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1Introdu
tion1.1 Linear optimizationThis thesis deals with linear optimization (LO), whi
h amounts to the problemof minimizing or maximizing a linear fun
tion subje
t to some linear 
onstraints.LO is a bran
h of Mathemati
al Programming whi
h in turn is a part of Opera-tions Resear
h. E
onomi
ally speaking, an optimization problem is a formalizedversion of the e
onomi
 prin
iple, i.e., depending on the viewpoint of the de
isionmaker, it either maximizes the output for some given input (e.g., pro�t maximiz-ation), or minimizes the input for some required output (e.g., 
ost minimization).Nowadays, LO has a wide range of pra
ti
al appli
ations. In [28℄, a list of a varietyof those appli
ations is provided among whi
h are The Diet Problem, Allo
ationProblem, Cutting Sto
k Problem, Crew S
heduling and Data Envelopment Ana-lysis.Negle
ting the primitive works on the solution of a system of linear inequalit-ies, done by su
h people as J. Fourier [49℄ and J. Farkas [48℄, the modern 
on
eptof LO problem tra
es ba
k to L. V. Kantorovi
h in 19391. As a 
onsultant forthe Laboratory of the Plywood Trust, Kantorovi
h dealt with the problem of dis-tributing some initial raw materials in order to maximize equipment produ
tivityunder 
ertain restri
tions. His studies were interrupted by World War II (WWII)during whi
h his results remained unknown2. Postwar, in 1947, this problemwas studied also by some other people like G. B. Dantzig and T. C. Koopmans.1Here we mention only a few of the highlights whi
h dire
tly in�uen
ed the �eld of LO. Fora 
omprehensive history of operations resear
h and LO, we refer to [70℄ and [34℄. The personalreminis
en
es of Dantzig [19℄ are also interesting. A 
olle
tion of personal reminis
en
es of
ontributors in the �eld of mathemati
al programming 
an be found in [59℄.2 Nobel Le
tures, E
onomi
s 1969-1980, Editor Assar Lindbe
k, World S
ienti�
Publishing Co., Singapore, 1992. One may also �nd an autobiography of Kan-torovi
h at http://nobelprize.org/nobel_prizes/economics/laureates/1975/
kantorovich-autobio.html. 1



2 1 INTRODUCTIONDantzig introdu
ed his well-known simplex method for solution of LO problem.We refer to, e.g., [20℄ for an extensive des
ription of the simplex method.Asso
iated with any LO problem there is another LO problem, 
alled its dualproblem. In [19, pages 45-46℄ it is mentioned that existen
e of the dual problemwas 
onje
tured �rst by John von Neumann, also in 1947 (during a 
onversationwith Dantzig)3. A rigorous proof of the duality theorem was published later byGale, Kuhn and Tu
ker in 1948.In an LO problem, the 
onstraints may be equalities and/or inequalities. Theremay be some variables 
onstrained as nonnegative and some un
onstrained. How-ever, any LO problem 
an be transformed into the so-
alled standard form whi
h isthe LO problem with only equality 
onstraints and nonnegative variables. There-fore, most literature on LO, e.g., [60, 98, 103, 115, 118℄, deals with the standardform whi
h is de�ned as follows:(P) min
{

cTx : Ax = b, x ≥ 0
}

,where A ∈ Rm×n, c ∈ Rn, x ∈ Rn and b ∈ Rm. Without loss of generality, it 
anbe assumed that A has full row rank. The dual problem, asso
iated with (P), isgiven by:(D) max
{

bTy : AT y + s = c, s ≥ 0
}

,with y ∈ Rm. After introdu
tion of the dual problem, Dantzig named the problem(P) primal problem.In this thesis, we deal with the standard form of the LO problem and, unlessotherwise stated, `LO problem' stands for the `standard LO problem'.The feasible regions of (P) and (D) are denoted by P and D, respe
tively:
P := {x : Ax = b, x ≥ 0}
D :=

{

(y, s) : AT y + s = c, s ≥ 0
}

.The problem (P) is 
alled feasible if P is nonempty and otherwise infeasible. If
cTx is unbounded below over P , we 
all (P) unbounded, otherwise bounded. Weuse similar terminology for the dual problem (D).The relative interiors of P and D are denoted by P◦ and D◦, respe
tively:

P◦ := {x : Ax = b, x > 0}
D◦ :=

{

(y, s) : AT y + s = c, s > 0
}

.We say that (P) and (D) satisfy the interior-point 
ondition (IPC) if both P◦and D◦ are nonempty.3The theory whi
h Neumann suggested for the dual problem was analogue to his theory forGame Theory.



1.2 DUALITY RESULTS 31.2 Duality resultsWe re
all the well-known weak duality result for LO problem.Proposition 1.2.1. (Weak Duality)(
f. [98, Proposition II.1℄) Let x and (y, s)be feasible for, respe
tively, (P) and (D). Then cTx − bT y = xT s ≥ 0. Con-sequently, cTx is an upper bound for the optimal value of (D), if it exists, and
bT y is a lower bound for the optimal value of (P), if it exists. Moreover, if the du-ality gap xT s is zero then x is an optimal solution of (P) and (y, s) is an optimalsolution of (D).It 
an be 
on
luded from Proposition 1.2.1 that if one of the problems (P)and (D) is unbounded then the other is infeasible. As we mentioned in Se
tion1.1, the duality theory was introdu
ed by van Neumann [83℄, and later expli
itlyformulated and proven by Gale, Kuhn and Tu
ker [33℄. The 
lassi
al dualitytheorem for LO 
an be stated as follows.Theorem 1.2.2. (Strong Duality)(
f. [98, Theorem II.2℄) If (P) and (D) arefeasible then both problems have optimal solutions. Then, if x ∈ P and (y, s) ∈ D,these are optimal solutions if and only if xT s = 0. Otherwise neither of the twoproblems has optimal solutions: either both (P) and (D) are infeasible or one ofthe two problems is infeasible and the other one is unbounded.Below we state another duality theory result for LO whi
h is due to Goldmanand Tu
ker [41℄.Theorem 1.2.3. (Goldman-Tu
ker Theorem)(
f. [98, Theorem II.3℄) If (P)and (D) are feasible then there exists a stri
tly 
omplementary pair of optimalsolutions, that is an optimal triple (x, y, s), with x ∈ P and (y, s) ∈ D, satisfying
x+ s > 0.Re
all that by Theorem 1.2.2, a primal-dual feasible triple (x, y, s) is optimal ifand only if xT s = 0. This is 
alled the 
omplementarity 
ondition for (P) and (D)(see e.g., [98℄). Be
ause the ve
tors x and s are nonnegative, the 
omplementarity
ondition is equivalent to xs = 04. In short, any primal-dual optimal solution
(x∗, y∗, s∗) of (P) and (D) satis�es the following 
onditions:

Ax = b,

AT y + s = c,

x ≥ 0, s ≥ 0,

xs = 0,

(1.1)4Throughout this thesis, we denote by 0 and e (used later) the zero and the all-one ve
tors,respe
tively, of appropriate size. Moreover, if x, s ∈ Rn, then xs denotes the 
omponentwise (orHadamard) produ
t of the ve
tors x and s.



4 1 INTRODUCTIONwhere the �rst three lines require that x ∈ P and (y, s) ∈ D and the last line isthe 
omplementarity 
ondition. The system (1.1) is known as the Karush-Kuhn-Tu
ker (KKT) optimality 
onditions for LO.1.3 AlgorithmsIn order to solve LO problem, various methods have been introdu
ed. In this se
-tion we brie�y dis
uss the most important methods, thereby fo
using on interior-point methods be
ause these are the methods studied in this thesis.1.3.1 Simplex methodAs mentioned in Se
tion 1.1, the simplex method was introdu
ed by Dantzig in1947. It starts from a vertex of the feasible region, whi
h is a
tually a polyhed-ron, and moves along an edge to a vertex with non-in
reasing (for a minimizationproblem) values of the obje
tive fun
tion; this is repeated until an optimal vertexis rea
hed. In unbounded problems, some feasible ray is dete
ted during the sim-plex pro
edure along whi
h the obje
tive fun
tion is de
reasing. Despite its ni
epra
ti
al performan
e, there is an example, given by Klee and Minty [53℄, having
2n inequality 
onstraints and n variables for whi
h the simplex method needs
2n iterations. This means that the simplex method may not have a polynomialworst-
ase iteration bound.Indeed, for many variants of the simplex method, a

ording to their di�erentpivoting rules, exponential running time examples have been found.1.3.2 Ellipsoid methodA polynomial-time algorithm for LO remained unknown until Kha
hiyan [52℄ in-trodu
ed his ellipsoid method in 1979. The ellipsoid method generates a sequen
eof ellipsoids en
losing an optimal solution, if any exists, whose volumes uniformlyde
rease at every step. If there is no optimal solution, the method stops whenthe ellipsoid is so small that it 
an be established that no optimal solution ex-ists. The iteration bound of the ellipsoid method is O(n2L) with L denotes thelength of input data bits. However, the ellipsoid method turned out to be tooslow for pra
ti
al purposes (see e.g., [15, 40℄) and the simplex method remainedthe favorite method in pra
ti
e.1.3.3 Interior-point methodsAnother polynomial algorithm for LO was presented by Karmarkar [51℄ in 1984.The iteration bound of Karmarkar's algorithm is better than that of Kha
hiyan'salgorithm by a fa
tor O(n). Although some initiatory implementations of Kar-markar's algorithm were disappointing (see e.g., [61, 109℄), some authors, like



1.3 ALGORITHMS 5Adler et al. [1℄, Monma and Morton [79℄ and M
Shane et al. [71℄, implementedvariants of Karmarkar's algorithm whi
h favorably 
ompeted with the simplexmethod in pra
ti
e. Karmarkar's algorithm is within the 
lass of interior-pointmethods (IPMs). In 
ontrast with the simplex method, IPMs move through theinterior of the feasible region to �nd the optimal solution5.Although, IPMs have been known sin
e 1960 in the form of barrier methods[30℄, they re
eived renewed attention after Karmarkar's result. This has led tothe following 
ategories of algorithms:
• proje
tive methods, as proposed by Karmarkar [51℄ and studied by others in[4, 5, 22, 29, 31, 35, 43, 84, 94, 107, 109, 116℄,
• a�ne-s
aling methods, as proposed by Dikin [26℄, and investigated furtherin [1, 13, 27, 73, 79, 81, 110, 113, 114℄,
• path-following methods (PFMs), whi
h 
an be divided in small-update al-gorithms, as studied in [10, 39, 42, 56, 80, 92, 95, 96, 100, 108, 111℄, large-update algorithms, as studied in [10, 13, 24, 25, 99℄, and predi
tor-
orre
tor(PC) methods, as studied in [74, 77℄,
• potential-redu
tion methods (PRMs), as des
ribed in [7, 32, 44, 57℄. See also[6, 106℄ for a survey on potential-redu
tion methods.Karmarkar's iteration bound, namely O(nL), was improved a 
ouple of yearslater by Renegar [92℄ by a fa
tor of √n.IPMs have shown their e�
ien
y in solving LO problem in both pra
ti
e andtheory. For a survey of IPMs, we refer to e.g. [23, 45, 98, 115, 118℄.IPMs are divided into feasible IPMs (FIPMs) and infeasible IPMs (IIPMs).FIPMs start from a primal-dual stri
tly feasible triple (x0, y0, s0), i.e., x0 ∈ P◦and (y0, s0) ∈ D◦, and generate a sequen
e of stri
tly feasible triples (x, y, s) 
on-verging to an optimal solution of (P) and (D). In 
ontrast, in IIPMs the iteratesare not feasible, and apart from rea
hing optimality one needs to strive for feas-ibility. Pre
isely speaking, IIPMs start from a triple (x0, y0, s0), where x0 > 0and s0 > 0, and generate triples (x, y, s) satisfying x > 0 and s > 0 but notne
essarily (1.2a) and (1.2b). IIPMs attempt to obtain feasibility and optimalitysimultaneously.The 
urrent 
hapter deals with FIPMs. IIPMs are extensively 
onsidered inChapter 2. Be
ause proje
tive methods, PRMs and a�ne-s
aling methods arebeyond the s
ope of the thesis we do not explain them in detail. We 
on
entrate5It is worth mentioning that, nowadays, both simplex-based algorithms and primal-dualIPMs are used in 
ommer
ial pa
kages as SeDuMi, COIN, CPLEX, MOSEK and LINPROG(in MATLAB). In LINPROG, the default algorithm is based on the simplex method. If theproblem is labeled as �Large-S
ale�, the well-known LIPSOL pa
kage is used whi
h is the bestknown IPM-based software for solving LO problems.



6 1 INTRODUCTIONon PFMs. To be more spe
i�
, we deal in this 
hapter with the feasible full-Newton step PFM whi
h was introdu
ed and dis
ussed in [98℄. We are interestedin this algorithm be
ause the full-Newton step IIPM of Roos [97℄, to be dis
ussedin Chapter 3, is inspired by this algorithm. The main result of this thesis, i.e.,the algorithm, explained in Chapters 5 and 6, is a
tually a large-update variantof the above mentioned full-Newton step IIPM.PFMs use a virtual path inside the feasible region of (P) and (D) as a guidelineto an optimal solution of (P) and (D). The next se
tion is devoted to the de�nitionof this so-
alled 
entral path.1.4 Central pathMost IPMs 
onsider the parameterized KKT system, de�ned as follows:
Ax = b, (1.2a)

AT y + s = c, (1.2b)
x ≥ 0, s ≥ 0, (1.2
)

xs = µe, (1.2d)where µ > 0 is a positive parameter whi
h is 
alled the barrier parameter (seee.g., [55, 56, 80℄). The system (1.2) is 
alled the KKT system with respe
t to µ.Be
ause of (1.2d), any solution of the system (1.2) will satisfy x > 0 and s > 0.Therefore, a solution exists only if (P) and (D) satisfy the IPC. Surprisingly, ithas been shown (see [98, Theorem II.4 or Remark II.5℄) that if the IPC holdsthen, for any µ > 0, the system (1.2) has a (unique) solution. It follows that(P) and (D) satisfy the IPC if and only if the system (1.2) has a unique solutionfor any µ > 0. This unique solution is denoted by (x(µ), y(µ), s(µ)). The ve
tor
x(µ) is 
alled the µ-
enter of (P) and (y(µ), s(µ)), the µ-
enter of (D). The set ofthe primal-dual µ-
enters (x(µ), y(µ), s(µ)), as µ runs through R++, is 
alled the
entral path of (P) and (D). Megiddo [72℄ established that as µ tends to zero, the
entral path 
onverges to a primal-dual optimal solution6.Unfortunately, the system (1.2) is nonlinear be
ause of the equation (1.2d),whi
h makes obtaining the µ-
enter rather di�
ult. IPMs over
ome this issue byusing a numeri
al iterative pro
edure based on the well-known Newton-Raphson'smethod. This is the subje
t of the next se
tion.6The notion of analyti
 
enter of a bounded 
onvex set was introdu
ed by Sonnevend [102℄.If the feasible region of an LO problem is bounded, then its analyti
 
enter is the limit of the
entral path if µ tends to in�nity. On the other hand, if the optimal set of an LO problem isbounded, then its analyti
 
enter is the limiting point of the 
entral path as µ tends to zero [98℄.



1.5 SEARCH DIRECTIONS 71.5 Sear
h dire
tionsGiven a triple (x, y, s) and some µ > 0, to obtain the µ-
enter, we need displa
e-ments (∆x,∆y,∆s) su
h that x + ∆x, y + ∆y and s + ∆s 
oin
ide with the
µ-
enter of (P) and (D):

A(x+∆x) = b,

AT (y +∆y) + (s+∆s) = c,

x+∆x > 0, s+∆s > 0,

(x+∆x)(s +∆s) = µe.De�ning the primal and dual residual ve
tors rb and rc as
rb := b−Ax and rc := c−AT y − s, (1.3)and ignoring the inequalities for the moment, the last system 
an be rewritten asfollows:

A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s+∆x∆s = µe− xs.

(1.4)By negle
ting the quadrati
 term ∆x∆s from the third equation, a

ording toNewton's iterative method for solving nonlinear systems, one obtains the followingsystem in ∆x, ∆y and ∆s:
A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s = µe− xs.

(1.5)The dire
tions (∆x,∆y,∆s), given by (1.5), are 
alled the primal-dual Newtondire
tions at the triple (x, y, s). Be
ause A has full row rank, it 
an be veri�ed (see[98, Theorem II.42℄) that the primal-dual Newton step (∆x,∆y,∆s) is uniquelyde�ned by the system (1.5).In FIPMs, i.e., if x ∈ P◦ and (y, s) ∈ D◦, then one has rb = rc = 0. As aresult, the system (1.5) is redu
ed as follows:
A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = µe− xs.

(1.6)



8 1 INTRODUCTIONBy the �rst two equations of the system (1.6), it 
an be easily veri�ed thatthe ve
tors x+, y+ and s+, given by
x+ := x+∆x,

y+ := y +∆y,

s+ := s+∆s,

(1.7)satisfy the equations (1.2a) and (1.2b). However, they may not satisfy the in-equality 
onditions (1.2
). Hen
e, some step size α ∈ (0, 1] may be required su
hthat
x+ := x+ α∆x ∈ P◦,

y+ := y + α∆y ∈ D◦,

s+ := s+ α∆s ∈ D◦.As we mentioned above, the quadrati
 term ∆x∆s is negle
ted from the thirdequation of the system (1.4). This 
auses the equation (1.2d) to be not satis�ed,i.e., the pairwise produ
ts x+i s+i , i = 1, · · · , n may not be equal to µ, ex
ept inthe ideal 
ase that ∆x∆s = 0. This means that PFMs follow the 
entral pathapproximately and do not stay exa
tly on the 
entral path. The next se
tion isdevoted to de�nition of the so-
alled proximity measure whi
h is used to measurethe deviation of the iterates from the µ-
enters.1.6 Proximity measureThe proximity measure whi
h we introdu
e in this se
tion was �rst used by Jansenet al. [50℄ and later, with some minor modi�
ation, by Roos, Terlaky and Vial[98℄.Given the iterates x and s and some µ > 0, the varian
e ve
tor v of the iterates
x and s with respe
t to µ is de�ned as follows:

v :=

√

xs

µ
. (1.8)Note that

v = e ⇔ xs = µe,whi
h means that the varian
e ve
tor is the all-one ve
tor if and only if the iterates
x and (y, s) are the µ-
enters.Using v, the proximity measure δ(v) is de�ned as follows:

δ(v) :=
1

2
‖v−1 − v‖. (1.9)



1.6 PROXIMITY MEASURE 9It 
an be easily veri�ed that δ(v) = 0 if and only if v = e, whi
h means that δ(v)vanishes only at the µ-
enter. In other words, one has
δ(v) = 0 ⇔ v = e ⇔ xs = µe. (1.10)In [98℄, the proximity measure δ(v) was motivated as follows. De�ning thes
aled Newton dire
tions dx and ds as
dx :=

v∆x

x
and ds :=

v∆s

s
,the system (1.6) 
an be rewritten as below:

Ādx = 0,

ĀTdy + ds = 0,

dx + ds = v−1 − v,

(1.11)with dy := ∆y√
µ and Ā := AV −1X where V = diag (v) and X = diag (x).Be
ause the ve
tor dx belongs to the null spa
e of Ā and ds to the row spa
eof Ā, the ve
tors dx and ds are orthogonal, i.e., (dx)Tds = 0. This implies that

‖dx‖2 + ‖ds‖2 = ‖v−1 − v‖.Due to this, the ve
tors dx and ds are zero if and only if
‖v−1 − v‖ = 0,whi
h is the 
ase only at the µ-
enter, a

ording to (1.10).The quantity ‖v−1 − v‖ seems to be a natural tool for measuring `distan
e'between the iterates and the µ-
enter. The idea of using this quantity is due toJansen et al. [50℄. However, Roos et al. [98℄ used this quantity divided by 2, i.e.,

δ(v), given by (1.9)7.7In many papers on IPMs, e.g., [55, 80℄, one does not measure proximity to the µ-
enter, butto the 
entral path. A popular way is to use the following expression:
∥

∥

∥

∥

xs

µg

− e

∥

∥

∥

∥

, (1.12)where ‖.‖ is some norm and µg is the average value of the iterates, i.e.,
µg :=

xT s

n
. (1.13)Re
all that on the 
entral path the pairwise produ
ts xisi for i = 1, · · · , n are identi
al andtheir 
ommon value is their average value µg :

xs = µe ⇒ µ =
xT s

n
= µg.In the literature, e.g., [115℄ and the referen
es therein, both the 2-norm and the ∞-norm wereused. The 2-norm variant was introdu
ed by Kojima, Mizuno and Yoshise [55℄ and also used byMonteiro and Adler [80℄ to derive primal-dual algorithms for LCP and LO problem, respe
tively.



10 1 INTRODUCTIONIn order to express the proximity measure in terms of the iterates and thebarrier parameter µ, the following notation will also be used:
δ(x, s;µ) := δ(v).We now pro
eed with explaining the feasible full-Newton step PFM whi
h wasintrodu
ed and dis
ussed in [98℄.1.7 A feasible full-Newton step PFMIt is 
onvenient to start with a formal des
ription of the algorithm, as below.Algorithm 1.1 A full-Newton step PFMInput:an a

ura
y parameter ε > 0;a barrier update parameter θ ∈ (0, 1).begin

x = s = e, y := 0, and µ := 1;while nµ ≥ ε,Newton step:
(x, y, s) := (x, y, s) + (∆x,∆y,∆s);
µ-update:
µ := (1 − θ)µ;endwhileendAssume that a primal x0 ∈ P◦ and a dual pair (y0, s0) ∈ D◦ and a µ0 > 0 aregiven su
h that x0s0 = µ0

e. Without loss of generality, it 
an be assumed that8
x0 = s0 = e, y0 = 0 and µ0 =

(x0)
T
s0

n
= 1. (1.14)Moreover, let a barrier-update parameter θ ∈ (0, 1) be given. In Subse
tion 1.7.2we dis
uss how to obtain θ. At the beginning of an iteration of the algorithmthe system (1.6) is employed to 
ompute Newton steps (∆x,∆y,∆s) and thenthe new iterates (x+, y+, s+) are 
al
ulated using (1.7). After that the barrierparameter µ is redu
ed to µ+ := (1 − θ)µ. This pro
ess is repeated until theduality gap is less than or equal to a pres
ribed toleran
e ε.8This 
an be realized by embedding the given (P) and (D) into a homogenous self-dualproblem.



1.7 A FEASIBLE FULL-NEWTON STEP PFM 11Be
ause ∆x and ∆s are orthogonal9, i.e., ∆Tx∆s = 0, then, using the thirdequation of (1.6), after a full Newton step the duality gap is 
omputed as follows:
(x+∆x)T (s+∆s) = xT s+ (xT∆s+ sT∆x) + ∆Tx∆s =

xT s+ µeTe− xT s = nµ. (1.15)This means that after ea
h iteration of the algorithm the duality gap is identi
alto nµ, and hen
e that ea
h iteration redu
es the duality gap by a fa
tor 1− θ.The di�
ult part of the analysis of the algorithm is the analysis of the Newtonstep. In the next subse
tion, we re
all a 
ondition under whi
h the Newton stepis (stri
tly) feasible and quadrati
ally 
onvergent.1.7.1 Properties of the Newton stepWe start this subse
tion with the following lemma.Lemma 1.7.1. (
f. [98, Theorem II.50℄) Denote δ := δ(x, s;µ). If δ ≤ 1 thenafter ea
h full Newton step the new iterates (x+, y+, s+) are feasible, i.e., x+ ∈ Pand (y+, s+) ∈ D. Moreover, if δ < 1 then x+ ∈ P◦ and (y+, s+) ∈ D◦ and 10
δ(x+, s+, µ) ≤ δ2

√

2(1− δ2)
. (1.17)Lemma 1.7.1 de�nes a 
ertain neighborhood of the µ-
enter where the fullNewton step (∆x,∆y,∆s), obtained from (1.6), 
ertainly yields a primal-dualstri
tly feasible point.By slightly narrowing the neighborhood of the µ-
enter, one gets a regionwhere the Newton's method is quadrati
ally 
onvergent: if δ ≤ 1/

√
2 then it 
anbe veri�ed that

δ(x+, s+, µ) ≤ δ2. (1.18)This means that, given a µ > 0, if the 
urrent triple (x, y, s) satis�es δ(x, s;µ) ≤
1/

√
2, then Newton's method quadrati
ally 
onverges to the µ-
enter. The setof primal-dual (feasible) pairs (x, s) satisfying δ(x, s;µ) ≤ 1/

√
2 is 
alled thequadrati
ally 
onvergent region of the µ-
enter.The algorithm generates a sequen
e of stri
tly feasible pairs (x, s) in the quad-rati
ally 
onvergent region of the µ-
enters. This means that the parameter θshould be su
h that after redu
ing µ to µ+ := (1− θ)µ, the 
urrent pair (x, s) liesin the quadrati
ally 
onvergent region of the µ+-
enter. In the next subse
tionwe explain how to derive su
h a θ.9∆x and ∆s belong to the null spa
e and the row spa
e of the matrix A, respe
tively.10We would like to mention that a slightly sharper than (1.17) was proven in [98, TheoremII.52℄ whi
h says:

δ(x+, s+, µ) ≤ δ2
√

2(1 − δ4)
. (1.16)Sin
e this result has no impa
t on the order of the 
onvergen
e rate of the algorithm, for thesake of simpli
ity, we present an analysis whi
h is based on (1.17).



12 1 INTRODUCTION1.7.2 Value of the barrier-updating parameterGiven a primal-dual feasible pair (x, s) and µ > 0, satisfying δ(x, s;µ) ≤ 1/
√
2,(1.18) implies that after a (full) Newton step, the new iterates (x+, y+, s+) satisfy

δ(x+, s+;µ) ≤ 1

2
. (1.19)The aim is to derive the barrier-updating parameter θ su
h that δ(x+, s+;µ+) ≤

1/
√
2. We �rst re
all the following lemma whi
h investigates the in�uen
e of a

µ-update on δ.Lemma 1.7.2. (
f. [98, Lemma II.54℄) Given a primal-dual pair (x, s) and µ > 0su
h that xT s = nµ, one has
δ(x, s;µ+)2 = (1− θ)δ(x, s;µ)2 +

θ2n

4(1− θ)
, with µ+ := (1− θ)µ.By Lemma 1.7.2 and using (1.19), one gets

δ(x+, s+;µ+)2 ≤ 1− θ

4
+

θ2n

4(1− θ)
.Using this, δ(x+, s+;µ+) ≤ 1/

√
2 
ertainly holds only if

1− θ

4
+

θ2n

4(1− θ)
≤ 1

2
.It 
an be veri�ed that this inequality holds for all θ satisfying

0 < θ ≤ 1√
n+ 1

.In the sequel, the barrier-updating parameter θ is taken as follows:
θ =

1√
n+ 1

.In the next subse
tion we explain how to estimate the number of iterations ofthe algorithm.1.7.3 Iteration boundAn iteration of Algorithm 1.1 
onsists of one Newton step plus a µ-update. Aftera Newton step, the duality gap is identi
al to nµ, a

ording to (1.15). On theother hand, the parameter µ is redu
ed by a fa
tor 1 − θ per iteration. Thealgorithm stops if the duality gap is less than or equal to a pres
ribed toleran
e
ε > 0. A natural way to estimate the number of iterations is to 
ount the numberof the µ-updates before nµ < ε is satis�ed. We re
all the following lemma.



1.8 MOTIVATION 13Lemma 1.7.3. (
f. [98, Lemma II.17℄) If the barrier parameter µ has the initialvalue µ0 and is repeatedly multiplied by 1− θ, with 0 < θ < 1, then after at most
⌈

1

θ
log

nµ0

ε

⌉iterations we obtain nµ ≤ ε.Using θ = 1√
n+1

, Lemma 1.7.3 implies that the total number of iterations ofthe algorithm is bounded above by
√
n+ 1 log

n

ε
.1.8 MotivationRe
ently, an infeasible PFM for LO has been introdu
ed by Roos [97℄. This al-gorithm uses a virtual path outside the feasible region of (P) and (D), namelythe homotopy path (See Chapter 4), as a guideline to an optimal solution. Thealgorithm 
an be 
onsidered as a generalization of the full-Newton step PFMpresented in Se
tion 1.7 to the 
ase where the starting point is infeasible. There-fore, in addition to the optimality, Roos' algorithm strives for the feasibility ofthe iterates. In this algorithm, as usual, the duality gap11 is measured by xT sand the primal and the dual infeasibility by the size of the residual ve
tors rb and

rc, respe
tively. The algorithm is designed in su
h a way that a full-Newton stepredu
es the sizes of the residual ve
tors with the same speed as the duality gap.Pre
isely speaking, after a full-Newton step, the quantity ǫ(x, y, s), de�ned as
ǫ(x, y, s) := max

{

‖rb‖ , ‖rc‖ , xT s
}

, (1.20)is redu
ed by a fa
tor 1 − θ where θ ∈ (0, 1) is the barrier-updating parameter.Analogue to its feasible 
ounterpart, the algorithm is a so-
alled small-updateapproa
h, in the sense that the barrier-updating parameter θ is inversely propor-tional to the problem dimension n. Pre
isely speaking, one has12 θ = O(1/n).Using this θ, Roos establishes that in order to obtain an ε-solution for a pres
ribed
ε > 0, i.e., a triple (x, y, s) satisfying

ǫ(x, y, s) ≤ ε, (1.21)at most
16

√
2n log

ǫ(x0, y0, s0)

ε11It should be mentioned that, in an IIPM, in general the iterates x and s are not feasiblefor the original primal-dual pair of problems, and hen
e the quantity xT s 
an not be 
alled theduality gap at x and s (with respe
t to the original primal-dual pair of problems). However, asit will be mentioned in Chapter 2, x and s are always feasible for a perturbed pair of problemsand with respe
t to this pair xT s is the duality gap at x and s. Therefore, when dealing withIIPMs, the quantity xT s 
an still be 
alled the duality gap at x and s.12Note that in the full-Newton FIPM, presented in Se
tion 1.7, we have θ = O(1/
√
n).



14 1 INTRODUCTIONiterations of the algorithm are required. This iteration bound 
oin
ides with thebest known iteration bound ever obtained for IIPMs, whi
h is due to Mizuno[75℄13.Despite their ni
e theoreti
al iteration bound and the feature of using fullNewton steps, small-update methods have the disadvantage that they are tooslow in pra
ti
e. PFMs that use a �xed barrier-updating parameter θ ∈ (0, 1),independent of n, e.g., θ = 1
2 , turned out to be more e�
ient in pra
ti
e. Thesemethods are known as so-
alled large-update methods. In large-update methods,full Newton steps may not be feasible14 (x+∆x and s+∆s might have negative
omponents). Therefore, one has to use damped Newton steps. The step size is
al
ulated using a line sear
h with respe
t to some barrier fun
tion (see e.g., [98℄).Pre
isely speaking, starting from a point z = (x, y, s), after updating the barrierparameter µ to µ+ := (1 − θ)µ with e.g., θ = 1

2 , in sear
hing for the µ+-
enter
z(µ+) := (x(µ+), y(µ+), s(µ+)), a �nite number of (feasible) points {zk}Kk=1 aregenerated whereK is su
h that zK is a good approximation of z(µ+) (with respe
tto a barrier fun
tion). Unfortunately, regardless of their ni
e pra
ti
al behavior,large-update methods have worse theoreti
al iteration bounds than small-updatemethods. This phenomenon, i.e., IPMs with ni
e theoreti
al properties are inef-�
ient in pra
ti
e and the other way around, has been 
alled the irony of IPMs[93, page 51℄.1.9 OutlineBased on the aforementioned motivation, we designed a 
lass of infeasible PFMs.Our IIPMs 
an be 
onsidered as large-update variants of Roos' full-Newton IIPM.However, they di�er from feasible large-update PFMs, in the sense that θ isno longer arbitrary; it has to be 
omputed at ea
h iteration. In pra
ti
e, ouralgorithm has the advantage that the parameter θ is larger than O(1/n), even
θ = O(1), whi
h yields a larger amount of redu
tion on the quantity ǫ(x, y, s) ata so-
alled outer iteration of the algorithm. However, the above mentioned ironyof IPMs is still present in our algorithm, meaning that despite its ni
e pra
ti
albehavior, it has worse theoreti
al iteration 
omplexity than its full-Newton step
ounterpart. For a variant, we obtain the bound

O

(

n
√
n(logn)3 log

ǫ(x0, y0, s0)

ε

)

,whi
h is a fa
tor √n(log n)3 worse than the iteration bound of Roos' full-Newtonstep IIPM, presented in [97℄. The best-known iteration bound for large-update13We would like to mention that a simpli�ed version of Roos' algorithm was given by Mansouriand Roos [66℄, to be followed by a slightly improved version whi
h was given by Gu, Mansouri,Zangiabadi, Bai and Roos [46℄. Both versions, i.e., those presented in [46℄ and [66℄, have the
onvergen
e rate O(n).14Throughout this thesis, we 
all displa
ements ∆x, ∆y and ∆s (stri
tly) feasible if the triple
(x+∆x, y +∆y, s+∆s) is primal-dual (stri
tly) feasible.



1.9 OUTLINE 15IIPMs is
O

(

n
√
n(logn) log

ǫ(x0, y0, s0)

ε

)

, (1.22)whi
h is due to Salahi, Peyghami and Terlaky [101℄. Note that the iteration
omplexity of our algorithm is a fa
tor (logn)2 worse than (1.22).Before dealing with the new algorithm, in Chapter 2, we �rst survey theor-eti
al properties of some IIPMs presented by several authors within the last twode
ades, with the hope of getting some 
lue whi
h might be helpful in improv-ing the iteration 
omplexity of our algorithm. We studied global 
onvergen
e andpolynomiality of the IIPMs, starting from Lustig's algorithm [62℄, to the infeasiblepotential-redu
tion methods of Mizuno, Kojima and Todd [76℄.Our algorithm is inspired by a slightly improved version of Roos' algorithmwhi
h was given by Gu et al. [46℄. We devote Chapter 3 to a des
ription ofthis algorithm as a preparation to our large-update algorithm. As we mentionedabove, Roos' algorithm and our algorithm share the property that they approx-imately follow the homotopy path to �nd an optimal solution. In Chapter 4we introdu
e the notion of the homotopy path and argue that if (P) and (D)are both feasible, then the homotopy path 
onverges to an optimal solution ofthese problems. Chapter 4 is based on [8℄. The main result, namely a 
lass oflarge-update IIPMs for LO, is presented in Chapters 5 and 6. Chapter 5 dealsex
lusively with the theoreti
al properties of our algorithms whi
h amount to ob-taining a default barrier-updating parameter θ and estimating the total numberof iterations. Unfortunately, the out
ome of Chapter 5 is disappointing as thebest 
onvergen
e rate of a variant is O(n√n(log n)3). This is be
ause we werenot able to get rid of n in the expression of θ. One might ask then why we 
allour algorithm a large-update algorithm. To justify this we rely on our numeri
altest. We ran the algorithm to solve a subset of the NETLIB problems and 
om-pared the iteration numbers with those of the well-known LIPSOL pa
kage, thebest existing software for the solution of LO problems. The iteration numbersof our algorithm seem promising; the out
ome was in favor of LIPSOL, though.We obtain substantial larger values of θ than its default (theoreti
al) value, even
θ = O(1), during our implementations. Moreover, we often observe that θ = 1within a few iterations after the start of the algorithm, whi
h means that we haverea
hed feasibility. Obviously, one then may pro
eed with a feasible large-updateapproa
h. Details regarding the implementation of the algorithm 
an be found inChapter 6. Chapters 5 and 6 are based on [9℄. We o�er some 
on
luding remarksand topi
s for further resear
h in Chapter 7.





2The state-of-the-art in IIPMs2.1 Introdu
tionAs we made 
lear in Chapter 1, FIPMs assume that some stri
tly feasible point isat hand and generate a sequen
e of stri
tly feasible points 
onverging to an optimalsolution. In real-life problems it more often happens that no stri
tly feasible pointis known a priori; moreover, the problem may not be feasible at all. Therefore,most existing pra
ti
al algorithms allow positive but infeasible starting points1.These algorithms are referred to as infeasible interior-point methods (IIPMs).The 
urrent 
hapter deals extensively with the state-of-the-art in the theory ofIIPMs.As we mentioned in Chapter 1, IIPMs generate a sequen
e of infeasible triples
(x, y, s) with (x, s) > 0. As usual, the duality gap is measured by xT s and theprimal and the dual infeasibility by, respe
tively, ‖rb‖ and ‖rc‖ where rb and rcare given by (1.3). The infeasibility and the duality gap are de
reased at about thesame rate, i.e., the quantity ǫ(x, y, s), given by (1.20), is monotoni
ally de
reasing.For a pres
ribed ε > 0, a triple (x, y, s) is an ε-solution of (P) and (D) if (1.21) issatis�ed.Starting from initials (x0, y0, s0) with x0 > 0 and s0 > 0, most IIPMs for LO,e.g., those studied by Lustig [62℄, Kojima, Megiddo and Mizuno [54℄, Mizuno,Kojima and Todd [76℄, Mizuno [75℄, Potra [91℄ and Roos [97℄, use, impli
itly orexpli
itly, the following system to solve the pair (P) and (D):

b−Ax = νr0b , x ≥ 0, (2.1a)
c−AT y − s = νr0c , s ≥ 0, (2.1b)

xs = µe, (2.1
)1E.g., LIPSOL pa
kage of Zhang [120℄, PCx pa
kage of Czyzyk et al. [18℄, LOQO pa
kage ofVanderbei [112℄ and et
., all of whi
h are available on the web site of Network Enabled Optim-ization Server (NEOS Server: http://neos.mcs.anl.gov/neos/solvers/index.html).17



18 2 THE STATE-OF-THE-ART IN IIPMSwhere µ > 0, ν ∈ (0, 1], and r0b and r0c are, respe
tively, the primal and thedual initial residual ve
tors. It 
an be noti
ed from the system (2.1) that theparameters ν and µ 
ontrol the feasibility and the optimality, respe
tively. For
µ = 0 and ν = 0, the system 
oin
ides with the KKT system (1.1). Now 
onsiderthe perturbed problem (Pν ) (see e.g., [78, 97℄), de�ned as(Pν) min

{

(

c− νr0c
)T
x : Ax = b− νr0b , x ≥ 0

}

,and its dual (Dν), given by(Dν) max
{

(

b− νr0b
)T
y : AT y + s = c− νr0c , s ≥ 0

}

.It 
an be easily veri�ed that the system (2.1) is the parameterized KKT system,with respe
t to µ, of the perturbed pair (Pν) and (Dν). Be
ause triple (x0, y0, s0)is stri
tly feasible for the pair (Pν) and (Dν) if ν = 1, then (P1) and (D1) satisfythe IPC. As a result, if ν = 1, the system (2.1) has a unique solution for any
µ > 0. It has been proven (see e.g., [97, Lemma 3.1℄) that (P) and (D) arefeasible if and only if the perturbed pair (Pν) and (Dν) satis�es the IPC for any
ν ∈ (0, 1]. It follows that (P) and (D) are feasible if and only if the system(2.1) has a unique solution for any ν ∈ (0, 1) and µ > 0. Denoting this uniquesolution by (x(µ, ν), y(µ, ν), s(µ, ν)), x(µ, ν) is 
alled the µ-
enter of (Pν), and
(y(µ, ν), s(µ, ν)) the µ-
enter of (Dν). The set of these µ-
enters of (Pν) and(Dν), for all 0 < ν ≤ 1 and µ > 0, form a 2-dimensional surfa
e outside thefeasible region of (P) and (D) whi
h is 
alled the surfa
e of 
enters (see [78℄).In order to improve the feasibility and the duality gap with the same speed, itis assumed that the ratio µ

ν is a 
onstant. Under this assumption, the abovementioned surfa
e is redu
ed to a path of 
enters whi
h is 
alled the homotopypath of (P) and (D). Moreover, for the sake of notational simpli
ity, we denotethe µ-
enters (x(µ, ν), y(µ, ν), s(µ, ν)) by (x(ν), y(ν), s(ν)). It is worth mentioningthat existen
e of the homotopy path does not require (P) and (D) to satisfy theIPC. In Chapter 4 we establish that as µ → 0 (and ν → 0), the homotopy path
onverges to an optimal solution of (P) and (D).2.2 A brief overview of IIPMsIn this se
tion we brie�y dis
uss some existing IIPMs that will be dis
ussed morein detail in the subsequent se
tions. Table 2.1 shows the methods that we dis
uss.The origin of modern IIPMs is due to Lustig [62℄. Lustig's algorithm was inspiredby the �big M � method for the initialization of IPMs. The �big M � method forIPMs was introdu
ed by Megiddo [72℄ and inspired by a well-known initializationmethod for the simplex method, introdu
ed by Charnes, Cooper and Henderson[16℄. In the �big M � method, some huge 
oe�
ients are introdu
ed and they may
ause severe numeri
al instabilities. The motivation of Lustig for designing his



2.2 A BRIEF OVERVIEW OF IIPMS 19Author Contribution of the paper Conv. rate Ref. Se
.Lustig primal-dual IIPM (1990/91) � [62℄ 2.4KojimaMegiddoMizuno global 
onvergen
e of IIPMs (1993) � [54℄ 2.5Zhang polynomiality of IIPMs (1994) O(n2) [119℄ 2.6Mizuno improvement of the 
onvergen
erate of IIPM by a fa
tor of O(n) O(n) [75℄ 2.7Potra PC IIPM (1996) O(n) [91℄ 2.8MizunoKojimaTodd three potential-redu
tion IIPMs(1995) Alg. I: O(n2
√
n)Alg. II: O(n2√n)Alg. III: O(n) [76℄ 2.9Table 2.1: Progress in IIPMsalgorithm was to over
ome this issue. Lustig's a
hievement was elimination of therole of M in his 
omputations by taking M in�nitely large. We explain this inSe
tion 2.4. To fa
ilitate understanding of Lustig's method, we brie�y des
ribeMegiddo's �big M � method in Se
tion 2.3.Lustig impli
itly solves the system (2.1) at an iteration. The Newton dire
tions
orresponding to this system are 
al
ulated from the following system:

A∆x = νr0b ,

AT∆y +∆s = νr0c ,

s∆x+ x∆s = µe− xs.

(2.2)By 
hoosing some proper step size α ∈ (0, 1], the parameter2 ν redu
es by afa
tor 1 − α. Although, from this monotoni
 redu
tion of ν, one 
an expe
t
onvergen
e of the algorithm to a feasible point, but no theoreti
al proof was given
on
erning global 
onvergen
e be
ause it was di�
ult to deal with the followingtwo situations:(i) when the optimality o

urs before the feasibility,2It is worth mentioning that, Lustig's algorithm is a two-phase approa
h. Phase I 
ares moreabout the feasibility than the optimality. This means that the algorithm attempts to redu
ethe parameter ν while the parameter µ may be de
reasing or in
reasing (the optimality mayimprove or worsen). On
e a (stri
tly) feasible point has been found (ν is small enough or ν = 0),the algorithm enters Phase II whi
h is a FIPM.



20 2 THE STATE-OF-THE-ART IN IIPMS(ii) when P◦ = ∅ and/or D◦ = ∅.In the 
ase (i), some infeasible iterates may be obtained at whi
h the duality gapis zero, and in the 
ase (ii), the parameter ν 
an not be set to zero at any iteration.It is worth to mention that despite its drawba
k of having no theoreti
al
onvergen
e proof, pra
ti
ally e�
ient variants of Lustig's algorithm were givenby several authors su
h as Lustig, Marsten and Shanno [63, 64℄ and Choi, Monmaand Shanno [17℄.Inspired by the primal-dual FIPM, studied in [56℄, Kojima, Megiddo andMizuno [54℄ designed a variant of Lustig's algorithm whi
h has a global 
on-vergen
e proof. In this variant, the Newton steps are obtained from the system(2.1) with the parameter µ set a priori to a fra
tion of µg, i.e., βxT s/n for some
β ∈ (0, 1). The use of this µ yields some improvement of the duality gap at aniteration. Di�erent step sizes αP ∈ (0, 1] and αD ∈ (0, 1] are used in the primaland the dual spa
es, respe
tively. They are 
al
ulated in su
h a way that the fol-lowing two properties are guaranteed: �rst, the feasibility improves with the samespeed or slightly faster than the duality gap at an iteration of the algorithm3, i.e.,the iterates satisfy

max {‖rb‖, ‖rc‖} ≤ λxT s for some λ > 0; (2.3)this is useful to over
ome the issue des
ribed in (i). Se
ond, the iterates stayalways away from the boundary (either outside or inside the feasible region of (P)and (D)) until the optimality is obtained. Pre
isely speaking, the iterates satisfy
xs ≥ γ

xT s

n
e, for a γ ∈ (0, 1). (2.4)This is useful when P◦ = ∅ and/or D◦ = ∅, whi
h 
on
erns the issue des
ribed in(ii). In the FIPM, presented in [56℄, stri
tly feasible points are generated whi
hsatisfy (2.4). The set of stri
tly feasible points of a pair (P) and (D) satisfying(2.4) is referred to as the in�nity neighborhood of the 
entral path of (P) and (D)and denoted by N−∞(γ):

N−∞(γ) :=

{

(x, s) : x ∈ P , s ∈ D & xs ≥ γ
xT s

n
, with γ ∈ (0, 1)

}

.The IIPM presented in [54℄, generates iterates in the in�nity neighborhood of the
entral path4. If the feasibility is satis�ed, the algorithm redu
es to the FIPM,presented in [56℄. Kojima et al. [54℄ prove that the duality gap5 is monotoni
-ally de
reasing by a 
onstant fa
tor, when
e global 
onvergen
e of the algorithm3Unlike Lustig's algorithm, the optimality and the feasibility both improve at an iteration ofKojima et al.'s algorithm [54℄.4In the sequel of the 
urrent 
hapter, unless otherwise stated, by `
entral path' we refer tothe 
entral path of either the original pair (P) and (D) or some perturbed pair (Pν) and (Dν).5As we mentioned in Chapter 1, throughout this thesis, unless otherwise stated, by `dualitygap', we refer to the duality gap with respe
t to either the original pair (P) and (D) or to someperturbed pair (Pν) and (Dν).



2.2 A BRIEF OVERVIEW OF IIPMS 21follows. In the 
ase of infeasibility, the algorithm dete
ts a region where no primal-dual feasible solution is available. We explain Kojima et al.'s IIPM in Se
tion 2.5.The �rst polynomial-time IIPM was presented by Y. Zhang [119℄. He 
onsidersa variant of the algorithm studied in [54℄ for solving the so-
alledHorizontal LinearComplementarity Problem (HLCP). The 
onvergen
e proof of this algorithm ismore or less the same as [54℄. However, these algorithms are di�erent in someminor aspe
ts: in Zhang's algorithm, identi
al step sizes in a primal and the dualspa
es are used, i.e., αP = αD = α with some α ∈ (0, 1]; and moreover, theduality gap and the infeasibility are redu
ed with the same speed, i.e., 1 − α. Itis established that the step size is inversely proportional to the initial residualnorms. Hen
e, by introdu
ing an initial point at whi
h the residual norms are
O(n), Zhang obtains α = O(1/n2) whi
h gives rise to the 
onvergen
e rate O(n2)for the algorithm6. We des
ribe this algorithm for the 
ase of LO (whi
h is aspe
ial 
ase of the HLCP) in Se
tion 2.6.Inspired by the algorithm of Zhang [119℄, Mizuno [75℄ presented a modi�
ationof the algorithm studied in [54℄ with O(n2) 
onvergen
e rate. As in [54℄, thisvariant redu
es the infeasibility slightly faster that the optimality. Later on,Mizuno realized that by further tightening the neighborhood of the 
entral path, alarger fra
tion of the Newton steps 
ould be used. Pre
isely speaking, by repla
ingthe the neighborhood N−∞(γ) by N2(γ), de�ned as

N2(γ) := {(x, s) > 0 : ‖xs− µge‖ ≤ γµg} , with a γ ∈ (0, 1),he established that the step size 
an improve to α = O(1/n). This yielded the
onvergen
e rate O(n). We explain this algorithm in Se
tion 2.7.After the release of Mizuno's O(n) IIPM [75℄, Potra [91℄ also published an
O(n) predi
tor-
orre
tor IIPM7. Potra's algorithm uses the same neighborhoodas the algorithm of Mizuno [75℄. However, they are di�erent in some aspe
ts. Thepredi
tor step of Potra's method 
onsists of two types of Newton steps ratherthan one. The �rst predi
tor step whi
h is an a�ne-s
aling step improves theduality gap preserving the 
urrent feasibility, and the se
ond one improves thefeasibility and has a tiny impa
t on the duality gap. As in Mizuno's PC algorithm,the out
ome of the predi
tor steps is a point in the neighborhood N2(2γ). The
orre
tor step leaves the duality gap and the residual norms un
hanged and bringsthe iterates generated during the predi
tor step to the neighborhood N2(γ). An6Roughly speaking, the polynomiality of the algorithm is obtained by using some narrowerneighborhood than the one used in [54℄. This 
an be justi�ed as follows. To prove polynomialityone needs to set the step size to its lower bound, i.e., O(1/n2). Therefore, the neighborhood ofthe 
entral path whi
h 
overs the iterates be
omes smaller than the one used by Kojima et al.[54℄.7After the release of the �rst version of Mizuno's paper [75℄, Potra [90℄ introdu
ed a predi
tor-
orre
tor (PC) IIPM with the 
onvergen
e rate O(n

√
n). Before Potra's result got to be pub-lished, Mizuno published the se
ond version of the paper [75℄ whi
h 
ontained an O(n) PCalgorithm. After that, Potra realized that by a slight modi�
ation of his algorithm, he 
ouldprove the 
onvergen
e rate O(n).



22 2 THE STATE-OF-THE-ART IN IIPMSiteration of the algorithm improves the feasibility and the duality gap with thesame speed. We des
ribe Potra's algorithm in Se
tion 2.8.So far, the algorithms we mentioned above are path-following methods. Pre-
isely speaking, the generated iterates stay in a 
ertain neighborhood of the ho-motopy path of (P) and (D) whi
h 
onsists of the µ-
enters of the perturbedpairs (Pν) and (Dν) as the parameter ν and the barrier parameter µ tend to zero,simultaneously. It 
an be established (see e.g., [98, 115℄) that these µ-
entersare the minimizers of a barrier fun
tion whi
h depends on the iterates and µ.Potential-redu
tion methods (PRMs) also use a barrier fun
tion whi
h is 
alledpotential fun
tion. A potential fun
tion depends only on the iterates and hasno minimizer. It is mainly used to determine the step size and an upper boundfor the number of iterations. The step size is 
hosen su
h that the potentialfun
tion de
reases by some positive value per iteration. As the potential fun
-tion approa
hes −∞, the iterates 
onverge to an optimal solution. We refer to[51, 57, 117℄ for some feasible PRMs. Mizuno, Kojima and Todd [76℄ presented aninfeasible potential-redu
tion method for LO problem. They introdu
e three vari-ants of su
h algorithms, namely Algorithm I, II and III. Algorithm I de
reases thepotential fun
tion of Tanabe-Todd-Ye [104, 108℄ under a 
ondition whi
h makesthe duality gap to improve not faster than the feasibility. This 
ondition has beenalready used in the polynomial-time IIPMs presented by Zhang [119℄ and Mizuno[75℄. Algorithm I is 
alled a 
onstrained potential-redu
trion IIPM. Mizuno etal. prove the 
onvergen
e rate O(n2
√
n) for this variant. Algorithm II de
reasesa new potential fun
tion whi
h is obtained by embedding the 
onstraint of Al-gorithm I into the Tanabe-Todd-Ye fun
tion. The iteration bound for variant II isthe same as for variant I. Algorithm III is an O(n) variant of Algorithm II. UnlikeMizuno's O(n) PFM, Algorithm III does not 
on�ne the iterates to any neighbor-hood of the homotopy path. We refer to Se
tion 2.9 for a detailed des
ription ofthese algorithms.2.3 The �big M� method in IPMsMegiddo [72℄ was the �rst who applied the logarithmi
 barrier approa
h for simul-taneous solution of the primal and the dual problem. He proposed to reformulatethe problem using an arti�
ial variable so that a starting point be
ame available.To this end, a �bigM � multiplier of an arti�
ial variable was added to the obje
t-ive fun
tion along with a new 
onstraint with right-hand side M . This methodwas developed to a primal-dual algorithm by Kojima, Mizuno and Yoshise [56℄.For a su�
iently large M , as in the simplex method, an optimal solution for theoriginal pair 
an be obtained if and only if the optimal value of the arti�
ial vari-able is zero. For arbitrary initials x0 > 0, y0 and s0 > 0, the primal arti�
ial
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min cTx +Mxn+1

s.t. Ax +r0bxn+1 = b,

−r0c
T
x +xn+2 =M,

x, xn+1, xn+2 ≥ 0,

(PM )and its dual problem (DM ) is given by
max bT y +Mym+1

s.t. AT y −r0cym+1 +s = c,

r0b
T
y +sn+1 =M,

ym+1 +sn+2 = 0,

s, sn+1, sn+2 ≥ 0,

(DM )where xn+1 and xn+2 are primal arti�
ial real variables, ym+1, sn+1 and sn+2,dual arti�
ial variables, r0b and r0c , the primal and dual initial residual ve
tors and
M is a su�
iently large real number. The latter means that M is so large thatthe inequality

M > max{−r0c
T
x0, r0b

T
y0}, (2.5)is satis�ed, a

ording to Kojima et al. [56℄.It is worth noting that the pair (PM ) and (DM ) was also used later by Kojima,Mizuno and Yoshise [56℄ and Monteiro and Adler [80℄.We re
all from [56, Theorem 2.3℄ that if, in addition to the 
ondition (2.5), Msatis�es the 
ondition

M > max{−r0c
T
x∗, r0b

T
y∗},where (x∗, y∗, s∗) is an optimal solution of (P) and (D), then one has(a) A feasible solution (x, xn+1, xn+2) of (PM ) is optimal if and only if x isoptimal solution of (P) and xn+1 = 0.(b) A feasible solution (y, ym+1) and (s, sn+1, sn+2) of (DM ) is optimal if andonly if (y, s) is optimal solution of (D) and ym+1 = 0.A ni
e feature of the pair (PM ) and (DM ) is that stri
tly feasible solutions areat hand. Taking

x = x0, xn+1 = 1 and xn+2 =M + r0c
T
x0, (2.6)we have a primal stri
tly feasible solution for (PM ), and taking

s = s0, sn+1 =M − r0b
T
y0 and sn+2 = 1, (2.7)



24 2 THE STATE-OF-THE-ART IN IIPMSwe have dual stri
tly feasible solutions for (DM ).An implementation of the algorithm of Kojima et al. [56℄ was �rst presentedby M
Shane, Monma and Shanno [71℄ whi
h proved to be favorably 
omparablewith the past implementations like that of Monma and Morton [79℄ or MINOS89 10, a software based on the simplex method designed by Murtagh and Saunders[82℄.2.4 Lustig's algorithmLustig [62℄ aims at solving the pair (P) and (D), starting from an arbitrary triple
(x0, y0, s0) with x0 > 0 and s0 > 0. His algorithm is a two-phase approa
h.Phase I is devoted to obtain the feasibility and Phase II improves the dualitygap. As we mentioned in Se
tion 2.1, he impli
itly solves the system (2.1) at aniteration of Phase I. The Newton step 
orresponding to this system is obtainedfrom the system (2.2). Using some step size α ∈ (0, 1], he obtains stri
tly feasibleiterates x+α∆x > 0, y+α∆y and s+α∆s > 0 for the new perturbed pair (Pν+)and (Dν+), with ν+ = (1 − α)ν. In other words, the feasibility improves by afa
tor 1−α at an iteration of Phase I. On
e the parameter ν is small enough thealgorithm enters Phase II whi
h is a FIPM.A ni
e feature of Lustig's algorithm is that Phase I of the algorithm does notinvolve any 
omputations with huge 
oe�
ients like `big M ', and therefore it ismore stable than other implementations of IPMs su
h as the one given in [71℄. Hea
hieved this by applying some FIPM to solve the arti�
ial pair (PM ) and (DM )and then taking M in�nitely large. In this way, he managed to eliminate `M 'from the Newton steps. He named the new Newton dire
tions the limiting sear
hdire
tions ; as we will show in Subse
tion 2.4.2, these dire
tions 
oin
ide with theNewton steps obtained from (2.2).The next subse
tion deals with the de�nition of the Newton dire
tions of thearti�
ial pair (PM ) and (DM ).2.4.1 Newton steps for the arti�
ial pairThroughout this se
tion, we will make frequent use of the following notations:

Ā =





A r0b 0

−r0c 0 1



 , b̄ =





b

M



 , c̄ = (c;M ; 0),and the ve
tor of variables
x̄ = (x;xn+1;xn+2), ȳ = (y; ym+1) and s̄ = (s; sn+1; sn+2).8User's guide: http://www.stanford.edu/group/SOL/guides/minos55.pdf9http://www.stanford.edu/group/SOL/minos.htm10http://www-neos.mcs.anl.gov/neos/solvers/nco:MINOS/AMPL.html



2.4 LUSTIG'S ALGORITHM 25Using these notations, the pair (PM ) and (DM ) 
an be rewritten as follows:
min

{

c̄T x̄ : Āx̄ = b̄, x̄ ≥ 0
}

, (2.8)and
max

{

b̄T ȳ : ĀT ȳ + s̄ = c̄, s̄ ≥ 0
}

. (2.9)As we mentioned in the previous se
tion, stri
tly feasible solutions are avail-able for the pair (PM ) and (DM ) given as in (2.6) and (2.7). Thus, Lustig [62℄applies the generi
 feasible interior-point algorithm, introdu
ed by Megiddo [72℄and further studied by Kojima et al. [56℄ and Monteiro and Adler [80℄, to thispair. It turns out the Newton sear
h dire
tions (∆M x̄,∆M ȳ,∆M s̄), de�ned as
∆M x̄ =











∆x

∆xn+1

∆xn+2











, ∆M ȳ =





∆y

∆ym+1



 , and ∆M s̄ =











∆s

∆sn+1

∆sn+2











,
an be 
al
ulated from the system
Ā∆M x̄ = 0, (2.10a)

ĀT∆M ȳ +∆M s̄ = 0, (2.10b)
s̄∆M x̄+ x̄∆M s̄ = rxs, (2.10
)where

rxs = µe− x̄s̄, for some µ > 0.Lustig does not deal with the last system dire
tly. Instead, by solving thissystem for rxs = −x̄s̄ to obtain (∆a
M
x̄,∆a

M
ȳ,∆a

M
s̄), and for rxs = e to get

(∆c
M
x̄,∆c

M
ȳ,∆c

M
s̄), he 
al
ulates the solution of the system (2.10) by using thefollowing relation:

(∆M x̄,∆M ȳ,∆M s̄) = (∆a
M
x̄,∆a

M
ȳ,∆a

M
s̄) + µ (∆c

M
x̄,∆c

M
ȳ,∆c

M
s̄) .In the next subse
tion, we des
ribe how Lustig su

eeded in eliminating M .2.4.2 Limiting sear
h dire
tionsDe�ning

D̄ = diag

(

√

x̄

s̄

)

,it 
an be veri�ed that
ĀD̄2ĀT∆a

M
ȳ = b̄.



26 2 THE STATE-OF-THE-ART IN IIPMSSubstituting Ā, b̄ and D̄, after some simpli�
ations and redu
tions, the last equa-tion turns out to be equivalent to




AD2AT + xn+1

sn+1
r0br

0
b
T −AD2r0c

−r0c
T
D2AT r0c

T
D2r0c +

xn+2

sn+2



∆a
M
ȳ =





b

M



 ,where D := diag (
√

x/s). It 
an be veri�ed that the last system is equivalent tothe following system of equations:






AD2AT + xn+1

sn+1
r0br

0
b
T − AD2r0cr

0
c

T
D2AT

r0c
TD2r0c+

xn+2
sn+2

0

−r0c
T
D2AT

r0c
TD2r0c+

xn+2
sn+2

1






∆a

M
ȳ =







b+
MAD2r0c

r0c
TD2r0c+

xn+2
sn+2

M

r0c
TD2r0c+

xn+2
sn+2






.(2.11)Note that M appears also in the arti�
ial variables xn+2 and sn+1, and thisdependen
e is:

xn+2 =M + r0c
T
x and sn+1 =M − r0b

T
y.Hen
e, when driving M to in�nity, the system (2.11) boils down to





AD2AT 0

0 1



 lim
M→∞

∆a
M
ȳ =





b+ sn+2AD
2r0c

sn+2



 . (2.12)Denoting
lim

M→∞
∆a

M
ȳ = (∆a

ℓ y,∆
a
ℓ ym+1)

T ,the relation (2.12) implies that
∆a

ℓ y =
(

AD2AT
)−1 (

b+ sn+2AD
2r0c
)

and ∆a
ℓ ym+1 = sn+2.Obviously, the expressions for ∆a

ℓ y and ∆a
ℓ ym+1 do not depend on M . Using(2.10b), one may write

lim
M→∞

∆a
M
s̄ = lim

M→∞
−ĀT∆a

M
ȳ = −











AT −r0c
r0b

T
0

0 1















∆a
ℓ y

sn+2





=











−AT∆a
ℓ y + sn+2r

0
c

−r0b
T
∆a

ℓ y

−sn+2











.



2.4 LUSTIG'S ALGORITHM 27In a similar way, we eliminate M from the primal dire
tion. Using (2.10
)with rxs = −x̄s̄, one has
∆M x̄+ D̄2∆M s̄ = s̄−1rxs = −x̄.Thus, one gets

∆a
M
x̄ = −x̄− D̄2∆a

M
s̄.Substitution of D̄, x̄ and ∆a

M
s̄ implies that

∆a
M
x̄ =











−x+D2(AT∆a
ℓ y − sn+2r

0
c )

−xn+1 +
xn+1

sn+1
r0b

T
∆a

ℓ y

0











.By driving M to in�nity, one gets
lim

M→∞
∆a

M
x̄ =











−x−D2∆a
ℓ s

−xn+1

0











, (2.13)where ∆a
ℓ s = −AT∆a

ℓ y − ym+1r
0
c . Sin
e, by (2.9), sn+2 = −ym+1, the sear
hdire
tions (∆a

ℓx,∆
a
ℓ y,∆

a
ℓ s) are de�ned as follows:

∆a
ℓx = −x−D2∆a

ℓ s,

∆a
ℓ y =

(

AD2AT
)−1 (

b− ym+1AD
2r0c
)

,

∆a
ℓ s = −AT∆a

ℓ y − ym+1r
0
c .Lustig named these dire
tions the limiting sear
h dire
tions. It 
an be easilyveri�ed that these limiting dire
tions satisfy the relations

A∆a
ℓx = xn+1r

0
b ,

AT∆a
ℓ y +∆a

ℓ s = −ym+1r
0
c ,

s∆a
ℓx+ x∆a

ℓ s = −xs.
(2.14)Similarly, denoting

lim
M→∞

∆c
M
ȳ = (∆c

ℓy; ∆
c
ℓym+1),it 
an be veri�ed that

∆c
ℓy = −

(

AD2AT
)−1

As−1 and ∆c
ℓym+1 = 0. (2.15)



28 2 THE STATE-OF-THE-ART IN IIPMSSubstitution in (2.10b), after setting rxs = e in (2.10), implies that
lim

M→∞
∆c

M
s̄ =

(

−AT∆c
ℓy;−r0b

T
∆c

ℓy; 0
)

.By repla
ing ∆c
M
s̄ in (2.10
), after setting rxs = e in (2.10), we arrive at

lim
M→∞

∆c
M
x̄ =

(

s−1 −D2∆c
ℓs; 0;

1

sn+2

)

, (2.16)where
∆c

ℓs = −AT∆c
ℓy.As a result, the limiting 
entering steps (∆c
ℓx,∆

c
ℓy,∆

c
ℓs) are 
al
ulated as fol-lows:11

∆c
ℓx = s−1 −D2∆c

ℓs,

∆c
ℓy = −

(

AD2AT
)−1

As−1,

∆c
ℓs = −AT∆c

ℓy.It 
an be easily veri�ed that these limiting 
entering dire
tions satisfy
A∆c

ℓx = 0,

AT∆c
ℓy +∆c

ℓs = 0,

s∆c
ℓx+ x∆c

ℓs = e.

(2.17)Now given the dire
tions (∆a
ℓx,∆

a
ℓ y,∆

a
ℓ s) and (∆c

ℓx,∆
c
ℓy,∆

c
ℓs) as de�ned,respe
tively, by (2.14) and (2.17), Lustig 
al
ulates the parameters µ and α su
hthat new iterates (x+, y+, s+) de�ned as

x+ = x+ α(∆a
ℓx+ µ∆c

ℓx),

y+ = y + α(∆a
ℓ y + µ∆c

ℓy),

s+ = s+ α(∆a
ℓ s+ µ∆c

ℓs),

(2.18)satisfy (x+, s+) > 0 and
‖rb‖ ≤ 100‖rc‖. (2.19)The 
ondition (2.19) serves to assure that the primal and dual feasibility area
hieved at a 
lose rate. Moreover, in some LO problems with empty dual interior,some dual variables tend to zero while their 
omplementary variables blow up.This 
auses some numeri
al instabilities. This 
ondition serves to over
ome this11We dub the sear
h dire
tions obtained in this way �limiting 
entering steps� to make it 
learthat they are obtained by driving M → ∞. This term was not used by Lustig [62℄.



2.4 LUSTIG'S ALGORITHM 29issue too, by keeping the amount of primal and dual infeasibility 
lose to ea
hother.By (2.13) and (2.16), one has ∆a
l xn+1 = −xn+1 and ∆c

lxn+1 = 0. This impliesthat after an iteration of the algorithm the arti�
ial variable xn+1 is updated asfollows:
x+n+1 = (1− α)xn+1. (2.20)Moreover, (2.9) and (2.12) imply that ∆a

l ym+1 = sn+2 = −ym+1. By (2.15),
∆c

l ym+1 = 0. Therefore, after an iteration of the algorithm the arti�
ial variable
ym+1 is updated as follows:

y+m+1 = (1− α)ym+1. (2.21)Be
ause x0n+1 = −y0m+1 = 1, r0b 6= 0 and r0c 6= 0, the variables xn+1 and −ym+1remain equal throughout the algorithm a

ording to (2.20) and (2.21). Thus, onemay assume xn+1 = −ym+1 = ν for some ν ∈ [0, 1].Note that a

ording to the de�nition of (PM ) and (DM ), the iterates alwayssatisfy the relations
Ax = b− νr0b , x ≥ 0,

AT y + s = c− νr0c , s ≥ 0,
(2.22)whi
h means that the iterates (x, y, s) are stri
tly feasible for some perturbed pair(Pν) and (Dν). On the other hand, the parameter ν redu
es by a fa
tor (1 − α).It follows that after a Newton step (∆x,∆y,∆s) of Lustig's algorithm, de�ned as

∆x = ∆a
ℓx+ µ∆c

ℓx, ∆y = ∆a
ℓ y + µ∆c

ℓy and ∆s = ∆a
ℓ s+ µ∆c

ℓs, (2.23)the new iterates (x+, y+, s+), given by (2.18), are stri
tly feasible for the perturbedpairs (Pν+) and (Dν+) with ν+ := (1− α)ν. This means that Lustig's algorithmgenerates a sequen
e of stri
tly feasible triples (x, y, s) of the perturbed pairs(Pν) and (Dν) for de
reasing values of ν. If α = 1 o

urs at some iteration, thenone has ν+ = 0 whi
h means that the primal and the dual feasibility have beenobtained.By (2.14) and (2.17), it 
an be easily veri�ed that the Newton step (∆x,∆y,∆s),given by (2.23), solves the system (2.2) whi
h de�nes the Newton step 
orrespond-ing to the perturbed pair (Pν) and (Dν).By (2.22), at an iteration of the algorithm, the residual ve
tors rb and rcsatisfy
rb = νr0b and rc = νr0c . (2.24)Using these, the system (2.2) 
an be rewritten as follows:

A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s = µe− xs,

(2.25)



30 2 THE STATE-OF-THE-ART IN IIPMSwhi
h 
oin
ides with the Newton sear
h dire
tions for the system (1.2).Although Lustig established a monotoni
 redu
tion of the parameter ν whi
hseems to be su�
ient to prove global 
onvergen
e, however, as mentioned in Se
-tion 2.1, he 
ould not present any theoreti
al 
onvergen
e proof be
ause of tworeasons: �rst, in the 
ase where (P) or (D) is infeasible or unbounded or has emptyinterior, the parameter ν 
ould not be set to zero at any iteration; and se
ond, itwas not easy to guarantee simultaneous o

urren
e of feasibility and optimality.In the next se
tion, we explain the algorithm of Kojima, Megiddo and Mizunowhi
h is a globally 
onvergent variant of Lustig's algorithm. They present somesolutions to the above two issues whi
h guarantee global 
onvergen
e.2.5 The algorithm of Kojima et al.Kojima, Megiddo and Mizuno [54℄ 
onsider the algorithm of Lustig [62℄, des
ribedin the previous se
tion. Just as Lustig, they allow di�erent step sizes αP and αDalong the primal and dual dire
tions, respe
tively. They establish that there isan α∗ ∈ (0, 1) for whi
h min{αP , αD} ≥ α∗. Without loss of generality, for thesake of simpli
ity, we feel free to assume that αP = αD = α for some α ∈ (0, 1).As mentioned in Se
tion 2.1, α is 
hosen su
h that the iterates satisfy (2.3) and(2.4). The 
ondition (2.3) serves to over
ome the issue (i), des
ribed in Se
tion2.1 and the 
ondition (2.4) is useful when dealing with the issue (ii). In short,in the algorithm presented in [54℄, the iterates belong to the modi�ed in�nityneighborhood N of the 
entral path12 of (P) and (D), de�ned as
N := {(x, y, s) : x, s ∈ Rn

++, xs ≥ γµge,

‖rb‖ ≤ εp or γp ‖rb‖ ≤ xT s,

‖rc‖ ≤ εd or γd ‖rc‖ ≤ xT s,

γ ∈ (0, 1), (γp, γd, εp, εd) > 0}.

(2.26)Under the assumption that a primal-dual optimal solution exists, global 
on-vergen
e follows by showing that in ea
h iteration both the infeasibility and theduality gap are de
reasing by a 
onstant fa
tor. Their algorithm is able to dete
ta region where no feasible point exists.They also presented an extension of their algorithm to LCP; this is dis
ardedbe
ause it is beyond the s
ope of this thesis.We pro
eed with explaining how the authors obtain a lower bound α∗ of thestep size α.12It is worth mentioning that Kojima et al. 
all N the neighborhood of the 
entral path of(P) and (D). This statement may not be 
orre
t in general be
ause if (P) and (D) have emptyinterior then there is no 
entral path. However, one 
an �nd some ν ∈ (0, 1) for whi
h theiterates belong to the neighborhood N−∞(γ) of the 
entral path of the perturbed pair (Pν) and(Dν).



2.5 THE ALGORITHM OF KOJIMA ET AL. 312.5.1 Global 
onvergen
eAs Lustig [62℄, Kojima et al. 
al
ulate the Newton dire
tions (∆x,∆y,∆s) fromthe system (2.25). A minor di�eren
e between Kojima et al.'s dire
tions andLustig's is that in Kojima et al.'s algorithm, the barrier parameter µ is set apriori to
µ = β1µg, 0 < β1 < 1.with µg given by (1.13). This guarantees improvement of both the feasibility andthe duality gap at an iteration. Re
all that, in [62℄, as long as the infeasibilityinsists, Lustig 
ares more about the feasibility than the optimality and the para-meter µ may in
rease or de
rease, whilst in [54℄, the authors push the algorithmto redu
e both the duality gap and the infeasibility at an iteration.Kojima et al. redu
e the duality gap slightly slower than the infeasibility. Tothis end, they 
hoose the step size α su
h that the following two relations hold:

(x, y, s) + α(∆x,∆y,∆s) ∈ N , (2.27a)
(x+ α∆x)

T
(s+ α∆s) ≤ (1− α (1− β2))x

T s, (2.27b)for a β2 ∈ (β1, 1). As in Lustig's algorithm [62℄, one has:
‖r+b ‖ = (1− α)‖rb‖ and ‖r+c ‖ = (1− α)‖rc‖, (2.28)where r+b and r+c are the primal and the dual residual ve
tors at (x+, y+, s+),with

(x+, y+, s+) := (x, y, s) + α(∆x,∆y,∆s). (2.29)This means that the residual norms are redu
ed by a fa
tor 1−α whi
h is smallerthan 1− α (1− β2).If α∗ > 0 is a lower bound for the step size α (see Theorem 2.5.1), then (2.27b)implies that the duality gap is de
reased as follows:
(x+ α∗∆x)T (s+ α∗∆s) ≤ (1− α∗ (1− β2))x

T s. (2.30)Assuming that an optimal solution exists, this monotoni
 redu
tion on theinfeasibility and the duality gap implies that after a �nite number of iterationsthey rea
h or bypass a pres
ribed a

ura
y. Pre
isely speaking, there exists some
K su
h that ∀k > K one has

∥

∥b−Axk
∥

∥ ≤ εp and
∥

∥c−AT yk − sk
∥

∥ ≤ εd and
(

xk
)T
sk ≤ ε, (2.31)for some positive εp, εd, ε, where (xk, yk, sk) are the iterates generated at the k-thiteration of the algorithm.The authors impli
itly prove the following theorem whi
h says that after a�nite number of iterations the algorithm arrives at either a primal-dual optimal

ε-solution or at some iterates whose 1-norm is very large. We brie�y explain itsproof be
ause it yields a positive lower bound α∗ for the step size α whi
h isneeded in the proof of 
onvergen
e.



32 2 THE STATE-OF-THE-ART IN IIPMSTheorem 2.5.1. Let ε > 0 and ω∗ > 0 be given. There exists a K su
h that
∀k ≥ K, the iterates (xk, yk, sk) generated by the algorithm satisfy either (2.31)or

∥

∥

(

xk, sk
)∥

∥

1
> ω∗. (2.32)Proof. The proof goes by 
ontradi
tion. Assume that neither (2.31) nor (2.32)is satis�ed throughout the algorithm. Then for any k, one should have

(xk)
T
sk ≥ ε∗ and

∥

∥(xk, sk)
∥

∥

1
≤ ω∗, (2.33)with

ε∗ = min {γpεp, γdεd, ε} . (2.34)Hen
e, the sequen
e {(xk, yk, sk)}∞
k=1

lies in the following 
ompa
t set:
N ∗ =

{

(x, y, s) : xT s ≥ ε∗ and ‖(x, s)‖1 ≤ ω∗} .On the other hand, both the left-hand side 
oe�
ient matrix and the right-handside ve
tor of the system (2.25) are 
ontinuous over N ∗ for any (x, y, s). As a
onsequen
e, the Newton sear
h dire
tions (∆x,∆y,∆s) are bounded above over
N ∗. That is,

∃η s.t.

∣

∣

∣

∣

∆xi∆si − γ
∆Tx∆s

n

∣

∣

∣

∣

≤ η and
∣

∣∆Tx∆s
∣

∣ ≤ η. (2.35)Kojima et al. derive an α∗ for whi
h the iterates 
ertainly lie in N and theduality gap is de
reasing to zero. But this is in
onsistent with (2.33), whi
h saysthat the duality gap is always stri
tly positive. This leads to a 
ontradi
tion.They obtain α∗ as follows.The iterates belong to N if the step size α satis�es (i), (ii) and (iii) below:(i) fi(α) = (xi +α∆xi)(si +α∆si)− γ (xi+α∆xi)
T (si+α∆si)
n ≥ 0, i = 1, · · · , n,(ii) gp(α) = (x+ α∆x)T (s+ α∆s)− γp(1− α) ‖rb‖ ≥ 0 or (1− α) ‖rb‖ ≤ ε,(iii) gd(α) = (x+ α∆x)

T
(s+ α∆s)− γd(1−α) ‖rc‖ ≥ 0 or (1−α) ‖rc‖ ≤ εd.Assuming that gp(0) ≥ 0 and gd(0) ≥ 0, Kojima et al. prove that fi, i = 1, · · · , n,

gp and gd are bounded below as follows:13
fi(α) ≥ β1 (1− γ) (ε∗/n)α− ηα2, i = 1, · · · , n,
gp(α) ≥ β1ε

∗α− ηα2,

gd(α) ≥ β1ε
∗α− ηα2.

(2.36)13Due to their less relevan
e to the goal of the se
tion, the details regarding the proof of theinequalities (2.36) have been omitted here.



2.5 THE ALGORITHM OF KOJIMA ET AL. 33If either gp(0) ≥ 0 or gd(0) ≥ 0 does not hold, they 
onsider (1− α) ‖rb‖ ≤ ε or
(1− α) ‖rc‖ ≤ εd, instead of the se
ond or the third inequality, respe
tively.One needs α su
h that the relations (2.27) are satis�ed. It 
an be easily veri�edthat the right hand side expressions in (2.36) are nonnegative for the following α:

α̂ = min

{

1,
β1 (1− γ) ε∗

nη
,
β1ε

∗

η

}

.This means that by putting α = α̂, the iterates 
ertainly lie in N , i.e., (2.27a)holds. On the other hand, the authors establish that
(1− α (1− β2))x

T s− (x+ α∆x)T (s+ α∆s) ≥ (β2 − β1) ε
∗α− ηα2.It 
an be easily veri�ed that for all α satisfying

α ≤ (β2 − β1) ε
∗

η
,the right-hand side is nonnegative. Thus (2.27b) is satis�ed for this α.As a result, by 
hoosing

α∗ = min

{

α̂,
(β2 − β1) ε

∗

η

}

, (2.37)sin
e 0 < α∗ ≤ 1, the equation (2.30) implies that the duality gap is 
onvergingto zero. This is in in
onsistent with the �rst 
ondition of (2.33). Thus the proofis 
omplete. �Now we explain the algorithm in a more formal way in the next subse
tion.2.5.2 The algorithmAlgorithm 2.1 Globally 
onvergent IIPM of Kojima et al. [54℄Input:parameters: ε > 0, 0 < γ < 1, γp, γd > 0, 0 < β1 < 1, ω∗ > 0;begininitial points: x0 > 0, y0 and s0 > 0;while (‖rb‖ > εp or ‖rc‖ > εd or xT s > ε) & ‖(x, s)‖1 ≤ ω∗

µ-update: µ = β1µg;

(x, y, s) = (x, y, s) + α(∆x,∆y,∆s);endwhileend



34 2 THE STATE-OF-THE-ART IN IIPMSAs it 
an be noti
ed from the des
ription of Algorithm 2.1, it starts at (x0, y0, s0)with x0 > 0 and s0 > 0. The parameters γ, γp and γd are 
hosen su
h that
(x0, y0, s0) lie in N . The system (2.25) with µ = β1µg is solved to obtain theNewton sear
h dire
tions. After 
al
ulating the step sizes α, the new iterates
(x+, y+, s+) are obtained using (2.29). This pro
ess is repeated until the 
on-dition for the while statement is violated. If the algorithm stops be
ause of(2.31), then a primal-dual optimal solution has been found; if it stops be
auseof (2.32), then one arrives at a region whi
h does not 
ontain any primal-dualfeasible solution. For more details on the latter we refer to the next subse
tion.2.5.3 Dete
ting infeasibilityWe start with a theorem.Theorem 2.5.2. ([54, Theorem 4.1℄) Let σ > 0 and ω > 0 be su
h that

(x0, y0, s0) ∈ S(σ, ω) := {(x, y, s) : (x; s) ≥ σ (e; e) & ‖(x; s)‖1 ≤ ω} .Let ω∗ satisfy
ω2 +

(

x0
)T
s0

σ
≤ ω∗.If the algorithm terminates by (2.32), then the region S(σ, ω) 
ontains no primal-dual feasible solution.Theorem 2.5.2 does not ne
essarily imply infeasibility as there may be a feas-ible solution outside the given region. In parti
ular, if (P) or (D) has emptyinterior, there is no σ > 0 for whi
h S(σ, ω) 
ontains a feasible solution. To over-
ome this de�
ien
y of Theorem 2.5.2, Kojima et al. modify their algorithm asfollows. If at an iteration, one has ‖rb‖ ≤ εp and/or ‖rc‖ ≤ εd, then the sys-tem (2.25) is used with rb = 0 and/or rc = 0 during the subsequent iterations.In this way, one avoids further improving the residual norm(s). Therefore, The-orem 2.5.2 
ontinues to satisfy. The global 
onvergen
e of the modi�ed algorithmfollows after a slight modi�
ation of the proof of Theorem 2.5.1 [54, Se
tion 5℄.Assume that the algorithm stops at the k-th iteration be
ause of 
ondition(2.32). Then

‖(xz , sz)‖ ≥ ω∗ and (xz)T sz ≥ ε∗,with ε∗ given by (2.34). As a result, one may have several options: if bothresiduals are less than or equal to the pres
ribed a

ura
y parameters, then usinga feasible IPM the duality gap is redu
ed until an approximate optimal solutionto the original pair (P) and (D) has been obtained. But, if either of the primalor the dual residuals (or both) are larger than the pres
ribed toleran
es, then byway of some theorems the authors derive some region where no feasible point isavailable [54, Se
tion 5℄.



2.6 THE ALGORITHM OF Y. ZHANG 35Ongoing e�orts on theoreti
al aspe
ts of the IIPMs were pursued by Zhang[119℄ who was the �rst to establish that IIPMs 
ould be polynomial-time. Heapplied the algorithm studied by Lustig [62℄ and Kojima et al. [54℄, to the HLCPand proved that the algorithm has an O(n2) 
onvergen
e rate. Sin
e we fo
us onLO, we present in the next subse
tion a restri
tion of this algorithm to LO.2.6 The algorithm of Y. ZhangZhang [119℄ 
onsiders the HLCP, de�ned as follows:
Mx+Ns = h,

xs = 0,

(x, s) ≥ 0,

(2.38)where x, s, h ∈ Rn and M,N ∈ Rn×n. It 
an be easily veri�ed that by setting
M =





A

0



 , N =





0

B



 and h =





b

Bc



 ,where B ∈ R(n−m)×n is full row rank and BAT = 0, the system (2.38) be
omesequivalent to the KKT system (1.1).Following Kojima et al. [54℄, Zhang deals with the system (2.25) with
µ = σµg, for a σ ∈ (0, 1).He uses an initial point whi
h has a spe
ial property. Let (x̄0, ȳ0, s̄0) be su
hthat
Ax̄0 = b and AT ȳ0 + s̄0 = c,but not ne
essarily (x̄0, s̄0) ≥ 0. The initials (x0, y0, s0), with x0 > 0 and s0 > 0,are taken su
h that

(

x0, s0
)

> (x̄0, s̄0). (2.39)It is worth mentioning that, later on, the above restri
tion on the startingpoint was relaxed by Stephen Billups and Mi
hael Ferris [14℄.Unlike Lustig [62℄ and Kojima et al. [54℄, Zhang [119℄ uses equal primaland dual step sizes. The 
ommon step size α is 
hosen so that new iterates
(x+, y+, s+), given by (2.29), satisfy (x+, s+) > 0 along with the following 
ondi-tion:

x+
T
s+ ≥ (1− α) xT s. (2.40)Following the general poli
y in IIPMs, the 
ondition (2.40) is 
onsidered to assurethat the duality gap is redu
ing not faster than the infeasibility. It 
an be veri�ed



36 2 THE STATE-OF-THE-ART IN IIPMSas follows. Using (2.28), one may say
‖(r+b , r+c )‖ = (1− α)‖(rb, rc)‖ ≤ x+

T
s+

xT s
‖(rb, rc)‖ ≤ x+

T
s+

‖(r0b , r0c )‖
x0T s0

.This means that the residual norms are always bounded above by a �xed multipleof the duality gap and, therefore, the optimality 
an not be a
hieved before thefeasibility has been obtained. Therefore, the 
ondition (2.40) 
oin
ides with the
ondition (2.3), used by Kojima et al.'s [54℄.To prevent the iterates from premature approa
h to the boundary, the authorimposes the following 
ondition on the iterates:
min(xs) ≥ γµg, for a 0 < γ ≤ min(x0s0)

(x0)T s0/n
, (2.41)whi
h is the 
ondition (2.4) of Kojima et al. algorithm [54℄. It is worth men-tioning that the iterates of Zhang's algorithm are a
tually 
aptured by a neigh-borhood N resembling that of Kojima et al. (see Se
tion 2.5) with γp = γd =

(x0)
T
s0/‖(r0b , r0c )‖.We pro
eed with showing how Zhang proved global 
onvergen
e of the al-gorithm.2.6.1 Global 
onvergen
eThe goal is to a
hieve 
omplementarity and feasibility of the iterates, simultan-eously. Note that the most popular tools to measure the duality gap and theinfeasibility are, respe
tively, xT s and the residual norm ‖(rb, rc)‖. By embed-ding these two quantities in a so-
alled merit fun
tion Φ, de�ned as

Φ(x, y, s) = xT s+ ‖(rb, rc)‖ , (2.42)the author tries to ful�ll his goal by assuring some 
onstant redu
tion on Φ. Notethat as Φ tends to zero, so do the residual norms and the duality gap. Let usexplain this. The value of the merit fun
tion after ea
h Newton step is given by
Φ(x+, y+, s+) = (1− α+ ασ)xT s+ α2∆xT∆s+ (1 − α) ‖(rb, rc)‖ .This 
an be rewritten as follows:

Φ(x+, y+, s+) = (1− ϕ(α))Φ(x, y, s) (2.43)where
ϕ(α) =

α
(

(1− σ)xT s− α∆xT∆s+ ‖(rb, rc)‖
)

Φ(x, y, s)
. (2.44)Naturally, the value of α for whi
h the fun
tion ϕ(α) rea
hes its maximumvalue in (0, 1) may be the best option. This is equivalent to obtaining the max-imizer of ϕ(α) subje
t to the 
onditions (2.40) and (2.41). Existen
e of su
h an

α was established in [119, Lemma 5.1℄.
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f. [119, Lemma 6.3℄) Let α be the maximizer of ϕ(α) with re-spe
t to (2.40) and (2.41). Then, one has(1) α ≥ min
{

1, (1− γ)σ̄µg/ω
2
} where σ̄ = min {σ, 1 − σ} and

ω :=

√

‖D∆x‖2 + ‖D−1∆s‖2 ;(2) ϕ(α) ≥ α(1 − σ − α|∆Tx∆s|/xT s).By [119, Lemma 6.2℄, at ea
h iteration one has
ω2 ≤ txT s, (2.45)for some t > 0 and that the sequen
e {tk} satis�es

t̄ = lim sup
k→∞

tk <∞. (2.46)It 
an be easily veri�ed that
|∆Tx∆s| ≤ ‖D∆x‖‖D−1∆s‖ ≤ ω2

2
. (2.47)By Lemma 2.6.1, and (2.45), one has

α ≥ (1− γ)σ̄

nt̄
. (2.48)Moreover, by (2.45) and (2.47), one has

|∆Tx∆s|
xT s

≤ t̄

2
.Using this, Lemma 2.6.1, part (2), implies that

ϕ(α) ≥ α

(

1− σ − αt̄

2

)

.It is assumed that σ satis�es
0 < σ̄ < σ <

1

2
.Then it follows that 1− σ > 1

2 . As a result, one has
ϕ(α) ≥ 1

2
α(1− αt̄).Substituting α from (2.48), and noting that α is a maximizer of ϕ(α), one 
on-
ludes that

ϕ(α) ≥ ϕ

(

(1− γ)σ̄

nt̄

)

≥ ϕ̄ :=

(

1− σ̄(1− γ)

n

)

σ̄(1− γ)

2nt̄
> 0. (2.49)This proves that the merit fun
tion is redu
ed by a fa
tor ϕ̄ ∈ (0, 1) at ea
hiteration. Thus, the global 
onvergen
e of the algorithm follows.Polynomiality of the algorithm is obtained by slightly modifying the startingpoint. The next subse
tion deals with this subje
t.



38 2 THE STATE-OF-THE-ART IN IIPMS2.6.2 Polynomiality of the algorithmLetting
(x̄0, ȳ0, s̄0) = arg min

(x,y,s)





m
∑

j=1

|bj −Ajx|2 +
n
∑

j=1

|cj − (AT )jy − sj|2


 ,where Aj , for j = 1, · · · ,m, is the j-th row of the matrix A, the author 
hoosesthe starting point (x0, y0, s0) as follows:
x0 = s0 = ζ̄e and y0 = ȳ0, (2.50)with ζ̄ satisfying

ζ̄ ≥
∥

∥(x̄0, s̄0)
∥

∥ .Note that for an optimal solution (x∗, y∗, s∗), one has ∥∥(x̄0, s̄0)∥∥ ≤ ‖(x∗, s∗)‖.The following lemma is 
riti
al.Lemma 2.6.2. (
f. [119, Lemma 7.2℄) Let
ζ = min {‖(x∗, s∗)‖ : (x∗, y∗, s∗) is an optimal solution} ,and ζ̄ be su
h that

ζ̄ ≥ ζ

λ
√
n
, (2.51)with λ independent from n. Then t̄, de�ned as in (2.46), turns out to be O(n).Using Lemma 2.6.2, (2.49) implies that

ϕ̄ = O

(

1

n2

)

,whi
h means that the merit fun
tion is de
reasing by a fa
tor of O(1/n2). There-fore, one 
on
ludes that if a primal-dual optimal solution exists, after at most
O

(

n2 log
1

ε

)

, (2.52)iterations of the algorithm, the following 
ondition holds:
‖Φ‖ ≤ ε. (2.53)Thus, the latter is used as the stopping 
riterion.But what if no optimal solution exists? Be
ause the sequen
e {Φk}∞k=1 ofthe merit fun
tion values then 
onverges to a positive number instead of zero,the 
ondition (2.53) will never be satis�ed. Zhang proposes some other stopping
riterion in addition to (2.53), similar to that of Kojima et al. [54℄, whi
h gives



2.7 THE ALGORITHM OF MIZUNO 39some information about the region where no feasible solution exists. In short,the extra stopping 
riterion is 
onstru
ted as follows. In the proof Lemma 2.6.2,the author proves that if an optimal solution (x∗, y∗, s∗) satisfying ‖(x∗, s∗)‖ ≤ ζexists, then the following inequality 
ertainly holds:
‖(rb, rc)‖
‖(r0b , r0c )‖

(x0 − x̄0)T s+ (s0 − s̄0)Tx

xT s
≤ 4λ+ 5.He uses this in getting information about the infeasibility by terminating thealgorithm if the latter does not hold at some iteration [119, Theorem 8.1℄.So far, it has been proven that IIPMs are polynomial, i.e., there is a variantwhose iteration bound is given by (2.52). This bound was improved later by afa
tor of O(n) by Mizuno [75℄. In the next se
tion, we des
ribe the algorithm ofMizuno [75℄ whi
h enjoys an O(n) 
onvergen
e rate.2.7 The algorithm of MizunoMizuno [75℄ 
onsiders the algorithm of Kojima et al. [54℄ des
ribed in Figure 2.1.By slightly modifying the starting point and the stopping 
riteria, he proves thatthe algorithm of Kojima et al. is of O(n2) 
onvergen
e rate. His starting point isthe same as that of Zhang, namely (2.50). A variant with O(n) 
onvergen
e rateis also presented.2.7.1 Another IIPM with the 
onvergen
e rate O(n2)Mizuno starts from the following point:

x0 = s0 = γ0ζe and y0 = 0,where γ0 ∈ (0, 1] is a 
onstant and ζ is su
h that
ζ ≥ min

{

‖(x, s)‖∞ : Ax = b, AT y + s = c for some y} .The iterates are for
ed to stay in the neighborhood N de�ned by (2.26) in whi
hthe parameters γp and γd are spe
i�ed as follows:
γp =

x0
T
s0

‖r0b‖
and γd =

x0
T
s0

‖r0c‖
.Following Zhang [119℄, Mizuno allows equal primal and dual step sizes, i.e.,

αp = αd = ᾱ where ᾱ is obtained as des
ribed in Subse
tion 2.5.1.Let η be de�ned as in (2.35). In [75, Se
tion 3℄, the author proves that
η = O(n)xT s.



40 2 THE STATE-OF-THE-ART IN IIPMSBy substituting in (2.37), one gets
ᾱ ≥ α∗ = min

{

1,
β1 (1− γ) ε∗

nη
,
β1ε

∗

η
,
(β2 − β1) ε

∗

η

}

= O

(

1

n2

)

.Re
all from Subse
tion 2.5.1 that the primal and dual feasibility are 
ontrolledby a parameter ν whi
h is updated by the fa
tor (1− α∗). Pre
isely speaking, atea
h iteration (2.24) is satis�ed. Moreover, (x, y, s) ∈ N and (2.24) imply that
xT s ≥ (x0)

T
s0

‖r0b‖
‖rb‖ = ν(x0)

T
s0 and xT s ≥ (x0)

T
s0

‖r0c‖
‖rc‖ = ν(x0)

T
s0.Besides, by (2.30) the duality gap is de
reasing by a fa
tor of (1−α∗ (1− β2)) atea
h iteration. Thus, the algorithm de
reases the amount of infeasibility and theduality gap by a fa
tor of O(1/n2). As a result, if a primal-dual optimal solutionexists, after at most O(n2L′) iterations, with

L′ = max

{

log
xT s

ε
, log

‖r0b‖
εp

, log
‖r0c‖
εd

}

,the algorithm obtains an ε-solution of (P) and (D) [75, Theorem 2.1℄.2.7.2 An IIPM with 
onvergen
e rate O(n)Mizuno [75, Se
tion 4℄ obtains a variant of the algorithm des
ribed in the lastsubse
tion whi
h has O(n) 
onvergen
e rate. This algorithm is inspired by thepredi
tor-
orre
tor (PC) FIPM of Mizuno et al. [77℄. The iterates are 
apturedby the following neighborhood:
N2(γ1) := {(x, y, s) : x > 0, s > 0, ‖xs− µge‖ ≤ γ1µg} , (2.54)for a γ1 ∈ (0, 1). Mizuno takes γ1 = 1

4 . An iteration of the new variant is asfollows. First, Mizuno 
al
ulates the step size α su
h that new iterates (x̄, ȳ, s̄),de�ned as
x̄ := x+ α∆x, ȳ := y + α∆y and s̄ := s+ α∆s,satisfy

(x̄, ȳ, s̄) ∈ N2(2γ1),

x̄T s̄ ≤ (1− α (1− β2))x
T s,

x̄T s̄ ≥ (1− α)νx0
T
s0,

(2.55)where the parameter ν is 
ontrolling the feasibility and de
reases by the fa
tor
(1 − α) in ea
h iteration. Next, putting µ = x̄T s̄/n, the system (1.6) is applied
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x1s1

x2s2 
entral path N
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γ
1 )

N

2 (γ
1 )
entering

Figure 2.1: Mizuno's O(n)-variant IIPM: γ1 = 1

4
.to obtain a 
entering step (∆cx,∆cy,∆cs). The new iterates (x+, y+, s+) are
al
ulated as follows:

(x+, y+, s+) := (x̄, ȳ, s̄) + (∆cx,∆cy,∆cs).In [75, Lemma 4.2℄ is it established that (x+, y+, s+) ∈ N2(0.25).It is worth mentioning that, as we made it 
lear in the last subse
tion, thefeasibility is improving at a rate (1 − α); while due to (2.55), the optimality isimproving at slightly slower rate, namely, (1− α (1− β2)).An illustration of an iteration of the algorithm is given in Figure 2.1. Thealgorithm starts with a point inside the narrow neighborhood N2(0.25) and thenderives a point inside the wider one, namely N2(0.5). After that using a full-Newton 
entering step the point is restored into the narrow neighborhood.In [75, Lemma 4.3℄, the author proves that the feasibility step size is boundedbelow as follows:
α ≥ α∗ := min







1

2
,

√

xT s

8nη
,
β1x

T s

η
,
(β2 − β1)x

T s

η







,where η = O(n)xT s. This implies α∗ = O(1/n). By [75, Theorem 4.1℄, the
onvergen
e rate the algorithm turns out to be O(n).So far it has been established that the IIPMs are globally 
onvergent andpolynomial and the best known 
onvergen
e rate, i.e., O(n), is due to Mizuno[75℄. We pro
eed with a PC IIPM with the same 
onvergen
e rate whi
h is dueto Potra [91℄.



42 2 THE STATE-OF-THE-ART IN IIPMS2.8 A PC algorithm of F. PotraInspired by Mizuno's PC IIPM, des
ribed in the previous se
tion, Potra [91℄designed another PC algorithm with the same 
onvergen
e rate. An iteration ofPotra's algorithm 
onsists of three types of Newton steps: two predi
tor stepsand one 
orre
tor step. The �rst predi
tor step uses an a�ne-s
aling dire
tionwhi
h de
reases the duality gap while keeping the feasibility un
hanged whilst these
ond one serves to improve feasibility at the same rate as the optimality. Thepredi
tor step sizes are 
hosen in su
h a way that the generated iterates belongto some wider neighborhood than N2(0.25). The 
orre
tor step serves to restorethese iterates to the narrower neighborhood N2(0.25).2.8.1 The algorithmThe algorithm designed by Potra [91℄ is presented in Algorithm 2.2. The startingpoint slightly di�ers from that of Mizuno and is as follows:
x0 = ξe, s0 = σe and y0 = 0,where the parameters ξ and σ satisfy
∥

∥A†b
∥

∥

∞ ≤ ξ and ‖c‖∞ ≤ σ,with A† denoting the pseudoinverse of A, whi
h is de�ned as A† = AT (AAT )
−1.Noti
e that the initials (x0, y0, s0) given above are perfe
tly 
entered; i.e.,

x0s0 = µe with µ =
(x0)

T
s0

n
.The �rst predi
tor a�ne-s
aling sear
h dire
tion (∆ax,∆ay,∆as) is 
al
ulatedfrom the following system:

A∆ax = 0,

AT∆ay +∆as = 0,

s∆ax+ x∆as = −xs,
(2.56)along whi
h only the optimality improves. Next, the se
ond predi
tor step (∆fx,∆fy,∆fs)is 
al
ulated from the system

A∆fx = rb,

AT∆fy +∆fs = rc,

s∆fx+ x∆fs = 0,

(2.57)
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h improves feasibility. Their e�e
t on the optimality is not signi�
ant. Thestep sizes α > 0 and θ ∈ (0, 1] are 
al
ulated su
h that the iterates (x̄, ȳ, s̄),de�ned as
(x̄, ȳ, s̄) := (x, y, s) + α(∆ax,∆ay,∆as) + θ(∆fx,∆fy,∆fs), (2.58)belong to N2(β) where β ∈ (0.25, 0.5]. In Subse
tion 2.8.2 we dis
uss in detailhow to obtain these parameters.The 
entering step (∆cx,∆cy,∆cs) is given by

A∆cx = 0,

AT∆cy +∆cs = 0,

s̄∆cx+ x̄∆cs = µ̄e− x̄s̄,

(2.59)with µ̄ := x̄T s̄
n . The new iterates (x+, y+, s+), de�ned by

(x+, y+, s+) := (x̄, ȳ, s̄) + (∆cx,∆cy,∆cs),are su
h that (x+, y+, s+) ∈ N2(0.25). See [91, Proposition 2.2℄ for a proof.This pro
edure is repeated until an ε-solution (x, y, s) is obtained.Algorithm 2.2 The PC algorithm of Potra [91℄Input:a

ura
y parameter: ε > 0;
onstants: σ > 0, ξ > 0;begin
x0 := ξe; s0 := σe; y0 := 0; µ0 := x0

T
s0/n = σξ;while ǫ(x, y, s) > ε

(x, y, s) : = (x, y, s) + α(∆ax,∆ay,∆as) + θ(∆fx,∆fy,∆fs);

µ-update: µ := xT s
n ;
entering step:

(x, y, x) := (x, y, s) + (∆cx,∆cy,∆cs);endwhileendIn the next subse
tion, we explain how the step sizes θ and α are obtainedand how 
onvergen
e of his algorithm is derived.
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e of the algorithmDe�ne
x(α, θ) := x+ α∆ax+ θ∆fx,

y(α, θ) := y + α∆ay + θ∆fy,

s(α, θ) := s+ α∆as+ θ∆fs.

(2.60)Denoting the primal and dual residual ve
tors at (x(α, θ), y(α, θ), s(α, θ)) by
rb(α, θ) and rc(α, θ), respe
tively, it 
an be veri�ed that

rb(α, θ) = (1− θ)rb and rc(α, θ) = (1− θ)rc.Moreover,
µ(α, θ) =

x(α, θ)
T
s(α, θ)

n
=
(

1− α+ γαθ + τθ2
)

µ,with
γ =

(∆ax)
T
∆fx+ (∆as)

T
∆fs

nµ
and τ =

(∆fx)
T
∆fs

nµ
. (2.61)It follows that

µ(α, θ) = (1− θ)µ, (2.62)if and only if
α = χ(θ) :=

1 + τθ

1− τθ
θ. (2.63)On the other hand, one has

x(α, θ)s(α, θ) = (1− α)xs+ α2h+ αθg + θ2t,where
h = ∆ax∆as, g = ∆ax∆fs+∆as∆fx and t = ∆fx∆fs.Thus, one may write

x(α, θ)s(α, θ) − µ(α, θ) = (1 − α2)f + α2h+ αθḡ + θ2 t̄,where
f = xs− µe, ḡ = g − e

T g

n
g and t̄ = t− e

T t

n
t.In order to obtain (x(α, θ), y(α, θ), s(α, θ)) ∈ N2(β), we need to have

‖x(α, θ)s(α, θ) − µ(α, θ)e‖ ≤ βµ(α, θ).Potra shows that by repla
ing �≤� by �=� in the last inequality, the resultingequation is equivalent to the following:
θP7(θ) = β2µ2 − ‖f‖2 (2.64)



2.8 A PC ALGORITHM OF F. POTRA 45where P7(θ) is a polynomial of order seven in θ. Sin
e ‖f‖ ≤ 0.25 µ, one has
β2µ2 − ‖f‖2 ≥ (β2 − 1/16)µ2 > 0.On the other hand, θP7(θ) = 0 for θ = 0. This means that there exists an θ0 > 0su
h that

∀ θ ∈ [0, θ0], θP7(θ) ≤ β2µ2 − ‖f‖2 . (2.65)If the equation (2.64) has no zero point in the interval (0, 1), then (2.65) holds forall θ ∈ [0, 1]. Hen
e, the largest value of θ is
θ̂ := min

{

1, θ̃
} (2.66)where θ̃ solves the equation (2.64). This means that, (2.65) holds for all θ ∈ [0, θ̂].Due to (2.63), for the sake of simpli
ity, the author denotes

(x(θ), y(θ), s(θ)) := (x(α, θ), y(α, θ), s(α, θ)), and µ(θ) := µ(α, θ), (2.67)where (x(α, θ), y(α, θ), s(α, θ)) and µ(α, θ) are given by (2.60) and (2.62), respe
t-ively. The goal is to show that
∀θ ∈ [0, θ̂], (x(θ), y(θ), s(θ)) ∈ N2(β). (2.68)Note that (2.65) is equivalent to

‖x(θ)s(θ) − µ(θ)e‖ ≤ βµ(θ).On the other hand, it has been proven in [91, page 25℄ that
∀θ ∈ [0, θ̂], x(θ)s(θ) > 0,meaning that (x(θ), s(θ)) > 0. Thus (2.68) holds.In [91, Theorem 2.4℄ is it established that the algorithm generates a sequen
eof points inside N2(0.25) and the residual ve
tors, rb and rc, and the barrierparameter µ, satisfy

rb = νr0b , rc = νr0c and µ = νµ0, with µ0 =
x0

T
s0

n
, (2.69)where the parameter ν is redu
ing at least by a fa
tor (1− θ).The following lemma 
on�rms that the generated sequen
e of iterates is bounded.Lemma 2.8.1. (
f. [91, Lemma 3.1℄) If (P) and (D) are feasible then the sequen
e

{

(xk, yk, sk)
}∞
k=1

generated by the algorithm satis�es
ξ
∥

∥sk
∥

∥

1
+ σ

∥

∥xk
∥

∥

1
≤ 2nµ0 + ξ ‖x∗‖+ σ ‖x∗‖1 ,for an optimal pair (x∗, s∗).
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eeds with obtaining a lower bound for the step size θ whi
h is a 
on-sequen
e of a 
ouple of lemmas.Lemma 2.8.2. (
f. [91, Lemma 3.4℄) Let (x∗, y∗, s∗) be a primal-dual optimalsolution for (P) and (D). Consider
σ∗ =

1

nσ
‖s∗‖1 , ξ∗ =

1

nξ
‖x∗‖1 , γ1 =

1

ξ

∥

∥A†b
∥

∥

∞ and γ2 =
1

σ
‖c‖∞ .One has

∥

∥D−1∆fx
∥

∥ ≤ (η1 + η2)
√
µ,

∥

∥D∆fs
∥

∥ ≤ (η1 + η2)
√
µ,where D = diag (

√

x/s) and
η1 =

γ1 + 1√
1− β

(2 + σ∗ + ξ∗)n, (2.70a)
η2 =

γ2 + 1√
1− β

(2 + σ∗ + ξ∗)n. (2.70b)Lemma 2.8.3. (
f. [91, Lemma 3.5℄) Let (x∗, y∗, s∗) be a primal-dual optimalsolution for (P) and (D). Then the step size θ satis�es
θ ≥ θ̄ := min

{

1,
1

2 |γ| ,
1

√

|τ |
, γ9

}

,with γ and τ given by (2.61), and
γ9 =

4(β − 0.25)

β − 0.25 +
√

(β − 0.25)2 + 4(β − 0.25)γ8
,where

γ8 = 2 |γ + τ |+ 4γ4 + 2γ5 + γ6,with
γ4 =

√
2n(1 +

√

|τ |)2,
γ5 = 2

√
n(η1 + η2)(1 +

√

|τ |),
γ6 = η21 +

√
2η1η2 + η22 ,

(2.71)with η1 and η2 given by (2.70).Lemma 2.8.3 along with (2.69) imply
ǫ(x+, y+, s+) ≤ (1− θ̄)ǫ(x, y, s).We 
on
lude that, the duality gap and the infeasibility are redu
ed at least bythe fa
tor (1− θ̄). Thus, the following theorem follows.
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f. [91, Theorem 3.6℄) Suppose that (P) and (D) are feasible.Then after at most








∣

∣

∣log ε
ǫ0

∣

∣

∣

∣

∣log(1− θ̄)
∣

∣









,iterations with ǫ0 = ǫ(x0, y0, s0), the algorithm ends up with an ε-solution of thepair (P) and (D).2.8.3 Polynomial iteration boundIn [91, Se
tion 4℄, the author shows that for large enough ξ and σ one gets apolynomial algorithm. He 
hooses the quantities ξ∗ and σ∗, de�ned in Lemma2.8.2, su
h that
ξ∗ = O(1), σ∗ = O(1). (2.72)By (2.70) and (2.72),

∃λ1 ≥ 1, η1 ≤ λ1 n, η2 ≤ λ1 n. (2.73)In [91, page 29℄, Potra proves that
|γ| ≤ η1 + η2√

n
, and τ ≥ −η

2
1 + η22
n

,whi
h implies by (2.73) that
|γ| ≤ 2λ1

√
n, −2λ21n ≤ τ ≤ 0.Due to (2.71), this implies that

γ4 = O(n2), γ5 = O(n2), γ6 = O(n2).Hen
e, for γ8 and γ9, de�ned in Lemma 2.8.3, one 
an say
γ8 = O(n2) and γ9 = O(n−1).A

ording to this, we dedu
e that

θ ≥ θ̄ = O(n−1).Using θ̄ ≥ − log(1− θ̄) and Theorem 2.8.4, the iteration bound for the algorithmturns out to be
⌈

O(n) log
ǫ0
ε

⌉

.It is worth mentioning that the argument given in this subse
tion does notimply polynomiality of the algorithm as to 
al
ulate θ involves the solution of



48 2 THE STATE-OF-THE-ART IN IIPMSthe equation (2.64) for whi
h there is no polynomial algorithm yet. In [91, Se
-tion 4℄, the author proposes to set θ to a lower bound θ̃ = Ω(1/n) that 
an beobtained in polynomial time. Su
h a bound 
an be obtained as follows. Let
w ∈ {η1, η2, |τ |, |γ|} and Iw be the smallest integer su
h that w ≤ Iw. Then, aswe establish in Subse
tion 2.8.3, one has
η1 ≤ Iη1 = O(n), η2 ≤ Iη2 = O(n), |τ | ≤ I|τ | = O(n) and |γ| ≤ I|γ| = O(

√
n).By repla
ing w ∈ {η1, η2, |τ |, |γ|} by Iw in (2.71), a lower bound θ̃ = Ω(1/n) 
anbe obtained in polynomial time.Note that if there is no optimal solution, then the inequality (1.21) will never besatis�ed. This 
auses the algorithm to hang. To over
ome this issue, he proposesthe following solution through whi
h the algorithm dete
ts a region where nooptimal solution exists.Theorem 2.8.5. (
f. [91, Theorem 4.2℄) Let ξ̄ and σ̄ be positive 
onstants. If

ξ ‖s‖1 + σ ‖x‖1 > 2nξσ + ξσ̄ + σξ̄,holds at some iteration, then there is no optimal solution (x∗, y∗, s∗) su
h that
‖x∗‖1 ≤ ξ̄, ‖s∗‖1 ≤ σ̄.Although Potra [91℄ 
ould not improve the 
onvergen
e rate O(n) of Mizuno'salgorithm [75℄, however, Potra's algorithm has the advantage that the feasibilityand the duality gap improve at the same rate.So far, we have been dealing with IIPMs whi
h are 
lassi�ed as PFMs. We pro-
eed with presenting a potential-redu
tion IIPM whi
h is due to Mizuno, Kojimaand Todd [76℄.2.9 Potential-redu
tion IIPMs of Mizuno et al.Before going into the potential-redu
tion algorithm of Mizuno et al. [76℄, we wouldlike to explain brie�y a di�eren
e between PFMs and PRMs. As we mentionedin Subse
tion 1.3.3, PFMs follow the 
entral path whi
h 
onsists of the uniquesolutions of the system (1.2) for µ > 0. It 
an be veri�ed (see e.g., [115℄) that the
entral path is nothing else as the set of the minimizers of the 
lassi
al primal-duallogarithmi
 barrier fun
tion, de�ned as

f(x, s;µ) :=
xT s

µ
−

n
∑

i=1

log(xisi), (2.74)for µ > 0. In PRMs, the potential fun
tion has the property that it does not havea minimizer, i.e., it goes to −∞ as the iterates approa
h an optimal solution.



2.9 POTENTIAL-REDUCTION IIPMS OF MIZUNO ET AL. 49Tanabe-Todd-Ye [104, 108℄ introdu
ed the following potential fun
tion:
φ(x, s) := ρ log xT s−

n
∑

i=1

log xisi, for a ρ > n. (2.75)The following lemma is relevant.Lemma 2.9.1. If (P) and (D) satisfy the IPC, then φ(x, s) → −∞ if and onlyif the iterates (x,s) approa
h a primal-dual optimal solution.Proof. We de�ne the logarithmi
 barrier fun
tion Φ(x, s;µ) as follows:
Φ(x, s;µ) :=

xT s

µ
− n−

n
∑

i=1

log
xisi
µ
,whi
h is up to the term n logµ−n, equal to f(x, s;µ) as de�ned by (2.74). For any�xed µ > 0, Φ is stri
tly 
onvex with the minimum value of 0 and its minimizero

urs at the µ-
enter, i.e., a primal-dual stri
tly feasible (x, s) satisfying xs = µe.The fun
tion φ 
an be rewritten as below:

φ(x, s) = Φ(x, s;µ) + ρ log xT s− xT s

µ
+ n− n logµ, (2.76)for some µ > 0. On the 
entral path, we have Φ(x, s;µ) = 0 and hen
e xT s = nµ.Thus (2.76) implies that

φ(x, s) = ρ logn+ (ρ− n) logµ.This implies that φ goes to −∞ if and only if µ → 0, showing that the 
entralpath 
onverges to an optimal solution when µ→ 0.If the iterates are not on the 
entral path, their stri
t feasibility implies thatthere is a µ for whi
h the following is satis�ed:
Φ(x, s;µ) ≤ τ for some 0 < τ <∞. (2.77)Let us assume that this property is always maintained for some �xed τ . In otherwords, we assume that the iterates stay in a 
ertain neighborhood of the 
entralpath.It 
an be easily veri�ed that Φ is stri
tly 
onvex in µ with the minimizer

µ = µg := xT s/n. Thus, for any µ satisfying (2.77), the following is 
ertainlytrue:
0 ≤ Φ(x, s, µg) ≤ Φ(x, s;µ) ≤ τ.As a result, without loss of generality, one may take µ = µg in (2.76). Hen
e, onegets:

φ(x, s) = Φ(x, s, µg) + ρ logn+ (ρ− n) logµg.



50 2 THE STATE-OF-THE-ART IN IIPMSBe
ause 0 ≤ Φ(x, s, µg) ≤ τ , the following is always true:
ρ logn+ (ρ− n) logµg ≤ φ(x, s) ≤ τ + ρ logn+ (ρ− n) logµg.As τ and ρ are 
onstant, this implies that φ goes to −∞ if and only if µg → 0,showing that the iterates approa
h an optimal solution if µ→ 0. �We would also like to mention that global 
onvergen
e of both path-followingmethods and potential-redu
tion methods has been established by Kojima, Nomaand Yoshise [58℄ for monotone LCP.We pro
eed with explaining the algorithm of Mizuno et al. [76℄. Basi
ally, theidea is more or less the same as that of the previously des
ribed algorithms in the
urrent 
hapter, spe
ially those des
ribed in [75, 91, 119℄. The authors use thefollowing starting point:

(x0, y0, s0) = ζγ0(e, 0, e),in whi
h γ0 ∈ (0, 1] and ζ is a number satisfying
‖x∗ + s∗‖ ≤ ζ, (2.78)for some optimal pair (x∗, s∗). Moreover, the duality gap is de
reasing with atmost the same speed as the infeasibility. The Newton sear
h dire
tions (∆x,∆y,∆s)are slightly di�erent and obtained from the system (2.25) with µ = µη where

µη :=
xT s

n+ η
with η ≥ √

n. (2.79)It is worth mentioning that a

ording to [57℄ and [106℄, by this 
hoi
e of µ, thegradient ve
tors of the potential fun
tion φ, given by (2.75), and the logarithmi
barrier fun
tion f , given by (2.74), 
oin
ide. As a result, one 
an make surethat the potential fun
tion φ is de
reasing along the Newton dire
tions (2.25). Itwas also established that if η = O(
√
n), then the 
onvergen
e rate of the feasiblepotential-redu
tion algorithm studied in [57℄ be
omes O(√n).They present two O(n2

√
n)-variants of the algorithm, namely, Algorithm Iand II, and an O(n)-variant, namely, Algorithm III.In Algorithm I, the step size α is 
al
ulated su
h that the potential fun
tion

φ1(x, s), de�ned as14
φ1(x, s) := (n+ η) log xT s−

n
∑

i=1

log xisi − n logn, for a η ≥ √
n. (2.80)de
reases by at least a 
onstant and, in addition, the following 
ondition holds:

(x+ α∆x)(s + α∆s) ≥ (1− α)xT s. (2.81)14Noti
e that φ1 is, up to the term −n logn, pre
isely the Tanabe-Todd-Ye potential-fun
tion(2.75).



2.9 POTENTIAL-REDUCTION IIPMS OF MIZUNO ET AL. 51As we make 
lear in the sequel, this 
ondition guarantees that the infeasibilityde
reases at least as mu
h as the duality gap.In Algorithm II, the step size α is obtained in su
h a way that a modi�edversion of the above fun
tion, de�ned by
φ2(x, y, s) := φ1(x, s) + log xT s− log

(

xT s− σ ‖rb, rc‖
)

, (2.82)de
reases by at least a 
onstant. In this variant no extra 
ondition is 
onsidered;in other word, by adding the extra term log xT s− log
(

xT s− σ ‖rb, rc‖
) to φ1, theextra 
ondition (2.81) was relaxed.The variant III is a
tually an O(n)-variant of the previous variants.We pro
eed with explaining the three variants in more detail.2.9.1 Algorithm I: a 
onstrained potential-redu
tion IIPMIn this se
tion, we dis
uss Algorithm I in a more detail. As des
ribed above,the step size α is 
al
ulated su
h that (2.81) holds and the value of the potentialfun
tion φ1 de
reases with a 
onstant δ > 0, i.e., one has

φ1(x+ α∆x, s+ α∆s)− φ1(x, s) ≤ −δ. (2.83)If su
h an α does not exist, then it is 
on
luded that there is no optimal pair
(x∗, s∗) satisfying (2.78).By this amount of redu
tion, Mizuno et al. [76℄ establish that after a �nitenumber of iterations, the algorithm arrives at either a point (x, y, s) su
h that
xT s ≤ ε, or a region where there is no optimal solution. See Theorem 2.9.2.Letting {νk}∞k=1 be su
h that

ν1 = 1 and νk+1 = (1− αk)νk,where αk is the step size in k-th iteration, the residual ve
tors rb and rc satisfy
(rkb , r

k
c ) = νk(r0b , r

0
c ),and, by (2.81), the duality gap satis�es

xk
T
sk ≥ νkx0

T
s0.This means that the iterates generated by the algorithm have the property thatthe infeasibility is de
reasing at least as mu
h as the duality gap.It is assumed that at k-th iteration the following holds

xk
T
sk ≥ γ1ν

kx0
T
s0,for a γ1 ∈ (0, 1]. Then, they establish that by taking α = ᾱ where

ᾱ :=
γ40γ

2
1 min(xs)

100n(n+ η)xT s
,



52 2 THE STATE-OF-THE-ART IN IIPMSthe potential fun
tion φ1 de
reases with at least the amount of δ where
δ =

γ40γ
2
1

300 (n+ η)
2 ,after ea
h Newton iteration with size ᾱ.It 
an be easily veri�ed that φ1(x, s) ≥ η log xT s. Thus, assuming that aprimal-dual optimal solution exists, xT s ≤ ε holds if φ1(x, s) ≤ 1

η log ε. This willbe the 
ase after a �nite number of iterations be
ause the potential fun
tion isde
reasing by δ. As a result, one may 
on
lude that after at most
⌈

1

δ

(

φ1(x
0, s0)− 1

η
log ε

)⌉

,iterations, the 
ondition φ1(x, s) ≤ 1
η log ε holds. The following theorem gives amore a

urate iteration bound for Algorithm I by imposing some further restri
-tions on the parameters ζ and ε.Theorem 2.9.2. (
f. [76, Theorem 1℄) Let L ≥ logn (L may be the binary size ofthe input data), η ≥ √

n, γ0 ∈ (0, 1], and assume that there exists an optimal pair
(x∗, s∗) satisfying (2.78) with log ζ = O(L). Letting ε be su
h that log 1

ε = O(L)and assuming that the potential fun
tion is de
reasing at least with δ, then after atmost O(η(n + η)2L) iterations, Algorithm I stops with either a point (x, y, s) forwhi
h xT s ≤ ε, or with an optimal pair or we may 
on
lude that that no optimalsolution x∗ of (P) and (y∗, s∗) of (D) exist satisfying (2.78).By (2.79), letting η = O(
√
n), the last theorem implies that Algorithm I has

O(n2√n) 
onvergen
e rate.2.9.2 Algorithm II: a pure potential-redu
tion algorithmIn this variant, the step size α is 
al
ulated su
h that the fun
tion φ2 de
reaseswith at least δ. By repla
ing the fun
tion φ1 by φ2, the 
ondition (2.81) is relaxed.In [76, Lemma 8℄, the authors establish that if α satis�es (2.81) and (2.83), thenone has
φ2(x + α∆x, y + α∆y, s+ α∆s) − φ2(x, y, s) ≤ −δ.Moreover, like Algorithm I, it is established that if φ2(x0, y0, s0) = O(ηL) then

φ2(x, y, s) ≤ η log ε implies xT s ≤ ε [76, Lemma 7℄.In [76, Theorem 6℄, the authors prove that putting
σ :=

γ1(x
0)

T
s0

‖r0b , r0c‖
,in (2.82), Theorem 2.9.2 
an be applied to this version of the algorithm as well.



2.9 POTENTIAL-REDUCTION IIPMS OF MIZUNO ET AL. 53Unfortunately, the iteration 
omplexity of the algorithms I and II is worsethan the other IIPMs, des
ribed in the previous se
tions, i.e., O(n2
√
2) vs. O(n2)or O(n). Mizuno et al. [76℄ present variants of the algorithms I and II whi
h havean O(n) 
onvergen
e rate. In the next subse
tion, we des
ribe an O(n) variant ofAlgorithm II.2.9.3 Algorithm III: a potential-redu
tion IIPM with O(n)
onvergen
e rateAn O(nL)-variant of Algorithm II is des
ribed in Algorithm 2.3. A di�eren
ebetween Mizuno's PC algorithm [75℄ and Algorithm 2.3 is that the iterates arenot 
on�ned to stay in any neighborhood of the homotopy path (see Se
tion 2.7).As it 
an be noti
ed, ea
h iteration of the algorithm 
onsists of two types ofAlgorithm 2.3 The potential-redu
tion algorithm of Mizuno et al. [76℄Input:a toleran
e ε > 0;
onstants γ0 ∈ (0, 1], λ ∈ (0, 1], δ1 > 0, δ2 > 0, η > 0;begin
onsider x0 = s0 = γ0ζe with ζ given by (2.78), y0 = 0;while xT s > εif min(xs) > λxT s/nStep A:

µ-update: µ := µη;
(x, y, s) := (x, y, s) + α(∆fx,∆fy,∆fs);elseStep B:
µ-update: µ := µg;
(x, y, s) := (x, y, s) + α(∆cx,∆cy,∆cs);endifendwhileendsteps. Step A serves to improve the optimality and the feasibility, and Step B isa 
entering step.If the following 
ondition holds:

min(xs) ≥ λµg, (2.84)for a λ ∈ (0, 1], the algorithm enters Step A by 
al
ulating the Newton sear
hdire
tions (∆fx,∆fy,∆fs) from the system (2.25) for µ = µη with µη as de�nedin (2.79). Then, a step size α is 
omputed in su
h a way that the following holds:
φ2(x+ α∆fx, y + α∆fy, s+ α∆fs) ≤ φ2(x, y, s)− δ1 (2.85)



54 2 THE STATE-OF-THE-ART IN IIPMSfor some δ1 > 0. In [76, Lemma 11℄, it is proven that if there exists an optimalpair (x∗, s∗) satisfying (2.78), then there is a step size α for whi
h (2.85) holdswith δ1 = 0.001λ2γ40γ
2
1 .If (2.84) does not hold, the algorithm performs Step B by 
al
ulating Newtonsear
h dire
tions (∆cx,∆cy,∆cs) from the system (1.6) with µ = µg. Note thatStep B maintains the 
urrent infeasibility as well as the duality gap xT s. A stepsize α is 
hosen su
h that the following holds:

φ2(x+ α∆cx, y + α∆cy, s+ α∆cs) ≤ φ2(x, y, s)− δ2, (2.86)for some δ2 > 0. By [76, Lemma 12℄, (2.86) holds for δ2 = (1−λ)2

4 .The performan
e of the algorithm is summarized in the following theorem.Theorem 2.9.3. (
f. [76, Theorem 9℄) Let L ≥ logn and γ0 ∈ (0, 1] and γ1 ∈
(0, 1). Suppose that log ζ = O(L), log 1

ε = O(L), η ≥ n,

σ :=
γ1x

0T s0

‖r0b , r0c‖
, δ1 := 0.001λ2γ40γ

2
1 , and δ2 :=

(1− λ)2

4
. (2.87)Then Algorithm III terminates in O(ηL) iterations.By setting η = O(n), the 
onvergen
e rate of Algorithm III turns out to be

O(n) whi
h 
oin
ides with the best known 
onvergen
e rate obtained by Mizuno[75℄.2.9.4 Dete
ting infeasibilityIt has been established in [76, proof of Lemma 4℄ that if there are optimal solutions
x∗ of (P) and (y∗, s∗) of (D) satisfying ‖x∗ + s∗‖∞ ≤ ζ, then the following holds:

θγ0ζ ‖(x, s)‖1 ≤ 2xT s

γ0γ1
.This means that if the last inequality is violated then there is no optimal solutionsatisfying ‖x∗ + s∗‖∞ ≤ ζ.2.10 Con
lusionThis 
hapter dealt with the theoreti
al aspe
ts of the IIPMs. After the releaseof Lustig's algorithm [62℄, several resear
hers attempted to derive some globally
onvergent or polynomial-time variants of Lustig's algorithm. Kojima et al. [54℄managed to design a globally 
onvergent variant of Lustig's algorithm by 
ap-turing the iterates by the in�nity neighborhood of the homotopy path. Using asuitable starting point and a slightly narrower neighborhood, Zhang [119℄ derived



2.10 CONCLUSION 55a polynomial-time IIPM. After that Mizuno [75℄ realized that by further tighten-ing the neighborhood su
h that the iterates stay very 
lose to the homotopy path,the 
onvergen
e rate 
ould be improved to O(n). This motivated Potra [91℄ andMizuno et al. [76℄ to design predi
tor-
orre
tor and potential-redu
tion IIPMs,respe
tively, with the 
onvergen
e rate O(n).The IIPMs des
ribed in this 
hapter use damped Newton steps. Re
ently,Roos [97℄ introdu
ed a primal-dual path-following IIPM whi
h has the advantagethat a full-Newton step improves the feasibility and the duality gap with the samespeed. Roos a
hieved this by restri
ting the iterates to some small neighborhoodof the µ-
enters of the pairs (Pν) and (Dν) as µ and ν redu
e with the samespeed. The 
onvergen
e rate of this algorithm 
oin
ides with the best known
onvergen
e rate for IIPMs, i.e., O(n). Another ni
e feature of this algorithmis that it has a simple analysis 
ompared with those presented in this 
hapter.Unfortunately, in pra
ti
e Roos's algorithm is painfully slow. A simpli�ed versionof Roos' algorithm was given by Mansouri and Roos [66℄ and slightly improvedby Gu et al. [46℄. Be
ause our large-update IIPM, presented in Chapter 5 is alarge-update variant of Roos' algorithm, we des
ribe Roos' algorithm in detail inChapter 3.





3A full-Newton step IIPM for LO3.1 Introdu
tionInspired by the full-Newton step FIPM des
ribed in Se
tion 1.7, C. Roos [97℄presented a full-Newton step IIPM for LO. The strategy is more or less the sameas for the other IIPMs, namely to de
rease the infeasibility and the duality gapwith the same speed. The algorithm is designed in su
h a way that this 
an bedone using full-Newton steps. The algorithm is also able to dete
t infeasibilityand/or unboundedness. This 
hapter is devoted to the slightly improved versionof Roos' algorithm whi
h is introdu
ed by Gu et al. [46℄.Without loss of generality, we assume that both (P) and (D) are feasible. Wedis
uss infeasibility or unboundedness in Se
tion 3.5.As in other polynomial-time IIPMs, e.g., those studied in [75, 119℄, Gu et al.use the initials (x0, y0, s0), given by
x0 = s0 = ζe, y0 = 0, (3.1)where ζ is a number satisfying

‖(x∗, s∗)‖ ≤ ζ, (3.2)for some primal-dual optimal solution (x∗, y∗, s∗) of (P) and (D).This algorithm generates a sequen
e of triples (x, y, s) in a small neighborhoodof the µ-
enters of the perturbed pairs (Pν) and (Dν) where the parameters µ and
ν are simultaneously redu
ed by a fa
tor 1− θ with a θ ∈ (0, 1). The iterates areobtained by approximately solving the system (2.1).As we mentioned in Se
tion 2.1, if the original pair (P) and (D) is feasiblethen, for any ν ∈ (0, 1), the perturbed pair (Pν) and (Dν) satis�es the IPC andhen
e the system (2.1) has a unique solution for any ν ∈ (0, 1) and µ > 0. Thisis the 
ontent of the following lemma. 57



58 3 A FULL-NEWTON STEP IIPM FOR LOLemma 3.1.1. (
f. e.g., [97, 118℄) The original pair (P) and (D) is feasible ifand only if for ea
h ν satisfying 0 < ν ≤ 1, the perturbed pair (Pν) and (Dν)satisfy the IPC.In order to improve the feasibility and the duality gap with the same speed,throughout the algorithm, the parameters µ and ν are related as follows:
µ = νµ0 with µ0 =

(x0)
T
s0

n
= ζ2.As in Algorithm 1.1, the 
loseness of a triple (x, y, s) to a µ-
enter is measuredby δ(x, s;µ), as de�ned in Se
tion 1.6.3.2 The algorithmIn this se
tion, we des
ribe an iteration of the algorithm. At the beginning of ea
hiteration, it is assumed that a stri
tly feasible triple (x, y, s) of (Pν) and (Dν),with ν ∈ (0, 1], is given whi
h satis�es xT s = nµ and δ(x, s;µ) ≤ τ for µ = νζ2and a (small) threshold1 τ > 0. Roos [97℄ uses τ = 1

8 while in Gu et al.'s variant
τ = 1

16 is used. It 
an be veri�ed that the initials (x0, y0, s0), given by (3.1), arestri
tly feasible for (P1) and (D1) and δ(x0, s0, µ0) = 0 whi
h means that at thebeginning, δ(x, s;µ) ≤ τ 
ertainly holds.An iteration of the algorithm 
onsists of two types of full-Newton steps: afeasibility step and some 
entering steps. A feasibility step generates a triple
(xf , yf , sf ) in the region of quadrati
al 
onvergen
e of the µ+-
enter of (Pν+)and (Dν+) with (µ+, ν+) := (1− θ)(µ, ν), in the following sense2:

δ(xf , sf ;µ+) ≤ 1
4
√
2
. (3.3)A few 
entering steps restore the iterates to the τ -neighborhood of the µ+-
enterof (Pν+) and (Dν+). This pro
edure is repeated until an ε-solution is obtained.See Algorithm 3.1 for a formal des
ription of the algorithm.A graphi
al illustration of an iteration is given by Figure 3.1. The straightlines represent the 
entral paths of the pairs (Pν) and (Dν) and (Pν+) and (Dν+).The dark gray 
ir
les depi
t the τ -neighborhoods of the µ and µ+-
enters. Theregion in light gray shows the quadrati
ally 
onvergent region of the µ+-
enter of(Pν+) and (Dν+). The Newton steps are shown by the arrows and the iteratesby the 
ir
lets. Ea
h iteration starts at a point inside the τ -neighborhood of the

µ-
enters of (Pν ) and (Dν). Using a feasibility step one obtains iterates insidethe light gray region. After using some 
entering steps we get iterates in the darkgray neighborhood of the µ+-
enter of (Pν+) and (Dν+).1In the sequel we 
all the set of triples (x, y, s) satisfying δ(x, s;µ) ≤ τ , the τ -neighborhoodof the µ-
enter.2By (1.16), if δ(x, s;µ) ≤ 1/ 4
√
2 then after a full Newton step, new triple (x+, y+, s+) satis�es

δ(x+, s+;µ) ≤ δ(x, s;µ)2 whi
h means that Newton's method is quadrati
ally 
onvergent.



3.3 FEASIBILITY STEP 59Algorithm 3.1 The full-Newton step IIPM due to Gu et al. [46℄Input:a threshold parameter τ > 0;an a

ura
y parameter ε > 0;a �xed barrier update parameter θ, 0 < θ < 1;initials (x0, y0, s0) = ζ(e, 0, e) for a ζ > 0.begin
x = x0, y = y0, s = s0, and ν = 1; µ = ζ2;while xT s ≥ εfeasibility step:

(x, y, s) := (x, y, s) + (∆fx,∆fy,∆fs);update of µ and ν:
µ := (1− θ)µ;
ν := (1− θ)ν;
entering steps:while δ(x, s;µ) > τ

(x, y, s) := (x, y, s) + (∆x,∆y,∆s);endwhileendwhileendThe next se
tion deals with the analysis of the algorithm. The hard part ofthe analysis is the analysis of the feasibility step whi
h yields a suitable value ofthe barrier updating parameter θ.3.3 Feasibility stepAt the start of an iteration we have a triple (x, y, s), stri
tly feasible for a per-turbed pair (Pν) and (Dν), satisfying δ(x, s;µ) ≤ τ and xT s = nµ where µ = νζ2.The algorithm seeks for displa
ements (∆fx,∆fy,∆fs) for whi
h new iterates
(xf , yf , sf ), de�ned as

xf := x+∆fx, yf := y +∆fy and sf := s+∆fs,are as 
lose as possible to the µ+-
enter of the pair (Pν+) and (Dν+). In otherwords, we want the displa
ements to satisfy the system
A(x+∆fx) = b− ν+r0b ,

AT (y +∆fy) + (s+∆fs) = c− ν+r0c ,

(x+∆fx)(s +∆fs) = µ+
e.
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•
µe

•
µ+

e

•
µ+

e

•
µe


entral path for ν
entral path for ν+ feasibility step
entering steps
δ(x, s;µ) ≤ τ

δ(xf , sf ;µ+) ≤ 1/ 4
√
2

Figure 3.1: An illustration of an iteration of Algorithm 3.1.The �rst two equations guarantee that the new triple (xf , yf , sf ) is feasible for(Pν+) and (Dν+), provided that xf and sf are positive. The third equationindi
ates that we target at the µ+-
enter of (Pν+) and (Dν+). Using (2.1a) and(2.1b) and after rearranging and linearizing, one obtains the following system:
A∆fx = θνr0b ,

AT∆fy +∆fs = θνr0c ,

s∆fx+ x∆fs = µ+
e− xs.

(3.4)This is the system that is used to 
al
ulate the Newton dire
tions in the feasibilitystep.We pro
eed with explaining how Gu et al. obtain θ su
h that after updating
µ to µ+, the triple (xf , yf , sf ) satis�es (3.3). To this end, we �rst need to de�nethe s
aled sear
h dire
tions dfx and dfs :

dfx :=
v∆fx

x
and dfs :=

v∆fs

s
, (3.5)where v is the varian
e ve
tor of the iterates (x, y, s) with respe
t to µ, de�nedby (1.8).The following lemma gives a 
ondition on θ whi
h guarantees stri
t feasibilityof (xf , yf , sf ) for (Pν+) and (Dν+).



3.3 FEASIBILITY STEP 61Lemma 3.3.1. (
f. [46, Lemma 4.1℄) The iterates (xf , yf , sf ) are stri
tly feasiblefor (Pν+) and (Dν+) if and only if (1− θ)e+ dfxd
f
s > 0.The next lemma provides an upper bound for δ(xf , sf ;µ+).Lemma 3.3.2. (
f. [46, Lemma 4.2℄) Denoting δ(vf ) := δ(xf , sf ;µ+) where vfis the varian
e ve
tor of the iterates (xf , yf , sf ) with respe
t to µ+, i.e.,

vf :=

√

xfsf

µ+
, (3.6)and assuming that ‖dfxdfs‖∞ ≤ 1− θ, then one has

4δ(vf )2 ≤

∥

∥

∥

df
xd

f
s

1−θ

∥

∥

∥

2

1−
∥

∥

∥

df
xd

f
s

1−θ

∥

∥

∥

∞

. (3.7)In the sequel, we denote
ω := 1

2

√

‖dfx‖2 + ‖dfs‖2.One has
‖dfxdfs‖ ≤ ‖dfx‖‖dfs‖ ≤ 1

2

(

‖dfx‖2 + ‖dfs‖2
)

= 1
2 × 4ω2 = 2ω2and

‖dfxdfs ‖∞ ≤ ‖dfxdfs‖ ≤ 2ω2.Due to this, the right-hand side expression of (3.7) is bounded above by
4ω4

(1−θ)2

1− 2ω2

1−θ

.Now assuming for the moment that
2ω2

1− θ
< 1, (3.8)one has

∥

∥dfxd
f
s

∥

∥

∞ ≤ 2ω2 < 1− θ.Thus, by Lemma 3.3.2, (3.3) 
ertainly holds if
4ω4

(1−θ)2

1− 2ω2

1−θ

≤ 2
√
2, (3.9)
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h is the 
ase if
2ω2

1− θ
≤

√
2

(√

1 +
√
2− 1

)

≈ 0.783. (3.10)Note that (3.10) implies (3.8). We 
on
lude that if (3.10) holds, so does (3.3),i.e., δ(xf , sf ;µ+) ≤ 1/ 4
√
2.In order to pro
eed we need an upper bound for ω. Before dealing with thisissue, we restate the system (3.4) in terms of the s
aled Newton dire
tions dfx and

dfs . Using (3.5), it 
an be easily veri�ed that the system (3.4) 
an be rewritten asfollows:
Ādfx = θνr0b ,

1
µ Ā

T∆fy + dfs = θνvs−1r0c ,

dfx + dfs = rv,

(3.11)wherē
A = AV −1X, V = diag (v), X = diag (x) and rv = (1− θ)v−1 − v.Now we have the following lemma whi
h was proven impli
itly by Gu et al.[46℄3.Lemma 3.3.3. Let ζ be de�ned as in (3.2) and v as in (1.8). Then one has

4ω2 ≤ 2‖rv‖2 +
3θ2[eT (x + s)]2

ζ2v2min

, (3.12)where vmin := min(v).Gu et al. also proved that
2‖rv‖2 ≤ 8(1− θ)2δ2 + 2θ2n, (3.13)where δ := δ(x, s;µ).We re
all the following lemma4 whi
h de�nes an upper bound for eT (x+ s).Lemma 3.3.4. (
f. [46, Lemma 4.3℄) Let (x, y, s) be stri
tly feasible for (Pν) and(Dν), with xT s = nµ, and ζ as de�ned in (3.2). Then one has

e
T (x+ s) ≤ 2nζ. (3.14)3If rv = 0, one may obtain a remarkably simple proof for this lemma. The system (3.11)with rv = 0 is used during the feasibility step of the large-update IIPM in Chapter 5. Sin
ethe large-update IIPM is the main fo
us of this thesis, we found it more relevant to present thissimpli�ed proof in Chapter 5 and dis
ard the proof of Lemma 3.3.3 here.4Lemma 3.3.4 assumes that an iteration of the algorithm starts with a triple (x, y, s) and a

µ whi
h satisfy xT s = nµ. In general, one may have xT s 6= nµ. This o

urs when dampedNewton steps are used. Therefore, we postpone the proof of this lemma to Chapter 5 where weintrodu
e a large-update variant of Gu et al.'s algorithm whi
h uses damped Newton steps and
xT s = nµ may not be assumed at the beginning of an iteration.



3.4 ITERATION BOUND 63The following lemma gives lower and upper bounds for vmin.Lemma 3.3.5. (
f. [98, Theorem II.62℄) Let ρ(δ) = δ +
√
δ2 + 1 where δ :=

δ(x, s;µ). Then one has
1

ρ(δ)
≤ vi ≤ ρ(δ), i = 1, · · · , n.Using Lemma 3.3.5, and substituting (3.13) and (3.14) in (3.12), after someelementary redu
tions, one gets the following bound on ω:

4ω2 ≤ 8δ2 + 2θ2n+ 12n2θ2ρ(δ)2. (3.15)Re
all that a

ording to Lemma 3.3.2, (3.9) and (3.10), the inequality (3.3) holdsif
2ω2

1− θ
≤ 0.783.Substituting ω from (3.15) in the latter, one gets:

8δ2 + 2θ2n+ 12n2θ2ρ(δ)2 ≤ 1.566(1− θ). (3.16)It 
an be veri�ed that the left-hand side expression in this inequality is in
reasingin δ. Gu et al. established that by setting
τ =

1

16
and θ =

1

4n
, (3.17)the inequality (3.16) is satis�ed.3.4 Iteration boundWe established in the last se
tion that if the parameters τ and θ are given by(3.17), after the feasibility step the new iterates (xf , yf , sf ) satisfy δ(xf , sf ;µ+) ≤

1/ 4
√
2. In order to estimate the number of iterations, we need to 
ount thenumber of 
entering steps required to obtain new iterates (x+, y+, s+) satisfy-ing δ(x+, s+;µ+) ≤ τ . This 
an be done as follows. Re
all that (xf , yf , sf ) arein the quadrati
ally 
onvergent region of the µ+-
enter. Thus, by (1.16), after k
entering steps one has

δ(x+, s+;µ+) ≤ δ(xf , sf ;µ+)2
k

.As a result, δ(x+, s+;µ+) ≤ 1
16 is satis�ed if

δ(xf , sf ;µ+)2
k ≤

(

1
4
√
2

)2k

≤ 1

16
.



64 3 A FULL-NEWTON STEP IIPM FOR LOThe last inequality implies that k ≤ 4.At ea
h iteration of this algorithm, the quantity ǫ(x, y, s), given by (1.20), isde
reasing by the fa
tor 1 − θ with θ given by (3.17). Thus, letting K be thenumber of µ-updates before an ε-solution is obtained, one has
ǫ(x, y, s) ≤ (1 − θ)Kǫ(ζe, 0, ζe) ≤ ε.This is equivalent to
K ≤ − 1

log(1− θ)
log

ǫ(ζe, 0, ζe)

ε
.Using θ − log(1 − θ) > 0 for any θ ∈ (0, 1), this 
ertainly holds if

K ≤ 1

θ
log

ǫ(ζe, 0, ζe)

ε
.Setting θ = 1

4n and 
onsidering the fa
t that at most 5 so-
alled inner iterationsare done per µ-update (one feasibility step and 4 
entering steps), the total numberof iterations does not ex
eed
⌈

20n log
ǫ(ζe, 0, ζe)

ε

⌉

. (3.18)3.5 Dete
ting infeasibility or unboundednessWe have shown that if (P) and (D) are feasible and ζ satis�es (3.2), then thealgorithm �nds an ε-solution of (P) and (D), and the number of iterations doesnot ex
eed (3.18). In this se
tion, we deal with the 
ase where ζ is too small or(P) and (D) do not have an optimal solution. Although in [46, Remark 4.1℄, theauthors dis
uss this issue, we present the argument given by Roos [97℄ whi
h ismore 
omprehensive.A

ording to Lemma 3.1.1, if the original pair (P) and (D) does not haveoptimal solution, then there exists some ν̄ ∈ (0, 1) su
h that for any ν ∈ (0, ν̄) theperturbed pair (Pν) and (Dν) does not satisfy the IPC. This means that if at someiteration of the algorithm, after the feasibility step the iterates (xf , yf , sf ) do notbelong to the quadrati
ally 
onvergent region of the µ+-
enter, i.e., δ(xf , sf ;µ+) >
1/ 4

√
2, then one may 
on
lude that the pair (P) and (D) does not have any optimalsolution (x∗, y∗, s∗) satisfying (3.2). To settle un
ertainty about the existen
e ofan optimal solution satisfying (3.2) with some larger ζ, Roos [97, Se
tion 4.7℄suggests to run the algorithm with ζ = 2ζ and repeat if ne
essary. On theother hand, it is well-known that if (P) and (D) are feasible and their inputdata, i.e., A, b and c are rational numbers, then there exist a primal-dual optimalsolution (x∗, y∗, s∗) whi
h satis�es ‖x∗ + s∗‖∞ ≤ 2L with L denoting the size ofthe input data. Due to this, starting from ζ = 1, after at most L times updating

ζ, the algorithm ends up with an optimal solution or de
lares infeasibility orunboundedness of the problems (P) and (D).



4Convergen
e of the homotopy path4.1 Introdu
tionAs we mentioned in the previous 
hapters, most IIPMs follow approximately thehomotopy path to �nd an optimal solution of the pair (P) and (D). In this 
hapter,we establish that if (P) and (D) are feasible then the homotopy path 
onvergesto a stri
tly 
omplementarity solution of (P) and (D).As in (3.1), we assume that x0 = s0 = ζe, and y0 = 0, and that ζ is as in(3.2). Re
all from Se
tion 2.1 that the homotopy path 
onsists of the µ-
enters
(x(ν), y(ν), s(ν)), of the perturbed pairs (Pν) and (Dν), where µ = νζ2. In otherwords, ea
h point on the path is uniquely de�ned by the following system:

b−Ax = ν(b −Aζe), x ≥ 0,

c−AT y − s = ν(c− ζe), s ≥ 0,

xs = νζ2e, 0 ≤ ν ≤ 1,

(4.1)with ζ given by (3.2).By applying the impli
it fun
tion theorem, we may easily see that the µ-
enters (x(ν), y(ν), s(ν)), for ν ∈ (0, 1), depends analyti
ally on ν and forms a
ontinuous path. In the sequel, we will investigate the 
onvergen
e properties ofthe homotopy path.4.2 Convergen
e propertiesWe denote the support of any nonnegative ve
tor x as σ(x). So, if x ∈ Rn
+ then

σ(x) = {i : xi > 0} .To simplify notation we denote x = x(ν), y = y(ν), and s = s(ν) in the nextlemma. 65



66 4 CONVERGENCE OF THE HOMOTOPY PATHLemma 4.2.1. Let (x∗, y∗, s∗) denote an arbitrary optimal solution of (P) and(D). Then we have for any ν ∈ (0, 1]:
(1−ν)ζ





∑

i∈σ(x∗)

x∗i
xi

+
∑

i∈σ(s∗)

s∗i
si



 = (1−ν)eT (x∗+s∗)−e
T (x+s)+(1+ν)ζn. (4.2)Proof. Sin
e b = Ax∗ and c = AT y∗+ s∗, the system (4.1) 
an be rewritten as

A(x∗ − x) = νA(x∗ − ζe), x ≥ 0,

AT (y∗ − y) + (s∗ − s) = ν(AT y∗ + s∗ − ζe), s ≥ 0,

xs = νζ2e, 0 ≤ ν ≤ 1.Using that the row spa
e of A and its null spa
e are orthogonal, we obtain
[(1− ν)x∗ − x+ νζe]

T
[(1 − ν)s∗ − s+ νζe] = 0. (4.3)Sin
e (x∗)T s∗ = 0 we derive from this that

(1− ν)(sTx∗ + xT s∗) = ν(1− ν)ζeT (x∗ + s∗)− νζeT (x + s) + xT s+ ν2ζ2eTe.By the de�nition of the sets σ(x∗) and σ(s∗) we have x∗i = 0 if i /∈ σ(x∗) and
s∗i = 0 if i /∈ σ(s∗). Hen
e it follows that
(1− ν)





∑

i∈σ(x∗)

six
∗
i +

∑

i∈σ(s∗)

xis
∗
i



 = ν(1 − ν)ζeT (x∗ + s∗)−

νζeT (x+ s) + xT s+ ν2ζ2n.Using xs = νζ2e, from the third equation of (4.1), we get
(1− ν)





∑

i∈σ(x∗)

νζ2

xi
x∗i +

∑

i∈σ(s∗)

νζ2

si
s∗i



 = ν(1 − ν)ζeT (x∗ + s∗)−

νζeT (x+ s) + νζ2n+ ν2ζ2n.After dividing both sides by νζ we obtain (4.2), thus 
ompleting the proof. �Sin
e the left-hand side of the identity in (4.2) is nonnegative, the following
orollary follows trivially.Corollary 4.2.2. For any optimal solution (x∗, y∗, s∗) of (P) and (D) and forany ν ∈ (0, 1] one has
e
T (x(ν) + s(ν)) ≤ (1 − ν)eT (x∗ + s∗) + (1 + ν)ζn. (4.4)



4.2 CONVERGENCE PROPERTIES 67By Theorem 1.2.3, the problems (P) and (D) have a stri
tly 
omplementary(optimal) solution (x̂, ŷ, ŝ). Hen
e, when denoting the 
lasses in the optimalpartition of (P) and (D) as Bopt and Nopt, one has for ea
h optimal solution
(x∗, y∗, s∗) of (P) and (D) that

Bopt = σ(x̂) ⊇ σ(x∗), Nopt = σ(ŝ) ⊇ σ(s∗). (4.5)Lemma 4.2.3. Let (x̂, ŷ, ŝ) be any stri
tly 
omplementary solution of (P) and(D). The homotopy path has an a

umulation point in the set of optimal solu-tions of (P) and (D). Moreover, any su
h a

umulation point (x̃, ỹ, s̃) is stri
tly
omplementary and satis�es
ζ





∑

i∈Bopt

x̂i
x̃i

+
∑

i∈Nopt

ŝi
s̃i



 = e
T (x̂+ ŝ)− e

T (x̃+ s̃) + ζn. (4.6)Proof. Sin
e the right-hand side in (4.4) depends linearly on ν and 0 ≤ ν ≤ 1,we have
e
T (x(ν) + s(ν)) ≤ max(eT (x∗ + s∗) + ζn, 2ζn).Hen
e the homotopy path, i.e. the set {(x(ν), y(ν), s(ν)) : 0 < ν ≤ 1}, lies in the
ompa
t set eT (x(ν) + s(ν)) ≤ max(eT (x∗ + s∗) + ζn, 2ζn), where x(ν) ≥ 0 and

s(ν) ≥ 0.Now let ν1 = 1 and {νk}∞k=1 be a stri
tly de
reasing sequen
e 
onverging to
0 if k → ∞, and let xk = x(νk), yk = y(νk) and sk = s(νk). Sin
e the sequen
e
(xk, sk) lies in a 
ompa
t set, it has an a

umulation point (x̃, s̃). It followsthat a subsequen
e of the sequen
e (xk, sk) 
onverges to (x̃, s̃). Without loss ofgenerality we assume below that the sequen
e (xk, sk) itself 
onverges to (x̃, s̃).Sin
e (xk)T sk = νkζ

2n, the sequen
e {(xk)T sk}∞
k=1

is stri
tly de
reasing, and
onverges to 0. Thus it follows that x̃T s̃ = 0. Sin
e A has full rank, s̃ determines
ỹ uniquely su
h that (x̃, ỹ, s̃) is an optimal solution of (P) and (D).Putting (x∗, y∗, s∗) = (x̂, ŷ, ŝ), ν = νk and (x, y, s) = (xk, yk, sk) in (4.2),while also using (4.5), we get
(1− νk)ζ





∑

i∈Bopt

x̂i
xki

+
∑

i∈Nopt

ŝi
ski



 = (1− νk)e
T (x̂+ ŝ)− e

T (xk + sk)+ (1+ νk)ζn,for k = 1, 2, · · · . Now letting k go to ∞, we have that νk goes to 0, xk goes to x̃and sk to s̃. Thus we obtain the relation (4.6). Sin
e the right-hand side expres-sion in (4.6) is a real number, the left-hand side expression must be well-de�ned.Thus it follows that if i ∈ Bopt then x̃i > 0, and if i ∈ Nopt then s̃i > 0. Hen
e itfollows that σ(x̃) = Bopt and σ(s̃) = Nopt, proving that (x̃, ỹ, s̃) is stri
tly 
om-plementary. This 
ompletes the proof of the lemma. �The following lemma makes 
lear that the homotopy path has only one a

u-mulation point, whi
h implies that it 
onverges.



68 4 CONVERGENCE OF THE HOMOTOPY PATHLemma 4.2.4. The homotopy path has pre
isely one a

umulation point in theoptimal set.Proof. By Lemma 4.2.3 the homotopy path has an a

umulation point (x̃, ỹ, s̃)in the optimal set. Suppose we have another a

umulation point (x̄, ȳ, s̄) of thehomotopy path in the optimal set. By applying Lemma 4.2.3 two times, the �rsttime with (x̃, ỹ, s̃) = (x̃, ỹ, s̃) and (x̂, ŷ, ŝ) = (x̄, ȳ, s̄) and the se
ond time with
(x̃, ỹ, s̃) = (x̄, ȳ, s̄) and (x̂, ŷ, ŝ) = (x̃, ỹ, s̃), we obtain

ζ





∑

i∈Bopt

x̄i
x̃i

+
∑

i∈Nopt

s̄i
s̃i



 = e
T (x̄+ s̄)− e

T (x̃+ s̃) + ζn,

ζ





∑

i∈Bopt

x̃i
x̄i

+
∑

i∈Nopt

s̃i
s̄i



 = e
T (x̃+ s̃)− e

T (x̄+ s̄) + ζn.By adding these relations, while de�ning
zi =







x̄i/x̃i, if i ∈ Bopt,

s̄i/s̃i, if i ∈ Nopt,we obtain
ζ

n
∑

i=1

(zi + z−1
i ) = 2ζn. (4.7)Sin
e ea
h zi is the quotient of two positive numbers, we have zi > 0. Therefore,

zi + z−1
i = (z

1
2

i − z
− 1

2

i )2 + 2 ≥ 2,with equality if and only if zi = 1. Thus it follows from (4.7) that zi = 1 for ea
h
i, whi
h means that x̄ = x̃ and s̄ = s̃. This proves the lemma. �We �nally prove that the limit of the homotopy path is the analyti
 
enter ofa subset of the set of optimal solutions.Lemma 4.2.5. Let (x̃, ỹ, s̃) be the limit point of the homotopy path in the optimalset. Then it is the analyti
 
enter of the set of optimal solutions (x∗, y∗, s∗) of(P) and (D) satisfying e

T (x∗ + s∗) ≤ e
T (x̃+ s̃).Proof. Let (x̃, ỹ, s̃) be a stri
tly 
omplementary solution of (P) an (D) that isan a

umulation point of the homotopy path. Let S(x̃, s̃) denote the set of optimalsolutions of (P) and (D) su
h that e

T (x∗ + s∗) ≤ e
T (x̃ + s̃), and (x∗, y∗, s∗) ∈

S(x̃, s̃). Using similar arguments as in the proof of Lemma 4.2.3, repla
ing (x̂, ŷ, ŝ)by (x∗, y∗, s∗) and using (4.5), one proves that
ζ





∑

i∈Bopt

x∗i
x̃i

+
∑

i∈Nopt

s∗i
s̃i



 = e
T (x∗ + s∗)− e

T (x̃+ s̃) + ζn. (4.8)



4.2 CONVERGENCE PROPERTIES 69Using e
T (x∗ + s∗) ≤ e

T (x̃+ s̃), and upon diving both sides by ζ, this implies
∑

i∈Bopt

x∗i
x̃i

+
∑

i∈Nopt

s∗i
s̃i

≤ n.The left-hand side expression is a sum of (at most) n nonnegative numbers. Usingthe arithmeti
-geometri
-mean inequality we obtain




∏

i∈Bopt

x∗i
x̃i

∏

i∈Nopt

s∗i
s̃i





1/n

≤ 1

n





∑

i∈Bopt

x∗i
x̃i

+
∑

i∈Nopt

s∗i
s̃i



 ≤ 1.Thus we have
∏

i∈Bopt

x∗i
x̃i

∏

i∈Nopt

s∗i
s̃i

≤ 1.It will be 
onvenient to de�ne the fun
tion
f(x∗, s∗) :=

∏

i∈Bopt

x∗i
∏

i∈Nopt

s∗i (4.9)on the set of optimal solutions of (P) and (D). Then we have
f(x∗, s∗) ≤ f(x̃, s̃), ∀(x∗, y∗, s∗) ∈ S(x̃, s̃). (4.10)This means that (x̃, ỹ, s̃) maximizes the produ
t ∏i∈Bopt

x∗i
∏

i∈Nopt
s∗i on the set

S(x̃, s̃). Note that f(x̃, s̃) is positive, be
ause the pair (x̃, s̃) is stri
tly 
omple-mentary. On the other hand, for optimal solutions that are not stri
tly 
omple-mentary we have f(x∗, s∗) = 0. Hen
e the maximum of f(x∗, s∗) o

urs in astri
tly 
omplementary solution. The logarithmi
 fun
tion being stri
t monoton-i
ally in
reasing we 
an equally well maximize log f(x∗, s∗), whi
h has the samemaximizer(s) on the set of stri
tly 
omplementary solutions in S(x̃, s̃). However,when the pair (x∗, s∗) is stri
tly 
omplementary, one has
log f(x∗, s∗) :=

∑

i∈Bopt

log x∗i +
∑

i∈Nopt

log s∗i .Sin
e the set S(x̃, s̃) is 
onvex, by de�nition (see, e.g., [98℄) the maximizer of
f(x∗, s∗) on S(x̃, s̃) is the analyti
 
enter of S(x̃, s̃). �A question that arises is wether the limit point of the homotopy path dependson the starting parameter ζ, or not. We answer this question by using the followingexample.We 
onsider the 
ase where

A =





α −β 0

1 1 1



 , c =











α

β

0
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







, b =





0

3



 ,



70 4 CONVERGENCE OF THE HOMOTOPY PATHwhere α and β are positive numbers. Then (P) and (D) are respe
tively given by
min {αx1 + βx2 : αx1 − βx2 = 0, x1 + x2 + x3 = 3, x = (x1;x2;x3) ≥ 0} ,

max {3y2 : αy1 + y2 ≤ α, −βy1 + y2 ≤ β, y2 ≤ 0} .The feasible region of the dual problem is depi
ted in Figure 4.1. One may easily
1 2 3−1−2

1

2

−1

−2

−3

y1

y2

Figure 4.1: Feasible region of the dual problem for α = 1 and β = 2.verify that the set of optimal solutions is given by
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. (4.11)We 
on
lude from (4.11) that the 
lasses in the optimal partition are given by
Bopt = {3} , Nopt = {1, 2} .As a 
onsequen
e we have

∏

i∈Bopt

x∗i
∏

i∈Nopt

s∗i = 3 · α(1− y1) · β(1 + y1) = 3αβ(1 − y21).The last expression is maximal for y1 = 0. Hen
e, putting y1 = 0 in (4.11), we
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enter is given by
(x, y, s) =








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



.Now we turn to the homotopy path. We pro
eed by taking α = 1 and β = 2.For that 
ase we 
omputed numeri
ally the homotopy path for several values of
ζ. The results are shown in Figure 4.2. The starting point of the homotopy pathis the zero ve
tor, whi
h is drawn as a `+'. The limit point is drawn as a `x'. The�gure 
learly demonstrates that the limit point depends highly on the value of ζ.It may be noted that in ea
h of the four 
ases the limit point is su
h that ỹ1 ≤ 0.
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ζ = 10 ζ = 100Figure 4.2: Homotopy path for α = 1 and β = 2, and several values of ζ.This also follows from Lemma 4.2.5. Be
ause for any optimal solution (x, y, s) we
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e
T (x+ s) = 3 + α+ β + (β − α)y1 = 6 + y1,

∏

i∈Bopt

xi
∏

i∈Nopt

si = 6(1− y21).Hen
e, by Lemma 4.2.5 we should have
y1 ≤ ỹ1 ⇒ y21 ≥ ỹ21 .This impli
ation 
an be true only if ỹ1 ≤ 0. When α > β one proves in the sameway that ỹ1 ≥ 0. For an illustration we refer to Figure 4.3.
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ζ = 1000 ζ = 100000Figure 4.3: Homotopy path for α = 200 and β = 100, and several values of ζ.One might observe that in all 
ases it is true that the larger the value of ζ is,the 
loser the limit point is to the analyti
 
enter. This holds indeed in general,as we show in the next lemma.



4.2 CONVERGENCE PROPERTIES 73Lemma 4.2.6. Let ζ > 0 and (x̃, ỹ, s̃) be the limit point in the optimal set of the
orresponding homotopy path. If ζ goes to in�nity then (x̃, ỹ, s̃) 
onverges to theanalyti
 
enter of the optimal set.Proof. Sin
e x̃ ≥ 0 and s̃ ≥ 0 we have e
T (x̃ + s̃) ≥ 0. Hen
e it follows from(4.8) that

ζ





∑

i∈Bopt

x∗i
x̃i

+
∑

i∈Nopt

s∗i
s̃i



 ≤ e
T (x∗ + s∗) + ζn,where (x∗, y∗, s∗) denotes some optimal triple. Dividing by ζ at both sides we get

1

n





∑

i∈Bopt

x∗i
λx̃i

+
∑

i∈Nopt

s∗i
λs̃i



 ≤ 1, λ :=
e
T (x∗ + s∗)

ζn
+ 1.Due to the geometri
-arithmeti
 mean inequality this implies





∏

i∈Bopt

x∗i
λx̃i

∏

i∈Nopt

s∗i
λs̃i





1
n

≤ 1.With f as de�ned in (4.9), this implies f(x∗, s∗) ≤ λnf(x̃, s̃). When ζ goes toin�nity, then λ approa
hes 1, making 
lear that (x̃, ỹ, s̃) 
onverges to the analyti

enter of the optimal set. �





5A 
lass of Large-update IIPMs forLO5.1 Introdu
tionIn Chapter 3 we des
ribed a full-Newton step IIPM due to Gu et al. [46℄ whi
hhas the property that the iterates stay in a narrow neighborhood of the homotopypath. This algorithm uses full-Newton steps. This enabled us to explore thelo
al quadrati
 
onvergen
e property of Newton's method. As we established, thebarrier-updating parameter θ should be small, namely O( 1
n ), whi
h imposes an

O(n) 
onvergen
e rate to the algorithm. This 
onvergen
e rate 
oin
ides withthe best known 
onvergen
e rate for IIPMs. However, the algorithm has thedisadvantage that it has a poor performan
e in pra
ti
e.In this 
hapter we attempt to design a more aggressive variant of the algorithmof Gu et al., i.e., whi
h redu
es ǫ(x, y, s) faster. We would like to mention thatthis is our aim and also what happens in pra
ti
e (see Chapter 6). As we will see,however, our algorithm su�ers from the same irony that o

urs for FIPMs, namelythat the theoreti
al 
onvergen
e rate of large-update methods is mu
h worse thanthat of full-Newton variant. In a �rst attempt we used the 
lassi
al sear
h dir-e
tion for primal-dual methods, that is based on the well-known primal-dual log-arithmi
 barrier fun
tion, and the theoreti
al 
onvergen
e rate turned out to be
O(n2). As we show, however, when using a di�erent barrier fun
tion to de�ne thesear
h dire
tion the 
onvergen
e rate 
an be improved to O(n√n(logn)3).In order to obtain this result we use a so-
alled kernel-fun
tion based barrierfun
tion. Any su
h barrier fun
tion is based on a univariate fun
tion, 
alled itskernel fun
tion. Su
h fun
tions have been introdu
ed in [10℄ and are 
losely relatedto the so-
alled self-regular fun
tions introdu
ed in [88℄. In these referen
es onlyFIPMs are 
onsidered, and it is shown that these fun
tions are mu
h more e�
ientfor the pro
ess of re-
entering, whi
h is a 
ru
ial part in every FIPM, espe
ially75



76 5 A CLASS OF LARGE-UPDATE IIPMS FOR LOwhen an iterate is far from the 
entral path. Not surprising, it turns out thatthese fun
tions are also useful in our large-update IIPM, where re-
entering isalso a 
ru
ial ingredient.In Se
tion 5.2, we brie�y introdu
e the notion of kernel fun
tion, whi
h playsa 
ru
ial role in our algorithm. After that, in Se
tion 5.3, as a preparation toour large-update IIPM, we brie�y re
all the use of kernel-based barrier fun
tionsin large-update FIPMs, as presented in [10℄. It will be
ome 
lear in this se
tionthat the 
onvergen
e rate highly depends on the underlying kernel fun
tion. Thebest result is obtained for a spe
i�
 kernel fun
tion, denoted ψ3, whi
h yields the
onvergen
e rate O(√n logn); this is a fa
tor logn worse than for full-Newtonstep FIPMs.In Se
tion 5.4, we des
ribe our large-update IIPM in detail. In our des
riptionwe use a sear
h dire
tion based on general kernel fun
tions. The algorithm usestwo types of damped Newton steps: a so-
alled feasibility step and some 
enteringsteps. The feasibility step serves to redu
e the residual norms, ‖rb‖ and ‖rc‖,whereas the 
entering steps keep the residual ve
tors �xed, but improve the dualitygap xT s. This pro
edure is repeated until an ε-solution is obtained. Though manyparts of our analysis are valid for general kernel fun
tion, at some pla
es we restri
tourselves to the kernel fun
tion ψ3(t). In Se
tion 5.5, we show that the algorithmbased on this kernel fun
tion yields an O(n
√
n(logn)3) 
onvergen
e rate whi
his a fa
tor (logn)2 worse than for the IIPM, obtained by Salahi et al. [101℄. InSe
tion 5.6, we argue how our algorithm dete
ts infeasibility or unboundedness.5.2 Kernel fun
tionsIn this se
tion, we show that the µ-
enters, i.e., the unique solutions of the system(1.2), 
an be 
hara
terized as the minimizers of a suitably 
hosen primal-dualbarrier fun
tion. In fa
t we will de�ne a wide 
lass of su
h barrier fun
tions, ea
hof whi
h is determined by a kernel fun
tion.A kernel fun
tion is just a univariate nonnegative fun
tion ψ(t), where t > 0,whi
h is stri
tly 
onvex, minimal at t = 1 and su
h that ψ(1) = 0, whereas ψ(t)goes to in�nity both when t goes to zero and when t goes to in�nity.Now let (x, y, s) be a primal-dual stri
tly feasible for (P) and (D). Observe thatif v is the varian
e ve
tor with respe
t to µ, as given by (1.8), then v = e holdsif and only if (x, y, s) is the µ-
enter of (P) and (D). Given any kernel fun
tion ψwe extend its de�nition to Rn

++ a

ording to
Ψ(v) :=

n
∑

i=1

ψ(vi). (5.1)It is obvious that Ψ(v) is nonnegative everywhere, and Ψ(e) = 0. Yet we 
ande�ne a barrier fun
tion Φ(x, s, µ) as follows:
Φ(x, s, µ) := Ψ(v). (5.2)



5.3 LARGE-UPDATE FIPMS FOR LO 77It is now obvious that Φ(x, s, µ) is well-de�ned, nonnegative for every primal-dualstri
tly feasible (x, y, s), and moreover,
Φ(x, s, µ) = 0 ⇔ Ψ(v) = 0 ⇔ v = e ⇔ (x, y, s) = (x(µ), y(µ), s(µ)).This implies that (x(µ), y(µ), s(µ)) is the (unique) minimizer of Φ(x, s, µ).We next give an important example, showing that the well-known logarithmi
barrier fun
tion arises when taking as a kernel fun
tion

ψ(t) :=
t2 − 1

2
− log t, t > 0. (5.3)This follows sin
e in that 
ase we may write

Φ(x, s, µ) =

n
∑

i=1

ψ(vi) =

n
∑

i=1

(

v2i − 1

2
− log vi

)

=

n
∑

i=1

(

xisi
µ − 1

2
− log

√

xisi
µ

)

=
1

2

(

xT s

µ
−

n
∑

i=1

log xi −
n
∑

i=1

log si + n logµ− n

)

.Up to the term n logµ − n, whi
h does not depend on (x, y, s), the expressionwithin the bra
kets is pre
isely the 
lassi
al primal-dual logarithmi
 barrier fun
-tion; due to this term the minimal value of Φ(x, s, µ) equals 0.As in [10℄ we 
all the kernel fun
tion ψ eligible if it satis�es the followingte
hni
al 
onditions.
tψ′′(t) + ψ′(t) > 0, t < 1,

tψ′′(t)− ψ′(t) > 0, t > 1,

ψ′′′(t) < 0, t > 0,

2ψ′′(t)2 − ψ′(t)ψ′′′(t) > 0, t < 1.In the sequel it is always assumed that ψ is an eligible kernel fun
tion. Propertiesof eligible kernel fun
tions will be re
alled from [10℄ without repeating their proofs.5.3 Large-update FIPMs for LOIn this se
tion we re
all from [10℄ some results for a large-update FIPM for solving(P) and (D) using a kernel-fun
tion based barrier fun
tion. We assume, withoutloss of generality, that the triple
(x0, y0, s0) = (e, 0, e), (5.4)
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•
µe

•
µ+

e


entral path
Φ(x, s;µ) ≤ τ

Figure 5.1: An illustration of large-update FIPM: µ+ = (1− θ)µ.is primal-dual feasible.1 We then have x0s0 = µ0
e for µ0 = 1. This means that

(x0, y0, s0) is the 1-
enter, and hen
e Φ(x0, s0, µ0) = 0. We use this triple toinitialize our algorithm.Ea
h main (or outer) iteration of the algorithm starts with a stri
tly feas-ible triple (x, y, s) that satis�es Φ(x, s, µ) ≤ τ for some µ ∈ (0, 1], where τ is a�xed positive 
onstant. It then 
onstru
ts a new triple (x+, y+, s+) su
h that
Φ(x+, s+, µ+) ≤ τ with µ+ < µ. When taking τ small enough, we obtain in thisway a sequen
e of stri
tly feasible triples that belong to small neighborhoods ofa sequen
e of µ-
enters, for a de
reasing sequen
e of µ's. As a 
onsequen
e, thesequen
e of 
onstru
ted triples (x, y, s) 
onverges to an optimal solution of (P)and (D).We will assume that µ+ = (1 − θ)µ, where θ ∈ (0, 1) is a �xed 
onstant, e.g.,
θ = 0.5 or θ = 0.99. The larger θ, the more aggressive is the algorithm. Espe
iallywhen θ is large, ea
h outer iteration will require several so-
alled inner iterations.See Fig.5.1. The straight line represents the 
entral path of (P) and (D) and thegray 
ir
les depi
t the τ -neighborhoods of the µ-
enter and the µ+-
enter. The
urved arrows illustrate the damped Newton steps that are used to restore theiterates to the τ -neighborhoods of the µ+-
enter of (P) and (D). The iterates areshown by the 
ir
lets.1The problems (P) and (D) 
an be embedded into a self-dual problem for whi
h the giventriple is a feasible solution and that has an optimal solution that indu
es optimal solutions for(P) and (D).
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e µ0 = 1, Lemma 1.7.3 yields the following upper bound for the numberof outer iterations of the algorithm:
⌈

1

θ
log

n

ε

⌉

. (5.5)The main task is therefore to get a sharp upper estimate for the number ofinner iterations during an outer iteration. We now des
ribe how su
h an estimateis obtained. We go into some detail, though without repeating proofs, be
ausethe results that we re
all below are relevant for the IIPM that we dis
uss in thenext se
tion.As said before, at the start of ea
h outer iteration we have a stri
tly feasibletriple (x, y, s) and µ > 0 su
h that Φ(x, s, µ) ≤ τ . We �rst need to estimate thein
rease in Φ when µ is updated to µ+ = (1− θ)µ. For this we need the followinglemma.Lemma 5.3.1. (
f. [10, Theorem 3.2℄) Let ̺ : [0,∞) → [1,∞) be the inversefun
tion of ψ(t) for t ≥ 1. Then we have for any positive ve
tor v and any β ≥ 1:
Ψ(βv) ≤ nψ

(

β̺

(

Ψ(v)

n

))

.Now let v be the varian
e ve
tor of (x, y, s) with respe
t to µ. Then one easilyunderstands that the varian
e ve
tor v+ of (x, y, s) with respe
t to µ+ is given by
v+ = v/

√
1− θ. Hen
e, using Lemma 5.3.1 with β = 1/

√
1− θ we may write

Φ(x, s, µ+) = Ψ(v+) = Ψ

(

v√
1− θ

)

≤ nψ





̺
(

Ψ(v)
n

)

√
1− θ



 ≤ nψ

(

̺
(

τ
n

)

√
1− θ

)

,where the last inequality holds be
ause ̺ is monotoni
ally in
reasing and Ψ(v) =
Φ(x, s, µ) ≤ τ . Hen
e the number τ̄ de�ned by

τ̄ := nψ

(

̺
(

τ
n

)

√
1− θ

)

, (5.6)is an upper bound for the value of Ψ after a µ-update. Note that this bound isindependent of the triple (x, y, s); it depends only on the kernel fun
tion ψ andthe parameters n, τ and θ.To simplify the notation we rede�ne µ a

ording to µ := µ+. Thus we needto deal with the following question: given a triple (x, y, s) su
h that Φ(x, s, µ) ≤
τ̄ , how mu
h inner iterations are needed to generate a triple (x, y, s) su
h that
Φ(x, s, µ) ≤ τ . To answer this question we have to des
ribe an inner iteration. Ithas been argued in Se
tion 2.2. of [10℄ that it is natural to de�ne sear
h dire
tions
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(∆x,∆y,∆s) by the system

A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = −µv∇Ψ(v).This system has a unique solution. It may be worth pointing out that if ψ is thelogarithmi
 kernel fun
tion, as given by (5.3), then −µv∇Ψ(v) = µe − xs, andhen
e the resulting dire
tion is the primal-dual Newton dire
tion that is used inall primal-dual FIPMs. By doing a line sear
h in this dire
tion with respe
t to Ψwe get new iterates
(x, y, s) := (x, y, s) + α(∆x,∆y,∆s),where α is the step size. A

ording to [10, Lemma 4.4℄, we use the followingdefault step size:

α =
1

ψ′′(ρ(2δ(v)))
,where ρ is the inverse fun
tion of − 1

2ψ
′(t), and

δ(v) :=
1

2
‖∇Ψ(v)‖ .Algorithm 5.1 shows a formal des
ription of the algorithm. The 
loseness ofAlgorithm 5.1 A large-update FIPMInput:A threshold parameter τ > 0;an a

ura
y parameter ε > 0;a �xed barrier update parameter θ, 0 < θ < 1;begin

x := e; y := 0; s := e; µ := 1;while nµ ≥ ε,
µ := (1 − θ)µ;while Ψ(v) > τ ,

(x, y, s) := (x, y, s) + α(∆x,∆y,∆s);

v :=
√

xs
µ ;endwhileendwhileend

(x, y, s) to the µ-
enter is measured by Ψ(v), where v is the varian
e ve
tor of
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(x, y, s) with respe
t to the 
urrent value of µ. The initial triple (x, y, s) is asgiven by (5.4) and µ = 1. So we then have Ψ(v) = 0 ≤ τ . After a µ-update wehave Ψ(v) ≤ τ̄ . Then a sequen
e of inner iterations is performed to restore theinequality Ψ(v) ≤ τ . Then µ is updated again, and so on. This pro
ess is repeateduntil nµ falls below the a

ura
y parameter ε after whi
h we have obtained an
ε-solution.To estimate the number of inner iterations we pro
eed as follows. Denotingthe de
rease in the value of Ψ as ∆Ψ, it was shown in [10, Theorem 4.6℄ that

∆Ψ ≥ αδ(v)2 =
δ(v)2

ψ′′(ρ(2δ(v)))
. (5.7)Sin
e the kernel fun
tion ψ is eligible, the last expression is in
reasing in δ(v)[10, Lemma 4.7℄. Besides, by [10, Theorem 4.9℄, δ(v) is bounded from below asfollows:

δ(v) ≥ 1
2ψ

′ (̺ (Ψ(v))) . (5.8)Combining (5.7) and (5.8), we arrive at
∆Ψ ≥ (ψ′ (̺ (Ψ(v))))2

4ψ′′ (ρ (ψ′ (̺ (Ψ (v)))))
. (5.9)Following [10℄, let γ be the smallest number su
h that

Ψ(v)γ−1 (ψ′ (̺ (Ψ(v))))2

4ψ′′ (ρ (ψ′ (̺ (Ψ (v)))))
≥ κ (5.10)for some positive 
onstant κ, whenever Ψ(v) ≥ τ . From the referen
es in Table5.1 we know that su
h 
onstants κ and γ exist for the kernel fun
tions in thistable. When denoting the value of the barrier fun
tion after the µ-update as Ψ0and the value after the k-th inner iteration as Ψk, it follows from (5.9) and (5.10)that

Ψ0 ≤ τ̄ , Ψk ≤ Ψk−1 − κΨ1−γ
k−1, k = 1, 2 . . . , (5.11)with τ̄ as in (5.6). At this stage we may point out why the use of kernel fun
tionsother than the logarithmi
 kernel fun
tion may be advantageous. The reasonis that if ψ is the logarithmi
 kernel fun
tion then γ = 1, when
e we obtain

Ψk ≤ Ψk−1 − κ for ea
h k ≥ 1, provided that Ψk−1 ≥ τ . This resembles thewell-known fa
t that the best lower bound for the de
rease of the logarithmi
barrier fun
tion is a �xed 
onstant, no matter what the value of Ψ(v) is. Aswe will see smaller values of γ 
an be obtained for other kernel fun
tions, whi
hleads to larger redu
tions of the barrier fun
tion value, and hen
e lower iterationnumbers.By [10, Lemma 5.1℄, (5.11) implies that the number of inner iterations will notex
eed
τ̄γ

κγ
=

1

κγ

(

nψ

(

̺
(

τ
n

)

√
1− θ

))γ

. (5.12)



82 5 A CLASS OF LARGE-UPDATE IIPMS FOR LOMultiplying this number by the number of outer iterations, as given by (5.5), weobtain the following upper bound for the total number of iterations:
1

θκγ

(

nψ

(

̺
(

τ
n

)

√
1− θ

))γ

log
n

ε
.Given a kernel fun
tion ψ, it is now straightforward to 
ompute the resultingiteration bound from this expression. Table 5.1 summarizes some results fromthe literature. In this 
hapter we 
onsider an IIPM based on the use of a kernel
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2 + e

q
t −eq
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√
n logn) log n

ε , q = O(log n) [2℄Table 5.1: Iteration bounds of large-update FIPMs for several kernel fun
tions.fun
tion. Although many of the results below hold for any eligible kernel fun
tion,we will 
on
entrate of the kernel ψ3 in Table 5.1. The reason is that it gives thebest possible result among the kernel fun
tions in this table; another ni
e featureof ψ3 is that if q approa
hes 1 then this fun
tion 
onverges to the logarithmi
kernel fun
tion.5.4 Large-update IIPMs for LOIn this se
tion, we attempt to design a large-update IIPM to solve (P) and (D),whi
h is inspired by the full-Newton step algorithm des
ribed in Chapter 3. As inthe full-Newton variant, our algorithm starts from the initials (x0, y0, s0), given



5.4 LARGE-UPDATE IIPMS FOR LO 83by (3.1) and (3.2), and generates a sequen
e of positive iterates in a small neigh-borhood of the homotopy path. Pre
isely speaking, the iterates belong to a smallneighborhood of the µ-
enters of the perturbed pairs (Pν) and (Dν) where µ and
ν are related as µ = νζ2 with ζ given by (3.2). Moreover, ea
h iteration redu
es
ν (and also µ) by a fa
tor 1− θ, with θ ∈ (0, 1). Sin
e we are interested in somelarger values of θ than in (3.17), we must expe
t that after a µ-update the iteratesdo not belong to the region of quadrati
 
onvergen
e of the new µ-
enters. Asa result the use of the quantity δ to measure the 
loseness of the iterates to thehomotopy path be
omes irrelevant. As for large-update FIPMs, we use a barrierfun
tion for this purpose. Let us explain an iteration of the algorithm in a moredetail.5.4.1 An outer iteration of the algorithmAs in Se
tion 5.3, Ψ(v) will denote the barrier fun
tion based on the kernel fun
-tion ψ(t), as given in (5.1). Here v denotes the varian
e ve
tor of a triple (x, y, s)with respe
t to µ > 0, and we de�ne Φ(x, s, µ) as in (5.2). The algorithm isdesigned in su
h a way that at the start of ea
h outer iteration we have Ψ(v) ≤ τfor some threshold value τ = O(1). As Ψ(v) = 0 at the starting points (3.1), the
ondition Ψ(v) ≤ τ is 
ertainly satis�ed at the start of the �rst outer iteration.Ea
h outer iteration of the algorithm 
onsists of a feasibility step and some
entering steps. At the start of the outer iteration we have a triple (x, y, s) that isstri
tly feasible for (Pν ) and (Dν), for some ν ∈ (0, 1], and that belongs to the τ -neighborhood of the µ-
enter of (Pν) and (Dν), where µ = νζ2. We �rst performa feasibility step during whi
h we generate a triple (xf , yf , sf) whi
h is stri
tlyfeasible for the perturbed problems (Pν+) and (Dν+), with ν+ = (1 − θ)ν and,moreover, 
lose enough to the µ+-
enter of (Pν+) and (Dν+), with µ+ = ν+ζ2.i.e., Φ(xf , sf ;µ+) ≤ τf , for some suitable value of τf .After the feasibility step we perform some 
entering steps to get a stri
tlyfeasible triple (x+, y+, s+) of (Pν+) and (Dν+) in the τ -neighborhood of the µ+-
enter of (Pν+) and (Dν+). During the 
entering steps the iterates stay feasiblefor (Pν+) and (Dν+). Hen
e for the analysis of the 
entering steps we 
an usethe analysis presented in the previous se
tion for FIPMs. From this analysis wederive that the number of 
entering steps will not ex
eed

(Φ(xf , sf , µ+))γ

κγ
,where the parameters γ and κ depend on the kernel fun
tion ψ. Hen
e we areleft with the problem of de�ning a suitable sear
h dire
tion (∆fx,∆fy,∆fs) forthe feasibility step and to determine θ su
h that after the feasibility step we have

Φ(xf , sf , µ+) ≤ τf for some suitable value of τf . The number of outer iterations
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θ log

ǫ(ζe,0,ζe)
ε . Hen
e the total number of iterations will not ex
eed

(τf )γ

θκγ
log

ǫ(ζe, 0, ζe)

ε
. (5.13)5.4.2 Feasibility stepFor the sear
h dire
tion in the feasibility step we use the triple (∆fx,∆fy,∆fs)that is (uniquely) de�ned by the following system:

A∆fx = νr0b , (5.14a)
AT∆fy +∆fs = νr0c , (5.14b)
s∆fx+ x∆fs = 0. (5.14
)Then de�ning the new iterates a

ording to

xf = x+ θ∆fx, yf = y + θ∆fy, sf = s+ θ∆fs,we have, due to (5.14a),
b−Axf = b−A

(

x+ θ∆fx
)

= b−Ax−θνr0b = νr0b−θνr0b = (1−θ)νr0b = ν+r0b .In the same way one shows that c − AT yf − sf = ν+r0c . Hen
e it remains to�nd θ su
h that xf and sf are positive and Φ(xf , sf , µ+) ≤ τf . This is the hardpart of the analysis of our algorithm, whi
h we leave to the subse
tion below.The algorithm is presented in Algorithm 5.2. A graphi
al illustration is givenby Figure 5.2. The straight lines in Figure 5.2 depi
t the 
entral paths of thepair (Pν) and (Dν) and the pair (Pν+) and (Dν+). The τ -neighborhoods of the
µ- and µ+-
enters are shown by the gray 
ir
les. The light gray region spe
i�esthe τf -neighborhood of the µ+-
enter of (Pν+) and (Dν+). The feasibility step isdepi
ted by the �rst arrow at the right-hand side. The other arrows depi
t the
entering steps. The iterates are shown by the 
ir
lets.5.4.3 Analysis of the feasibility stepThe feasibility step starts with some stri
tly feasible triple (x, y, s) for (Pν) and(Dν) and µ = νζ2 su
h that

Ψ(v) ≤ τ with v :=

√

xs

µ
.As mentioned in Subse
tion 5.4.1, our goal is to �nd θ su
h that after the feasibilitystep, with step size θ, the iterates (xf , yf , sf ) lie in the τf -neighborhood of the µ+-
enter of the new perturbed pair (Pν+) and (Dν+). This means that (xf , yf , sf )are su
h that

Ψ(vf ) ≤ τf where vf :=

√

xfsf

µ+
, µ+ = (1− θ)µ.



5.4 LARGE-UPDATE IIPMS FOR LO 85Algorithm 5.2 A generi
 primal-dual large-update IIPMInput:a

ura
y parameter ε > 0;barrier update parameter θ ∈ (0, 1);initialization parameter ζ > 0;threshold parameter τ = O(1).begin
x := ζe; y := 0; s := ζe; ν := 1; µ := ζ2;while ǫ(x, y, s) ≥ εfeasibility step;

(x, y, s) := (x, y, s) + θ(∆fx, ∆fy, ∆fs) ;update of µ and ν:
ν := (1− θ) ν;

µ := νζ2;
entering steps:while Φ(x, s;µ) > τ
(x, y, s) := (x, y, s) + α(∆x, ∆y, ∆s) ;endwhileendwhileendUsing the s
aled sear
h dire
tions dfx and dfs , given by (3.5), we may write

xf = x+ θ∆fx = x

(

e+ θ
∆fx

x

)

= x

(

e+ θ
dfx
v

)

=
x

v

(

v + θdfx
)

, (5.15)
sf = s+ θ∆fs = s

(

e+ θ
∆fs

s

)

= s

(

e+ θ
dfs
v

)

=
s

v

(

v + θdfs
)

. (5.16)This shows that xf and sf are positive if and only if v + θdfx and v + θdfs arepositive. On the other hand, using (3.5), we 
an reformulate (5.14
) as follows:
x∆fs+ s∆fx = 0 ⇔ ∆fs

s
+

∆fx

x
= 0 ⇔ v∆fs

s
+
v∆fx

x
= 0 ⇔ dfx + dfs = 0.Therefore, dfs = −dfx. As a 
onsequen
e, xf and sf are positive if and only if

v± θdfx > 0. Sin
e v > 0 this is equivalent to v2 − θ2(dfx)
2 > 0. We 
on
lude that

xf and sf are positive if and only if 0 ≤ θ < θmax, where
θmax =

1
∥

∥

∥

df
x

v

∥

∥

∥

∞

.
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•
µe

•
µ+

e

•
µ+

e

•
µe


entral path for ν
entral path for ν+ feasibility step
entering steps
Φ(x, s;µ) ≤ τ

Φ(xf , sf ;µ+) ≤ τ f

Figure 5.2: An illustration of an iteration of Algorithm 5.2.Yet we turn to the requirement that Ψ(vf ) ≤ τf . Using (5.15), (5.16) and xs =
µv2, we write

(

vf
)2

=
xfsf

µ+
=

(

v + θdfx
) (

v − θdfx
)

1− θ
=
v2 − θ2(dfx)

2

1− θ
.Hen
e, if θ < θmax then we may write

vf =
v̂√
1− θ

, where v̂ =

√

v2 − θ2(dfx)2.Lemma 5.4.1. Let θ be su
h that 1√
1−θ

= O(1). Then Ψ(v̂) = O(n) implies
Ψ(vf ) = O(n).Proof. By Lemma 5.3.1 we have

Ψ(vf ) ≤ nψ





̺
(

Ψ(v̂)
n

)

√
1− θ



 .Let Ψ(v̂) = O(n). Then Ψ(v̂) ≤ Cn for some positive 
onstant C. Hen
e
Ψ(v̂)
n ≤ C. Re
all that ̺(s) ≥ 1 for all s ≥ 0 and ̺(s) is monotoni
ally in-
reasing. Also, ψ(t) is monotoni
ally in
reasing for t ≥ 1. Hen
e we obtain
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Ψ(vf ) ≤ nψ

(

̺ (C)/
√
1− θ

). Sin
e 1/
√
1− θ = O(1), the 
oe�
ient of n in theabove upper bound for Ψ(vf ) does not depend on n. Hen
e the lemma follows. �Due to Lemma 5.4.1 it su�
es for our goal to �nd θ su
h that Ψ(v̂) ≤ τ̂ where

τ̂ = O(n). In the sequel we 
onsider Ψ(v̂) as a fun
tion of θ, denoted as f1(θ). Sowe have
f1(θ) := Ψ(v̂) = Ψ

(
√

v2 − θ2(dfx)2
)

.We pro
eed by deriving a tight upper bound for f1(θ), thereby using similararguments as in [10℄. Sin
e the kernel fun
tion ψ(t) is eligible, Ψ(v) is e-
onvex(
f. [10, Lemma 2.1℄), when
e we have
f1(θ) ≤ f(θ) := 1

2

[

Ψ
(

v + θdfx
)

+Ψ
(

v − θdfx
)]

.The �rst and the se
ond derivatives of f(θ) are as follows:
f ′(θ) =

1

2

n
∑

i=1

[

ψ′ (vi + θdfxi

)

− ψ′ (vi − θdfxi

)]

dfxi, (5.17)
f ′′(θ) =

1

2

n
∑

i=1

[

ψ′′ (vi + θdfxi

)

+ ψ′′ (vi − θdfxi
)] (

dfxi

)2
. (5.18)Sin
e ψ′′′(t) < 0, ∀t > 0, it follows that ψ′′(t) is monotoni
ally de
reasing. Fromthis we dedu
e that

ψ′′ (vi + θdfxi

)

+ ψ′′ (vi − θdfxi
)

≤ 2ψ′′ (vi − θ
∣

∣dfxi

∣

∣

)

≤ 2ψ′′ (vmin − θ‖dfx‖
)

,where vmin := min(v) and θ small enough, i.e., su
h that vmin − θ‖dfx‖ > 0.Substitution into (5.18) gives
f ′′(θ) ≤ ‖dfx‖2ψ′′ (vmin − θ‖dfx‖

)

.By integrating both sides of this inequality with respe
t to θ, while using that
f ′(0) = 0, as follows from (5.17), we obtain

f ′(θ) = f ′(0) +

∫ θ

0

f ′′(ξ) dξ ≤ ‖dfx‖2
∫ θ

0

ψ′′ (vmin − ξ‖dfx‖
)

dξ

= −‖dfx‖
∫ θ

0

ψ′′ (vmin − ξ‖dfx‖
)

d
(

vmin − ξ‖dfx‖
)

= ‖dfx‖
[

ψ′ (vmin)− ψ′ (vmin − θ‖dfx‖
)]

.
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e more, we get
f(θ)− f(0) =

∫ θ

0

f ′(ξ) dξ ≤ ‖dfx‖
∫ θ

0

[

ψ′ (vmin)− ψ′ (vmin − ξ‖dfx‖
)]

dξ

= ψ′(vmin)θ‖dfx‖+ ψ
(

vmin − θ‖dfx‖
)

− ψ(vmin)

≤ ψ′(vmin)θ‖dfx‖ − θ‖dfx‖ψ′(vmin − θ‖dfx‖)

≤
[

ψ′(vmin)− ψ′ (vmin − θ‖dfx‖
)]

θ‖dfx‖. (5.19)where the last inequality holds be
ause ψ is 
onvex.2The �rst derivative with respe
t to vmin of the right-hand side expression in thisinequality is given by (ψ′′(vmin)− ψ′′(vmin − θ‖dfx‖)
)

θ‖dfx‖. Sin
e ψ′′ is (stri
tly)de
reasing, this derivative is negative. Hen
e it follows that the expression isde
reasing in vmin. Therefore, when θ and ‖dfx‖ are �xed, the less vmin is, thelarger the expression will be. Below we establish how small vmin 
an be when δ(v)is given.For ea
h 
oordinate vi of v we have 1
2 |ψ′(vmin)| ≤ 1

2‖Ψ(v)‖ = δ(v), whi
hmeans that
−δ(v) ≤ − 1

2ψ
′(vi) ≤ δ(v), 1 ≤ i ≤ n.Sin
e the inverse fun
tion ρ of − 1

2ψ
′ is monotoni
ally de
reasing, this is equivalentto

ρ(δ(v)) ≤ vi ≤ ρ(−δ(v)), 1 ≤ i ≤ n. (5.20)Hen
e the smallest possible value of vmin is ρ(δ(v)), and this value is attained inthe (ex
eptional) 
ase where vmin is the only 
oordinate of the ve
tor v that di�ersfrom 1. So we may assume that vmin = ρ(δ(v)). This implies − 1
2ψ

′(vmin) = δ(v)and hen
e ψ′(vmin) ≤ 0, when
e vmin ≤ 1.In the sequel we denote δ(v) simply as δ. Substitution into (5.19) gives that
f(θ)− f(0) ≤

[

−2δ − ψ′ (ρ(δ)− θ‖dfx‖
)]

θ‖dfx‖.Hen
e we 
ertainly have f(θ) ≤ τ̂ if
f(0) +

[

−2δ − ψ′ (ρ(δ)− θ‖dfx‖
)]

θ‖dfx‖ ≤ τ̂ ,Sin
e f(0) = Ψ(v) ≤ τ , this holds if θ is su
h that
τ +

[

−2δ − ψ′ (ρ(δ)− θ‖dfx‖
)]

θ‖dfx‖ ≤ τ̂ ⇔
[

−2δ − ψ′ (ρ(δ)− θ‖dfx‖
)]

θ‖dfx‖ ≤ τ̂ − τ ⇔
−2δ − ψ′ (ρ(δ)− θ‖dfx‖

)

≤ τ̂−τ

θ‖df
x‖

⇔
− 1

2ψ
′ (ρ(δ)− θ‖dfx‖

)

≤ δ + τ̂−τ

2θ‖df
x‖
.2We use that if f is 
onvex and di�erentiable then

(b − a)f ′(a) ≤ f(b) − f(a) ≤ (b− a)f ′(b).
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e ρ is de
reasing, the last inequality is equivalent to
ρ(δ)− θ‖dfx‖ ≥ ρ

(

δ +
τ̂ − τ

2θ‖dfx‖

)

. (5.21)Note that if θ approa
hes zero then the left-hand side expression 
onverges to
ρ(δ) and the right-hand side expression to zero. The left-hand side is de
reasingin θ whereas the right-hand side is in
reasing. The largest possible θ makes bothsides equal. In order to get a tight approximation for this value we �rst need toestimate ‖dfx‖. The next lemma gives an upper bound for ‖dfx‖. Its proof goes ina similar way as that of Lemma 3.3.3, given in [46℄.Lemma 5.4.2. One has

‖dfx‖ ≤ e
T (x + s)

ζρ(δ)
. (5.22)Proof. It 
an be easily veri�ed that the system (5.14), whi
h de�nes the sear
hdire
tions ∆fx, ∆fy, and ∆fs, 
an be expressed in terms of the s
aled sear
hdire
tions dfx and dfs as in (3.11) with rv = 0, i.e.,

Ādfx = νr0b , (5.23a)
ĀT ∆fy

µ
+ dfs = νvs−1r0c , (5.23b)

dfx + dfs = 0, (5.23
)where
Ā = AV −1X, V = diag (v), X = diag (x).From the above de�nition of Ā we dedu
e that Ā =

√
µAD, where

D = diag

(

xv−1

√
µ

)

= diag

(√

x

s

)

= diag
(√
µ vs−1

)

.For the moment, let us de�ne
rb := νr0b , rc := νr0c . (5.24)With ξ = −∆fy

µ we then have (by eliminating dfs = −dfx from (5.23a)�(5.23
))
√
µADdfx = rb, (5.25)

√
µDAT ξ + dfx = − 1√

µ
Drc, (5.26)By multiplying (5.26) both sides of from the left with √

µAD and using (5.25) itfollows that
µAD2AT ξ + rb = −AD2rc.
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ξ = − 1

µ
(AD2AT )−1

[

AD2rc + rb
]

.Substitution into (5.26) gives
dfx = − 1√

µ
Drc −

1√
µ
DAT (AD2AT )−1

[

−AD2rc − rb
]

= − 1√
µ

[

I −DAT (AD2AT )−1AD
]

Drc +
1√
µ
DAT (AD2AT )−1rb.To simplify notation we denote

P = DAT (AD2AT )−1AD.Note that P is (the matrix of) the orthogonal proje
tion to the row spa
e of thematrix AD. We now may write
√
µ dfx = [I − P ](−Drc) +DAT (AD2AT )−1rb.Let (x̄, ȳ, s̄) be su
h that Ax̄ = b and AT ȳ + s̄ = c. Then we may write

rb = νr0b = ν(b−Ax0) = νA(x̄ − x0),

rc = νr0c = ν(c−AT y0 − s0) = ν
(

AT (ȳ − y0) + s̄− s0
)

.Thus we obtain
√
µ dfx = [I − P ]

(

−νD
(

AT (ȳ − y0) + s̄− s0
))

+ νPD−1(x̄− x0).Sin
e I − P is the orthogonal proje
tion to the null spa
e of AD we have
[I − P ]DAT (ȳ − y0) = 0.Hen
e it follows that

√
µ dfx = [I − P ]

(

−νD
(

s̄− s0
))

+ νPD−1(x̄− x0).To pro
eed we further simplify the notation by de�ning
ux =

ν√
µ
D−1(x̄− x0), us = − ν√

µ
D(s̄− s0). (5.27)Then we may write

dfx = [I − P ]us + Pux.Using the orthogonality of the two terms at the right-hand side, we may write
‖dfx‖2 = ‖[I − P ]us‖2 + ‖Pux‖2 ≤ ‖ux‖2 + ‖us‖2.
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‖dfx‖2 ≤ν

2

µ

(

∥

∥D−1(x̄− x0)
∥

∥

2
+
∥

∥D(s̄− s0)
∥

∥

2
)

. (5.28)At this stage we use that the initial iterates are given by (3.1) and (3.2), so wehave
x0 = s0 = ζe, y0 = 0, µ0 = ζ2, (5.29)where ζ > 0 is su
h that

‖x∗ + s∗‖∞ ≤ ζ (5.30)for some optimal solutions x∗ of (P) and (y∗, s∗) of (D).We are still free to 
hoose x̄ and s̄, subje
t to the 
onstraints Ax̄ = b and
AT ȳ + s̄ = c. By 
hoosing x̄ = x∗ and s̄ = s∗, the entries of the ve
tors x0 − x̄and s0 − s̄ satisfy

0 ≤ x0 − x̄ ≤ ζe, 0 ≤ s0 − s̄ ≤ ζe.Thus it follows that
‖D−1(x̄− x0)‖2 + ‖D(s̄− s0)‖2 ≤ ζ2

(

‖De‖2 +
∥

∥D−1
e

∥

∥

2
)

= ζ2eT
(x

s
+
s

x

)

= ζ2eT
(

x2 + s2

xs

)

≤ ζ2eT
(

x2 + s2
)

mini |xisi|
≤ ζ2

[

e
T (x+ s)

]2

µv2min

,where, as before vmin = min(v). Substitution into (5.28) yields that
‖dfx‖ ≤ e

T (x + s)

vminζ
,where we used that ν2ζ2

µ = ν. Finally, sin
e vmin ≥ ρ(δ), the lemma follows. �The next lemma provides an upper bound for eT (x+ s).Lemma 5.4.3. One has
e
T (x+ s) ≤ nζ(1 + ρ(−δ)2).Proof. Let (x∗, y∗, s∗) be an optimal triple for (P) and (D) satisfying (5.30),and (x, y, s) a feasible triple for some perturbed pair (Pν) and (Dν). Setting

x0 = s0 = ζe, with ζ satisfying (5.30), (4.3), in the proof of Lemma 4.2.1, impliesthat
[(1− ν)x∗ − x+ νζe]

T
[(1− ν)s∗ − s+ νζe] = 0.Sin
e (x∗)T s∗ = 0 we derive from this that

(1− ν)(sT x∗ + xT s∗) + νζeT (x+ s) = ν(1 − ν)ζeT (x∗ + s∗) + xT s+ ν2ζ2eTe.
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xT s∗ + sTx∗ ≥ 0 and ζeT (x∗ + s∗) ≤ nζ2,one gets

νζeT (x+ s) ≤ xT s+ nνζ2. (5.31)On the other hand, one has xs = µv2. Using µ = νζ2 and (5.20), we have
xT s = µeT v2 ≤ nνζ2ρ(−δ)2.Substitution in (5.31) implies that

νζeT (x+ s) ≤ nνζ2
(

1 + ρ(−δ)2
)

.By dividing both sides of this inequality by νζ, the lemma follows. �Substitution of the inequality in Lemma 5.4.3 into (5.22), we obtain
‖dfx‖ ≤ n(1 + ρ(−δ)2)

ρ(δ)
. (5.32)Yet we return to the 
ondition (5.21) on θ:

ρ(δ) ≥ θ‖dfx‖+ ρ

(

δ +
τ̂ − τ

2θ‖dfx‖

)

.The right-hand side is in
reasing in ‖dfx‖. Therefore, due to (5.32), it su�
es if
ρ(δ) ≥ θn(1 + ρ(−δ)2)

ρ(δ)
+ ρ

(

δ +
ρ(δ) (τ̂ − τ)

2θn(1 + ρ(−δ)2)

)

. (5.33)Obviously this implies that θn(1 + ρ(−δ)2) < ρ(δ)2. Therefore, there exists α ∈
(0, 1) su
h that

θ =
αρ(δ)2

n(1 + ρ(−δ)2) . (5.34)It is 
lear that (5.33) 
an now be restated as
ρ(δ) ≥ αρ(δ) + ρ

(

δ +
τ̂ − τ

2αρ(δ)

)

. (5.35)Our obje
tive is to �nd the largest possible α satisfying this inequality. Thisrequires a good understanding of the behavior of the fun
tion ρ. Figure 5.3 showsthe graph of ρ (with s ≥ 0) for several kernel fun
tions.In order to pro
eed we need bounds for δ = δ(v) and ρ(δ). Re
all that ρ isde�ned as the inverse fun
tion of − 1
2ψ

′(t), and ̺ as the inverse fun
tion of ψ(t)for t ≥ 1. We also need the inverse fun
tion of ψ(t) for t ∈ (0, 1], whi
h we denote
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Figure 5.3: Graph of ρ(s), s ≥ 0, for several kernel fun
tions.as χ. To get tight estimates for these inverse fun
tions we de�ne the barrier term
ψb(t) of ψ(t) by the relation

ψ(t) = t2−1
2 + ψb(t), t > 0. (5.36)It 
an be easily veri�ed that for all kernel fun
tions in Table 5.1 one has

ψ′
b(t) < 0, ψ′′

b (t) > 0, ψ′′′
b (t) < 0, t > 0.Hen
e ψb(t) is monotoni
ally de
reasing and ψ′

b(t) is monotoni
ally in
reasing.This implies that ψb(t) and −ψ′
b(t) have inverse fun
tions and these fun
tionare monotoni
ally de
reasing. We denote these inverse fun
tions as χ̄ and ρ̄,respe
tively; in most 
ases they 
an be easily 
omputed.From now on we restri
t ourselves to the 
ase where ψ = ψ3. Then we have

ψb(t) =
t1−q − 1

q − 1
and ψ′

b(t) = −t−q.From this one easily derives that
χ̄(s) =

1

[1 + (q − 1)s]
1

q−1

, s >
−1

q − 1
, (5.37)

ρ̄(s) =
1

s
1
q

, s > 0. (5.38)The next two lemmas provide upper and lower bounds for χ and ρ. In the proofswe use that χ̄ and ρ̄ are de
reasing.



94 5 A CLASS OF LARGE-UPDATE IIPMS FOR LOLemma 5.4.4. With χ denoting the inverse fun
tion of ψ(t) for t ∈ (0, 1], onehas
χ̄
(

s+ 1
2

)

≤ χ(s) ≤ χ̄ (s) , s ≥ 0.Proof. Let t ∈ (0, 1]. Then one has
t = χ(s) ⇔ ψ(t) = s ⇔ ψb(t) = s+ 1−t2

2 ⇔ χ(s) = χ̄
(

s+ 1−χ(s)2

2

)

.Sin
e χ(s) ∈ (0, 1], this implies the inequalities in the lemma. �Lemma 5.4.5. With ρ̄ denoting the inverse fun
tion of −ψ′
b(t) for t > 0, onehas

ρ̄(1 + 2s) ≤ ρ(s) ≤ ρ̄(2s), s ≥ 0.Moreover, if ψ = ψ3 then
2s ≤ ρ(−s) ≤ 2s+ 1, s ≥ 0.Proof. Sin
e ψ′(t) = t+ ψ′

b(t), one has
t = ρ(s) ⇔ − 1

2ψ
′(t) = s ⇔ −ψ′(t) = 2s

⇔ −ψ′
b(t) = 2s+ t⇔ ρ(s) = ρ̄(2s+ ρ(s)).If s ≥ 0 then ρ(s) = t ∈ (0, 1], and hen
e ρ̄ (2s) ≥ ρ(s) ≥ ρ̄ (2s+ 1), proving the�rst statement in the lemma. Now let ψ = ψ3. Then we have, for s ≥ 0,

t = ρ(−s) ⇔ − 1
2ψ

′(t) = −s ⇔ 2s = t− t−q ⇔ t = 2s+ t−q, t ≥ 1.Sin
e t ≥ 1 we have t−q ∈ (0, 1]. Hen
e t = ρ(−s) implies 2s ≤ ρ(−s) ≤ 2s + 1.This proves the lemma. �Re
all that ̺ is the inverse fun
tion of ψ(t) for t ≥ 1. The following two resultsare less trivial than the pre
eding two lemmas.Lemma 5.4.6 (Lemma 6.2 in [10℄). For s ≥ 0, one has
√
1 + 2s ≤ ̺(s) ≤ 1 +

√
2s.Lemma 5.4.7. One has, for ea
h v ∈ Rn

++,
1
2ψ

′ (̺ (Ψ(v))) ≤ δ(v) ≤ − 1
2ψ

′ (χ (Ψ(v))) .Proof. The left-hand side inequality in the lemma is due to [10, Theorem 4.9℄.The proof of the right-hand side inequality 
an be obtained by slightly 
hanging



5.4 LARGE-UPDATE IIPMS FOR LO 95the proof of [10, Theorem 4.9℄ and is therefore omitted. �The above lemmas enable us to �nd an upper bound for δ = δ(v) in terms of
τ . Let Ψ(v) ≤ τ . Then, sin
e χ and − 1

2ψ
′ are de
reasing, − 1

2ψ
′χ is in
reasing.Hen
e, Lemma 5.4.7 implies that

δ = δ(v) ≤ − 1
2ψ

′ (χ(τ)) . (5.39)By Lemma 5.4.4 we have χ(τ) ≥ χ̄(τ + 1
2 ). Using on
e more that − 1

2ψ
′ is de-
reasing we obtain

2δ ≤ −ψ′ (χ̄(τ + 1
2 )
)

.Sin
e −ψ′(t) = t−q − t ≤ t−q, and due to (5.37), it follows that
2δ ≤ χ̄(τ + 1

2 )
−q =

[

1 + (q − 1)(τ + 1
2 )
]

q
q−1

=
[

1 + (q − 1)(τ + 1
2 )
] [

1 + (q − 1)(τ + 1
2 )
]

1
q−1 ≤

[

1 + (q − 1)(τ + 1
2 )
]

eτ+
1
2 ,where the last inequality is due to (1 + ax)

1
x ≤ ea for x > 0 and 1 + ax > 0.Hen
e, when taking τ ≤ 1

2 , we have
δ ≤ 1

2qe. (5.40)Sin
e ρ is de
reasing, by applying ρ to both sides of (5.39), and using Lemma5.4.4 and (5.37) we obtain
ρ(δ) ≥ χ(τ) ≥ χ̄(τ + 1

2 ) =
1

[

1 + (q − 1)(τ + 1
2 )
]

1
q−1

.If τ ≤ 1
2 this implies

ρ(δ) ≥ 1

q
1

q−1

=
1

e
log q
q−1

≥ 1

e
. (5.41)Using that ρ is de
reasing and also Lemma 5.4.5 and (5.38) we have

ρ

(

δ +
τ̂ − τ

2αρ(δ)

)

≤ ρ

(

τ̂ − τ

2αρ(δ)

)

≤ ρ

(

τ̂ − τ

2ρ(δ)

)

≤ ρ̄

(

τ̂ − τ

ρ(δ)

)

=

(

ρ(δ)

τ̂ − τ

)
1
q

≤ 1

(τ̂ − τ)
1
q

.Also using ρ ≥ 1/e we 
on
lude that (5.35) 
ertainly will hold if
1− α

e
≥ 1

(τ̂ − τ)
1
q

.
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2 it follows that (5.35) will be satis�ed if

q ≤ log(τ̂ − τ)

log(2e)
. (5.42)Substitution of α = 1

2 into (5.34) yields
θ =

ρ(δ)2

2n(1 + ρ(−δ)2) .Due to (5.41) we have ρ(δ) ≥ 1/e and due to Lemma 5.4.5 and (5.40), ρ(−δ) ≤
2δ+1 ≤ 1+ qe. We therefore may 
on
lude that (5.33) 
ertainly holds if we take

θ =
1

2e2n(1 + (1 + qe)2)
. (5.43)This is the value that will be used in the sequel. As a 
onsequen
e, the numberof outer iterations is bounded above by

⌈

2e2n
(

1 + (1 + qe)2
)

log
ǫ(ζe, 0, ζe)

ε

⌉

.We �nally have to estimate the number of iterations that are needed to enterthe τ -neighborhood of the µ+-
enter of (Pν) and (Dν). For that we need theparameters κ and γ for ψ3. These parameters were obtained by Bai et al. [10℄in the analysis of a large-update FIPM based on ψ3. To make this thesis self-supporting, we 
al
ulate these parameters in the next subse
tion.5.4.4 The parameters κ and γ for ψ = ψ3A

ording to (5.10) the parameters κ and γ should be su
h that
sγ−1 (ψ′ (̺ (s)))2

4ψ′′ (ρ (ψ′ (̺ (s))))
≥ κ, ∀s ≥ τ.Note that ̺ (s) is in
reasing in s and, by Lemma 5.4.6, √1 + 2s ≤ ̺(s) ≤ 1+

√
2s,for s ≥ 0. For the moment, let

ξ := ψ′ (̺ (s)) .We pro
eed by deriving a lower bound for ξ. Sin
e ψ′ and ̺ are in
reasing, byusing Lemma 5.4.6 we obtain
ξ = ψ′ (̺ (s)) ≥ ψ′ (√1 + 2s

)

=
√
1 + 2s− 1

(√
1 + 2s

)q

≥
√
1 + 2s− 1√

1 + 2s
=

2s√
1 + 2s

.
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reasing in x and s ≥ τ , we may write
ξ ≥

√

2s

1 + 2s

√
2s ≥ τ̌

√
2s ≥ τ̌

√
2τ, where τ̌ =

√

2τ

1 + 2τ
. (5.44)Sin
e ψ′′ is de
reasing, using Lemma 5.4.5 we may write

ψ′′ (ρ (ψ′ (̺ (s)))) = ψ′′ (ρ (ξ)) ≤ ψ′′ (ρ̄ (1 + 2ξ))

= 1 + q

[

1

(1 + 2ξ)
1
q

]−q−1

= 1 + q (1 + 2ξ)
q+1
q .Hen
e we have

(ψ′ (̺ (s)))2

4ψ′′ (ρ (ψ′ (̺ (s))))
≥ ξ2

4
[

1 + q (1 + 2ξ)
q+1
q

] =
ξ

q+1
q

4
[

1 + q (1 + 2ξ)
q+1
q

] ξ
q−1
qSin
e xa/ [1 + q(1 + 2x)a] is in
reasing in x if a > 0, by using (5.44) it followsthat

(ψ′ (̺ (s)))2

4ψ′′ (ρ (ψ′ (̺ (s))))
≥

(

τ̌
√
2τ
)

q+1
q

4

[

1 + q
(

1 + 2τ̌
√
2τ
)

q+1
q

]

(

τ̌
√
2s
)

q−1
q

.This implies
s

1−q
2q

(ψ′ (̺ (s)))2

4ψ′′ (ρ (ψ′ (̺ (s))))
≥

(

τ̌
√
2τ
)

q+1
q
(

τ̌
√
2
)

q−1
q

4

[

1 + q
(

1 + 2τ̌
√
2τ
)

q+1
q

] , ∀s ≥ τ.Thus we have shown that (5.10) holds for γ = 1− 1−q
2q = q+1

2q and
κ =

(

τ̌
√
2τ
)

q+1
q
(

τ̌
√
2
)

q−1
q

4

[

1 + q
(

1 + 2τ̌
√
2τ
)

q+1
q

] =
τ

q+1
2q τ̌2

2

[

1 + q
(

1 + 2τ̌
√
2τ
)

q+1
q

] .Taking τ = 1
8 one gets τ̌ = 1√

5
. Also using q > 1 we obtain

κ =
1

2 · 5 · 4 q+1
2q

[

1 + q
(

1 + 2√
5
1
2

)
q+1
q

] ≥ 1

40 q

[

1 +
(

1 + 1√
5

)2
] ≥ 1

124 q
.



98 5 A CLASS OF LARGE-UPDATE IIPMS FOR LO5.5 Complexity analysisAs we established in (5.13), the total number of iterations is at most
(τf )γ

θκγ
log

ǫ(ζe, 0, ζe)

ε
.We assume that τ̂ = O(n). Due to Lemma 5.4.1 we then also have τf = O(n),provided that 1/

√
1− θ = O(1). Due to (5.43) the latter 
ondition is satis�ed.To simplify the presentation we use τf = n in the analysis below, but our results
an easily be adapted to the 
ase where τ̂ = O(n). Substituting γ = q+1

2q and
κ ≥ 1

124 q and θ, given by (5.43), the total number of iterations is bounded aboveby
248e2qn(1 + (1 + qe)2)n

q+1
2q log

ǫ(ζe, 0, ζe)

ε
= O

(

q3n
√
nn

1
2q log

ǫ(ζe, 0, ζe)

ε

)

.The expression q3n 1
2q is minimal if q = logn

6 and then it is equal to e4(log n)3/512.This value of q satis�es (5.42), sin
e log(2e) ≤ 6. Hen
e we obtain the followingiteration bound:
O

(

n
√
n (log n)3 log

ǫ(ζe, 0, ζe)

ε

)

. (5.45)5.6 Dete
ting infeasibility or unboundednessThe algorithm, des
ribed in this 
hapter, will dete
t infeasibility or/and unboun-dedness of (P) and (D) if no optimal solutions exist. In that 
ase Lemma 3.1.1implies the existen
e of ν̄ > 0 su
h that the perturbed pair (Pν) and (Dν) satisfythe IPC if and only if ν ∈ (ν̄, 1]. As long as ν+ = (1− θ)ν > ν̄ the algorithm willrun as it should, with θ given by (5.43). However, if ε is small enough, at somestage it will happen that ν > ν̄ ≥ ν+. At this stage the new perturbed pair doesnot satisfy the IPC. This will reveal itself sin
e at that time we ne
essarily have
θmax < θ̃. If this happens we may 
on
lude that there is no optimal pair (x∗, s∗)satisfying ‖x∗ + s∗‖∞ ≤ ζ. In order to settle un
ertainty about existen
e of op-timal solutions for some larger values of ζ, or infeasibility and/or unboundedness,one may follow the pro
edure des
ribed in Subse
tion 3.5.As mentioned in Se
tion 5.1, Salahi et al. [101℄ presented a large-update IIPMbased on ψ3, with the 
onvergen
e rate O(n√n logn). This 
onvergen
e rate isthe best known 
onvergen
e rate for large-update IIPMs. In the next se
tion, webrie�y des
ribe their algorithm.
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√
n logn) large-update IIPMSalahi et al.'s algorithm [101℄ uses ψ3 with q = 1 + logn. Ea
h iteration of thisalgorithm starts at a triple (x, y, s) whi
h satis�es

Φ(x, s;µg) ≤ η(n, λ), (5.46)with µg given by (1.13) and
η(n, λ) :=

(

λ
log n

2 − 1
)

n

logn
, for a λ ≥ 2.The Newton steps are obtained from the system

A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s = −µtvt∇Ψ(vt),with
vt :=

√

xs

µtwhere µt is the smallest root of the equation
Φ(x, s, µ) =

(λ − 1)n

2
.It was shown (see [101, Lemma 2.5℄) that if (5.46) holds then

λ ≤ µg

µt
≤ λ+ 2

logn . (5.47)They derive a step size α ∈ (0, 1) for whi
h the new iterates (x+, y+, s+) and µ+
g ,with

µ+
g :=

(x+)
T
s+

n
,satisfy (5.46), and

Φ(x+, s+, µ+
t ) =

(λ− 1)n

2
,where µ+

t := (1− θ)µt for θ = O( 1
n
√
n log n

). (5.47) implies that µg is also redu
edby a fa
tor 1− θ. The residual norms are bounded above by a 
onstant multiplierof the mean value µg. Thus, the infeasibility and the duality gap are redu
ed bya fa
tor 1− θ. This imposes the 
onvergen
e rate O(n√n logn) to the algorithm.
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al 
onvergen
e rate of our algorithm is a fa
tor
(logn)2 worse than Salahi et al.'s algorithm. As the theoreti
al result is disap-pointing, in order to show that our algorithm is a large-update algorithm we relyon the numeri
al results whi
h are presented in Chapter 6. Note that, theor-eti
ally speaking, both algorithms, i.e., Salahi et al.'s [101℄ and our algorithm,su�er from the de�
ien
y that they are small-update methods as they use thebarrier updating parameter θ = O(1/(n

√
n logn)) and θ = O(1/(n

√
n(logn)2)),respe
tively.



6Implementation: issues and resultsSo far, we have been dealing with the theoreti
al aspe
ts of IIPMs for LO, i.e.,global 
onvergen
e and/or polynomiality. Although they are interesting by them-selves, from a 
ommer
ial point of view, the pra
ti
al behavior of these methodsmay be even more interesting. There are some (numeri
al) issues that theory-oriented papers never dis
uss, despite the fa
t that they may be 
riti
al for apra
ti
ally e�
ient implementation. Se
tion 6.1 is devoted to a brief des
rip-tion of some of these issues. The most e�
ient implementation of IIPMs is theLIPSOL pa
kage whi
h is based on Mehrotra's PC algorithm [74℄. We 
omparethe iteration numbers of our algorithm with those of this pa
kage. The LIPSOLpa
kage is des
ribed in Se
tion 6.2.6.1 Implementation of IIPMs: issuesAs mentioned in Chapter 2, an implementation of the �bigM � method to solve (P)and (D) was given by M
Shanne, Monma and Shanno [71℄. Although this methodwas more e�
ient than the simplex method, it su�ered from some numeri
alinstabilities 
aused by huge 
oe�
ients. Lustig [62℄ designed his algorithm toover
ome these issues. He ran his algorithm to solve the same set of NETLIB1problems as 
hosen by M
Shane et al. [71℄, i.e., those with no expli
it upperbounded or free variables. Lustig's algorithm outperformed that of M
Shane et al.[71℄ in terms of iteration number and the simplex method in terms of CPU time.It is worth mentioning that Lustig used some sophisti
ated analyti
 approa
h to
al
ulate the barrier parameter and the step sizes along the Newton dire
tionswhile M
Shane et al. used a heuristi
 barrier parameter and a large fra
tion, e.g.,0.9995, of maximal step sizes.Most of the 
omputational e�orts in IPMs for LO are devoted to the Cholesky1http://www.netlib.org/lp/ 101



102 6 IMPLEMENTATION: ISSUES AND RESULTSfa
torization of the 
oe�
ient matrix in a linear system of the form
AD2AT∆y = b̂, (6.1)where b̂ is some right-hand side and D, in the LO 
ase, has the form

D := diag

(
√

x

s

)

.M
Shane et al. [71℄ and Lustig [62℄ used, respe
tively, the linear algebra pa
k-ages SMPAK and SPARSPAK [36℄ to solve the system (6.1). If there were sparse
olumns in the 
oe�
ient matrix, Choi, Monma and Shanno [17℄ applied the S
hur
omplement approa
h to split sparse and dense 
olumns. This led to better per-forman
e than the past implementations. The idea of using the S
hur 
omplementapproa
h had been �rst suggested by Gill et al. [38℄. In addition to the problemstested in [62, 71℄, Choi et al. 
onsidered NETLIB problems with bounded and/orfree variables as well. Moreover, motivated by the fa
t that the heuristi
 valuesof the barrier parameter and the step sizes, applied by M
Shane et al., proved tobe e�
ient, Choi et al. adapted Lustig's algorithm in su
h a way that it avoidsthe sophisti
ated method of Lustig in 
al
ulating these parameters and, instead,applies the heuristi
 values of M
Shane et al..Variants of Lustig's algorithm were pursued by Lustig, Marsten and Shanno[63℄. They 
onsidered the variant of Lustig's algorithm studied by M
Shane et al.[71℄ and Choi et al. [17℄, with minor modi�
ation with respe
t to the 
hoi
e of thebarrier parameter. Moreover, Lustig et al. [63℄ presented some further dis
ussionon a variety of 
omputational issues in the primal-dual implementation and thebarrier methods in general, along with a new 
omprehensive implementation of theprimal-dual algorithm for the entire NETLIB test set. Strengths and weaknessesof the S
hur 
omplement approa
h, suggested by Choi et al. [17℄, were alsodis
ussed. Moreover, Lustig et al. [63℄ showed that the limiting sear
h dire
tionsobtained by Lustig [62℄ were nothing but the Newton dire
tions for the system(1.5) whi
h serve to redu
e the infeasibility. They also dis
ussed the role of thebarrier parameter in more detail.Other variants of Lustig's algorithm were also presented by Subramanian,Subramanian, Saltzman, Lustig and Shanno [69℄ and Tanabe [105℄.The most e�
ient primal-dual IIPM, on whi
h most of the existing IPM 
odesare based, e.g., LIPSOL of Zhang [120℄ or PCx pa
kage of Czyzyk et al. [18℄, isMehrotra's PC approa
h [74℄. This algorithm enjoys the feature of using a se
ond-order approximation of the 
entral path [74, 115℄. It should be noted that theidea of using higher order approximation of the 
entral path was proposed �rstby Megiddo [72℄ and further studied by Monteiro et al. [81℄. Mehrotra [74℄ just
ombined these two existing ideas in a ni
e way in the algorithm of Lustig et al.[63℄. He applied the new algorithm to solve a subset of the NETLIB problemswhi
h have no bounded or free variables. This redu
ed the number of iterationssigni�
antly, when 
ompared to previous algorithms, e.g., [63, 82℄.



6.2 MEHROTRA'S PC APPROACH: LIPSOL PACKAGE 103Another implementation of Mehrotra's algorithm was done by Lustig, Marstenand Shanno [64℄, in
orporating the entire NETLIB test set. It was establishedthat for large and more 
omplex problems Mehrotra's method is more e�
ient.Numeri
al issues 
on
erned with the S
hur 
omplement approa
h along with someother numeri
al problems were also dis
ussed. Besides, some numeri
al remediesfor these issues were presented.After the release of a globally 
onvergent variant of Lustig's algorithm byKojima et al. [54℄, Lustig, Marsten and Shanno [65℄ designed a pra
ti
ally globally
onvergent variant of Mehrotra's PC method.Another su

essful implementation of Mehrotra's PC algorithm was given byLustig, Marsten and Shanno [64℄.The most su

essful implementation of Mehrotra's PC algorithm is the LIPSOLpa
kage, whi
h was developed by Zhang [120℄. Be
ause LIPSOL is 
urrently theleading IPM-based pa
kage for solving LO problems, we devote the next se
tionto a detailed des
ription of Mehrotra's method.6.2 Mehrotra's PC approa
h: LIPSOL pa
kageIn this se
tion we deal with a variant of Mehrotra's PC method whi
h runs inLIPSOL pa
kage. In addition to its being on top of all IPM implementations, ourmotivation to des
ribe this pa
kage in detail is that in our experiments, presentedin Se
tion 6.3, we use some heuristi
s whi
h are inspired by those of this pa
kage.6.2.1 About LIPSOLLIPSOL is a free software2 based on MATLAB. Programming in MATLAB is veryeasy and it has a high level te
hni
al 
omputing environment for 
omputations.Matri
es and formulas 
an be expressed in a way very 
lose to what we writemathemati
ally. Besides, be
ause MATLAB provides external interfa
e fa
ilitiesto enable intera
tion with programs in Fortran and C languages in the form ofmex-�les, some routine tasks like matrix and ve
tor operations are done usingMATLAB fun
tions while 
omputationally intensive tasks like Cholesky fa
toriz-ation are done using Fortran 
odes. As a result, one enjoys the fa
ility of simpleprogramming in MATLAB and the 
omputational speed of Fortran. In addition,LIPSOL uses some new tri
ks to over
ome numeri
al instabilities in the Choleskyfa
torization of the 
oe�
ient matrix of the linear system (6.1). Considering thefa
t that it more often happens that the 
oe�
ient matrix of the linear system(6.1) is 
lose to positive semide�nite not de�nite, the regular Cholesky fa
toriza-tion may be unstable. To over
ome this issue, Zhang suggests the use of so-
alledCholesky-in�nity fa
torization. In this pro
edure, on
e a diagonal pivot in theCholesky fa
torization is found to be zero, the 
orresponding diagonal element of2http://www.caam.rice.edu/~zhang/lipsol/
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L, with L the Cholesky fa
tor, is set to in�nity. He had to write an external For-tran 
ode for this new pro
edure be
ause a

ess to MATLAB's built-in fun
tion
chol was impossible.There is another version of LIPSOL whi
h is used as a subroutine of theMATLAB 
ommand linprog to solve large-s
ale problems. If the problem is nottagged as `Large-S
ale', linprog uses the simplex method as a default algorithm,and otherwise the fun
tion lipsol. Re
all that, 
urrently, a variety of linearalgebrai
 te
hniques to solve a linear system, e.g., 
olumn approximate minimumdegree permutation (the fun
tion colamd), Cholesky fa
torization, Cholesky-in�nity fa
torization, et
., are all available in MATLAB. Due to this, the fun
tion
lipsol does not use mex-�les. Currently, the Cholesky-in�nity fa
tor 
an beeasily 
omputed by using the MATLAB fun
tion cholinc.Computational experiments, e.g., [64℄, reveal that the larger the dimension ofa problem is, the more IPMs outperform the simplex method.Some prepro
essing is performed before the main algorithm starts to run:
he
king obvious infeasibility, deleting �xed variables and zero rows and 
olumnsfrom the matrix A, easy handling of free and bounded variables, solving singleton
onstraints, if any required, along with s
aling the problem and making the matrix
A stru
turally full rank3. Some heuristi
 test is 
arried out to 
he
k if the matrix Ahas some sparse 
olumns and then by separating the sparse 
olumns, if any, fromthe dense ones, the S
hur 
omplement approa
h is applied to solve the normalequations (6.1). See Subse
tion 6.2.2 for more detail.If the solution of the normal equations (6.1) is not satisfa
tory, i.e., the residualnorm ‖AD2AT∆y−b̂‖ is too large, Y. Zhang ignores the solution and uses, instead,3The stru
tural rank of a matrix A in Rm×n is the size of a maximum mat
hing of thebipartite graph of A. It is a
tually an upper bound for the numeri
al rank of A. So, if m = n, Ais stru
turally full rank if its bipartite graph has a perfe
t mat
hing. If m 6= n, Davis [21℄ 
allsmatrix A stru
turally full row (
olumn) rank if all nodes 
orresponding to the rows (
olumns) aremat
hed in a maximum mat
hing of its bipartite graph (note that there is no perfe
t mat
hingin this 
ase anymore). Let us give an example. Given the matri
es A and B by

A =





2 3 4

4 6 8



 and B =





1 1

0 0



 ,their bipartite graphs are as follows.
A

BIn both graphs, the set of solid edges is a maximum mat
hing. For matrix A, the set of thenodes 
orresponding the rows are all mat
hed in the maximummat
hing. Thus A is stru
turallyfull row rank but not full 
olumn rank. Based on a similar argument, the matrix B turns out tobe neither full row nor full 
olumn rank. We say that the matrix B is stru
turally rank de�
ient.Note that for both matri
es the numeri
al rank equals 1.



6.2 MEHROTRA'S PC APPROACH: LIPSOL PACKAGE 105the solution of the augmented system, given by




−D−2 AT

A 0









∆x

∆y



 =





rb

rc − rxs

x



 , (6.2)with rxs de�ned as in Subse
tion 6.2.3. ∆s is given by
∆s = rxs

x −D−2∆x.Remark 6.2.1. It 
an be veri�ed that the augmented system (6.2) is equivalentto the following system:




0 AD2AT

A 0









∆x

∆y



 =





AD2rb + rc − rxs

x

rc − rxs

x



 .This means that the normal equations (6.1) 
an be obtained form the augmentedsystem (6.2) by setting
b̂ = AD2rb + rc − rxs

x .In order to solve the system (6.2), the author uses blo
k LDL
T fa
torizationof the 
oe�
ient matrix. This is done by using the MATLAB fun
tion ldl. Foradvantages and disadvantages of using the augmented system instead of normalequations and an extensive dis
ussion on implementation of IPMs and relatedissues we refer to [115℄.Before des
ribing the variant of Mehrotra's algorithm in LIPSOL, we �rstbrie�y explain the S
hur 
omplement approa
h.6.2.2 The S
hur 
omplement approa
hConsider the 
oe�
ient matrix of the linear system (6.1). Let As and Ad denote,respe
tively, sparse and dense 
olumns of A, and Ds and Dd the 
orrespondingsubdiagonals of the s
aling matrix D. By splitting the 
olumns of A in sparseand dense 
olumns, we write

A = [As Ad].Then we may write
AD2AT = AsD

2
sA

T
s +AdD

2
dA

T
d .Denoting P = AsD

2
sA

T
s and U = AdDd the latter 
an be rewritten as

AD2AT = P + UUT .If P is nonsingular then, by the Sherman-Morrison-Woodbury formula, we have
(P + UUT )−1 = P−1 − P−1U(I + UTP−1U)−1UTP−1

= P−1[I − U(I + UTP−1U)−1UTP−1].



106 6 IMPLEMENTATION: ISSUES AND RESULTSLetting P = LL
T , with L a lower triangular matrix, ∆y in (6.1) is obtained fromthe following system:

LL
T∆y = b̂− U(I +WTW )−1WT

L
−1b̂, with W := L

−1U.Note that P is a large sparse matrix whose Cholesky de
omposition is not so
omputationally expensive. The pro
ess of 
al
ulating ∆y 
an be organized asfollows:- solve LW = U ;- solve the system Lb̄ = b̂;- solve (I +WTW )ξ =WT b̄;- solve LLT∆y = b̂ − Uξ.Note that the matrix U has usually low rank, when
e the matrix I +WTWis small and requires a small number of ba
k-substitutions on
e P is fa
torized.However, the sparse portion of the 
oe�
ient matrix in (6.1) may be severely ill-
onditioned or even singular, leading to some large residual norm ‖AD2AT∆y−b̂‖.This makes the S
hur 
omplement approa
h useless in that 
ase.6.2.3 Newton sear
h dire
tionsMehrotra 
onsidered the system (1.4). Without assuming feasibility of the 
urrentiterates, this system 
an be rewritten as follows:
A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s = rxs,

(6.3)with
rxs := µe− xs−∆x∆s.Mehrotra de�nes the dire
tions (∆x,∆y,∆s) as follows:

(∆x,∆y,∆s) := (∆ax,∆ay,∆as) + (∆ccx,∆ccy,∆ccs),where (∆ax,∆ay,∆as) are a�ne-s
aling dire
tions obtained from the system (6.3)after setting rxs := −xs and (∆ccx,∆ccy,∆ccs) the 
ombined 
entering-
orre
torsteps obtained from the system (6.3) after setting rb = rc = 0 and rxs := µe −
∆ax∆as.The predi
tor step is applied to 
al
ulate the barrier parameter as explained inSubse
tion 6.2.4. On
e the barrier parameter is obtained, Mehrotra pro
eeds with
omputation of the 
ombined 
entering-
orre
tor steps. The 
oe�
ient matrix of
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ombined 
entering-
orre
tor dire
tions and the a�ne-s
aling dire
tions arethe same and thus only one matrix fa
torization is required.The 
orre
tor step is motivated as follows. It 
an be easily veri�ed that thea�ne-s
aling step (∆ax,∆ay,∆as) is obtained after linearizing of the system (1.4)with µ = 0. This means that if full a�ne-s
aling step is taken then one shouldhave
(x+∆ax)(s +∆as) = 0. (6.4)On the other hand, one has

(x+∆ax)(s+∆as) = xs+ x∆as+ s∆ax+∆ax∆as = ∆ax∆as,meaning that (6.4) may not hold in general. The 
orre
tor step tries to 
om-pensate for this deviation from the linearity, modifying the sear
h dire
tions sothat the pairwise produ
ts 
ome 
loser to zero.6.2.4 Choi
e of the barrier parameterAfter 
omputation of the a�ne-s
aling dire
tions (∆ax,∆ay,∆as), Mehrotra 
al-
ulates µ̄ as follows:
µ̄ :=

(x+ αp
max∆

ax)T (s+ αd
max∆

as)

n
, (6.5)where

αp
max := min {1,max {α : x+ α∆ax ≥ 0}} ,
αd
max := min {1,max {α : s+ α∆as ≥ 0}} .

(6.6)The quantity µ̄ serves to estimate the e�
ien
y of the predi
tor step as follows.If µ̄≪ µ then it means that the predi
tor step makes a large amount of redu
tionon the duality gap. If µ̄ is smaller than but 
lose to µ, then it means that thepredi
tor step does not make signi�
ant redu
tion on the duality gap, and thus asmall redu
tion on µ is allowed. Mehrotra suggests the following heuristi
 whi
hhas been e�
ient in 
omputational experiments [74℄:
µ+ =

(

µ̄

µ

)2

µ.Setting the new value of µ to µ+, the 
ombined 
entering-
orre
tor Newton step
(∆ccx,∆ccy,∆ccs) is 
omputed.The Newton dire
tions (∆x,∆y,∆s) are given by

(∆x,∆y,∆s) := (∆ax,∆ay,∆as) + (∆ccx,∆ccy,∆ccs).After that Zhang [120℄ (LIPSOL) proposes to obtain the step sizes αp and αd in,respe
tively, the primal and the dual spa
es su
h that the new iterates (x+, y+, s+),de�ned as
x+ := x+ αp∆x, y+ := y + αd∆y and s+ := s+ αd∆s,
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x+s+ ≥ γ x+T

s+

n with γ = 10−5.6.2.5 Stopping 
riteriaThe algorithm stops if the following stopping 
riteria holds:
E(x, y, s) :=

‖rb‖
max(1, ‖b‖) +

‖rc‖
max(1, ‖c‖) +

|cTx− bT y|
max(1, |cTx|, |bT y|) ≤ ε, (6.7)for a predetermined ε > 0. See Algorithm 6.1.Algorithm 6.1 The PC algorithm of Mehrotra [74℄Input:a

ura
y parameter: ε > 0;begininitial points: x0 > 0, y0 and s0 > 0 µ = µ0 := (x0)

T
s0/n;while E(x, y, s) > ε
al
ulate (∆ax,∆ay,∆as) and αp

max and αd
max;

µ-update: µ := (µ̄/µ)
2
µ with µ̄ given by (6.5);

x : = x+ αp(∆
ax+∆ccx);

y : = y + αd(∆
ay +∆ccy);

s : = s+ αd(∆
as+∆ccs);endwhileendMehrotra did not 
onsider 
onvergen
e or polynomiality of his algorithm.However, Y. Zhang and D. Zhang [121℄ proposed some variant of this algorithmthat is polynomial-time. Their proof uses the potential fun
tion suggested byMehrotra [74℄ and the re
ipe of the polynomiality proof given by Zhang [119℄.6.3 Implementation of our large-update IIPMIn this se
tion, we present the numeri
al results of the algorithm des
ribed inChapter 5. Theoreti
ally, the barrier parameter µ is updated by a fa
tor (1 − θ)with θ given by (5.43), and the iterates are kept very 
lose to the µ-
enters, namelythe τ -neighborhood of the µ-
enters, with τ = 1

8 . In pra
ti
e, it is not e�
ientto do so and not ne
essary either. We present a variant of the algorithm whi
h
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tor-
orre
tor step in the feasibility step. Moreover, for the parameter
τ , de�ned in Se
tion 5.4.1, we allow some larger value than 1

8 , e.g., τ = O(n).We set τ = τ̂ = O(n) with τ̂ de�ned as in Se
tion 5.4.1. As a 
onsequen
e, thealgorithm does not need 
entering steps. We 
hoose τ̂ a

ording to the followingheuristi
s: if n ≤ 500, then τ̂ = 100n, for 500 ≤ n ≤ 5000, we 
hoose τ̂ = 10nand for n ≥ 5000, we set τ̂ = 3n. We 
ompare the performan
e of the algorithmwith the well-known LIPSOL pa
kage [120℄.6.3.1 Starting pointA 
riti
al issue when implementing a primal-dual method is to �nd a suitablestarting point. It seems sensible to look for a starting point whi
h is well-
enteredand as 
lose to a feasible primal-dual point as possible. The one suggested bytheory, i.e., given by (2.39), being ni
ely 
entered, may be quite far from thefeasibility region. Moreover, to �nd a suitable ζ is another issue.In our implementation, we use a starting point whi
h is proposed by Lustiget al. [64℄ and inspired by the starting point used by Mehrtora [74℄. It uses theleast squares solution of the system of 
onstraints in (P), namely,
x̃ = AT (AAT )

−1
b.As in [64℄, we de�ne

ξ1 = max

(

− min
1≤j≤n

x̃j , 100,
‖b‖1
100

)

and ξ2 = 1 + ‖c‖1 .Then for j = 1, · · · , n, assign
x̄j = max (x̃j , ξ1) .Now putting, for j = 1, · · · , n,

s̄j =































cj + ξ2 if cj > ξ2

−cj if cj < −ξ2
cj + ξ2 if 0 ≤ cj < ξ2

ξ2 if −ξ2 ≤ cj ≤ 0.we set
x0 = x̄, y0 = 0, s0 = s̄ and µ0 :=

(x0)
T
s0

n
.Sin
e we are interested in a point whi
h is in the τ -neighborhood of the µ0-
enter,as long as Φ(x0, s0, µ0) > τ , we keep in
reasing µ0 by a 
onstant fa
tor, say 1.1.In that way, we obtain a barrier parameter µ0 for whi
h Φ(x0, s0, µ0) ≤ τ .



110 6 IMPLEMENTATION: ISSUES AND RESULTS6.3.2 Feasibility step sizeAs in other e�
ient numeri
al experiments, e.g., [64, 120℄, regardless of the the-oreti
al result, we apply di�erent step sizes along the primal step ∆x and thedual step (∆y,∆s). This implies that the feasibility improves mu
h faster thanwhen identi
al step sizes are used. Letting (x, y, s) be the 
urrent iterates and
(∆x,∆y,∆s) the Newton step, we obtain the maximum step sizes θpmax and θdmaxin, respe
tively, the primal and the dual spa
es as follows:

θpmax = min
∆xi<0

{

1,− xi
∆xi

}

, θdmax = min
∆si<0

{

1,− si
∆si

}

.The goal is to keep the iterates 
lose to the µ-
enter, i.e., in its τ̂ -neighborhoodwhere τ̂ is de�ned in Subse
tion 5.4.3. Thus, letting θ̄ be su
h that
Φ(x+ θ̄θpmax∆x, s+ θ̄θdmax∆s, µ) ≤ τ̂ ,the primal and the dual step sizes θp and θd are de�ned as follows:

θp = θ̄θpmax and θd = θ̄θdmax.6.3.3 Stopping 
riteriaAs in LIPSOL, our algorithm terminates if the 
ondition (6.7) or the following
ondition is met:
|xT s− x+

T
s+| < ε,where ε = 10−6. The 
ondition (6.7) measures the total relative errors in theoptimality 
onditions (1.1) whilst the latter 
riterion terminates the program ifonly a tiny improvement is obtained on the optimality. In fa
t, it prevents theprogram from stalling. We in
lude this 
riterion following Lustig [62℄.6.3.4 Solving the linear systemUnlike LIPSOL whi
h uses the S
hur 
omplement approa
h to solve the linearsystem, we simply apply the ba
kslash 
ommand of MATLAB ('\') to solve thenormal equations (6.1). DenotingM := AD2AT in (6.1), whenever the multipliermatrix M is ill-
onditioned, we 
ould obtain some more a

urate solution byperturbing M as

M =M + 10−9I,where I is the identity matrix with size of M .6.3.5 An iteration of the algorithmMotivated by the numeri
al results, and 
onsidering the fa
t that Mehrotra's PCmethod has be
ome the most e�
ient in pra
ti
e and used in most IPM-based
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kages, e.g., [3, 18, 112, 120℄, we present the numeri
al results of thevariant of our algorithm whi
h uses Mehrotra's PC dire
tion at the feasibilitystep.At the feasibility step, we apply the system
A∆ax = rb,

AT∆ay +∆as = rc,

s∆ax+ x∆as = −xs,to obtain the a�ne-s
aling dire
tions (∆ax,∆ay,∆as). Then, the maximum stepsizes θpmax and θdmax in, respe
tively, primal and dual spa
es are 
al
ulated asdes
ribed in Subse
tion 6.3.2. Then de�ning
µa =

(x+ θpmax∆
ax)

T
(s+ θdmax∆

as)

n
,we let

σ =

(

σ̄
µa

µ

)3

, σ̄ ∈ (0, 1).We use σ̄ = 0.3 as the default value of σ̄. If σ < 1, we 
al
ulate the new barrierupdate parameter µ as follows:
µnew = σµa.Then, if ne
essary, by in
reasing µnew by a 
onstant fa
tor, say 1.1, we derivesome µnew for whi
h

Φ(x, s, µnew) ≤ τ̂ .The ideal 
ase o

urs when µnew < µ. Be
ause then by setting µ = µnew, the
orre
tor step (∆cx,∆cy,∆cs), obtained from
A∆cx = 0,

AT∆cy +∆cs = 0,

s∆cx+ x∆cs = µe−∆ax∆as,

(6.8)yields an improvement of the duality gap. If µnew ≥ µ, then the use of the system(6.8) with µ = µnew gives rise to an in
rease or no improvement of the dualitygap. Hen
e the use of µ = µnew is no longer sensible in this 
ase. Re
all that if
σ ≥ 1 then it means that the duality gap was in
reased after the a�ne-s
alingstep (∆ax,∆ay,∆as). Thus a µ-update makes no sense in this 
ase either.If σ < 1 and µnew < µ, we use the system (6.8) with µ = 0 as a 
orre
tor step.The feasibility step (∆fx,∆fy,∆fs) is obtained as follows:

∆fx = ∆ax+∆cx, ∆fy = ∆ay +∆cy, ∆fs = ∆as+∆cs.
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al
ulate the primal and the dual step sizes θp and θd, as des
ribed inSubse
tion 6.3.2, and then obtain the new iterates (xf , yf , sf ) as follows:
xf = x+ θp∆

fx, yf = y + θd∆
fy and sf = s+ θd∆

fs.6.3.6 ResultsIn this se
tion, we present our numeri
al results. Motivated by the theoreti
alresults, whi
h say that the kernel fun
tion ψ3 gives the best known theoreti
aliteration bound for large-update IIPMs, we 
ompare the performan
e of the al-gorithm des
ribed in the previous subse
tion based on both the logarithmi
 bar-rier fun
tion and the ψ3-based barrier fun
tion. As the theory suggests, we use
q = logn

6 in ψ3.Our test was done on a standard PC with Intelr CoreTM 2 Duo CPU and 3.25GB of RAM. The 
ode was implemented by version 7.11.0 (R2010b) of MATLABron a Windows XP Professional operating system. The problems 
hosen for ourtest are from the NETLIB set. To simplify the study, we 
hose the problemswhi
h have the following format:
min

{

cTx : Ax = b, x ≥ 0
}

;i.e., there is no nonzero lower bound or �nite upper bound on the de
ision vari-ables. These problems are listed in Tables 6.3 and 6.4.We perform the following prepro
essing before the main algorithm starts torun whi
h are in 
ommon with LIPSOL: 
he
king obvious infeasibility, deleting�xed variables and zero rows and 
olumns from the matrix A and solving singleton
onstraints, if any required. As mentioned in Se
tion 6.2, in addition to these a
-tions, in LIPSOL, Zhang s
ales the problem and makes the matrix A stru
turallyfull rank. We disabled both of these phases when running LIPSOL.Numeri
al results are presented in Tables 6.1 and 6.2. In the se
ond and thefourth 
olumns, we listed the total number of iterations of the algorithm basedon, respe
tively, ψ1, the kernel fun
tion of the logarithmi
 barrier fun
tion, and
ψ3. The third and �fth 
olumns 
ontain the quantity E(x, y, s). The iterationnumbers of the LIPSOL pa
kage are given in the sixth 
olumn of these tables, andthe seventh 
olumn lists the quantity E(x, y, s) of the LIPSOL pa
kage. In ea
hrow, the dark gray 
ell denotes the smallest of the iteration numbers of the threealgorithms, and the bold number denotes the smallest of the iteration numbers ofthe ψ1-based and the ψ3-based algorithms.As it 
an be noti
ed from the last row of the table, the overall performan
eof the algorithm based on ψ1 is mu
h better than that the variant based on
ψ3. However, in some of the problems, the ψ3-based algorithm outperforms the
ψ1-based algorithm. This happens for the problems AGG, BANDM, DEGEN2,DEGEN3, SCSD1, SCSD6, SCSD8 and SHARE2B. Obviously, LIPSOL is stillthe 
hampion; though, our ψ1-based algorithm saves one iteration 
ompared withLIPSOL for the problems AGG2 and AGG3, and two iterations for STOCFOR1.



6.3 IMPLEMENTATION OF OUR LARGE-UPDATE IIPM 113Problem ψ1 ψ3 LIPSOLit. E(x, y, s) it. E(x, y, s) it. E(x, y, s)25FV47 26 1.8E-007 32 1.1E-007 25 2.8E-007ADLITTLE 12 6.8E-008 12 1.3E-007 11 2.4E-011AFIRO 8 1.0E-007 8 8.6E-008 7 3.7E-009AGG 17 8.8E-007 19 2.7E-007 18 1.1E-008AGG2 17 9.5E-007 18 2.7E-007 18 2.6E-010AGG3 18 3.0E-007 18 6.0E-007 16 6.2E-008BANDM 20 2.6E-007 18 8.5E-007 16 3.6E-007BEACONFD 11 1.1E-007 11 5.9E-007 11 1.2E-010BLEND 13 6.2E-007 13 1.7E-008 12 5.7E-011BNL1 32 5.0E-007 34 2.2E-007 25 5.3E-008BNL2 33 4.1E-007 35 5.6E-007 31 1.3E-007BRANDY 19 2.5E-007 20 4.3E-007 18 2.0E-008D2Q06C 28 5.6E-001 45 1.3E-007 28 4.8E-007DEGEN2 25 1.3E-004 16 2.8E-005 13 4.2E-007DEGEN3 23 1.4E-004 21 5.3E-004 19 1.4E-007E226 22 7.4E-007 22 8.3E-008 20 8.9E-007FFFFF800 26 1.0E-006 27 3.5E-006 26 3.0E-007ISRAEL 22 2.0E-007 23 2.2E-007 20 2.2E-007LOTFI 16 3.7E-007 18 6.8E-006 15 4.6E-008MAROS-R7 19 8.0E-007 19 2.4E-008 14 1.0E-009SC105 10 1.7E-008 10 1.5E-008 9 4.2E-008SC205 11 2.5E-007 12 3.6E-008 11 6.5E-009SC50A 9 1.4E-007 9 9.4E-008 9 2.8E-009Table 6.1: Numeri
al results (q = log n

6
in ψ3)



114 6 IMPLEMENTATION: ISSUES AND RESULTSProblem ψ1 ψ3 LIPSOLit. E(x, y, s) it. E(x, y, s) it. E(x, y, s)SC50B 7 5.4E-007 7 4.0E-007 7 1.6E-007SCAGR7 13 3.1E-007 13 5.8E-007 11 3.5E-007SCFXM1 18 4.2E-007 23 3.7E-007 16 3.7E-007SCFXM2 21 1.4E-006 22 1.3E-007 19 1.6E-008SCFXM3 23 1.3E-007 25 5.9E-008 20 3.0E-010SCSD1 13 3.9E-007 12 4.3E-008 10 3.3E-011SCSD6 15 3.8E-007 13 3.3E-008 11 7.8E-008SCSD8 13 6.4E-008 12 2.4E-007 11 4.0E-011SCTAP1 18 5.5E-007 20 1.1E-007 16 1.2E-008SCTAP2 19 1.3E-007 19 2.2E-008 18 3.5E-009SCTAP3 19 6.4E-007 19 1.3E-008 17 2.4E-008SHARE1B 23 6.0E-007 26 1.0E-008 21 1.9E-010SHARE2B 12 1.3E-008 11 8.5E-007 11 1.7E-007SHIP04L 15 7.8E-007 17 1.6E-007 12 5.6E-011SHIP04S 15 3.2E-007 16 5.3E-008 12 3.6E-007SHIP12L 19 9.1E-007 27 5.4E-007 15 7.7E-009SHIP12S 17 1.3E-007 19 3.4E-008 15 3.6E-007STOCFOR1 14 4.9E-007 23 9.2E-007 16 1.1E-007STOCFOR2 25 1.8E-007 33 2.0E-008 21 2.3E-008TRUSS 18 3.9E-007 20 7.3E-007 17 8.4E-007WOOD1P 17 8.3E-007 18 9.7E-006 14 7.0E-010WOODW 25 3.1E-007 25 9.9E-007 23 5.1E-010Total 816 880 725Table 6.2: Numeri
al results (q = logn

6
in ψ3)



6.3 IMPLEMENTATION OF OUR LARGE-UPDATE IIPM 115Problem rows 
olumns nonzeros Optimal obje
tive25FV47 821 1876 10705 5.50185E+003ADLITTLE 56 138 424 2.25495E+005AFIRO 27 51 102 �4.64753E+002AGG 488 615 2862 �3.59918E+007AGG2 516 758 4740 �2.02393E+007AGG3 516 758 4756 1.03121E+007BANDM 305 472 2494 �1.58628E+002BEACONFD 173 295 3408 3.35925E+004BLEND 74 114 522 �3.08121E+001BNL1 643 1586 5532 1.97763E+003BNL2 2324 4486 14996 1.81124E+003BRANDY 220 303 2202 1.51851E+003D2Q06C 2171 5831 33081 1.22784E+005DEGEN2 444 757 4201 �1.43518E+003DEGEN3 1503 2604 25432 �9.87294E+002E226 223 472 2768 �1.87519E+001FFFFF800 524 1028 6401 5.55680E+005ISRAEL 174 316 2443 �8.96645E+005LOTFI 153 366 1136 �2.52647E+001MAROS-R7 3136 9408 144848 1.49719E+006SC105 105 163 340 �5.22021E+001SC205 205 317 665 �5.22021E+001SC50A 50 78 160 �6.45751E+001Table 6.3: Netlib problems



116 6 IMPLEMENTATION: ISSUES AND RESULTS
Problem rows 
olumns nonzeros Optimal obje
tiveSC50B 50 78 148 �7.00000E+001SCAGR7 129 185 465 �2.33139E+006SCFXM1 330 600 2732 1.84168E+004SCFXM2 660 1200 5469 3.66603E+004SCFXM3 990 1800 8206 5.49013E+004SCSD1 77 760 2388 8.66667E+000SCSD6 147 1350 4316 5.05000E+001SCSD8 397 2750 8584 9.05000E+002SCTAP1 300 660 1872 1.41225E+003SCTAP2 1090 2500 7334 1.72481E+003SCTAP3 1480 3340 9734 1.42400E+003SHARE1B 117 253 1179 �7.65893E+004SHARE2B 96 162 777 �4.15732E+002SHIP04L 402 2166 6380 1.79332E+006SHIP04S 402 1506 4400 1.79871E+006SHIP12L 1151 5533 16276 1.47019E+006SHIP12S 1151 2869 8284 1.48924E+006STOCFOR1 117 165 501 �4.11320E+004STOCFOR2 2157 3045 9357 �3.90244E+004TRUSS 1000 8806 27836 4.58816E+005WOOD1P 244 2595 70216 1.44290E+000WOODW 1098 8418 37487 1.30448E+000Table 6.4: Netlib problems



7Con
lusions7.1 Con
luding remarksIn this thesis, we analyze large-update infeasible interior-point methods (IIPMs)for LO. Our work is motivated by [97℄ in whi
h Roos presents a full-NewtonIIPM for LO. Sin
e the analysis of our large-update IIPMs requires properties ofbarrier fun
tions based on kernel fun
tions that are used in large-update feasibleinterior-point methods (FIPMs), we present primal-dual large-update FIPMs forLO based on kernel fun
tions, as well.In Roos' algorithm, the iterates move within small neighborhoods of the µ-
enters of the perturbed problem pairs. As in many IIPMs, the algorithm redu
esthe infeasibility and the duality gap at the same rate. His algorithm has theadvantage that it uses full Newton steps and hen
e no 
al
ulation of step size isneeded. Moreover, its theoreti
al iteration bound is O(n log(ǫ(ζe, 0, ζe)/ε)) whi
h
oin
ides with the best-known iteration bound for IIPMs. Nevertheless, it has thede�
ien
y that it is too slow in pra
ti
e.We attempt to design a large-update version of Roos' algorithm whi
h al-lows larger redu
tions of ǫ(x, y, s) at an iteration. This requires that the para-meter θ is larger than O(1/n), even θ = O(1). Unfortunately, the result of thetheoreti
al analysis in Chapter 5 implies that θ is O(1/(n(logn)2)) whi
h yields
O(n

√
n(log n)3 log(ǫ(ζe, 0, ζe)/ε) iteration bound for a variant. Sin
e the theoret-i
al 
omplexity of the algorithm is disappointing, we rely on the numeri
al resultsto establish that our algorithm is really a large-update method. A pra
ti
allye�
ient version of the algorithm is presented and its numeri
al results are 
om-pared with the well-known LIPSOL pa
kage. Fortunately, the numeri
al resultsseem promising as our algorithm has iteration numbers 
lose to those of LIPSOLand, in a few 
ases, outperforms LIPSOL. This makes 
lear that IIPMs su�erfrom the same irony as FIPMs, i.e., regardless of their ni
e pra
ti
al performan
e,the theoreti
al 
omplexity of large-update methods is worse. Re
all that the best117
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Figure 7.1: Typi
al behavior of Ψ(v̂) as a fun
tion of θknown iteration bound for large-update IIPMs is O(n√n logn log(ǫ(ζe, 0, ζe)/ε)whi
h is due to Salahi et al. [101℄.As in other su

essful implementations like e.g., [64, 120℄, di�erent step sizesin the primal and the dual spa
es are used in our implementation. This givesrise to a faster a
hievement in feasibility than when identi
al step sizes are used.Moreover, inspired by the LIPSOL pa
kage, we use a predi
tor-
orre
tor step inthe feasibility step of the algorithm.7.2 Further resear
hIn this se
tion, we mention a few dire
tions for future resear
h that are related tothe subje
t of this thesis.
• As mentioned before, our algorithm has a fa
tor (log n)2 worse iterationbound than the best known iteration bound for large-update IIPMs. Onemay 
onsider how to modify the analysis su
h that the iteration bound ofour algorithm is improved by a fa
tor (log n)2.
• As mentioned in Se
tion 7.1, a

ording to the analysis of our algorithmpresented in Chapter 5, the barrier-updating parameter θ isO(1/(n(log n)2)).This yields the loose iteration bound given by (5.45). This slender value of θis obtained be
ause of some di�
ulties in the analysis of the algorithm whi
huses the largest value of θ, satisfying (5.21), to assure that Ψ(v̂) = O(n).



7.2 FURTHER RESEARCH 119This value of θ is mu
h smaller than the best value we may 
hoose. A typi
algraph of Ψ(v̂), as a fun
tion of θ, is as depi
ted in Figure 7.1. Assuming
n = 60, the largest value of θ satisfying Ψ(v̂) = n is 0.788840 while the valueof θ suggested by theory is 0.107140. A future resear
h may fo
uss on somenew analysis of the algorithm whi
h yields some larger value of θ.

• Roos' full-Newton step IIPM was extended to Semide�nite Optimization(SDO) by Mansouri and Roos [67℄, to Symmetri
 Optimization (SO) by Guet al. [47℄ and to LCP by Mansouri et al. [68℄. An extension of large-updateFIPMs based on kernel fun
tions to SDO was presented by El Ghami [37℄.One may 
onsider how our algorithm behaves in theory and pra
ti
e whenit is extended to the 
ases of SDO, SO and LCP.





Bibliography[1℄ I. Adler, G. C. Resende, G. Veiga, and N. Karmarkar. An implementationof Karmarkar's algorithm for linear programming. Mathemati
al Program-ming, 44(3, (Ser. A)):297�335, 1989.[2℄ K. Amini and A. Haseli. A new proximity fun
tion generating the bestknown iteration bounds for both large-update and small-update interior-point methods. ANZIAM J., 49(2):259�270, 2007.[3℄ Erling D. Andersen and Knud D. Andersen. The Mosek interior point op-timizer for linear programming: an implementation of the homogeneousalgorithm. In High performan
e optimization, volume 33 of Appl. Optim.,pages 197�232. Kluwer A
ad. Publ., Dordre
ht, 2000.[4℄ K. M. Anstrei
her. A monotoni
 proje
tive algorithm for fra
tional linearprogramming. Algorithmi
a, 1(4):483�498, 1986.[5℄ K. M. Anstrei
her. A standard form variant, and safeguarded linesear
h,for the modi�ed Karmarkar algorithm. Mathemati
al Programming, 47(3,(Ser. A)):337�351, 1990.[6℄ K. M. Anstrei
her. Potential redu
tion algorithms. In Interior point methodsof mathemati
al programming, volume 5 of Appl. Optim., pages 125�158.Kluwer A
ad. Publ., Dordre
ht, 1996.[7℄ K. M. Anstrei
her and R. A. Bos
h. Long steps in an O(n3L) algorithm forlinear programming. Mathemati
al Programming, 54(3):251�265, 1992.[8℄ A. Asadi, G. Gu, and C. Roos. Convergen
e of the homotopy path for a full-newton step infeasible interior-point method. Operations Resear
h Letters,38(2):147 � 151, 2010.[9℄ A. Asadi and C. Roos. A 
lass of large-update infeasible interior-pointalgorithms for linear optimization. Submitted to Optimization Methods &Software, 2010. 121



122 BIBLIOGRAPHY[10℄ Y. Q. Bai, M. El Ghami, and C. Roos. A 
omparative study of kernelfun
tions for primal-dual interior-point algorithms in linear optimization.SIAM J. Optim., 15(1):101�128 (ele
troni
), 2004.[11℄ Y. Q. Bai, M. El Ghami, and C. Roos. A primal-dual interior-point al-gorithm for linear optimization based on a new proximity fun
tion. Optim-ization Methods & Software, 17(6):985�1008, 2002.[12℄ Y. Q. Bai, J. Guo, and C. Roos. A new kernel fun
tion yielding the bestknown iteration bounds for primal-dual interior-point algorithms. A
taMathemati
a Sini
a, 25:2169�2178, De
ember 2009.[13℄ E. R. Barnes. A variation on Karmarkar's algorithm for solving linear pro-gramming problems. Mathemati
al Programming, 36(2):174�182, 1986.[14℄ S. C. Billups and M. C. Ferris. Convergen
e of an infeasible interior-point al-gorithm from arbitrary positive starting points. SIAM J. Optim., 6(2):316�325, 1996.[15℄ R. G. Bland, D. Goldfarb, and M. J. Todd. The ellipsoid method: a survey.Oper. Res., 29(6):1039�1091, 1981.[16℄ A. Charnes, W. W. Cooper, and A. Henderson. An introdu
tion to linearprogramming. John Wiley & Sons In
., New York, 1953.[17℄ I. C. Choi, C. L. Monma, and D. F. Shanno. Further development of aprimal�dual interior point method. ORSA Journal on Computing, 2:304�311, 1990.[18℄ J. Czyzyk, S. Mehrotra, M. Wagner, and S. Wright. PCx: an interior-point
ode for linear programming. Optimization Methods & Software, 11/12(1-4):397�430, 1999.[19℄ G. B. Dantzig. Reminis
en
es about the origins of linear programming.Operations Resear
h Letters, 1(2):43�48, 1981/82.[20℄ G. B. Dantzig. Linear programming and extensions. Prin
eton Landmarks inMathemati
s. Prin
eton University Press, Prin
eton, NJ, 
orre
ted edition,1998.[21℄ T. A. Davis. Dire
t methods for sparse linear systems, volume 2 of Fun-damentals of Algorithms. So
iety for Industrial and Applied Mathemati
s(SIAM), Philadelphia, PA, 2006.[22℄ G. de Ghellin
k and J.-Ph. Vial. A polynomial Newton method for linearprogramming. Algorithmi
a, 1(4):425�453, 1986.



BIBLIOGRAPHY 123[23℄ D. den Hertog and C. Roos. A survey of sear
h dire
tions in interior pointmethods for linear programming. Mathemati
al Programming, 52(3):481�509, 1991.[24℄ D. den Hertog, C. Roos, and T. Terlaky. A potential-redu
tion variant ofRenegar's short-step path-following method for linear programming.[25℄ D. den Hertog, C. Roos, and J.-Ph. Vial. A 
omplexity redu
tion for thelong-step path-following algorithm for linear programming. SIAM J. Op-tim., 2(1):71�87, 1992.[26℄ I. I. Dikin. Iterative solution of problems of linear and quadrati
 program-ming. Dokl. Akad. Nauk SSSR, 174:747�748, 1967.[27℄ M. L. Dowling. An a�ne s
aling algorithm for linear programming problemswith inequality 
onstraints. Math. Methods Oper. Res., 43(3):301�318, 1996.[28℄ H. A. Eiselt and C.-L. Sandblom. Linear programming and its appli
ations.Springer, Berlin, 2007.[29℄ M. V. Èl′vov. Analysis of the 
onvergen
e of a 
lass of barrier-proje
tivemethods for solving linear programming problems. Zh. Vy
hisl. Mat. Mat.Fiz., 38(9):1525�1533, 1998.[30℄ A. V. Fia

o and G. P. M
Cormi
k. Nonlinear programming: Sequentialun
onstrained minimization te
hniques. John Wiley and Sons, In
., NewYork-London-Sydney, 1968.[31℄ C. Fraley and J.-Ph. Vial. Numeri
al study of proje
tive methods for linearprogramming. InOptimization (Varetz, 1988), volume 1405 of Le
ture Notesin Math., pages 25�38. Springer, Berlin, 1989.[32℄ R. M. Freund. Polynomial�time algorithms for linear programming basedonly on primal s
aling and proje
ted gradients of a potential fun
tion. Math-emati
al Programming, 51:203�222, 1991.[33℄ D. Gale, H. W. Kuhn, and A. W. Tu
ker. Linear programming and thetheory of games. In A
tivity Analysis of Produ
tion and Allo
ation, CowlesCommission Monograph No. 13, pages 317�329. John Wiley & Sons In
.,New York, N. Y., 1951.[34℄ S. I. Gass and A. A. Assad. An annotated timeline of operations resear
h:an informal history. International Series in Operations Resear
h & Man-agement S
ien
e, 75. Kluwer A
ademi
 Publishers, Boston, MA, 2005.[35℄ D. M. Gay. A variant of Karmarkar's linear programming algorithm forproblems in standard form. Mathemati
al Programming, 37(1):81�90, 1987.



124 BIBLIOGRAPHY[36℄ A. George and J. W. H. Liu. Computer solution of large sparse positivede�nite systems. Prenti
e-Hall In
., Englewood Cli�s, N.J., 1981. Prenti
e-Hall Series in Computational Mathemati
s.[37℄ M. El Ghami. New primal-dual interior-point method based on kernel fun
-tions. PhD thesis, Delft Univ. of Te
hnology, The Netherlands, 2005.[38℄ P. E. Gill, W. Murray, and M. A. Saunders. A single � phase dual barriermethod for linear programming. Te
hni
al Report SOL 88�10, Systems Op-timization Laboratory, Dept. of Operations Resear
h, Stanford University,Stanford, CA 94305, USA, August 1988.[39℄ Ph. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright.On proje
ted newton barrier methods for linear programming and an equi-valen
e to karmarkar's proje
tive method. Mathemati
al Programming,36(2):183�209, 1986.[40℄ D. Goldfarb and M. J. Todd. Modi�
ations and implementation of theellipsoid algorithm for linear programming. Mathemati
al Programming,23(1):1�19, 1982.[41℄ A. J. Goldman and A. W. Tu
ker. Theory of linear programming. InLinear inequalities and related systems, Annals of Mathemati
s Studies, no.38, pages 53�97. Prin
eton University Press, Prin
eton, N.J., 1956.[42℄ C. C. Gonzaga. An algorithm for solving linear programming programsin O(n3L) operations. In on Progress in Mathemati
al Programming:Interior-Point and Related Methods, pages 1�28, New York, NY, USA, 1989.Springer-Verlag New York, In
.[43℄ C. C. Gonzaga. Interior point algorithms for linear programming with in-equality 
onstraints. Mathemati
al Programming, 52(2, Ser. B):209�225,1991.[44℄ C. C. Gonzaga. Large�step path�following methods for linear programming,Part I : Barrier fun
tion method. SIAM J. Optim., 1:268�279, 1991.[45℄ C. C. Gonzaga. Path-following methods for linear programming. SIAMRev., 34(2):167�224, 1992.[46℄ G. Gu, H. Mansouri, M. Zangiabadi, Y. Q. Bai, and C. Roos. Improved full-newton step O(n) infeasible interior-point method for linear optimization.Journal of Optimization Theory and Appli
ations, 145(2), 2010.[47℄ G. Gu, M. Zangiabadi, and C. Roos. Full Nesterov-Todd step infeasibleinterior-point method for symmetri
 optimization. To appear in EuropeanJournal of Operational Resear
h.



BIBLIOGRAPHY 125[48℄ Farkas J. Über die Theorie der Einfa
hen Unglei
hungen. Journal für dieReine und Angewandte Mathematik, 124:1�27, 1902.[49℄ Fourier J. Solution d' une question parti
uliére du 
al
ul des inégalités.Nouveau Bulletin des s
ien
es par la So
iété philomathique de Paris, pages99�100, 1826.[50℄ B. Jansen, C. Roos, T. Terlaky, and J.-P. Vial. Primal-dual algorithms forlinear programming based on the logarithmi
 barrier method. J. Optim.Theory Appl., 83(1):1�26, 1994.[51℄ N. Karmarkar. A new polynomial-time algorithm for linear programming.Combinatori
a, 4(4):373�395, 1984.[52℄ L. G. Kha
hiyan. A polynomial algorithm in linear programming. Dokl.Akad. Nauk SSSR, 244(5):1093�1096, 1979. Translated into English in So-viet Mathemati
s Doklady 20, 191�-194.[53℄ V. Klee and G. J. Minty. How good is the simplex algorithm? In Inequalit-ies, III (Pro
. Third Sympos., Univ. California, Los Angeles, Calif., 1969;dedi
ated to the memory of Theodore S. Motzkin), pages 159�175. A
ademi
Press, New York, 1972.[54℄ M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algorithm for linear programming. Mathemati
al Programming, 61(3,Ser. A):263�280, 1993.[55℄ M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm fora 
lass of linear 
omplementarity problems. Mathemati
al Programming,44(1, (Ser. A)):1�26, 1989.[56℄ M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point al-gorithm for linear programming. In Progress in mathemati
al programming(Pa
i�
 Grove, CA, 1987), pages 29�47. Springer, New York, 1989.[57℄ M. Kojima, S. Mizuno, and A. Yoshise. An O(
√
nL) iteration potentialredu
tion algorithm for linear 
omplementarity problems. Mathemati
alProgramming, 50(3, (Ser. A)):331�342, 1991.[58℄ M. Kojima, T. Noma, and A. Yoshise. Global 
onvergen
e in infeasible-interior-point algorithms. Mathemati
al Programming, 65(1, Ser. A):43�72,1994.[59℄ J. K. Lenstra, A. H. G. Rinnooy Kan, and A. S
hrijver, editors. History ofmathemati
al programming: a 
olle
tion of personal reminis
en
es. North-Holland Publishing Co., Amsterdam, 1991.



126 BIBLIOGRAPHY[60℄ D. G. Luenberger and Y. Ye. Linear and nonlinear programming. Interna-tional Series in Operations Resear
h & Management S
ien
e, 116. Springer,New York, third edition, 2008.[61℄ I. J. Lustig. A pra
ti
al approa
h to Karmarkar's algorithm. Te
hni
alReport SOL 85�5, Systems Optimization Laboratory, Dept. of OperationsResear
h, Stanford University, Stanford, CA 94305, USA, 1985.[62℄ I. J. Lustig. Feasibility issues in a primal-dual interior-point method forlinear programming. Mathemati
al Programming, 49(2, (Ser. A)):145�162,1990/91.[63℄ I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experien
ewith a primal-dual interior point method for linear programming. LinearAlgebra Appl., 152:191�222, 1991.[64℄ I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing Mehrotra'spredi
tor-
orre
tor interior-point method for linear programming. SIAM J.Optim., 2(3):435�449, 1992.[65℄ I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experien
ewith a globally 
onvergent primal-dual predi
tor-
orre
tor algorithm for lin-ear programming. Mathemati
al Programming, 66(1, Ser. A):123�135, 1994.[66℄ H. Mansouri and C. Roos. Simpli�ed O(nL) infeasible interior-point al-gorithm for linear optimization using full-Newton steps. Optimization Meth-ods & Software, 22(3):519�530, 2007.[67℄ H. Mansouri and C. Roos. A new full-Newton step O(n) infeasibleinterior-point algorithm for semide�nite optimization. Numer. Algorithms,52(2):225�255, 2009.[68℄ H. Mansouri, M. Zangiabadi, and M. Pirhaji. A full-Newton step O(n)infeasible-interior-point algorithm for linear 
omplementarity problems.Nonlinear Anal. Real World Appl., 12(1):545�561, 2011.[69℄ R. E. Marsten, R. Subramanian, M. Saltzman, I. J. Lustig, and D. F.Shanno. Interior Point Methods for Linear Programming: Just Call New-ton, Lagrange, and Fia

o and M
Cormi
k! INTERFACES, 20(4):105�116,1990.[70℄ J. F. M
Closkey. The beginnings of operations resear
h: 1934�1941. Oper.Res., 35(1):143�152, 1987.[71℄ K.A. M
Shane, C.L. Monma, and D.F. Shanno. An implementation of aprimal-dual interior point method for linear programming. ORSA Journalon Computing, 1:70�83, 1989.



BIBLIOGRAPHY 127[72℄ N. Megiddo. Pathways to the optimal set in linear programming. In Progressin mathemati
al programming (Pa
i�
 Grove, CA, 1987), pages 131�158.Springer, New York, 1989.[73℄ N. Megiddo and M. Shub. Boundary behavior of interior point algorithmsin linear programming. Math. Oper. Res., 14(1):97�146, 1989.[74℄ S. Mehrotra. On the implementation of a primal-dual interior point method.SIAM J. Optim., 2(4):575�601, 1992.[75℄ S. Mizuno. Polynomiality of infeasible-interior-point algorithms for linearprogramming. Mathemati
al Programming, 67(1, Ser. A):109�119, 1994.[76℄ S. Mizuno, M. Kojima, and M. J. Todd. Infeasible-interior-point primal-dualpotential-redu
tion algorithms for linear programming. SIAM J. Optim.,5(1):52�67, 1995.[77℄ S. Mizuno, M. J. Todd, and Y. Ye. On adaptive-step primal-dual interior-point algorithms for linear programming. Math. Oper. Res., 18(4):964�981,1993.[78℄ S. Mizuno, M. J. Todd, and Y. Ye. A surfa
e of analyti
 
enters and primal-dual infeasible-interior-point algorithms for linear programming. Math.Oper. Res., 20(1):135�162, 1995.[79℄ C. L. Monma and A. J. Morton. Computational experien
e with a duala�ne variant of Karmarkar's method for linear programming. OperationsResear
h Letters, 6(6):261 � 267, 1987.[80℄ R. D. C. Monteiro and I. Adler. Interior path�following primal-dual al-gorithms. Part I. Linear programming. Mathemati
al Programming, 44(1,(Ser. A)):27�41, 1989.[81℄ R. D. C. Monteiro, I. Adler, and M. G. C. Resende. A polynomial-timeprimal-dual a�ne s
aling algorithm for linear and 
onvex quadrati
 pro-gramming and its power series extension. Math. Oper. Res., 15(2):191�214,1990.[82℄ B. A. Murtagh and M. A. Saunders. Large-s
ale linearly 
onstrained op-timization. Mathemati
al Programming, 14(1):41�72, 1978.[83℄ J. V. Neumann. On a maximization problem (manus
ript). Institute forAdvan
ed Study, Prin
eton University, Prin
eton, NJ 08544, USA, 1947.[84℄ M. Padberg. A di�erent 
onvergen
e proof of the proje
tive method forlinear programming. Operations Resear
h Letters, 4(6):253�257, 1986.



128 BIBLIOGRAPHY[85℄ J. Peng, C. Roos, and T. Terlaky. New 
omplexity analysis of the primal-dual Newton method for linear optimization. Ann. Oper Res., 99:23�39(2001), 2000.[86℄ J. Peng, C. Roos, and T. Terlaky. A new and e�
ient large-update interior-point method for linear optimization. Vy
hisl. Tekhnol., 6(4):61�80, 2001.[87℄ J. Peng, C. Roos, and T. Terlaky. Self-regular fun
tions and new sear
hdire
tions for linear and semide�nite optimization. Mathemati
al Program-ming, 93:129�171, 2002.[88℄ J. Peng and T. Roos, C.and Terlaky. Self-regularity: a new paradigm forprimal-dual interior-point algorithms. Prin
eton Series in Applied Mathem-ati
s. Prin
eton University Press, Prin
eton, NJ, 2002.[89℄ M. Peyghami. Two New Proximity Fun
tions for Feasible Interior-PointMethods and a Show of an Ill-behaved Central Path. PhD thesis, SharifUniversity of Te
hnology, Iran, 2005.[90℄ F. Potra. An infeasible interior-point predi
tor-
orre
tor algorithm for lin-ear programming. Reports on Computational Mathemati
s 26, Dept. ofMathemati
s, The University of Iowa, Iowa City, IA 52242, USA, June1992.[91℄ F. Potra. An infeasible-interior-point predi
tor-
orre
tor algorithm for lin-ear programming. SIAM J. Optim., 6(1):19�32, 1996.[92℄ J. Renegar. A polynomial-time algorithm, based on Newton's method forlinear programming. Mathemati
al Programming, 40(1):59�93, 1988.[93℄ J. Renegar. A mathemati
al view of interior-point methods in 
onvex op-timization. MPS/SIAM Series on Optimization. So
iety for Industrial andApplied Mathemati
s (SIAM), Philadelphia, PA, 2001.[94℄ G. Rinaldi. A proje
tive method for linear programming with box-type
onstraints. Algorithmi
a, 1(4):517�527, 1986.[95℄ C. Roos. New traje
tory�following polynomial�time algorithm for linearprogramming problems. Journal of Optimization Theory and Appli
ations,63:433�458, 1989.[96℄ C. Roos. An O(n3L) approximate 
enter method for linear programming.In S. Dole
ki, editor, Optimization : Pro
eedings of the 5th Fren
h�GermanConferen
e in Castel�Novel, Varetz, Fran
e, O
tober 1988, volume 1405of Le
ture Notes in Mathemati
s, pages 147�158. Springer Verlag, Berlin,Germany, 1989.



BIBLIOGRAPHY 129[97℄ C. Roos. A full-Newton step O(n) infeasible interior-point algorithm forlinear optimization. SIAM J. Optim., 16(4):1110�1136 (ele
troni
), 2006.[98℄ C. Roos, T. Terlaky, and J.-Ph. Vial. Interior point methods for linearoptimization. Springer, New York, 2006. Se
ond edition of Theory andalgorithms for linear optimization [Wiley, Chi
hester, 1997℄.[99℄ C. Roos and J.-Ph. Vial. Long steps with the logarithmi
 penalty barrierfun
tion in linear programming. In J. Gabszevwi
z, J. F. Ri
hard, andL. Wolsey, editors, E
onomi
 De
ision�Making : Games, E
onomi
s andOptimization, dedi
ated to J. H. Dreze, pages 433�441. Elsevier S
ien
ePublisher B.V., Amsterdam, The Netherlands, 1989.[100℄ C. Roos and J.-Ph. Vial. A polynomial method of approximate 
enters forlinear programming. Mathemati
al Programming, 54(3):295�305, 1992.[101℄ M. Salahi, M. R. Peyghami, and T. Terlaky. New 
omplexity analysisof IIPMs for linear optimization based on a spe
i�
 self-regular fun
tion.European J. Oper. Res., 186(2):466�485, 2008.[102℄ G. Sonnevend. An �analyti
 
enter� for polyhedrons and new 
lasses ofglobal algorithms for linear (smooth, 
onvex) programming. In A. Prékopa,J. Szelezsán, and B. Strazi
ky, editors, System Modelling and Optimiza-tion : Pro
eedings of the 12th IFIP-Conferen
e held in Budapest, Hungary,September 1985, volume 84 of Le
ture Notes in Control and InformationS
ien
es, pages 866�876. Springer Verlag, Berlin, West�Germany, 1986.[103℄ H. Taha. Operations resear
h. Pearson Edu
ation, In
., Upper Saddle River,New Jersey 07458, eighth edition, 2007.[104℄ K. Tanabe. Centered Newton method for mathemati
al programming. InSystem modelling and optimization (Tokyo, 1987), volume 113 of Le
tureNotes in Control and Inform. S
i., pages 197�206. Springer, Berlin, 1988.[105℄ K. Tanabe. Centered newton method for mathemati
al programming. InSystem modelling and optimization (Tokyo, 1987), volume 113 of Le
tureNotes in Control and Inform. S
i., pages 197�206. Springer, Berlin, 1988.[106℄ M. J. Todd. Potential-redu
tion methods in mathemati
al programming.Mathemati
al Programming, 76(1, Ser. B):3�45, 1997. Interior point meth-ods in theory and pra
ti
e (Iowa City, IA, 1994).[107℄ M. J. Todd and Y. F. Wang. On 
ombined phase I�phase II proje
tivemethods for linear programming. Algorithmi
a, 9(1):64�83, 1993.[108℄ M. J. Todd and Y. Ye. A 
entered proje
tive algorithm for linear program-ming. Math. Oper. Res., 15(3):508�529, 1990.



130 BIBLIOGRAPHY[109℄ J. A. Tomlin. An experimental approa
h to Karmarkar's proje
tive methodfor linear programming. Math. Programming Stud., (31):175�191, 1987.[110℄ T. Tsu
hiya. Theoreti
al analysis of an a�ne s
aling algorithm: the interiorpoint method and a duality theorem. Pro
. Inst. Statist. Math., 42(2):277�296, 1994.[111℄ P. M. Vaidya. An algorithm for linear programming whi
h requires O(((m+
n)n2 + (m+ n)1.5n)L) arithmeti
 operations. In STOC '87: Pro
eedings ofthe nineteenth annual ACM symposium on Theory of 
omputing, pages 29�38, New York, NY, USA, 1987. ACM.[112℄ R. J. Vanderbei. LOQO: an interior point 
ode for quadrati
 programming.Optimization Methods & Software, 11/12(1-4):451�484, 1999.[113℄ R. J. Vanderbei and J. C. Lagarias. I. I. Dikin's 
onvergen
e result for thea�ne-s
aling algorithm. In Mathemati
al developments arising from linearprogramming (Brunswi
k, ME, 1988), volume 114 of Contemp. Math., pages109�119. Amer. Math. So
., Providen
e, RI, 1990.[114℄ R. J. Vanderbei, M. S. Meketon, and B. A. Freedman. A modi�
ationof karmarkar's linear programming algorithm. Algorithmi
a, 1(4):395�407,1986.[115℄ S. Wright. Primal-dual interior-point methods. So
iety for Industrial andApplied Mathemati
s (SIAM), Philadelphia, PA, 1997.[116℄ Y. Ye. A 
lass of proje
tive transformations for linear programming. SIAMJ. Comput., 19(3):457�466, 1990.[117℄ Y. Ye. An O(n3L) potential redu
tion algorithm for linear programming.Mathemati
al Programming, 50(2, (Ser. A)):239�258, 1991.[118℄ Y. Ye. Interior point algorithms. Wiley-Inters
ien
e Series in Dis
rete Math-emati
s and Optimization. John Wiley & Sons In
., New York, 1997.[119℄ Y. Zhang. On the 
onvergen
e of a 
lass of infeasible interior-point meth-ods for the horizontal linear 
omplementarity problem. SIAM J. Optim.,4(1):208�227, 1994.[120℄ Y. Zhang. Solving large-s
ale linear programs by interior-point methods un-der the MATLAB environment. Optimization Methods & Software, 10(1):1�31, 1998.[121℄ Y. Zhang and D. Zhang. On polynomiality of the Mehrotra-type predi
tor-
orre
tor interior-point algorithms. Mathemati
al Programming, 68(3, Ser.A):303�318, 1995.



List of notations and abbreviationsSets
R �eld of real numbers.
R+ set of nonnegative real number.
R++ set of positive real numbers.
R

n set of real n-ve
tors (n× 1 matri
es).
R

m×n set of real m× n matri
es.Ve
tors and matri
es
e all-one ve
tor.
I identity matrix.AbbreviationsIPC interior-point 
ondition.IPM(s) interior-point method(s).FIPM(s) feasible interior-point method(s).IIPM(s) infeasible interior-point method(s).PFM(s) path-following method(s).PRM(s) potential-redu
tion method(s).PC predi
tor-
orre
tor.LO linear optimization.QP quadrati
 problem.LCP linear 
omplementarity problem.HLCP horizontal linear 
omplementarity problem.
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SummaryLarge-update Infeasible Interior-Point Algorithms for LinearOptimizationRe
ently, Roos [97℄ proposed a full-Newton step infeasible interior-point method(IIPM) for linear optimization (LO). Shortly afterwards, Mansouri and Roos [66℄presented a variant of this algorithm and Gu et al. [46℄ a version with a simpli�edanalysis.Roos' algorithm is a path-following method. It uses the so-
alled homotopypath as a guideline to an optimal solution. The algorithm has the advantagethat it uses only full Newton steps (the step size is always 1, hen
e requires no
omputation), and its 
onvergen
e rate is O(n), whi
h 
oin
ides with the bestknown 
onvergen
e rate for IIPMs. Apart from these ni
e features, the algorithmhas the de�
ien
y that it is a small-update method and hen
e it is too slow forpra
ti
al purposes.In this thesis we design a large-update version of Roos' algorithm. We presenta pra
ti
ally e�
ient implementation of (a variant of) the algorithm and 
ompareits performan
e with that of the well-known LIPSOL pa
kage [120℄. The numeri
alresults are promising as the iteration numbers of our algorithm are 
lose to thoseof LIPSOL; in a few 
ases they outperform LIPSOL.Not surprisingly, as in large-update feasible interior-point methods (FIPMs),there is a gap between the pra
ti
al and the theoreti
al behavior of our large-update IIPM. To be more pre
ise, its theoreti
al 
onvergen
e rate isO(n√n(logn)3)whi
h is worse than the 
onvergen
e rate of its full-Newton step variant. Thisphenomenon is well-known in the �eld of IPMs, and has been 
alled the irony ofIPMs : small-update methods have the best 
omplexity results and are slow inpra
ti
e, whereas large-update methods have worse 
omplexity results and ex
el-lent performan
e in pra
ti
e. For example, large-update FIPMs are by a fa
tor
O(log n) worse than that of the full-Newton step FIPMs, i.e., O(√n logn) versus
O(

√
n) [37, 98℄.The thesis also 
ontains a survey of IIPMs that have been presented by severalauthors in last two de
ades. It 
overs a wide range of methods, starting fromLustig's algorithm [62℄, to the infeasible potential-redu
tion methods of Mizuno,Kojima and Todd [76℄. We fo
us on 
onvergen
e properties and polynomiality ofthe IIPMs presented in our survey. 133





SamenvattingOnlangs publi
eerde Roos [97℄ een volle-Newton stap `infeasible' inwendige-puntmethode (IIPM) voor lineaire optimalisatie (LO). Iets later stelden Mansouri enRoos [66℄ een variant voor van dit algoritme, en kort daarna publi
eerden Gu etal. [46℄ een versie met een envoudigere analyse.Het algoritme van Roos is een padvolgende methode. Het gebruikt het zogen-aamde homotopie pad als een gidslijn naar een optimale oplossing. Het algoritmeheeft als voordeel dat het alleen volle Newton stappen gebruikt (er is dus geenberekening nodig van de stapgrootte, deze is altijd 1), en de 
onvergentiesnelheidis O(n), de best bekende 
onvergentiesnelheid voor IIPMn. Naast deze goedeeigens
happen heeft Roos' algoritme het nadeel dat het een zogenaamde `small-update' methode is, waardoor de methode te traag is voor pra
tis
he doeleinden.In dir proefs
hrift ontwerpen we een `large-update' versie van genoemd algor-itme van Roos. We presenteren een in de praktijk e�
iënte implementaie van (eenvariant van) het algoritme en vergelijken de performan
e met die van het bekendepakket LIPSOL [120℄. De numerieke resultaten zijn veelbelovend omdat de ben-odigde aantallen iteraties voor ons algoritme di
ht bij die van LIPSOL liggen, enin enkele gevallen zelfs beter zijn.Niet verrassend is dat er, evenals bij `large-update feasible' inwendige-puntmethoden (FIPMn), een dis
repantie is tussen het pra
tis
he en het theoret-is
he gedrag van onze `large-update' IIPM. De theoretis
he 
onvergentiesnelheidis namelijk O(n√n(log n)3), hetwelk sle
hter is dan de 
onvergentiesnelheid vande volle-Newton stap variant. Dit vers
hijnsel is welbekend in het gebied vanIPMn, en staat bekend als de ironie van IPMn: `small-update' methoden hebbende beste 
omplexiteit en zijn traag in de praktijk, terwijl `large-update' methodensle
htere 
omplexiteit hebben en in de praktijk veel sneller zijn. Bijvoorbeeld, de
onvergentiesnelheid van `large-update' FIPMn is een fa
tor O(log n) sle
hter dandie van volle-Newton stap FIPMn, namelijk, O(√n log n) versus O(√n) [37, 98℄.Het proefs
hrift bevat ook en overzi
ht van IIPMn die gedurende de laat-ste twee de
ades zijn voorgesteld door diverse auteurs. Het bes
hrijft een grootaantal IIPMn, van Lustig's algorithm [62℄, tot de `infeasible' potentiaal-redu
tiemethoden Mizuno, Kojima and Todd [76℄. De nadruk in dit overzi
ht ligt op
onvergentie-eigens
happen en polynomialiteit van de besproken IIPMn.135





Curri
ulum VitaeAlireza Asadi was born in Marand, Eastern Azerbaijan, Iran on September 19,1978.He �nished his se
ondary s
hool in 1995 at Bahman Shamlou high s
hool,Marand, Iran. He started his studies in Tabriz University, Tabriz, Iran and gothis ba
helor degree in Applied Mathemati
s in 2002. He got his master of s
ien
edegree in Applied Mathemati
s, more spe
i�
ally Numeri
al Analysis, at TabrizUniversity, Tabriz, Iran, in 2005.In 2006, he started his PhD program at the Optimization Group, Depart-ment of Software Te
hnology, fa
ulty of Ele
tri
al Engineering, Mathemati
s andComputer S
ien
e, Delft University of Te
hnology1, Delft, The Netherlands, un-der the supervision of Prof. Kees Roos2. During his PhD, he was involved ina proje
t entitled as More E�
ient Interior Point Methods for Coni
 Optimiza-tion. His resear
h was �nan
ially supported by the Netherlands Organization forS
ienti�
 Resear
h (NWO Grant 613.000.441). Moreover, he 
ompleted the PhD
ourse program of the Dut
h Network on Operations Resear
h (LNMB) and gotan LNMB diploma.

1Te
hnis
he Universiteit Delft (TU Delft)2http://www.st.ewi.tudelft.nl/~roos/137




