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1Introdution1.1 Linear optimizationThis thesis deals with linear optimization (LO), whih amounts to the problemof minimizing or maximizing a linear funtion subjet to some linear onstraints.LO is a branh of Mathematial Programming whih in turn is a part of Opera-tions Researh. Eonomially speaking, an optimization problem is a formalizedversion of the eonomi priniple, i.e., depending on the viewpoint of the deisionmaker, it either maximizes the output for some given input (e.g., pro�t maximiz-ation), or minimizes the input for some required output (e.g., ost minimization).Nowadays, LO has a wide range of pratial appliations. In [28℄, a list of a varietyof those appliations is provided among whih are The Diet Problem, AlloationProblem, Cutting Stok Problem, Crew Sheduling and Data Envelopment Ana-lysis.Negleting the primitive works on the solution of a system of linear inequalit-ies, done by suh people as J. Fourier [49℄ and J. Farkas [48℄, the modern oneptof LO problem traes bak to L. V. Kantorovih in 19391. As a onsultant forthe Laboratory of the Plywood Trust, Kantorovih dealt with the problem of dis-tributing some initial raw materials in order to maximize equipment produtivityunder ertain restritions. His studies were interrupted by World War II (WWII)during whih his results remained unknown2. Postwar, in 1947, this problemwas studied also by some other people like G. B. Dantzig and T. C. Koopmans.1Here we mention only a few of the highlights whih diretly in�uened the �eld of LO. Fora omprehensive history of operations researh and LO, we refer to [70℄ and [34℄. The personalreminisenes of Dantzig [19℄ are also interesting. A olletion of personal reminisenes ofontributors in the �eld of mathematial programming an be found in [59℄.2 Nobel Letures, Eonomis 1969-1980, Editor Assar Lindbek, World Sienti�Publishing Co., Singapore, 1992. One may also �nd an autobiography of Kan-torovih at http://nobelprize.org/nobel_prizes/economics/laureates/1975/
kantorovich-autobio.html. 1



2 1 INTRODUCTIONDantzig introdued his well-known simplex method for solution of LO problem.We refer to, e.g., [20℄ for an extensive desription of the simplex method.Assoiated with any LO problem there is another LO problem, alled its dualproblem. In [19, pages 45-46℄ it is mentioned that existene of the dual problemwas onjetured �rst by John von Neumann, also in 1947 (during a onversationwith Dantzig)3. A rigorous proof of the duality theorem was published later byGale, Kuhn and Tuker in 1948.In an LO problem, the onstraints may be equalities and/or inequalities. Theremay be some variables onstrained as nonnegative and some unonstrained. How-ever, any LO problem an be transformed into the so-alled standard form whih isthe LO problem with only equality onstraints and nonnegative variables. There-fore, most literature on LO, e.g., [60, 98, 103, 115, 118℄, deals with the standardform whih is de�ned as follows:(P) min
{

cTx : Ax = b, x ≥ 0
}

,where A ∈ Rm×n, c ∈ Rn, x ∈ Rn and b ∈ Rm. Without loss of generality, it anbe assumed that A has full row rank. The dual problem, assoiated with (P), isgiven by:(D) max
{

bTy : AT y + s = c, s ≥ 0
}

,with y ∈ Rm. After introdution of the dual problem, Dantzig named the problem(P) primal problem.In this thesis, we deal with the standard form of the LO problem and, unlessotherwise stated, `LO problem' stands for the `standard LO problem'.The feasible regions of (P) and (D) are denoted by P and D, respetively:
P := {x : Ax = b, x ≥ 0}
D :=

{

(y, s) : AT y + s = c, s ≥ 0
}

.The problem (P) is alled feasible if P is nonempty and otherwise infeasible. If
cTx is unbounded below over P , we all (P) unbounded, otherwise bounded. Weuse similar terminology for the dual problem (D).The relative interiors of P and D are denoted by P◦ and D◦, respetively:

P◦ := {x : Ax = b, x > 0}
D◦ :=

{

(y, s) : AT y + s = c, s > 0
}

.We say that (P) and (D) satisfy the interior-point ondition (IPC) if both P◦and D◦ are nonempty.3The theory whih Neumann suggested for the dual problem was analogue to his theory forGame Theory.



1.2 DUALITY RESULTS 31.2 Duality resultsWe reall the well-known weak duality result for LO problem.Proposition 1.2.1. (Weak Duality)(f. [98, Proposition II.1℄) Let x and (y, s)be feasible for, respetively, (P) and (D). Then cTx − bT y = xT s ≥ 0. Con-sequently, cTx is an upper bound for the optimal value of (D), if it exists, and
bT y is a lower bound for the optimal value of (P), if it exists. Moreover, if the du-ality gap xT s is zero then x is an optimal solution of (P) and (y, s) is an optimalsolution of (D).It an be onluded from Proposition 1.2.1 that if one of the problems (P)and (D) is unbounded then the other is infeasible. As we mentioned in Setion1.1, the duality theory was introdued by van Neumann [83℄, and later expliitlyformulated and proven by Gale, Kuhn and Tuker [33℄. The lassial dualitytheorem for LO an be stated as follows.Theorem 1.2.2. (Strong Duality)(f. [98, Theorem II.2℄) If (P) and (D) arefeasible then both problems have optimal solutions. Then, if x ∈ P and (y, s) ∈ D,these are optimal solutions if and only if xT s = 0. Otherwise neither of the twoproblems has optimal solutions: either both (P) and (D) are infeasible or one ofthe two problems is infeasible and the other one is unbounded.Below we state another duality theory result for LO whih is due to Goldmanand Tuker [41℄.Theorem 1.2.3. (Goldman-Tuker Theorem)(f. [98, Theorem II.3℄) If (P)and (D) are feasible then there exists a stritly omplementary pair of optimalsolutions, that is an optimal triple (x, y, s), with x ∈ P and (y, s) ∈ D, satisfying
x+ s > 0.Reall that by Theorem 1.2.2, a primal-dual feasible triple (x, y, s) is optimal ifand only if xT s = 0. This is alled the omplementarity ondition for (P) and (D)(see e.g., [98℄). Beause the vetors x and s are nonnegative, the omplementarityondition is equivalent to xs = 04. In short, any primal-dual optimal solution
(x∗, y∗, s∗) of (P) and (D) satis�es the following onditions:

Ax = b,

AT y + s = c,

x ≥ 0, s ≥ 0,

xs = 0,

(1.1)4Throughout this thesis, we denote by 0 and e (used later) the zero and the all-one vetors,respetively, of appropriate size. Moreover, if x, s ∈ Rn, then xs denotes the omponentwise (orHadamard) produt of the vetors x and s.



4 1 INTRODUCTIONwhere the �rst three lines require that x ∈ P and (y, s) ∈ D and the last line isthe omplementarity ondition. The system (1.1) is known as the Karush-Kuhn-Tuker (KKT) optimality onditions for LO.1.3 AlgorithmsIn order to solve LO problem, various methods have been introdued. In this se-tion we brie�y disuss the most important methods, thereby fousing on interior-point methods beause these are the methods studied in this thesis.1.3.1 Simplex methodAs mentioned in Setion 1.1, the simplex method was introdued by Dantzig in1947. It starts from a vertex of the feasible region, whih is atually a polyhed-ron, and moves along an edge to a vertex with non-inreasing (for a minimizationproblem) values of the objetive funtion; this is repeated until an optimal vertexis reahed. In unbounded problems, some feasible ray is deteted during the sim-plex proedure along whih the objetive funtion is dereasing. Despite its niepratial performane, there is an example, given by Klee and Minty [53℄, having
2n inequality onstraints and n variables for whih the simplex method needs
2n iterations. This means that the simplex method may not have a polynomialworst-ase iteration bound.Indeed, for many variants of the simplex method, aording to their di�erentpivoting rules, exponential running time examples have been found.1.3.2 Ellipsoid methodA polynomial-time algorithm for LO remained unknown until Khahiyan [52℄ in-trodued his ellipsoid method in 1979. The ellipsoid method generates a sequeneof ellipsoids enlosing an optimal solution, if any exists, whose volumes uniformlyderease at every step. If there is no optimal solution, the method stops whenthe ellipsoid is so small that it an be established that no optimal solution ex-ists. The iteration bound of the ellipsoid method is O(n2L) with L denotes thelength of input data bits. However, the ellipsoid method turned out to be tooslow for pratial purposes (see e.g., [15, 40℄) and the simplex method remainedthe favorite method in pratie.1.3.3 Interior-point methodsAnother polynomial algorithm for LO was presented by Karmarkar [51℄ in 1984.The iteration bound of Karmarkar's algorithm is better than that of Khahiyan'salgorithm by a fator O(n). Although some initiatory implementations of Kar-markar's algorithm were disappointing (see e.g., [61, 109℄), some authors, like



1.3 ALGORITHMS 5Adler et al. [1℄, Monma and Morton [79℄ and MShane et al. [71℄, implementedvariants of Karmarkar's algorithm whih favorably ompeted with the simplexmethod in pratie. Karmarkar's algorithm is within the lass of interior-pointmethods (IPMs). In ontrast with the simplex method, IPMs move through theinterior of the feasible region to �nd the optimal solution5.Although, IPMs have been known sine 1960 in the form of barrier methods[30℄, they reeived renewed attention after Karmarkar's result. This has led tothe following ategories of algorithms:
• projetive methods, as proposed by Karmarkar [51℄ and studied by others in[4, 5, 22, 29, 31, 35, 43, 84, 94, 107, 109, 116℄,
• a�ne-saling methods, as proposed by Dikin [26℄, and investigated furtherin [1, 13, 27, 73, 79, 81, 110, 113, 114℄,
• path-following methods (PFMs), whih an be divided in small-update al-gorithms, as studied in [10, 39, 42, 56, 80, 92, 95, 96, 100, 108, 111℄, large-update algorithms, as studied in [10, 13, 24, 25, 99℄, and preditor-orretor(PC) methods, as studied in [74, 77℄,
• potential-redution methods (PRMs), as desribed in [7, 32, 44, 57℄. See also[6, 106℄ for a survey on potential-redution methods.Karmarkar's iteration bound, namely O(nL), was improved a ouple of yearslater by Renegar [92℄ by a fator of √n.IPMs have shown their e�ieny in solving LO problem in both pratie andtheory. For a survey of IPMs, we refer to e.g. [23, 45, 98, 115, 118℄.IPMs are divided into feasible IPMs (FIPMs) and infeasible IPMs (IIPMs).FIPMs start from a primal-dual stritly feasible triple (x0, y0, s0), i.e., x0 ∈ P◦and (y0, s0) ∈ D◦, and generate a sequene of stritly feasible triples (x, y, s) on-verging to an optimal solution of (P) and (D). In ontrast, in IIPMs the iteratesare not feasible, and apart from reahing optimality one needs to strive for feas-ibility. Preisely speaking, IIPMs start from a triple (x0, y0, s0), where x0 > 0and s0 > 0, and generate triples (x, y, s) satisfying x > 0 and s > 0 but notneessarily (1.2a) and (1.2b). IIPMs attempt to obtain feasibility and optimalitysimultaneously.The urrent hapter deals with FIPMs. IIPMs are extensively onsidered inChapter 2. Beause projetive methods, PRMs and a�ne-saling methods arebeyond the sope of the thesis we do not explain them in detail. We onentrate5It is worth mentioning that, nowadays, both simplex-based algorithms and primal-dualIPMs are used in ommerial pakages as SeDuMi, COIN, CPLEX, MOSEK and LINPROG(in MATLAB). In LINPROG, the default algorithm is based on the simplex method. If theproblem is labeled as �Large-Sale�, the well-known LIPSOL pakage is used whih is the bestknown IPM-based software for solving LO problems.



6 1 INTRODUCTIONon PFMs. To be more spei�, we deal in this hapter with the feasible full-Newton step PFM whih was introdued and disussed in [98℄. We are interestedin this algorithm beause the full-Newton step IIPM of Roos [97℄, to be disussedin Chapter 3, is inspired by this algorithm. The main result of this thesis, i.e.,the algorithm, explained in Chapters 5 and 6, is atually a large-update variantof the above mentioned full-Newton step IIPM.PFMs use a virtual path inside the feasible region of (P) and (D) as a guidelineto an optimal solution of (P) and (D). The next setion is devoted to the de�nitionof this so-alled entral path.1.4 Central pathMost IPMs onsider the parameterized KKT system, de�ned as follows:
Ax = b, (1.2a)

AT y + s = c, (1.2b)
x ≥ 0, s ≥ 0, (1.2)

xs = µe, (1.2d)where µ > 0 is a positive parameter whih is alled the barrier parameter (seee.g., [55, 56, 80℄). The system (1.2) is alled the KKT system with respet to µ.Beause of (1.2d), any solution of the system (1.2) will satisfy x > 0 and s > 0.Therefore, a solution exists only if (P) and (D) satisfy the IPC. Surprisingly, ithas been shown (see [98, Theorem II.4 or Remark II.5℄) that if the IPC holdsthen, for any µ > 0, the system (1.2) has a (unique) solution. It follows that(P) and (D) satisfy the IPC if and only if the system (1.2) has a unique solutionfor any µ > 0. This unique solution is denoted by (x(µ), y(µ), s(µ)). The vetor
x(µ) is alled the µ-enter of (P) and (y(µ), s(µ)), the µ-enter of (D). The set ofthe primal-dual µ-enters (x(µ), y(µ), s(µ)), as µ runs through R++, is alled theentral path of (P) and (D). Megiddo [72℄ established that as µ tends to zero, theentral path onverges to a primal-dual optimal solution6.Unfortunately, the system (1.2) is nonlinear beause of the equation (1.2d),whih makes obtaining the µ-enter rather di�ult. IPMs overome this issue byusing a numerial iterative proedure based on the well-known Newton-Raphson'smethod. This is the subjet of the next setion.6The notion of analyti enter of a bounded onvex set was introdued by Sonnevend [102℄.If the feasible region of an LO problem is bounded, then its analyti enter is the limit of theentral path if µ tends to in�nity. On the other hand, if the optimal set of an LO problem isbounded, then its analyti enter is the limiting point of the entral path as µ tends to zero [98℄.



1.5 SEARCH DIRECTIONS 71.5 Searh diretionsGiven a triple (x, y, s) and some µ > 0, to obtain the µ-enter, we need displae-ments (∆x,∆y,∆s) suh that x + ∆x, y + ∆y and s + ∆s oinide with the
µ-enter of (P) and (D):

A(x+∆x) = b,

AT (y +∆y) + (s+∆s) = c,

x+∆x > 0, s+∆s > 0,

(x+∆x)(s +∆s) = µe.De�ning the primal and dual residual vetors rb and rc as
rb := b−Ax and rc := c−AT y − s, (1.3)and ignoring the inequalities for the moment, the last system an be rewritten asfollows:

A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s+∆x∆s = µe− xs.

(1.4)By negleting the quadrati term ∆x∆s from the third equation, aording toNewton's iterative method for solving nonlinear systems, one obtains the followingsystem in ∆x, ∆y and ∆s:
A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s = µe− xs.

(1.5)The diretions (∆x,∆y,∆s), given by (1.5), are alled the primal-dual Newtondiretions at the triple (x, y, s). Beause A has full row rank, it an be veri�ed (see[98, Theorem II.42℄) that the primal-dual Newton step (∆x,∆y,∆s) is uniquelyde�ned by the system (1.5).In FIPMs, i.e., if x ∈ P◦ and (y, s) ∈ D◦, then one has rb = rc = 0. As aresult, the system (1.5) is redued as follows:
A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = µe− xs.

(1.6)



8 1 INTRODUCTIONBy the �rst two equations of the system (1.6), it an be easily veri�ed thatthe vetors x+, y+ and s+, given by
x+ := x+∆x,

y+ := y +∆y,

s+ := s+∆s,

(1.7)satisfy the equations (1.2a) and (1.2b). However, they may not satisfy the in-equality onditions (1.2). Hene, some step size α ∈ (0, 1] may be required suhthat
x+ := x+ α∆x ∈ P◦,

y+ := y + α∆y ∈ D◦,

s+ := s+ α∆s ∈ D◦.As we mentioned above, the quadrati term ∆x∆s is negleted from the thirdequation of the system (1.4). This auses the equation (1.2d) to be not satis�ed,i.e., the pairwise produts x+i s+i , i = 1, · · · , n may not be equal to µ, exept inthe ideal ase that ∆x∆s = 0. This means that PFMs follow the entral pathapproximately and do not stay exatly on the entral path. The next setion isdevoted to de�nition of the so-alled proximity measure whih is used to measurethe deviation of the iterates from the µ-enters.1.6 Proximity measureThe proximity measure whih we introdue in this setion was �rst used by Jansenet al. [50℄ and later, with some minor modi�ation, by Roos, Terlaky and Vial[98℄.Given the iterates x and s and some µ > 0, the variane vetor v of the iterates
x and s with respet to µ is de�ned as follows:

v :=

√

xs

µ
. (1.8)Note that

v = e ⇔ xs = µe,whih means that the variane vetor is the all-one vetor if and only if the iterates
x and (y, s) are the µ-enters.Using v, the proximity measure δ(v) is de�ned as follows:

δ(v) :=
1

2
‖v−1 − v‖. (1.9)



1.6 PROXIMITY MEASURE 9It an be easily veri�ed that δ(v) = 0 if and only if v = e, whih means that δ(v)vanishes only at the µ-enter. In other words, one has
δ(v) = 0 ⇔ v = e ⇔ xs = µe. (1.10)In [98℄, the proximity measure δ(v) was motivated as follows. De�ning thesaled Newton diretions dx and ds as
dx :=

v∆x

x
and ds :=

v∆s

s
,the system (1.6) an be rewritten as below:

Ādx = 0,

ĀTdy + ds = 0,

dx + ds = v−1 − v,

(1.11)with dy := ∆y√
µ and Ā := AV −1X where V = diag (v) and X = diag (x).Beause the vetor dx belongs to the null spae of Ā and ds to the row spaeof Ā, the vetors dx and ds are orthogonal, i.e., (dx)Tds = 0. This implies that

‖dx‖2 + ‖ds‖2 = ‖v−1 − v‖.Due to this, the vetors dx and ds are zero if and only if
‖v−1 − v‖ = 0,whih is the ase only at the µ-enter, aording to (1.10).The quantity ‖v−1 − v‖ seems to be a natural tool for measuring `distane'between the iterates and the µ-enter. The idea of using this quantity is due toJansen et al. [50℄. However, Roos et al. [98℄ used this quantity divided by 2, i.e.,

δ(v), given by (1.9)7.7In many papers on IPMs, e.g., [55, 80℄, one does not measure proximity to the µ-enter, butto the entral path. A popular way is to use the following expression:
∥

∥

∥

∥

xs

µg

− e

∥

∥

∥

∥

, (1.12)where ‖.‖ is some norm and µg is the average value of the iterates, i.e.,
µg :=

xT s

n
. (1.13)Reall that on the entral path the pairwise produts xisi for i = 1, · · · , n are idential andtheir ommon value is their average value µg :

xs = µe ⇒ µ =
xT s

n
= µg.In the literature, e.g., [115℄ and the referenes therein, both the 2-norm and the ∞-norm wereused. The 2-norm variant was introdued by Kojima, Mizuno and Yoshise [55℄ and also used byMonteiro and Adler [80℄ to derive primal-dual algorithms for LCP and LO problem, respetively.



10 1 INTRODUCTIONIn order to express the proximity measure in terms of the iterates and thebarrier parameter µ, the following notation will also be used:
δ(x, s;µ) := δ(v).We now proeed with explaining the feasible full-Newton step PFM whih wasintrodued and disussed in [98℄.1.7 A feasible full-Newton step PFMIt is onvenient to start with a formal desription of the algorithm, as below.Algorithm 1.1 A full-Newton step PFMInput:an auray parameter ε > 0;a barrier update parameter θ ∈ (0, 1).begin

x = s = e, y := 0, and µ := 1;while nµ ≥ ε,Newton step:
(x, y, s) := (x, y, s) + (∆x,∆y,∆s);
µ-update:
µ := (1 − θ)µ;endwhileendAssume that a primal x0 ∈ P◦ and a dual pair (y0, s0) ∈ D◦ and a µ0 > 0 aregiven suh that x0s0 = µ0

e. Without loss of generality, it an be assumed that8
x0 = s0 = e, y0 = 0 and µ0 =

(x0)
T
s0

n
= 1. (1.14)Moreover, let a barrier-update parameter θ ∈ (0, 1) be given. In Subsetion 1.7.2we disuss how to obtain θ. At the beginning of an iteration of the algorithmthe system (1.6) is employed to ompute Newton steps (∆x,∆y,∆s) and thenthe new iterates (x+, y+, s+) are alulated using (1.7). After that the barrierparameter µ is redued to µ+ := (1 − θ)µ. This proess is repeated until theduality gap is less than or equal to a presribed tolerane ε.8This an be realized by embedding the given (P) and (D) into a homogenous self-dualproblem.



1.7 A FEASIBLE FULL-NEWTON STEP PFM 11Beause ∆x and ∆s are orthogonal9, i.e., ∆Tx∆s = 0, then, using the thirdequation of (1.6), after a full Newton step the duality gap is omputed as follows:
(x+∆x)T (s+∆s) = xT s+ (xT∆s+ sT∆x) + ∆Tx∆s =

xT s+ µeTe− xT s = nµ. (1.15)This means that after eah iteration of the algorithm the duality gap is identialto nµ, and hene that eah iteration redues the duality gap by a fator 1− θ.The di�ult part of the analysis of the algorithm is the analysis of the Newtonstep. In the next subsetion, we reall a ondition under whih the Newton stepis (stritly) feasible and quadratially onvergent.1.7.1 Properties of the Newton stepWe start this subsetion with the following lemma.Lemma 1.7.1. (f. [98, Theorem II.50℄) Denote δ := δ(x, s;µ). If δ ≤ 1 thenafter eah full Newton step the new iterates (x+, y+, s+) are feasible, i.e., x+ ∈ Pand (y+, s+) ∈ D. Moreover, if δ < 1 then x+ ∈ P◦ and (y+, s+) ∈ D◦ and 10
δ(x+, s+, µ) ≤ δ2

√

2(1− δ2)
. (1.17)Lemma 1.7.1 de�nes a ertain neighborhood of the µ-enter where the fullNewton step (∆x,∆y,∆s), obtained from (1.6), ertainly yields a primal-dualstritly feasible point.By slightly narrowing the neighborhood of the µ-enter, one gets a regionwhere the Newton's method is quadratially onvergent: if δ ≤ 1/

√
2 then it anbe veri�ed that

δ(x+, s+, µ) ≤ δ2. (1.18)This means that, given a µ > 0, if the urrent triple (x, y, s) satis�es δ(x, s;µ) ≤
1/

√
2, then Newton's method quadratially onverges to the µ-enter. The setof primal-dual (feasible) pairs (x, s) satisfying δ(x, s;µ) ≤ 1/

√
2 is alled thequadratially onvergent region of the µ-enter.The algorithm generates a sequene of stritly feasible pairs (x, s) in the quad-ratially onvergent region of the µ-enters. This means that the parameter θshould be suh that after reduing µ to µ+ := (1− θ)µ, the urrent pair (x, s) liesin the quadratially onvergent region of the µ+-enter. In the next subsetionwe explain how to derive suh a θ.9∆x and ∆s belong to the null spae and the row spae of the matrix A, respetively.10We would like to mention that a slightly sharper than (1.17) was proven in [98, TheoremII.52℄ whih says:

δ(x+, s+, µ) ≤ δ2
√

2(1 − δ4)
. (1.16)Sine this result has no impat on the order of the onvergene rate of the algorithm, for thesake of simpliity, we present an analysis whih is based on (1.17).



12 1 INTRODUCTION1.7.2 Value of the barrier-updating parameterGiven a primal-dual feasible pair (x, s) and µ > 0, satisfying δ(x, s;µ) ≤ 1/
√
2,(1.18) implies that after a (full) Newton step, the new iterates (x+, y+, s+) satisfy

δ(x+, s+;µ) ≤ 1

2
. (1.19)The aim is to derive the barrier-updating parameter θ suh that δ(x+, s+;µ+) ≤

1/
√
2. We �rst reall the following lemma whih investigates the in�uene of a

µ-update on δ.Lemma 1.7.2. (f. [98, Lemma II.54℄) Given a primal-dual pair (x, s) and µ > 0suh that xT s = nµ, one has
δ(x, s;µ+)2 = (1− θ)δ(x, s;µ)2 +

θ2n

4(1− θ)
, with µ+ := (1− θ)µ.By Lemma 1.7.2 and using (1.19), one gets

δ(x+, s+;µ+)2 ≤ 1− θ

4
+

θ2n

4(1− θ)
.Using this, δ(x+, s+;µ+) ≤ 1/

√
2 ertainly holds only if

1− θ

4
+

θ2n

4(1− θ)
≤ 1

2
.It an be veri�ed that this inequality holds for all θ satisfying

0 < θ ≤ 1√
n+ 1

.In the sequel, the barrier-updating parameter θ is taken as follows:
θ =

1√
n+ 1

.In the next subsetion we explain how to estimate the number of iterations ofthe algorithm.1.7.3 Iteration boundAn iteration of Algorithm 1.1 onsists of one Newton step plus a µ-update. Aftera Newton step, the duality gap is idential to nµ, aording to (1.15). On theother hand, the parameter µ is redued by a fator 1 − θ per iteration. Thealgorithm stops if the duality gap is less than or equal to a presribed tolerane
ε > 0. A natural way to estimate the number of iterations is to ount the numberof the µ-updates before nµ < ε is satis�ed. We reall the following lemma.



1.8 MOTIVATION 13Lemma 1.7.3. (f. [98, Lemma II.17℄) If the barrier parameter µ has the initialvalue µ0 and is repeatedly multiplied by 1− θ, with 0 < θ < 1, then after at most
⌈

1

θ
log

nµ0

ε

⌉iterations we obtain nµ ≤ ε.Using θ = 1√
n+1

, Lemma 1.7.3 implies that the total number of iterations ofthe algorithm is bounded above by
√
n+ 1 log

n

ε
.1.8 MotivationReently, an infeasible PFM for LO has been introdued by Roos [97℄. This al-gorithm uses a virtual path outside the feasible region of (P) and (D), namelythe homotopy path (See Chapter 4), as a guideline to an optimal solution. Thealgorithm an be onsidered as a generalization of the full-Newton step PFMpresented in Setion 1.7 to the ase where the starting point is infeasible. There-fore, in addition to the optimality, Roos' algorithm strives for the feasibility ofthe iterates. In this algorithm, as usual, the duality gap11 is measured by xT sand the primal and the dual infeasibility by the size of the residual vetors rb and

rc, respetively. The algorithm is designed in suh a way that a full-Newton stepredues the sizes of the residual vetors with the same speed as the duality gap.Preisely speaking, after a full-Newton step, the quantity ǫ(x, y, s), de�ned as
ǫ(x, y, s) := max

{

‖rb‖ , ‖rc‖ , xT s
}

, (1.20)is redued by a fator 1 − θ where θ ∈ (0, 1) is the barrier-updating parameter.Analogue to its feasible ounterpart, the algorithm is a so-alled small-updateapproah, in the sense that the barrier-updating parameter θ is inversely propor-tional to the problem dimension n. Preisely speaking, one has12 θ = O(1/n).Using this θ, Roos establishes that in order to obtain an ε-solution for a presribed
ε > 0, i.e., a triple (x, y, s) satisfying

ǫ(x, y, s) ≤ ε, (1.21)at most
16

√
2n log

ǫ(x0, y0, s0)

ε11It should be mentioned that, in an IIPM, in general the iterates x and s are not feasiblefor the original primal-dual pair of problems, and hene the quantity xT s an not be alled theduality gap at x and s (with respet to the original primal-dual pair of problems). However, asit will be mentioned in Chapter 2, x and s are always feasible for a perturbed pair of problemsand with respet to this pair xT s is the duality gap at x and s. Therefore, when dealing withIIPMs, the quantity xT s an still be alled the duality gap at x and s.12Note that in the full-Newton FIPM, presented in Setion 1.7, we have θ = O(1/
√
n).



14 1 INTRODUCTIONiterations of the algorithm are required. This iteration bound oinides with thebest known iteration bound ever obtained for IIPMs, whih is due to Mizuno[75℄13.Despite their nie theoretial iteration bound and the feature of using fullNewton steps, small-update methods have the disadvantage that they are tooslow in pratie. PFMs that use a �xed barrier-updating parameter θ ∈ (0, 1),independent of n, e.g., θ = 1
2 , turned out to be more e�ient in pratie. Thesemethods are known as so-alled large-update methods. In large-update methods,full Newton steps may not be feasible14 (x+∆x and s+∆s might have negativeomponents). Therefore, one has to use damped Newton steps. The step size isalulated using a line searh with respet to some barrier funtion (see e.g., [98℄).Preisely speaking, starting from a point z = (x, y, s), after updating the barrierparameter µ to µ+ := (1 − θ)µ with e.g., θ = 1

2 , in searhing for the µ+-enter
z(µ+) := (x(µ+), y(µ+), s(µ+)), a �nite number of (feasible) points {zk}Kk=1 aregenerated whereK is suh that zK is a good approximation of z(µ+) (with respetto a barrier funtion). Unfortunately, regardless of their nie pratial behavior,large-update methods have worse theoretial iteration bounds than small-updatemethods. This phenomenon, i.e., IPMs with nie theoretial properties are inef-�ient in pratie and the other way around, has been alled the irony of IPMs[93, page 51℄.1.9 OutlineBased on the aforementioned motivation, we designed a lass of infeasible PFMs.Our IIPMs an be onsidered as large-update variants of Roos' full-Newton IIPM.However, they di�er from feasible large-update PFMs, in the sense that θ isno longer arbitrary; it has to be omputed at eah iteration. In pratie, ouralgorithm has the advantage that the parameter θ is larger than O(1/n), even
θ = O(1), whih yields a larger amount of redution on the quantity ǫ(x, y, s) ata so-alled outer iteration of the algorithm. However, the above mentioned ironyof IPMs is still present in our algorithm, meaning that despite its nie pratialbehavior, it has worse theoretial iteration omplexity than its full-Newton stepounterpart. For a variant, we obtain the bound

O

(

n
√
n(logn)3 log

ǫ(x0, y0, s0)

ε

)

,whih is a fator √n(log n)3 worse than the iteration bound of Roos' full-Newtonstep IIPM, presented in [97℄. The best-known iteration bound for large-update13We would like to mention that a simpli�ed version of Roos' algorithm was given by Mansouriand Roos [66℄, to be followed by a slightly improved version whih was given by Gu, Mansouri,Zangiabadi, Bai and Roos [46℄. Both versions, i.e., those presented in [46℄ and [66℄, have theonvergene rate O(n).14Throughout this thesis, we all displaements ∆x, ∆y and ∆s (stritly) feasible if the triple
(x+∆x, y +∆y, s+∆s) is primal-dual (stritly) feasible.



1.9 OUTLINE 15IIPMs is
O

(

n
√
n(logn) log

ǫ(x0, y0, s0)

ε

)

, (1.22)whih is due to Salahi, Peyghami and Terlaky [101℄. Note that the iterationomplexity of our algorithm is a fator (logn)2 worse than (1.22).Before dealing with the new algorithm, in Chapter 2, we �rst survey theor-etial properties of some IIPMs presented by several authors within the last twodeades, with the hope of getting some lue whih might be helpful in improv-ing the iteration omplexity of our algorithm. We studied global onvergene andpolynomiality of the IIPMs, starting from Lustig's algorithm [62℄, to the infeasiblepotential-redution methods of Mizuno, Kojima and Todd [76℄.Our algorithm is inspired by a slightly improved version of Roos' algorithmwhih was given by Gu et al. [46℄. We devote Chapter 3 to a desription ofthis algorithm as a preparation to our large-update algorithm. As we mentionedabove, Roos' algorithm and our algorithm share the property that they approx-imately follow the homotopy path to �nd an optimal solution. In Chapter 4we introdue the notion of the homotopy path and argue that if (P) and (D)are both feasible, then the homotopy path onverges to an optimal solution ofthese problems. Chapter 4 is based on [8℄. The main result, namely a lass oflarge-update IIPMs for LO, is presented in Chapters 5 and 6. Chapter 5 dealsexlusively with the theoretial properties of our algorithms whih amount to ob-taining a default barrier-updating parameter θ and estimating the total numberof iterations. Unfortunately, the outome of Chapter 5 is disappointing as thebest onvergene rate of a variant is O(n√n(log n)3). This is beause we werenot able to get rid of n in the expression of θ. One might ask then why we allour algorithm a large-update algorithm. To justify this we rely on our numerialtest. We ran the algorithm to solve a subset of the NETLIB problems and om-pared the iteration numbers with those of the well-known LIPSOL pakage, thebest existing software for the solution of LO problems. The iteration numbersof our algorithm seem promising; the outome was in favor of LIPSOL, though.We obtain substantial larger values of θ than its default (theoretial) value, even
θ = O(1), during our implementations. Moreover, we often observe that θ = 1within a few iterations after the start of the algorithm, whih means that we havereahed feasibility. Obviously, one then may proeed with a feasible large-updateapproah. Details regarding the implementation of the algorithm an be found inChapter 6. Chapters 5 and 6 are based on [9℄. We o�er some onluding remarksand topis for further researh in Chapter 7.





2The state-of-the-art in IIPMs2.1 IntrodutionAs we made lear in Chapter 1, FIPMs assume that some stritly feasible point isat hand and generate a sequene of stritly feasible points onverging to an optimalsolution. In real-life problems it more often happens that no stritly feasible pointis known a priori; moreover, the problem may not be feasible at all. Therefore,most existing pratial algorithms allow positive but infeasible starting points1.These algorithms are referred to as infeasible interior-point methods (IIPMs).The urrent hapter deals extensively with the state-of-the-art in the theory ofIIPMs.As we mentioned in Chapter 1, IIPMs generate a sequene of infeasible triples
(x, y, s) with (x, s) > 0. As usual, the duality gap is measured by xT s and theprimal and the dual infeasibility by, respetively, ‖rb‖ and ‖rc‖ where rb and rcare given by (1.3). The infeasibility and the duality gap are dereased at about thesame rate, i.e., the quantity ǫ(x, y, s), given by (1.20), is monotonially dereasing.For a presribed ε > 0, a triple (x, y, s) is an ε-solution of (P) and (D) if (1.21) issatis�ed.Starting from initials (x0, y0, s0) with x0 > 0 and s0 > 0, most IIPMs for LO,e.g., those studied by Lustig [62℄, Kojima, Megiddo and Mizuno [54℄, Mizuno,Kojima and Todd [76℄, Mizuno [75℄, Potra [91℄ and Roos [97℄, use, impliitly orexpliitly, the following system to solve the pair (P) and (D):

b−Ax = νr0b , x ≥ 0, (2.1a)
c−AT y − s = νr0c , s ≥ 0, (2.1b)

xs = µe, (2.1)1E.g., LIPSOL pakage of Zhang [120℄, PCx pakage of Czyzyk et al. [18℄, LOQO pakage ofVanderbei [112℄ and et., all of whih are available on the web site of Network Enabled Optim-ization Server (NEOS Server: http://neos.mcs.anl.gov/neos/solvers/index.html).17



18 2 THE STATE-OF-THE-ART IN IIPMSwhere µ > 0, ν ∈ (0, 1], and r0b and r0c are, respetively, the primal and thedual initial residual vetors. It an be notied from the system (2.1) that theparameters ν and µ ontrol the feasibility and the optimality, respetively. For
µ = 0 and ν = 0, the system oinides with the KKT system (1.1). Now onsiderthe perturbed problem (Pν ) (see e.g., [78, 97℄), de�ned as(Pν) min

{

(

c− νr0c
)T
x : Ax = b− νr0b , x ≥ 0

}

,and its dual (Dν), given by(Dν) max
{

(

b− νr0b
)T
y : AT y + s = c− νr0c , s ≥ 0

}

.It an be easily veri�ed that the system (2.1) is the parameterized KKT system,with respet to µ, of the perturbed pair (Pν) and (Dν). Beause triple (x0, y0, s0)is stritly feasible for the pair (Pν) and (Dν) if ν = 1, then (P1) and (D1) satisfythe IPC. As a result, if ν = 1, the system (2.1) has a unique solution for any
µ > 0. It has been proven (see e.g., [97, Lemma 3.1℄) that (P) and (D) arefeasible if and only if the perturbed pair (Pν) and (Dν) satis�es the IPC for any
ν ∈ (0, 1]. It follows that (P) and (D) are feasible if and only if the system(2.1) has a unique solution for any ν ∈ (0, 1) and µ > 0. Denoting this uniquesolution by (x(µ, ν), y(µ, ν), s(µ, ν)), x(µ, ν) is alled the µ-enter of (Pν), and
(y(µ, ν), s(µ, ν)) the µ-enter of (Dν). The set of these µ-enters of (Pν) and(Dν), for all 0 < ν ≤ 1 and µ > 0, form a 2-dimensional surfae outside thefeasible region of (P) and (D) whih is alled the surfae of enters (see [78℄).In order to improve the feasibility and the duality gap with the same speed, itis assumed that the ratio µ

ν is a onstant. Under this assumption, the abovementioned surfae is redued to a path of enters whih is alled the homotopypath of (P) and (D). Moreover, for the sake of notational simpliity, we denotethe µ-enters (x(µ, ν), y(µ, ν), s(µ, ν)) by (x(ν), y(ν), s(ν)). It is worth mentioningthat existene of the homotopy path does not require (P) and (D) to satisfy theIPC. In Chapter 4 we establish that as µ → 0 (and ν → 0), the homotopy pathonverges to an optimal solution of (P) and (D).2.2 A brief overview of IIPMsIn this setion we brie�y disuss some existing IIPMs that will be disussed morein detail in the subsequent setions. Table 2.1 shows the methods that we disuss.The origin of modern IIPMs is due to Lustig [62℄. Lustig's algorithm was inspiredby the �big M � method for the initialization of IPMs. The �big M � method forIPMs was introdued by Megiddo [72℄ and inspired by a well-known initializationmethod for the simplex method, introdued by Charnes, Cooper and Henderson[16℄. In the �big M � method, some huge oe�ients are introdued and they mayause severe numerial instabilities. The motivation of Lustig for designing his



2.2 A BRIEF OVERVIEW OF IIPMS 19Author Contribution of the paper Conv. rate Ref. Se.Lustig primal-dual IIPM (1990/91) � [62℄ 2.4KojimaMegiddoMizuno global onvergene of IIPMs (1993) � [54℄ 2.5Zhang polynomiality of IIPMs (1994) O(n2) [119℄ 2.6Mizuno improvement of the onvergenerate of IIPM by a fator of O(n) O(n) [75℄ 2.7Potra PC IIPM (1996) O(n) [91℄ 2.8MizunoKojimaTodd three potential-redution IIPMs(1995) Alg. I: O(n2
√
n)Alg. II: O(n2√n)Alg. III: O(n) [76℄ 2.9Table 2.1: Progress in IIPMsalgorithm was to overome this issue. Lustig's ahievement was elimination of therole of M in his omputations by taking M in�nitely large. We explain this inSetion 2.4. To failitate understanding of Lustig's method, we brie�y desribeMegiddo's �big M � method in Setion 2.3.Lustig impliitly solves the system (2.1) at an iteration. The Newton diretionsorresponding to this system are alulated from the following system:

A∆x = νr0b ,

AT∆y +∆s = νr0c ,

s∆x+ x∆s = µe− xs.

(2.2)By hoosing some proper step size α ∈ (0, 1], the parameter2 ν redues by afator 1 − α. Although, from this monotoni redution of ν, one an expetonvergene of the algorithm to a feasible point, but no theoretial proof was givenonerning global onvergene beause it was di�ult to deal with the followingtwo situations:(i) when the optimality ours before the feasibility,2It is worth mentioning that, Lustig's algorithm is a two-phase approah. Phase I ares moreabout the feasibility than the optimality. This means that the algorithm attempts to reduethe parameter ν while the parameter µ may be dereasing or inreasing (the optimality mayimprove or worsen). One a (stritly) feasible point has been found (ν is small enough or ν = 0),the algorithm enters Phase II whih is a FIPM.



20 2 THE STATE-OF-THE-ART IN IIPMS(ii) when P◦ = ∅ and/or D◦ = ∅.In the ase (i), some infeasible iterates may be obtained at whih the duality gapis zero, and in the ase (ii), the parameter ν an not be set to zero at any iteration.It is worth to mention that despite its drawbak of having no theoretialonvergene proof, pratially e�ient variants of Lustig's algorithm were givenby several authors suh as Lustig, Marsten and Shanno [63, 64℄ and Choi, Monmaand Shanno [17℄.Inspired by the primal-dual FIPM, studied in [56℄, Kojima, Megiddo andMizuno [54℄ designed a variant of Lustig's algorithm whih has a global on-vergene proof. In this variant, the Newton steps are obtained from the system(2.1) with the parameter µ set a priori to a fration of µg, i.e., βxT s/n for some
β ∈ (0, 1). The use of this µ yields some improvement of the duality gap at aniteration. Di�erent step sizes αP ∈ (0, 1] and αD ∈ (0, 1] are used in the primaland the dual spaes, respetively. They are alulated in suh a way that the fol-lowing two properties are guaranteed: �rst, the feasibility improves with the samespeed or slightly faster than the duality gap at an iteration of the algorithm3, i.e.,the iterates satisfy

max {‖rb‖, ‖rc‖} ≤ λxT s for some λ > 0; (2.3)this is useful to overome the issue desribed in (i). Seond, the iterates stayalways away from the boundary (either outside or inside the feasible region of (P)and (D)) until the optimality is obtained. Preisely speaking, the iterates satisfy
xs ≥ γ

xT s

n
e, for a γ ∈ (0, 1). (2.4)This is useful when P◦ = ∅ and/or D◦ = ∅, whih onerns the issue desribed in(ii). In the FIPM, presented in [56℄, stritly feasible points are generated whihsatisfy (2.4). The set of stritly feasible points of a pair (P) and (D) satisfying(2.4) is referred to as the in�nity neighborhood of the entral path of (P) and (D)and denoted by N−∞(γ):

N−∞(γ) :=

{

(x, s) : x ∈ P , s ∈ D & xs ≥ γ
xT s

n
, with γ ∈ (0, 1)

}

.The IIPM presented in [54℄, generates iterates in the in�nity neighborhood of theentral path4. If the feasibility is satis�ed, the algorithm redues to the FIPM,presented in [56℄. Kojima et al. [54℄ prove that the duality gap5 is monotoni-ally dereasing by a onstant fator, whene global onvergene of the algorithm3Unlike Lustig's algorithm, the optimality and the feasibility both improve at an iteration ofKojima et al.'s algorithm [54℄.4In the sequel of the urrent hapter, unless otherwise stated, by `entral path' we refer tothe entral path of either the original pair (P) and (D) or some perturbed pair (Pν) and (Dν).5As we mentioned in Chapter 1, throughout this thesis, unless otherwise stated, by `dualitygap', we refer to the duality gap with respet to either the original pair (P) and (D) or to someperturbed pair (Pν) and (Dν).



2.2 A BRIEF OVERVIEW OF IIPMS 21follows. In the ase of infeasibility, the algorithm detets a region where no primal-dual feasible solution is available. We explain Kojima et al.'s IIPM in Setion 2.5.The �rst polynomial-time IIPM was presented by Y. Zhang [119℄. He onsidersa variant of the algorithm studied in [54℄ for solving the so-alledHorizontal LinearComplementarity Problem (HLCP). The onvergene proof of this algorithm ismore or less the same as [54℄. However, these algorithms are di�erent in someminor aspets: in Zhang's algorithm, idential step sizes in a primal and the dualspaes are used, i.e., αP = αD = α with some α ∈ (0, 1]; and moreover, theduality gap and the infeasibility are redued with the same speed, i.e., 1 − α. Itis established that the step size is inversely proportional to the initial residualnorms. Hene, by introduing an initial point at whih the residual norms are
O(n), Zhang obtains α = O(1/n2) whih gives rise to the onvergene rate O(n2)for the algorithm6. We desribe this algorithm for the ase of LO (whih is aspeial ase of the HLCP) in Setion 2.6.Inspired by the algorithm of Zhang [119℄, Mizuno [75℄ presented a modi�ationof the algorithm studied in [54℄ with O(n2) onvergene rate. As in [54℄, thisvariant redues the infeasibility slightly faster that the optimality. Later on,Mizuno realized that by further tightening the neighborhood of the entral path, alarger fration of the Newton steps ould be used. Preisely speaking, by replaingthe the neighborhood N−∞(γ) by N2(γ), de�ned as

N2(γ) := {(x, s) > 0 : ‖xs− µge‖ ≤ γµg} , with a γ ∈ (0, 1),he established that the step size an improve to α = O(1/n). This yielded theonvergene rate O(n). We explain this algorithm in Setion 2.7.After the release of Mizuno's O(n) IIPM [75℄, Potra [91℄ also published an
O(n) preditor-orretor IIPM7. Potra's algorithm uses the same neighborhoodas the algorithm of Mizuno [75℄. However, they are di�erent in some aspets. Thepreditor step of Potra's method onsists of two types of Newton steps ratherthan one. The �rst preditor step whih is an a�ne-saling step improves theduality gap preserving the urrent feasibility, and the seond one improves thefeasibility and has a tiny impat on the duality gap. As in Mizuno's PC algorithm,the outome of the preditor steps is a point in the neighborhood N2(2γ). Theorretor step leaves the duality gap and the residual norms unhanged and bringsthe iterates generated during the preditor step to the neighborhood N2(γ). An6Roughly speaking, the polynomiality of the algorithm is obtained by using some narrowerneighborhood than the one used in [54℄. This an be justi�ed as follows. To prove polynomialityone needs to set the step size to its lower bound, i.e., O(1/n2). Therefore, the neighborhood ofthe entral path whih overs the iterates beomes smaller than the one used by Kojima et al.[54℄.7After the release of the �rst version of Mizuno's paper [75℄, Potra [90℄ introdued a preditor-orretor (PC) IIPM with the onvergene rate O(n

√
n). Before Potra's result got to be pub-lished, Mizuno published the seond version of the paper [75℄ whih ontained an O(n) PCalgorithm. After that, Potra realized that by a slight modi�ation of his algorithm, he ouldprove the onvergene rate O(n).



22 2 THE STATE-OF-THE-ART IN IIPMSiteration of the algorithm improves the feasibility and the duality gap with thesame speed. We desribe Potra's algorithm in Setion 2.8.So far, the algorithms we mentioned above are path-following methods. Pre-isely speaking, the generated iterates stay in a ertain neighborhood of the ho-motopy path of (P) and (D) whih onsists of the µ-enters of the perturbedpairs (Pν) and (Dν) as the parameter ν and the barrier parameter µ tend to zero,simultaneously. It an be established (see e.g., [98, 115℄) that these µ-entersare the minimizers of a barrier funtion whih depends on the iterates and µ.Potential-redution methods (PRMs) also use a barrier funtion whih is alledpotential funtion. A potential funtion depends only on the iterates and hasno minimizer. It is mainly used to determine the step size and an upper boundfor the number of iterations. The step size is hosen suh that the potentialfuntion dereases by some positive value per iteration. As the potential fun-tion approahes −∞, the iterates onverge to an optimal solution. We refer to[51, 57, 117℄ for some feasible PRMs. Mizuno, Kojima and Todd [76℄ presented aninfeasible potential-redution method for LO problem. They introdue three vari-ants of suh algorithms, namely Algorithm I, II and III. Algorithm I dereases thepotential funtion of Tanabe-Todd-Ye [104, 108℄ under a ondition whih makesthe duality gap to improve not faster than the feasibility. This ondition has beenalready used in the polynomial-time IIPMs presented by Zhang [119℄ and Mizuno[75℄. Algorithm I is alled a onstrained potential-redutrion IIPM. Mizuno etal. prove the onvergene rate O(n2
√
n) for this variant. Algorithm II dereasesa new potential funtion whih is obtained by embedding the onstraint of Al-gorithm I into the Tanabe-Todd-Ye funtion. The iteration bound for variant II isthe same as for variant I. Algorithm III is an O(n) variant of Algorithm II. UnlikeMizuno's O(n) PFM, Algorithm III does not on�ne the iterates to any neighbor-hood of the homotopy path. We refer to Setion 2.9 for a detailed desription ofthese algorithms.2.3 The �big M� method in IPMsMegiddo [72℄ was the �rst who applied the logarithmi barrier approah for simul-taneous solution of the primal and the dual problem. He proposed to reformulatethe problem using an arti�ial variable so that a starting point beame available.To this end, a �bigM � multiplier of an arti�ial variable was added to the objet-ive funtion along with a new onstraint with right-hand side M . This methodwas developed to a primal-dual algorithm by Kojima, Mizuno and Yoshise [56℄.For a su�iently large M , as in the simplex method, an optimal solution for theoriginal pair an be obtained if and only if the optimal value of the arti�ial vari-able is zero. For arbitrary initials x0 > 0, y0 and s0 > 0, the primal arti�ial



2.3 THE �BIG M � METHOD IN IPMS 23problem (PM ) is de�ned as
min cTx +Mxn+1

s.t. Ax +r0bxn+1 = b,

−r0c
T
x +xn+2 =M,

x, xn+1, xn+2 ≥ 0,

(PM )and its dual problem (DM ) is given by
max bT y +Mym+1

s.t. AT y −r0cym+1 +s = c,

r0b
T
y +sn+1 =M,

ym+1 +sn+2 = 0,

s, sn+1, sn+2 ≥ 0,

(DM )where xn+1 and xn+2 are primal arti�ial real variables, ym+1, sn+1 and sn+2,dual arti�ial variables, r0b and r0c , the primal and dual initial residual vetors and
M is a su�iently large real number. The latter means that M is so large thatthe inequality

M > max{−r0c
T
x0, r0b

T
y0}, (2.5)is satis�ed, aording to Kojima et al. [56℄.It is worth noting that the pair (PM ) and (DM ) was also used later by Kojima,Mizuno and Yoshise [56℄ and Monteiro and Adler [80℄.We reall from [56, Theorem 2.3℄ that if, in addition to the ondition (2.5), Msatis�es the ondition

M > max{−r0c
T
x∗, r0b

T
y∗},where (x∗, y∗, s∗) is an optimal solution of (P) and (D), then one has(a) A feasible solution (x, xn+1, xn+2) of (PM ) is optimal if and only if x isoptimal solution of (P) and xn+1 = 0.(b) A feasible solution (y, ym+1) and (s, sn+1, sn+2) of (DM ) is optimal if andonly if (y, s) is optimal solution of (D) and ym+1 = 0.A nie feature of the pair (PM ) and (DM ) is that stritly feasible solutions areat hand. Taking

x = x0, xn+1 = 1 and xn+2 =M + r0c
T
x0, (2.6)we have a primal stritly feasible solution for (PM ), and taking

s = s0, sn+1 =M − r0b
T
y0 and sn+2 = 1, (2.7)



24 2 THE STATE-OF-THE-ART IN IIPMSwe have dual stritly feasible solutions for (DM ).An implementation of the algorithm of Kojima et al. [56℄ was �rst presentedby MShane, Monma and Shanno [71℄ whih proved to be favorably omparablewith the past implementations like that of Monma and Morton [79℄ or MINOS89 10, a software based on the simplex method designed by Murtagh and Saunders[82℄.2.4 Lustig's algorithmLustig [62℄ aims at solving the pair (P) and (D), starting from an arbitrary triple
(x0, y0, s0) with x0 > 0 and s0 > 0. His algorithm is a two-phase approah.Phase I is devoted to obtain the feasibility and Phase II improves the dualitygap. As we mentioned in Setion 2.1, he impliitly solves the system (2.1) at aniteration of Phase I. The Newton step orresponding to this system is obtainedfrom the system (2.2). Using some step size α ∈ (0, 1], he obtains stritly feasibleiterates x+α∆x > 0, y+α∆y and s+α∆s > 0 for the new perturbed pair (Pν+)and (Dν+), with ν+ = (1 − α)ν. In other words, the feasibility improves by afator 1−α at an iteration of Phase I. One the parameter ν is small enough thealgorithm enters Phase II whih is a FIPM.A nie feature of Lustig's algorithm is that Phase I of the algorithm does notinvolve any omputations with huge oe�ients like `big M ', and therefore it ismore stable than other implementations of IPMs suh as the one given in [71℄. Heahieved this by applying some FIPM to solve the arti�ial pair (PM ) and (DM )and then taking M in�nitely large. In this way, he managed to eliminate `M 'from the Newton steps. He named the new Newton diretions the limiting searhdiretions ; as we will show in Subsetion 2.4.2, these diretions oinide with theNewton steps obtained from (2.2).The next subsetion deals with the de�nition of the Newton diretions of thearti�ial pair (PM ) and (DM ).2.4.1 Newton steps for the arti�ial pairThroughout this setion, we will make frequent use of the following notations:

Ā =





A r0b 0

−r0c 0 1



 , b̄ =





b

M



 , c̄ = (c;M ; 0),and the vetor of variables
x̄ = (x;xn+1;xn+2), ȳ = (y; ym+1) and s̄ = (s; sn+1; sn+2).8User's guide: http://www.stanford.edu/group/SOL/guides/minos55.pdf9http://www.stanford.edu/group/SOL/minos.htm10http://www-neos.mcs.anl.gov/neos/solvers/nco:MINOS/AMPL.html



2.4 LUSTIG'S ALGORITHM 25Using these notations, the pair (PM ) and (DM ) an be rewritten as follows:
min

{

c̄T x̄ : Āx̄ = b̄, x̄ ≥ 0
}

, (2.8)and
max

{

b̄T ȳ : ĀT ȳ + s̄ = c̄, s̄ ≥ 0
}

. (2.9)As we mentioned in the previous setion, stritly feasible solutions are avail-able for the pair (PM ) and (DM ) given as in (2.6) and (2.7). Thus, Lustig [62℄applies the generi feasible interior-point algorithm, introdued by Megiddo [72℄and further studied by Kojima et al. [56℄ and Monteiro and Adler [80℄, to thispair. It turns out the Newton searh diretions (∆M x̄,∆M ȳ,∆M s̄), de�ned as
∆M x̄ =











∆x

∆xn+1

∆xn+2











, ∆M ȳ =





∆y

∆ym+1



 , and ∆M s̄ =











∆s

∆sn+1

∆sn+2











,an be alulated from the system
Ā∆M x̄ = 0, (2.10a)

ĀT∆M ȳ +∆M s̄ = 0, (2.10b)
s̄∆M x̄+ x̄∆M s̄ = rxs, (2.10)where

rxs = µe− x̄s̄, for some µ > 0.Lustig does not deal with the last system diretly. Instead, by solving thissystem for rxs = −x̄s̄ to obtain (∆a
M
x̄,∆a

M
ȳ,∆a

M
s̄), and for rxs = e to get

(∆c
M
x̄,∆c

M
ȳ,∆c

M
s̄), he alulates the solution of the system (2.10) by using thefollowing relation:

(∆M x̄,∆M ȳ,∆M s̄) = (∆a
M
x̄,∆a

M
ȳ,∆a

M
s̄) + µ (∆c

M
x̄,∆c

M
ȳ,∆c

M
s̄) .In the next subsetion, we desribe how Lustig sueeded in eliminating M .2.4.2 Limiting searh diretionsDe�ning

D̄ = diag

(

√

x̄

s̄

)

,it an be veri�ed that
ĀD̄2ĀT∆a

M
ȳ = b̄.



26 2 THE STATE-OF-THE-ART IN IIPMSSubstituting Ā, b̄ and D̄, after some simpli�ations and redutions, the last equa-tion turns out to be equivalent to




AD2AT + xn+1

sn+1
r0br

0
b
T −AD2r0c

−r0c
T
D2AT r0c

T
D2r0c +

xn+2

sn+2



∆a
M
ȳ =





b

M



 ,where D := diag (
√

x/s). It an be veri�ed that the last system is equivalent tothe following system of equations:






AD2AT + xn+1

sn+1
r0br

0
b
T − AD2r0cr

0
c

T
D2AT

r0c
TD2r0c+

xn+2
sn+2

0

−r0c
T
D2AT

r0c
TD2r0c+

xn+2
sn+2

1






∆a

M
ȳ =







b+
MAD2r0c

r0c
TD2r0c+

xn+2
sn+2

M

r0c
TD2r0c+

xn+2
sn+2






.(2.11)Note that M appears also in the arti�ial variables xn+2 and sn+1, and thisdependene is:

xn+2 =M + r0c
T
x and sn+1 =M − r0b

T
y.Hene, when driving M to in�nity, the system (2.11) boils down to





AD2AT 0

0 1



 lim
M→∞

∆a
M
ȳ =





b+ sn+2AD
2r0c

sn+2



 . (2.12)Denoting
lim

M→∞
∆a

M
ȳ = (∆a

ℓ y,∆
a
ℓ ym+1)

T ,the relation (2.12) implies that
∆a

ℓ y =
(

AD2AT
)−1 (

b+ sn+2AD
2r0c
)

and ∆a
ℓ ym+1 = sn+2.Obviously, the expressions for ∆a

ℓ y and ∆a
ℓ ym+1 do not depend on M . Using(2.10b), one may write

lim
M→∞

∆a
M
s̄ = lim

M→∞
−ĀT∆a

M
ȳ = −











AT −r0c
r0b

T
0

0 1















∆a
ℓ y

sn+2





=











−AT∆a
ℓ y + sn+2r

0
c

−r0b
T
∆a

ℓ y

−sn+2











.



2.4 LUSTIG'S ALGORITHM 27In a similar way, we eliminate M from the primal diretion. Using (2.10)with rxs = −x̄s̄, one has
∆M x̄+ D̄2∆M s̄ = s̄−1rxs = −x̄.Thus, one gets

∆a
M
x̄ = −x̄− D̄2∆a

M
s̄.Substitution of D̄, x̄ and ∆a

M
s̄ implies that

∆a
M
x̄ =











−x+D2(AT∆a
ℓ y − sn+2r

0
c )

−xn+1 +
xn+1

sn+1
r0b

T
∆a

ℓ y

0











.By driving M to in�nity, one gets
lim

M→∞
∆a

M
x̄ =











−x−D2∆a
ℓ s

−xn+1

0











, (2.13)where ∆a
ℓ s = −AT∆a

ℓ y − ym+1r
0
c . Sine, by (2.9), sn+2 = −ym+1, the searhdiretions (∆a

ℓx,∆
a
ℓ y,∆

a
ℓ s) are de�ned as follows:

∆a
ℓx = −x−D2∆a

ℓ s,

∆a
ℓ y =

(

AD2AT
)−1 (

b− ym+1AD
2r0c
)

,

∆a
ℓ s = −AT∆a

ℓ y − ym+1r
0
c .Lustig named these diretions the limiting searh diretions. It an be easilyveri�ed that these limiting diretions satisfy the relations

A∆a
ℓx = xn+1r

0
b ,

AT∆a
ℓ y +∆a

ℓ s = −ym+1r
0
c ,

s∆a
ℓx+ x∆a

ℓ s = −xs.
(2.14)Similarly, denoting

lim
M→∞

∆c
M
ȳ = (∆c

ℓy; ∆
c
ℓym+1),it an be veri�ed that

∆c
ℓy = −

(

AD2AT
)−1

As−1 and ∆c
ℓym+1 = 0. (2.15)



28 2 THE STATE-OF-THE-ART IN IIPMSSubstitution in (2.10b), after setting rxs = e in (2.10), implies that
lim

M→∞
∆c

M
s̄ =

(

−AT∆c
ℓy;−r0b

T
∆c

ℓy; 0
)

.By replaing ∆c
M
s̄ in (2.10), after setting rxs = e in (2.10), we arrive at

lim
M→∞

∆c
M
x̄ =

(

s−1 −D2∆c
ℓs; 0;

1

sn+2

)

, (2.16)where
∆c

ℓs = −AT∆c
ℓy.As a result, the limiting entering steps (∆c
ℓx,∆

c
ℓy,∆

c
ℓs) are alulated as fol-lows:11

∆c
ℓx = s−1 −D2∆c

ℓs,

∆c
ℓy = −

(

AD2AT
)−1

As−1,

∆c
ℓs = −AT∆c

ℓy.It an be easily veri�ed that these limiting entering diretions satisfy
A∆c

ℓx = 0,

AT∆c
ℓy +∆c

ℓs = 0,

s∆c
ℓx+ x∆c

ℓs = e.

(2.17)Now given the diretions (∆a
ℓx,∆

a
ℓ y,∆

a
ℓ s) and (∆c

ℓx,∆
c
ℓy,∆

c
ℓs) as de�ned,respetively, by (2.14) and (2.17), Lustig alulates the parameters µ and α suhthat new iterates (x+, y+, s+) de�ned as

x+ = x+ α(∆a
ℓx+ µ∆c

ℓx),

y+ = y + α(∆a
ℓ y + µ∆c

ℓy),

s+ = s+ α(∆a
ℓ s+ µ∆c

ℓs),

(2.18)satisfy (x+, s+) > 0 and
‖rb‖ ≤ 100‖rc‖. (2.19)The ondition (2.19) serves to assure that the primal and dual feasibility areahieved at a lose rate. Moreover, in some LO problems with empty dual interior,some dual variables tend to zero while their omplementary variables blow up.This auses some numerial instabilities. This ondition serves to overome this11We dub the searh diretions obtained in this way �limiting entering steps� to make it learthat they are obtained by driving M → ∞. This term was not used by Lustig [62℄.



2.4 LUSTIG'S ALGORITHM 29issue too, by keeping the amount of primal and dual infeasibility lose to eahother.By (2.13) and (2.16), one has ∆a
l xn+1 = −xn+1 and ∆c

lxn+1 = 0. This impliesthat after an iteration of the algorithm the arti�ial variable xn+1 is updated asfollows:
x+n+1 = (1− α)xn+1. (2.20)Moreover, (2.9) and (2.12) imply that ∆a

l ym+1 = sn+2 = −ym+1. By (2.15),
∆c

l ym+1 = 0. Therefore, after an iteration of the algorithm the arti�ial variable
ym+1 is updated as follows:

y+m+1 = (1− α)ym+1. (2.21)Beause x0n+1 = −y0m+1 = 1, r0b 6= 0 and r0c 6= 0, the variables xn+1 and −ym+1remain equal throughout the algorithm aording to (2.20) and (2.21). Thus, onemay assume xn+1 = −ym+1 = ν for some ν ∈ [0, 1].Note that aording to the de�nition of (PM ) and (DM ), the iterates alwayssatisfy the relations
Ax = b− νr0b , x ≥ 0,

AT y + s = c− νr0c , s ≥ 0,
(2.22)whih means that the iterates (x, y, s) are stritly feasible for some perturbed pair(Pν) and (Dν). On the other hand, the parameter ν redues by a fator (1 − α).It follows that after a Newton step (∆x,∆y,∆s) of Lustig's algorithm, de�ned as

∆x = ∆a
ℓx+ µ∆c

ℓx, ∆y = ∆a
ℓ y + µ∆c

ℓy and ∆s = ∆a
ℓ s+ µ∆c

ℓs, (2.23)the new iterates (x+, y+, s+), given by (2.18), are stritly feasible for the perturbedpairs (Pν+) and (Dν+) with ν+ := (1− α)ν. This means that Lustig's algorithmgenerates a sequene of stritly feasible triples (x, y, s) of the perturbed pairs(Pν) and (Dν) for dereasing values of ν. If α = 1 ours at some iteration, thenone has ν+ = 0 whih means that the primal and the dual feasibility have beenobtained.By (2.14) and (2.17), it an be easily veri�ed that the Newton step (∆x,∆y,∆s),given by (2.23), solves the system (2.2) whih de�nes the Newton step orrespond-ing to the perturbed pair (Pν) and (Dν).By (2.22), at an iteration of the algorithm, the residual vetors rb and rcsatisfy
rb = νr0b and rc = νr0c . (2.24)Using these, the system (2.2) an be rewritten as follows:

A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s = µe− xs,

(2.25)



30 2 THE STATE-OF-THE-ART IN IIPMSwhih oinides with the Newton searh diretions for the system (1.2).Although Lustig established a monotoni redution of the parameter ν whihseems to be su�ient to prove global onvergene, however, as mentioned in Se-tion 2.1, he ould not present any theoretial onvergene proof beause of tworeasons: �rst, in the ase where (P) or (D) is infeasible or unbounded or has emptyinterior, the parameter ν ould not be set to zero at any iteration; and seond, itwas not easy to guarantee simultaneous ourrene of feasibility and optimality.In the next setion, we explain the algorithm of Kojima, Megiddo and Mizunowhih is a globally onvergent variant of Lustig's algorithm. They present somesolutions to the above two issues whih guarantee global onvergene.2.5 The algorithm of Kojima et al.Kojima, Megiddo and Mizuno [54℄ onsider the algorithm of Lustig [62℄, desribedin the previous setion. Just as Lustig, they allow di�erent step sizes αP and αDalong the primal and dual diretions, respetively. They establish that there isan α∗ ∈ (0, 1) for whih min{αP , αD} ≥ α∗. Without loss of generality, for thesake of simpliity, we feel free to assume that αP = αD = α for some α ∈ (0, 1).As mentioned in Setion 2.1, α is hosen suh that the iterates satisfy (2.3) and(2.4). The ondition (2.3) serves to overome the issue (i), desribed in Setion2.1 and the ondition (2.4) is useful when dealing with the issue (ii). In short,in the algorithm presented in [54℄, the iterates belong to the modi�ed in�nityneighborhood N of the entral path12 of (P) and (D), de�ned as
N := {(x, y, s) : x, s ∈ Rn

++, xs ≥ γµge,

‖rb‖ ≤ εp or γp ‖rb‖ ≤ xT s,

‖rc‖ ≤ εd or γd ‖rc‖ ≤ xT s,

γ ∈ (0, 1), (γp, γd, εp, εd) > 0}.

(2.26)Under the assumption that a primal-dual optimal solution exists, global on-vergene follows by showing that in eah iteration both the infeasibility and theduality gap are dereasing by a onstant fator. Their algorithm is able to deteta region where no feasible point exists.They also presented an extension of their algorithm to LCP; this is disardedbeause it is beyond the sope of this thesis.We proeed with explaining how the authors obtain a lower bound α∗ of thestep size α.12It is worth mentioning that Kojima et al. all N the neighborhood of the entral path of(P) and (D). This statement may not be orret in general beause if (P) and (D) have emptyinterior then there is no entral path. However, one an �nd some ν ∈ (0, 1) for whih theiterates belong to the neighborhood N−∞(γ) of the entral path of the perturbed pair (Pν) and(Dν).



2.5 THE ALGORITHM OF KOJIMA ET AL. 312.5.1 Global onvergeneAs Lustig [62℄, Kojima et al. alulate the Newton diretions (∆x,∆y,∆s) fromthe system (2.25). A minor di�erene between Kojima et al.'s diretions andLustig's is that in Kojima et al.'s algorithm, the barrier parameter µ is set apriori to
µ = β1µg, 0 < β1 < 1.with µg given by (1.13). This guarantees improvement of both the feasibility andthe duality gap at an iteration. Reall that, in [62℄, as long as the infeasibilityinsists, Lustig ares more about the feasibility than the optimality and the para-meter µ may inrease or derease, whilst in [54℄, the authors push the algorithmto redue both the duality gap and the infeasibility at an iteration.Kojima et al. redue the duality gap slightly slower than the infeasibility. Tothis end, they hoose the step size α suh that the following two relations hold:

(x, y, s) + α(∆x,∆y,∆s) ∈ N , (2.27a)
(x+ α∆x)

T
(s+ α∆s) ≤ (1− α (1− β2))x

T s, (2.27b)for a β2 ∈ (β1, 1). As in Lustig's algorithm [62℄, one has:
‖r+b ‖ = (1− α)‖rb‖ and ‖r+c ‖ = (1− α)‖rc‖, (2.28)where r+b and r+c are the primal and the dual residual vetors at (x+, y+, s+),with

(x+, y+, s+) := (x, y, s) + α(∆x,∆y,∆s). (2.29)This means that the residual norms are redued by a fator 1−α whih is smallerthan 1− α (1− β2).If α∗ > 0 is a lower bound for the step size α (see Theorem 2.5.1), then (2.27b)implies that the duality gap is dereased as follows:
(x+ α∗∆x)T (s+ α∗∆s) ≤ (1− α∗ (1− β2))x

T s. (2.30)Assuming that an optimal solution exists, this monotoni redution on theinfeasibility and the duality gap implies that after a �nite number of iterationsthey reah or bypass a presribed auray. Preisely speaking, there exists some
K suh that ∀k > K one has

∥

∥b−Axk
∥

∥ ≤ εp and
∥

∥c−AT yk − sk
∥

∥ ≤ εd and
(

xk
)T
sk ≤ ε, (2.31)for some positive εp, εd, ε, where (xk, yk, sk) are the iterates generated at the k-thiteration of the algorithm.The authors impliitly prove the following theorem whih says that after a�nite number of iterations the algorithm arrives at either a primal-dual optimal

ε-solution or at some iterates whose 1-norm is very large. We brie�y explain itsproof beause it yields a positive lower bound α∗ for the step size α whih isneeded in the proof of onvergene.



32 2 THE STATE-OF-THE-ART IN IIPMSTheorem 2.5.1. Let ε > 0 and ω∗ > 0 be given. There exists a K suh that
∀k ≥ K, the iterates (xk, yk, sk) generated by the algorithm satisfy either (2.31)or

∥

∥

(

xk, sk
)∥

∥

1
> ω∗. (2.32)Proof. The proof goes by ontradition. Assume that neither (2.31) nor (2.32)is satis�ed throughout the algorithm. Then for any k, one should have

(xk)
T
sk ≥ ε∗ and

∥

∥(xk, sk)
∥

∥

1
≤ ω∗, (2.33)with

ε∗ = min {γpεp, γdεd, ε} . (2.34)Hene, the sequene {(xk, yk, sk)}∞
k=1

lies in the following ompat set:
N ∗ =

{

(x, y, s) : xT s ≥ ε∗ and ‖(x, s)‖1 ≤ ω∗} .On the other hand, both the left-hand side oe�ient matrix and the right-handside vetor of the system (2.25) are ontinuous over N ∗ for any (x, y, s). As aonsequene, the Newton searh diretions (∆x,∆y,∆s) are bounded above over
N ∗. That is,

∃η s.t.

∣

∣

∣

∣

∆xi∆si − γ
∆Tx∆s

n

∣

∣

∣

∣

≤ η and
∣

∣∆Tx∆s
∣

∣ ≤ η. (2.35)Kojima et al. derive an α∗ for whih the iterates ertainly lie in N and theduality gap is dereasing to zero. But this is inonsistent with (2.33), whih saysthat the duality gap is always stritly positive. This leads to a ontradition.They obtain α∗ as follows.The iterates belong to N if the step size α satis�es (i), (ii) and (iii) below:(i) fi(α) = (xi +α∆xi)(si +α∆si)− γ (xi+α∆xi)
T (si+α∆si)
n ≥ 0, i = 1, · · · , n,(ii) gp(α) = (x+ α∆x)T (s+ α∆s)− γp(1− α) ‖rb‖ ≥ 0 or (1− α) ‖rb‖ ≤ ε,(iii) gd(α) = (x+ α∆x)

T
(s+ α∆s)− γd(1−α) ‖rc‖ ≥ 0 or (1−α) ‖rc‖ ≤ εd.Assuming that gp(0) ≥ 0 and gd(0) ≥ 0, Kojima et al. prove that fi, i = 1, · · · , n,

gp and gd are bounded below as follows:13
fi(α) ≥ β1 (1− γ) (ε∗/n)α− ηα2, i = 1, · · · , n,
gp(α) ≥ β1ε

∗α− ηα2,

gd(α) ≥ β1ε
∗α− ηα2.

(2.36)13Due to their less relevane to the goal of the setion, the details regarding the proof of theinequalities (2.36) have been omitted here.



2.5 THE ALGORITHM OF KOJIMA ET AL. 33If either gp(0) ≥ 0 or gd(0) ≥ 0 does not hold, they onsider (1− α) ‖rb‖ ≤ ε or
(1− α) ‖rc‖ ≤ εd, instead of the seond or the third inequality, respetively.One needs α suh that the relations (2.27) are satis�ed. It an be easily veri�edthat the right hand side expressions in (2.36) are nonnegative for the following α:

α̂ = min

{

1,
β1 (1− γ) ε∗

nη
,
β1ε

∗

η

}

.This means that by putting α = α̂, the iterates ertainly lie in N , i.e., (2.27a)holds. On the other hand, the authors establish that
(1− α (1− β2))x

T s− (x+ α∆x)T (s+ α∆s) ≥ (β2 − β1) ε
∗α− ηα2.It an be easily veri�ed that for all α satisfying

α ≤ (β2 − β1) ε
∗

η
,the right-hand side is nonnegative. Thus (2.27b) is satis�ed for this α.As a result, by hoosing

α∗ = min

{

α̂,
(β2 − β1) ε

∗

η

}

, (2.37)sine 0 < α∗ ≤ 1, the equation (2.30) implies that the duality gap is onvergingto zero. This is in inonsistent with the �rst ondition of (2.33). Thus the proofis omplete. �Now we explain the algorithm in a more formal way in the next subsetion.2.5.2 The algorithmAlgorithm 2.1 Globally onvergent IIPM of Kojima et al. [54℄Input:parameters: ε > 0, 0 < γ < 1, γp, γd > 0, 0 < β1 < 1, ω∗ > 0;begininitial points: x0 > 0, y0 and s0 > 0;while (‖rb‖ > εp or ‖rc‖ > εd or xT s > ε) & ‖(x, s)‖1 ≤ ω∗

µ-update: µ = β1µg;

(x, y, s) = (x, y, s) + α(∆x,∆y,∆s);endwhileend



34 2 THE STATE-OF-THE-ART IN IIPMSAs it an be notied from the desription of Algorithm 2.1, it starts at (x0, y0, s0)with x0 > 0 and s0 > 0. The parameters γ, γp and γd are hosen suh that
(x0, y0, s0) lie in N . The system (2.25) with µ = β1µg is solved to obtain theNewton searh diretions. After alulating the step sizes α, the new iterates
(x+, y+, s+) are obtained using (2.29). This proess is repeated until the on-dition for the while statement is violated. If the algorithm stops beause of(2.31), then a primal-dual optimal solution has been found; if it stops beauseof (2.32), then one arrives at a region whih does not ontain any primal-dualfeasible solution. For more details on the latter we refer to the next subsetion.2.5.3 Deteting infeasibilityWe start with a theorem.Theorem 2.5.2. ([54, Theorem 4.1℄) Let σ > 0 and ω > 0 be suh that

(x0, y0, s0) ∈ S(σ, ω) := {(x, y, s) : (x; s) ≥ σ (e; e) & ‖(x; s)‖1 ≤ ω} .Let ω∗ satisfy
ω2 +

(

x0
)T
s0

σ
≤ ω∗.If the algorithm terminates by (2.32), then the region S(σ, ω) ontains no primal-dual feasible solution.Theorem 2.5.2 does not neessarily imply infeasibility as there may be a feas-ible solution outside the given region. In partiular, if (P) or (D) has emptyinterior, there is no σ > 0 for whih S(σ, ω) ontains a feasible solution. To over-ome this de�ieny of Theorem 2.5.2, Kojima et al. modify their algorithm asfollows. If at an iteration, one has ‖rb‖ ≤ εp and/or ‖rc‖ ≤ εd, then the sys-tem (2.25) is used with rb = 0 and/or rc = 0 during the subsequent iterations.In this way, one avoids further improving the residual norm(s). Therefore, The-orem 2.5.2 ontinues to satisfy. The global onvergene of the modi�ed algorithmfollows after a slight modi�ation of the proof of Theorem 2.5.1 [54, Setion 5℄.Assume that the algorithm stops at the k-th iteration beause of ondition(2.32). Then

‖(xz , sz)‖ ≥ ω∗ and (xz)T sz ≥ ε∗,with ε∗ given by (2.34). As a result, one may have several options: if bothresiduals are less than or equal to the presribed auray parameters, then usinga feasible IPM the duality gap is redued until an approximate optimal solutionto the original pair (P) and (D) has been obtained. But, if either of the primalor the dual residuals (or both) are larger than the presribed toleranes, then byway of some theorems the authors derive some region where no feasible point isavailable [54, Setion 5℄.



2.6 THE ALGORITHM OF Y. ZHANG 35Ongoing e�orts on theoretial aspets of the IIPMs were pursued by Zhang[119℄ who was the �rst to establish that IIPMs ould be polynomial-time. Heapplied the algorithm studied by Lustig [62℄ and Kojima et al. [54℄, to the HLCPand proved that the algorithm has an O(n2) onvergene rate. Sine we fous onLO, we present in the next subsetion a restrition of this algorithm to LO.2.6 The algorithm of Y. ZhangZhang [119℄ onsiders the HLCP, de�ned as follows:
Mx+Ns = h,

xs = 0,

(x, s) ≥ 0,

(2.38)where x, s, h ∈ Rn and M,N ∈ Rn×n. It an be easily veri�ed that by setting
M =





A

0



 , N =





0

B



 and h =





b

Bc



 ,where B ∈ R(n−m)×n is full row rank and BAT = 0, the system (2.38) beomesequivalent to the KKT system (1.1).Following Kojima et al. [54℄, Zhang deals with the system (2.25) with
µ = σµg, for a σ ∈ (0, 1).He uses an initial point whih has a speial property. Let (x̄0, ȳ0, s̄0) be suhthat
Ax̄0 = b and AT ȳ0 + s̄0 = c,but not neessarily (x̄0, s̄0) ≥ 0. The initials (x0, y0, s0), with x0 > 0 and s0 > 0,are taken suh that

(

x0, s0
)

> (x̄0, s̄0). (2.39)It is worth mentioning that, later on, the above restrition on the startingpoint was relaxed by Stephen Billups and Mihael Ferris [14℄.Unlike Lustig [62℄ and Kojima et al. [54℄, Zhang [119℄ uses equal primaland dual step sizes. The ommon step size α is hosen so that new iterates
(x+, y+, s+), given by (2.29), satisfy (x+, s+) > 0 along with the following ondi-tion:

x+
T
s+ ≥ (1− α) xT s. (2.40)Following the general poliy in IIPMs, the ondition (2.40) is onsidered to assurethat the duality gap is reduing not faster than the infeasibility. It an be veri�ed



36 2 THE STATE-OF-THE-ART IN IIPMSas follows. Using (2.28), one may say
‖(r+b , r+c )‖ = (1− α)‖(rb, rc)‖ ≤ x+

T
s+

xT s
‖(rb, rc)‖ ≤ x+

T
s+

‖(r0b , r0c )‖
x0T s0

.This means that the residual norms are always bounded above by a �xed multipleof the duality gap and, therefore, the optimality an not be ahieved before thefeasibility has been obtained. Therefore, the ondition (2.40) oinides with theondition (2.3), used by Kojima et al.'s [54℄.To prevent the iterates from premature approah to the boundary, the authorimposes the following ondition on the iterates:
min(xs) ≥ γµg, for a 0 < γ ≤ min(x0s0)

(x0)T s0/n
, (2.41)whih is the ondition (2.4) of Kojima et al. algorithm [54℄. It is worth men-tioning that the iterates of Zhang's algorithm are atually aptured by a neigh-borhood N resembling that of Kojima et al. (see Setion 2.5) with γp = γd =

(x0)
T
s0/‖(r0b , r0c )‖.We proeed with showing how Zhang proved global onvergene of the al-gorithm.2.6.1 Global onvergeneThe goal is to ahieve omplementarity and feasibility of the iterates, simultan-eously. Note that the most popular tools to measure the duality gap and theinfeasibility are, respetively, xT s and the residual norm ‖(rb, rc)‖. By embed-ding these two quantities in a so-alled merit funtion Φ, de�ned as

Φ(x, y, s) = xT s+ ‖(rb, rc)‖ , (2.42)the author tries to ful�ll his goal by assuring some onstant redution on Φ. Notethat as Φ tends to zero, so do the residual norms and the duality gap. Let usexplain this. The value of the merit funtion after eah Newton step is given by
Φ(x+, y+, s+) = (1− α+ ασ)xT s+ α2∆xT∆s+ (1 − α) ‖(rb, rc)‖ .This an be rewritten as follows:

Φ(x+, y+, s+) = (1− ϕ(α))Φ(x, y, s) (2.43)where
ϕ(α) =

α
(

(1− σ)xT s− α∆xT∆s+ ‖(rb, rc)‖
)

Φ(x, y, s)
. (2.44)Naturally, the value of α for whih the funtion ϕ(α) reahes its maximumvalue in (0, 1) may be the best option. This is equivalent to obtaining the max-imizer of ϕ(α) subjet to the onditions (2.40) and (2.41). Existene of suh an

α was established in [119, Lemma 5.1℄.



2.6 THE ALGORITHM OF Y. ZHANG 37Lemma 2.6.1. (f. [119, Lemma 6.3℄) Let α be the maximizer of ϕ(α) with re-spet to (2.40) and (2.41). Then, one has(1) α ≥ min
{

1, (1− γ)σ̄µg/ω
2
} where σ̄ = min {σ, 1 − σ} and

ω :=

√

‖D∆x‖2 + ‖D−1∆s‖2 ;(2) ϕ(α) ≥ α(1 − σ − α|∆Tx∆s|/xT s).By [119, Lemma 6.2℄, at eah iteration one has
ω2 ≤ txT s, (2.45)for some t > 0 and that the sequene {tk} satis�es

t̄ = lim sup
k→∞

tk <∞. (2.46)It an be easily veri�ed that
|∆Tx∆s| ≤ ‖D∆x‖‖D−1∆s‖ ≤ ω2

2
. (2.47)By Lemma 2.6.1, and (2.45), one has

α ≥ (1− γ)σ̄

nt̄
. (2.48)Moreover, by (2.45) and (2.47), one has

|∆Tx∆s|
xT s

≤ t̄

2
.Using this, Lemma 2.6.1, part (2), implies that

ϕ(α) ≥ α

(

1− σ − αt̄

2

)

.It is assumed that σ satis�es
0 < σ̄ < σ <

1

2
.Then it follows that 1− σ > 1

2 . As a result, one has
ϕ(α) ≥ 1

2
α(1− αt̄).Substituting α from (2.48), and noting that α is a maximizer of ϕ(α), one on-ludes that

ϕ(α) ≥ ϕ

(

(1− γ)σ̄

nt̄

)

≥ ϕ̄ :=

(

1− σ̄(1− γ)

n

)

σ̄(1− γ)

2nt̄
> 0. (2.49)This proves that the merit funtion is redued by a fator ϕ̄ ∈ (0, 1) at eahiteration. Thus, the global onvergene of the algorithm follows.Polynomiality of the algorithm is obtained by slightly modifying the startingpoint. The next subsetion deals with this subjet.



38 2 THE STATE-OF-THE-ART IN IIPMS2.6.2 Polynomiality of the algorithmLetting
(x̄0, ȳ0, s̄0) = arg min

(x,y,s)





m
∑

j=1

|bj −Ajx|2 +
n
∑

j=1

|cj − (AT )jy − sj|2


 ,where Aj , for j = 1, · · · ,m, is the j-th row of the matrix A, the author hoosesthe starting point (x0, y0, s0) as follows:
x0 = s0 = ζ̄e and y0 = ȳ0, (2.50)with ζ̄ satisfying

ζ̄ ≥
∥

∥(x̄0, s̄0)
∥

∥ .Note that for an optimal solution (x∗, y∗, s∗), one has ∥∥(x̄0, s̄0)∥∥ ≤ ‖(x∗, s∗)‖.The following lemma is ritial.Lemma 2.6.2. (f. [119, Lemma 7.2℄) Let
ζ = min {‖(x∗, s∗)‖ : (x∗, y∗, s∗) is an optimal solution} ,and ζ̄ be suh that

ζ̄ ≥ ζ

λ
√
n
, (2.51)with λ independent from n. Then t̄, de�ned as in (2.46), turns out to be O(n).Using Lemma 2.6.2, (2.49) implies that

ϕ̄ = O

(

1

n2

)

,whih means that the merit funtion is dereasing by a fator of O(1/n2). There-fore, one onludes that if a primal-dual optimal solution exists, after at most
O

(

n2 log
1

ε

)

, (2.52)iterations of the algorithm, the following ondition holds:
‖Φ‖ ≤ ε. (2.53)Thus, the latter is used as the stopping riterion.But what if no optimal solution exists? Beause the sequene {Φk}∞k=1 ofthe merit funtion values then onverges to a positive number instead of zero,the ondition (2.53) will never be satis�ed. Zhang proposes some other stoppingriterion in addition to (2.53), similar to that of Kojima et al. [54℄, whih gives



2.7 THE ALGORITHM OF MIZUNO 39some information about the region where no feasible solution exists. In short,the extra stopping riterion is onstruted as follows. In the proof Lemma 2.6.2,the author proves that if an optimal solution (x∗, y∗, s∗) satisfying ‖(x∗, s∗)‖ ≤ ζexists, then the following inequality ertainly holds:
‖(rb, rc)‖
‖(r0b , r0c )‖

(x0 − x̄0)T s+ (s0 − s̄0)Tx

xT s
≤ 4λ+ 5.He uses this in getting information about the infeasibility by terminating thealgorithm if the latter does not hold at some iteration [119, Theorem 8.1℄.So far, it has been proven that IIPMs are polynomial, i.e., there is a variantwhose iteration bound is given by (2.52). This bound was improved later by afator of O(n) by Mizuno [75℄. In the next setion, we desribe the algorithm ofMizuno [75℄ whih enjoys an O(n) onvergene rate.2.7 The algorithm of MizunoMizuno [75℄ onsiders the algorithm of Kojima et al. [54℄ desribed in Figure 2.1.By slightly modifying the starting point and the stopping riteria, he proves thatthe algorithm of Kojima et al. is of O(n2) onvergene rate. His starting point isthe same as that of Zhang, namely (2.50). A variant with O(n) onvergene rateis also presented.2.7.1 Another IIPM with the onvergene rate O(n2)Mizuno starts from the following point:

x0 = s0 = γ0ζe and y0 = 0,where γ0 ∈ (0, 1] is a onstant and ζ is suh that
ζ ≥ min

{

‖(x, s)‖∞ : Ax = b, AT y + s = c for some y} .The iterates are fored to stay in the neighborhood N de�ned by (2.26) in whihthe parameters γp and γd are spei�ed as follows:
γp =

x0
T
s0

‖r0b‖
and γd =

x0
T
s0

‖r0c‖
.Following Zhang [119℄, Mizuno allows equal primal and dual step sizes, i.e.,

αp = αd = ᾱ where ᾱ is obtained as desribed in Subsetion 2.5.1.Let η be de�ned as in (2.35). In [75, Setion 3℄, the author proves that
η = O(n)xT s.



40 2 THE STATE-OF-THE-ART IN IIPMSBy substituting in (2.37), one gets
ᾱ ≥ α∗ = min

{

1,
β1 (1− γ) ε∗

nη
,
β1ε

∗

η
,
(β2 − β1) ε

∗

η

}

= O

(

1

n2

)

.Reall from Subsetion 2.5.1 that the primal and dual feasibility are ontrolledby a parameter ν whih is updated by the fator (1− α∗). Preisely speaking, ateah iteration (2.24) is satis�ed. Moreover, (x, y, s) ∈ N and (2.24) imply that
xT s ≥ (x0)

T
s0

‖r0b‖
‖rb‖ = ν(x0)

T
s0 and xT s ≥ (x0)

T
s0

‖r0c‖
‖rc‖ = ν(x0)

T
s0.Besides, by (2.30) the duality gap is dereasing by a fator of (1−α∗ (1− β2)) ateah iteration. Thus, the algorithm dereases the amount of infeasibility and theduality gap by a fator of O(1/n2). As a result, if a primal-dual optimal solutionexists, after at most O(n2L′) iterations, with

L′ = max

{

log
xT s

ε
, log

‖r0b‖
εp

, log
‖r0c‖
εd

}

,the algorithm obtains an ε-solution of (P) and (D) [75, Theorem 2.1℄.2.7.2 An IIPM with onvergene rate O(n)Mizuno [75, Setion 4℄ obtains a variant of the algorithm desribed in the lastsubsetion whih has O(n) onvergene rate. This algorithm is inspired by thepreditor-orretor (PC) FIPM of Mizuno et al. [77℄. The iterates are apturedby the following neighborhood:
N2(γ1) := {(x, y, s) : x > 0, s > 0, ‖xs− µge‖ ≤ γ1µg} , (2.54)for a γ1 ∈ (0, 1). Mizuno takes γ1 = 1

4 . An iteration of the new variant is asfollows. First, Mizuno alulates the step size α suh that new iterates (x̄, ȳ, s̄),de�ned as
x̄ := x+ α∆x, ȳ := y + α∆y and s̄ := s+ α∆s,satisfy

(x̄, ȳ, s̄) ∈ N2(2γ1),

x̄T s̄ ≤ (1− α (1− β2))x
T s,

x̄T s̄ ≥ (1− α)νx0
T
s0,

(2.55)where the parameter ν is ontrolling the feasibility and dereases by the fator
(1 − α) in eah iteration. Next, putting µ = x̄T s̄/n, the system (1.6) is applied
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Figure 2.1: Mizuno's O(n)-variant IIPM: γ1 = 1

4
.to obtain a entering step (∆cx,∆cy,∆cs). The new iterates (x+, y+, s+) arealulated as follows:

(x+, y+, s+) := (x̄, ȳ, s̄) + (∆cx,∆cy,∆cs).In [75, Lemma 4.2℄ is it established that (x+, y+, s+) ∈ N2(0.25).It is worth mentioning that, as we made it lear in the last subsetion, thefeasibility is improving at a rate (1 − α); while due to (2.55), the optimality isimproving at slightly slower rate, namely, (1− α (1− β2)).An illustration of an iteration of the algorithm is given in Figure 2.1. Thealgorithm starts with a point inside the narrow neighborhood N2(0.25) and thenderives a point inside the wider one, namely N2(0.5). After that using a full-Newton entering step the point is restored into the narrow neighborhood.In [75, Lemma 4.3℄, the author proves that the feasibility step size is boundedbelow as follows:
α ≥ α∗ := min







1

2
,

√

xT s

8nη
,
β1x

T s

η
,
(β2 − β1)x

T s

η







,where η = O(n)xT s. This implies α∗ = O(1/n). By [75, Theorem 4.1℄, theonvergene rate the algorithm turns out to be O(n).So far it has been established that the IIPMs are globally onvergent andpolynomial and the best known onvergene rate, i.e., O(n), is due to Mizuno[75℄. We proeed with a PC IIPM with the same onvergene rate whih is dueto Potra [91℄.



42 2 THE STATE-OF-THE-ART IN IIPMS2.8 A PC algorithm of F. PotraInspired by Mizuno's PC IIPM, desribed in the previous setion, Potra [91℄designed another PC algorithm with the same onvergene rate. An iteration ofPotra's algorithm onsists of three types of Newton steps: two preditor stepsand one orretor step. The �rst preditor step uses an a�ne-saling diretionwhih dereases the duality gap while keeping the feasibility unhanged whilst theseond one serves to improve feasibility at the same rate as the optimality. Thepreditor step sizes are hosen in suh a way that the generated iterates belongto some wider neighborhood than N2(0.25). The orretor step serves to restorethese iterates to the narrower neighborhood N2(0.25).2.8.1 The algorithmThe algorithm designed by Potra [91℄ is presented in Algorithm 2.2. The startingpoint slightly di�ers from that of Mizuno and is as follows:
x0 = ξe, s0 = σe and y0 = 0,where the parameters ξ and σ satisfy
∥

∥A†b
∥

∥

∞ ≤ ξ and ‖c‖∞ ≤ σ,with A† denoting the pseudoinverse of A, whih is de�ned as A† = AT (AAT )
−1.Notie that the initials (x0, y0, s0) given above are perfetly entered; i.e.,

x0s0 = µe with µ =
(x0)

T
s0

n
.The �rst preditor a�ne-saling searh diretion (∆ax,∆ay,∆as) is alulatedfrom the following system:

A∆ax = 0,

AT∆ay +∆as = 0,

s∆ax+ x∆as = −xs,
(2.56)along whih only the optimality improves. Next, the seond preditor step (∆fx,∆fy,∆fs)is alulated from the system

A∆fx = rb,

AT∆fy +∆fs = rc,

s∆fx+ x∆fs = 0,

(2.57)



2.8 A PC ALGORITHM OF F. POTRA 43whih improves feasibility. Their e�et on the optimality is not signi�ant. Thestep sizes α > 0 and θ ∈ (0, 1] are alulated suh that the iterates (x̄, ȳ, s̄),de�ned as
(x̄, ȳ, s̄) := (x, y, s) + α(∆ax,∆ay,∆as) + θ(∆fx,∆fy,∆fs), (2.58)belong to N2(β) where β ∈ (0.25, 0.5]. In Subsetion 2.8.2 we disuss in detailhow to obtain these parameters.The entering step (∆cx,∆cy,∆cs) is given by

A∆cx = 0,

AT∆cy +∆cs = 0,

s̄∆cx+ x̄∆cs = µ̄e− x̄s̄,

(2.59)with µ̄ := x̄T s̄
n . The new iterates (x+, y+, s+), de�ned by

(x+, y+, s+) := (x̄, ȳ, s̄) + (∆cx,∆cy,∆cs),are suh that (x+, y+, s+) ∈ N2(0.25). See [91, Proposition 2.2℄ for a proof.This proedure is repeated until an ε-solution (x, y, s) is obtained.Algorithm 2.2 The PC algorithm of Potra [91℄Input:auray parameter: ε > 0;onstants: σ > 0, ξ > 0;begin
x0 := ξe; s0 := σe; y0 := 0; µ0 := x0

T
s0/n = σξ;while ǫ(x, y, s) > ε

(x, y, s) : = (x, y, s) + α(∆ax,∆ay,∆as) + θ(∆fx,∆fy,∆fs);

µ-update: µ := xT s
n ;entering step:

(x, y, x) := (x, y, s) + (∆cx,∆cy,∆cs);endwhileendIn the next subsetion, we explain how the step sizes θ and α are obtainedand how onvergene of his algorithm is derived.



44 2 THE STATE-OF-THE-ART IN IIPMS2.8.2 Convergene of the algorithmDe�ne
x(α, θ) := x+ α∆ax+ θ∆fx,

y(α, θ) := y + α∆ay + θ∆fy,

s(α, θ) := s+ α∆as+ θ∆fs.

(2.60)Denoting the primal and dual residual vetors at (x(α, θ), y(α, θ), s(α, θ)) by
rb(α, θ) and rc(α, θ), respetively, it an be veri�ed that

rb(α, θ) = (1− θ)rb and rc(α, θ) = (1− θ)rc.Moreover,
µ(α, θ) =

x(α, θ)
T
s(α, θ)

n
=
(

1− α+ γαθ + τθ2
)

µ,with
γ =

(∆ax)
T
∆fx+ (∆as)

T
∆fs

nµ
and τ =

(∆fx)
T
∆fs

nµ
. (2.61)It follows that

µ(α, θ) = (1− θ)µ, (2.62)if and only if
α = χ(θ) :=

1 + τθ

1− τθ
θ. (2.63)On the other hand, one has

x(α, θ)s(α, θ) = (1− α)xs+ α2h+ αθg + θ2t,where
h = ∆ax∆as, g = ∆ax∆fs+∆as∆fx and t = ∆fx∆fs.Thus, one may write

x(α, θ)s(α, θ) − µ(α, θ) = (1 − α2)f + α2h+ αθḡ + θ2 t̄,where
f = xs− µe, ḡ = g − e

T g

n
g and t̄ = t− e

T t

n
t.In order to obtain (x(α, θ), y(α, θ), s(α, θ)) ∈ N2(β), we need to have

‖x(α, θ)s(α, θ) − µ(α, θ)e‖ ≤ βµ(α, θ).Potra shows that by replaing �≤� by �=� in the last inequality, the resultingequation is equivalent to the following:
θP7(θ) = β2µ2 − ‖f‖2 (2.64)



2.8 A PC ALGORITHM OF F. POTRA 45where P7(θ) is a polynomial of order seven in θ. Sine ‖f‖ ≤ 0.25 µ, one has
β2µ2 − ‖f‖2 ≥ (β2 − 1/16)µ2 > 0.On the other hand, θP7(θ) = 0 for θ = 0. This means that there exists an θ0 > 0suh that

∀ θ ∈ [0, θ0], θP7(θ) ≤ β2µ2 − ‖f‖2 . (2.65)If the equation (2.64) has no zero point in the interval (0, 1), then (2.65) holds forall θ ∈ [0, 1]. Hene, the largest value of θ is
θ̂ := min

{

1, θ̃
} (2.66)where θ̃ solves the equation (2.64). This means that, (2.65) holds for all θ ∈ [0, θ̂].Due to (2.63), for the sake of simpliity, the author denotes

(x(θ), y(θ), s(θ)) := (x(α, θ), y(α, θ), s(α, θ)), and µ(θ) := µ(α, θ), (2.67)where (x(α, θ), y(α, θ), s(α, θ)) and µ(α, θ) are given by (2.60) and (2.62), respet-ively. The goal is to show that
∀θ ∈ [0, θ̂], (x(θ), y(θ), s(θ)) ∈ N2(β). (2.68)Note that (2.65) is equivalent to

‖x(θ)s(θ) − µ(θ)e‖ ≤ βµ(θ).On the other hand, it has been proven in [91, page 25℄ that
∀θ ∈ [0, θ̂], x(θ)s(θ) > 0,meaning that (x(θ), s(θ)) > 0. Thus (2.68) holds.In [91, Theorem 2.4℄ is it established that the algorithm generates a sequeneof points inside N2(0.25) and the residual vetors, rb and rc, and the barrierparameter µ, satisfy

rb = νr0b , rc = νr0c and µ = νµ0, with µ0 =
x0

T
s0

n
, (2.69)where the parameter ν is reduing at least by a fator (1− θ).The following lemma on�rms that the generated sequene of iterates is bounded.Lemma 2.8.1. (f. [91, Lemma 3.1℄) If (P) and (D) are feasible then the sequene

{

(xk, yk, sk)
}∞
k=1

generated by the algorithm satis�es
ξ
∥

∥sk
∥

∥

1
+ σ

∥

∥xk
∥

∥

1
≤ 2nµ0 + ξ ‖x∗‖+ σ ‖x∗‖1 ,for an optimal pair (x∗, s∗).



46 2 THE STATE-OF-THE-ART IN IIPMSHe proeeds with obtaining a lower bound for the step size θ whih is a on-sequene of a ouple of lemmas.Lemma 2.8.2. (f. [91, Lemma 3.4℄) Let (x∗, y∗, s∗) be a primal-dual optimalsolution for (P) and (D). Consider
σ∗ =

1

nσ
‖s∗‖1 , ξ∗ =

1

nξ
‖x∗‖1 , γ1 =

1

ξ

∥

∥A†b
∥

∥

∞ and γ2 =
1

σ
‖c‖∞ .One has

∥

∥D−1∆fx
∥

∥ ≤ (η1 + η2)
√
µ,

∥

∥D∆fs
∥

∥ ≤ (η1 + η2)
√
µ,where D = diag (

√

x/s) and
η1 =

γ1 + 1√
1− β

(2 + σ∗ + ξ∗)n, (2.70a)
η2 =

γ2 + 1√
1− β

(2 + σ∗ + ξ∗)n. (2.70b)Lemma 2.8.3. (f. [91, Lemma 3.5℄) Let (x∗, y∗, s∗) be a primal-dual optimalsolution for (P) and (D). Then the step size θ satis�es
θ ≥ θ̄ := min

{

1,
1

2 |γ| ,
1

√

|τ |
, γ9

}

,with γ and τ given by (2.61), and
γ9 =

4(β − 0.25)

β − 0.25 +
√

(β − 0.25)2 + 4(β − 0.25)γ8
,where

γ8 = 2 |γ + τ |+ 4γ4 + 2γ5 + γ6,with
γ4 =

√
2n(1 +

√

|τ |)2,
γ5 = 2

√
n(η1 + η2)(1 +

√

|τ |),
γ6 = η21 +

√
2η1η2 + η22 ,

(2.71)with η1 and η2 given by (2.70).Lemma 2.8.3 along with (2.69) imply
ǫ(x+, y+, s+) ≤ (1− θ̄)ǫ(x, y, s).We onlude that, the duality gap and the infeasibility are redued at least bythe fator (1− θ̄). Thus, the following theorem follows.



2.8 A PC ALGORITHM OF F. POTRA 47Theorem 2.8.4. (f. [91, Theorem 3.6℄) Suppose that (P) and (D) are feasible.Then after at most
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,iterations with ǫ0 = ǫ(x0, y0, s0), the algorithm ends up with an ε-solution of thepair (P) and (D).2.8.3 Polynomial iteration boundIn [91, Setion 4℄, the author shows that for large enough ξ and σ one gets apolynomial algorithm. He hooses the quantities ξ∗ and σ∗, de�ned in Lemma2.8.2, suh that
ξ∗ = O(1), σ∗ = O(1). (2.72)By (2.70) and (2.72),

∃λ1 ≥ 1, η1 ≤ λ1 n, η2 ≤ λ1 n. (2.73)In [91, page 29℄, Potra proves that
|γ| ≤ η1 + η2√

n
, and τ ≥ −η

2
1 + η22
n

,whih implies by (2.73) that
|γ| ≤ 2λ1

√
n, −2λ21n ≤ τ ≤ 0.Due to (2.71), this implies that

γ4 = O(n2), γ5 = O(n2), γ6 = O(n2).Hene, for γ8 and γ9, de�ned in Lemma 2.8.3, one an say
γ8 = O(n2) and γ9 = O(n−1).Aording to this, we dedue that

θ ≥ θ̄ = O(n−1).Using θ̄ ≥ − log(1− θ̄) and Theorem 2.8.4, the iteration bound for the algorithmturns out to be
⌈

O(n) log
ǫ0
ε

⌉

.It is worth mentioning that the argument given in this subsetion does notimply polynomiality of the algorithm as to alulate θ involves the solution of



48 2 THE STATE-OF-THE-ART IN IIPMSthe equation (2.64) for whih there is no polynomial algorithm yet. In [91, Se-tion 4℄, the author proposes to set θ to a lower bound θ̃ = Ω(1/n) that an beobtained in polynomial time. Suh a bound an be obtained as follows. Let
w ∈ {η1, η2, |τ |, |γ|} and Iw be the smallest integer suh that w ≤ Iw. Then, aswe establish in Subsetion 2.8.3, one has
η1 ≤ Iη1 = O(n), η2 ≤ Iη2 = O(n), |τ | ≤ I|τ | = O(n) and |γ| ≤ I|γ| = O(

√
n).By replaing w ∈ {η1, η2, |τ |, |γ|} by Iw in (2.71), a lower bound θ̃ = Ω(1/n) anbe obtained in polynomial time.Note that if there is no optimal solution, then the inequality (1.21) will never besatis�ed. This auses the algorithm to hang. To overome this issue, he proposesthe following solution through whih the algorithm detets a region where nooptimal solution exists.Theorem 2.8.5. (f. [91, Theorem 4.2℄) Let ξ̄ and σ̄ be positive onstants. If

ξ ‖s‖1 + σ ‖x‖1 > 2nξσ + ξσ̄ + σξ̄,holds at some iteration, then there is no optimal solution (x∗, y∗, s∗) suh that
‖x∗‖1 ≤ ξ̄, ‖s∗‖1 ≤ σ̄.Although Potra [91℄ ould not improve the onvergene rate O(n) of Mizuno'salgorithm [75℄, however, Potra's algorithm has the advantage that the feasibilityand the duality gap improve at the same rate.So far, we have been dealing with IIPMs whih are lassi�ed as PFMs. We pro-eed with presenting a potential-redution IIPM whih is due to Mizuno, Kojimaand Todd [76℄.2.9 Potential-redution IIPMs of Mizuno et al.Before going into the potential-redution algorithm of Mizuno et al. [76℄, we wouldlike to explain brie�y a di�erene between PFMs and PRMs. As we mentionedin Subsetion 1.3.3, PFMs follow the entral path whih onsists of the uniquesolutions of the system (1.2) for µ > 0. It an be veri�ed (see e.g., [115℄) that theentral path is nothing else as the set of the minimizers of the lassial primal-duallogarithmi barrier funtion, de�ned as

f(x, s;µ) :=
xT s

µ
−

n
∑

i=1

log(xisi), (2.74)for µ > 0. In PRMs, the potential funtion has the property that it does not havea minimizer, i.e., it goes to −∞ as the iterates approah an optimal solution.



2.9 POTENTIAL-REDUCTION IIPMS OF MIZUNO ET AL. 49Tanabe-Todd-Ye [104, 108℄ introdued the following potential funtion:
φ(x, s) := ρ log xT s−

n
∑

i=1

log xisi, for a ρ > n. (2.75)The following lemma is relevant.Lemma 2.9.1. If (P) and (D) satisfy the IPC, then φ(x, s) → −∞ if and onlyif the iterates (x,s) approah a primal-dual optimal solution.Proof. We de�ne the logarithmi barrier funtion Φ(x, s;µ) as follows:
Φ(x, s;µ) :=

xT s

µ
− n−

n
∑

i=1

log
xisi
µ
,whih is up to the term n logµ−n, equal to f(x, s;µ) as de�ned by (2.74). For any�xed µ > 0, Φ is stritly onvex with the minimum value of 0 and its minimizerours at the µ-enter, i.e., a primal-dual stritly feasible (x, s) satisfying xs = µe.The funtion φ an be rewritten as below:

φ(x, s) = Φ(x, s;µ) + ρ log xT s− xT s

µ
+ n− n logµ, (2.76)for some µ > 0. On the entral path, we have Φ(x, s;µ) = 0 and hene xT s = nµ.Thus (2.76) implies that

φ(x, s) = ρ logn+ (ρ− n) logµ.This implies that φ goes to −∞ if and only if µ → 0, showing that the entralpath onverges to an optimal solution when µ→ 0.If the iterates are not on the entral path, their strit feasibility implies thatthere is a µ for whih the following is satis�ed:
Φ(x, s;µ) ≤ τ for some 0 < τ <∞. (2.77)Let us assume that this property is always maintained for some �xed τ . In otherwords, we assume that the iterates stay in a ertain neighborhood of the entralpath.It an be easily veri�ed that Φ is stritly onvex in µ with the minimizer

µ = µg := xT s/n. Thus, for any µ satisfying (2.77), the following is ertainlytrue:
0 ≤ Φ(x, s, µg) ≤ Φ(x, s;µ) ≤ τ.As a result, without loss of generality, one may take µ = µg in (2.76). Hene, onegets:

φ(x, s) = Φ(x, s, µg) + ρ logn+ (ρ− n) logµg.



50 2 THE STATE-OF-THE-ART IN IIPMSBeause 0 ≤ Φ(x, s, µg) ≤ τ , the following is always true:
ρ logn+ (ρ− n) logµg ≤ φ(x, s) ≤ τ + ρ logn+ (ρ− n) logµg.As τ and ρ are onstant, this implies that φ goes to −∞ if and only if µg → 0,showing that the iterates approah an optimal solution if µ→ 0. �We would also like to mention that global onvergene of both path-followingmethods and potential-redution methods has been established by Kojima, Nomaand Yoshise [58℄ for monotone LCP.We proeed with explaining the algorithm of Mizuno et al. [76℄. Basially, theidea is more or less the same as that of the previously desribed algorithms in theurrent hapter, speially those desribed in [75, 91, 119℄. The authors use thefollowing starting point:

(x0, y0, s0) = ζγ0(e, 0, e),in whih γ0 ∈ (0, 1] and ζ is a number satisfying
‖x∗ + s∗‖ ≤ ζ, (2.78)for some optimal pair (x∗, s∗). Moreover, the duality gap is dereasing with atmost the same speed as the infeasibility. The Newton searh diretions (∆x,∆y,∆s)are slightly di�erent and obtained from the system (2.25) with µ = µη where

µη :=
xT s

n+ η
with η ≥ √

n. (2.79)It is worth mentioning that aording to [57℄ and [106℄, by this hoie of µ, thegradient vetors of the potential funtion φ, given by (2.75), and the logarithmibarrier funtion f , given by (2.74), oinide. As a result, one an make surethat the potential funtion φ is dereasing along the Newton diretions (2.25). Itwas also established that if η = O(
√
n), then the onvergene rate of the feasiblepotential-redution algorithm studied in [57℄ beomes O(√n).They present two O(n2

√
n)-variants of the algorithm, namely, Algorithm Iand II, and an O(n)-variant, namely, Algorithm III.In Algorithm I, the step size α is alulated suh that the potential funtion

φ1(x, s), de�ned as14
φ1(x, s) := (n+ η) log xT s−

n
∑

i=1

log xisi − n logn, for a η ≥ √
n. (2.80)dereases by at least a onstant and, in addition, the following ondition holds:

(x+ α∆x)(s + α∆s) ≥ (1− α)xT s. (2.81)14Notie that φ1 is, up to the term −n logn, preisely the Tanabe-Todd-Ye potential-funtion(2.75).



2.9 POTENTIAL-REDUCTION IIPMS OF MIZUNO ET AL. 51As we make lear in the sequel, this ondition guarantees that the infeasibilitydereases at least as muh as the duality gap.In Algorithm II, the step size α is obtained in suh a way that a modi�edversion of the above funtion, de�ned by
φ2(x, y, s) := φ1(x, s) + log xT s− log

(

xT s− σ ‖rb, rc‖
)

, (2.82)dereases by at least a onstant. In this variant no extra ondition is onsidered;in other word, by adding the extra term log xT s− log
(

xT s− σ ‖rb, rc‖
) to φ1, theextra ondition (2.81) was relaxed.The variant III is atually an O(n)-variant of the previous variants.We proeed with explaining the three variants in more detail.2.9.1 Algorithm I: a onstrained potential-redution IIPMIn this setion, we disuss Algorithm I in a more detail. As desribed above,the step size α is alulated suh that (2.81) holds and the value of the potentialfuntion φ1 dereases with a onstant δ > 0, i.e., one has

φ1(x+ α∆x, s+ α∆s)− φ1(x, s) ≤ −δ. (2.83)If suh an α does not exist, then it is onluded that there is no optimal pair
(x∗, s∗) satisfying (2.78).By this amount of redution, Mizuno et al. [76℄ establish that after a �nitenumber of iterations, the algorithm arrives at either a point (x, y, s) suh that
xT s ≤ ε, or a region where there is no optimal solution. See Theorem 2.9.2.Letting {νk}∞k=1 be suh that

ν1 = 1 and νk+1 = (1− αk)νk,where αk is the step size in k-th iteration, the residual vetors rb and rc satisfy
(rkb , r

k
c ) = νk(r0b , r

0
c ),and, by (2.81), the duality gap satis�es

xk
T
sk ≥ νkx0

T
s0.This means that the iterates generated by the algorithm have the property thatthe infeasibility is dereasing at least as muh as the duality gap.It is assumed that at k-th iteration the following holds

xk
T
sk ≥ γ1ν

kx0
T
s0,for a γ1 ∈ (0, 1]. Then, they establish that by taking α = ᾱ where

ᾱ :=
γ40γ

2
1 min(xs)

100n(n+ η)xT s
,



52 2 THE STATE-OF-THE-ART IN IIPMSthe potential funtion φ1 dereases with at least the amount of δ where
δ =

γ40γ
2
1

300 (n+ η)
2 ,after eah Newton iteration with size ᾱ.It an be easily veri�ed that φ1(x, s) ≥ η log xT s. Thus, assuming that aprimal-dual optimal solution exists, xT s ≤ ε holds if φ1(x, s) ≤ 1

η log ε. This willbe the ase after a �nite number of iterations beause the potential funtion isdereasing by δ. As a result, one may onlude that after at most
⌈

1

δ

(

φ1(x
0, s0)− 1

η
log ε

)⌉

,iterations, the ondition φ1(x, s) ≤ 1
η log ε holds. The following theorem gives amore aurate iteration bound for Algorithm I by imposing some further restri-tions on the parameters ζ and ε.Theorem 2.9.2. (f. [76, Theorem 1℄) Let L ≥ logn (L may be the binary size ofthe input data), η ≥ √

n, γ0 ∈ (0, 1], and assume that there exists an optimal pair
(x∗, s∗) satisfying (2.78) with log ζ = O(L). Letting ε be suh that log 1

ε = O(L)and assuming that the potential funtion is dereasing at least with δ, then after atmost O(η(n + η)2L) iterations, Algorithm I stops with either a point (x, y, s) forwhih xT s ≤ ε, or with an optimal pair or we may onlude that that no optimalsolution x∗ of (P) and (y∗, s∗) of (D) exist satisfying (2.78).By (2.79), letting η = O(
√
n), the last theorem implies that Algorithm I has

O(n2√n) onvergene rate.2.9.2 Algorithm II: a pure potential-redution algorithmIn this variant, the step size α is alulated suh that the funtion φ2 dereaseswith at least δ. By replaing the funtion φ1 by φ2, the ondition (2.81) is relaxed.In [76, Lemma 8℄, the authors establish that if α satis�es (2.81) and (2.83), thenone has
φ2(x + α∆x, y + α∆y, s+ α∆s) − φ2(x, y, s) ≤ −δ.Moreover, like Algorithm I, it is established that if φ2(x0, y0, s0) = O(ηL) then

φ2(x, y, s) ≤ η log ε implies xT s ≤ ε [76, Lemma 7℄.In [76, Theorem 6℄, the authors prove that putting
σ :=

γ1(x
0)

T
s0

‖r0b , r0c‖
,in (2.82), Theorem 2.9.2 an be applied to this version of the algorithm as well.



2.9 POTENTIAL-REDUCTION IIPMS OF MIZUNO ET AL. 53Unfortunately, the iteration omplexity of the algorithms I and II is worsethan the other IIPMs, desribed in the previous setions, i.e., O(n2
√
2) vs. O(n2)or O(n). Mizuno et al. [76℄ present variants of the algorithms I and II whih havean O(n) onvergene rate. In the next subsetion, we desribe an O(n) variant ofAlgorithm II.2.9.3 Algorithm III: a potential-redution IIPM with O(n)onvergene rateAn O(nL)-variant of Algorithm II is desribed in Algorithm 2.3. A di�erenebetween Mizuno's PC algorithm [75℄ and Algorithm 2.3 is that the iterates arenot on�ned to stay in any neighborhood of the homotopy path (see Setion 2.7).As it an be notied, eah iteration of the algorithm onsists of two types ofAlgorithm 2.3 The potential-redution algorithm of Mizuno et al. [76℄Input:a tolerane ε > 0;onstants γ0 ∈ (0, 1], λ ∈ (0, 1], δ1 > 0, δ2 > 0, η > 0;beginonsider x0 = s0 = γ0ζe with ζ given by (2.78), y0 = 0;while xT s > εif min(xs) > λxT s/nStep A:

µ-update: µ := µη;
(x, y, s) := (x, y, s) + α(∆fx,∆fy,∆fs);elseStep B:
µ-update: µ := µg;
(x, y, s) := (x, y, s) + α(∆cx,∆cy,∆cs);endifendwhileendsteps. Step A serves to improve the optimality and the feasibility, and Step B isa entering step.If the following ondition holds:

min(xs) ≥ λµg, (2.84)for a λ ∈ (0, 1], the algorithm enters Step A by alulating the Newton searhdiretions (∆fx,∆fy,∆fs) from the system (2.25) for µ = µη with µη as de�nedin (2.79). Then, a step size α is omputed in suh a way that the following holds:
φ2(x+ α∆fx, y + α∆fy, s+ α∆fs) ≤ φ2(x, y, s)− δ1 (2.85)



54 2 THE STATE-OF-THE-ART IN IIPMSfor some δ1 > 0. In [76, Lemma 11℄, it is proven that if there exists an optimalpair (x∗, s∗) satisfying (2.78), then there is a step size α for whih (2.85) holdswith δ1 = 0.001λ2γ40γ
2
1 .If (2.84) does not hold, the algorithm performs Step B by alulating Newtonsearh diretions (∆cx,∆cy,∆cs) from the system (1.6) with µ = µg. Note thatStep B maintains the urrent infeasibility as well as the duality gap xT s. A stepsize α is hosen suh that the following holds:

φ2(x+ α∆cx, y + α∆cy, s+ α∆cs) ≤ φ2(x, y, s)− δ2, (2.86)for some δ2 > 0. By [76, Lemma 12℄, (2.86) holds for δ2 = (1−λ)2

4 .The performane of the algorithm is summarized in the following theorem.Theorem 2.9.3. (f. [76, Theorem 9℄) Let L ≥ logn and γ0 ∈ (0, 1] and γ1 ∈
(0, 1). Suppose that log ζ = O(L), log 1

ε = O(L), η ≥ n,

σ :=
γ1x

0T s0

‖r0b , r0c‖
, δ1 := 0.001λ2γ40γ

2
1 , and δ2 :=

(1− λ)2

4
. (2.87)Then Algorithm III terminates in O(ηL) iterations.By setting η = O(n), the onvergene rate of Algorithm III turns out to be

O(n) whih oinides with the best known onvergene rate obtained by Mizuno[75℄.2.9.4 Deteting infeasibilityIt has been established in [76, proof of Lemma 4℄ that if there are optimal solutions
x∗ of (P) and (y∗, s∗) of (D) satisfying ‖x∗ + s∗‖∞ ≤ ζ, then the following holds:

θγ0ζ ‖(x, s)‖1 ≤ 2xT s

γ0γ1
.This means that if the last inequality is violated then there is no optimal solutionsatisfying ‖x∗ + s∗‖∞ ≤ ζ.2.10 ConlusionThis hapter dealt with the theoretial aspets of the IIPMs. After the releaseof Lustig's algorithm [62℄, several researhers attempted to derive some globallyonvergent or polynomial-time variants of Lustig's algorithm. Kojima et al. [54℄managed to design a globally onvergent variant of Lustig's algorithm by ap-turing the iterates by the in�nity neighborhood of the homotopy path. Using asuitable starting point and a slightly narrower neighborhood, Zhang [119℄ derived



2.10 CONCLUSION 55a polynomial-time IIPM. After that Mizuno [75℄ realized that by further tighten-ing the neighborhood suh that the iterates stay very lose to the homotopy path,the onvergene rate ould be improved to O(n). This motivated Potra [91℄ andMizuno et al. [76℄ to design preditor-orretor and potential-redution IIPMs,respetively, with the onvergene rate O(n).The IIPMs desribed in this hapter use damped Newton steps. Reently,Roos [97℄ introdued a primal-dual path-following IIPM whih has the advantagethat a full-Newton step improves the feasibility and the duality gap with the samespeed. Roos ahieved this by restriting the iterates to some small neighborhoodof the µ-enters of the pairs (Pν) and (Dν) as µ and ν redue with the samespeed. The onvergene rate of this algorithm oinides with the best knownonvergene rate for IIPMs, i.e., O(n). Another nie feature of this algorithmis that it has a simple analysis ompared with those presented in this hapter.Unfortunately, in pratie Roos's algorithm is painfully slow. A simpli�ed versionof Roos' algorithm was given by Mansouri and Roos [66℄ and slightly improvedby Gu et al. [46℄. Beause our large-update IIPM, presented in Chapter 5 is alarge-update variant of Roos' algorithm, we desribe Roos' algorithm in detail inChapter 3.





3A full-Newton step IIPM for LO3.1 IntrodutionInspired by the full-Newton step FIPM desribed in Setion 1.7, C. Roos [97℄presented a full-Newton step IIPM for LO. The strategy is more or less the sameas for the other IIPMs, namely to derease the infeasibility and the duality gapwith the same speed. The algorithm is designed in suh a way that this an bedone using full-Newton steps. The algorithm is also able to detet infeasibilityand/or unboundedness. This hapter is devoted to the slightly improved versionof Roos' algorithm whih is introdued by Gu et al. [46℄.Without loss of generality, we assume that both (P) and (D) are feasible. Wedisuss infeasibility or unboundedness in Setion 3.5.As in other polynomial-time IIPMs, e.g., those studied in [75, 119℄, Gu et al.use the initials (x0, y0, s0), given by
x0 = s0 = ζe, y0 = 0, (3.1)where ζ is a number satisfying

‖(x∗, s∗)‖ ≤ ζ, (3.2)for some primal-dual optimal solution (x∗, y∗, s∗) of (P) and (D).This algorithm generates a sequene of triples (x, y, s) in a small neighborhoodof the µ-enters of the perturbed pairs (Pν) and (Dν) where the parameters µ and
ν are simultaneously redued by a fator 1− θ with a θ ∈ (0, 1). The iterates areobtained by approximately solving the system (2.1).As we mentioned in Setion 2.1, if the original pair (P) and (D) is feasiblethen, for any ν ∈ (0, 1), the perturbed pair (Pν) and (Dν) satis�es the IPC andhene the system (2.1) has a unique solution for any ν ∈ (0, 1) and µ > 0. Thisis the ontent of the following lemma. 57



58 3 A FULL-NEWTON STEP IIPM FOR LOLemma 3.1.1. (f. e.g., [97, 118℄) The original pair (P) and (D) is feasible ifand only if for eah ν satisfying 0 < ν ≤ 1, the perturbed pair (Pν) and (Dν)satisfy the IPC.In order to improve the feasibility and the duality gap with the same speed,throughout the algorithm, the parameters µ and ν are related as follows:
µ = νµ0 with µ0 =

(x0)
T
s0

n
= ζ2.As in Algorithm 1.1, the loseness of a triple (x, y, s) to a µ-enter is measuredby δ(x, s;µ), as de�ned in Setion 1.6.3.2 The algorithmIn this setion, we desribe an iteration of the algorithm. At the beginning of eahiteration, it is assumed that a stritly feasible triple (x, y, s) of (Pν) and (Dν),with ν ∈ (0, 1], is given whih satis�es xT s = nµ and δ(x, s;µ) ≤ τ for µ = νζ2and a (small) threshold1 τ > 0. Roos [97℄ uses τ = 1

8 while in Gu et al.'s variant
τ = 1

16 is used. It an be veri�ed that the initials (x0, y0, s0), given by (3.1), arestritly feasible for (P1) and (D1) and δ(x0, s0, µ0) = 0 whih means that at thebeginning, δ(x, s;µ) ≤ τ ertainly holds.An iteration of the algorithm onsists of two types of full-Newton steps: afeasibility step and some entering steps. A feasibility step generates a triple
(xf , yf , sf ) in the region of quadratial onvergene of the µ+-enter of (Pν+)and (Dν+) with (µ+, ν+) := (1− θ)(µ, ν), in the following sense2:

δ(xf , sf ;µ+) ≤ 1
4
√
2
. (3.3)A few entering steps restore the iterates to the τ -neighborhood of the µ+-enterof (Pν+) and (Dν+). This proedure is repeated until an ε-solution is obtained.See Algorithm 3.1 for a formal desription of the algorithm.A graphial illustration of an iteration is given by Figure 3.1. The straightlines represent the entral paths of the pairs (Pν) and (Dν) and (Pν+) and (Dν+).The dark gray irles depit the τ -neighborhoods of the µ and µ+-enters. Theregion in light gray shows the quadratially onvergent region of the µ+-enter of(Pν+) and (Dν+). The Newton steps are shown by the arrows and the iteratesby the irlets. Eah iteration starts at a point inside the τ -neighborhood of the

µ-enters of (Pν ) and (Dν). Using a feasibility step one obtains iterates insidethe light gray region. After using some entering steps we get iterates in the darkgray neighborhood of the µ+-enter of (Pν+) and (Dν+).1In the sequel we all the set of triples (x, y, s) satisfying δ(x, s;µ) ≤ τ , the τ -neighborhoodof the µ-enter.2By (1.16), if δ(x, s;µ) ≤ 1/ 4
√
2 then after a full Newton step, new triple (x+, y+, s+) satis�es

δ(x+, s+;µ) ≤ δ(x, s;µ)2 whih means that Newton's method is quadratially onvergent.



3.3 FEASIBILITY STEP 59Algorithm 3.1 The full-Newton step IIPM due to Gu et al. [46℄Input:a threshold parameter τ > 0;an auray parameter ε > 0;a �xed barrier update parameter θ, 0 < θ < 1;initials (x0, y0, s0) = ζ(e, 0, e) for a ζ > 0.begin
x = x0, y = y0, s = s0, and ν = 1; µ = ζ2;while xT s ≥ εfeasibility step:

(x, y, s) := (x, y, s) + (∆fx,∆fy,∆fs);update of µ and ν:
µ := (1− θ)µ;
ν := (1− θ)ν;entering steps:while δ(x, s;µ) > τ

(x, y, s) := (x, y, s) + (∆x,∆y,∆s);endwhileendwhileendThe next setion deals with the analysis of the algorithm. The hard part ofthe analysis is the analysis of the feasibility step whih yields a suitable value ofthe barrier updating parameter θ.3.3 Feasibility stepAt the start of an iteration we have a triple (x, y, s), stritly feasible for a per-turbed pair (Pν) and (Dν), satisfying δ(x, s;µ) ≤ τ and xT s = nµ where µ = νζ2.The algorithm seeks for displaements (∆fx,∆fy,∆fs) for whih new iterates
(xf , yf , sf ), de�ned as

xf := x+∆fx, yf := y +∆fy and sf := s+∆fs,are as lose as possible to the µ+-enter of the pair (Pν+) and (Dν+). In otherwords, we want the displaements to satisfy the system
A(x+∆fx) = b− ν+r0b ,

AT (y +∆fy) + (s+∆fs) = c− ν+r0c ,

(x+∆fx)(s +∆fs) = µ+
e.
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•
µe

•
µ+

e

•
µ+

e

•
µe

entral path for νentral path for ν+ feasibility stepentering steps
δ(x, s;µ) ≤ τ

δ(xf , sf ;µ+) ≤ 1/ 4
√
2

Figure 3.1: An illustration of an iteration of Algorithm 3.1.The �rst two equations guarantee that the new triple (xf , yf , sf ) is feasible for(Pν+) and (Dν+), provided that xf and sf are positive. The third equationindiates that we target at the µ+-enter of (Pν+) and (Dν+). Using (2.1a) and(2.1b) and after rearranging and linearizing, one obtains the following system:
A∆fx = θνr0b ,

AT∆fy +∆fs = θνr0c ,

s∆fx+ x∆fs = µ+
e− xs.

(3.4)This is the system that is used to alulate the Newton diretions in the feasibilitystep.We proeed with explaining how Gu et al. obtain θ suh that after updating
µ to µ+, the triple (xf , yf , sf ) satis�es (3.3). To this end, we �rst need to de�nethe saled searh diretions dfx and dfs :

dfx :=
v∆fx

x
and dfs :=

v∆fs

s
, (3.5)where v is the variane vetor of the iterates (x, y, s) with respet to µ, de�nedby (1.8).The following lemma gives a ondition on θ whih guarantees strit feasibilityof (xf , yf , sf ) for (Pν+) and (Dν+).



3.3 FEASIBILITY STEP 61Lemma 3.3.1. (f. [46, Lemma 4.1℄) The iterates (xf , yf , sf ) are stritly feasiblefor (Pν+) and (Dν+) if and only if (1− θ)e+ dfxd
f
s > 0.The next lemma provides an upper bound for δ(xf , sf ;µ+).Lemma 3.3.2. (f. [46, Lemma 4.2℄) Denoting δ(vf ) := δ(xf , sf ;µ+) where vfis the variane vetor of the iterates (xf , yf , sf ) with respet to µ+, i.e.,

vf :=

√

xfsf

µ+
, (3.6)and assuming that ‖dfxdfs‖∞ ≤ 1− θ, then one has

4δ(vf )2 ≤

∥

∥

∥

df
xd

f
s

1−θ

∥

∥

∥

2

1−
∥

∥

∥

df
xd

f
s

1−θ

∥

∥

∥

∞

. (3.7)In the sequel, we denote
ω := 1

2

√

‖dfx‖2 + ‖dfs‖2.One has
‖dfxdfs‖ ≤ ‖dfx‖‖dfs‖ ≤ 1

2

(

‖dfx‖2 + ‖dfs‖2
)

= 1
2 × 4ω2 = 2ω2and

‖dfxdfs ‖∞ ≤ ‖dfxdfs‖ ≤ 2ω2.Due to this, the right-hand side expression of (3.7) is bounded above by
4ω4

(1−θ)2

1− 2ω2

1−θ

.Now assuming for the moment that
2ω2

1− θ
< 1, (3.8)one has

∥

∥dfxd
f
s

∥

∥

∞ ≤ 2ω2 < 1− θ.Thus, by Lemma 3.3.2, (3.3) ertainly holds if
4ω4

(1−θ)2

1− 2ω2

1−θ

≤ 2
√
2, (3.9)



62 3 A FULL-NEWTON STEP IIPM FOR LOwhih is the ase if
2ω2

1− θ
≤

√
2

(√

1 +
√
2− 1

)

≈ 0.783. (3.10)Note that (3.10) implies (3.8). We onlude that if (3.10) holds, so does (3.3),i.e., δ(xf , sf ;µ+) ≤ 1/ 4
√
2.In order to proeed we need an upper bound for ω. Before dealing with thisissue, we restate the system (3.4) in terms of the saled Newton diretions dfx and

dfs . Using (3.5), it an be easily veri�ed that the system (3.4) an be rewritten asfollows:
Ādfx = θνr0b ,

1
µ Ā

T∆fy + dfs = θνvs−1r0c ,

dfx + dfs = rv,

(3.11)wherē
A = AV −1X, V = diag (v), X = diag (x) and rv = (1− θ)v−1 − v.Now we have the following lemma whih was proven impliitly by Gu et al.[46℄3.Lemma 3.3.3. Let ζ be de�ned as in (3.2) and v as in (1.8). Then one has

4ω2 ≤ 2‖rv‖2 +
3θ2[eT (x + s)]2

ζ2v2min

, (3.12)where vmin := min(v).Gu et al. also proved that
2‖rv‖2 ≤ 8(1− θ)2δ2 + 2θ2n, (3.13)where δ := δ(x, s;µ).We reall the following lemma4 whih de�nes an upper bound for eT (x+ s).Lemma 3.3.4. (f. [46, Lemma 4.3℄) Let (x, y, s) be stritly feasible for (Pν) and(Dν), with xT s = nµ, and ζ as de�ned in (3.2). Then one has

e
T (x+ s) ≤ 2nζ. (3.14)3If rv = 0, one may obtain a remarkably simple proof for this lemma. The system (3.11)with rv = 0 is used during the feasibility step of the large-update IIPM in Chapter 5. Sinethe large-update IIPM is the main fous of this thesis, we found it more relevant to present thissimpli�ed proof in Chapter 5 and disard the proof of Lemma 3.3.3 here.4Lemma 3.3.4 assumes that an iteration of the algorithm starts with a triple (x, y, s) and a

µ whih satisfy xT s = nµ. In general, one may have xT s 6= nµ. This ours when dampedNewton steps are used. Therefore, we postpone the proof of this lemma to Chapter 5 where weintrodue a large-update variant of Gu et al.'s algorithm whih uses damped Newton steps and
xT s = nµ may not be assumed at the beginning of an iteration.



3.4 ITERATION BOUND 63The following lemma gives lower and upper bounds for vmin.Lemma 3.3.5. (f. [98, Theorem II.62℄) Let ρ(δ) = δ +
√
δ2 + 1 where δ :=

δ(x, s;µ). Then one has
1

ρ(δ)
≤ vi ≤ ρ(δ), i = 1, · · · , n.Using Lemma 3.3.5, and substituting (3.13) and (3.14) in (3.12), after someelementary redutions, one gets the following bound on ω:

4ω2 ≤ 8δ2 + 2θ2n+ 12n2θ2ρ(δ)2. (3.15)Reall that aording to Lemma 3.3.2, (3.9) and (3.10), the inequality (3.3) holdsif
2ω2

1− θ
≤ 0.783.Substituting ω from (3.15) in the latter, one gets:

8δ2 + 2θ2n+ 12n2θ2ρ(δ)2 ≤ 1.566(1− θ). (3.16)It an be veri�ed that the left-hand side expression in this inequality is inreasingin δ. Gu et al. established that by setting
τ =

1

16
and θ =

1

4n
, (3.17)the inequality (3.16) is satis�ed.3.4 Iteration boundWe established in the last setion that if the parameters τ and θ are given by(3.17), after the feasibility step the new iterates (xf , yf , sf ) satisfy δ(xf , sf ;µ+) ≤

1/ 4
√
2. In order to estimate the number of iterations, we need to ount thenumber of entering steps required to obtain new iterates (x+, y+, s+) satisfy-ing δ(x+, s+;µ+) ≤ τ . This an be done as follows. Reall that (xf , yf , sf ) arein the quadratially onvergent region of the µ+-enter. Thus, by (1.16), after kentering steps one has

δ(x+, s+;µ+) ≤ δ(xf , sf ;µ+)2
k

.As a result, δ(x+, s+;µ+) ≤ 1
16 is satis�ed if

δ(xf , sf ;µ+)2
k ≤

(

1
4
√
2

)2k

≤ 1

16
.



64 3 A FULL-NEWTON STEP IIPM FOR LOThe last inequality implies that k ≤ 4.At eah iteration of this algorithm, the quantity ǫ(x, y, s), given by (1.20), isdereasing by the fator 1 − θ with θ given by (3.17). Thus, letting K be thenumber of µ-updates before an ε-solution is obtained, one has
ǫ(x, y, s) ≤ (1 − θ)Kǫ(ζe, 0, ζe) ≤ ε.This is equivalent to
K ≤ − 1

log(1− θ)
log

ǫ(ζe, 0, ζe)

ε
.Using θ − log(1 − θ) > 0 for any θ ∈ (0, 1), this ertainly holds if

K ≤ 1

θ
log

ǫ(ζe, 0, ζe)

ε
.Setting θ = 1

4n and onsidering the fat that at most 5 so-alled inner iterationsare done per µ-update (one feasibility step and 4 entering steps), the total numberof iterations does not exeed
⌈

20n log
ǫ(ζe, 0, ζe)

ε

⌉

. (3.18)3.5 Deteting infeasibility or unboundednessWe have shown that if (P) and (D) are feasible and ζ satis�es (3.2), then thealgorithm �nds an ε-solution of (P) and (D), and the number of iterations doesnot exeed (3.18). In this setion, we deal with the ase where ζ is too small or(P) and (D) do not have an optimal solution. Although in [46, Remark 4.1℄, theauthors disuss this issue, we present the argument given by Roos [97℄ whih ismore omprehensive.Aording to Lemma 3.1.1, if the original pair (P) and (D) does not haveoptimal solution, then there exists some ν̄ ∈ (0, 1) suh that for any ν ∈ (0, ν̄) theperturbed pair (Pν) and (Dν) does not satisfy the IPC. This means that if at someiteration of the algorithm, after the feasibility step the iterates (xf , yf , sf ) do notbelong to the quadratially onvergent region of the µ+-enter, i.e., δ(xf , sf ;µ+) >
1/ 4

√
2, then one may onlude that the pair (P) and (D) does not have any optimalsolution (x∗, y∗, s∗) satisfying (3.2). To settle unertainty about the existene ofan optimal solution satisfying (3.2) with some larger ζ, Roos [97, Setion 4.7℄suggests to run the algorithm with ζ = 2ζ and repeat if neessary. On theother hand, it is well-known that if (P) and (D) are feasible and their inputdata, i.e., A, b and c are rational numbers, then there exist a primal-dual optimalsolution (x∗, y∗, s∗) whih satis�es ‖x∗ + s∗‖∞ ≤ 2L with L denoting the size ofthe input data. Due to this, starting from ζ = 1, after at most L times updating

ζ, the algorithm ends up with an optimal solution or delares infeasibility orunboundedness of the problems (P) and (D).



4Convergene of the homotopy path4.1 IntrodutionAs we mentioned in the previous hapters, most IIPMs follow approximately thehomotopy path to �nd an optimal solution of the pair (P) and (D). In this hapter,we establish that if (P) and (D) are feasible then the homotopy path onvergesto a stritly omplementarity solution of (P) and (D).As in (3.1), we assume that x0 = s0 = ζe, and y0 = 0, and that ζ is as in(3.2). Reall from Setion 2.1 that the homotopy path onsists of the µ-enters
(x(ν), y(ν), s(ν)), of the perturbed pairs (Pν) and (Dν), where µ = νζ2. In otherwords, eah point on the path is uniquely de�ned by the following system:

b−Ax = ν(b −Aζe), x ≥ 0,

c−AT y − s = ν(c− ζe), s ≥ 0,

xs = νζ2e, 0 ≤ ν ≤ 1,

(4.1)with ζ given by (3.2).By applying the impliit funtion theorem, we may easily see that the µ-enters (x(ν), y(ν), s(ν)), for ν ∈ (0, 1), depends analytially on ν and forms aontinuous path. In the sequel, we will investigate the onvergene properties ofthe homotopy path.4.2 Convergene propertiesWe denote the support of any nonnegative vetor x as σ(x). So, if x ∈ Rn
+ then

σ(x) = {i : xi > 0} .To simplify notation we denote x = x(ν), y = y(ν), and s = s(ν) in the nextlemma. 65



66 4 CONVERGENCE OF THE HOMOTOPY PATHLemma 4.2.1. Let (x∗, y∗, s∗) denote an arbitrary optimal solution of (P) and(D). Then we have for any ν ∈ (0, 1]:
(1−ν)ζ





∑

i∈σ(x∗)

x∗i
xi

+
∑

i∈σ(s∗)

s∗i
si



 = (1−ν)eT (x∗+s∗)−e
T (x+s)+(1+ν)ζn. (4.2)Proof. Sine b = Ax∗ and c = AT y∗+ s∗, the system (4.1) an be rewritten as

A(x∗ − x) = νA(x∗ − ζe), x ≥ 0,

AT (y∗ − y) + (s∗ − s) = ν(AT y∗ + s∗ − ζe), s ≥ 0,

xs = νζ2e, 0 ≤ ν ≤ 1.Using that the row spae of A and its null spae are orthogonal, we obtain
[(1− ν)x∗ − x+ νζe]

T
[(1 − ν)s∗ − s+ νζe] = 0. (4.3)Sine (x∗)T s∗ = 0 we derive from this that

(1− ν)(sTx∗ + xT s∗) = ν(1− ν)ζeT (x∗ + s∗)− νζeT (x + s) + xT s+ ν2ζ2eTe.By the de�nition of the sets σ(x∗) and σ(s∗) we have x∗i = 0 if i /∈ σ(x∗) and
s∗i = 0 if i /∈ σ(s∗). Hene it follows that
(1− ν)





∑

i∈σ(x∗)

six
∗
i +

∑

i∈σ(s∗)

xis
∗
i



 = ν(1 − ν)ζeT (x∗ + s∗)−

νζeT (x+ s) + xT s+ ν2ζ2n.Using xs = νζ2e, from the third equation of (4.1), we get
(1− ν)





∑

i∈σ(x∗)

νζ2

xi
x∗i +

∑

i∈σ(s∗)

νζ2

si
s∗i



 = ν(1 − ν)ζeT (x∗ + s∗)−

νζeT (x+ s) + νζ2n+ ν2ζ2n.After dividing both sides by νζ we obtain (4.2), thus ompleting the proof. �Sine the left-hand side of the identity in (4.2) is nonnegative, the followingorollary follows trivially.Corollary 4.2.2. For any optimal solution (x∗, y∗, s∗) of (P) and (D) and forany ν ∈ (0, 1] one has
e
T (x(ν) + s(ν)) ≤ (1 − ν)eT (x∗ + s∗) + (1 + ν)ζn. (4.4)



4.2 CONVERGENCE PROPERTIES 67By Theorem 1.2.3, the problems (P) and (D) have a stritly omplementary(optimal) solution (x̂, ŷ, ŝ). Hene, when denoting the lasses in the optimalpartition of (P) and (D) as Bopt and Nopt, one has for eah optimal solution
(x∗, y∗, s∗) of (P) and (D) that

Bopt = σ(x̂) ⊇ σ(x∗), Nopt = σ(ŝ) ⊇ σ(s∗). (4.5)Lemma 4.2.3. Let (x̂, ŷ, ŝ) be any stritly omplementary solution of (P) and(D). The homotopy path has an aumulation point in the set of optimal solu-tions of (P) and (D). Moreover, any suh aumulation point (x̃, ỹ, s̃) is stritlyomplementary and satis�es
ζ





∑

i∈Bopt

x̂i
x̃i

+
∑

i∈Nopt

ŝi
s̃i



 = e
T (x̂+ ŝ)− e

T (x̃+ s̃) + ζn. (4.6)Proof. Sine the right-hand side in (4.4) depends linearly on ν and 0 ≤ ν ≤ 1,we have
e
T (x(ν) + s(ν)) ≤ max(eT (x∗ + s∗) + ζn, 2ζn).Hene the homotopy path, i.e. the set {(x(ν), y(ν), s(ν)) : 0 < ν ≤ 1}, lies in theompat set eT (x(ν) + s(ν)) ≤ max(eT (x∗ + s∗) + ζn, 2ζn), where x(ν) ≥ 0 and

s(ν) ≥ 0.Now let ν1 = 1 and {νk}∞k=1 be a stritly dereasing sequene onverging to
0 if k → ∞, and let xk = x(νk), yk = y(νk) and sk = s(νk). Sine the sequene
(xk, sk) lies in a ompat set, it has an aumulation point (x̃, s̃). It followsthat a subsequene of the sequene (xk, sk) onverges to (x̃, s̃). Without loss ofgenerality we assume below that the sequene (xk, sk) itself onverges to (x̃, s̃).Sine (xk)T sk = νkζ

2n, the sequene {(xk)T sk}∞
k=1

is stritly dereasing, andonverges to 0. Thus it follows that x̃T s̃ = 0. Sine A has full rank, s̃ determines
ỹ uniquely suh that (x̃, ỹ, s̃) is an optimal solution of (P) and (D).Putting (x∗, y∗, s∗) = (x̂, ŷ, ŝ), ν = νk and (x, y, s) = (xk, yk, sk) in (4.2),while also using (4.5), we get
(1− νk)ζ





∑

i∈Bopt

x̂i
xki

+
∑

i∈Nopt

ŝi
ski



 = (1− νk)e
T (x̂+ ŝ)− e

T (xk + sk)+ (1+ νk)ζn,for k = 1, 2, · · · . Now letting k go to ∞, we have that νk goes to 0, xk goes to x̃and sk to s̃. Thus we obtain the relation (4.6). Sine the right-hand side expres-sion in (4.6) is a real number, the left-hand side expression must be well-de�ned.Thus it follows that if i ∈ Bopt then x̃i > 0, and if i ∈ Nopt then s̃i > 0. Hene itfollows that σ(x̃) = Bopt and σ(s̃) = Nopt, proving that (x̃, ỹ, s̃) is stritly om-plementary. This ompletes the proof of the lemma. �The following lemma makes lear that the homotopy path has only one au-mulation point, whih implies that it onverges.



68 4 CONVERGENCE OF THE HOMOTOPY PATHLemma 4.2.4. The homotopy path has preisely one aumulation point in theoptimal set.Proof. By Lemma 4.2.3 the homotopy path has an aumulation point (x̃, ỹ, s̃)in the optimal set. Suppose we have another aumulation point (x̄, ȳ, s̄) of thehomotopy path in the optimal set. By applying Lemma 4.2.3 two times, the �rsttime with (x̃, ỹ, s̃) = (x̃, ỹ, s̃) and (x̂, ŷ, ŝ) = (x̄, ȳ, s̄) and the seond time with
(x̃, ỹ, s̃) = (x̄, ȳ, s̄) and (x̂, ŷ, ŝ) = (x̃, ỹ, s̃), we obtain

ζ





∑

i∈Bopt

x̄i
x̃i

+
∑

i∈Nopt

s̄i
s̃i



 = e
T (x̄+ s̄)− e

T (x̃+ s̃) + ζn,

ζ





∑

i∈Bopt

x̃i
x̄i

+
∑

i∈Nopt

s̃i
s̄i



 = e
T (x̃+ s̃)− e

T (x̄+ s̄) + ζn.By adding these relations, while de�ning
zi =







x̄i/x̃i, if i ∈ Bopt,

s̄i/s̃i, if i ∈ Nopt,we obtain
ζ

n
∑

i=1

(zi + z−1
i ) = 2ζn. (4.7)Sine eah zi is the quotient of two positive numbers, we have zi > 0. Therefore,

zi + z−1
i = (z

1
2

i − z
− 1

2

i )2 + 2 ≥ 2,with equality if and only if zi = 1. Thus it follows from (4.7) that zi = 1 for eah
i, whih means that x̄ = x̃ and s̄ = s̃. This proves the lemma. �We �nally prove that the limit of the homotopy path is the analyti enter ofa subset of the set of optimal solutions.Lemma 4.2.5. Let (x̃, ỹ, s̃) be the limit point of the homotopy path in the optimalset. Then it is the analyti enter of the set of optimal solutions (x∗, y∗, s∗) of(P) and (D) satisfying e

T (x∗ + s∗) ≤ e
T (x̃+ s̃).Proof. Let (x̃, ỹ, s̃) be a stritly omplementary solution of (P) an (D) that isan aumulation point of the homotopy path. Let S(x̃, s̃) denote the set of optimalsolutions of (P) and (D) suh that e

T (x∗ + s∗) ≤ e
T (x̃ + s̃), and (x∗, y∗, s∗) ∈

S(x̃, s̃). Using similar arguments as in the proof of Lemma 4.2.3, replaing (x̂, ŷ, ŝ)by (x∗, y∗, s∗) and using (4.5), one proves that
ζ





∑

i∈Bopt

x∗i
x̃i

+
∑

i∈Nopt

s∗i
s̃i



 = e
T (x∗ + s∗)− e

T (x̃+ s̃) + ζn. (4.8)



4.2 CONVERGENCE PROPERTIES 69Using e
T (x∗ + s∗) ≤ e

T (x̃+ s̃), and upon diving both sides by ζ, this implies
∑

i∈Bopt

x∗i
x̃i

+
∑

i∈Nopt

s∗i
s̃i

≤ n.The left-hand side expression is a sum of (at most) n nonnegative numbers. Usingthe arithmeti-geometri-mean inequality we obtain




∏

i∈Bopt

x∗i
x̃i

∏

i∈Nopt

s∗i
s̃i





1/n

≤ 1

n





∑

i∈Bopt

x∗i
x̃i

+
∑

i∈Nopt

s∗i
s̃i



 ≤ 1.Thus we have
∏

i∈Bopt

x∗i
x̃i

∏

i∈Nopt

s∗i
s̃i

≤ 1.It will be onvenient to de�ne the funtion
f(x∗, s∗) :=

∏

i∈Bopt

x∗i
∏

i∈Nopt

s∗i (4.9)on the set of optimal solutions of (P) and (D). Then we have
f(x∗, s∗) ≤ f(x̃, s̃), ∀(x∗, y∗, s∗) ∈ S(x̃, s̃). (4.10)This means that (x̃, ỹ, s̃) maximizes the produt ∏i∈Bopt

x∗i
∏

i∈Nopt
s∗i on the set

S(x̃, s̃). Note that f(x̃, s̃) is positive, beause the pair (x̃, s̃) is stritly omple-mentary. On the other hand, for optimal solutions that are not stritly omple-mentary we have f(x∗, s∗) = 0. Hene the maximum of f(x∗, s∗) ours in astritly omplementary solution. The logarithmi funtion being strit monoton-ially inreasing we an equally well maximize log f(x∗, s∗), whih has the samemaximizer(s) on the set of stritly omplementary solutions in S(x̃, s̃). However,when the pair (x∗, s∗) is stritly omplementary, one has
log f(x∗, s∗) :=

∑

i∈Bopt

log x∗i +
∑

i∈Nopt

log s∗i .Sine the set S(x̃, s̃) is onvex, by de�nition (see, e.g., [98℄) the maximizer of
f(x∗, s∗) on S(x̃, s̃) is the analyti enter of S(x̃, s̃). �A question that arises is wether the limit point of the homotopy path dependson the starting parameter ζ, or not. We answer this question by using the followingexample.We onsider the ase where

A =





α −β 0

1 1 1



 , c =











α

β

0











, b =





0

3



 ,



70 4 CONVERGENCE OF THE HOMOTOPY PATHwhere α and β are positive numbers. Then (P) and (D) are respetively given by
min {αx1 + βx2 : αx1 − βx2 = 0, x1 + x2 + x3 = 3, x = (x1;x2;x3) ≥ 0} ,

max {3y2 : αy1 + y2 ≤ α, −βy1 + y2 ≤ β, y2 ≤ 0} .The feasible region of the dual problem is depited in Figure 4.1. One may easily
1 2 3−1−2

1

2

−1

−2

−3

y1

y2

Figure 4.1: Feasible region of the dual problem for α = 1 and β = 2.verify that the set of optimal solutions is given by


















(x, y, s) =
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y1

0
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α(1 − y1)

β(1 + y1)

0





















,−1 ≤ y1 ≤ 1



















. (4.11)We onlude from (4.11) that the lasses in the optimal partition are given by
Bopt = {3} , Nopt = {1, 2} .As a onsequene we have

∏

i∈Bopt

x∗i
∏

i∈Nopt

s∗i = 3 · α(1− y1) · β(1 + y1) = 3αβ(1 − y21).The last expression is maximal for y1 = 0. Hene, putting y1 = 0 in (4.11), we



4.2 CONVERGENCE PROPERTIES 71get that the analyti enter is given by
(x, y, s) =





















0

0

3











,





0

0



 ,











α

β

0





















.Now we turn to the homotopy path. We proeed by taking α = 1 and β = 2.For that ase we omputed numerially the homotopy path for several values of
ζ. The results are shown in Figure 4.2. The starting point of the homotopy pathis the zero vetor, whih is drawn as a `+'. The limit point is drawn as a `x'. The�gure learly demonstrates that the limit point depends highly on the value of ζ.It may be noted that in eah of the four ases the limit point is suh that ỹ1 ≤ 0.

−1 −0.5 0 0.5 1
−0.1

−0.05

0

0.05

0.1

0.15

y
1

y 2

−1 −0.5 0 0.5 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

y
1

y 2

ζ = 0.1 ζ = 1

−1 −0.5 0 0.5 1

−4

−3

−2

−1

0

y
1

y 2

−1 0 1 2 3 4 5
−80

−70

−60

−50

−40

−30

−20

−10

0

y
1

y 2

ζ = 10 ζ = 100Figure 4.2: Homotopy path for α = 1 and β = 2, and several values of ζ.This also follows from Lemma 4.2.5. Beause for any optimal solution (x, y, s) we



72 4 CONVERGENCE OF THE HOMOTOPY PATHhave
e
T (x+ s) = 3 + α+ β + (β − α)y1 = 6 + y1,

∏

i∈Bopt

xi
∏

i∈Nopt

si = 6(1− y21).Hene, by Lemma 4.2.5 we should have
y1 ≤ ỹ1 ⇒ y21 ≥ ỹ21 .This impliation an be true only if ỹ1 ≤ 0. When α > β one proves in the sameway that ỹ1 ≥ 0. For an illustration we refer to Figure 4.3.
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ζ = 1000 ζ = 100000Figure 4.3: Homotopy path for α = 200 and β = 100, and several values of ζ.One might observe that in all ases it is true that the larger the value of ζ is,the loser the limit point is to the analyti enter. This holds indeed in general,as we show in the next lemma.



4.2 CONVERGENCE PROPERTIES 73Lemma 4.2.6. Let ζ > 0 and (x̃, ỹ, s̃) be the limit point in the optimal set of theorresponding homotopy path. If ζ goes to in�nity then (x̃, ỹ, s̃) onverges to theanalyti enter of the optimal set.Proof. Sine x̃ ≥ 0 and s̃ ≥ 0 we have e
T (x̃ + s̃) ≥ 0. Hene it follows from(4.8) that

ζ





∑

i∈Bopt

x∗i
x̃i

+
∑

i∈Nopt

s∗i
s̃i



 ≤ e
T (x∗ + s∗) + ζn,where (x∗, y∗, s∗) denotes some optimal triple. Dividing by ζ at both sides we get

1

n





∑

i∈Bopt

x∗i
λx̃i

+
∑

i∈Nopt

s∗i
λs̃i



 ≤ 1, λ :=
e
T (x∗ + s∗)

ζn
+ 1.Due to the geometri-arithmeti mean inequality this implies





∏

i∈Bopt

x∗i
λx̃i

∏

i∈Nopt

s∗i
λs̃i





1
n

≤ 1.With f as de�ned in (4.9), this implies f(x∗, s∗) ≤ λnf(x̃, s̃). When ζ goes toin�nity, then λ approahes 1, making lear that (x̃, ỹ, s̃) onverges to the analytienter of the optimal set. �





5A lass of Large-update IIPMs forLO5.1 IntrodutionIn Chapter 3 we desribed a full-Newton step IIPM due to Gu et al. [46℄ whihhas the property that the iterates stay in a narrow neighborhood of the homotopypath. This algorithm uses full-Newton steps. This enabled us to explore theloal quadrati onvergene property of Newton's method. As we established, thebarrier-updating parameter θ should be small, namely O( 1
n ), whih imposes an

O(n) onvergene rate to the algorithm. This onvergene rate oinides withthe best known onvergene rate for IIPMs. However, the algorithm has thedisadvantage that it has a poor performane in pratie.In this hapter we attempt to design a more aggressive variant of the algorithmof Gu et al., i.e., whih redues ǫ(x, y, s) faster. We would like to mention thatthis is our aim and also what happens in pratie (see Chapter 6). As we will see,however, our algorithm su�ers from the same irony that ours for FIPMs, namelythat the theoretial onvergene rate of large-update methods is muh worse thanthat of full-Newton variant. In a �rst attempt we used the lassial searh dir-etion for primal-dual methods, that is based on the well-known primal-dual log-arithmi barrier funtion, and the theoretial onvergene rate turned out to be
O(n2). As we show, however, when using a di�erent barrier funtion to de�ne thesearh diretion the onvergene rate an be improved to O(n√n(logn)3).In order to obtain this result we use a so-alled kernel-funtion based barrierfuntion. Any suh barrier funtion is based on a univariate funtion, alled itskernel funtion. Suh funtions have been introdued in [10℄ and are losely relatedto the so-alled self-regular funtions introdued in [88℄. In these referenes onlyFIPMs are onsidered, and it is shown that these funtions are muh more e�ientfor the proess of re-entering, whih is a ruial part in every FIPM, espeially75



76 5 A CLASS OF LARGE-UPDATE IIPMS FOR LOwhen an iterate is far from the entral path. Not surprising, it turns out thatthese funtions are also useful in our large-update IIPM, where re-entering isalso a ruial ingredient.In Setion 5.2, we brie�y introdue the notion of kernel funtion, whih playsa ruial role in our algorithm. After that, in Setion 5.3, as a preparation toour large-update IIPM, we brie�y reall the use of kernel-based barrier funtionsin large-update FIPMs, as presented in [10℄. It will beome lear in this setionthat the onvergene rate highly depends on the underlying kernel funtion. Thebest result is obtained for a spei� kernel funtion, denoted ψ3, whih yields theonvergene rate O(√n logn); this is a fator logn worse than for full-Newtonstep FIPMs.In Setion 5.4, we desribe our large-update IIPM in detail. In our desriptionwe use a searh diretion based on general kernel funtions. The algorithm usestwo types of damped Newton steps: a so-alled feasibility step and some enteringsteps. The feasibility step serves to redue the residual norms, ‖rb‖ and ‖rc‖,whereas the entering steps keep the residual vetors �xed, but improve the dualitygap xT s. This proedure is repeated until an ε-solution is obtained. Though manyparts of our analysis are valid for general kernel funtion, at some plaes we restritourselves to the kernel funtion ψ3(t). In Setion 5.5, we show that the algorithmbased on this kernel funtion yields an O(n
√
n(logn)3) onvergene rate whihis a fator (logn)2 worse than for the IIPM, obtained by Salahi et al. [101℄. InSetion 5.6, we argue how our algorithm detets infeasibility or unboundedness.5.2 Kernel funtionsIn this setion, we show that the µ-enters, i.e., the unique solutions of the system(1.2), an be haraterized as the minimizers of a suitably hosen primal-dualbarrier funtion. In fat we will de�ne a wide lass of suh barrier funtions, eahof whih is determined by a kernel funtion.A kernel funtion is just a univariate nonnegative funtion ψ(t), where t > 0,whih is stritly onvex, minimal at t = 1 and suh that ψ(1) = 0, whereas ψ(t)goes to in�nity both when t goes to zero and when t goes to in�nity.Now let (x, y, s) be a primal-dual stritly feasible for (P) and (D). Observe thatif v is the variane vetor with respet to µ, as given by (1.8), then v = e holdsif and only if (x, y, s) is the µ-enter of (P) and (D). Given any kernel funtion ψwe extend its de�nition to Rn

++ aording to
Ψ(v) :=

n
∑

i=1

ψ(vi). (5.1)It is obvious that Ψ(v) is nonnegative everywhere, and Ψ(e) = 0. Yet we ande�ne a barrier funtion Φ(x, s, µ) as follows:
Φ(x, s, µ) := Ψ(v). (5.2)



5.3 LARGE-UPDATE FIPMS FOR LO 77It is now obvious that Φ(x, s, µ) is well-de�ned, nonnegative for every primal-dualstritly feasible (x, y, s), and moreover,
Φ(x, s, µ) = 0 ⇔ Ψ(v) = 0 ⇔ v = e ⇔ (x, y, s) = (x(µ), y(µ), s(µ)).This implies that (x(µ), y(µ), s(µ)) is the (unique) minimizer of Φ(x, s, µ).We next give an important example, showing that the well-known logarithmibarrier funtion arises when taking as a kernel funtion

ψ(t) :=
t2 − 1

2
− log t, t > 0. (5.3)This follows sine in that ase we may write

Φ(x, s, µ) =

n
∑

i=1

ψ(vi) =

n
∑

i=1

(

v2i − 1

2
− log vi

)

=

n
∑

i=1

(

xisi
µ − 1

2
− log

√

xisi
µ

)

=
1

2

(

xT s

µ
−

n
∑

i=1

log xi −
n
∑

i=1

log si + n logµ− n

)

.Up to the term n logµ − n, whih does not depend on (x, y, s), the expressionwithin the brakets is preisely the lassial primal-dual logarithmi barrier fun-tion; due to this term the minimal value of Φ(x, s, µ) equals 0.As in [10℄ we all the kernel funtion ψ eligible if it satis�es the followingtehnial onditions.
tψ′′(t) + ψ′(t) > 0, t < 1,

tψ′′(t)− ψ′(t) > 0, t > 1,

ψ′′′(t) < 0, t > 0,

2ψ′′(t)2 − ψ′(t)ψ′′′(t) > 0, t < 1.In the sequel it is always assumed that ψ is an eligible kernel funtion. Propertiesof eligible kernel funtions will be realled from [10℄ without repeating their proofs.5.3 Large-update FIPMs for LOIn this setion we reall from [10℄ some results for a large-update FIPM for solving(P) and (D) using a kernel-funtion based barrier funtion. We assume, withoutloss of generality, that the triple
(x0, y0, s0) = (e, 0, e), (5.4)
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•
µe

•
µ+

e

entral path
Φ(x, s;µ) ≤ τ

Figure 5.1: An illustration of large-update FIPM: µ+ = (1− θ)µ.is primal-dual feasible.1 We then have x0s0 = µ0
e for µ0 = 1. This means that

(x0, y0, s0) is the 1-enter, and hene Φ(x0, s0, µ0) = 0. We use this triple toinitialize our algorithm.Eah main (or outer) iteration of the algorithm starts with a stritly feas-ible triple (x, y, s) that satis�es Φ(x, s, µ) ≤ τ for some µ ∈ (0, 1], where τ is a�xed positive onstant. It then onstruts a new triple (x+, y+, s+) suh that
Φ(x+, s+, µ+) ≤ τ with µ+ < µ. When taking τ small enough, we obtain in thisway a sequene of stritly feasible triples that belong to small neighborhoods ofa sequene of µ-enters, for a dereasing sequene of µ's. As a onsequene, thesequene of onstruted triples (x, y, s) onverges to an optimal solution of (P)and (D).We will assume that µ+ = (1 − θ)µ, where θ ∈ (0, 1) is a �xed onstant, e.g.,
θ = 0.5 or θ = 0.99. The larger θ, the more aggressive is the algorithm. Espeiallywhen θ is large, eah outer iteration will require several so-alled inner iterations.See Fig.5.1. The straight line represents the entral path of (P) and (D) and thegray irles depit the τ -neighborhoods of the µ-enter and the µ+-enter. Theurved arrows illustrate the damped Newton steps that are used to restore theiterates to the τ -neighborhoods of the µ+-enter of (P) and (D). The iterates areshown by the irlets.1The problems (P) and (D) an be embedded into a self-dual problem for whih the giventriple is a feasible solution and that has an optimal solution that indues optimal solutions for(P) and (D).



5.3 LARGE-UPDATE FIPMS FOR LO 79Sine µ0 = 1, Lemma 1.7.3 yields the following upper bound for the numberof outer iterations of the algorithm:
⌈

1

θ
log

n

ε

⌉

. (5.5)The main task is therefore to get a sharp upper estimate for the number ofinner iterations during an outer iteration. We now desribe how suh an estimateis obtained. We go into some detail, though without repeating proofs, beausethe results that we reall below are relevant for the IIPM that we disuss in thenext setion.As said before, at the start of eah outer iteration we have a stritly feasibletriple (x, y, s) and µ > 0 suh that Φ(x, s, µ) ≤ τ . We �rst need to estimate theinrease in Φ when µ is updated to µ+ = (1− θ)µ. For this we need the followinglemma.Lemma 5.3.1. (f. [10, Theorem 3.2℄) Let ̺ : [0,∞) → [1,∞) be the inversefuntion of ψ(t) for t ≥ 1. Then we have for any positive vetor v and any β ≥ 1:
Ψ(βv) ≤ nψ

(

β̺

(

Ψ(v)

n

))

.Now let v be the variane vetor of (x, y, s) with respet to µ. Then one easilyunderstands that the variane vetor v+ of (x, y, s) with respet to µ+ is given by
v+ = v/

√
1− θ. Hene, using Lemma 5.3.1 with β = 1/

√
1− θ we may write

Φ(x, s, µ+) = Ψ(v+) = Ψ

(

v√
1− θ

)

≤ nψ





̺
(

Ψ(v)
n

)

√
1− θ



 ≤ nψ

(

̺
(

τ
n

)

√
1− θ

)

,where the last inequality holds beause ̺ is monotonially inreasing and Ψ(v) =
Φ(x, s, µ) ≤ τ . Hene the number τ̄ de�ned by

τ̄ := nψ

(

̺
(

τ
n

)

√
1− θ

)

, (5.6)is an upper bound for the value of Ψ after a µ-update. Note that this bound isindependent of the triple (x, y, s); it depends only on the kernel funtion ψ andthe parameters n, τ and θ.To simplify the notation we rede�ne µ aording to µ := µ+. Thus we needto deal with the following question: given a triple (x, y, s) suh that Φ(x, s, µ) ≤
τ̄ , how muh inner iterations are needed to generate a triple (x, y, s) suh that
Φ(x, s, µ) ≤ τ . To answer this question we have to desribe an inner iteration. Ithas been argued in Setion 2.2. of [10℄ that it is natural to de�ne searh diretions
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(∆x,∆y,∆s) by the system

A∆x = 0,

AT∆y +∆s = 0,

s∆x+ x∆s = −µv∇Ψ(v).This system has a unique solution. It may be worth pointing out that if ψ is thelogarithmi kernel funtion, as given by (5.3), then −µv∇Ψ(v) = µe − xs, andhene the resulting diretion is the primal-dual Newton diretion that is used inall primal-dual FIPMs. By doing a line searh in this diretion with respet to Ψwe get new iterates
(x, y, s) := (x, y, s) + α(∆x,∆y,∆s),where α is the step size. Aording to [10, Lemma 4.4℄, we use the followingdefault step size:

α =
1

ψ′′(ρ(2δ(v)))
,where ρ is the inverse funtion of − 1

2ψ
′(t), and

δ(v) :=
1

2
‖∇Ψ(v)‖ .Algorithm 5.1 shows a formal desription of the algorithm. The loseness ofAlgorithm 5.1 A large-update FIPMInput:A threshold parameter τ > 0;an auray parameter ε > 0;a �xed barrier update parameter θ, 0 < θ < 1;begin

x := e; y := 0; s := e; µ := 1;while nµ ≥ ε,
µ := (1 − θ)µ;while Ψ(v) > τ ,

(x, y, s) := (x, y, s) + α(∆x,∆y,∆s);

v :=
√

xs
µ ;endwhileendwhileend

(x, y, s) to the µ-enter is measured by Ψ(v), where v is the variane vetor of
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(x, y, s) with respet to the urrent value of µ. The initial triple (x, y, s) is asgiven by (5.4) and µ = 1. So we then have Ψ(v) = 0 ≤ τ . After a µ-update wehave Ψ(v) ≤ τ̄ . Then a sequene of inner iterations is performed to restore theinequality Ψ(v) ≤ τ . Then µ is updated again, and so on. This proess is repeateduntil nµ falls below the auray parameter ε after whih we have obtained an
ε-solution.To estimate the number of inner iterations we proeed as follows. Denotingthe derease in the value of Ψ as ∆Ψ, it was shown in [10, Theorem 4.6℄ that

∆Ψ ≥ αδ(v)2 =
δ(v)2

ψ′′(ρ(2δ(v)))
. (5.7)Sine the kernel funtion ψ is eligible, the last expression is inreasing in δ(v)[10, Lemma 4.7℄. Besides, by [10, Theorem 4.9℄, δ(v) is bounded from below asfollows:

δ(v) ≥ 1
2ψ

′ (̺ (Ψ(v))) . (5.8)Combining (5.7) and (5.8), we arrive at
∆Ψ ≥ (ψ′ (̺ (Ψ(v))))2

4ψ′′ (ρ (ψ′ (̺ (Ψ (v)))))
. (5.9)Following [10℄, let γ be the smallest number suh that

Ψ(v)γ−1 (ψ′ (̺ (Ψ(v))))2

4ψ′′ (ρ (ψ′ (̺ (Ψ (v)))))
≥ κ (5.10)for some positive onstant κ, whenever Ψ(v) ≥ τ . From the referenes in Table5.1 we know that suh onstants κ and γ exist for the kernel funtions in thistable. When denoting the value of the barrier funtion after the µ-update as Ψ0and the value after the k-th inner iteration as Ψk, it follows from (5.9) and (5.10)that

Ψ0 ≤ τ̄ , Ψk ≤ Ψk−1 − κΨ1−γ
k−1, k = 1, 2 . . . , (5.11)with τ̄ as in (5.6). At this stage we may point out why the use of kernel funtionsother than the logarithmi kernel funtion may be advantageous. The reasonis that if ψ is the logarithmi kernel funtion then γ = 1, whene we obtain

Ψk ≤ Ψk−1 − κ for eah k ≥ 1, provided that Ψk−1 ≥ τ . This resembles thewell-known fat that the best lower bound for the derease of the logarithmibarrier funtion is a �xed onstant, no matter what the value of Ψ(v) is. Aswe will see smaller values of γ an be obtained for other kernel funtions, whihleads to larger redutions of the barrier funtion value, and hene lower iterationnumbers.By [10, Lemma 5.1℄, (5.11) implies that the number of inner iterations will notexeed
τ̄γ

κγ
=

1

κγ

(

nψ

(

̺
(

τ
n

)

√
1− θ

))γ

. (5.12)



82 5 A CLASS OF LARGE-UPDATE IIPMS FOR LOMultiplying this number by the number of outer iterations, as given by (5.5), weobtain the following upper bound for the total number of iterations:
1

θκγ

(

nψ

(

̺
(

τ
n

)

√
1− θ

))γ

log
n

ε
.Given a kernel funtion ψ, it is now straightforward to ompute the resultingiteration bound from this expression. Table 5.1 summarizes some results fromthe literature. In this hapter we onsider an IIPM based on the use of a kernel
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ε , q = O(log n) [2℄Table 5.1: Iteration bounds of large-update FIPMs for several kernel funtions.funtion. Although many of the results below hold for any eligible kernel funtion,we will onentrate of the kernel ψ3 in Table 5.1. The reason is that it gives thebest possible result among the kernel funtions in this table; another nie featureof ψ3 is that if q approahes 1 then this funtion onverges to the logarithmikernel funtion.5.4 Large-update IIPMs for LOIn this setion, we attempt to design a large-update IIPM to solve (P) and (D),whih is inspired by the full-Newton step algorithm desribed in Chapter 3. As inthe full-Newton variant, our algorithm starts from the initials (x0, y0, s0), given



5.4 LARGE-UPDATE IIPMS FOR LO 83by (3.1) and (3.2), and generates a sequene of positive iterates in a small neigh-borhood of the homotopy path. Preisely speaking, the iterates belong to a smallneighborhood of the µ-enters of the perturbed pairs (Pν) and (Dν) where µ and
ν are related as µ = νζ2 with ζ given by (3.2). Moreover, eah iteration redues
ν (and also µ) by a fator 1− θ, with θ ∈ (0, 1). Sine we are interested in somelarger values of θ than in (3.17), we must expet that after a µ-update the iteratesdo not belong to the region of quadrati onvergene of the new µ-enters. Asa result the use of the quantity δ to measure the loseness of the iterates to thehomotopy path beomes irrelevant. As for large-update FIPMs, we use a barrierfuntion for this purpose. Let us explain an iteration of the algorithm in a moredetail.5.4.1 An outer iteration of the algorithmAs in Setion 5.3, Ψ(v) will denote the barrier funtion based on the kernel fun-tion ψ(t), as given in (5.1). Here v denotes the variane vetor of a triple (x, y, s)with respet to µ > 0, and we de�ne Φ(x, s, µ) as in (5.2). The algorithm isdesigned in suh a way that at the start of eah outer iteration we have Ψ(v) ≤ τfor some threshold value τ = O(1). As Ψ(v) = 0 at the starting points (3.1), theondition Ψ(v) ≤ τ is ertainly satis�ed at the start of the �rst outer iteration.Eah outer iteration of the algorithm onsists of a feasibility step and someentering steps. At the start of the outer iteration we have a triple (x, y, s) that isstritly feasible for (Pν ) and (Dν), for some ν ∈ (0, 1], and that belongs to the τ -neighborhood of the µ-enter of (Pν) and (Dν), where µ = νζ2. We �rst performa feasibility step during whih we generate a triple (xf , yf , sf) whih is stritlyfeasible for the perturbed problems (Pν+) and (Dν+), with ν+ = (1 − θ)ν and,moreover, lose enough to the µ+-enter of (Pν+) and (Dν+), with µ+ = ν+ζ2.i.e., Φ(xf , sf ;µ+) ≤ τf , for some suitable value of τf .After the feasibility step we perform some entering steps to get a stritlyfeasible triple (x+, y+, s+) of (Pν+) and (Dν+) in the τ -neighborhood of the µ+-enter of (Pν+) and (Dν+). During the entering steps the iterates stay feasiblefor (Pν+) and (Dν+). Hene for the analysis of the entering steps we an usethe analysis presented in the previous setion for FIPMs. From this analysis wederive that the number of entering steps will not exeed

(Φ(xf , sf , µ+))γ

κγ
,where the parameters γ and κ depend on the kernel funtion ψ. Hene we areleft with the problem of de�ning a suitable searh diretion (∆fx,∆fy,∆fs) forthe feasibility step and to determine θ suh that after the feasibility step we have

Φ(xf , sf , µ+) ≤ τf for some suitable value of τf . The number of outer iterations
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θ log

ǫ(ζe,0,ζe)
ε . Hene the total number of iterations will not exeed

(τf )γ

θκγ
log

ǫ(ζe, 0, ζe)

ε
. (5.13)5.4.2 Feasibility stepFor the searh diretion in the feasibility step we use the triple (∆fx,∆fy,∆fs)that is (uniquely) de�ned by the following system:

A∆fx = νr0b , (5.14a)
AT∆fy +∆fs = νr0c , (5.14b)
s∆fx+ x∆fs = 0. (5.14)Then de�ning the new iterates aording to

xf = x+ θ∆fx, yf = y + θ∆fy, sf = s+ θ∆fs,we have, due to (5.14a),
b−Axf = b−A

(

x+ θ∆fx
)

= b−Ax−θνr0b = νr0b−θνr0b = (1−θ)νr0b = ν+r0b .In the same way one shows that c − AT yf − sf = ν+r0c . Hene it remains to�nd θ suh that xf and sf are positive and Φ(xf , sf , µ+) ≤ τf . This is the hardpart of the analysis of our algorithm, whih we leave to the subsetion below.The algorithm is presented in Algorithm 5.2. A graphial illustration is givenby Figure 5.2. The straight lines in Figure 5.2 depit the entral paths of thepair (Pν) and (Dν) and the pair (Pν+) and (Dν+). The τ -neighborhoods of the
µ- and µ+-enters are shown by the gray irles. The light gray region spei�esthe τf -neighborhood of the µ+-enter of (Pν+) and (Dν+). The feasibility step isdepited by the �rst arrow at the right-hand side. The other arrows depit theentering steps. The iterates are shown by the irlets.5.4.3 Analysis of the feasibility stepThe feasibility step starts with some stritly feasible triple (x, y, s) for (Pν) and(Dν) and µ = νζ2 suh that

Ψ(v) ≤ τ with v :=

√

xs

µ
.As mentioned in Subsetion 5.4.1, our goal is to �nd θ suh that after the feasibilitystep, with step size θ, the iterates (xf , yf , sf ) lie in the τf -neighborhood of the µ+-enter of the new perturbed pair (Pν+) and (Dν+). This means that (xf , yf , sf )are suh that

Ψ(vf ) ≤ τf where vf :=

√

xfsf

µ+
, µ+ = (1− θ)µ.



5.4 LARGE-UPDATE IIPMS FOR LO 85Algorithm 5.2 A generi primal-dual large-update IIPMInput:auray parameter ε > 0;barrier update parameter θ ∈ (0, 1);initialization parameter ζ > 0;threshold parameter τ = O(1).begin
x := ζe; y := 0; s := ζe; ν := 1; µ := ζ2;while ǫ(x, y, s) ≥ εfeasibility step;

(x, y, s) := (x, y, s) + θ(∆fx, ∆fy, ∆fs) ;update of µ and ν:
ν := (1− θ) ν;

µ := νζ2;entering steps:while Φ(x, s;µ) > τ
(x, y, s) := (x, y, s) + α(∆x, ∆y, ∆s) ;endwhileendwhileendUsing the saled searh diretions dfx and dfs , given by (3.5), we may write

xf = x+ θ∆fx = x

(

e+ θ
∆fx

x

)

= x

(

e+ θ
dfx
v

)

=
x

v

(

v + θdfx
)

, (5.15)
sf = s+ θ∆fs = s

(

e+ θ
∆fs

s

)

= s

(

e+ θ
dfs
v

)

=
s

v

(

v + θdfs
)

. (5.16)This shows that xf and sf are positive if and only if v + θdfx and v + θdfs arepositive. On the other hand, using (3.5), we an reformulate (5.14) as follows:
x∆fs+ s∆fx = 0 ⇔ ∆fs

s
+

∆fx

x
= 0 ⇔ v∆fs

s
+
v∆fx

x
= 0 ⇔ dfx + dfs = 0.Therefore, dfs = −dfx. As a onsequene, xf and sf are positive if and only if

v± θdfx > 0. Sine v > 0 this is equivalent to v2 − θ2(dfx)
2 > 0. We onlude that

xf and sf are positive if and only if 0 ≤ θ < θmax, where
θmax =

1
∥

∥

∥

df
x

v

∥

∥

∥

∞

.
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•
µe

•
µ+

e

•
µ+

e

•
µe

entral path for νentral path for ν+ feasibility stepentering steps
Φ(x, s;µ) ≤ τ

Φ(xf , sf ;µ+) ≤ τ f

Figure 5.2: An illustration of an iteration of Algorithm 5.2.Yet we turn to the requirement that Ψ(vf ) ≤ τf . Using (5.15), (5.16) and xs =
µv2, we write

(

vf
)2

=
xfsf

µ+
=

(

v + θdfx
) (

v − θdfx
)

1− θ
=
v2 − θ2(dfx)

2

1− θ
.Hene, if θ < θmax then we may write

vf =
v̂√
1− θ

, where v̂ =

√

v2 − θ2(dfx)2.Lemma 5.4.1. Let θ be suh that 1√
1−θ

= O(1). Then Ψ(v̂) = O(n) implies
Ψ(vf ) = O(n).Proof. By Lemma 5.3.1 we have

Ψ(vf ) ≤ nψ





̺
(

Ψ(v̂)
n

)

√
1− θ



 .Let Ψ(v̂) = O(n). Then Ψ(v̂) ≤ Cn for some positive onstant C. Hene
Ψ(v̂)
n ≤ C. Reall that ̺(s) ≥ 1 for all s ≥ 0 and ̺(s) is monotonially in-reasing. Also, ψ(t) is monotonially inreasing for t ≥ 1. Hene we obtain
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Ψ(vf ) ≤ nψ

(

̺ (C)/
√
1− θ

). Sine 1/
√
1− θ = O(1), the oe�ient of n in theabove upper bound for Ψ(vf ) does not depend on n. Hene the lemma follows. �Due to Lemma 5.4.1 it su�es for our goal to �nd θ suh that Ψ(v̂) ≤ τ̂ where

τ̂ = O(n). In the sequel we onsider Ψ(v̂) as a funtion of θ, denoted as f1(θ). Sowe have
f1(θ) := Ψ(v̂) = Ψ

(
√

v2 − θ2(dfx)2
)

.We proeed by deriving a tight upper bound for f1(θ), thereby using similararguments as in [10℄. Sine the kernel funtion ψ(t) is eligible, Ψ(v) is e-onvex(f. [10, Lemma 2.1℄), whene we have
f1(θ) ≤ f(θ) := 1

2

[

Ψ
(

v + θdfx
)

+Ψ
(

v − θdfx
)]

.The �rst and the seond derivatives of f(θ) are as follows:
f ′(θ) =

1

2

n
∑

i=1

[

ψ′ (vi + θdfxi

)

− ψ′ (vi − θdfxi

)]

dfxi, (5.17)
f ′′(θ) =

1

2

n
∑

i=1

[

ψ′′ (vi + θdfxi

)

+ ψ′′ (vi − θdfxi
)] (

dfxi

)2
. (5.18)Sine ψ′′′(t) < 0, ∀t > 0, it follows that ψ′′(t) is monotonially dereasing. Fromthis we dedue that

ψ′′ (vi + θdfxi

)

+ ψ′′ (vi − θdfxi
)

≤ 2ψ′′ (vi − θ
∣

∣dfxi

∣

∣

)

≤ 2ψ′′ (vmin − θ‖dfx‖
)

,where vmin := min(v) and θ small enough, i.e., suh that vmin − θ‖dfx‖ > 0.Substitution into (5.18) gives
f ′′(θ) ≤ ‖dfx‖2ψ′′ (vmin − θ‖dfx‖

)

.By integrating both sides of this inequality with respet to θ, while using that
f ′(0) = 0, as follows from (5.17), we obtain

f ′(θ) = f ′(0) +

∫ θ

0

f ′′(ξ) dξ ≤ ‖dfx‖2
∫ θ

0

ψ′′ (vmin − ξ‖dfx‖
)

dξ

= −‖dfx‖
∫ θ

0

ψ′′ (vmin − ξ‖dfx‖
)

d
(

vmin − ξ‖dfx‖
)

= ‖dfx‖
[

ψ′ (vmin)− ψ′ (vmin − θ‖dfx‖
)]

.
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f(θ)− f(0) =

∫ θ

0

f ′(ξ) dξ ≤ ‖dfx‖
∫ θ

0

[

ψ′ (vmin)− ψ′ (vmin − ξ‖dfx‖
)]

dξ

= ψ′(vmin)θ‖dfx‖+ ψ
(

vmin − θ‖dfx‖
)

− ψ(vmin)

≤ ψ′(vmin)θ‖dfx‖ − θ‖dfx‖ψ′(vmin − θ‖dfx‖)

≤
[

ψ′(vmin)− ψ′ (vmin − θ‖dfx‖
)]

θ‖dfx‖. (5.19)where the last inequality holds beause ψ is onvex.2The �rst derivative with respet to vmin of the right-hand side expression in thisinequality is given by (ψ′′(vmin)− ψ′′(vmin − θ‖dfx‖)
)

θ‖dfx‖. Sine ψ′′ is (stritly)dereasing, this derivative is negative. Hene it follows that the expression isdereasing in vmin. Therefore, when θ and ‖dfx‖ are �xed, the less vmin is, thelarger the expression will be. Below we establish how small vmin an be when δ(v)is given.For eah oordinate vi of v we have 1
2 |ψ′(vmin)| ≤ 1

2‖Ψ(v)‖ = δ(v), whihmeans that
−δ(v) ≤ − 1

2ψ
′(vi) ≤ δ(v), 1 ≤ i ≤ n.Sine the inverse funtion ρ of − 1

2ψ
′ is monotonially dereasing, this is equivalentto

ρ(δ(v)) ≤ vi ≤ ρ(−δ(v)), 1 ≤ i ≤ n. (5.20)Hene the smallest possible value of vmin is ρ(δ(v)), and this value is attained inthe (exeptional) ase where vmin is the only oordinate of the vetor v that di�ersfrom 1. So we may assume that vmin = ρ(δ(v)). This implies − 1
2ψ

′(vmin) = δ(v)and hene ψ′(vmin) ≤ 0, whene vmin ≤ 1.In the sequel we denote δ(v) simply as δ. Substitution into (5.19) gives that
f(θ)− f(0) ≤

[

−2δ − ψ′ (ρ(δ)− θ‖dfx‖
)]

θ‖dfx‖.Hene we ertainly have f(θ) ≤ τ̂ if
f(0) +

[

−2δ − ψ′ (ρ(δ)− θ‖dfx‖
)]

θ‖dfx‖ ≤ τ̂ ,Sine f(0) = Ψ(v) ≤ τ , this holds if θ is suh that
τ +

[

−2δ − ψ′ (ρ(δ)− θ‖dfx‖
)]

θ‖dfx‖ ≤ τ̂ ⇔
[

−2δ − ψ′ (ρ(δ)− θ‖dfx‖
)]

θ‖dfx‖ ≤ τ̂ − τ ⇔
−2δ − ψ′ (ρ(δ)− θ‖dfx‖

)

≤ τ̂−τ

θ‖df
x‖

⇔
− 1

2ψ
′ (ρ(δ)− θ‖dfx‖

)

≤ δ + τ̂−τ

2θ‖df
x‖
.2We use that if f is onvex and di�erentiable then

(b − a)f ′(a) ≤ f(b) − f(a) ≤ (b− a)f ′(b).



5.4 LARGE-UPDATE IIPMS FOR LO 89Sine ρ is dereasing, the last inequality is equivalent to
ρ(δ)− θ‖dfx‖ ≥ ρ

(

δ +
τ̂ − τ

2θ‖dfx‖

)

. (5.21)Note that if θ approahes zero then the left-hand side expression onverges to
ρ(δ) and the right-hand side expression to zero. The left-hand side is dereasingin θ whereas the right-hand side is inreasing. The largest possible θ makes bothsides equal. In order to get a tight approximation for this value we �rst need toestimate ‖dfx‖. The next lemma gives an upper bound for ‖dfx‖. Its proof goes ina similar way as that of Lemma 3.3.3, given in [46℄.Lemma 5.4.2. One has

‖dfx‖ ≤ e
T (x + s)

ζρ(δ)
. (5.22)Proof. It an be easily veri�ed that the system (5.14), whih de�nes the searhdiretions ∆fx, ∆fy, and ∆fs, an be expressed in terms of the saled searhdiretions dfx and dfs as in (3.11) with rv = 0, i.e.,

Ādfx = νr0b , (5.23a)
ĀT ∆fy

µ
+ dfs = νvs−1r0c , (5.23b)

dfx + dfs = 0, (5.23)where
Ā = AV −1X, V = diag (v), X = diag (x).From the above de�nition of Ā we dedue that Ā =

√
µAD, where

D = diag

(

xv−1

√
µ

)

= diag

(√

x

s

)

= diag
(√
µ vs−1

)

.For the moment, let us de�ne
rb := νr0b , rc := νr0c . (5.24)With ξ = −∆fy

µ we then have (by eliminating dfs = −dfx from (5.23a)�(5.23))
√
µADdfx = rb, (5.25)

√
µDAT ξ + dfx = − 1√

µ
Drc, (5.26)By multiplying (5.26) both sides of from the left with √

µAD and using (5.25) itfollows that
µAD2AT ξ + rb = −AD2rc.
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ξ = − 1

µ
(AD2AT )−1

[

AD2rc + rb
]

.Substitution into (5.26) gives
dfx = − 1√

µ
Drc −

1√
µ
DAT (AD2AT )−1

[

−AD2rc − rb
]

= − 1√
µ

[

I −DAT (AD2AT )−1AD
]

Drc +
1√
µ
DAT (AD2AT )−1rb.To simplify notation we denote

P = DAT (AD2AT )−1AD.Note that P is (the matrix of) the orthogonal projetion to the row spae of thematrix AD. We now may write
√
µ dfx = [I − P ](−Drc) +DAT (AD2AT )−1rb.Let (x̄, ȳ, s̄) be suh that Ax̄ = b and AT ȳ + s̄ = c. Then we may write

rb = νr0b = ν(b−Ax0) = νA(x̄ − x0),

rc = νr0c = ν(c−AT y0 − s0) = ν
(

AT (ȳ − y0) + s̄− s0
)

.Thus we obtain
√
µ dfx = [I − P ]

(

−νD
(

AT (ȳ − y0) + s̄− s0
))

+ νPD−1(x̄− x0).Sine I − P is the orthogonal projetion to the null spae of AD we have
[I − P ]DAT (ȳ − y0) = 0.Hene it follows that

√
µ dfx = [I − P ]

(

−νD
(

s̄− s0
))

+ νPD−1(x̄− x0).To proeed we further simplify the notation by de�ning
ux =

ν√
µ
D−1(x̄− x0), us = − ν√

µ
D(s̄− s0). (5.27)Then we may write

dfx = [I − P ]us + Pux.Using the orthogonality of the two terms at the right-hand side, we may write
‖dfx‖2 = ‖[I − P ]us‖2 + ‖Pux‖2 ≤ ‖ux‖2 + ‖us‖2.
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‖dfx‖2 ≤ν

2

µ

(

∥

∥D−1(x̄− x0)
∥

∥

2
+
∥

∥D(s̄− s0)
∥

∥

2
)

. (5.28)At this stage we use that the initial iterates are given by (3.1) and (3.2), so wehave
x0 = s0 = ζe, y0 = 0, µ0 = ζ2, (5.29)where ζ > 0 is suh that

‖x∗ + s∗‖∞ ≤ ζ (5.30)for some optimal solutions x∗ of (P) and (y∗, s∗) of (D).We are still free to hoose x̄ and s̄, subjet to the onstraints Ax̄ = b and
AT ȳ + s̄ = c. By hoosing x̄ = x∗ and s̄ = s∗, the entries of the vetors x0 − x̄and s0 − s̄ satisfy

0 ≤ x0 − x̄ ≤ ζe, 0 ≤ s0 − s̄ ≤ ζe.Thus it follows that
‖D−1(x̄− x0)‖2 + ‖D(s̄− s0)‖2 ≤ ζ2

(

‖De‖2 +
∥

∥D−1
e

∥

∥

2
)

= ζ2eT
(x

s
+
s

x

)

= ζ2eT
(

x2 + s2

xs

)

≤ ζ2eT
(

x2 + s2
)

mini |xisi|
≤ ζ2

[

e
T (x+ s)

]2

µv2min

,where, as before vmin = min(v). Substitution into (5.28) yields that
‖dfx‖ ≤ e

T (x + s)

vminζ
,where we used that ν2ζ2

µ = ν. Finally, sine vmin ≥ ρ(δ), the lemma follows. �The next lemma provides an upper bound for eT (x+ s).Lemma 5.4.3. One has
e
T (x+ s) ≤ nζ(1 + ρ(−δ)2).Proof. Let (x∗, y∗, s∗) be an optimal triple for (P) and (D) satisfying (5.30),and (x, y, s) a feasible triple for some perturbed pair (Pν) and (Dν). Setting

x0 = s0 = ζe, with ζ satisfying (5.30), (4.3), in the proof of Lemma 4.2.1, impliesthat
[(1− ν)x∗ − x+ νζe]

T
[(1− ν)s∗ − s+ νζe] = 0.Sine (x∗)T s∗ = 0 we derive from this that

(1− ν)(sT x∗ + xT s∗) + νζeT (x+ s) = ν(1 − ν)ζeT (x∗ + s∗) + xT s+ ν2ζ2eTe.
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xT s∗ + sTx∗ ≥ 0 and ζeT (x∗ + s∗) ≤ nζ2,one gets

νζeT (x+ s) ≤ xT s+ nνζ2. (5.31)On the other hand, one has xs = µv2. Using µ = νζ2 and (5.20), we have
xT s = µeT v2 ≤ nνζ2ρ(−δ)2.Substitution in (5.31) implies that

νζeT (x+ s) ≤ nνζ2
(

1 + ρ(−δ)2
)

.By dividing both sides of this inequality by νζ, the lemma follows. �Substitution of the inequality in Lemma 5.4.3 into (5.22), we obtain
‖dfx‖ ≤ n(1 + ρ(−δ)2)

ρ(δ)
. (5.32)Yet we return to the ondition (5.21) on θ:

ρ(δ) ≥ θ‖dfx‖+ ρ

(

δ +
τ̂ − τ

2θ‖dfx‖

)

.The right-hand side is inreasing in ‖dfx‖. Therefore, due to (5.32), it su�es if
ρ(δ) ≥ θn(1 + ρ(−δ)2)

ρ(δ)
+ ρ

(

δ +
ρ(δ) (τ̂ − τ)

2θn(1 + ρ(−δ)2)

)

. (5.33)Obviously this implies that θn(1 + ρ(−δ)2) < ρ(δ)2. Therefore, there exists α ∈
(0, 1) suh that

θ =
αρ(δ)2

n(1 + ρ(−δ)2) . (5.34)It is lear that (5.33) an now be restated as
ρ(δ) ≥ αρ(δ) + ρ

(

δ +
τ̂ − τ

2αρ(δ)

)

. (5.35)Our objetive is to �nd the largest possible α satisfying this inequality. Thisrequires a good understanding of the behavior of the funtion ρ. Figure 5.3 showsthe graph of ρ (with s ≥ 0) for several kernel funtions.In order to proeed we need bounds for δ = δ(v) and ρ(δ). Reall that ρ isde�ned as the inverse funtion of − 1
2ψ

′(t), and ̺ as the inverse funtion of ψ(t)for t ≥ 1. We also need the inverse funtion of ψ(t) for t ∈ (0, 1], whih we denote
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Figure 5.3: Graph of ρ(s), s ≥ 0, for several kernel funtions.as χ. To get tight estimates for these inverse funtions we de�ne the barrier term
ψb(t) of ψ(t) by the relation

ψ(t) = t2−1
2 + ψb(t), t > 0. (5.36)It an be easily veri�ed that for all kernel funtions in Table 5.1 one has

ψ′
b(t) < 0, ψ′′

b (t) > 0, ψ′′′
b (t) < 0, t > 0.Hene ψb(t) is monotonially dereasing and ψ′

b(t) is monotonially inreasing.This implies that ψb(t) and −ψ′
b(t) have inverse funtions and these funtionare monotonially dereasing. We denote these inverse funtions as χ̄ and ρ̄,respetively; in most ases they an be easily omputed.From now on we restrit ourselves to the ase where ψ = ψ3. Then we have

ψb(t) =
t1−q − 1

q − 1
and ψ′

b(t) = −t−q.From this one easily derives that
χ̄(s) =

1

[1 + (q − 1)s]
1

q−1

, s >
−1

q − 1
, (5.37)

ρ̄(s) =
1

s
1
q

, s > 0. (5.38)The next two lemmas provide upper and lower bounds for χ and ρ. In the proofswe use that χ̄ and ρ̄ are dereasing.



94 5 A CLASS OF LARGE-UPDATE IIPMS FOR LOLemma 5.4.4. With χ denoting the inverse funtion of ψ(t) for t ∈ (0, 1], onehas
χ̄
(

s+ 1
2

)

≤ χ(s) ≤ χ̄ (s) , s ≥ 0.Proof. Let t ∈ (0, 1]. Then one has
t = χ(s) ⇔ ψ(t) = s ⇔ ψb(t) = s+ 1−t2

2 ⇔ χ(s) = χ̄
(

s+ 1−χ(s)2

2

)

.Sine χ(s) ∈ (0, 1], this implies the inequalities in the lemma. �Lemma 5.4.5. With ρ̄ denoting the inverse funtion of −ψ′
b(t) for t > 0, onehas

ρ̄(1 + 2s) ≤ ρ(s) ≤ ρ̄(2s), s ≥ 0.Moreover, if ψ = ψ3 then
2s ≤ ρ(−s) ≤ 2s+ 1, s ≥ 0.Proof. Sine ψ′(t) = t+ ψ′

b(t), one has
t = ρ(s) ⇔ − 1

2ψ
′(t) = s ⇔ −ψ′(t) = 2s

⇔ −ψ′
b(t) = 2s+ t⇔ ρ(s) = ρ̄(2s+ ρ(s)).If s ≥ 0 then ρ(s) = t ∈ (0, 1], and hene ρ̄ (2s) ≥ ρ(s) ≥ ρ̄ (2s+ 1), proving the�rst statement in the lemma. Now let ψ = ψ3. Then we have, for s ≥ 0,

t = ρ(−s) ⇔ − 1
2ψ

′(t) = −s ⇔ 2s = t− t−q ⇔ t = 2s+ t−q, t ≥ 1.Sine t ≥ 1 we have t−q ∈ (0, 1]. Hene t = ρ(−s) implies 2s ≤ ρ(−s) ≤ 2s + 1.This proves the lemma. �Reall that ̺ is the inverse funtion of ψ(t) for t ≥ 1. The following two resultsare less trivial than the preeding two lemmas.Lemma 5.4.6 (Lemma 6.2 in [10℄). For s ≥ 0, one has
√
1 + 2s ≤ ̺(s) ≤ 1 +

√
2s.Lemma 5.4.7. One has, for eah v ∈ Rn

++,
1
2ψ

′ (̺ (Ψ(v))) ≤ δ(v) ≤ − 1
2ψ

′ (χ (Ψ(v))) .Proof. The left-hand side inequality in the lemma is due to [10, Theorem 4.9℄.The proof of the right-hand side inequality an be obtained by slightly hanging



5.4 LARGE-UPDATE IIPMS FOR LO 95the proof of [10, Theorem 4.9℄ and is therefore omitted. �The above lemmas enable us to �nd an upper bound for δ = δ(v) in terms of
τ . Let Ψ(v) ≤ τ . Then, sine χ and − 1

2ψ
′ are dereasing, − 1

2ψ
′χ is inreasing.Hene, Lemma 5.4.7 implies that

δ = δ(v) ≤ − 1
2ψ

′ (χ(τ)) . (5.39)By Lemma 5.4.4 we have χ(τ) ≥ χ̄(τ + 1
2 ). Using one more that − 1

2ψ
′ is de-reasing we obtain

2δ ≤ −ψ′ (χ̄(τ + 1
2 )
)

.Sine −ψ′(t) = t−q − t ≤ t−q, and due to (5.37), it follows that
2δ ≤ χ̄(τ + 1

2 )
−q =

[

1 + (q − 1)(τ + 1
2 )
]

q
q−1

=
[

1 + (q − 1)(τ + 1
2 )
] [

1 + (q − 1)(τ + 1
2 )
]

1
q−1 ≤

[

1 + (q − 1)(τ + 1
2 )
]

eτ+
1
2 ,where the last inequality is due to (1 + ax)

1
x ≤ ea for x > 0 and 1 + ax > 0.Hene, when taking τ ≤ 1

2 , we have
δ ≤ 1

2qe. (5.40)Sine ρ is dereasing, by applying ρ to both sides of (5.39), and using Lemma5.4.4 and (5.37) we obtain
ρ(δ) ≥ χ(τ) ≥ χ̄(τ + 1

2 ) =
1

[

1 + (q − 1)(τ + 1
2 )
]

1
q−1

.If τ ≤ 1
2 this implies

ρ(δ) ≥ 1

q
1

q−1

=
1

e
log q
q−1

≥ 1

e
. (5.41)Using that ρ is dereasing and also Lemma 5.4.5 and (5.38) we have

ρ

(

δ +
τ̂ − τ

2αρ(δ)

)

≤ ρ

(

τ̂ − τ

2αρ(δ)

)

≤ ρ

(

τ̂ − τ

2ρ(δ)

)

≤ ρ̄

(

τ̂ − τ

ρ(δ)

)

=

(

ρ(δ)

τ̂ − τ

)
1
q

≤ 1

(τ̂ − τ)
1
q

.Also using ρ ≥ 1/e we onlude that (5.35) ertainly will hold if
1− α

e
≥ 1

(τ̂ − τ)
1
q

.
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2 it follows that (5.35) will be satis�ed if

q ≤ log(τ̂ − τ)

log(2e)
. (5.42)Substitution of α = 1

2 into (5.34) yields
θ =

ρ(δ)2

2n(1 + ρ(−δ)2) .Due to (5.41) we have ρ(δ) ≥ 1/e and due to Lemma 5.4.5 and (5.40), ρ(−δ) ≤
2δ+1 ≤ 1+ qe. We therefore may onlude that (5.33) ertainly holds if we take

θ =
1

2e2n(1 + (1 + qe)2)
. (5.43)This is the value that will be used in the sequel. As a onsequene, the numberof outer iterations is bounded above by

⌈

2e2n
(

1 + (1 + qe)2
)

log
ǫ(ζe, 0, ζe)

ε

⌉

.We �nally have to estimate the number of iterations that are needed to enterthe τ -neighborhood of the µ+-enter of (Pν) and (Dν). For that we need theparameters κ and γ for ψ3. These parameters were obtained by Bai et al. [10℄in the analysis of a large-update FIPM based on ψ3. To make this thesis self-supporting, we alulate these parameters in the next subsetion.5.4.4 The parameters κ and γ for ψ = ψ3Aording to (5.10) the parameters κ and γ should be suh that
sγ−1 (ψ′ (̺ (s)))2

4ψ′′ (ρ (ψ′ (̺ (s))))
≥ κ, ∀s ≥ τ.Note that ̺ (s) is inreasing in s and, by Lemma 5.4.6, √1 + 2s ≤ ̺(s) ≤ 1+

√
2s,for s ≥ 0. For the moment, let

ξ := ψ′ (̺ (s)) .We proeed by deriving a lower bound for ξ. Sine ψ′ and ̺ are inreasing, byusing Lemma 5.4.6 we obtain
ξ = ψ′ (̺ (s)) ≥ ψ′ (√1 + 2s

)

=
√
1 + 2s− 1

(√
1 + 2s

)q

≥
√
1 + 2s− 1√

1 + 2s
=

2s√
1 + 2s

.



5.5 LARGE-UPDATE IIPMS FOR LO 97Using that x/(1 + x) is inreasing in x and s ≥ τ , we may write
ξ ≥

√

2s

1 + 2s

√
2s ≥ τ̌

√
2s ≥ τ̌

√
2τ, where τ̌ =

√

2τ

1 + 2τ
. (5.44)Sine ψ′′ is dereasing, using Lemma 5.4.5 we may write

ψ′′ (ρ (ψ′ (̺ (s)))) = ψ′′ (ρ (ξ)) ≤ ψ′′ (ρ̄ (1 + 2ξ))

= 1 + q

[

1

(1 + 2ξ)
1
q

]−q−1

= 1 + q (1 + 2ξ)
q+1
q .Hene we have

(ψ′ (̺ (s)))2

4ψ′′ (ρ (ψ′ (̺ (s))))
≥ ξ2

4
[

1 + q (1 + 2ξ)
q+1
q

] =
ξ

q+1
q

4
[

1 + q (1 + 2ξ)
q+1
q

] ξ
q−1
qSine xa/ [1 + q(1 + 2x)a] is inreasing in x if a > 0, by using (5.44) it followsthat

(ψ′ (̺ (s)))2

4ψ′′ (ρ (ψ′ (̺ (s))))
≥

(

τ̌
√
2τ
)

q+1
q

4

[

1 + q
(

1 + 2τ̌
√
2τ
)

q+1
q

]

(

τ̌
√
2s
)

q−1
q

.This implies
s

1−q
2q

(ψ′ (̺ (s)))2

4ψ′′ (ρ (ψ′ (̺ (s))))
≥

(

τ̌
√
2τ
)

q+1
q
(

τ̌
√
2
)

q−1
q

4

[

1 + q
(

1 + 2τ̌
√
2τ
)

q+1
q

] , ∀s ≥ τ.Thus we have shown that (5.10) holds for γ = 1− 1−q
2q = q+1

2q and
κ =

(

τ̌
√
2τ
)

q+1
q
(

τ̌
√
2
)

q−1
q

4

[

1 + q
(

1 + 2τ̌
√
2τ
)

q+1
q

] =
τ

q+1
2q τ̌2

2

[

1 + q
(

1 + 2τ̌
√
2τ
)

q+1
q

] .Taking τ = 1
8 one gets τ̌ = 1√

5
. Also using q > 1 we obtain

κ =
1

2 · 5 · 4 q+1
2q

[

1 + q
(

1 + 2√
5
1
2

)
q+1
q

] ≥ 1

40 q

[

1 +
(

1 + 1√
5

)2
] ≥ 1

124 q
.



98 5 A CLASS OF LARGE-UPDATE IIPMS FOR LO5.5 Complexity analysisAs we established in (5.13), the total number of iterations is at most
(τf )γ

θκγ
log

ǫ(ζe, 0, ζe)

ε
.We assume that τ̂ = O(n). Due to Lemma 5.4.1 we then also have τf = O(n),provided that 1/

√
1− θ = O(1). Due to (5.43) the latter ondition is satis�ed.To simplify the presentation we use τf = n in the analysis below, but our resultsan easily be adapted to the ase where τ̂ = O(n). Substituting γ = q+1

2q and
κ ≥ 1

124 q and θ, given by (5.43), the total number of iterations is bounded aboveby
248e2qn(1 + (1 + qe)2)n

q+1
2q log

ǫ(ζe, 0, ζe)

ε
= O

(

q3n
√
nn

1
2q log

ǫ(ζe, 0, ζe)

ε

)

.The expression q3n 1
2q is minimal if q = logn

6 and then it is equal to e4(log n)3/512.This value of q satis�es (5.42), sine log(2e) ≤ 6. Hene we obtain the followingiteration bound:
O

(

n
√
n (log n)3 log

ǫ(ζe, 0, ζe)

ε

)

. (5.45)5.6 Deteting infeasibility or unboundednessThe algorithm, desribed in this hapter, will detet infeasibility or/and unboun-dedness of (P) and (D) if no optimal solutions exist. In that ase Lemma 3.1.1implies the existene of ν̄ > 0 suh that the perturbed pair (Pν) and (Dν) satisfythe IPC if and only if ν ∈ (ν̄, 1]. As long as ν+ = (1− θ)ν > ν̄ the algorithm willrun as it should, with θ given by (5.43). However, if ε is small enough, at somestage it will happen that ν > ν̄ ≥ ν+. At this stage the new perturbed pair doesnot satisfy the IPC. This will reveal itself sine at that time we neessarily have
θmax < θ̃. If this happens we may onlude that there is no optimal pair (x∗, s∗)satisfying ‖x∗ + s∗‖∞ ≤ ζ. In order to settle unertainty about existene of op-timal solutions for some larger values of ζ, or infeasibility and/or unboundedness,one may follow the proedure desribed in Subsetion 3.5.As mentioned in Setion 5.1, Salahi et al. [101℄ presented a large-update IIPMbased on ψ3, with the onvergene rate O(n√n logn). This onvergene rate isthe best known onvergene rate for large-update IIPMs. In the next setion, webrie�y desribe their algorithm.
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√
n logn) large-update IIPMSalahi et al.'s algorithm [101℄ uses ψ3 with q = 1 + logn. Eah iteration of thisalgorithm starts at a triple (x, y, s) whih satis�es

Φ(x, s;µg) ≤ η(n, λ), (5.46)with µg given by (1.13) and
η(n, λ) :=

(

λ
log n

2 − 1
)

n

logn
, for a λ ≥ 2.The Newton steps are obtained from the system

A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s = −µtvt∇Ψ(vt),with
vt :=

√

xs

µtwhere µt is the smallest root of the equation
Φ(x, s, µ) =

(λ − 1)n

2
.It was shown (see [101, Lemma 2.5℄) that if (5.46) holds then

λ ≤ µg

µt
≤ λ+ 2

logn . (5.47)They derive a step size α ∈ (0, 1) for whih the new iterates (x+, y+, s+) and µ+
g ,with

µ+
g :=

(x+)
T
s+

n
,satisfy (5.46), and

Φ(x+, s+, µ+
t ) =

(λ− 1)n

2
,where µ+

t := (1− θ)µt for θ = O( 1
n
√
n log n

). (5.47) implies that µg is also reduedby a fator 1− θ. The residual norms are bounded above by a onstant multiplierof the mean value µg. Thus, the infeasibility and the duality gap are redued bya fator 1− θ. This imposes the onvergene rate O(n√n logn) to the algorithm.



100 5 A CLASS OF LARGE-UPDATE IIPMS FOR LOUnfortunately, the theoretial onvergene rate of our algorithm is a fator
(logn)2 worse than Salahi et al.'s algorithm. As the theoretial result is disap-pointing, in order to show that our algorithm is a large-update algorithm we relyon the numerial results whih are presented in Chapter 6. Note that, theor-etially speaking, both algorithms, i.e., Salahi et al.'s [101℄ and our algorithm,su�er from the de�ieny that they are small-update methods as they use thebarrier updating parameter θ = O(1/(n

√
n logn)) and θ = O(1/(n

√
n(logn)2)),respetively.



6Implementation: issues and resultsSo far, we have been dealing with the theoretial aspets of IIPMs for LO, i.e.,global onvergene and/or polynomiality. Although they are interesting by them-selves, from a ommerial point of view, the pratial behavior of these methodsmay be even more interesting. There are some (numerial) issues that theory-oriented papers never disuss, despite the fat that they may be ritial for apratially e�ient implementation. Setion 6.1 is devoted to a brief desrip-tion of some of these issues. The most e�ient implementation of IIPMs is theLIPSOL pakage whih is based on Mehrotra's PC algorithm [74℄. We omparethe iteration numbers of our algorithm with those of this pakage. The LIPSOLpakage is desribed in Setion 6.2.6.1 Implementation of IIPMs: issuesAs mentioned in Chapter 2, an implementation of the �bigM � method to solve (P)and (D) was given by MShanne, Monma and Shanno [71℄. Although this methodwas more e�ient than the simplex method, it su�ered from some numerialinstabilities aused by huge oe�ients. Lustig [62℄ designed his algorithm tooverome these issues. He ran his algorithm to solve the same set of NETLIB1problems as hosen by MShane et al. [71℄, i.e., those with no expliit upperbounded or free variables. Lustig's algorithm outperformed that of MShane et al.[71℄ in terms of iteration number and the simplex method in terms of CPU time.It is worth mentioning that Lustig used some sophistiated analyti approah toalulate the barrier parameter and the step sizes along the Newton diretionswhile MShane et al. used a heuristi barrier parameter and a large fration, e.g.,0.9995, of maximal step sizes.Most of the omputational e�orts in IPMs for LO are devoted to the Cholesky1http://www.netlib.org/lp/ 101



102 6 IMPLEMENTATION: ISSUES AND RESULTSfatorization of the oe�ient matrix in a linear system of the form
AD2AT∆y = b̂, (6.1)where b̂ is some right-hand side and D, in the LO ase, has the form

D := diag

(
√

x

s

)

.MShane et al. [71℄ and Lustig [62℄ used, respetively, the linear algebra pak-ages SMPAK and SPARSPAK [36℄ to solve the system (6.1). If there were sparseolumns in the oe�ient matrix, Choi, Monma and Shanno [17℄ applied the Shuromplement approah to split sparse and dense olumns. This led to better per-formane than the past implementations. The idea of using the Shur omplementapproah had been �rst suggested by Gill et al. [38℄. In addition to the problemstested in [62, 71℄, Choi et al. onsidered NETLIB problems with bounded and/orfree variables as well. Moreover, motivated by the fat that the heuristi valuesof the barrier parameter and the step sizes, applied by MShane et al., proved tobe e�ient, Choi et al. adapted Lustig's algorithm in suh a way that it avoidsthe sophistiated method of Lustig in alulating these parameters and, instead,applies the heuristi values of MShane et al..Variants of Lustig's algorithm were pursued by Lustig, Marsten and Shanno[63℄. They onsidered the variant of Lustig's algorithm studied by MShane et al.[71℄ and Choi et al. [17℄, with minor modi�ation with respet to the hoie of thebarrier parameter. Moreover, Lustig et al. [63℄ presented some further disussionon a variety of omputational issues in the primal-dual implementation and thebarrier methods in general, along with a new omprehensive implementation of theprimal-dual algorithm for the entire NETLIB test set. Strengths and weaknessesof the Shur omplement approah, suggested by Choi et al. [17℄, were alsodisussed. Moreover, Lustig et al. [63℄ showed that the limiting searh diretionsobtained by Lustig [62℄ were nothing but the Newton diretions for the system(1.5) whih serve to redue the infeasibility. They also disussed the role of thebarrier parameter in more detail.Other variants of Lustig's algorithm were also presented by Subramanian,Subramanian, Saltzman, Lustig and Shanno [69℄ and Tanabe [105℄.The most e�ient primal-dual IIPM, on whih most of the existing IPM odesare based, e.g., LIPSOL of Zhang [120℄ or PCx pakage of Czyzyk et al. [18℄, isMehrotra's PC approah [74℄. This algorithm enjoys the feature of using a seond-order approximation of the entral path [74, 115℄. It should be noted that theidea of using higher order approximation of the entral path was proposed �rstby Megiddo [72℄ and further studied by Monteiro et al. [81℄. Mehrotra [74℄ justombined these two existing ideas in a nie way in the algorithm of Lustig et al.[63℄. He applied the new algorithm to solve a subset of the NETLIB problemswhih have no bounded or free variables. This redued the number of iterationssigni�antly, when ompared to previous algorithms, e.g., [63, 82℄.



6.2 MEHROTRA'S PC APPROACH: LIPSOL PACKAGE 103Another implementation of Mehrotra's algorithm was done by Lustig, Marstenand Shanno [64℄, inorporating the entire NETLIB test set. It was establishedthat for large and more omplex problems Mehrotra's method is more e�ient.Numerial issues onerned with the Shur omplement approah along with someother numerial problems were also disussed. Besides, some numerial remediesfor these issues were presented.After the release of a globally onvergent variant of Lustig's algorithm byKojima et al. [54℄, Lustig, Marsten and Shanno [65℄ designed a pratially globallyonvergent variant of Mehrotra's PC method.Another suessful implementation of Mehrotra's PC algorithm was given byLustig, Marsten and Shanno [64℄.The most suessful implementation of Mehrotra's PC algorithm is the LIPSOLpakage, whih was developed by Zhang [120℄. Beause LIPSOL is urrently theleading IPM-based pakage for solving LO problems, we devote the next setionto a detailed desription of Mehrotra's method.6.2 Mehrotra's PC approah: LIPSOL pakageIn this setion we deal with a variant of Mehrotra's PC method whih runs inLIPSOL pakage. In addition to its being on top of all IPM implementations, ourmotivation to desribe this pakage in detail is that in our experiments, presentedin Setion 6.3, we use some heuristis whih are inspired by those of this pakage.6.2.1 About LIPSOLLIPSOL is a free software2 based on MATLAB. Programming in MATLAB is veryeasy and it has a high level tehnial omputing environment for omputations.Matries and formulas an be expressed in a way very lose to what we writemathematially. Besides, beause MATLAB provides external interfae failitiesto enable interation with programs in Fortran and C languages in the form ofmex-�les, some routine tasks like matrix and vetor operations are done usingMATLAB funtions while omputationally intensive tasks like Cholesky fatoriz-ation are done using Fortran odes. As a result, one enjoys the faility of simpleprogramming in MATLAB and the omputational speed of Fortran. In addition,LIPSOL uses some new triks to overome numerial instabilities in the Choleskyfatorization of the oe�ient matrix of the linear system (6.1). Considering thefat that it more often happens that the oe�ient matrix of the linear system(6.1) is lose to positive semide�nite not de�nite, the regular Cholesky fatoriza-tion may be unstable. To overome this issue, Zhang suggests the use of so-alledCholesky-in�nity fatorization. In this proedure, one a diagonal pivot in theCholesky fatorization is found to be zero, the orresponding diagonal element of2http://www.caam.rice.edu/~zhang/lipsol/



104 6 IMPLEMENTATION: ISSUES AND RESULTS
L, with L the Cholesky fator, is set to in�nity. He had to write an external For-tran ode for this new proedure beause aess to MATLAB's built-in funtion
chol was impossible.There is another version of LIPSOL whih is used as a subroutine of theMATLAB ommand linprog to solve large-sale problems. If the problem is nottagged as `Large-Sale', linprog uses the simplex method as a default algorithm,and otherwise the funtion lipsol. Reall that, urrently, a variety of linearalgebrai tehniques to solve a linear system, e.g., olumn approximate minimumdegree permutation (the funtion colamd), Cholesky fatorization, Cholesky-in�nity fatorization, et., are all available in MATLAB. Due to this, the funtion
lipsol does not use mex-�les. Currently, the Cholesky-in�nity fator an beeasily omputed by using the MATLAB funtion cholinc.Computational experiments, e.g., [64℄, reveal that the larger the dimension ofa problem is, the more IPMs outperform the simplex method.Some preproessing is performed before the main algorithm starts to run:heking obvious infeasibility, deleting �xed variables and zero rows and olumnsfrom the matrix A, easy handling of free and bounded variables, solving singletononstraints, if any required, along with saling the problem and making the matrix
A struturally full rank3. Some heuristi test is arried out to hek if the matrix Ahas some sparse olumns and then by separating the sparse olumns, if any, fromthe dense ones, the Shur omplement approah is applied to solve the normalequations (6.1). See Subsetion 6.2.2 for more detail.If the solution of the normal equations (6.1) is not satisfatory, i.e., the residualnorm ‖AD2AT∆y−b̂‖ is too large, Y. Zhang ignores the solution and uses, instead,3The strutural rank of a matrix A in Rm×n is the size of a maximum mathing of thebipartite graph of A. It is atually an upper bound for the numerial rank of A. So, if m = n, Ais struturally full rank if its bipartite graph has a perfet mathing. If m 6= n, Davis [21℄ allsmatrix A struturally full row (olumn) rank if all nodes orresponding to the rows (olumns) aremathed in a maximum mathing of its bipartite graph (note that there is no perfet mathingin this ase anymore). Let us give an example. Given the matries A and B by

A =





2 3 4

4 6 8



 and B =





1 1

0 0



 ,their bipartite graphs are as follows.
A

BIn both graphs, the set of solid edges is a maximum mathing. For matrix A, the set of thenodes orresponding the rows are all mathed in the maximummathing. Thus A is struturallyfull row rank but not full olumn rank. Based on a similar argument, the matrix B turns out tobe neither full row nor full olumn rank. We say that the matrix B is struturally rank de�ient.Note that for both matries the numerial rank equals 1.



6.2 MEHROTRA'S PC APPROACH: LIPSOL PACKAGE 105the solution of the augmented system, given by




−D−2 AT

A 0









∆x

∆y



 =





rb

rc − rxs

x



 , (6.2)with rxs de�ned as in Subsetion 6.2.3. ∆s is given by
∆s = rxs

x −D−2∆x.Remark 6.2.1. It an be veri�ed that the augmented system (6.2) is equivalentto the following system:




0 AD2AT

A 0









∆x

∆y



 =





AD2rb + rc − rxs

x

rc − rxs

x



 .This means that the normal equations (6.1) an be obtained form the augmentedsystem (6.2) by setting
b̂ = AD2rb + rc − rxs

x .In order to solve the system (6.2), the author uses blok LDL
T fatorizationof the oe�ient matrix. This is done by using the MATLAB funtion ldl. Foradvantages and disadvantages of using the augmented system instead of normalequations and an extensive disussion on implementation of IPMs and relatedissues we refer to [115℄.Before desribing the variant of Mehrotra's algorithm in LIPSOL, we �rstbrie�y explain the Shur omplement approah.6.2.2 The Shur omplement approahConsider the oe�ient matrix of the linear system (6.1). Let As and Ad denote,respetively, sparse and dense olumns of A, and Ds and Dd the orrespondingsubdiagonals of the saling matrix D. By splitting the olumns of A in sparseand dense olumns, we write

A = [As Ad].Then we may write
AD2AT = AsD

2
sA

T
s +AdD

2
dA

T
d .Denoting P = AsD

2
sA

T
s and U = AdDd the latter an be rewritten as

AD2AT = P + UUT .If P is nonsingular then, by the Sherman-Morrison-Woodbury formula, we have
(P + UUT )−1 = P−1 − P−1U(I + UTP−1U)−1UTP−1

= P−1[I − U(I + UTP−1U)−1UTP−1].



106 6 IMPLEMENTATION: ISSUES AND RESULTSLetting P = LL
T , with L a lower triangular matrix, ∆y in (6.1) is obtained fromthe following system:

LL
T∆y = b̂− U(I +WTW )−1WT

L
−1b̂, with W := L

−1U.Note that P is a large sparse matrix whose Cholesky deomposition is not soomputationally expensive. The proess of alulating ∆y an be organized asfollows:- solve LW = U ;- solve the system Lb̄ = b̂;- solve (I +WTW )ξ =WT b̄;- solve LLT∆y = b̂ − Uξ.Note that the matrix U has usually low rank, whene the matrix I +WTWis small and requires a small number of bak-substitutions one P is fatorized.However, the sparse portion of the oe�ient matrix in (6.1) may be severely ill-onditioned or even singular, leading to some large residual norm ‖AD2AT∆y−b̂‖.This makes the Shur omplement approah useless in that ase.6.2.3 Newton searh diretionsMehrotra onsidered the system (1.4). Without assuming feasibility of the urrentiterates, this system an be rewritten as follows:
A∆x = rb,

AT∆y +∆s = rc,

s∆x+ x∆s = rxs,

(6.3)with
rxs := µe− xs−∆x∆s.Mehrotra de�nes the diretions (∆x,∆y,∆s) as follows:

(∆x,∆y,∆s) := (∆ax,∆ay,∆as) + (∆ccx,∆ccy,∆ccs),where (∆ax,∆ay,∆as) are a�ne-saling diretions obtained from the system (6.3)after setting rxs := −xs and (∆ccx,∆ccy,∆ccs) the ombined entering-orretorsteps obtained from the system (6.3) after setting rb = rc = 0 and rxs := µe −
∆ax∆as.The preditor step is applied to alulate the barrier parameter as explained inSubsetion 6.2.4. One the barrier parameter is obtained, Mehrotra proeeds withomputation of the ombined entering-orretor steps. The oe�ient matrix of



6.2 MEHROTRA'S PC APPROACH: LIPSOL PACKAGE 107the ombined entering-orretor diretions and the a�ne-saling diretions arethe same and thus only one matrix fatorization is required.The orretor step is motivated as follows. It an be easily veri�ed that thea�ne-saling step (∆ax,∆ay,∆as) is obtained after linearizing of the system (1.4)with µ = 0. This means that if full a�ne-saling step is taken then one shouldhave
(x+∆ax)(s +∆as) = 0. (6.4)On the other hand, one has

(x+∆ax)(s+∆as) = xs+ x∆as+ s∆ax+∆ax∆as = ∆ax∆as,meaning that (6.4) may not hold in general. The orretor step tries to om-pensate for this deviation from the linearity, modifying the searh diretions sothat the pairwise produts ome loser to zero.6.2.4 Choie of the barrier parameterAfter omputation of the a�ne-saling diretions (∆ax,∆ay,∆as), Mehrotra al-ulates µ̄ as follows:
µ̄ :=

(x+ αp
max∆

ax)T (s+ αd
max∆

as)

n
, (6.5)where

αp
max := min {1,max {α : x+ α∆ax ≥ 0}} ,
αd
max := min {1,max {α : s+ α∆as ≥ 0}} .

(6.6)The quantity µ̄ serves to estimate the e�ieny of the preditor step as follows.If µ̄≪ µ then it means that the preditor step makes a large amount of redutionon the duality gap. If µ̄ is smaller than but lose to µ, then it means that thepreditor step does not make signi�ant redution on the duality gap, and thus asmall redution on µ is allowed. Mehrotra suggests the following heuristi whihhas been e�ient in omputational experiments [74℄:
µ+ =

(

µ̄

µ

)2

µ.Setting the new value of µ to µ+, the ombined entering-orretor Newton step
(∆ccx,∆ccy,∆ccs) is omputed.The Newton diretions (∆x,∆y,∆s) are given by

(∆x,∆y,∆s) := (∆ax,∆ay,∆as) + (∆ccx,∆ccy,∆ccs).After that Zhang [120℄ (LIPSOL) proposes to obtain the step sizes αp and αd in,respetively, the primal and the dual spaes suh that the new iterates (x+, y+, s+),de�ned as
x+ := x+ αp∆x, y+ := y + αd∆y and s+ := s+ αd∆s,



108 6 IMPLEMENTATION: ISSUES AND RESULTSsatisfy
x+s+ ≥ γ x+T

s+

n with γ = 10−5.6.2.5 Stopping riteriaThe algorithm stops if the following stopping riteria holds:
E(x, y, s) :=

‖rb‖
max(1, ‖b‖) +

‖rc‖
max(1, ‖c‖) +

|cTx− bT y|
max(1, |cTx|, |bT y|) ≤ ε, (6.7)for a predetermined ε > 0. See Algorithm 6.1.Algorithm 6.1 The PC algorithm of Mehrotra [74℄Input:auray parameter: ε > 0;begininitial points: x0 > 0, y0 and s0 > 0 µ = µ0 := (x0)

T
s0/n;while E(x, y, s) > εalulate (∆ax,∆ay,∆as) and αp

max and αd
max;

µ-update: µ := (µ̄/µ)
2
µ with µ̄ given by (6.5);

x : = x+ αp(∆
ax+∆ccx);

y : = y + αd(∆
ay +∆ccy);

s : = s+ αd(∆
as+∆ccs);endwhileendMehrotra did not onsider onvergene or polynomiality of his algorithm.However, Y. Zhang and D. Zhang [121℄ proposed some variant of this algorithmthat is polynomial-time. Their proof uses the potential funtion suggested byMehrotra [74℄ and the reipe of the polynomiality proof given by Zhang [119℄.6.3 Implementation of our large-update IIPMIn this setion, we present the numerial results of the algorithm desribed inChapter 5. Theoretially, the barrier parameter µ is updated by a fator (1 − θ)with θ given by (5.43), and the iterates are kept very lose to the µ-enters, namelythe τ -neighborhood of the µ-enters, with τ = 1

8 . In pratie, it is not e�ientto do so and not neessary either. We present a variant of the algorithm whih



6.3 IMPLEMENTATION OF OUR LARGE-UPDATE IIPM 109uses a preditor-orretor step in the feasibility step. Moreover, for the parameter
τ , de�ned in Setion 5.4.1, we allow some larger value than 1

8 , e.g., τ = O(n).We set τ = τ̂ = O(n) with τ̂ de�ned as in Setion 5.4.1. As a onsequene, thealgorithm does not need entering steps. We hoose τ̂ aording to the followingheuristis: if n ≤ 500, then τ̂ = 100n, for 500 ≤ n ≤ 5000, we hoose τ̂ = 10nand for n ≥ 5000, we set τ̂ = 3n. We ompare the performane of the algorithmwith the well-known LIPSOL pakage [120℄.6.3.1 Starting pointA ritial issue when implementing a primal-dual method is to �nd a suitablestarting point. It seems sensible to look for a starting point whih is well-enteredand as lose to a feasible primal-dual point as possible. The one suggested bytheory, i.e., given by (2.39), being niely entered, may be quite far from thefeasibility region. Moreover, to �nd a suitable ζ is another issue.In our implementation, we use a starting point whih is proposed by Lustiget al. [64℄ and inspired by the starting point used by Mehrtora [74℄. It uses theleast squares solution of the system of onstraints in (P), namely,
x̃ = AT (AAT )

−1
b.As in [64℄, we de�ne

ξ1 = max

(

− min
1≤j≤n

x̃j , 100,
‖b‖1
100

)

and ξ2 = 1 + ‖c‖1 .Then for j = 1, · · · , n, assign
x̄j = max (x̃j , ξ1) .Now putting, for j = 1, · · · , n,

s̄j =































cj + ξ2 if cj > ξ2

−cj if cj < −ξ2
cj + ξ2 if 0 ≤ cj < ξ2

ξ2 if −ξ2 ≤ cj ≤ 0.we set
x0 = x̄, y0 = 0, s0 = s̄ and µ0 :=

(x0)
T
s0

n
.Sine we are interested in a point whih is in the τ -neighborhood of the µ0-enter,as long as Φ(x0, s0, µ0) > τ , we keep inreasing µ0 by a onstant fator, say 1.1.In that way, we obtain a barrier parameter µ0 for whih Φ(x0, s0, µ0) ≤ τ .



110 6 IMPLEMENTATION: ISSUES AND RESULTS6.3.2 Feasibility step sizeAs in other e�ient numerial experiments, e.g., [64, 120℄, regardless of the the-oretial result, we apply di�erent step sizes along the primal step ∆x and thedual step (∆y,∆s). This implies that the feasibility improves muh faster thanwhen idential step sizes are used. Letting (x, y, s) be the urrent iterates and
(∆x,∆y,∆s) the Newton step, we obtain the maximum step sizes θpmax and θdmaxin, respetively, the primal and the dual spaes as follows:

θpmax = min
∆xi<0

{

1,− xi
∆xi

}

, θdmax = min
∆si<0

{

1,− si
∆si

}

.The goal is to keep the iterates lose to the µ-enter, i.e., in its τ̂ -neighborhoodwhere τ̂ is de�ned in Subsetion 5.4.3. Thus, letting θ̄ be suh that
Φ(x+ θ̄θpmax∆x, s+ θ̄θdmax∆s, µ) ≤ τ̂ ,the primal and the dual step sizes θp and θd are de�ned as follows:

θp = θ̄θpmax and θd = θ̄θdmax.6.3.3 Stopping riteriaAs in LIPSOL, our algorithm terminates if the ondition (6.7) or the followingondition is met:
|xT s− x+

T
s+| < ε,where ε = 10−6. The ondition (6.7) measures the total relative errors in theoptimality onditions (1.1) whilst the latter riterion terminates the program ifonly a tiny improvement is obtained on the optimality. In fat, it prevents theprogram from stalling. We inlude this riterion following Lustig [62℄.6.3.4 Solving the linear systemUnlike LIPSOL whih uses the Shur omplement approah to solve the linearsystem, we simply apply the bakslash ommand of MATLAB ('\') to solve thenormal equations (6.1). DenotingM := AD2AT in (6.1), whenever the multipliermatrix M is ill-onditioned, we ould obtain some more aurate solution byperturbing M as

M =M + 10−9I,where I is the identity matrix with size of M .6.3.5 An iteration of the algorithmMotivated by the numerial results, and onsidering the fat that Mehrotra's PCmethod has beome the most e�ient in pratie and used in most IPM-based



6.3 IMPLEMENTATION OF OUR LARGE-UPDATE IIPM 111software pakages, e.g., [3, 18, 112, 120℄, we present the numerial results of thevariant of our algorithm whih uses Mehrotra's PC diretion at the feasibilitystep.At the feasibility step, we apply the system
A∆ax = rb,

AT∆ay +∆as = rc,

s∆ax+ x∆as = −xs,to obtain the a�ne-saling diretions (∆ax,∆ay,∆as). Then, the maximum stepsizes θpmax and θdmax in, respetively, primal and dual spaes are alulated asdesribed in Subsetion 6.3.2. Then de�ning
µa =

(x+ θpmax∆
ax)

T
(s+ θdmax∆

as)

n
,we let

σ =

(

σ̄
µa

µ

)3

, σ̄ ∈ (0, 1).We use σ̄ = 0.3 as the default value of σ̄. If σ < 1, we alulate the new barrierupdate parameter µ as follows:
µnew = σµa.Then, if neessary, by inreasing µnew by a onstant fator, say 1.1, we derivesome µnew for whih

Φ(x, s, µnew) ≤ τ̂ .The ideal ase ours when µnew < µ. Beause then by setting µ = µnew, theorretor step (∆cx,∆cy,∆cs), obtained from
A∆cx = 0,

AT∆cy +∆cs = 0,

s∆cx+ x∆cs = µe−∆ax∆as,

(6.8)yields an improvement of the duality gap. If µnew ≥ µ, then the use of the system(6.8) with µ = µnew gives rise to an inrease or no improvement of the dualitygap. Hene the use of µ = µnew is no longer sensible in this ase. Reall that if
σ ≥ 1 then it means that the duality gap was inreased after the a�ne-salingstep (∆ax,∆ay,∆as). Thus a µ-update makes no sense in this ase either.If σ < 1 and µnew < µ, we use the system (6.8) with µ = 0 as a orretor step.The feasibility step (∆fx,∆fy,∆fs) is obtained as follows:

∆fx = ∆ax+∆cx, ∆fy = ∆ay +∆cy, ∆fs = ∆as+∆cs.



112 6 IMPLEMENTATION: ISSUES AND RESULTSNext, we alulate the primal and the dual step sizes θp and θd, as desribed inSubsetion 6.3.2, and then obtain the new iterates (xf , yf , sf ) as follows:
xf = x+ θp∆

fx, yf = y + θd∆
fy and sf = s+ θd∆

fs.6.3.6 ResultsIn this setion, we present our numerial results. Motivated by the theoretialresults, whih say that the kernel funtion ψ3 gives the best known theoretialiteration bound for large-update IIPMs, we ompare the performane of the al-gorithm desribed in the previous subsetion based on both the logarithmi bar-rier funtion and the ψ3-based barrier funtion. As the theory suggests, we use
q = logn

6 in ψ3.Our test was done on a standard PC with Intelr CoreTM 2 Duo CPU and 3.25GB of RAM. The ode was implemented by version 7.11.0 (R2010b) of MATLABron a Windows XP Professional operating system. The problems hosen for ourtest are from the NETLIB set. To simplify the study, we hose the problemswhih have the following format:
min

{

cTx : Ax = b, x ≥ 0
}

;i.e., there is no nonzero lower bound or �nite upper bound on the deision vari-ables. These problems are listed in Tables 6.3 and 6.4.We perform the following preproessing before the main algorithm starts torun whih are in ommon with LIPSOL: heking obvious infeasibility, deleting�xed variables and zero rows and olumns from the matrix A and solving singletononstraints, if any required. As mentioned in Setion 6.2, in addition to these a-tions, in LIPSOL, Zhang sales the problem and makes the matrix A struturallyfull rank. We disabled both of these phases when running LIPSOL.Numerial results are presented in Tables 6.1 and 6.2. In the seond and thefourth olumns, we listed the total number of iterations of the algorithm basedon, respetively, ψ1, the kernel funtion of the logarithmi barrier funtion, and
ψ3. The third and �fth olumns ontain the quantity E(x, y, s). The iterationnumbers of the LIPSOL pakage are given in the sixth olumn of these tables, andthe seventh olumn lists the quantity E(x, y, s) of the LIPSOL pakage. In eahrow, the dark gray ell denotes the smallest of the iteration numbers of the threealgorithms, and the bold number denotes the smallest of the iteration numbers ofthe ψ1-based and the ψ3-based algorithms.As it an be notied from the last row of the table, the overall performaneof the algorithm based on ψ1 is muh better than that the variant based on
ψ3. However, in some of the problems, the ψ3-based algorithm outperforms the
ψ1-based algorithm. This happens for the problems AGG, BANDM, DEGEN2,DEGEN3, SCSD1, SCSD6, SCSD8 and SHARE2B. Obviously, LIPSOL is stillthe hampion; though, our ψ1-based algorithm saves one iteration ompared withLIPSOL for the problems AGG2 and AGG3, and two iterations for STOCFOR1.



6.3 IMPLEMENTATION OF OUR LARGE-UPDATE IIPM 113Problem ψ1 ψ3 LIPSOLit. E(x, y, s) it. E(x, y, s) it. E(x, y, s)25FV47 26 1.8E-007 32 1.1E-007 25 2.8E-007ADLITTLE 12 6.8E-008 12 1.3E-007 11 2.4E-011AFIRO 8 1.0E-007 8 8.6E-008 7 3.7E-009AGG 17 8.8E-007 19 2.7E-007 18 1.1E-008AGG2 17 9.5E-007 18 2.7E-007 18 2.6E-010AGG3 18 3.0E-007 18 6.0E-007 16 6.2E-008BANDM 20 2.6E-007 18 8.5E-007 16 3.6E-007BEACONFD 11 1.1E-007 11 5.9E-007 11 1.2E-010BLEND 13 6.2E-007 13 1.7E-008 12 5.7E-011BNL1 32 5.0E-007 34 2.2E-007 25 5.3E-008BNL2 33 4.1E-007 35 5.6E-007 31 1.3E-007BRANDY 19 2.5E-007 20 4.3E-007 18 2.0E-008D2Q06C 28 5.6E-001 45 1.3E-007 28 4.8E-007DEGEN2 25 1.3E-004 16 2.8E-005 13 4.2E-007DEGEN3 23 1.4E-004 21 5.3E-004 19 1.4E-007E226 22 7.4E-007 22 8.3E-008 20 8.9E-007FFFFF800 26 1.0E-006 27 3.5E-006 26 3.0E-007ISRAEL 22 2.0E-007 23 2.2E-007 20 2.2E-007LOTFI 16 3.7E-007 18 6.8E-006 15 4.6E-008MAROS-R7 19 8.0E-007 19 2.4E-008 14 1.0E-009SC105 10 1.7E-008 10 1.5E-008 9 4.2E-008SC205 11 2.5E-007 12 3.6E-008 11 6.5E-009SC50A 9 1.4E-007 9 9.4E-008 9 2.8E-009Table 6.1: Numerial results (q = log n

6
in ψ3)



114 6 IMPLEMENTATION: ISSUES AND RESULTSProblem ψ1 ψ3 LIPSOLit. E(x, y, s) it. E(x, y, s) it. E(x, y, s)SC50B 7 5.4E-007 7 4.0E-007 7 1.6E-007SCAGR7 13 3.1E-007 13 5.8E-007 11 3.5E-007SCFXM1 18 4.2E-007 23 3.7E-007 16 3.7E-007SCFXM2 21 1.4E-006 22 1.3E-007 19 1.6E-008SCFXM3 23 1.3E-007 25 5.9E-008 20 3.0E-010SCSD1 13 3.9E-007 12 4.3E-008 10 3.3E-011SCSD6 15 3.8E-007 13 3.3E-008 11 7.8E-008SCSD8 13 6.4E-008 12 2.4E-007 11 4.0E-011SCTAP1 18 5.5E-007 20 1.1E-007 16 1.2E-008SCTAP2 19 1.3E-007 19 2.2E-008 18 3.5E-009SCTAP3 19 6.4E-007 19 1.3E-008 17 2.4E-008SHARE1B 23 6.0E-007 26 1.0E-008 21 1.9E-010SHARE2B 12 1.3E-008 11 8.5E-007 11 1.7E-007SHIP04L 15 7.8E-007 17 1.6E-007 12 5.6E-011SHIP04S 15 3.2E-007 16 5.3E-008 12 3.6E-007SHIP12L 19 9.1E-007 27 5.4E-007 15 7.7E-009SHIP12S 17 1.3E-007 19 3.4E-008 15 3.6E-007STOCFOR1 14 4.9E-007 23 9.2E-007 16 1.1E-007STOCFOR2 25 1.8E-007 33 2.0E-008 21 2.3E-008TRUSS 18 3.9E-007 20 7.3E-007 17 8.4E-007WOOD1P 17 8.3E-007 18 9.7E-006 14 7.0E-010WOODW 25 3.1E-007 25 9.9E-007 23 5.1E-010Total 816 880 725Table 6.2: Numerial results (q = logn

6
in ψ3)



6.3 IMPLEMENTATION OF OUR LARGE-UPDATE IIPM 115Problem rows olumns nonzeros Optimal objetive25FV47 821 1876 10705 5.50185E+003ADLITTLE 56 138 424 2.25495E+005AFIRO 27 51 102 �4.64753E+002AGG 488 615 2862 �3.59918E+007AGG2 516 758 4740 �2.02393E+007AGG3 516 758 4756 1.03121E+007BANDM 305 472 2494 �1.58628E+002BEACONFD 173 295 3408 3.35925E+004BLEND 74 114 522 �3.08121E+001BNL1 643 1586 5532 1.97763E+003BNL2 2324 4486 14996 1.81124E+003BRANDY 220 303 2202 1.51851E+003D2Q06C 2171 5831 33081 1.22784E+005DEGEN2 444 757 4201 �1.43518E+003DEGEN3 1503 2604 25432 �9.87294E+002E226 223 472 2768 �1.87519E+001FFFFF800 524 1028 6401 5.55680E+005ISRAEL 174 316 2443 �8.96645E+005LOTFI 153 366 1136 �2.52647E+001MAROS-R7 3136 9408 144848 1.49719E+006SC105 105 163 340 �5.22021E+001SC205 205 317 665 �5.22021E+001SC50A 50 78 160 �6.45751E+001Table 6.3: Netlib problems



116 6 IMPLEMENTATION: ISSUES AND RESULTS
Problem rows olumns nonzeros Optimal objetiveSC50B 50 78 148 �7.00000E+001SCAGR7 129 185 465 �2.33139E+006SCFXM1 330 600 2732 1.84168E+004SCFXM2 660 1200 5469 3.66603E+004SCFXM3 990 1800 8206 5.49013E+004SCSD1 77 760 2388 8.66667E+000SCSD6 147 1350 4316 5.05000E+001SCSD8 397 2750 8584 9.05000E+002SCTAP1 300 660 1872 1.41225E+003SCTAP2 1090 2500 7334 1.72481E+003SCTAP3 1480 3340 9734 1.42400E+003SHARE1B 117 253 1179 �7.65893E+004SHARE2B 96 162 777 �4.15732E+002SHIP04L 402 2166 6380 1.79332E+006SHIP04S 402 1506 4400 1.79871E+006SHIP12L 1151 5533 16276 1.47019E+006SHIP12S 1151 2869 8284 1.48924E+006STOCFOR1 117 165 501 �4.11320E+004STOCFOR2 2157 3045 9357 �3.90244E+004TRUSS 1000 8806 27836 4.58816E+005WOOD1P 244 2595 70216 1.44290E+000WOODW 1098 8418 37487 1.30448E+000Table 6.4: Netlib problems



7Conlusions7.1 Conluding remarksIn this thesis, we analyze large-update infeasible interior-point methods (IIPMs)for LO. Our work is motivated by [97℄ in whih Roos presents a full-NewtonIIPM for LO. Sine the analysis of our large-update IIPMs requires properties ofbarrier funtions based on kernel funtions that are used in large-update feasibleinterior-point methods (FIPMs), we present primal-dual large-update FIPMs forLO based on kernel funtions, as well.In Roos' algorithm, the iterates move within small neighborhoods of the µ-enters of the perturbed problem pairs. As in many IIPMs, the algorithm reduesthe infeasibility and the duality gap at the same rate. His algorithm has theadvantage that it uses full Newton steps and hene no alulation of step size isneeded. Moreover, its theoretial iteration bound is O(n log(ǫ(ζe, 0, ζe)/ε)) whihoinides with the best-known iteration bound for IIPMs. Nevertheless, it has thede�ieny that it is too slow in pratie.We attempt to design a large-update version of Roos' algorithm whih al-lows larger redutions of ǫ(x, y, s) at an iteration. This requires that the para-meter θ is larger than O(1/n), even θ = O(1). Unfortunately, the result of thetheoretial analysis in Chapter 5 implies that θ is O(1/(n(logn)2)) whih yields
O(n

√
n(log n)3 log(ǫ(ζe, 0, ζe)/ε) iteration bound for a variant. Sine the theoret-ial omplexity of the algorithm is disappointing, we rely on the numerial resultsto establish that our algorithm is really a large-update method. A pratiallye�ient version of the algorithm is presented and its numerial results are om-pared with the well-known LIPSOL pakage. Fortunately, the numerial resultsseem promising as our algorithm has iteration numbers lose to those of LIPSOLand, in a few ases, outperforms LIPSOL. This makes lear that IIPMs su�erfrom the same irony as FIPMs, i.e., regardless of their nie pratial performane,the theoretial omplexity of large-update methods is worse. Reall that the best117
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Figure 7.1: Typial behavior of Ψ(v̂) as a funtion of θknown iteration bound for large-update IIPMs is O(n√n logn log(ǫ(ζe, 0, ζe)/ε)whih is due to Salahi et al. [101℄.As in other suessful implementations like e.g., [64, 120℄, di�erent step sizesin the primal and the dual spaes are used in our implementation. This givesrise to a faster ahievement in feasibility than when idential step sizes are used.Moreover, inspired by the LIPSOL pakage, we use a preditor-orretor step inthe feasibility step of the algorithm.7.2 Further researhIn this setion, we mention a few diretions for future researh that are related tothe subjet of this thesis.
• As mentioned before, our algorithm has a fator (log n)2 worse iterationbound than the best known iteration bound for large-update IIPMs. Onemay onsider how to modify the analysis suh that the iteration bound ofour algorithm is improved by a fator (log n)2.
• As mentioned in Setion 7.1, aording to the analysis of our algorithmpresented in Chapter 5, the barrier-updating parameter θ isO(1/(n(log n)2)).This yields the loose iteration bound given by (5.45). This slender value of θis obtained beause of some di�ulties in the analysis of the algorithm whihuses the largest value of θ, satisfying (5.21), to assure that Ψ(v̂) = O(n).



7.2 FURTHER RESEARCH 119This value of θ is muh smaller than the best value we may hoose. A typialgraph of Ψ(v̂), as a funtion of θ, is as depited in Figure 7.1. Assuming
n = 60, the largest value of θ satisfying Ψ(v̂) = n is 0.788840 while the valueof θ suggested by theory is 0.107140. A future researh may fouss on somenew analysis of the algorithm whih yields some larger value of θ.

• Roos' full-Newton step IIPM was extended to Semide�nite Optimization(SDO) by Mansouri and Roos [67℄, to Symmetri Optimization (SO) by Guet al. [47℄ and to LCP by Mansouri et al. [68℄. An extension of large-updateFIPMs based on kernel funtions to SDO was presented by El Ghami [37℄.One may onsider how our algorithm behaves in theory and pratie whenit is extended to the ases of SDO, SO and LCP.





Bibliography[1℄ I. Adler, G. C. Resende, G. Veiga, and N. Karmarkar. An implementationof Karmarkar's algorithm for linear programming. Mathematial Program-ming, 44(3, (Ser. A)):297�335, 1989.[2℄ K. Amini and A. Haseli. A new proximity funtion generating the bestknown iteration bounds for both large-update and small-update interior-point methods. ANZIAM J., 49(2):259�270, 2007.[3℄ Erling D. Andersen and Knud D. Andersen. The Mosek interior point op-timizer for linear programming: an implementation of the homogeneousalgorithm. In High performane optimization, volume 33 of Appl. Optim.,pages 197�232. Kluwer Aad. Publ., Dordreht, 2000.[4℄ K. M. Anstreiher. A monotoni projetive algorithm for frational linearprogramming. Algorithmia, 1(4):483�498, 1986.[5℄ K. M. Anstreiher. A standard form variant, and safeguarded linesearh,for the modi�ed Karmarkar algorithm. Mathematial Programming, 47(3,(Ser. A)):337�351, 1990.[6℄ K. M. Anstreiher. Potential redution algorithms. In Interior point methodsof mathematial programming, volume 5 of Appl. Optim., pages 125�158.Kluwer Aad. Publ., Dordreht, 1996.[7℄ K. M. Anstreiher and R. A. Bosh. Long steps in an O(n3L) algorithm forlinear programming. Mathematial Programming, 54(3):251�265, 1992.[8℄ A. Asadi, G. Gu, and C. Roos. Convergene of the homotopy path for a full-newton step infeasible interior-point method. Operations Researh Letters,38(2):147 � 151, 2010.[9℄ A. Asadi and C. Roos. A lass of large-update infeasible interior-pointalgorithms for linear optimization. Submitted to Optimization Methods &Software, 2010. 121



122 BIBLIOGRAPHY[10℄ Y. Q. Bai, M. El Ghami, and C. Roos. A omparative study of kernelfuntions for primal-dual interior-point algorithms in linear optimization.SIAM J. Optim., 15(1):101�128 (eletroni), 2004.[11℄ Y. Q. Bai, M. El Ghami, and C. Roos. A primal-dual interior-point al-gorithm for linear optimization based on a new proximity funtion. Optim-ization Methods & Software, 17(6):985�1008, 2002.[12℄ Y. Q. Bai, J. Guo, and C. Roos. A new kernel funtion yielding the bestknown iteration bounds for primal-dual interior-point algorithms. AtaMathematia Sinia, 25:2169�2178, Deember 2009.[13℄ E. R. Barnes. A variation on Karmarkar's algorithm for solving linear pro-gramming problems. Mathematial Programming, 36(2):174�182, 1986.[14℄ S. C. Billups and M. C. Ferris. Convergene of an infeasible interior-point al-gorithm from arbitrary positive starting points. SIAM J. Optim., 6(2):316�325, 1996.[15℄ R. G. Bland, D. Goldfarb, and M. J. Todd. The ellipsoid method: a survey.Oper. Res., 29(6):1039�1091, 1981.[16℄ A. Charnes, W. W. Cooper, and A. Henderson. An introdution to linearprogramming. John Wiley & Sons In., New York, 1953.[17℄ I. C. Choi, C. L. Monma, and D. F. Shanno. Further development of aprimal�dual interior point method. ORSA Journal on Computing, 2:304�311, 1990.[18℄ J. Czyzyk, S. Mehrotra, M. Wagner, and S. Wright. PCx: an interior-pointode for linear programming. Optimization Methods & Software, 11/12(1-4):397�430, 1999.[19℄ G. B. Dantzig. Reminisenes about the origins of linear programming.Operations Researh Letters, 1(2):43�48, 1981/82.[20℄ G. B. Dantzig. Linear programming and extensions. Prineton Landmarks inMathematis. Prineton University Press, Prineton, NJ, orreted edition,1998.[21℄ T. A. Davis. Diret methods for sparse linear systems, volume 2 of Fun-damentals of Algorithms. Soiety for Industrial and Applied Mathematis(SIAM), Philadelphia, PA, 2006.[22℄ G. de Ghellink and J.-Ph. Vial. A polynomial Newton method for linearprogramming. Algorithmia, 1(4):425�453, 1986.



BIBLIOGRAPHY 123[23℄ D. den Hertog and C. Roos. A survey of searh diretions in interior pointmethods for linear programming. Mathematial Programming, 52(3):481�509, 1991.[24℄ D. den Hertog, C. Roos, and T. Terlaky. A potential-redution variant ofRenegar's short-step path-following method for linear programming.[25℄ D. den Hertog, C. Roos, and J.-Ph. Vial. A omplexity redution for thelong-step path-following algorithm for linear programming. SIAM J. Op-tim., 2(1):71�87, 1992.[26℄ I. I. Dikin. Iterative solution of problems of linear and quadrati program-ming. Dokl. Akad. Nauk SSSR, 174:747�748, 1967.[27℄ M. L. Dowling. An a�ne saling algorithm for linear programming problemswith inequality onstraints. Math. Methods Oper. Res., 43(3):301�318, 1996.[28℄ H. A. Eiselt and C.-L. Sandblom. Linear programming and its appliations.Springer, Berlin, 2007.[29℄ M. V. Èl′vov. Analysis of the onvergene of a lass of barrier-projetivemethods for solving linear programming problems. Zh. Vyhisl. Mat. Mat.Fiz., 38(9):1525�1533, 1998.[30℄ A. V. Fiao and G. P. MCormik. Nonlinear programming: Sequentialunonstrained minimization tehniques. John Wiley and Sons, In., NewYork-London-Sydney, 1968.[31℄ C. Fraley and J.-Ph. Vial. Numerial study of projetive methods for linearprogramming. InOptimization (Varetz, 1988), volume 1405 of Leture Notesin Math., pages 25�38. Springer, Berlin, 1989.[32℄ R. M. Freund. Polynomial�time algorithms for linear programming basedonly on primal saling and projeted gradients of a potential funtion. Math-ematial Programming, 51:203�222, 1991.[33℄ D. Gale, H. W. Kuhn, and A. W. Tuker. Linear programming and thetheory of games. In Ativity Analysis of Prodution and Alloation, CowlesCommission Monograph No. 13, pages 317�329. John Wiley & Sons In.,New York, N. Y., 1951.[34℄ S. I. Gass and A. A. Assad. An annotated timeline of operations researh:an informal history. International Series in Operations Researh & Man-agement Siene, 75. Kluwer Aademi Publishers, Boston, MA, 2005.[35℄ D. M. Gay. A variant of Karmarkar's linear programming algorithm forproblems in standard form. Mathematial Programming, 37(1):81�90, 1987.



124 BIBLIOGRAPHY[36℄ A. George and J. W. H. Liu. Computer solution of large sparse positivede�nite systems. Prentie-Hall In., Englewood Cli�s, N.J., 1981. Prentie-Hall Series in Computational Mathematis.[37℄ M. El Ghami. New primal-dual interior-point method based on kernel fun-tions. PhD thesis, Delft Univ. of Tehnology, The Netherlands, 2005.[38℄ P. E. Gill, W. Murray, and M. A. Saunders. A single � phase dual barriermethod for linear programming. Tehnial Report SOL 88�10, Systems Op-timization Laboratory, Dept. of Operations Researh, Stanford University,Stanford, CA 94305, USA, August 1988.[39℄ Ph. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright.On projeted newton barrier methods for linear programming and an equi-valene to karmarkar's projetive method. Mathematial Programming,36(2):183�209, 1986.[40℄ D. Goldfarb and M. J. Todd. Modi�ations and implementation of theellipsoid algorithm for linear programming. Mathematial Programming,23(1):1�19, 1982.[41℄ A. J. Goldman and A. W. Tuker. Theory of linear programming. InLinear inequalities and related systems, Annals of Mathematis Studies, no.38, pages 53�97. Prineton University Press, Prineton, N.J., 1956.[42℄ C. C. Gonzaga. An algorithm for solving linear programming programsin O(n3L) operations. In on Progress in Mathematial Programming:Interior-Point and Related Methods, pages 1�28, New York, NY, USA, 1989.Springer-Verlag New York, In.[43℄ C. C. Gonzaga. Interior point algorithms for linear programming with in-equality onstraints. Mathematial Programming, 52(2, Ser. B):209�225,1991.[44℄ C. C. Gonzaga. Large�step path�following methods for linear programming,Part I : Barrier funtion method. SIAM J. Optim., 1:268�279, 1991.[45℄ C. C. Gonzaga. Path-following methods for linear programming. SIAMRev., 34(2):167�224, 1992.[46℄ G. Gu, H. Mansouri, M. Zangiabadi, Y. Q. Bai, and C. Roos. Improved full-newton step O(n) infeasible interior-point method for linear optimization.Journal of Optimization Theory and Appliations, 145(2), 2010.[47℄ G. Gu, M. Zangiabadi, and C. Roos. Full Nesterov-Todd step infeasibleinterior-point method for symmetri optimization. To appear in EuropeanJournal of Operational Researh.



BIBLIOGRAPHY 125[48℄ Farkas J. Über die Theorie der Einfahen Ungleihungen. Journal für dieReine und Angewandte Mathematik, 124:1�27, 1902.[49℄ Fourier J. Solution d' une question partiuliére du alul des inégalités.Nouveau Bulletin des sienes par la Soiété philomathique de Paris, pages99�100, 1826.[50℄ B. Jansen, C. Roos, T. Terlaky, and J.-P. Vial. Primal-dual algorithms forlinear programming based on the logarithmi barrier method. J. Optim.Theory Appl., 83(1):1�26, 1994.[51℄ N. Karmarkar. A new polynomial-time algorithm for linear programming.Combinatoria, 4(4):373�395, 1984.[52℄ L. G. Khahiyan. A polynomial algorithm in linear programming. Dokl.Akad. Nauk SSSR, 244(5):1093�1096, 1979. Translated into English in So-viet Mathematis Doklady 20, 191�-194.[53℄ V. Klee and G. J. Minty. How good is the simplex algorithm? In Inequalit-ies, III (Pro. Third Sympos., Univ. California, Los Angeles, Calif., 1969;dediated to the memory of Theodore S. Motzkin), pages 159�175. AademiPress, New York, 1972.[54℄ M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algorithm for linear programming. Mathematial Programming, 61(3,Ser. A):263�280, 1993.[55℄ M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm fora lass of linear omplementarity problems. Mathematial Programming,44(1, (Ser. A)):1�26, 1989.[56℄ M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point al-gorithm for linear programming. In Progress in mathematial programming(Pai� Grove, CA, 1987), pages 29�47. Springer, New York, 1989.[57℄ M. Kojima, S. Mizuno, and A. Yoshise. An O(
√
nL) iteration potentialredution algorithm for linear omplementarity problems. MathematialProgramming, 50(3, (Ser. A)):331�342, 1991.[58℄ M. Kojima, T. Noma, and A. Yoshise. Global onvergene in infeasible-interior-point algorithms. Mathematial Programming, 65(1, Ser. A):43�72,1994.[59℄ J. K. Lenstra, A. H. G. Rinnooy Kan, and A. Shrijver, editors. History ofmathematial programming: a olletion of personal reminisenes. North-Holland Publishing Co., Amsterdam, 1991.



126 BIBLIOGRAPHY[60℄ D. G. Luenberger and Y. Ye. Linear and nonlinear programming. Interna-tional Series in Operations Researh & Management Siene, 116. Springer,New York, third edition, 2008.[61℄ I. J. Lustig. A pratial approah to Karmarkar's algorithm. TehnialReport SOL 85�5, Systems Optimization Laboratory, Dept. of OperationsResearh, Stanford University, Stanford, CA 94305, USA, 1985.[62℄ I. J. Lustig. Feasibility issues in a primal-dual interior-point method forlinear programming. Mathematial Programming, 49(2, (Ser. A)):145�162,1990/91.[63℄ I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experienewith a primal-dual interior point method for linear programming. LinearAlgebra Appl., 152:191�222, 1991.[64℄ I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing Mehrotra'spreditor-orretor interior-point method for linear programming. SIAM J.Optim., 2(3):435�449, 1992.[65℄ I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experienewith a globally onvergent primal-dual preditor-orretor algorithm for lin-ear programming. Mathematial Programming, 66(1, Ser. A):123�135, 1994.[66℄ H. Mansouri and C. Roos. Simpli�ed O(nL) infeasible interior-point al-gorithm for linear optimization using full-Newton steps. Optimization Meth-ods & Software, 22(3):519�530, 2007.[67℄ H. Mansouri and C. Roos. A new full-Newton step O(n) infeasibleinterior-point algorithm for semide�nite optimization. Numer. Algorithms,52(2):225�255, 2009.[68℄ H. Mansouri, M. Zangiabadi, and M. Pirhaji. A full-Newton step O(n)infeasible-interior-point algorithm for linear omplementarity problems.Nonlinear Anal. Real World Appl., 12(1):545�561, 2011.[69℄ R. E. Marsten, R. Subramanian, M. Saltzman, I. J. Lustig, and D. F.Shanno. Interior Point Methods for Linear Programming: Just Call New-ton, Lagrange, and Fiao and MCormik! INTERFACES, 20(4):105�116,1990.[70℄ J. F. MCloskey. The beginnings of operations researh: 1934�1941. Oper.Res., 35(1):143�152, 1987.[71℄ K.A. MShane, C.L. Monma, and D.F. Shanno. An implementation of aprimal-dual interior point method for linear programming. ORSA Journalon Computing, 1:70�83, 1989.



BIBLIOGRAPHY 127[72℄ N. Megiddo. Pathways to the optimal set in linear programming. In Progressin mathematial programming (Pai� Grove, CA, 1987), pages 131�158.Springer, New York, 1989.[73℄ N. Megiddo and M. Shub. Boundary behavior of interior point algorithmsin linear programming. Math. Oper. Res., 14(1):97�146, 1989.[74℄ S. Mehrotra. On the implementation of a primal-dual interior point method.SIAM J. Optim., 2(4):575�601, 1992.[75℄ S. Mizuno. Polynomiality of infeasible-interior-point algorithms for linearprogramming. Mathematial Programming, 67(1, Ser. A):109�119, 1994.[76℄ S. Mizuno, M. Kojima, and M. J. Todd. Infeasible-interior-point primal-dualpotential-redution algorithms for linear programming. SIAM J. Optim.,5(1):52�67, 1995.[77℄ S. Mizuno, M. J. Todd, and Y. Ye. On adaptive-step primal-dual interior-point algorithms for linear programming. Math. Oper. Res., 18(4):964�981,1993.[78℄ S. Mizuno, M. J. Todd, and Y. Ye. A surfae of analyti enters and primal-dual infeasible-interior-point algorithms for linear programming. Math.Oper. Res., 20(1):135�162, 1995.[79℄ C. L. Monma and A. J. Morton. Computational experiene with a duala�ne variant of Karmarkar's method for linear programming. OperationsResearh Letters, 6(6):261 � 267, 1987.[80℄ R. D. C. Monteiro and I. Adler. Interior path�following primal-dual al-gorithms. Part I. Linear programming. Mathematial Programming, 44(1,(Ser. A)):27�41, 1989.[81℄ R. D. C. Monteiro, I. Adler, and M. G. C. Resende. A polynomial-timeprimal-dual a�ne saling algorithm for linear and onvex quadrati pro-gramming and its power series extension. Math. Oper. Res., 15(2):191�214,1990.[82℄ B. A. Murtagh and M. A. Saunders. Large-sale linearly onstrained op-timization. Mathematial Programming, 14(1):41�72, 1978.[83℄ J. V. Neumann. On a maximization problem (manusript). Institute forAdvaned Study, Prineton University, Prineton, NJ 08544, USA, 1947.[84℄ M. Padberg. A di�erent onvergene proof of the projetive method forlinear programming. Operations Researh Letters, 4(6):253�257, 1986.



128 BIBLIOGRAPHY[85℄ J. Peng, C. Roos, and T. Terlaky. New omplexity analysis of the primal-dual Newton method for linear optimization. Ann. Oper Res., 99:23�39(2001), 2000.[86℄ J. Peng, C. Roos, and T. Terlaky. A new and e�ient large-update interior-point method for linear optimization. Vyhisl. Tekhnol., 6(4):61�80, 2001.[87℄ J. Peng, C. Roos, and T. Terlaky. Self-regular funtions and new searhdiretions for linear and semide�nite optimization. Mathematial Program-ming, 93:129�171, 2002.[88℄ J. Peng and T. Roos, C.and Terlaky. Self-regularity: a new paradigm forprimal-dual interior-point algorithms. Prineton Series in Applied Mathem-atis. Prineton University Press, Prineton, NJ, 2002.[89℄ M. Peyghami. Two New Proximity Funtions for Feasible Interior-PointMethods and a Show of an Ill-behaved Central Path. PhD thesis, SharifUniversity of Tehnology, Iran, 2005.[90℄ F. Potra. An infeasible interior-point preditor-orretor algorithm for lin-ear programming. Reports on Computational Mathematis 26, Dept. ofMathematis, The University of Iowa, Iowa City, IA 52242, USA, June1992.[91℄ F. Potra. An infeasible-interior-point preditor-orretor algorithm for lin-ear programming. SIAM J. Optim., 6(1):19�32, 1996.[92℄ J. Renegar. A polynomial-time algorithm, based on Newton's method forlinear programming. Mathematial Programming, 40(1):59�93, 1988.[93℄ J. Renegar. A mathematial view of interior-point methods in onvex op-timization. MPS/SIAM Series on Optimization. Soiety for Industrial andApplied Mathematis (SIAM), Philadelphia, PA, 2001.[94℄ G. Rinaldi. A projetive method for linear programming with box-typeonstraints. Algorithmia, 1(4):517�527, 1986.[95℄ C. Roos. New trajetory�following polynomial�time algorithm for linearprogramming problems. Journal of Optimization Theory and Appliations,63:433�458, 1989.[96℄ C. Roos. An O(n3L) approximate enter method for linear programming.In S. Doleki, editor, Optimization : Proeedings of the 5th Frenh�GermanConferene in Castel�Novel, Varetz, Frane, Otober 1988, volume 1405of Leture Notes in Mathematis, pages 147�158. Springer Verlag, Berlin,Germany, 1989.



BIBLIOGRAPHY 129[97℄ C. Roos. A full-Newton step O(n) infeasible interior-point algorithm forlinear optimization. SIAM J. Optim., 16(4):1110�1136 (eletroni), 2006.[98℄ C. Roos, T. Terlaky, and J.-Ph. Vial. Interior point methods for linearoptimization. Springer, New York, 2006. Seond edition of Theory andalgorithms for linear optimization [Wiley, Chihester, 1997℄.[99℄ C. Roos and J.-Ph. Vial. Long steps with the logarithmi penalty barrierfuntion in linear programming. In J. Gabszevwiz, J. F. Rihard, andL. Wolsey, editors, Eonomi Deision�Making : Games, Eonomis andOptimization, dediated to J. H. Dreze, pages 433�441. Elsevier SienePublisher B.V., Amsterdam, The Netherlands, 1989.[100℄ C. Roos and J.-Ph. Vial. A polynomial method of approximate enters forlinear programming. Mathematial Programming, 54(3):295�305, 1992.[101℄ M. Salahi, M. R. Peyghami, and T. Terlaky. New omplexity analysisof IIPMs for linear optimization based on a spei� self-regular funtion.European J. Oper. Res., 186(2):466�485, 2008.[102℄ G. Sonnevend. An �analyti enter� for polyhedrons and new lasses ofglobal algorithms for linear (smooth, onvex) programming. In A. Prékopa,J. Szelezsán, and B. Straziky, editors, System Modelling and Optimiza-tion : Proeedings of the 12th IFIP-Conferene held in Budapest, Hungary,September 1985, volume 84 of Leture Notes in Control and InformationSienes, pages 866�876. Springer Verlag, Berlin, West�Germany, 1986.[103℄ H. Taha. Operations researh. Pearson Eduation, In., Upper Saddle River,New Jersey 07458, eighth edition, 2007.[104℄ K. Tanabe. Centered Newton method for mathematial programming. InSystem modelling and optimization (Tokyo, 1987), volume 113 of LetureNotes in Control and Inform. Si., pages 197�206. Springer, Berlin, 1988.[105℄ K. Tanabe. Centered newton method for mathematial programming. InSystem modelling and optimization (Tokyo, 1987), volume 113 of LetureNotes in Control and Inform. Si., pages 197�206. Springer, Berlin, 1988.[106℄ M. J. Todd. Potential-redution methods in mathematial programming.Mathematial Programming, 76(1, Ser. B):3�45, 1997. Interior point meth-ods in theory and pratie (Iowa City, IA, 1994).[107℄ M. J. Todd and Y. F. Wang. On ombined phase I�phase II projetivemethods for linear programming. Algorithmia, 9(1):64�83, 1993.[108℄ M. J. Todd and Y. Ye. A entered projetive algorithm for linear program-ming. Math. Oper. Res., 15(3):508�529, 1990.



130 BIBLIOGRAPHY[109℄ J. A. Tomlin. An experimental approah to Karmarkar's projetive methodfor linear programming. Math. Programming Stud., (31):175�191, 1987.[110℄ T. Tsuhiya. Theoretial analysis of an a�ne saling algorithm: the interiorpoint method and a duality theorem. Pro. Inst. Statist. Math., 42(2):277�296, 1994.[111℄ P. M. Vaidya. An algorithm for linear programming whih requires O(((m+
n)n2 + (m+ n)1.5n)L) arithmeti operations. In STOC '87: Proeedings ofthe nineteenth annual ACM symposium on Theory of omputing, pages 29�38, New York, NY, USA, 1987. ACM.[112℄ R. J. Vanderbei. LOQO: an interior point ode for quadrati programming.Optimization Methods & Software, 11/12(1-4):451�484, 1999.[113℄ R. J. Vanderbei and J. C. Lagarias. I. I. Dikin's onvergene result for thea�ne-saling algorithm. In Mathematial developments arising from linearprogramming (Brunswik, ME, 1988), volume 114 of Contemp. Math., pages109�119. Amer. Math. So., Providene, RI, 1990.[114℄ R. J. Vanderbei, M. S. Meketon, and B. A. Freedman. A modi�ationof karmarkar's linear programming algorithm. Algorithmia, 1(4):395�407,1986.[115℄ S. Wright. Primal-dual interior-point methods. Soiety for Industrial andApplied Mathematis (SIAM), Philadelphia, PA, 1997.[116℄ Y. Ye. A lass of projetive transformations for linear programming. SIAMJ. Comput., 19(3):457�466, 1990.[117℄ Y. Ye. An O(n3L) potential redution algorithm for linear programming.Mathematial Programming, 50(2, (Ser. A)):239�258, 1991.[118℄ Y. Ye. Interior point algorithms. Wiley-Intersiene Series in Disrete Math-ematis and Optimization. John Wiley & Sons In., New York, 1997.[119℄ Y. Zhang. On the onvergene of a lass of infeasible interior-point meth-ods for the horizontal linear omplementarity problem. SIAM J. Optim.,4(1):208�227, 1994.[120℄ Y. Zhang. Solving large-sale linear programs by interior-point methods un-der the MATLAB environment. Optimization Methods & Software, 10(1):1�31, 1998.[121℄ Y. Zhang and D. Zhang. On polynomiality of the Mehrotra-type preditor-orretor interior-point algorithms. Mathematial Programming, 68(3, Ser.A):303�318, 1995.



List of notations and abbreviationsSets
R �eld of real numbers.
R+ set of nonnegative real number.
R++ set of positive real numbers.
R

n set of real n-vetors (n× 1 matries).
R

m×n set of real m× n matries.Vetors and matries
e all-one vetor.
I identity matrix.AbbreviationsIPC interior-point ondition.IPM(s) interior-point method(s).FIPM(s) feasible interior-point method(s).IIPM(s) infeasible interior-point method(s).PFM(s) path-following method(s).PRM(s) potential-redution method(s).PC preditor-orretor.LO linear optimization.QP quadrati problem.LCP linear omplementarity problem.HLCP horizontal linear omplementarity problem.
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SummaryLarge-update Infeasible Interior-Point Algorithms for LinearOptimizationReently, Roos [97℄ proposed a full-Newton step infeasible interior-point method(IIPM) for linear optimization (LO). Shortly afterwards, Mansouri and Roos [66℄presented a variant of this algorithm and Gu et al. [46℄ a version with a simpli�edanalysis.Roos' algorithm is a path-following method. It uses the so-alled homotopypath as a guideline to an optimal solution. The algorithm has the advantagethat it uses only full Newton steps (the step size is always 1, hene requires noomputation), and its onvergene rate is O(n), whih oinides with the bestknown onvergene rate for IIPMs. Apart from these nie features, the algorithmhas the de�ieny that it is a small-update method and hene it is too slow forpratial purposes.In this thesis we design a large-update version of Roos' algorithm. We presenta pratially e�ient implementation of (a variant of) the algorithm and ompareits performane with that of the well-known LIPSOL pakage [120℄. The numerialresults are promising as the iteration numbers of our algorithm are lose to thoseof LIPSOL; in a few ases they outperform LIPSOL.Not surprisingly, as in large-update feasible interior-point methods (FIPMs),there is a gap between the pratial and the theoretial behavior of our large-update IIPM. To be more preise, its theoretial onvergene rate isO(n√n(logn)3)whih is worse than the onvergene rate of its full-Newton step variant. Thisphenomenon is well-known in the �eld of IPMs, and has been alled the irony ofIPMs : small-update methods have the best omplexity results and are slow inpratie, whereas large-update methods have worse omplexity results and exel-lent performane in pratie. For example, large-update FIPMs are by a fator
O(log n) worse than that of the full-Newton step FIPMs, i.e., O(√n logn) versus
O(

√
n) [37, 98℄.The thesis also ontains a survey of IIPMs that have been presented by severalauthors in last two deades. It overs a wide range of methods, starting fromLustig's algorithm [62℄, to the infeasible potential-redution methods of Mizuno,Kojima and Todd [76℄. We fous on onvergene properties and polynomiality ofthe IIPMs presented in our survey. 133





SamenvattingOnlangs publieerde Roos [97℄ een volle-Newton stap `infeasible' inwendige-puntmethode (IIPM) voor lineaire optimalisatie (LO). Iets later stelden Mansouri enRoos [66℄ een variant voor van dit algoritme, en kort daarna publieerden Gu etal. [46℄ een versie met een envoudigere analyse.Het algoritme van Roos is een padvolgende methode. Het gebruikt het zogen-aamde homotopie pad als een gidslijn naar een optimale oplossing. Het algoritmeheeft als voordeel dat het alleen volle Newton stappen gebruikt (er is dus geenberekening nodig van de stapgrootte, deze is altijd 1), en de onvergentiesnelheidis O(n), de best bekende onvergentiesnelheid voor IIPMn. Naast deze goedeeigenshappen heeft Roos' algoritme het nadeel dat het een zogenaamde `small-update' methode is, waardoor de methode te traag is voor pratishe doeleinden.In dir proefshrift ontwerpen we een `large-update' versie van genoemd algor-itme van Roos. We presenteren een in de praktijk e�iënte implementaie van (eenvariant van) het algoritme en vergelijken de performane met die van het bekendepakket LIPSOL [120℄. De numerieke resultaten zijn veelbelovend omdat de ben-odigde aantallen iteraties voor ons algoritme diht bij die van LIPSOL liggen, enin enkele gevallen zelfs beter zijn.Niet verrassend is dat er, evenals bij `large-update feasible' inwendige-puntmethoden (FIPMn), een disrepantie is tussen het pratishe en het theoret-ishe gedrag van onze `large-update' IIPM. De theoretishe onvergentiesnelheidis namelijk O(n√n(log n)3), hetwelk slehter is dan de onvergentiesnelheid vande volle-Newton stap variant. Dit vershijnsel is welbekend in het gebied vanIPMn, en staat bekend als de ironie van IPMn: `small-update' methoden hebbende beste omplexiteit en zijn traag in de praktijk, terwijl `large-update' methodenslehtere omplexiteit hebben en in de praktijk veel sneller zijn. Bijvoorbeeld, deonvergentiesnelheid van `large-update' FIPMn is een fator O(log n) slehter dandie van volle-Newton stap FIPMn, namelijk, O(√n log n) versus O(√n) [37, 98℄.Het proefshrift bevat ook en overziht van IIPMn die gedurende de laat-ste twee deades zijn voorgesteld door diverse auteurs. Het beshrijft een grootaantal IIPMn, van Lustig's algorithm [62℄, tot de `infeasible' potentiaal-redutiemethoden Mizuno, Kojima and Todd [76℄. De nadruk in dit overziht ligt oponvergentie-eigenshappen en polynomialiteit van de besproken IIPMn.135
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