)(s+ Afs) = pTe.
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Figure 3.1: An illustration of an iteration of Algorithm 3.1.

The first two equations guarantee that the new triple (27,47, s¥) is feasible for
(P,+) and (D,+), provided that x/ and s/ are positive. The third equation
indicates that we target at the pu*-center of (P,+) and (D,+). Using (2.1a) and
(2.1b) and after rearranging and linearizing, one obtains the following system:

AN g = Ovrd,
ATATy+ Afs = uvr?, (3.4)
sA x4+ 2Afs = pte — xs.
This is the system that is used to calculate the Newton directions in the feasibility
step.
We proceed with explaining how Gu et al. obtain 6 such that after updating

w to pt, the triple (xf,y7, s7) satisfies (3.3). To this end, we first need to define
the scaled search directions df and d?:
and df = , (3.5)

7 Az
di, = . : S

vAf s

where v is the variance vector of the iterates (z,y,s) with respect to u, defined
by (1.8).

The following lemma gives a condition on # which guarantees strict feasibility
of (zf,y7, s7) for (P,+) and (D,+).
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Lemma 3.3.1. (cf. [46, Lemma 4.1]) The iterates (z7,y’, s') are strictly feasible
for (P,+) and (D, ) if and only if (1 — 6)e + dfd! > 0.

The next lemma provides an upper bound for §(x7, s/; u™t).

Lemma 3.3.2. (cf. [46, Lemma 4.2]) Denoting §(v’) := §(x/, s7; u*) where v/
is the variance vector of the iterates (x7,y’, s7) with respect to u*t, i.e.,

fsf
Fo_ [|xls
vl , 3.6
e (3.6)
and assuming that ||dfdf| . < 1— 6, then one has
alal ||
15(0v1)? < ‘ 0 (3.7)
T 1- ’ dfdl
1-0 ||
In the sequel, we denote
wi= 3l + .
One has
laZal )l < lldflalll < 5 (laZ]® + lld][1?) = § x dw? = 20
and
ldfd! |0 < llddf|l < 20°.
Due to this, the right-hand side expression of (3.7) is bounded above by
4w
(a-6y
2w2 °
1-15%
Now assuming for the moment that
22
1 .
T <L (3.8)
one has
dldf|  <2w®<1-09.
Thus, by Lemma 3.3.2, (3.3) certainly holds if
40
1—0)2
1(_ <22, (3.9)

1-6
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which is the case if

12f29 <2 (m - 1) ~ 0.783. (3.10)

Note that (3.10) implies (3.8). We conclude that if (3.10) holds, so does (3.3),
ie., o(xf s/ ut) <1/v/2.

In order to proceed we need an upper bound for w. Before dealing with this
issue, we restate the system (3.4) in terms of the scaled Newton directions df and
dl. Using (3.5), it can be easily verified that the system (3.4) can be rewritten as
follows:

Adf = Ovr,
%ATAfy +df = Ovvs™0, (3.11)
dl +dl =r,,

where
A=AV7'X, V =diag(v), X =diag(z) and r,=(1—-0)v ! —u.

Now we have the following lemma which was proven implicitly by Gu et al.
[46]3.

Lemma 3.3.3. Let ¢ be defined as in (3.2) and v as in (1.8). Then one has
30%[eT (x + 5))2

4w? < 2ry | + e — (3.12)
where Vi 1= min(v).
Gu et al. also proved that
2||7]|? < 8(1 — 60)26% + 26°n, (3.13)

where § := §(z, s; ).
We recall the following lemma* which defines an upper bound for e’ (z + s).

Lemma 3.3.4. (cf. [46, Lemma 4.3]) Let (x,y, s) be strictly feasible for (P,) and
(D,), with xTs = nu, and ¢ as defined in (3.2). Then one has

el (x4 s) < 2nC. (3.14)

31If r, = 0, one may obtain a remarkably simple proof for this lemma. The system (3.11)
with 7, = 0 is used during the feasibility step of the large-update IIPM in Chapter 5. Since
the large-update IIPM is the main focus of this thesis, we found it more relevant to present this
simplified proof in Chapter 5 and discard the proof of Lemma 3.3.3 here.

4Lemma 3.3.4 assumes that an iteration of the algorithm starts with a triple (z,y,s) and a
u which satisfy 7s = nu. In general, one may have z7s # nu. This occurs when damped
Newton steps are used. Therefore, we postpone the proof of this lemma to Chapter 5 where we
introduce a large-update variant of Gu et al.’s algorithm which uses damped Newton steps and

zTs = ny may not be assumed at the beginning of an iteration.
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The following lemma gives lower and upper bounds for vyi,.

Lemma 3.3.5. (cf. [98, Theorem IL.62|) Let p(6) = 6 + V62 + 1 where § =
0(x, s; ). Then one has

1
— <v; <p(d), i=1,---,n.

Using Lemma 3.3.5, and substituting (3.13) and (3.14) in (3.12), after some
elementary reductions, one gets the following bound on w:

4w? < 862 +260°n + 120260 p(0)*. (3.15)

Recall that according to Lemma 3.3.2, (3.9) and (3.10), the inequality (3.3) holds
if
2

2w
< 0.783.
7=

Substituting w from (3.15) in the latter, one gets:
802 + 20%n + 12n%62p(0)* < 1.566(1 — 0). (3.16)

It can be verified that the left-hand side expression in this inequality is increasing
in . Gu et al. established that by setting

1 1
T = ]__6 and 0= R, (317)

the inequality (3.16) is satisfied.

3.4 Iteration bound

We established in the last section that if the parameters 7 and 6 are given by
(3.17), after the feasibility step the new iterates (z/,y/, s7) satisfy o(2f,s/; ut) <
1/v/2. In order to estimate the number of iterations, we need to count the
number of centering steps required to obtain new iterates (z*,y™t,st) satisfy-
ing 6(x*,s*; ut) < 7. This can be done as follows. Recall that (z/,yf, s7) are
in the quadratically convergent region of the p*-center. Thus, by (1.16), after &

centering steps one has
Sat,stiut) <ol 8T )

As a result, 6(zT, sT; uT) < & is satisfied if

2k 1
St s ) S( ) <7

Sl-
[N}
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The last inequality implies that k < 4.

At each iteration of this algorithm, the quantity e(z,y, s), given by (1.20), is
decreasing by the factor 1 — 6 with 6 given by (3.17). Thus, letting K be the
number of p-updates before an e-solution is obtained, one has

e(x,y,s) < (1 —0)%e(Ce,0,Ce) <.

This is equivalent to

1 €(Ce, 0, Ce)
log(1—6) log €

Using 6 — log(1 — 6) > 0 for any 6 € (0, 1), this certainly holds if

0 €

K<

Setting 6 = ﬁ and considering the fact that at most 5 so-called inner iterations
are done per p-update (one feasibility step and 4 centering steps), the total number
of iterations does not exceed

e(Ce, 0, Ce)

[20n log fw : (3.18)

3.5 Detecting infeasibility or unboundedness

We have shown that if (P) and (D) are feasible and ({ satisfies (3.2), then the
algorithm finds an e-solution of (P) and (D), and the number of iterations does
not exceed (3.18). In this section, we deal with the case where ¢ is too small or
(P) and (D) do not have an optimal solution. Although in [46, Remark 4.1], the
authors discuss this issue, we present the argument given by Roos [97] which is
more comprehensive.

According to Lemma 3.1.1, if the original pair (P) and (D) does not have
optimal solution, then there exists some 7 € (0, 1) such that for any v € (0, 7) the
perturbed pair (P,) and (D, ) does not satisfy the IPC. This means that if at some
iteration of the algorithm, after the feasibility step the iterates (z7,y/, s’) do not
belong to the quadratically convergent region of the p*-center, i.e., 6(x/, s¥; ut) >
1/+/2, then one may conclude that the pair (P) and (D) does not have any optimal
solution (z*,y*, s*) satisfying (3.2). To settle uncertainty about the existence of
an optimal solution satisfying (3.2) with some larger ¢, Roos [97, Section 4.7]
suggests to run the algorithm with ¢ = 2( and repeat if necessary. On the
other hand, it is well-known that if (P) and (D) are feasible and their input
data, i.e., A,b and c are rational numbers, then there exist a primal-dual optimal
solution (z*,y*, s*) which satisfies ||2* + s*||c < 2L with L denoting the size of
the input data. Due to this, starting from ¢ = 1, after at most L times updating
¢, the algorithm ends up with an optimal solution or declares infeasibility or
unboundedness of the problems (P) and (D).



4

Convergence of the homotopy path

4.1 Introduction

As we mentioned in the previous chapters, most IIPMs follow approximately the
homotopy path to find an optimal solution of the pair (P) and (D). In this chapter,
we establish that if (P) and (D) are feasible then the homotopy path converges
to a strictly complementarity solution of (P) and (D).

As in (3.1), we assume that 2° = s° = (e, and y° = 0, and that ( is as in
(3.2). Recall from Section 2.1 that the homotopy path consists of the u-centers
(z(v),y(v),s(v)), of the perturbed pairs (P,) and (D,), where z = v(2. In other
words, each point on the path is uniquely defined by the following system:

b— Az =v(b— Ale), x>0,
c— ATy —s=v(c—Ce), s>0, (4.1)
xs:VCQe, 0<v<l,

with ¢ given by (3.2).

By applying the implicit function theorem, we may easily see that the p-
centers (xz(v),y(v),s(v)), for v € (0,1), depends analytically on v and forms a
continuous path. In the sequel, we will investigate the convergence properties of
the homotopy path.

4.2 Convergence properties

We denote the support of any nonnegative vector x as o(x). So, if x € R’} then
o(x) ={i:z; >0}.

To simplify notation we denote x = z(v), y = y(v), and s = s(v) in the next
lemma.

65
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Lemma 4.2.1. Let (z*,y*, s*) denote an arbitrary optimal solution of (P) and
(D). Then we have for any v € (0,1]:

1-v)¢| > —+ Z 2l = (1—v)el (z* +s")—eT (z+s)+(1+1)Cn. (4.2)

i€o(x*) T i€o(s*)

Proof. Since b = Az* and ¢ = ATy* 4 s*, the system (4.1) can be rewritten as

Az —z) = vA(z" — Ce), x>0,
AT(y* —y) + (s* —s) =v(ATy" + 5" —Ce), 520,
xs:l/CQe, 0<v<l.

Using that the row space of A and its null space are orthogonal, we obtain

[(1—v)z* —z+vcel” [(1—v)s* — s+ vie] = 0. (4.3)

Since (z*)Ts* = 0 we derive from this that
(1 —v)(sTa* +27s*) = vl —v)¢el (z* + s*) —viel (z + 5) + 2Ts +v2(%ele

By the definition of the sets o(z*) and o(s*) we have zf = 0 if ¢ ¢ o(x*) and
sf=0if i ¢ o(s*). Hence it follows that

(1-v) Z six; + Z x;S; v(1 —v)cel' (" + s*)—

i€o(x*) i€o(s*)
veel(z + s) + 2Ts +12Cn.

Using xs = v(2e, from the third equation of (4.1), we get

v(? v(?
(1-v) Z x4+ Z =51 =v(1 —v)cel (" + 5%)—

vcel (z 4 s) 4+ vCn + 12C%n.

After dividing both sides by v( we obtain (4.2), thus completing the proof. O

Since the left-hand side of the identity in (4.2) is nonnegative, the following
corollary follows trivially.

Corollary 4.2.2. For any optimal solution (z*,y*,s*) of (P) and (D) and for
any v € (0,1] one has

el(z(v) +s(v)) < (1 —v)el (z* +s*) + (1 +v)¢n. (4.4)
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By Theorem 1.2.3, the problems (P) and (D) have a strictly complementary
(optimal) solution (Z,%,§). Hence, when denoting the classes in the optimal
partition of (P) and (D) as B,y and Ngp, one has for each optimal solution
(x*,y*,s*) of (P) and (D) that

Bopt = 0(Z) D o(x*), Nopt = 0(8) D a(s”). (4.5)

Lemma 4.2.3. Let (&,9,8) be any strictly complementary solution of (P) and
(D). The homotopy path has an accumulation point in the set of optimal solu-
tions of (P) and (D). Moreover, any such accumulation point (Z,9,5) is strictly
complementary and satisfies

¢ Ti y 5 =el'(z+35) —el'(z45)+(n. (4.6)
iE%o:pt i iE%;pt 5i

Proof. Since the right-hand side in (4.4) depends linearly on v and 0 < v <1,
we have

el (z(v) + s(v)) < max(e (z* + s*) 4 (n,2¢n).
Hence the homotopy path, i.e. the set {(z(v),y(v),s(v)) : 0 < v < 1}, lies in the
compact set e? (z(v) + s(v)) < max(e (z* + s*) + (n, 2¢n), where z(v) > 0 and
s(v) > 0.

Now let 1 = 1 and {vy},-; be a strictly decreasing sequence converging to
0if k¥ — oo, and let ¥ = x(11.), ¥* = y(vx) and s* = s(vy). Since the sequence
(2%, s%) lies in a compact set, it has an accumulation point (#,5). It follows
that a subsequence of the sequence (z¥, s*) converges to (#,3). Without loss of
generality we assume below that the sequence (2%, s*) itself converges to (, 5).
Since (2F)Ts* = 1,¢%n, the sequence {(xk)Tsk};il is strictly decreasing, and
converges to 0. Thus it follows that #75 = 0. Since A has full rank, 5 determines
¢ uniquely such that (Z,9, §) is an optimal solution of (P) and (D).

Putting (z*,y*,s*) = (2,9,8), v = v} and (z,y,s) = (2F,9* s*) in (4.2),
while also using (4.5), we get

Z; 5 I
Q-m)¢ | 0 e 30 2 = (- el (@4 8) — (@ +55) + (L+ m)Cn,
i€Bopt i€Nopt ¢
for k =1,2,---. Now letting k go to oo, we have that v} goes to 0, ¥ goes to &

and s* to 5. Thus we obtain the relation (4.6). Since the right-hand side expres-
sion in (4.6) is a real number, the left-hand side expression must be well-defined.
Thus it follows that if i € B,y then Z; > 0, and if ¢ € Ny then 5; > 0. Hence it
follows that o(Z) = Bopt and o(5) = Nopt, proving that (Z, g, §) is strictly com-
plementary. This completes the proof of the lemma. O

The following lemma makes clear that the homotopy path has only one accu-
mulation point, which implies that it converges.
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Lemma 4.2.4. The homotopy path has precisely one accumulation point in the
optimal set.

Proof. By Lemma, 4.2.3 the homotopy path has an accumulation point (Z, ¢, §)
in the optimal set. Suppose we have another accumulation point (Z, 7, 3) of the
homotopy path in the optimal set. By applying Lemma 4.2.3 two times, the first
time with (Z,9,5) = (£,7,5) and (2,9,5) = (Z,y,5) and the second time with
(z,9,5) = (z,9,8) and (2,7, 8) = (Z,9, §), we obtain

SN S BURT
¢ ‘ ii—'_, — e (z+35)—e' (T+35)+(n,
_’LEBopt 1€ Nopt

¢ Z @J@Z 5 e (+35)—e' (z+5)+(n.
_’LEBopt 1€ Nopt

By adding these relations, while defining
i‘l/il, if7 € Bopt;
Z; =
§i/§i, if7 € Noptv
we obtain .
CZ(zl + 271 = 2¢n. (4.7
i=1

Since each z; is the quotient of two positive numbers, we have z; > 0. Therefore,

1 3732
zit oz, =22 —z7 ) +2>2,

K2

with equality if and only if z; = 1. Thus it follows from (4.7) that z; = 1 for each
1, which means that £ = ¢ and § = 5. This proves the lemma. O

We finally prove that the limit of the homotopy path is the analytic center of
a subset of the set of optimal solutions.

Lemma 4.2.5. Let (Z,3,§) be the limit point of the homotopy path in the optimal
set. Then it is the analytic center of the set of optimal solutions (x*,y*,s*) of
(P) and (D) satisfying e™ (z* + s*) < eT'(Z + 3).

Proof. Let (Z,9,3) be a strictly complementary solution of (P) an (D) that is
an accumulation point of the homotopy path. Let S(Z, §) denote the set of optimal
solutions of (P) and (D) such that e’ (z* + s*) < eT(Z + ), and (2*,y*,5*) €
S(, §). Using similar arguments as in the proof of Lemma 4.2.3, replacing (, 4, §)
by (z*,y*,s*) and using (4.5), one proves that

x;k S: T/ * * T/~ ~
- —| = — . 4.8
PRV R R R R
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Using e” (2* + s*) < eT(Z + ), and upon diving both sides by ¢, this implies

Sy 2

i€ Bopt i€Nopt "

Sex

<n.

W

The left-hand side expression is a sum of (at most) n nonnegative numbers. Using
the arithmetic-geometric-mean inequality we obtain

1/n
* * *
T st 1 s’
I I — I I = <= E = + E - | <1
) Zi . S4 n\. Si
1€Bopt 1€ Nopt ZEBopt 1€ Nopt
Thus we have . .
[T % ] Z<u
. Ty . Si
1€ Bopt 1€ Nopt

It will be convenient to define the function

I = 11 = (4.9)

1€Bopt 1€ Nopt
on the set of optimal solutions of (P) and (D). Then we have
f@®,s%) < f(2,5), V(%9 s7) € S(z,39). (4.10)

This means that (Z, 7, §) maximizes the product [[,cp 7 [] s§ on the set

1€ENopt 0

S(z,5). Note that f(Z,5) is positive, because the pair (Z,3) is strlctly comple-
mentary. On the other hand, for optimal solutions that are not strictly comple-
mentary we have f(z*,s*) = 0. Hence the maximum of f(z*,s*) occurs in a
strictly complementary solution. The logarithmic function being strict monoton-
ically increasing we can equally well maximize log f(z*, s*), which has the same
maximizer(s) on the set of strictly complementary solutions in S(Z, §). However,

when the pair (z*, s*) is strictly complementary, one has
log f(z*, s Z logz} + Z log s} .
1€ Bopt 1€ Nopt
Since the set S(Z,35) is convex, by definition (see, e.g., [98]) the maximizer of

f(z*,s*) on S(, §) is the analytic center of S(Z, 5). O

A question that arises is wether the limit point of the homotopy path depends
on the starting parameter ¢, or not. We answer this question by using the following
example.

We consider the case where

B0 ¢ 0

o —

; B

111 3
0
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where o and f are positive numbers. Then (P) and (D) are respectively given by

min {ax + Bas i axy — frg =0, o1 + 22+ 23 =3, v = (x1;22;23) > 0},
max {3y : ay1 +y2 < @, —fy1 +y2 < B, y2 <0}

The feasible region of the dual problem is depicted in Figure 4.1. One may easily

Y2
2

-3 -

Figure 4.1: Feasible region of the dual problem for « =1 and § = 2.

verify that the set of optimal solutions is given by

0 Oé(].—yl)
Y1
(z,y,8) =] (0], . B +y)| | 1<y <1y, (4.11)
3 0

We conclude from (4.11) that the classes in the optimal partition are given by
Bopt = {3}, Nopt ={1,2}.

As a consequence we have

II = II si=3 o —u) B0 +m)=3aB(1-y).

1€Bopt 1€ Nopt

The last expression is maximal for y; = 0. Hence, putting y; = 0 in (4.11), we
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get that the analytic center is given by

0 o
0

(z,y,8) = | [0], B
0

3 0

Now we turn to the homotopy path. We proceed by taking o« =1 and § = 2.
For that case we computed numerically the homotopy path for several values of
C. The results are shown in Figure 4.2. The starting point of the homotopy path
is the zero vector, which is drawn as a ‘+’. The limit point is drawn as a ‘x’. The
figure clearly demonstrates that the limit point depends highly on the value of (.
It may be noted that in each of the four cases the limit point is such that y; < 0.

0.15 0.3

0.25
0.2

0.05 0.15
>
0.1
0

0.05

0.1

y2
2

-0.05
-0.10 : : ‘ ‘ -0.1

-80&

¢=10 ¢ =100
Figure 4.2: Homotopy path for « = 1 and 8 = 2, and several values of (.

This also follows from Lemma 4.2.5. Because for any optimal solution (x,y, s) we
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have

efl(z+s)=3+a+B8+(B—a)y =6+, H T H s;=6(1—yi).

1€ Bopt 1€ Nopt
Hence, by Lemma 4.2.5 we should have
n<ih = Yz

This implication can be true only if §; < 0. When « > 3 one proves in the same
way that §; > 0. For an illustration we refer to Figure 4.3.

0.15
al
0.1
2,
o 0.05 o
l,
0
0,
-0.05
— L -1t
R -0.5 0 0.5 1 -1 -0.5 0 0.5 1
A Y1
¢=0.1 ¢=10
4
o oX 10
-100f
ol
-200¢
-300¢
—al
v —400 X
-500¢ —6l
-600F
~700¢ -8y
-800F
-1 -0.5 0 0.5 1 -50 -40 -30 -20 -10 0
A Y1
¢ = 1000 ¢ = 100000

Figure 4.3: Homotopy path for = 200 and 8 = 100, and several values of (.

One might observe that in all cases it is true that the larger the value of ( is,
the closer the limit point is to the analytic center. This holds indeed in general,
as we show in the next lemma.
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Lemma 4.2.6. Let ¢ > 0 and (Z,7, 5) be the limit point in the optimal set of the
corresponding homotopy path. If  goes to infinity then (Z,73,8) converges to the
analytic center of the optimal set.

Proof. Since # > 0 and 5 > 0 we have e’ (Z + 5) > 0. Hence it follows from
(4.8) that

x;k Si T (,.* *
o 2 Zi| <
1P 0TI op - PR R e
1€ Bopt 1€ Nopt
where (z*,y*, s*) denotes some optimal triple. Dividing by ¢ at both sides we get
Zc eT(x* +S*)

1 T S5 .
~ > =+ > AR A._T+1.

. T .
i€ Bopt 1€ Nopt

Due to the geometric-arithmetic mean inequality this implies

VI I

i€Bopt ' i€Nops

With f as defined in (4.9), this implies f(z*,s*
infinity, then A approaches 1, making clear that (
center of the optimal set. O

A" f(Z,5). When (¢ goes to

<
7, §) converges to the analytic

)






5

A class of Large-update I1IPMs for
LO

5.1 Introduction

In Chapter 3 we described a full-Newton step IIPM due to Gu et al. [46] which
has the property that the iterates stay in a narrow neighborhood of the homotopy
path. This algorithm uses full-Newton steps. This enabled us to explore the
local quadratic convergence property of Newton’s method. As we established, the
barrier-updating parameter 6 should be small, namely O(%), which imposes an
O(n) convergence rate to the algorithm. This convergence rate coincides with
the best known convergence rate for ITPMs. However, the algorithm has the
disadvantage that it has a poor performance in practice.

In this chapter we attempt to design a more aggressive variant of the algorithm
of Gu et al., i.e., which reduces ¢(z,y, s) faster. We would like to mention that
this is our aim and also what happens in practice (see Chapter 6). As we will see,
however, our algorithm suffers from the same irony that occurs for FIPMs, namely
that the theoretical convergence rate of large-update methods is much worse than
that of full-Newton variant. In a first attempt we used the classical search dir-
ection for primal-dual methods, that is based on the well-known primal-dual log-
arithmic barrier function, and the theoretical convergence rate turned out to be
O(n?). As we show, however, when using a different barrier function to define the
search direction the convergence rate can be improved to O(ny/n(logn)?).

In order to obtain this result we use a so-called kernel-function based barrier
function. Any such barrier function is based on a univariate function, called its
kernel function. Such functions have been introduced in [10] and are closely related
to the so-called self-regular functions introduced in [88]. In these references only
FIPMs are considered, and it is shown that these functions are much more efficient
for the process of re-centering, which is a crucial part in every FIPM, especially

75
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when an iterate is far from the central path. Not surprising, it turns out that
these functions are also useful in our large-update ITPM, where re-centering is
also a crucial ingredient.

In Section 5.2, we briefly introduce the notion of kernel function, which plays
a crucial role in our algorithm. After that, in Section 5.3, as a preparation to
our large-update ITPM, we briefly recall the use of kernel-based barrier functions
in large-update FIPMs, as presented in [10]. It will become clear in this section
that the convergence rate highly depends on the underlying kernel function. The
best result is obtained for a specific kernel function, denoted 3, which yields the
convergence rate O(y/nlogn); this is a factor logn worse than for full-Newton
step FIPMs.

In Section 5.4, we describe our large-update IIPM in detail. In our description
we use a search direction based on general kernel functions. The algorithm uses
two types of damped Newton steps: a so-called feasibility step and some centering
steps. The feasibility step serves to reduce the residual norms, ||rp|| and ||r.]||,
whereas the centering steps keep the residual vectors fixed, but improve the duality
gap T s. This procedure is repeated until an e-solution is obtained. Though many
parts of our analysis are valid for general kernel function, at some places we restrict
ourselves to the kernel function ¥3(t). In Section 5.5, we show that the algorithm
based on this kernel function yields an O(n+/n(logn)?) convergence rate which
is a factor (logn)? worse than for the IIPM, obtained by Salahi et al. [101]. In
Section 5.6, we argue how our algorithm detects infeasibility or unboundedness.

5.2 Kernel functions

In this section, we show that the p-centers, i.e., the unique solutions of the system
(1.2), can be characterized as the minimizers of a suitably chosen primal-dual
barrier function. In fact we will define a wide class of such barrier functions, each
of which is determined by a kernel function.

A kernel function is just a univariate nonnegative function ¥ (t), where ¢ > 0,
which is strictly convex, minimal at ¢ = 1 and such that ¥(1) = 0, whereas 9 (t)
goes to infinity both when ¢ goes to zero and when ¢ goes to infinity.

Now let (x,y, s) be a primal-dual strictly feasible for (P) and (D). Observe that
if v is the variance vector with respect to u, as given by (1.8), then v = e holds
if and only if (z,y, s) is the p-center of (P) and (D). Given any kernel function v
we extend its definition to R} | according to

n

T(v) =Y o(vy). (5.1)

=1

It is obvious that ¥(v) is nonnegative everywhere, and ¥(e) = 0. Yet we can
define a barrier function ®(z, s, ) as follows:

O(z, s, 1) == ¥(v). (5.2)



5.3 LARGE-UPDATE FIPMS FOR LO 77

It is now obvious that ®(z, s, 1) is well-defined, nonnegative for every primal-dual
strictly feasible (z,y, s), and moreover,

P(x,5,0)=0 & VY()=0 & v=e < (2,y,8) = (2(n),yp) s).

This implies that (z(u),y(u), s(n)) is the (unique) minimizer of ®(x, s, ).
We next give an important example, showing that the well-known logarithmic
barrier function arises when taking as a kernel function

t2—1
P(t) = 5~ logt, t>0. (5.3)

This follows since in that case we may write

n " v —1 - %_1 ZiS;
Oe.sg) =3 o) =) ( =5— —logwr ) =3 | H5— —logy 2
=1 =1 =1
1[(aTs & -
:5<%_Zlogxi—zlogsi—i—nlogu—n)~

i=1 =1

Up to the term nlogu — n, which does not depend on (z,y,s), the expression
within the brackets is precisely the classical primal-dual logarithmic barrier func-
tion; due to this term the minimal value of ®(z, s, 1) equals 0.

As in [10] we call the kernel function ¢ eligible if it satisfies the following
technical conditions.

() +Y'(t) >0, t<1,
"' (t) —'(t) >0, t>1,

P(t) t>0,
20" ()2 — ' ()" (t) > 0, t<1.

In the sequel it is always assumed that v is an eligible kernel function. Properties
of eligible kernel functions will be recalled from [10] without repeating their proofs.

5.3 Large-update FIPMs for LO

In this section we recall from [10] some results for a large-update FIPM for solving
(P) and (D) using a kernel-function based barrier function. We assume, without
loss of generality, that the triple

(2°,9°,5%) = (e,0,e), (5.4)
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e

P(z,s50) < 7T

Figure 5.1: An illustration of large-update FIPM: pu* = (1 — 0)pu.

is primal-dual feasible.! We then have 2°s° = ple for u° = 1. This means that
(2°,4°,5%) is the 1-center, and hence ®(z°,s% %) = 0. We use this triple to
initialize our algorithm.

Each main (or outer) iteration of the algorithm starts with a strictly feas-
ible triple (z,y,s) that satisfies ®(x, s, u) < 7 for some p € (0,1], where 7 is a
fixed positive constant. It then constructs a new triple (z7,4™,sT) such that
®(zt, s, ut) < 7 with pT < u. When taking 7 small enough, we obtain in this
way a sequence of strictly feasible triples that belong to small neighborhoods of
a sequence of u-centers, for a decreasing sequence of p’s. As a consequence, the
sequence of constructed triples (z,y,s) converges to an optimal solution of (P)
and (D).

We will assume that ut = (1 — 0)u, where 6 € (0,1) is a fixed constant, e.g.,
0 =0.50r 0 =0.99. The larger 0, the more aggressive is the algorithm. Especially
when 6 is large, each outer iteration will require several so-called inner iterations.
See Fig.5.1. The straight line represents the central path of (P) and (D) and the
gray circles depict the T-neighborhoods of the p-center and the pt-center. The
curved arrows illustrate the damped Newton steps that are used to restore the
iterates to the 7-neighborhoods of the p*-center of (P) and (D). The iterates are
shown by the circlets.

! The problems (P) and (D) can be embedded into a self-dual problem for which the given
triple is a feasible solution and that has an optimal solution that induces optimal solutions for
(P) and (D).
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Since 1 = 1, Lemma 1.7.3 yields the following upper bound for the number
of outer iterations of the algorithm:

{%loggw. (5.5)

The main task is therefore to get a sharp upper estimate for the number of
inner iterations during an outer iteration. We now describe how such an estimate
is obtained. We go into some detail, though without repeating proofs, because
the results that we recall below are relevant for the ITPM that we discuss in the
next section.

As said before, at the start of each outer iteration we have a strictly feasible
triple (z,vy,s) and g > 0 such that ®(z,s, p) < 7. We first need to estimate the
increase in ® when g is updated to p™ = (1 — 6)p. For this we need the following
lemma.

Lemma 5.3.1. (cf. [10, Theorem 3.2]) Let o : [0,00) — [1,00) be the inverse
function of ¥(t) for t > 1. Then we have for any positive vector v and any 8 > 1:

w0 < (30 (H2)).

Now let v be the variance vector of (x,y, s) with respect to u. Then one easily
understands that the variance vector v+ of (z,y, s) with respect to u* is given by
vT =wv/y/1 — 6. Hence, using Lemma 5.3.1 with 8 = 1/4/1 — 6 we may write

(") w(m

\A—0)<"w V=0 \h—9>’

O(x,5,uT)=V(v") =T <

where the last inequality holds because g is monotonically increasing and ¥(v) =
®(x,s, 1) < 7. Hence the number 7 defined by

o [ 2
Ti=ny <m>, (5.6)

is an upper bound for the value of ¥ after a py-update. Note that this bound is
independent of the triple (z,y, s); it depends only on the kernel function 1) and
the parameters n, 7 and 6.

To simplify the notation we redefine u according to p := u™. Thus we need
to deal with the following question: given a triple (z,y, s) such that ®(z, s, u) <
7, how much inner iterations are needed to generate a triple (x,y,s) such that
®(x, s, 1) < 7. To answer this question we have to describe an inner iteration. It
has been argued in Section 2.2. of [10] that it is natural to define search directions
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(Az, Ay, As) by the system

AAx =0,
AT Ay + As = 0,
sAz + xAs = —poVI¥(v).
This system has a unique solution. It may be worth pointing out that if ¢ is the
logarithmic kernel function, as given by (5.3), then —povV¥(v) = pe — xs, and
hence the resulting direction is the primal-dual Newton direction that is used in

all primal-dual FIPMs. By doing a line search in this direction with respect to ¥
we get new iterates

(2,y,5) := (2,9, 5) + a(Az, Ay, As),
where « is the step size. According to [10, Lemma 4.4], we use the following

default step size:
1

T P psW)

where p is the inverse function of —34(t), and

5(0) = 5 V()]

Algorithm 5.1 shows a formal description of the algorithm. The closeness of

Algorithm 5.1 A large-update FIPM

Input:
A threshold parameter 7 > 0;
an accuracy parameter € > 0;
a fixed barrier update parameter 6, 0 < 6 < 1;

begin
r:=e;y:=0;s:=e; u:=1;
while ny > e,
= (1—0)u;
while U(v) > T,
(z,y,5) := (2,9, 5) + a(Az, Ay, As);
vi= %;
endwhile
endwhile

end

(z,y,s) to the u-center is measured by ¥(v), where v is the variance vector of
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(z,y,s) with respect to the current value of u. The initial triple (z,y,s) is as
given by (5.4) and ¢ = 1. So we then have U(v) = 0 < 7. After a u-update we
have ¥(v) < 7. Then a sequence of inner iterations is performed to restore the
inequality ¥(v) < 7. Then p is updated again, and so on. This process is repeated
until ny falls below the accuracy parameter € after which we have obtained an
e-solution.

To estimate the number of inner iterations we proceed as follows. Denoting
the decrease in the value of ¥ as AY, it was shown in [10, Theorem 4.6] that

2 _ Ov)*
AY 2 ad(v)” = eSSy

Since the kernel function 1 is eligible, the last expression is increasing in d(v)
[10, Lemma 4.7]. Besides, by [10, Theorem 4.9], §(v) is bounded from below as
follows:

(5.7)

8(v) = 59" (0(T(v))). (5.8)
Combining (5.7) and (5.8), we arrive at

Ay o W @)

=T (0 (o (¥ ) )
Following [10], let v be the smallest number such that
\I/(U)’y_l (¢I (Q (\I’(’U))))Z (510)

W (oW (T (@) ~ "

for some positive constant k, whenever ¥(v) > 7. From the references in Table
5.1 we know that such constants x and v exist for the kernel functions in this
table. When denoting the value of the barrier function after the p-update as ¥q
and the value after the k-th inner iteration as Uy, it follows from (5.9) and (5.10)
that

Vo <7, U< —r0, 1, k=1,2..., (5.11)

with 7 as in (5.6). At this stage we may point out why the use of kernel functions
other than the logarithmic kernel function may be advantageous. The reason
is that if v is the logarithmic kernel function then v = 1, whence we obtain
VU, < U 1 — kK for each £ > 1, provided that W;_; > 7. This resembles the
well-known fact that the best lower bound for the decrease of the logarithmic
barrier function is a fixed constant, no matter what the value of ¥(v) is. As
we will see smaller values of v can be obtained for other kernel functions, which
leads to larger reductions of the barrier function value, and hence lower iteration
numbers.

By [10, Lemma 5.1], (5.11) implies that the number of inner iterations will not

exceed
™ _ 1 o) )
s = s (mﬁ <m>> . (5.12)
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Multiplying this number by the number of outer iterations, as given by (5.5), we
obtain the following upper bound for the total number of iterations:

1 o(2) \\, n
%<mﬁ <m>> logg.

Given a kernel function v, it is now straightforward to compute the resulting
iteration bound from this expression. Table 5.1 summarizes some results from
the literature. In this chapter we consider an IIPM based on the use of a kernel

i i (t) iteration bound ref.
1 tZT_l —logt O (n) log 2 e.g., [98]
2 L) O (nt) log2 185]
3 t22—1 + tl;fl O(y/nlogn)logZ, ¢ = O(logn) [86]
4 | Byt ol 1) | O(Vnlogn)log®, g =O(logn) | [87]
5 1527_1 + ie—e O (v log®n) log 2 [10]
6 Pl [lerlag O (v/n log?n) log 2 [10]
7| Bl 1 e O (nt)log2 [11]
8 tzT_l +2 <et7q’1 - 1) @) (%\/ﬁ(logn)qﬂ) log & [89]
9 £l tesn—lge 0 (%\/ﬁ(logn)qﬂ) log 2 [89]
10 21 reae)ge O (ynlogn)logZ, q=O(logn) |  [12]
11 £o1 4 el O (vilogn)log®, q = O(logn) |  [2]

Table 5.1: Iteration bounds of large-update FIPMs for several kernel functions.

function. Although many of the results below hold for any eligible kernel function,
we will concentrate of the kernel 3 in Table 5.1. The reason is that it gives the
best possible result among the kernel functions in this table; another nice feature
of 13 is that if ¢ approaches 1 then this function converges to the logarithmic
kernel function.

5.4 Large-update IIPMs for LO

In this section, we attempt to design a large-update IIPM to solve (P) and (D),
which is inspired by the full-Newton step algorithm described in Chapter 3. As in
the full-Newton variant, our algorithm starts from the initials (z",%°, s?), given
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by (3.1) and (3.2), and generates a sequence of positive iterates in a small neigh-
borhood of the homotopy path. Precisely speaking, the iterates belong to a small
neighborhood of the p-centers of the perturbed pairs (P,) and (D,) where p and
v are related as u = v¢? with ¢ given by (3.2). Moreover, each iteration reduces
v (and also u) by a factor 1 — 6, with 6 € (0,1). Since we are interested in some
larger values of 6 than in (3.17), we must expect that after a y-update the iterates
do not belong to the region of quadratic convergence of the new pu-centers. As
a result the use of the quantity § to measure the closeness of the iterates to the
homotopy path becomes irrelevant. As for large-update FIPMs, we use a barrier
function for this purpose. Let us explain an iteration of the algorithm in a more
detail.

5.4.1 An outer iteration of the algorithm

As in Section 5.3, ¥(v) will denote the barrier function based on the kernel func-
tion ¥ (t), as given in (5.1). Here v denotes the variance vector of a triple (x,y, s)
with respect to ¢ > 0, and we define ®(x,s, ) as in (5.2). The algorithm is
designed in such a way that at the start of each outer iteration we have ¥(v) < 7
for some threshold value 7 = O(1). As ¥(v) = 0 at the starting points (3.1), the
condition ¥(v) < 7 is certainly satisfied at the start of the first outer iteration.

Each outer iteration of the algorithm consists of a feasibility step and some
centering steps. At the start of the outer iteration we have a triple (z,y, s) that is
strictly feasible for (P,) and (D, ), for some v € (0,1], and that belongs to the 7-
neighborhood of the p-center of (P,) and (D,), where u = (2. We first perform
a feasibility step during which we generate a triple (z/,y/, s¥) which is strictly
feasible for the perturbed problems (P,+) and (D,+), with v* = (1 — 0)v and,
moreover, close enough to the pu-center of (P,+) and (D,+), with ™ = v+¢2.
ie., ®(zf,sf;ut) < 77, for some suitable value of 77,

After the feasibility step we perform some centering steps to get a strictly
feasible triple (z7,y™*,s™) of (P,+) and (D,+) in the 7-neighborhood of the p*-
center of (P,+) and (D,+). During the centering steps the iterates stay feasible
for (P,+) and (D,+). Hence for the analysis of the centering steps we can use
the analysis presented in the previous section for FIPMs. From this analysis we
derive that the number of centering steps will not exceed

(®(af, s, puh))
Ky ’

where the parameters v and x depend on the kernel function ¢. Hence we are
left with the problem of defining a suitable search direction (Afz, Afy, Afs) for
the feasibility step and to determine 6 such that after the feasibility step we have
®(x/, s/, ut) < 77 for some suitable value of 7/. The number of outer iterations
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%. Hence the total number of iterations will not exceed

(r/) (Ce, 0, Ce)
Okry € '

will be % log

log ¢

(5.13)

5.4.2 Feasibility step

For the search direction in the feasibility step we use the triple (Afz, Afy, Afs)
that is (uniquely) defined by the following system:

ANz = vr, (5.14a)
ATA Ty + Als = v, (5.14b)
sAfz +2ATs = 0. (5.14¢)

Then defining the new iterates according to
of =24+ 0Nz, y=y+0ATy, S =s+0ATs,
we have, due to (5.14a),

b—Axl =b—A (z + 0A ) = b—Az—0vr) = vr)—0vr) = (1-0)vr) = vTr].

In the same way one shows that ¢ — ATyf — s/ = v*r9. Hence it remains to
find 6 such that = and s/ are positive and ®(x/, s/, u*) < 77. This is the hard
part of the analysis of our algorithm, which we leave to the subsection below.
The algorithm is presented in Algorithm 5.2. A graphical illustration is given
by Figure 5.2. The straight lines in Figure 5.2 depict the central paths of the
pair (P,) and (D,) and the pair (P,+) and (D,+). The 7-neighborhoods of the
u- and pT-centers are shown by the gray circles. The light gray region specifies
the 7/ -neighborhood of the T -center of (P,+) and (D,+). The feasibility step is
depicted by the first arrow at the right-hand side. The other arrows depict the
centering steps. The iterates are shown by the circlets.

5.4.3 Analysis of the feasibility step

The feasibility step starts with some strictly feasible triple (x,y,s) for (P,) and
(D,) and p = v¢? such that
U(v) <7 with v:= .
w

As mentioned in Subsection 5.4.1, our goal is to find 8 such that after the feasibility
step, with step size 0, the iterates (27, y/, s/) lie in the 7/-neighborhood of the " -
center of the new perturbed pair (P,+) and (D,+). This means that (27, y/, s/)
are such that

fgf
V(') <7/ where v := \/ xﬂj ;o owt=01-0)p.




5.4 LARGE-UPDATE IIPMS FOR LO 85

Algorithm 5.2 A generic primal-dual large-update IIPM

Input:
accuracy parameter € > 0;
barrier update parameter 6 € (0,1);
initialization parameter ¢ > 0;
threshold parameter 7 = O(1).
begin
r:=Ce; y:=0; s:=(Ce; v:i=1; p:= (%
while e(x,y,s) > ¢
feasibility step;
(z,y, s) = (z, y, s) + 0(AFz, Aly, Als);
update of p and v:
v:i=(1-0)y
= v
centering steps:
while ®(z,s;u) > 7
(z, y, s) := (z, ¥, s) + a(Az, Ay, As);
endwhile
endwhile
end

Using the scaled search directions d/ and df, given by (3.5), we may write

f f
xf:x+9Afx:x<e+9ﬂ> :x<e+9d—‘r) :£(0+9d£), (5.15)
T v v

sf

AS !
5+0Af5:5(e+978> :s<e+0%> :%(v+9d£). (5.16)

This shows that / and s/ are positive if and only if v+ 6d] and v + 6d] are
positive. On the other hand, using (3.5), we can reformulate (5.14c) as follows:

Afs A Af AF

oA stsAp=0 & =242 0 o 224 T x:0<:)d£+d£:0.
s x s x

Therefore, df = —df. As a consequence, ¥/ and s/ are positive if and only if

v=+60dS > 0. Since v > 0 this is equivalent to v? — §2(d/)? > 0. We conclude that
x/ and s/ are positive if and only if 0 < 6 < 0.y, where

1

emax =

B~

< |&
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Figure 5.2: An illustration of an iteration of Algorithm 5.2.

Yet we turn to the requirement that W(v/) < 7/. Using (5.15), (5.16) and xs =
pv?, we write

alsh (v+0df) (v—0d) v* - 0%(d])?

f2
(v1) i 1-9 1-6

Hence, if 8 < 0,2« then we may write

~

ol = \/lvTH’ where = \/v2 — 62(df)2.
Lemma 5.4.1. Let 0 be such that \/11_79 = O(1). Then ¥(0) = O(n) implies

U(vf) = O(n).
Proof. By Lemma 5.3.1 we have

W (0)

Let ¥(9) = O(n). Then ¥(d) < Cn for some positive constant C. Hence
\ijf) < C. Recall that o(s) > 1 for all s > 0 and p(s) is monotonically in-
creasing. Also, ¢(t) is monotonically increasing for ¢ > 1. Hence we obtain
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U(vf) < ny (0(C)/vV1—10). Since 1/v/1—60 = O(1), the coefficient of n in the
above upper bound for W(v/) does not depend on n. Hence the lemma follows. [J

Due to Lemma 5.4.1 it suffices for our goal to find 6 such that ¥ (%) < 7 where
7 = 0O(n). In the sequel we consider ¥ (%) as a function of 8, denoted as f1(6). So
we have

f1(6) ==V (0) =W ( v2 — 92(d£)2> .

We proceed by deriving a tight upper bound for fi(6), thereby using similar
arguments as in [10]. Since the kernel function ¢(t) is eligible, ¥(v) is e-convex
(cf. [10, Lemma 2.1]), whence we have

F1(0) < £(0) := 5 [¥ (v +0d]) + W (v —0d])] .

The first and the second derivatives of f(f) are as follows:

F(6) = % > W (vi+6dl,) — ' (v — 0dl,)] df, (5.17)
i=1
£10) = 5 30 [ o+ 0L) +4” (v - 0L)] (). (519)

=1

Since 9"’ (t) < 0, Vt > 0, it follows that " (t) is monotonically decreasing. From
this we deduce that

W (v +0dL,) + " (vi — 0dL,) < 20" (v —0|dL,]) < 29" (vinin — 0|d2])),

where vpin := min(v) and 6 small enough, i.e., such that vy, — 0||df| > 0.
Substitution into (5.18) gives

£7(0) < NaZIPy" (vmin — OlldL]]) -

By integrating both sides of this inequality with respect to 6, while using that
1/(0) = 0, as follows from (5.17), we obtain

')

] ]
" fn2 " L f
+/O 7€) de < |1 /0 0 (v — E]1d])) de

]
-y / 0" (vain — €12 ) d (vemin — €l
||d£|| [¢I (Umin) - w/ (Umin - 9||d£||)] .
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Integrating once more, we get

/ F(€) de < ||| / W (trmin) — 0 (venin — €1 L)]

= ¢/ (Vmin) 0| || + 4 (vuin — BlldL ) — ¥ (Vimin)
< ' (Venin )0l L]l = Ol |19 (viin — OlL])
< [¢ (vanin) = ¢ (vanin — 012 1)] Ol |- (5.19)

where the last inequality holds because 1) is convex.?

The first derivative with respect to vy, of the right-hand side expression in this
inequality is given by (¢ (vmin) — %" (Vmin — 0[|dZ|)) 8]|dL]|. Since ¢ is (strictly)
decreasing, this derivative is negative. Hence it follows that the expression is
decreasing in vmin. Therefore, when 6 and ||df|| are fixed, the less vmi, is, the
larger the expression will be. Below we establish how small v,,i, can be when §(v)
is given.

For each coordinate v; of v we have 3|t/ (vmin)| < 3[|¥(v)|| = 6(v), which
means that

—6(v) < =3¢/ (v;) <6(v), 1<i<n.
Since the inverse function p of —% ’ is monotonically decreasing, this is equivalent
to

p(0(v)) <wv; < p(—d0(v)), 1<i<n. (5.20)
Hence the smallest possible value of v, is p(0(v)), and this value is attained in
the (exceptional) case where vy, is the only coordinate of the vector v that differs
from 1. So we may assume that vmin = p(6(v)). This implies —2¢’ (vmin) = 6(v)
and hence ¥’ (vnin) < 0, whence vyin < 1.

In the sequel we denote 0(v) simply as 0. Substitution into (5.19) gives that

F(0) = £(0) < [=20 =4/ (p(8) — O]l dL|1)] 0]l
Hence we certainly have f(6) < 7 if
F(0) + [=26 = 4" (p(8) — 0lldL])] 6lld || < 7,
Since f(0) = ¥(v) < 7, this holds if § is such that
+[=26 — o' (p(0) — OllaLll)] OlldL]l < 7
(=20 — ' (p(8) — 9||df||)] 9||df|| <tT-Te
—3¢' (p(0) — 9||d£||) <O+ o

2We use that if f is convex and differentiable then

(b—a)f'(a) < f(b) — f(a) < (b—a)f'(b).
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Since p is decreasing, the last inequality is equivalent to

Sy —o|d | = p(6+——). 5.21
p(6) — 0|dz | P( 20l (5.21)

Note that if 8 approaches zero then the left-hand side expression converges to
p(0) and the right-hand side expression to zero. The left-hand side is decreasing
in 6 whereas the right-hand side is increasing. The largest possible # makes both
sides equal. In order to get a tight approximation for this value we first need to
estimate ||df||. The next lemma gives an upper bound for ||df]. Its proof goes in
a similar way as that of Lemma 3.3.3, given in [46].

Lemma 5.4.2. One has

el(z+3s)
Cp(0)

Proof. It can be easily verified that the system (5.14), which defines the search

directions ATz, Afy, and A's, can be expressed in terms of the scaled search
directions df and df as in (3.11) with , = 0, i.e.,

(A= (5.22)

Adl = vrd, (5.23a)

AT
ATTy +df = vus™10, (5.23b)
dl +d! =0, (5.23c)

where -
A=AVIX, V =diag(v), X = diag(z).

From the above definition of A we deduce that A = /u AD, where

D = diag (”i”/;) — diag <\/§> = diag (yivs ).

For the moment, let us define

ry = vrd,  re = vrl. (5.24)
With £ = —ATfy we then have (by eliminating df = —d/ from (5.23a)—(5.23c))

VIEADAS =1y, (5.25)
1
wDATE +dl = ——Dr,, 5.26
Vi N (5.26)
By multiplying (5.26) both sides of from the left with \/zz AD and using (5.25) it

follows that
pAD?ATE + 1y = —AD?r,.
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Therefore,

¢ = _l(AD?AT)—1 [AD?rc +13] .
n

Substitution into (5.26) gives

¢ =L pr,— L pAT(AD?AT) T [“ADr, — 1]

Vi Vi
1 1
=—— [T - DAT(AD?A"Y'AD] Dr. + — DAT(AD?*AT) 1y,

To simplify notation we denote
P =DAT(AD?AT)"'AD.

Note that P is (the matrix of) the orthogonal projection to the row space of the
matrix AD. We now may write

Vidl = [I — P](=Dr.) + DAT(AD?AT) "1y,
Let (Z,7,5) be such that AZ = b and ATy + 5 = c. Then we may write
ry = vry = v(b— Az®) = vA(z — 2°),
re = vl =v(c— ATy — %) =v (AT(Q —y°) +5-35%).
Thus we obtain
Vidl =[I - P] (—vD (AT (5 —y°) +5-5")) + vPD (7 — 2°).
Since I — P is the orthogonal projection to the null space of AD we have
[I - PIDAT (5 - y°) = 0.
Hence it follows that
Vadl =[I—P](-vD (s -5°) +vPD ! (z —2°).

To proceed we further simplify the notation by defining

uI:L B uS:—L 5—s%). .
ﬁD ( ), \/ED( ) (5.27)

Then we may write
d! = [I — PJu® + Pu”.

Using the orthogonality of the two terms at the right-hand side, we may write

s2 112 x s
L)1 = Il = Pla”|I* + [Pu®]* < Jlu®||* + u®]|*.
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Due to (5.27), it follows that

7112 v? —1(~ 0y|2 R NIE
I || g; HD (Z—=z )H + ||D(s—s )|| . (5.28)
At this stage we use that the initial iterates are given by (3.1) and (3.2), so we
have

= =ce, =0, p0=¢ (5.29)

where ¢ > 0 is such that
2"+ 5%[loo < ¢ (5.30)

for some optimal solutions z* of (P) and (y*, s*) of (D).

We are still free to choose Z and 3, subject to the constraints Az = b and
AT+ 5 = c. By choosing z = z* and 5 = s*, the entries of the vectors 2
and s® — 5 satisfy

-

Thus it follows that

_1/— _ 2 _ 2
ID7H @ = )2+ DG = )2 < ¢ (11Dl + [ D"e]|*)

e (£02) e (225)

s
2.T (.2 2 2 [.T 2

<§e.(x —l—s)g([e (z—l—sﬂ7
min; |x; ] pv2 s

where, as before vy, = min(v). Substitution into (5.28) yields that

el(z +s)

dl| <
| < —

)

V22
©w

where we used that

= v. Finally, since vyin > p(d), the lemma follows. O

The next lemma provides an upper bound for e’ (z + s).

Lemma 5.4.3. One has
el (z+5) <nC(1+ p(—6)?).

Proof. Let (x*,y*,s*) be an optimal triple for (P) and (D) satisfying (5.30),
and (z,y,s) a feasible triple for some perturbed pair (P,) and (D,). Setting
20 = sY = (e, with ( satisfying (5.30), (4.3), in the proof of Lemma 4.2.1, implies
that

[(1—v)z* —z+wvCe]” [(1—v)s" — s+ vie] = 0.

Since (z*)Ts* = 0 we derive from this that

(1 —v)(sTa* +27s*) +vce’ (x +s) = v(1 —v)Cel (z* + 5*) + 215 + v*Pele.
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Using
2Ts* +sT2* >0 and (eT(x* +5*) < n¢?,

one gets
véel (z +5) < 2Ts + nv¢?, (5.31)

On the other hand, one has xs = uv?. Using u = v¢? and (5.20), we have
xls = pev? < nw¢?p(—0)>.
Substitution in (5.31) implies that
véel (z + 5) < nw¢? (14 p(—6)?).
By dividing both sides of this inequality by v, the lemma follows. |
Substitution of the inequality in Lemma 5.4.3 into (5.22), we obtain

n(1+ p(=0)*)
p(d)

Yet we return to the condition (5.21) on 6:

df] < (5.32)

5) > 01 +p (64— ).
p(6) = O||dy || P( 0]

The right-hand side is increasing in ||dZ||. Therefore, due to (5.32), it suffices if

On(1 + p(=9)*) p() (T —7)
02 B e (S o) 0%

Obviously this implies that On(1 + p(—§)?) < p(§)2. Therefore, there exists o €

(0,1) such that
___ap(9)?
BT .

It is clear that (5.33) can now be restated as

p(8) > ap(8) + p (5 + 22;(57)) . (5.35)

Our objective is to find the largest possible « satisfying this inequality. This
requires a good understanding of the behavior of the function p. Figure 5.3 shows
the graph of p (with s > 0) for several kernel functions.

In order to proceed we need bounds for § = d(v) and p(d). Recall that p is
defined as the inverse function of —1¢/(t), and o as the inverse function of t(t)
for t > 1. We also need the inverse function of ¢ (t) for ¢ € (0, 1], which we denote
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p(s)

1.0

Figure 5.3: Graph of p(s), s > 0, for several kernel functions.

as x. To get tight estimates for these inverse functions we define the barrier term
¥p(t) of 1(t) by the relation

O(t) = E5L 4 gy(t), t>0. (5.36)
It can be easily verified that for all kernel functions in Table 5.1 one has
Up(t) <0, Yy(t) >0, w(t)<0, t>0.

Hence ¢,(t) is monotonically decreasing and ;(¢) is monotonically increasing.
This implies that ¢(¢) and —;(¢) have inverse functions and these function
are monotonically decreasing. We denote these inverse functions as ¥ and p,
respectively; in most cases they can be easily computed.

From now on we restrict ourselves to the case where 1) = 3. Then we have

ti=a -1

Vo(t) = =1 and  Y(t) = —t .

From this one easily derives that
1 -1

X(s) = s> , (5.37)
[1+(g—1)s]s" ¢-1
1

p(s) = —, 5> 0. (5.38)

The next two lemmas provide upper and lower bounds for x and p. In the proofs
we use that ¥ and p are decreasing.
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Lemma 5.4.4. With x denoting the inverse function of ¥(t) for t € (0,1], one
has

T(s+1) <x(s) < X)), 520
Proof. Let ¢ € (0,1]. Then one has
t=x(s) & v =s & Gb)=s+5 o xs)=x(s+ ).
Since x(s) € (0, 1], this implies the inequalities in the lemma. O
Lemma 5.4.5. With p denoting the inverse function of —i;(t) for t > 0, one
has
p(1+2s) < p(s) <p(2s), s=>0.
Moreover, if ¥ = ¥3 then
2s < p(—s) <2s+1, s>0.
Proof. Since ¢'(t) =t + 1, (t), one has

t=p(s) & —L0/(H) = s & —y/(t) = 2s
G (1) =25+ 1 & p(s) = p(2s + p(s)):

If s > 0 then p(s) =t € (0,1], and hence p(2s) > p(s) > p(2s+ 1), proving the
first statement in the lemma. Now let ¢ = 3. Then we have, for s > 0,

t=p(—s) & -3 t)=—-s & 2s=t—t"7 & t=25+19, t>1

Since ¢t > 1 we have t77 € (0,1]. Hence t = p(—s) implies 2s < p(—s) < 2s + 1.
This proves the lemma. O

Recall that g is the inverse function of ¢(¢) for ¢ > 1. The following two results
are less trivial than the preceding two lemmas.

Lemma 5.4.6 (Lemma 6.2 in [10]). For s > 0, one has
V1425 <o(s) <1+ V2s.
Lemma 5.4.7. One has, for each v € RY
3¢ (0(P(v))) < 8(v) < =59 (x (¥(v))).

Proof. The left-hand side inequality in the lemma is due to [10, Theorem 4.9].
The proof of the right-hand side inequality can be obtained by slightly changing
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the proof of [10, Theorem 4.9] and is therefore omitted. O

The above lemmas enable us to find an upper bound for § = §(v) in terms of
7. Let ¥(v) < 7. Then, since y and — 1 " are decreasing, —%WX is increasing.
Hence, Lemma 5.4.7 1mphes that

§=0(v) < =3¢ (x(7)) - (5.39)

By Lemma 5.4.4 we have x(7) > x(7 + 3). Using once more that —31’ is de-
creasing we obtain

26 < =" (X(T+3)) -
Since —¢'(t) =t79 —t < ¢79, and due to (5.37), it follows that

q

20 <xX(r+5) 7 =1+ (-1 +3)]""
= 14+ (= D+ D] [+ - D6 + 57T < 1+ @@= D+ 5] 72,

where the last inequality is due to (1 + az)s < € for > 0 and 1+ az > 0.
Hence, when taking 7 < %, we have

4]

IN
rol—

qe. (5.40)

Since p is decreasing, by applying p to both sides of (5.39), and using Lemma
5.4.4 and (5.37) we obtain

1
1+ @- D+

p(8) > x(1) > x(1+ 3) =

1 .. .
Ifr< 5 this implies

1 1
,0(5)2 1 T 1o >

qLI—l eqfl

mlr—\

(5.41)

Using that p is decreasing and also Lemma 5.4.5 and (5.38) we have
p<5+ ’7A'—T)<p(’7A'—T> p(T—T)
2ap(8) ) " \2ap(5) 2p(9)

()= (2 <

Also using p > 1/e we conclude that (5.35) certainly will hold if
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Now taking o = 5 it follows that (5.35) will be satisfied if

log(7 — 1)

og(2¢] (5.42)

Substitution of v = 1 into (5.34) yields
__ pOF
20T+ p(—0)7)

Due to (5.41) we have p(§) > 1/e and due to Lemma 5.4.5 and (5.40), p(—9) <
20 +1 < 1+ ge. We therefore may conclude that (5.33) certainly holds if we take

o 1
©2e2n(1+ (14 ge)?)’

(5.43)

This is the value that will be used in the sequel. As a consequence, the number
of outer iterations is bounded above by

[2e2n (1+(1+ qe)?)log w—‘ .

We finally have to estimate the number of iterations that are needed to enter
the T-neighborhood of the p*-center of (P,) and (D,). For that we need the
parameters x and v for ¢¥5. These parameters were obtained by Bai et al. [10]
in the analysis of a large-update FIPM based on 3. To make this thesis self-
supporting, we calculate these parameters in the next subsection.

5.4.4 The parameters «k and ~ for ¥ = 13
According to (5.10) the parameters x and « should be such that

e W)
W W ) - 2T

Note that g (s) is increasing in s and, by Lemma 5.4.6, v/1 + 25 < o(s) < 1+/2s,
for s > 0. For the moment, let

§:=v"(o(s))-

We proceed by deriving a lower bound for £. Since 9’ and ¢ are increasing, by
using Lemma 5.4.6 we obtain

/ / — S — 71
1 2s
VI e = s
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Using that z/(1 4 ) is increasing in = and s > 7, we may write

2
T +82 V2s > TV2s > 7V2T, where 7 =
s

£> (5.44)

1427

Since 1" is decreasing, using Lemma 5.4.5 we may write

W (p (@ (e(s)) =" (p(§) <" (p(1+20))

—q—1

q41
=1+gq =14+q(1+2

Q=

(1+2¢)

Hence we have

W (o) & i o

= q

W (p (¥ (9(8))))’4[1+q(1+2§)“—¥1} [1+q(1+2§) }

Since %/ [1 + ¢(1 + 2x)?] is increasing in z if ¢ > 0, by using (5.44) it follows

that
g+1

CA010) N o N )
WO " [ s 2rven) 7] (%)
This implies
s (W (0() (+v20) " (V)T
¢//( (¢/ g+1 VSZT

q 2q

gt1 a—1 g+1
(V)T (VDT e
4{1+q(1+2ﬂ/§)q:1] 2[1+q(1+2f\/§)ﬂ

R =

Taking 7 = % one gets 7 = % Also using ¢ > 1 we obtain

—_

1 1

> .
2T < 124
40q[1+(1+%)] 1

Kk = i 2
2.5. 4% [1+q(1 %%) }
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5.5 Complexity analysis
As we established in (5.13), the total number of iterations is at most

(rhy7

lo ¢
Ory &

(Ce, 0, Ce)
=

We assume that 7 = O(n). Due to Lemma 5.4.1 we then also have 7/ = O(n),
provided that 1/4/1 —6 = O(1). Due to (5.43) the latter condition is satisfied.
To simplify the presentation we use 7/ = n in the analysis below, but our results

can easily be adapted to the case where 7 = O(n). Substituting v = % and
k > —— and @, given by (5.43), the total number of iterations is bounded above

124 ¢
by

¢Pnvnn2a log

248e%qn (1 + (1 + qe)z)n%1 log M =0 (

€(¢e, 0, Ce))
. :

The expression an%q is minimal if ¢ = lo% and then it is equal to e*(logn)3/512.

This value of ¢ satisfies (5.42), since log(2e) < 6. Hence we obtain the following
iteration bound:

@) (n\/ﬁ(log n)3 log M) : (5.45)

3

5.6 Detecting infeasibility or unboundedness

The algorithm, described in this chapter, will detect infeasibility or/and unboun-
dedness of (P) and (D) if no optimal solutions exist. In that case Lemma 3.1.1
implies the existence of 7 > 0 such that the perturbed pair (P,) and (D,) satisfy
the IPC if and only if v € (7,1]. As long as v+ = (1 —0)v > v the algorithm will
run as it should, with 6 given by (5.43). However, if ¢ is small enough, at some
stage it will happen that v > 7 > v*. At this stage the new perturbed pair does
not satisfy the IPC. This will reveal itself since at that time we necessarily have
Omax < 0. If this happens we may conclude that there is no optimal pair (z*, s*)
satisfying ||2* + s*||cc < ¢. In order to settle uncertainty about existence of op-
timal solutions for some larger values of ¢, or infeasibility and/or unboundedness,
one may follow the procedure described in Subsection 3.5.

As mentioned in Section 5.1, Salahi et al. [101] presented a large-update IIPM
based on 3, with the convergence rate O(n./nlogn). This convergence rate is
the best known convergence rate for large-update IIPMs. In the next section, we
briefly describe their algorithm.
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5.7 An O(ny/nlogn) large-update ITPM

Salahi et al.’s algorithm [101] uses 13 with ¢ = 1 4 logn. Each iteration of this
algorithm starts at a triple (z,y, s) which satisfies

(2,51 15) < (0, \), (5.46)
with pg4 given by (1.13) and
(/\ID% - 1) n
nn,A\):=~———2— fora \>2.
logn
The Newton steps are obtained from the system
AAx =1y,

ATAy + As = Te,
sAz + xAs = — v VU (vy),

[xs
Vp = | —
Mt

where p; is the smallest root of the equation

with

A=1)n

b(x, s, 1) = 5

It was shown (see [101, Lemma 2.5]) that if (5.46) holds then

A<t oy
Mt

(5.47)

2
logn*
They derive a step size a € (0, 1) for which the new iterates (z*,y",s%) and p},
with

satisfy (5.46), and
A—1
@(x*,s*,gf) _ ( 5 )n,
where ;" := (1 — ), for 6 = O(m). (5.47) implies that y, is also reduced
by a factor 1 — 6. The residual norms are bounded above by a constant multiplier
of the mean value 4. Thus, the infeasibility and the duality gap are reduced by
a factor 1 — 6. This imposes the convergence rate O(n+/nlogn) to the algorithm.
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Unfortunately, the theoretical convergence rate of our algorithm is a factor
(logn)? worse than Salahi et al.’s algorithm. As the theoretical result is disap-
pointing, in order to show that our algorithm is a large-update algorithm we rely
on the numerical results which are presented in Chapter 6. Note that, theor-
etically speaking, both algorithms, i.e., Salahi et al.’s [101] and our algorithm,
suffer from the deficiency that they are small-update methods as they use the
barrier updating parameter § = O(1/(ny/nlogn)) and 6 = O(1/(ny/n(logn)?)),
respectively.



6

Implementation: issues and results

So far, we have been dealing with the theoretical aspects of IIPMs for LO, i.e.,
global convergence and/or polynomiality. Although they are interesting by them-
selves, from a commercial point of view, the practical behavior of these methods
may be even more interesting. There are some (numerical) issues that theory-
oriented papers never discuss, despite the fact that they may be critical for a
practically efficient implementation. Section 6.1 is devoted to a brief descrip-
tion of some of these issues. The most efficient implementation of IIPMs is the
LIPSOL package which is based on Mehrotra’s PC algorithm [74]. We compare
the iteration numbers of our algorithm with those of this package. The LIPSOL
package is described in Section 6.2.

6.1 Implementation of ITPMs: issues

As mentioned in Chapter 2, an implementation of the “big M” method to solve (P)
and (D) was given by McShanne, Monma and Shanno [71]. Although this method
was more efficient than the simplex method, it suffered from some numerical
instabilities caused by huge coefficients. Lustig [62] designed his algorithm to
overcome these issues. He ran his algorithm to solve the same set of NETLIB'
problems as chosen by McShane et al. [71], i.e., those with no explicit upper
bounded or free variables. Lustig’s algorithm outperformed that of McShane et al.
[71] in terms of iteration number and the simplex method in terms of CPU time.
It is worth mentioning that Lustig used some sophisticated analytic approach to
calculate the barrier parameter and the step sizes along the Newton directions
while McShane et al. used a heuristic barrier parameter and a large fraction, e.g.,
0.9995, of maximal step sizes.

Most of the computational efforts in IPMs for LO are devoted to the Cholesky

Lhttp://www.netlib.org/Ip/

101
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factorization of the coefficient matrix in a linear system of the form
AD?AT Ay = b, (6.1)

where b is some right-hand side and D, in the LO case, has the form

o= ().

McShane et al. [71] and Lustig [62] used, respectively, the linear algebra pack-
ages SMPAK and SPARSPAK [36] to solve the system (6.1). If there were sparse
columns in the coefficient matrix, Choi, Monma and Shanno [17] applied the Schur
complement approach to split sparse and dense columns. This led to better per-
formance than the past implementations. The idea of using the Schur complement
approach had been first suggested by Gill et al. [38]. In addition to the problems
tested in [62, 71], Choi et al. considered NETLIB problems with bounded and/or
free variables as well. Moreover, motivated by the fact that the heuristic values
of the barrier parameter and the step sizes, applied by McShane et al., proved to
be efficient, Choi et al. adapted Lustig’s algorithm in such a way that it avoids
the sophisticated method of Lustig in calculating these parameters and, instead,
applies the heuristic values of McShane et al..

Variants of Lustig’s algorithm were pursued by Lustig, Marsten and Shanno
[63]. They considered the variant of Lustig’s algorithm studied by McShane et al.
[71] and Choi et al. [17], with minor modification with respect to the choice of the
barrier parameter. Moreover, Lustig et al. [63] presented some further discussion
on a variety of computational issues in the primal-dual implementation and the
barrier methods in general, along with a new comprehensive implementation of the
primal-dual algorithm for the entire NETLIB test set. Strengths and weaknesses
of the Schur complement approach, suggested by Choi et al. [17], were also
discussed. Moreover, Lustig et al. [63] showed that the limiting search directions
obtained by Lustig [62] were nothing but the Newton directions for the system
(1.5) which serve to reduce the infeasibility. They also discussed the role of the
barrier parameter in more detail.

Other variants of Lustig’s algorithm were also presented by Subramanian,
Subramanian, Saltzman, Lustig and Shanno [69] and Tanabe [105].

The most efficient primal-dual ITPM, on which most of the existing IPM codes
are based, e.g., LIPSOL of Zhang [120] or PCx package of Czyzyk et al. [18], is
Mehrotra’s PC approach [74]. This algorithm enjoys the feature of using a second-
order approximation of the central path [74, 115]. It should be noted that the
idea of using higher order approximation of the central path was proposed first
by Megiddo [72] and further studied by Monteiro et al. [81]. Mehrotra [74] just
combined these two existing ideas in a nice way in the algorithm of Lustig et al.
[63]. He applied the new algorithm to solve a subset of the NETLIB problems
which have no bounded or free variables. This reduced the number of iterations
significantly, when compared to previous algorithms, e.g., [63, 82].
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Another implementation of Mehrotra’s algorithm was done by Lustig, Marsten
and Shanno [64], incorporating the entire NETLIB test set. It was established
that for large and more complex problems Mehrotra’s method is more efficient.
Numerical issues concerned with the Schur complement approach along with some
other numerical problems were also discussed. Besides, some numerical remedies
for these issues were presented.

After the release of a globally convergent variant of Lustig’s algorithm by
Kojima et al. [54], Lustig, Marsten and Shanno [65] designed a practically globally
convergent variant of Mehrotra’s PC method.

Another successful implementation of Mehrotra’s PC algorithm was given by
Lustig, Marsten and Shanno [64].

The most successful implementation of Mehrotra’s PC algorithm is the LIPSOL
package, which was developed by Zhang [120]. Because LIPSOL is currently the
leading IPM-based package for solving LO problems, we devote the next section
to a detailed description of Mehrotra’s method.

6.2 Mehrotra’s PC approach: LIPSOL package

In this section we deal with a variant of Mehrotra’s PC method which runs in
LIPSOL package. In addition to its being on top of all IPM implementations, our
motivation to describe this package in detail is that in our experiments, presented
in Section 6.3, we use some heuristics which are inspired by those of this package.

6.2.1 About LIPSOL

LIPSOL is a free software? based on MATLAB. Programming in MATLAB is very
easy and it has a high level technical computing environment for computations.
Matrices and formulas can be expressed in a way very close to what we write
mathematically. Besides, because MATLAB provides external interface facilities
to enable interaction with programs in Fortran and C languages in the form of
mez-files, some routine tasks like matrix and vector operations are done using
MATLAB functions while computationally intensive tasks like Cholesky factoriz-
ation are done using Fortran codes. As a result, one enjoys the facility of simple
programming in MATLAB and the computational speed of Fortran. In addition,
LIPSOL uses some new tricks to overcome numerical instabilities in the Cholesky
factorization of the coefficient matrix of the linear system (6.1). Considering the
fact that it more often happens that the coefficient matrix of the linear system
(6.1) is close to positive semidefinite not definite, the regular Cholesky factoriza-
tion may be unstable. To overcome this issue, Zhang suggests the use of so-called
Cholesky-infinity factorization. In this procedure, once a diagonal pivot in the
Cholesky factorization is found to be zero, the corresponding diagonal element of

2htt p: // www. caam ri ce. edu/ ~zhang/ | i psol /
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L, with L the Cholesky factor, is set to infinity. He had to write an external For-
tran code for this new procedure because access to MATLAB’s built-in function
chol was impossible.

There is another version of LIPSOL which is used as a subroutine of the
MATLAB command | i npr og to solve large-scale problems. If the problem is not
tagged as ‘Large-Scale’, | i npr og uses the simplex method as a default algorithm,
and otherwise the function | i psol . Recall that, currently, a variety of linear
algebraic techniques to solve a linear system, e.g., column approximate minimum
degree permutation (the function col and), Cholesky factorization, Cholesky-
infinity factorization, etc., are all available in MATLAB. Due to this, the function
i psol does not use mex-files. Currently, the Cholesky-infinity factor can be
easily computed by using the MATLAB function chol i nc.

Computational experiments, e.g., [64], reveal that the larger the dimension of
a problem is, the more IPMs outperform the simplex method.

Some preprocessing is performed before the main algorithm starts to run:
checking obvious infeasibility, deleting fixed variables and zero rows and columns
from the matrix A, easy handling of free and bounded variables, solving singleton
constraints, if any required, along with scaling the problem and making the matrix
A structurally full rank®. Some heuristic test is carried out to check if the matrix A
has some sparse columns and then by separating the sparse columns, if any, from
the dense ones, the Schur complement approach is applied to solve the normal
equations (6.1). See Subsection 6.2.2 for more detail.

If the solution of the normal equations (6.1) is not satisfactory, i.e., the residual
norm ||AD? AT Ay—b|| is too large, Y. Zhang ignores the solution and uses, instead,

3The structural rank of a matrix A in R™*™ is the size of a maximum matching of the
bipartite graph of A. It is actually an upper bound for the numerical rank of A. So, if m =n, A
is structurally full rank if its bipartite graph has a perfect matching. If m # n, Davis [21] calls
matrix A structurally full row (column) rank if all nodes corresponding to the rows (columns) are
matched in a maximum matching of its bipartite graph (note that there is no perfect matching
in this case anymore). Let us give an example. Given the matrices A and B by

2 3 4 11
A= and B= ,
4 6 8 00

their bipartite graphs are as follows.

AV AN
~Q ° »
. B

A

In both graphs, the set of solid edges is a maximum matching. For matrix A, the set of the
nodes corresponding the rows are all matched in the maximum matching. Thus A is structurally
full row rank but not full column rank. Based on a similar argument, the matrix B turns out to
be neither full row nor full column rank. We say that the matrix B is structurally rank deficient.
Note that for both matrices the numerical rank equals 1.
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the solution of the augmented system, given by

—D72 AT Az T
= , (6.2)
A 0 Ay r, — fzs

x

with r,s defined as in Subsection 6.2.3. As is given by
As = 2= — D7 2Az.

Remark 6.2.1. [t can be verified that the augmented system (6.2) is equivalent
to the following system:

0 AD2ZAT Az AD?*ry 47, — Lz=
A 0 Ay 7, — L8

x

This means that the normal equations (6.1) can be obtained form the augmented
system (6.2) by setting
b:ADQ’/’b—I—’/’C— %

In order to solve the system (6.2), the author uses block LDLT factorization
of the coefficient matrix. This is done by using the MATLAB function | dl . For
advantages and disadvantages of using the augmented system instead of normal
equations and an extensive discussion on implementation of IPMs and related
issues we refer to [115].

Before describing the variant of Mehrotra’s algorithm in LIPSOL, we first
briefly explain the Schur complement approach.

6.2.2 The Schur complement approach

Consider the coefficient matrix of the linear system (6.1). Let A and Aq denote,
respectively, sparse and dense columns of A, and D, and Dy the corresponding
subdiagonals of the scaling matrix D. By splitting the columns of A in sparse

and dense columns, we write
A=[4, A4).

Then we may write
AD?AT = A,D?AT 4 A;D2AT.
Denoting P = A;D2AT and U = A4Dy the latter can be rewritten as
AD?AT = P +UUT.
If P is nonsingular then, by the Sherman-Morrison-Woodbury formula, we have
(P+UUT)"L =Pl -pPlug+vurpP-lu)y-tuTp-!
=P I-UUI+UTPU)"tUTPY.
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Letting P = LT, with L a lower triangular matrix, Ay in (6.1) is obtained from
the following system:

LLTAy =b—UT +WTW)'WTL"', with W :=L"'U.

Note that P is a large sparse matrix whose Cholesky decomposition is not so
computationally expensive. The process of calculating Ay can be organized as
follows:

- solve LW =Uj;

- solve the system Lb = b;

- solve (I + WTW)¢ = W,
- solve LLTAy = b— UE¢.

Note that the matrix U has usually low rank, whence the matrix I + W7TW
is small and requires a small number of back-substitutions once P is factorized.
However, the sparse portion of the coeflicient matrix in (6.1) may be severely ill-
conditioned or even singular, leading to some large residual norm || AD2AT Ay—b|.
This makes the Schur complement approach useless in that case.

6.2.3 Newton search directions

Mehrotra considered the system (1.4). Without assuming feasibility of the current
iterates, this system can be rewritten as follows:

AAx = 1y,
ATAy + As = r, (6.3)
SAT + rAs = 144,

with
Tes := e — xs — AxAs.

Mehrotra defines the directions (Az, Ay, As) as follows:
(A, Ay, As) i= (A%, A%y, A%S) + (Aa, Ay, As),

where (A%x, A%y, A%s) are affine-scaling directions obtained from the system (6.3)
after setting r,s := —xs and (A°x, Ay, A“s) the combined centering-corrector
steps obtained from the system (6.3) after setting r, = 7. = 0 and 7,5 := pe —
A%xA%s.

The predictor step is applied to calculate the barrier parameter as explained in
Subsection 6.2.4. Once the barrier parameter is obtained, Mehrotra proceeds with
computation of the combined centering-corrector steps. The coefficient matrix of
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the combined centering-corrector directions and the affine-scaling directions are
the same and thus only one matrix factorization is required.

The corrector step is motivated as follows. It can be easily verified that the
affine-scaling step (A%x, A%y, A%s) is obtained after linearizing of the system (1.4)
with ¢ = 0. This means that if full affine-scaling step is taken then one should
have

(x + A% ) (s + A%) = 0. (6.4)

On the other hand, one has
(x + A%)(s+ A%) = xs + xA%s + sA%% + A%zA%s = A%z A%s,

meaning that (6.4) may not hold in general. The corrector step tries to com-
pensate for this deviation from the linearity, modifying the search directions so
that the pairwise products come closer to zero.

6.2.4 Choice of the barrier parameter

After computation of the affine-scaling directions (A%z, A%y, A%s), Mehrotra cal-
culates [ as follows:

o (@t oh A)T(s + afa A%S)

il = - , (6.5)

where

af o =min{l,max{a: x + alA% > 0}}, (6.6)
ad o i=min{l,max{a: s+ aAs >0}}. '

max

The quantity f serves to estimate the efficiency of the predictor step as follows.
If & < p then it means that the predictor step makes a large amount of reduction
on the duality gap. If i is smaller than but close to p, then it means that the
predictor step does not make significant reduction on the duality gap, and thus a
small reduction on p is allowed. Mehrotra suggests the following heuristic which
has been efficient in computational experiments [74]:

/j 2
pt = <—> -
I

Setting the new value of p to u™, the combined centering-corrector Newton step
(Acex, A%y, As) is computed.
The Newton directions (Ax, Ay, As) are given by

(Az, Ay, As) := (A%, A%y, A%s) + (A%xz, Ay, As).

After that Zhang [120] (LIPSOL) proposes to obtain the step sizes o, and aq in,
respectively, the primal and the dual spaces such that the new iterates (z*,y™*, s1),
defined as

=+ apAzr, Yyt i=y+agAy and sT = s+ agls,



108 6 IMPLEMENTATION: ISSUES AND RESULTS

satisfy

s© with 4 =107".

6.2.5 Stopping criteria

The algorithm stops if the following stopping criteria holds:

[I7l [I7ell |cfx — b7y

FE =
(#:9:5) = s o) max(L, o) - max(L, |72, [07g])

<eg, (6.7)

for a predetermined € > 0. See Algorithm 6.1.

Algorithm 6.1 The PC algorithm of Mehrotra [74]

Input:
accuracy parameter: £ > 0;
begin
initial points: 2° > 0, ¢ and s° >0 p=p’ = (xO)Tso/n;
while E(z,y,s) > ¢
calculate (A%x, A%, A%s) and o, and ol ;
p-update: p = (ﬂ/u)2 w with @ given by (6.5);
=z + ap(A%r + Ax);

y:=y+aaA%y + A%Y);
s = s+ aq(A% + A“s);
endwhile

end

Mehrotra did not consider convergence or polynomiality of his algorithm.
However, Y. Zhang and D. Zhang [121] proposed some variant of this algorithm
that is polynomial-time. Their proof uses the potential function suggested by
Mehrotra [74] and the recipe of the polynomiality proof given by Zhang [119].

6.3 Implementation of our large-update ITPM

In this section, we present the numerical results of the algorithm described in
Chapter 5. Theoretically, the barrier parameter u is updated by a factor (1 — 6)
with 0 given by (5.43), and the iterates are kept very close to the u-centers, namely
the 7-neighborhood of the pu-centers, with 7 = é. In practice, it is not efficient
to do so and not necessary either. We present a variant of the algorithm which
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uses a predictor-corrector step in the feasibility step. Moreover, for the parameter
7, defined in Section 5.4.1, we allow some larger value than 3, e.g., 7 = O(n).
We set 7 = 7 = O(n) with 7 defined as in Section 5.4.1. As a consequence, the
algorithm does not need centering steps. We choose 7 according to the following
heuristics: if n < 500, then 7 = 100n, for 500 < n < 5000, we choose 7 = 10n
and for n > 5000, we set 7 = 3n. We compare the performance of the algorithm

with the well-known LIPSOL package [120].

6.3.1 Starting point

A critical issue when implementing a primal-dual method is to find a suitable
starting point. It seems sensible to look for a starting point which is well-centered
and as close to a feasible primal-dual point as possible. The one suggested by
theory, i.e., given by (2.39), being nicely centered, may be quite far from the
feasibility region. Moreover, to find a suitable ¢ is another issue.

In our implementation, we use a starting point which is proposed by Lustig
et al. [64] and inspired by the starting point used by Mehrtora [74]. It uses the
least squares solution of the system of constraints in (P), namely,

7= AT(AATY 0.

As in [64], we define

b
£ = max (— 1I<njlgn z;,100, %) and & =1+|c|,.

Then for j =1,--- ,n, assign
Tj = max (Z;,&1) -

Now putting, for j =1,--- ,n,

¢+ & if cj > &
—Cj if ¢ < —&
S5 =
Cj—|-£2 if 0S0j<€2
&2 if —&<¢ <0.
we set -
0._ (2°)" s°

n

=1z, y- =0, =5 and pu
Since we are interested in a point which is in the 7-neighborhood of the ;°-center,
as long as ®(2°, s%, u%) > 7, we keep increasing u° by a constant factor, say 1.1.
In that way, we obtain a barrier parameter u° for which ®(2°,s%, u%) < 7.
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6.3.2 Feasibility step size

As in other efficient numerical experiments, e.g., [64, 120], regardless of the the-
oretical result, we apply different step sizes along the primal step Az and the
dual step (Ay, As). This implies that the feasibility improves much faster than
when identical step sizes are used. Letting (z,y,s) be the current iterates and
(Az, Ay, As) the Newton step, we obtain the maximum step sizes 62, and 6%
in, respectively, the primal and the dual spaces as follows:

X S
v, = min 1, ——— 0 = min <1, ——— 5.
max Ar?}ilo{ T Az } Toomax Ariﬁl?o{ ’ Asi}
The goal is to keep the iterates close to the p-center, i.e., in its 7-neighborhood
where 7 is defined in Subsection 5.4.3. Thus, letting 6 be such that
O(x + 067

max

Az, s+ 002  As, w) <7,

max

the primal and the dual step sizes 6, and 64 are defined as follows:

and 6, = 00%

0, = 06"  ax-

max

6.3.3 Stopping criteria

As in LIPSOL, our algorithm terminates if the condition (6.7) or the following
condition is met: .
leTs — 2™ sT| <¢,

where ¢ = 1075, The condition (6.7) measures the total relative errors in the
optimality conditions (1.1) whilst the latter criterion terminates the program if
only a tiny improvement is obtained on the optimality. In fact, it prevents the
program from stalling. We include this criterion following Lustig [62].

6.3.4 Solving the linear system

Unlike LIPSOL which uses the Schur complement approach to solve the linear
system, we simply apply the backslash command of MATLAB (’\’) to solve the
normal equations (6.1). Denoting M := AD?A” in (6.1), whenever the multiplier
matrix M is ill-conditioned, we could obtain some more accurate solution by
perturbing M as

M=M+107°I,

where I is the identity matrix with size of M.

6.3.5 An iteration of the algorithm

Motivated by the numerical results, and considering the fact that Mehrotra’s PC
method has become the most efficient in practice and used in most IPM-based
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software packages, e.g., [3, 18, 112, 120], we present the numerical results of the
variant of our algorithm which uses Mehrotra’s PC direction at the feasibility
step.
At the feasibility step, we apply the system
AA%x = 1y,
AT A%y + A%

sA%x + xA% = —xs,

Tes

to obtain the affine-scaling directions (A%z, A%y, A%s). Then, the maximum step
sizes 0P .. and 64 in, respectively, primal and dual spaces are calculated as

described in Subsection 6.3.2. Then defining

o (@400, A) (s + 02, A%)
:u - n )
we let
a3
o= <O"u—) , o€(0,1).
i

We use & = 0.3 as the default value of 6. If o < 1, we calculate the new barrier
update parameter p as follows:

Hnew = Uﬂa~

Then, if necessary, by increasing pnew by a constant factor, say 1.1, we derive
SOMeE [inew for which
(I)({L', S, Nnew) S T.

The ideal case occurs when pnew < p. Because then by setting p = pinew, the
corrector step (Acx, Ay, A¢s), obtained from

AA°r =0,
AT Ay + A¢s = 0, (6.8)
sA°x + xA°s = pe — A%cA%s,

yields an improvement of the duality gap. If pnew > u, then the use of the system
(6.8) with 1 = new gives rise to an increase or no improvement of the duality
gap. Hence the use of ;1 = ppew is no longer sensible in this case. Recall that if
o > 1 then it means that the duality gap was increased after the affine-scaling
step (A%z, A%y, A®s). Thus a p-update makes no sense in this case either.

If o <1 and ppew < i, we use the system (6.8) with x4 = 0 as a corrector step.

The feasibility step (Afx, ATy, Als) is obtained as follows:

Ag =A%+ A2, Afy=A%+ A%, Als=A%+ A°s.
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Next, we calculate the primal and the dual step sizes 6, and 6,4, as described in
Subsection 6.3.2, and then obtain the new iterates (z/,y”, s’) as follows:

xf:x—i—OpAfx, vl =y+0,ATy and sf =s+0,A7s.

6.3.6 Results

In this section, we present our numerical results. Motivated by the theoretical
results, which say that the kernel function 3 gives the best known theoretical
iteration bound for large-update ITPMs, we compare the performance of the al-
gorithm described in the previous subsection based on both the logarithmic bar-
rier function and the w3-based barrier function. As the theory suggests, we use
q= lo%n in ;.

Our test was done on a standard PC with Intel® Core™ 2 Duo CPU and 3.25
GB of RAM. The code was implemented by version 7.11.0 (R2010b) of MATLAB®
on a Windows XP Professional operating system. The problems chosen for our
test are from the NETLIB set. To simplify the study, we chose the problems
which have the following format:

min{ch: Ax =b, x > 0};
i.e., there is no nonzero lower bound or finite upper bound on the decision vari-
ables. These problems are listed in Tables 6.3 and 6.4.

We perform the following preprocessing before the main algorithm starts to
run which are in common with LIPSOL: checking obvious infeasibility, deleting
fixed variables and zero rows and columns from the matrix A and solving singleton
constraints, if any required. As mentioned in Section 6.2, in addition to these ac-
tions, in LIPSOL, Zhang scales the problem and makes the matrix A structurally
full rank. We disabled both of these phases when running LIPSOL.

Numerical results are presented in Tables 6.1 and 6.2. In the second and the
fourth columns, we listed the total number of iterations of the algorithm based
on, respectively, 11, the kernel function of the logarithmic barrier function, and
13. The third and fifth columns contain the quantity E(z,y,s). The iteration
numbers of the LIPSOL package are given in the sixth column of these tables, and
the seventh column lists the quantity E(x,y,s) of the LIPSOL package. In each
row, the dark gray cell denotes the smallest of the iteration numbers of the three
algorithms, and the bold number denotes the smallest of the iteration numbers of
the ¥-based and the 3-based algorithms.

As it can be noticed from the last row of the table, the overall performance
of the algorithm based on %) is much better than that the variant based on
13. However, in some of the problems, the 13-based algorithm outperforms the
11-based algorithm. This happens for the problems AGG, BANDM, DEGEN2,
DEGEN3, SCSD1, SCSD6, SCSD8 and SHARE2B. Obviously, LIPSOL is still
the champion; though, our ;-based algorithm saves one iteration compared with
LIPSOL for the problems AGG2 and AGG3, and two iterations for STOCFORI.
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Problem i vs LIPSOL
it. | E(z,y,s) | it. | E(x,y,s) | it. | E(z,y, s)
25FV47 26 | 1.8E-007 | 32 | 1.1E-007 2.8E-007
ADLITTLE 12 | 6.8E-008 | 12 | 1.3E-007 2.4E-011
AFIRO 8 | 1.0E-007 | 8 | 8.6E-008 3.7E-009
AGG 8.8E-007 | 19 | 2.7E-007 | 18 | 1.1E-008
AGG2 9.5E-007 | 18 | 2.7E-007 | 18 | 2.6E-010
AGG3 18 | 3.0E-007 | 18 | 6.0E-007 6.2E-008
BANDM 20 | 2.6E-007 | 18 | 8.5E-007 3.6E-007
BEACONFD - 1.1E-007 - 5.9E-007 1.2E-010
BLEND 13 | 6.2E-007 | 13 | 1.7E-008 5.7E-011
BNL1 32 | 5.0E-007 | 34 | 2.2E-007 5.3E-008
BNL2 33 | 4.1E-007 | 35 | 5.6E-007 1.3E-007
BRANDY 19 | 2.5E-007 | 20 | 4.3E-007 2.0E-008
D2Q06C - 5.6E-001 | 45 | 1.3E-007 4.8E-007
DEGEN2 25 | 1.3E-004 | 16 | 2.8E-005 4.2E-007
DEGEN3 23 | 14E-004 | 21 | 5.3E-004 1.4E-007
E226 22 | 74E-007 | 22 | 8.3E-008 8.9E-007
FFFFF800 - 1.0E-006 | 27 | 3.5E-006 3.0E-007
ISRAEL 22 | 2.0E-007 | 23 | 2.2E-007 2.2E-007
LOTFI 16 | 3.7E-007 | 18 | 6.8E-006 4.6E-008
MAROS-R7 | 19 | 8.0E-007 | 19 | 2.4E-008 1.0E-009
SC105 10 | 1.7E-008 | 10 | 1.5E-008 4.2E-008
SC205 2.5E-007 | 12 | 3.6E-008 6.5E-009
SC50A 1.4E-007 - 9.4E-008 2.8E-009
Table 6.1: Numerical results (¢ = 5™ in 1)3)
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Problem i vs LIPSOL

it. | E(z,y,s) | it. | E(z,y,s) | it. | E(x,y,s)
SC50B - 5.4E-007 - 4.0E-007 1.6E-007
SCAGR7 13 | 3.1E-007 | 13 | 5.8E-007 3.5E-007
SCFXM1 18 | 4.2E-007 | 23 | 3.7E-007 3.7E-007
SCFXM2 21 | 1.4E-006 | 22 | 1.3E-007 1.6E-008
SCFXM3 23 | 1.3E-007 | 25 | 5.9E-008 3.0E-010
SCSD1 13 | 3.9E-007 | 12 | 4.3E-008 3.3E-011
SCSD6 15 | 3.8E-007 | 13 | 3.3E-008 7.8E-008
SCSDS8 13 | 6.4E-008 | 12 | 2.4E-007 4.0E-011
SCTAP1 18 | 5.5E-007 | 20 | 1.1E-007 1.2E-008
SCTAP2 19 | 1.3E-007 | 19 | 2.2E-008 3.5E-009
SCTAP3 19 | 6.4E-007 | 19 | 1.3E-008 2.4E-008
SHARE1B 23 | 6.0E-007 | 26 | 1.0E-008 1.9E-010
SHARE2B 12 | 1.3E-008 - 8.5E-007 1.7E-007
SHIP04L 15 | 7.8E-007 | 17 | 1.6E-007 5.6E-011
SHIP04S 15 | 3.2E-007 | 16 | 5.3E-008 3.6E-007
SHIP12L 19 | 9.1E-007 | 27 | 5.4E-007 7.7E-009
SHIP12S 17 | 1.3E-007 | 19 | 3.4E-008 3.6E-007
STOCFOR1 - 49E-007 | 23 | 9.2E-007 1.1E-007
STOCFOR2 | 25 | 1.8E-007 | 33 | 2.0E-008 2.3E-008
TRUSS 18 | 3.9E-007 | 20 | 7.3E-007 8.4E-007
WOOD1P 17 | 8.3E-007 | 18 | 9.7E-006 7.0E-010
WOODW 25 | 3.1E-007 | 25 | 9.9E-007 5.1E-010
Total 816 880 725

Table 6.2: Numerical results (¢ = 10% in 13)
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Problem rows | columns | nonzeros | Optimal objective
25FV4r 821 1876 10705 5.50185E4-003
ADLITTLE 56 138 424 2.25495E4-005
AFIRO 27 51 102 —4.64753E+002
AGG 488 615 2862 -3.59918E+-007
AGG2 516 758 4740 —2.02393E+-007
AGG3 516 758 4756 1.03121E+007
BANDM 305 472 2494 —1.58628E4-002
BEACONFD || 173 295 3408 3.35925E+004
BLEND 74 114 522 -3.08121E+001
BNL1 643 1586 5532 1.97763E+003
BNL2 2324 4486 14996 1.81124E+003
BRANDY 220 303 2202 1.51851E+003
D2Qo06C 2171 5831 33081 1.22784E+005
DEGEN2 444 757 4201 —1.43518E4-003
DEGEN3 1503 2604 25432 —9.87294E4-002
E226 223 472 2768 -1.87519E+001
FFFFF800 524 1028 6401 5.55680E4-005
ISRAEL 174 316 2443 —-8.96645E+005
LOTFI 153 366 1136 —2.52647E+001
MAROS-R7 3136 9408 144848 1.49719E+006
SC105 105 163 340 -5.22021E+001
SC205 205 317 665 -5.22021E+001
SC50A 50 78 160 —6.45751E+001

Table 6.3: Netlib problems

115



116 6 IMPLEMENTATION: ISSUES AND RESULTS

Problem rows | columns | nonzeros | Optimal objective
SC50B 50 78 148 —~7.00000E+001
SCAGRT7 129 185 465 —2.33139E+006
SCFXM1 330 600 2732 1.84168E-+004
SCFXM2 660 1200 5469 3.66603E-+004
SCFXM3 990 1800 8206 5.49013E+004
SCSD1 7 760 2388 8.66667E+000
SCSD6 147 1350 4316 5.05000E+-001
SCSD8 397 2750 8584 9.05000E+002
SCTAP1 300 660 1872 1.41225E+003
SCTAP2 1090 2500 7334 1.72481E+003
SCTAP3 1480 3340 9734 1.42400E-+003
SHARE1B 117 253 1179 —7.65893E+-004
SHARE2B 96 162 77 —4.15732E+002
SHIP04L 402 2166 6380 1.79332E-+006
SHIP04S 402 1506 4400 1.79871E-+006
SHIP12L 1151 5533 16276 1.47019E-+006
SHIP12S 1151 2869 8284 1.48924E+006
STOCFOR1 || 117 165 501 —4.11320E+004
STOCFOR2 || 2157 3045 9357 —-3.90244E+004
TRUSS 1000 8806 27836 4.58816E+005
WOOD1P 244 2595 70216 1.44290E-+000
WOODW 1098 8418 37487 1.30448E-+000

Table 6.4: Netlib problems
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Conclusions

7.1 Concluding remarks

In this thesis, we analyze large-update infeasible interior-point methods (IIPMs)
for LO. Our work is motivated by [97] in which Roos presents a full-Newton
ITPM for LO. Since the analysis of our large-update IIPMs requires properties of
barrier functions based on kernel functions that are used in large-update feasible
interior-point methods (FIPMs), we present primal-dual large-update FIPMs for
LO based on kernel functions, as well.

In Roos’ algorithm, the iterates move within small neighborhoods of the u-
centers of the perturbed problem pairs. As in many ITPMs, the algorithm reduces
the infeasibility and the duality gap at the same rate. His algorithm has the
advantage that it uses full Newton steps and hence no calculation of step size is
needed. Moreover, its theoretical iteration bound is O(nlog(e(Ce, 0, (e)/c)) which
coincides with the best-known iteration bound for IIPMs. Nevertheless, it has the
deficiency that it is too slow in practice.

We attempt to design a large-update version of Roos’ algorithm which al-
lows larger reductions of €(x,y, s) at an iteration. This requires that the para-
meter 6 is larger than O(1/n), even § = O(1). Unfortunately, the result of the
theoretical analysis in Chapter 5 implies that 6 is O(1/(n(logn)?)) which yields
O(n+/n(logn)?log(e(Ce, 0, (e)/e) iteration bound for a variant. Since the theoret-
ical complexity of the algorithm is disappointing, we rely on the numerical results
to establish that our algorithm is really a large-update method. A practically
efficient version of the algorithm is presented and its numerical results are com-
pared with the well-known LIPSOL package. Fortunately, the numerical results
seem promising as our algorithm has iteration numbers close to those of LIPSOL
and, in a few cases, outperforms LIPSOL. This makes clear that IIPMs suffer
from the same irony as FIPMs, i.e., regardless of their nice practical performance,
the theoretical complexity of large-update methods is worse. Recall that the best
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Figure 7.1: Typical behavior of ¥(9) as a function of 0

known iteration bound for large-update ITIPMs is O(n+/nlognlog(e(Ce,0,¢e)/¢)
which is due to Salahi et al. [101].

As in other successful implementations like e.g., [64, 120], different step sizes
in the primal and the dual spaces are used in our implementation. This gives
rise to a faster achievement in feasibility than when identical step sizes are used.
Moreover, inspired by the LIPSOL package, we use a predictor-corrector step in
the feasibility step of the algorithm.

7.2 Further research

In this section, we mention a few directions for future research that are related to
the subject of this thesis.

e As mentioned before, our algorithm has a factor (logn)? worse iteration
bound than the best known iteration bound for large-update IIPMs. One
may consider how to modify the analysis such that the iteration bound of
our algorithm is improved by a factor (logn)?.

e As mentioned in Section 7.1, according to the analysis of our algorithm
presented in Chapter 5, the barrier-updating parameter 6 is O(1/(n(log n)?)).
This yields the loose iteration bound given by (5.45). This slender value of 6
is obtained because of some difficulties in the analysis of the algorithm which
uses the largest value of 6, satisfying (5.21), to assure that ¥(0) = O(n).
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This value of € is much smaller than the best value we may choose. A typical
graph of ¥(?), as a function of 6, is as depicted in Figure 7.1. Assuming
n = 60, the largest value of 8 satisfying U (%) = n is 0.788840 while the value
of 0 suggested by theory is 0.107140. A future research may focuss on some
new analysis of the algorithm which yields some larger value of 6.

e Roos’ full-Newton step IIPM was extended to Semidefinite Optimization
(SDO) by Mansouri and Roos [67], to Symmetric Optimization (SO) by Gu
et al. [47] and to LCP by Mansouri et al. [68]. An extension of large-update
FIPMs based on kernel functions to SDO was presented by El Ghami [37].
One may consider how our algorithm behaves in theory and practice when
it is extended to the cases of SDO, SO and LCP.
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List of notations and abbreviations

Sets
R
R+
R+
]R’I’L
Rmxn

field of real numbers.

set of nonnegative real number.

set of positive real numbers.

set of real n-vectors (n x 1 matrices).
set of real m x m matrices.

Vectors and matrices

e all-one vector.

1 identity matrix.
Abbreviations

IPC interior-point condition.

IPM(s) interior-point method(s).

FIPM(s) feasible interior-point method(s).

ITPM(s) infeasible interior-point method(s).

PFM(s) path-following method(s).

PRM(s) potential-reduction method(s).

PC predictor-corrector.

LO linear optimization.

QP quadratic problem.

LCP linear complementarity problem.

HLCP horizontal linear complementarity problem.
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Summary

Large-update Infeasible Interior-Point Algorithms for Linear
Optimization

Recently, Roos [97] proposed a full-Newton step infeasible interior-point method
(ITPM) for linear optimization (LO). Shortly afterwards, Mansouri and Roos [66]
presented a variant of this algorithm and Gu et al. [46] a version with a simplified
analysis.

Roos’ algorithm is a path-following method. It uses the so-called homotopy
path as a guideline to an optimal solution. The algorithm has the advantage
that it uses only full Newton steps (the step size is always 1, hence requires no
computation), and its convergence rate is O(n), which coincides with the best
known convergence rate for IIPMs. Apart from these nice features, the algorithm
has the deficiency that it is a small-update method and hence it is too slow for
practical purposes.

In this thesis we design a large-update version of Roos’ algorithm. We present
a practically efficient implementation of (a variant of) the algorithm and compare
its performance with that of the well-known LIPSOL package [120]. The numerical
results are promising as the iteration numbers of our algorithm are close to those
of LIPSOL; in a few cases they outperform LIPSOL.

Not surprisingly, as in large-update feasible interior-point methods (FIPMs),
there is a gap between the practical and the theoretical behavior of our large-
update ITIPM. To be more precise, its theoretical convergence rate is O(n/n(logn)?)
which is worse than the convergence rate of its full-Newton step variant. This
phenomenon is well-known in the field of IPMs, and has been called the irony of
IPMs: small-update methods have the best complexity results and are slow in
practice, whereas large-update methods have worse complexity results and excel-
lent performance in practice. For example, large-update FIPMs are by a factor
O(log n) worse than that of the full-Newton step FIPMs, i.e., O(y/nlogn) versus
O(v/n) [37, 98].

The thesis also contains a survey of IIPMs that have been presented by several
authors in last two decades. It covers a wide range of methods, starting from
Lustig’s algorithm [62], to the infeasible potential-reduction methods of Mizuno,
Kojima and Todd [76]. We focus on convergence properties and polynomiality of
the ITPMs presented in our survey.
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Samenvatting

Onlangs publiceerde Roos [97] een volle-Newton stap ‘infeasible’ inwendige-punt
methode (IIPM) voor lineaire optimalisatie (LO). Iets later stelden Mansouri en
Roos [66] een variant voor van dit algoritme, en kort daarna publiceerden Gu et
al. [46] een versie met een envoudigere analyse.

Het algoritme van Roos is een padvolgende methode. Het gebruikt het zogen-
aamde homotopie pad als een gidslijn naar een optimale oplossing. Het algoritme
heeft als voordeel dat het alleen volle Newton stappen gebruikt (er is dus geen
berekening nodig van de stapgrootte, deze is altijd 1), en de convergentiesnelheid
is O(n), de best bekende convergentiesnelheid voor ITPMn. Naast deze goede
eigenschappen heeft Roos’ algoritme het nadeel dat het een zogenaamde ‘small-
update’ methode is, waardoor de methode te traag is voor practische doeleinden.

In dir proefschrift ontwerpen we een ‘large-update’ versie van genoemd algor-
itme van Roos. We presenteren een in de praktijk efficiénte implementaie van (een
variant van) het algoritme en vergelijken de performance met die van het bekende
pakket LIPSOL [120]. De numerieke resultaten zijn veelbelovend omdat de ben-
odigde aantallen iteraties voor ons algoritme dicht bij die van LIPSOL liggen, en
in enkele gevallen zelfs beter zijn.

Niet verrassend is dat er, evenals bij ‘large-update feasible’ inwendige-punt
methoden (FIPMn), een discrepantie is tussen het practische en het theoret-
ische gedrag van onze ‘large-update’ IIPM. De theoretische convergentiesnelheid
is namelijk O(ny/n(logn)?), hetwelk slechter is dan de convergentiesnelheid van
de volle-Newton stap variant. Dit verschijnsel is welbekend in het gebied van
IPMn, en staat bekend als de ironie van IPMn: ‘small-update’ methoden hebben
de beste complexiteit en zijn traag in de praktijk, terwijl ‘large-update’ methoden
slechtere complexiteit hebben en in de praktijk veel sneller zijn. Bijvoorbeeld, de
convergentiesnelheid van ‘large-update’ FIPMn is een factor O(logn) slechter dan
die van volle-Newton stap FIPMn, namelijk, O(y/nlogn) versus O(y/n) [37, 98].

Het proefschrift bevat ook en overzicht van ITPMn die gedurende de laat-
ste twee decades zijn voorgesteld door diverse auteurs. Het beschrijft een groot
aantal ITPMn, van Lustig’s algorithm [62], tot de ‘infeasible’ potentiaal-reductie
methoden Mizuno, Kojima and Todd [76]. De nadruk in dit overzicht ligt op
convergentie-eigenschappen en polynomialiteit van de besproken ITPMn.
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