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Abstract

Numerical simulations and optimisation methods, such as mesh adaptation, rely on the accurate and inex-
pensive use of error estimation methods. Output-error estimation is the most accurate method; however, it
relies on the use of approximations in order to be implemented in practice. The proposed method in this
thesis relies on the use of super-resolution neural networks to reconstruct the fine adjoint solution from a
computed coarse adjoint solution. The proposed method is compared to reference error estimators on an
unsteady Burgers’ equation using the method of manufactured solutions, as well as a lid-driven cavity flow.
For both of these test cases, it was shown that super-resolution neural networks were able to reconstruct the
fine adjoint solution and provide robust and inexpensive output-error estimates at the cost of lower accuracy.
Nonetheless, the accurate estimation of the error indicators gives great confidence in the proposed method’s
ability to perform similarly to the adjoint-weighted residual output-error estimate with a mesh adaptation
procedure. A cost metric for the computational overhead of the output-error estimate is proposed. This
highlights the superior performance of the lower up-scale ratio super-resolution neural networks due to their
higher accuracy and lower computational cost than those with higher up-scaling factors.
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1
Introduction

1.1. Mesh adaptation
Computational Fluid Dynamics (CFD) has become a vital tool of the modern engineer in the analysis of
fluid flows. The decreasing computational cost of numerical simulations in the past decades has enabled
the widespread use of CFD from the aerospace industry to healthcare [12]. However, the growing need for
ever more accurate and complex fluid dynamic analyses has meant that the use of CFD has remained very
specialised and user-intensive. This is emphasised by the large investment required design and analysis tasks
on a regular basis. In particular, large transient turbulent problems, such as Large Eddy Simulation (LES), are
affected by prohibitively large computational costs limiting their use as a design tool.

Numerical simulations require the generation of a discrete computational support, comprised of cells or
elements, that is used to solve fluid equations specific to the problem, for example the Navier-Stokes equa-
tions. An increase in the number of elements constituting this computational domain increases the accuracy
of modeling of the phenomena of interest. However, this also results in an increase in the cost required to
solve the simulation. Moreover, the elements in the computational domain do not contribute equally to the
inaccuracy of a simulation. Thus, the computational cost could be reduced by adapting a number of elements
only in the regions where it will help the simulation to become more accurate.

Mesh adaptation aims to tackle this issue by maximising the accuracy of the solution of a numerical simu-
lation for a given computational cost. Although the user is free to define the meaning of accuracy for a CFD
simulation, the problem is usually solved with respect to an a priori chosen Quantity of Interest (QoI). In the
domain of CFD, this can be lift or drag for example. The maximisation of the accuracy can thus be described
as an optimisation problem, this is then referred to as goal-oriented mesh adaptation. A key component of
this optimisation problem aims at identifying the local contribution of each element to the error in the dis-
crete solution of the QoI. This error in QoI is referred to as the output error. This then enables the correct
determination of the optimal number and size of elements to minimise the output error.

1.2. Output error estimation
The main reasons for output errors are the presence of numerical errors and the lack of modeling fidelity, both
geometrical and physical [62]. As the physical modeling induced errors result from the choice in fluid flow
equations and corresponding models, such as turbulence models, they are independent from the discrete
computational support. However, numerical errors and errors resulting from the lack of geometric fidelity
can be both reduced by the use of more appropriate spatial and temporal numerical discretisation.

Numerous methods have been devised to estimate the output error. This thesis focuses on the most accu-
rate, which is gradient-based output error estimation, also referred to as adjoint-based error estimation. This
relies on the solution of a sensitivity problem associated to the fluid flow equations, the adjoint problem. It is
also referred to as the dual problem in literature, in opposition to the primal fluid flow problem. Despite its
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high accuracy, the linearity of the adjoint problem, and strong mathematical foundations in the determina-
tion of the output error, the associated computational cost remains too high for the widespread adoption of
adjoint-based error estimation and, thus, goal-oriented mesh adaptation.

The computational overhead required for the use of adjoint-based error estimation stems from the cost of
the adjoint solution and the amount of information required to be stored for the solution of unsteady adjoint
problems. On the one hand, the former affects primarily steady problems and reflects the need to solve the
adjoint problem on a finer computational domain than the fluid equations computational domain. While in
practice this is not usually done, it is approximated by the use of prolongation operators. These operators
aim to partially reconstruct the fine solution, but also introduce inaccuracies in the error estimation.

On the other hand, the amount of storage required for the solution of the unsteady adjoint problem is a
direct result of the adjoint problem representing the sensitivity of a problem. Just as the solution at a given
time-step depends on the preceding time-step, the adjoint solution must be solved backwards in time in order
to determine the sensitivity of a solution to the discretisation of the computational domain. This means that
the instantaneous primal solutions must be stored during the forward solution of the CFD simulation, and
recalled during the solution of the backwards in time adjoint problem. This leads to extremely large storage
requirements, with current methods writing the primal to memory and loading the instantaneous primal at
each time-step, slowing down the solution of the adjoint.

1.3. Optimisation of output error estimation methods
In order to tackle the two main issues mentioned in the preceding section, a number of methods have been
proposed to optimise the output error estimation process. Among the methods aimed at reducing the adjoint
solution cost, is the use of Artificial Neural Networks (ANN) in order to bypass the solution of the adjoint
altogether [17, 77, 81]. This can be achieved by training an algorithm to reconstruct the adjoint solution from
the primal solution. However, since the adjoint solution depends on the QoI, this method is fully dependent
on the QoI and would require as many Artificial Neural Network (ANN) as QoI, which is limiting in practice.

Another approach consists in mapping the local error contributions to the output error directly from the
primal solution [26], making use of ANN to regress non-linear functions too. Neural network-based methods
have also included the proposition to compute the error and guide the mesh adaptation process directly from
the adjoint solution, without resorting to the use of error estimation [5, 34, 44, 52]. While these methods have
been implemented successfully, they remain very specialised, do not generalise well, and behave as ’black-
boxes’.

Methods aimed at reducing the storage footprint of the primal solution include the use of Reduced Order
Models (ROM) [46] or specifically chosen sub-sampling methods[50, 74]. The former reduces the size of the
solution to a superposition of simpler solutions, while the latter represents the solution by points which are
judged to be representative of the primal solution. The limitations for these approaches are the inaccuracies
introduced by the reconstruction of the primal solution. This in turn can result in inaccurate output error
estimation due to an erroneous adjoint solution.

1.4. Research need and outline
Thus, the need for an accurate and cheap adjoint-based output error estimation method is identified. With
the advent, and more widespread adoption, of machine learning, it is natural to apply it to output-based mesh
adaptation in order to reduce the computational overhead introduced by the estimation of the output error.
However, many of the proposed approaches aimed at reducing the overhead computational cost of output-
based error estimation using ANN compromise on either the accuracy or the reduction of computational
cost.

The proposition in this thesis aims at potentially addressing the two raised computational cost and storage
footprint issues through the use of low resolution primal and adjoint solutions, which are solved numerically
and then augmented through the use of Super-Resolution Neural Network (SRNN). This would enable the
storage of coarser primal solutions, both spatially and temporally [20, 29, 75]. The potential for the use of
super-resolution in this regard has been indicated by its application to the reconstruction of turbulent flow
information [29, 39, 76]. This has been done successfully for rather simple problems such as Homogeneous
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Isotropic Turbulence (HIT) but also attempted for more complex problems with more limited success. The
main goal of these studies was to capture information on small scale turbulence such that turbulence models
based on these new insights can be devised. They have shown that the energy cascade can be respected
using ANN driven super-resolution while more traditional up-sampling methods such as bi-cubic splines
have a tendency to be too dissipative [48]. This is a very desirable property when the application of a SRNN
to mesh adaptation is considered since the modeling error can be minimised. Moreover, it could also help
alleviate the computational cost of the adjoint solution by enabling the solution of the adjoint on a coarse
mesh and reconstructing the fine adjoint solution from this coarser reference one. This has the potential to
also generalise across QoI and problems since the reconstruction step can be de-correlated from the QoI or
problem if the sole reconstruction task is learned.

Due to the super-resolution of the primal having been implemented and shown to be successful in recon-
structing the fine primal fields, the primary research objective of the thesis was formulated as:

Research objective

Can super-resolution neural networks enable the accurate reconstruction of adjoint solution for use
in output-based error estimation in mesh adaptation?

Using the research objective defined in the previous chapter and the findings in this chapter on related
methods aimed at optimising the output-based error estimates, secondary research objectives can be de-
fined. These objectives, shown below, help in testing the hypothesis and forms the framework for the work
performed in this thesis. The secondary objectives originate from the need to answer certain questions in
order to evaluate the feasibility and performance of using SRNN for output-based error estimation.

1. Evaluate the state-of-the-art output error estimators.

2. Evaluate the choice of the adjoint fine space.

3. Evaluate the state-of-the-art SRNN applied to the adjoint field.

4. Evaluate SRNN in an adjoint-based error estimation method

The first item intended to draw a reference point with current error estimation methods, namely the for-
mulations of [31, 70]. This first effort enables the differences in the methods to be highlighted and the im-
plications they would have on the mesh adaptation routine. Based on this, a choice is formulated for the
implementation of a specific error estimation method for the more complex test case.

The second item refers to the difference between the current practice of using higher order elements in
the finite element context, and the h-refinement of the fine space. The possibility of p-refined fine spaces
does not exist in finite volume discretisation, nor can it be used with the current proposal. It is thus necessary
to quantify the consequence of using a finer grid resolution for the fine space, both in terms of accuracy and
computational cost.

The evaluation of the capacity of SRNN to reconstruct adjoint fields is then performed. By gaining fur-
ther understanding of the architecture of the SRNN and the training process, one is able to make informed
decisions to maximise its ability to fulfil the primary research objective.

Finally, the last item covers the integration of the proposed method in the actual output error and mesh
adaptation routine. The integration must be evaluated in order to be able to propose a framework which is
viable and could potentially solve the need from which the research objective arises.

The report aims at providing a relevant example of the capacity of such an approach. As a result, 1D and
2D problems were tackled, ranging from steady to unsteady, and laminar to turbulent. Moreover, previous
attempts at using machine learning for the task of predicting the output error and adaptation parameter from
the primal solution [17, 19], have uncovered the potential of SRNN to correctly reconstruct the adaptation
parameter but not the output error. For this reason, the tests for the hypothesis will focus on the estimation
of the output error.

The application to 2D turbulent problems can be tested in the near future since the framework has been
created in OpenFOAM. This enabled the identification of certain issues which are addressed in the concluding
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chapter of this thesis. This implementation has not yet been validated or thoroughly tested but highlights key
issues which require further research.

The report’s opening chapter synthesises the main developments in mesh adaptation in the past decades.
It gives an overview of the current best practices in the domain and highlights the subsequent need for a
cheaper approach to estimating output error. Chapter 3 explores in greater depth the best practices with
respect to output error estimation and introduces the reference output error estimates used in this thesis.
The various research paths used to tackle the limitations are also presented. This leads to the more detailed
description of the proposed method as well as the formulation of the secondary research objectives. Chapter
4 validates the implementation of the output error estimates in the FEniCS problem solving environment.
The 1D unsteady Burgers’ equation test case, documented in chapter 5, describes the implementation and
training of the SRNN and evaluates the loss in accuracy of the proposed method as well as the reduction
in computational cost of the proposed method. A second test case is proposed where chapter 6 explores
the implementation of the proposed method to a lid-driven cavity flow. Finally, chapter 7 closes the report
by formulating the various conclusions of the report and the recommendations for the future work to be
conducted in order to fully evaluate the proposed method.



2
Mesh Adaptation: Description and Context

In two- and more importantly three-dimensional problems, an increase in resolution leads to the exponen-
tial growth in the number of elements, and is referred to as the curse of dimensionality. Mesh adaptation
proposes to help alleviate this problem by increasing the resolution of the solution solely where the contri-
bution to the global error is significant. The more widespread adoption of mesh adaptation throughout the
aerospace industry is one of the main goals of the coming decade, pushed by National Aeronautics and Space
Administration (NASA) [67] and other research institutes [3].

This chapter will introduce mesh adaptation in more depth and introduce the need for computationally
cheap and accurate error estimation in both the context of mesh adaptation and CFD more globally. Section
2.1 describes the steps of mesh adaptation. The following sections will explore each step individually. Lastly,
the closing section of this chapter will attempt to identify the key integration points of the proposed method
to the state-of-the-art mesh adaptation procedures.

2.1. Mesh adaptation steps
Mesh adaptation consists of the steps that an engineer naturally undertakes when attempting to reduce the
error in a simulation. In the first of these steps, the CFD problem is solved. Its solution allows conclusions to
be made on the current level of error. If it is not satisfactory, one attempts to localise the regions where the
error is too large and modify the computational support in these locations. The result is an algorithm such as
the one in Figure 2.1.[2, 25, 28, 32]

The steps in mesh adaptation can thus be decomposed as: solution, error estimation, error localisation,
adaptation selection and mesh modification. The process can be complex and costly, as a result many differ-
ent approaches have been proposed to automate it and render it more efficient [3, 9]. The vast majority of the
research conducted in this area appears under the banner of Adaptive Mesh Refinement (AMR), however, the
term mesh adaptation is preferred in this thesis to highlight the importance of also identifying unnecessary
mesh refinement and to coarsen the computational support where required.

2.2. Error estimation
There exists two main approaches to estimating the error in a given numerical simulation. The first, known
as metric-based error estimation, uses features in the flow solution to drive the adaptation routine. These
features are described by appropriately chosen metrics. They can either describe a physical variable in the
flow, such as the H 2 semi-norm as proposed by Löhner [50], or a chosen variable whose goal is to describe
more abstract concepts, such as the wall coordinate. The metric can also seek to represent the target the rate
of change of flow variables in space, which is achieved by the use of the Hessian. Metric-based error estima-
tion is computationally cheap but can be extremely inefficient in reducing the output error in the measure of
a specific QoI, such as lift, which are not necessarily correlated to the resolution of local flow features [28, 69].

Moreover, the metrics used are dependent on the problem and the chosen QoI to be effective. This entails
detailed a priori knowledge of the problem being studied. This implies a lack of generalisation that is some-
times tackled using more complex metrics [9, 57]. The performance of metric-based adaptation has been
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Figure 2.1: Mesh adaptation workflow
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assimilated to heuristics, which makes it difficult to justify the added overhead computational cost of using
more complex metrics [27]. This is also valid for the more advanced metrics such as dissipation or entropy-
based adaptation where the sources of dissipation and entropy generation are identified. For very specific
problems these approaches can work well, but they are less efficient than goal-oriented mesh adaptation and
do not generalise well.[7]

On the other hand, output-error estimation is specifically designed to reduce the error in the prediction
of the QoI. Output-based error estimation can be performed by estimating numerical errors or through the
solution of the variational problem. In the former, the error related to the discretisation of the problem is
targeted. It was shown that they are equivalent to gradient based methods, such as the adjoint-weighted
residual, albeit less accurate but also less computationally intensive. These have found applications in LES in
particular where the cost of the adjoint solution remains too large [24, 79].

Adjoint-based error estimation is more involved to set up in the first place since it requires the derivation
of associated variational problems and is also more computationally expensive [28]. However, it is more
accurate and results in the need for coarser meshes and as a result a smaller computational cost since it is
able to converge to a QoI value more rapidly. The associated variational problem is referred to as the adjoint
problem and can be derived from the continuous equations or discretised forms of the problem considered.

This approach enables to effectively predicting the output error and localising the sources of error, and
will be the main focus of this thesis. Chapter 3 explores output error prediction methods in greater depth
as well as identifying their key limitations justifying the need to develop tools that reduce the computational
overhead and induced storage requirements.

2.3. Adaptation parameter
Once the error in the QoI is determined, one must localise the sources of error in order to modify the compu-
tational support and reduce the output error. This is performed through the use of an adaptation parameter,
also referred to in literature as an error indicator or error sensor. This step is essential in the mesh adaptation
process but only limited literature is found on the topic.

It is common for error indicators to be derived from the local value of the error estimate and normalised.
An interesting area of research consists in the concatenation of the adaptation parameter, mesh adaptation
strategy and the mesh mechanics. Such a proposed method is higher-dimensional embedding. This ap-
proach makes use of a specific set of parameters that map the metric from the given simulation space into a
uniform mesh in higher dimension. This mesh is then projected back into the simulation space leading to an
anisotropic mesh.

2.4. Mesh adaptation strategy
This section aims at giving an overview of the some of the mesh adaptations strategies which have been
proposed. The first is the use of rescaling methods. Arguably the simplest method covered here, yet used
throughout, it aims to bound the maxima and minima of the adaptation parameter values in order to prevent
undesired results in the mesh adaptation process. It usually makes use of the relation shown in Equation 2.1,
in order to map the relative importance of each element to the output error. In this equation, η corresponds
to an adaptation parameter, whose aim is to localise the importance of an element relative to the output error.
This operation is very sensitive to outliers and can increase the concentration of elements in the centre of the
interval. This can be solved through the use of additional regression operations aiming at obtaining a chosen
error sensor distribution. However, this leads to additional computational overhead which is not desired.
Rescaling methods can be used in combination with other strategies in order to determine the elements to
be modified in the mesh adaptation process.[65]

η∗ = η−ηmi n

ηmax −ηmi n
(2.1)

The fixed fraction mesh adaptation strategy differs from the previous method as it identifies a chosen
number of cells for the mesh adaptation process. This approach addresses certain issues with rescaling since
it is no longer affected by outliers. It also parts with the value of the error sensor and instead only focuses on
the ordered values of the error sensor. The main drawback of this method is its inflexibility. It is not able to
adapt to widely varying error sensor distributions and can impartially choose to adapt certain cells but not
others when both have the same error indicator value.[55]
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In an attempt to resolve the limitations observed through the use of these these and other strategies, con-
stant threshold adaptation was developed. This method targets all the elements whose adaptation parame-
ter is not within chosen bounds. The main disadvantage is that it can, on the one hand, lead to the adaptation
of a very restricted number of cells resulting in a larger number of mesh adaptation iterations. On the other
hand, it can attempt to target too large a number of cells which also makes the remeshing step of the adapta-
tion routine very inefficient.

Finally, the decreasing threshold approach has been proposed in order to combine the advantages of the
two previous methods. As in the fixed fraction strategy, a constant number of cells is first targeted. This
enables the identification of the outliers and lower the output error by refining the elements contributing the
most to the error in the first steps. Once this becomes less effective, the threshold triggering the adaptation
can be moved in order to modify other cells. This prevents the algorithm from indefinitely attempting to
lower the error contribution from certain elements which are insensitive to refinement or coarsening. [55]

2.5. Mesh adaptation mechanics
Many meshing mechanics have been proposed and used in literature. Various distinctions can be made in
the approach they use and the reasons they are used. The main goal of these methods is to introduce non-
uniformity, which can be achieved through global or local meshing.

Here, a distinction must be made between uniform and isotropic meshes, in opposition to non-uniform
and anisotropic meshes. A uniform mesh is constituted of elements, of the same size throughout such as
in a Cartesian mesh; whereas an isotropic mesh has elements of the same shape whereas the size can be
heterogeneous.

Moreover, a combination of different meshing mechanisms have been used, where the order in which
they were applied was also important [32, 72]. Since this further complicates the ability to compare different
mesh adaptation frameworks, the scope was limited to the study of output-based error estimation on uniform
meshes at different refinement levels.

2.5.1. Global meshing
Among meshing methods, global remeshing approaches have been used extensively throughout literature.
These aim at generating a new mesh which complies to certain criteria at every adaptation iteration. This
is affordable for simple domains but has limited use in more complex domains where the meshing process
produces a non-negligible computational overhead when compared to the cost of solving the primal and/or
dual problem.

Metric-driven meshing Remeshing can be based on a number of metrics or scalar values deduced from the
error indicator field. A popular approach using global metric-driven remeshing is found in the BAMG [35],
MMG [23] and refine-EGADS [33] tools. These make use of two scalars for each element which determine
the meshing process. The determination of these scalars is the main issue in the implementation of this
approach[26]. The first scalar is an indicator of the element’s elongation and the second its orientation.

These scalars are then fed in the meshing algorithms which will use a triangulation method to comply
to these constraints provided in the scalar fields. A disadvantage of this method is that in addition to the
computational overhead of the creation of the mesh characterisation scalar fields, the entire mesh is modified
at each adaptation iteration. However, these meshing methods have the advantage of being highly flexible,
to allow the conservation of the geometry and boundary conditions as well as being able to produce highly
anisotropic meshes.

Higher-dimensional embedding In a method borrowed from the meshing of Computer Aided Design (CAD)
geometries, higher-dimensional embedding has been proposed as an alternative to the other tools presented
above [21, 22]. Making use of an isotropic mesh in the higher dimensional space, projected into the compu-
tational domain, it enables the fast generation of meshes of different refinement levels. The complexity arises
from the choice of higher dimensional space, for instance velocity gradients are proposed by [13–16]. This
leads to similar outcomes to metric-based error estimates albeit at a lower cost due to the reduced meshing
costs for complex problems.
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Figure 2.2: Example of edge refinement

Figure 2.3: Example of edge coarsening

2.5.2. Local meshing methods
To avoid remeshing the computational domain at every adaptation iteration, local meshing methods have
also been proposed. The first approach consists of evaluating the adaptation parameter at one or a few neigh-
bouring cells with the goal of equidistributing the error indicator locally. The second consists of removing the
element or group of elements and to locally remesh the newly empty space, referred to as a cavity.

Local methods Local mesh methods have been preferred historically since they produce little computa-
tional overhead and are similar to the approach an engineer would perform when reacting to the error sen-
sor. Local methods can be split into three categories: h-adaptation, change of nodal connectivity and the
r-adaptation [32]. p-adaptation can be singled out as being specific to finite element methods and changes
the polynomial order the element used to describe the solution locally.

h-adaptation refers to both refinement or the coarsening of elements. Examples of refinement and coars-
ening can be found in Figure 2.2 and Figure 2.3 respectively. Special attention should be given to edges where
boundary conditions are applied in order to ensure the problem remains well-defined. The most common
example found of this method is applied to Cartesian meshes under the names of quadtree in 2D and octree
in 3D.

In the case of a change in nodal connectivity, elements are concatenated and assembled differently. Cri-
terion have been proposed to drive the application of this method such as the Heron formula proposed in
[32]. The risk with this method is that in a non-Euclidean metric, the resulting elements could have a nega-
tive shape criterion. The topology of the elements must also be checked to ensure that the resulting elements
do not hinder the ability to solve the primal problem. An example of an edge swapping is given in Figure 2.4.

Finally, r-adaptation can be performed in a few ways. The method illustrated in Figure 2.5 makes the
analogy of the edges being a network of springs whose stiffness can be changed in order to move the centre
node and as such introduce anisotropy.[6]

Local remeshing-cavity method The last local operation explored in this section is the use of the cavity
method. In this approach, the elements in the vicinity of the elements identified by the adaptation parameter
are removed. The created cavity is then remeshed automatically either through the use of a Delaunay trian-
gulation, an advancing front or neural network. This method is a compromise between the global meshing

Figure 2.4: Example of edge swapping
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Figure 2.5: Example of r-adaptation

Figure 2.6: Example of a cut-cell

and the local methods and has not been documented extensively. [14, 61, 63]

2.5.3. Cut-cell methods
Cut-cell methods aim at conserving accurate geometrical modelling by using the description of the geometry
to shape the neighbouring elements by cutting them as shown in Figure 2.6. The advantage is that the geome-
try is conserved and limits some of the workarounds which need to be made around the boundary conditions.
However, it introduces other problems related to the creation of negative volume and self-intersecting cells.
This approach is mostly used in Fluid-Structure Interaction (FSI) problems but has shown the ability to pro-
duce good results in mesh adaptation problems, in particular for elements of geometry with large curvature.
[80]

2.6. Synthesis and research direction
This chapter details the current state-of-the-art in mesh adaptation with the current developments observed
and used in order to formulate the thesis from the opening chapter. The identification of a need for cheap
and accurate output-based error estimation for unsteady problems is the main argument for the proposal to
introduce SRNN. However, it is important to integrate the proposed method in its context of mesh adaptation
from the prototyping and implementation stages. For instance, in the analysis of the output error and the
error indicators, the potential consequences on the mesh adaptation strategy and remeshing methods should
be considered.

Since the SRNN is designed to reconstruct the fine adjoint from a coarse adjoint solution, the adaptation
parameter is here defined as the element output error estimate contribution. However, it is likely that the
reconstruction of the adjoint can lead to inaccuracies, in particular in regions near boundaries where certain
flow variables can be prescribed. For this reason, large outliers can be expected. This prevents the use of the
fixed fraction adaptation strategy, since it is then likely that the same elements are refined, not based on their
exact error indicator but based on the inaccurate reconstruction.

Constant threshold or decreasing threshold would be more relevant as this would enable the adaptation
of a larger range of elements, on top of the outliers. This is most likely to successfully lead to a reduction in
output error.

Due to the nature of SRNN, it is expected that h-adaptation is also the most effective mesh adaptation
mechanic. This results from the inability of ANN to represent higher order polynomial elements as would
p-adaptation would require. Moreover, the ANN can make use of structured data in order to facilitate the
training process [82]. This makes the proposed approach compatible with local remeshing methods, and
the combination with cut-cell methods, would enable both geometric fidelity and the conservation of the
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data structure. This helps formulate the future work to be conducted in order to fully integrate the method
proposed in this thesis in a mesh adaptation procedure.





3
Output-based Error Estimation:

Description and Limitations

This chapter explores in greater depth the definition and implementation of output-based error estimation
methods. Section section 3.1 describes the derivation of the error estimate as well as the corresponding error
indicators while section 3.2 describes in greater detail the origin of the limitations of the current implemen-
tations of the output-based error estimators.

3.1. Output-based error estimation
Output-based error estimation relies on the evaluation of the output sensitivity to the numerical solution of
the CFD problem, also referred to as the primal problem. This is obtained through the solution of the ad-
joint problem to the CFD problem. Various review papers explore this adjoint problem and its mathematical
properties in more depth, see [3, 6, 28, 38] to name a few.

3.1.1. Output error
This thesis employs the continuous adjoint for output-based error estimation, and this section will explore
the derivation used to obtain the adjoint set of equations from the primal CFD problem. The derivation
follows the steps detailed in [38]. The discrete adjoint method will solely be mentioned here as being an alter-
native which relies on the analysis of the sensitivity of the discretised primal problem to the design variables
[27, 54, 74].

The derivation of the continuous adjoint equation starts with the definition of the continuous residual
r (u), which is equal to zero when the primal Partial Differential Equation (PDE) is satisfied. This leads to the
relation in Equation 3.1.

r(u) = Lu− f (3.1)

The adjoint operator L∗ is defined as the relation between the primal operator and an adjoint set of solu-
tions Ψ through the relation (Lu,Ψ) = (L∗Ψ,u). The adjoint solution can then defined as the sensitivity of a
chosen output J (u) with respect to an infinitesimal perturbation in the primal residual requiring:

J ′(δu) =
∫
Ω
ΨT r′(δu)dΩ , ∀δu (3.2)

Equation 3.2 is referred to as the generalised form of the continuous adjoint equation. Deriving the primal
residual sensitivity r′(δu), substituting in Equation 3.2 and performing the integration by parts of each term
of the primal PDE enables the derivation of the adjoint operator L∗. The boundary conditions are then de-
termined by associating the various known boundary conditions from the primal problem to the boundary
condition terms obtained through integration by parts.

13
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This thesis also considers non-linear problems. For these, the relation Equation 3.2 must be modified to
evaluate the sensitivity of the primal residual sensitivity linearised about a given state u0. This is written as:

J ′[u0](δu) =
∫
Ω
ΨT r′[u0](δu)dΩ , ∀δu (3.3)

Unsteady problems include time variation in both the integral of the change in output and the residual.
Due to the discrete time-stepping scheme used here and the application to both finite-volume and finite-
element methods, all of the time integrals of the change in output will be approximated using the discretised
sum.

The derivation for the error estimation can be found in [38] and results in Equation 3.4, which can be
approximated using Equation 3.5 with uH

h being the coarse solution injected into the fine space.

δJest = Jh(uh)− JH (uH ) (3.4)

δJ ≈ δJest =−
∫
Ω
ΨT

h Rh(uH
h )dΩ (3.5)

Equation 3.5 is referred to as the adjoint-weighted residual approach since the non-zero residual induced by
the truncation error is weighted by the adjoint solution. It must be noted that for non-linear problems, a
linearisation error is introduced, of order O (δu2). This also means that non-linear problems can be far more
sensitive to under-resolved solutions of the primal, since this linearisation error can dominate when δu2 is
large enough.

All the methods tested in this thesis attempt to approximate Equation 3.5 by alleviating the need to solve
the adjoint in the fine space through the use of various prolongation operators aiming at projecting the solu-
tion on a coarse space into a fine space.

A common approach when using these prolongation operators is to expand Equation 3.5 into two terms:
the computable error and the remaining error. This is shown in Equation 3.6. [31]

δJest︸ ︷︷ ︸
Error

≈−
∫
Ω

(ΨH
h )T Rh(uH

h )dΩ︸ ︷︷ ︸
Computable Error

+
∫
Ω

(ΨH
h −Ψh)T Rh(uH

h )dΩ︸ ︷︷ ︸
Remaining Error

(3.6)

The remaining error term can also be formulated with respect to the adjoint residual as per [71] and shown
in Equation 3.7.

δJest︸ ︷︷ ︸
Error

≈−
∫
Ω

(ΨH
h )T Rh(uH

h )dΩ︸ ︷︷ ︸
Computable Error

+
∫
Ω

(RΨh (ΨH
h )T (uh −uH

h )dΩ︸ ︷︷ ︸
Remaining Error

(3.7)

Finally, a linear combination of both previous formulations can be used. This is found in [28].

3.1.2. Adaptation Parameter
The output error having been estimated, it is necessary to localise the error contribution. This arises naturally
from the discrete integration of Equation 3.5. In Equation 3.8, NH is the number of coarse elements, N k

e is the
number of fine elements comprised in the coarse element. The adjoint-weighted residual is thus integrated
over each fine element and the sum over each element results in the output error estimate.

εk =
N k

e∑
e=1

−
∫
Ωe

ΨT
h,e Rh,e (uH

h )dΩe

δJest ≈
NH∑
k=1

εk

(3.8)

The local error indicator, in the fine space, is then taken to be:

εe =
∣∣∣∫
Ωe

ΨT
h,e Rh,e (uH

h )dΩe

∣∣∣ (3.9)
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The coarse space error indicator can be obtained by summing the fine space error indicators for all the
fine space elements inside the coarse element. Similar to the construction of the error indicators εk in the
coarse space, error indicators can be constructed using the various decompositions of the output error into
computable error and remaining error. They are referred to in this thesis as the primal residual form and the
adjoint residual form. The former requires fewer operations since the primal residual can be reused from
the computable error term. On the contrary, the latter requires the additional construction of the fine space
adjoint system for the evaluation of the fine space adjoint residual.

However, the adjoint residual error indicator, as shown in Equation 3.12, has been shown to be more
robust, even more so when used in a linear combination with the primal residual form as in Equation 3.10.
Fidkowski and Darmofal [28] indicate that while the computable error could be used as an error indicator
itself, it performs poorly, whereas the remaining error converges at a higher order rate. In practice, and in
particular for finite volume applications, it is chosen to adapt on the remaining error, using the formulation
from [55] in Equation 3.11, despite having to include the computable error in the evaluation of the output
error. [80]

εe = 1

2

∣∣∣∫
Ωe

(ΨH
h −Ψh)T Rh(uH

h )dΩe

∣∣∣+ 1

2

∣∣∣∫
Ωe

RΨh (ΨH
h )T (uh −uH

h )dΩe

∣∣∣ (3.10)

εe =
∣∣∣∫
Ωe

(ΨH
h −Ψh)T Rh(uH

h )dΩe

∣∣∣ (3.11)

εe =
∣∣∣∫
Ωe

RΨh (ΨH
h )T (uh −uH

h )dΩe

∣∣∣ (3.12)

3.2. Limitations of output-based error estimation
From the formulations of the output error and error indicators above, a few limitations are observed. Since
the cost of solving either the adjoint or the primal on a fine space is too large, the remaining error in the out-
put error formulation must be approximated. This, in practice, is achieved through the use of prolongation
operators, whose goal is to reconstruct the fine space variable using an interpolation of the coarse variable
onto the fine space. Venditti and Darmofal [71] propose the use of the difference between a (tri-)quadratic
projection and a (tri-)linear projection, Equation 3.13, whereas Nemec et al.[55] propose the use of the differ-
ence between a linear projection and a constant value projection, Equation 3.14.

εQ =
∣∣∣∫
Ωe

(ΨT Q −ΨT L)T Rh(uL)dΩe

∣∣∣ (3.13)

εL =
∣∣∣∫
Ωe

(ΨL −ΨC )T Rh(uL)dΩe

∣∣∣ (3.14)

Due to these approximations, the performance of the error estimator in both the output error and the er-
ror indicator is hindered. Moreover, these operations, in particular the least-squares reconstruction of the
quadratic interpolation, make use of a smoothness assumption which is not valid near discontinuities, a
particular area of interest for mesh adaptation in CFD. The physical meaning of the solution is also not guar-
anteed. Finally, the least-squares problem can become ill-posed which further limits the generality of this
approach.

A method aimed at addressing these issues is the use of a few iterations on the coarse adjoint solution
injected into the fine space. This usually ensures the physicality of the solution while avoiding the full solution
of the adjoint in the fine space[28]. However, this comes at the computational cost of having to evaluate and
iterate functions in the fine space, which can be prohibitive.

An issue raised briefly in the preceding section is the potential instability of the adjoint equation. This
stems from the apparition of a term which represents the convection of the adjoint field with the primal field.
This results in a weak coupling of the adjoint and its derivative which can resonate and lead to the oscillation
and divergence of the solution, as well as physical viscosity being destabilising backwards in time. Various
approaches have been considered [36, 37, 51], however, they rely on the introduction of additional dissipation
in order to curb the growth of the sources of instability. This dissipation can either be formulated in a similar
manner to a turbulence model, in a stabilisation term, or through the introduction of additional numerical
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dissipation. The latter prevents the accurate reconstruction of sharp gradient and led to sub-optimal output-
based error estimation [37].

The chosen approach in this thesis consists in identifying the precise sources of instability in the Adjoint
Transpose Convection (ATC) term and to dampen them [37]. These terms ensure that the ATC remains di-
agonally dominant and unconditionally stable based on an eigenvalue analysis. Moreover, the higher order
discretisation schemes can be used in these regions of turbulence generation, instead of resorting to lower
order more dissipative discretisation schemes.

Finally, since the solution of the unsteady adjoint problem is backwards in time, the storage of the primal
solution at every time-step is required. In practice this is achieved in two ways, either the primal is solved
in batches which are recalled when the primal information is required for the solution of the adjoint, or a
checkpoint method is used.

3.3. Proposed method
The method proposed in this thesis revolves around the reconstruction of the fine adjoint solution Ψh from
a coarse adjoint solution ΨH , which is solved numerically. The fine adjoint definition used in this thesis is
the solution of the adjoint solution on a mesh whose refinement corresponds to the super-resolution factor
of the SRNN. For example, the fine adjoint solution for a 2x SRNN is the adjoint solution in a once uniformly
refined coarse mesh. This definition is consistently applied to the reference output error estimates.

The reconstructed fine adjoint is substituted in Equation 3.5 in order to create the adjoint-based error
estimate:

δJSRN N =−
∫
Ω
ΨT

N N Rh(uH
h )dΩ (3.15)

The error indicators are then defined in a similar manner as in the preceding section by taking the local
integral of the adjoint-weighted residual over a coarse element e.

εN N ,e =
∣∣∣∫
Ωe

ΨT
N N ,e Rh,e (uH

h )dΩe

∣∣∣ (3.16)

Based on this last relation, one can see that the computational cost savings would be significant compared
to the solution of the fine adjoint. However, compared to the practical implementations of the fine adjoint,
the cost savings would be lower. The proposed method would outperform the state-of-the-art implementa-
tions in its accuracy of the reconstruction of the fine adjoint solution.

It is also possible to predict an increase in the computational cost of the output-based error estimate when
using higher up-sampling factors. The error estimate require the evaluation of the error indicators on a finer
mesh for higher up-sampling factors, resulting in a larger number of error indicators to evaluate. Moreover,
SRNN decreases in accuracy with larger up-sampling factors, resulting in a double penalty when using too
high up-sampling factors. This will be analysed in the following chapter, where the impact of the refined
space choice will be quantified during the validation of the output-based error estimates.



4
Validation of the Reference Error

Estimators

This chapter presents various cases used to validate the implementation of the reference output error estima-
tion methods. This chapter is given particular attention since it came to light that, despite the many attempts
in the implementation of the reference error estimators, peculiarities in the chosen problem solving environ-
ment led to undesired behaviours. The test cases in chapter 5 and 6 will introduce the use of SRNN for the
adjoint-based error estimation.

The chosen problem solving environment is FEniCS1. Its high-level interface in both python and C++
makes it very attractive for the prototyping of numerical tools. Particular attention should be given to the
interpolation between function spaces of different polynomial orders, which is not accurate in the release
used (2019.1) and prevented the comparison of p-refined and h-refined fine adjoint solutions.

A particularity of the implementation relies on the method used to evaluate the strong residual since it is
not trivial in FEniCS. Each derivative had to be projected back to the source function space in order to main-
tain continuity over the element faces. Not resorting to this additional projection led to FEniCS attempting to
evaluate the gradient at the element faces which is inherently ill-defined for discontinuous elements function
spaces obtained when the gradient of a piece-wise continuous function is considered for instance.

The validation of the error estimation method centres about the use of the Method of Manufactured So-
lution (MMS) for systems of PDE. This approach takes the reverse approach to the solution of equations in
order to evaluate the accuracy of a numerical solver, by prescibing a solution and finding the correspond-
ing PDE. Here, two cases, both one-dimensional, are presented for the validation of the method, as well as a
third, two-dimensional, used as verification for the generalisation to more complex and higher dimensional
solutions. [17, 45, 56, 66]

The first test is the solution of the Poisson equation, also known as the Laplace equation. This equation is
used to model diffusive systems, as such it is found in the modelling of the diffusion of heat within materials
or the diffusion of kinetic energy to heat in viscous flows. It is one of the components of the Navier-Stokes
equations, hence its use here.

The second system used for the validation of the method is the steady Burgers’ equation. It is constructed
using both the diffusion term of the Poisson equation as well as an additional non-linear advection term. This
deceptively simple equation can be used in its unsteady form to model the propagation of discontinuities,
such as shockwaves, in viscous flows.

Finally, a two-dimensional scalar advection-diffusion equation, from [18], is used. This type of equation
is used to model the transport of dissipation of a variable in a flow. For instance, it is the most simple model
used for the transport and dissipation of pollution in the atmosphere [43]. This more complex problem also
enables the identification of the first limitations of the reference error estimator implementations and justi-
fies certain choices made in the analysis of the proposed method.

1https://fenicsproject.org/
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4.1. Poisson equation - Manufactured solution
The 1D Poisson equation is used here to study the accuracy of the implemented method as well as to help
determine the most effective test cases to be used in the evaluation of super-resolved adjoint-based error
estimation. The Poisson equation (Equation 4.1) is defined ∀x ∈ [0,1]. The chosen manufactured solution
is u(x) = si n2(2πx). This enables the derivation of the required forcing term, f , on the right-hand side of
Equation 4.1 as f = 8π2

[
si n2(2πx)− cos2(2πx)

]
. Finally, Dirichlet boundary conditions are applied as ul e f t =

si n2(2π0) = 0 and ur i g ht = si n2(2π1) = 0.

− ∂2u

∂x2 = f (4.1)

For the use of an output error estimator, the output must also be chosen. Here J = ∫
ΩudΩwas used. The

exact error can then be evaluated and is computed to be Jexact = 0.5. This enables the computation of the
exact numerical error in the output as well as the error in the error estimation.

The error estimator used here is the exact form of the fine space adjoint-weighted residual estimator as
presented in the previous chapter and given in Equation 4.2. This equation takes the fine space solution
of the adjoint, as indicated by the subscript h, and multiplies it with the strong primal residual in the fine
space of the coarse primal solution projected into the fine space, represented by the notation (·)H

h . In order to
evaluate the accuracy of the implementation, the actual fine space adjoint was computed. This is not done
in practice since it would require the solution of the fine space primal, meaning that the fine space QoI could
be computed directly as well as the exact local error contributions.

δJ ≈ δJest =−ΨT
h Rh(uH

h ) (4.2)

In order to compute the adjoint solution, the adjoint PDE must be derived. Following the approach docu-
mented in the preceding chapter, the sensitivity of the residual of Equation 4.1 to an arbitrary infinitesimal
perturbation δu is derived:

r ′(δu) =−∂
2(δu)

∂x2

Using this equation to express the relation between this sensitivity and the sensitivity of the QoI, found in
Equation 3.3 and integrating by parts leads to Equation 4.3. This equation is defined for all x ∈ [0,1] with
homogeneous boundary conditions.

− ∂2Ψ

∂x2 = d J

du
= 1 (4.3)

Finally, the validation relies on the analysis of the error estimator with respect to two main parameters: the
choice of the discrete elements used for the numerical solution and the choice of the fine function space. As
described in the introduction of this chapter, only h-refinement was used.

Element choice The first parameter which was analysed was the choice of finite element family. Here,
two types were compared: piece-wise continuous quadratic and cubic elements, denoted from now on as
quadratic and cubic respectively. These are the two most simple elements that allow the direct evaluation of
r (u).

Approximation of the fine space adjoint Since the proposed method will rely on the use of SRNN to recon-
struct the fine space adjoint from the coarse space solution, it must be considered that higher-order elements
cannot be used in this reconstruction step since only the value at the vertices of the mesh are considered by
the SRNN. For this reason, the fine space adjoint must be projected into a piece-wise continuous linear func-
tion space. This enables the impact of using lower order approximations of the fine adjoint to be evaluated.
The fine adjoint was computed using the same quadratic and cubic elements, before being projected down
to a piece-wise continuous linear space for fine meshes twice and four times finer than the coarse mesh,
referred to as 2x and 4x.
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Figure 4.1: Error in output error estimation vs element polynomial order for the Poisson MMS. L2 denotes quadratic elements and L3
cubic.

The results of the error in output error for the quadratic and cubic elements is presented in Figure 4.1.
For both families of elements, one can observe that the output error is well predicted across all ranges of
refinement of the coarse mesh. This does not come as a surprise since the problem is smooth, without dis-
continuities, and can be well approximated using both p- and h-refinement, although only the latter is shown
here. Note, the convergence rate of the error estimate is the same for both polynomial orders. This would not
necessarily be expected.

Figure 4.2 shows the impact of projecting the cubic and quadratic elements into linear elements onto the
error in output error estimate. This figure highlights the increase in accuracy gained by the use of a finer
adjoint mesh. For quadratic elements, an increase in accuracy of the output error estimation of nearly two
orders of magnitude is achieved. For cubic elements, the increase in accuracy is less notable for otherwise
well resolved adjoint solutions. However, the convergence rate of the output error estimation accuracy is far
higher, when the last point is considered, for the adjoint-based error estimate using the cubic elements. Since
this behaviour is not observed for the range of uniform refinement levels considered, this would indicate
that the impact of using the linear projected adjoint solution affects primarily the cubic elements’ ability to
accurately estimate the output error.

4.2. Burgers’ equation - Manufactured solution
The one-dimensional Burgers’ equation used for this problem is found in Equation 4.4. The manufactured
solution considered in this case is u(x) = 0.5+ si n(x) for all x ∈ [0,5]. This leads to the derivation of the
boundary conditions u(0) = 0.5 and u(5) = 0.5+ si n(5) as well as the forcing term f = 0.5 · cos(x)+ cos(x) ·
si n(x)+ si n(x). The considered QoI is the same J = ∫

ΩudΩwhich leads to Jexact = 3.5− cos(5)

u
∂u

∂x
− ∂2u

∂x2 = f (4.4)

The same steps are followed in order to derive the adjoint system of equations. First, the residual sen-
sitivity is derived in Equation 4.5. Since the Burgers’ equation is non-linear, the residual must be linearised
about a chosen primal solution u0, here the steady primal solution. This is then substituted in Equation 3.3
and integrated by parts, leading to the adjoint PDE Equation 4.6. It must be reminded that the error estimator
is less precise for non-linear problems since the linearisation of the adjoint leads to Equation 4.2 being also
linearised and leads to a truncation error of O (δu2).

r ′[u0](δu) = u0
∂(δu)

∂x
+δu

∂u0

∂x
− ∂2(δu)

∂x2 (4.5)



20 4. Validation of the Reference Error Estimators

Figure 4.2: Error in output error estimation vs adjoint resolution for the Poisson MMS for solutions projected to linear elements. L2
denotes quadratic elements and L3 cubic.

Ψ
∂u0

∂x
−u0

∂Ψ

∂x
− ∂2Ψ

∂x2 = 1 (4.6)

The same approach is considered as with the Poisson equation. Figure 4.3 shows the rate of accuracy
change for both quadratic and cubic elements for twice and four times finer meshes of the adjoint solution.
Unlike the previous validation, the error in output error estimation is no longer linear, which may be due to
the error introduced in the linearisation of the adjoint equation. However, one can observe that the rate of
increase in accuracy for cubic elements converges to the ideal rate as per the Poisson validation case. This
rate is not achieved for the 2nd order polynomial elements although their results are more monotonous.

Finally, the use of four time finer adjoint space is not as significant in the increase in accuracy. It does
enable the cubic elements to have a more monotonous increase in accuracy across various uniform refine-
ment levels but the actual accuracy is comparable. For the quadratic elements, one can observe an increase
in accuracy of about half an order of magnitude. If one takes into account the increase in computational cost
induced by using such a refined space, its level of refinement is not justified.

Approximation of the fine space adjoint When the adjoint solution is projected as a piece-wise continuous
linear function the consequences are different. This is shown in Figure 4.4. Similarly to the Poisson problem,
the quadratic elements seem to benefit far more from the additional refinement in the adjoint solution. More-
over, the additional performance in accuracy given by the finer adjoint solution also results in the quadratic
elements being able to outperform higher-order polynomial elements.

This highlights the importance of the ability of the proposed method to reconstruct the fine space adjoint
for low order elements. If the SRNN is able to reconstruct the fine adjoint accurately, it can be expected to
greatly improve the error estimation and as a result lead to a computationally inexpensive output error esti-
mation method. Since it has been shown that the primal can be reconstructed accurately for turbulent primal
flows for up to 8x finer resolution, it is possible to imagine that the adjoint can be reconstructed accurately for
at least two to four times finer resolution. This would enable the solution of the adjoint on the same mesh as
the primal or even coarser, provided it is sufficiently resolved. This is confirmed by figures 4.3 and 4.4. These
figures indicate that the implemented reference output-based error estimates are able to converge to the true
output. However, the linearisation of the fine adjoint solution seems to hinder the ability of cubic elements
to gain accuracy in their error estimate whereas lower order elements gain significant accuracy.
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Figure 4.3: Error in output error estimation vs element polynomial order for the Burgers’ equation MMS. L2 denotes quadratic elements
and L3 cubic.

Figure 4.4: Error in output error estimation vs adjoint resolution for the Burgers’ equation MMS for for solutions projected to linear
elements. L2 denotes quadratic elements and L3 cubic.
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Figure 4.5: Primal solution for the verification scalar advection-diffusion problem for ν= 0.1 and α= 30deg

4.3. Scalar advection-diffusion - Verification
The scalar advection-diffusion problem chosen for verification and further investigation of the adjoint-weighted
residual error estimate implementation. The case is described in [17]. This problem was used to explore dif-
ferent types of QoI: integrals over boundaries and integrals over a domain. It also allowed the evaluation of the
method in a 2D test case. The primal PDE is given in Equation 4.7. It is defined for all x, y ∈ [0,1]2 with chosen
boundary conditions satisfying u(x, y) = exp

(
0.5si n(−4x +6y)−0.8cos(3x −8y)

)
. The two parameters of the

PDE are chosen such that they can be described by two variables, as such the convection is described by a
vector of unit length at angleα= 30 from the x-axis, and the kinematic viscosity nu = 0.1. The primal solution
is shown in Figure 4.5.

v ·∇u −ν∇2u = 0 (4.7)

In [17], the chosen QoI is the integral of the flux −ν∇u over the right boundary, x = 1. This is compared
here to the QoI related to the resolution of the field J = ∫

ΩudΩ. The approximated exact QoI for the flux
integral and the integral of u are −0.152503 and 1.143833, respectively.

This leads to different continuous adjoint problems, both being described by Equation 4.8. The flux in-
tegral, on the one hand, leads to non-homogeneous boundary conditions. The right boundary condition is
u(1, y) =−1 and the rest are 0 with a forcing term f = 0.

On the other hand, the domain integral QoI leads to homogeneous boundary conditions and f = 1. The
two different adjoint solutions are shown in Figure 4.6.

−v ·∇Ψ−ν∇2Ψ= f (4.8)

Since it was seen that cubic elements do not lead to a significant increase in error estimator accuracy using
the implemented adjoint-weighted residual method, the quadratic elements were chosen here. Moreover,
the grid converged value is obtained for a fine primal solution of 3202 elements, as in [17]. In Figure 4.7,
one can observe that for this particular boundary integral QoI, the output error estimate is unable to reach
an accuracy below 10−6. This could originate in the inability of quadratic elements to capture the change of
behaviour near the wall properly. This may be a result of the adjoint boundary conditions, where the right side
corners are singularities since they are both defined to be 0 from one side and 1 from the other. Moreover,
when looking at the location of the cell indicators in Figure 4.8, it is apparent that they are dominated by
near-boundary cells.

This does not occur with the domain integral QoI, as shown in Figure 4.9. The cell indicators are located
near the boundaries too but also throughout the computational domain. This means that the reconstruction
of the adjoint in the field is more important than simply near the boundary as per the flux integral.

This also helps highlight that since the reconstruction of the adjoint near boundaries is expected to be
difficult near boundaries, the proposed method may have difficulty being compatible with boundary integral
QoIs. However, for laminar flows such as the one considered in chapter 6, the near wall region can be accu-
rately reconstructed by a shear layer. Thus, using a priori understanding of the test case would still enable
the use of boundary integral QoIs with the proposed method, but may require the use of other reconstruction
methods to help the SRNN in the fine adjoint reconstruction task.

Finally, from this verification case, it was possible to identify that domain integral QoIs, are more sensitive
to the implementation of the adjoint-weighted residual method. As a result, such QoIs will be pursued in
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(a) Adjoint solution of the advection-diffusion verification problem for the
boundary integral QoI

(b) Adjoint solution of the advection-diffusion problem for the domain inte-
gral QoI

Figure 4.6: Comparison of the flux integral adjoint solution and domain integral adjoint solution for the verification advection-diffusion
problem

Figure 4.7: Comparison of the accuracy of the output error estimation for the boundary and domain integral QoIs

Figure 4.8: Error indicator location and distribution of the advection-diffusion problem for the boundary integral QoI
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Figure 4.9: Error indicator location and distribution of the advection-diffusion problem for the domain integral QoI

the test cases in the following chapters. Moreover, quadratic elements will be chosen for the discretisation
since they seemed to be the most respond the best to the finer space adjoint, an area in which the proposed
method could perform well, and since the additional computational cost of using higher-order elements here
seems unjustified. In the context of the Navier-Stokes equations, this enables the use of the well-documented
Taylor-Hood elements, which are low order and relatively cheap unconditionally stable elements for the so-
lution of the Navier-Stokes equations.



5
SRNN Adjoint Enrichment: Unsteady 1D

Burgers’ Equation

Building on the experience gained in the steady form of the Burgers’ equation in the previous chapter, the
unsteady Burgers’ equation is considered here. Moreover, a time averaged integrated in both space and time
QoI adds to the complexity of the case.

First the fluid equations are presented. This section present both the primal and adjoint equations as well
as the discretisation choices which have been made. Section 5.2 then presents the chosen test case. The re-
sults of the reference output-based error estimates are then documented in section 5.3. The implementation
of the proposed super-resolution output-based error estimate is presented in the following section, an as-
sessed in section 5.5. Finally, a computational cost metric for the output-based error estimates is proposed
and subsequently analysed in the closing section of this chapter.

5.1. Fluid equations
As mentioned in the introduction of this chapter, the one-dimensional unsteady Burgers’ equation is con-
sidered. The equation, expressed as Equation 5.1 defined for all x on the range 0 to 1. The solution u hav-
ing boundary conditions u(0, t ) = u(1, t ) = 0 and forcing term f . It is the most simple example of a nonlin-
ear unsteady viscous equation and is used throughout literature, notably for the evaluation of discretisation
schemes. [4, 56, 59]

∂u

∂t
+u

∂u

∂x
−ν∂

2u

∂x2 = f (5.1)

Following the approach described in the previous chapter to obtain the adjoint equation, one must de-
rive r ′[u0](u), shown in Equation 5.2 and equate it to the QoI dependent term on the left-hand side of Equa-
tion 3.2. The second and third terms in Equation 5.2 results from the product rule to the u ∂u

∂x term in the
primal equation. The time derivative produces a term similar to the convection term.

r ′[u0](u) = ∂δu

∂t
+u0

∂(δu)

∂x
+δu

∂u0

∂x
−ν∂

2(δu)

∂x2 (5.2)

This results in the following adjoint equation:

− ∂Ψ

∂t
−u

∂Ψ

∂x
+Ψ∂u

∂x
−ν∂

2Ψ

∂x2 = d J

du
(5.3)

For the implementation in FEniCS, the equation is expressed in its weak form, obtained by multiplying by
a test function of the function space V which is equivalent to the solution space. Integrating by parts and
rearranging yields Equation 5.4. In this relation, it is assumed that there are essential boundary conditions
forΨ.

− (
∂Ψ

∂t
, v)− (u

∂Ψ

∂x
, v)− (Ψ

∂u

∂x
, v)+ν(

∂Ψ

∂x
,
∂v

∂x
)− (

d J

du
, v) = 0 (5.4)
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The problem is discretised using piece-wise quadratic elements. The performance of the output-based
error estimates is compared using uniformly refined meshes, in the absence of a mesh adaptation routine.
Since the problem is one-dimensional, the growth of the Degrees of Freedom (DoF) due to the refinement is
much less than in practical cases. In one dimensional problems the increase in number of DoF is linear. In
realistic three-dimensional time-dependent problems, the curse of dimensionality leads to the exponential
growth in the number of DoF per refinement level and the inability to uniformly refine the mesh.

However, this simplified case allows for the analysis of the accuracy of the reference error estimators and
comparisons to the proposed implementations of SRNN aiming at reconstructing the fine space adjoint Ψh

from the coarse space adjoint ΨH in order to compute the exact value of the output error estimate from
Equation 3.5.

In FEniCS a wide range of solvers are available. For non-linear problems, such as the primal problem,
a SNES or Newton iterator can be chosen and many Krylov solvers are available. The chosen combination
of solver and preconditioner used in this thesis was MUMPS and BT respectively. Although this is a direct
solver, it was observed to be more stable for the coupled approach taken here. Additionally, the added com-
putational cost and issues in efficiencies arising from the use of direct solvers were not observed for small
scales problems such as the ones studied here.

5.2. Case presentation
To simplify the interpretation of the results, the method of manufactured solutions was used. The solution of
this problem was computed on an interval [0,1], Re = 100 and no-slip boundary conditions on both ends of
the interval, and initialised with a zero field. The chosen manufactured solution is u(x, t ) = si n2(πt ) · si n(πx)
[45]. This allows for the simple derivation of the source term for the primal problem and the adjoint problem.
The QoI is J̄ = 1

T (si n(πx),u)Ω,I , with the brackets representing the integrated inner product. The primal is
solved from T = 0 to T = 20 seconds. The averaging period is taken from T = 10s to T = 20s. The true value
of the QoI is thus J̄ = 0.25. The advantage of this QoI is the weighing of the solution near the centre of the
computational domain which lessens the contribution of the error of the near-boundary elements in the
computation of the adjoint, and as a result in the error estimation.

The adjoint solution is solved backwards in time, with zero final conditions prescribed at T = 20s and ho-
mogeneous Dirichlet boundary conditions. The adjoint solution is computed from T = 20 to T = 10 seconds.
The forcing term in this problem was obtained by evaluating a Frechet derivative of the objective function.
This is obtained by computing the sensitivity of the objective function to a perturbation in the solution as
shown in Equation 5.5. Whereas boundary integral QoIs are related to the adjoint problem through the ap-
plication of boundary conditions, domain integral QoIs introduce a forcing term in the adjoint equation.

(gu , ũ) := lim
ε→0

J (u +εũ)− J (u)

ε
, ∀u, ũ ∈ V (5.5)

The QoI was chosen to evaluate the discrepancy between the chosen manufactured solution and the dis-
crete solution obtained. However, being time-averaged, it is necessary to ensure that the temporal discreti-
sation does not introduce errors in the output. In order to reduce the error related to temporal discretisation,
a time-step of d t = 0.001 seconds was used [45]. This enables to make the assumption that the output error
stems from the spatial discretisation and as such only focus on this variable. The problem was discretised
spatially using the piece-wise continuous quadratic elements. The various refinement levels used for com-
parisons, are obtained through the uniform refinement of the interval [0,1].

5.3. Reference error estimator performance
First, the performance of the reference output error estimators is evaluated in order to determine the base-
line performance of best practices. The error estimators are thus presented and there relative performance
evaluated in this section.

5.3.1. State-of-the-art error estimators
Three error estimation methods were considered. For all three chosen approaches, the fine space informa-

tion was determined, solving for the actual fine space adjoint problem. In practice this would not be possible
due to the associated computational cost, but it does enable the comparison of the true output error and the
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full capacity of each formulation of the error estimation. The error estimation methods employed in practice
rely on the approximation of the fine space information and as a result perform less accurately.

The first error estimation method consists of computing Equation 3.5 directly, relating the output error to
the solution of the fine space adjoint through a method known as the adjoint-weighted residual. It is referred
to here as the fine space adjoint error estimation:

δJest ≈−
∫
Ω
ΨT

h Rh(uH
h )dΩ

This equation requires the solution of the fine space adjoint, which in turn requires the solution of the fine
space primal. The projection of the coarse space primal solution was performed by evaluating the coarse
solution at every fine space degree of freedom.

The second error estimation method implemented for comparison was the formulation of the error es-
timation providing the decomposition between computable and remaining error as found in Equation 3.6
[72]. This method uses the primal residual for the remaining error, it is referred here to as the primal residual
approach:

δJest︸ ︷︷ ︸
Error

≈−
∫
Ω

(ΨH
h )T Rh(uH

h )dΩ︸ ︷︷ ︸
Computable Error

+
∫
Ω

(ΨH
h −Ψh)T Rh(uH

h )dΩ︸ ︷︷ ︸
Remaining Error

Finally, the last reference error estimation method used here is the second method to compute the remain-
ing error, Equation 3.7. In this error estimation method, the remaining error is computed using the residual of
the coarse space adjoint solution projected in the fine space. This estimator is referred to as the adjoint resid-
ual approach in this report. For this method, the fine primal must be approximated in practice but the real
value was used here in order to compare all the error estimators according to their best theoretical accuracy.
The formulation is repeated here for legibility:

δJest︸ ︷︷ ︸
Error

≈−
∫
Ω

(ΨH
h )T Rh(uH

h )dΩ︸ ︷︷ ︸
Computable Error

+
∫
Ω

(RΨh (ΨH
h )T (uh −uH

h )dΩ︸ ︷︷ ︸
Remaining Error

For all of these output error estimation methods, an additional contribution due to the non-zero value of
the velocity at the starting time of the time averaging, T = 20s, must be added. This is specific to unsteady
problems and is formulated as (Ψh

h ,uH
h −uh)Ω|t=t0 . The fine space adjoint and the primal residual approach

give sensibly the same result when the exact fine adjoint is computed, and as such no difference is expected
to be observed for these two reference error estimators when the fine adjoint solution is used.

5.3.2. Reference output error estimation
The impact of choosing p-refined and h-refined spaces has been well documented in the past, see [41], and
since the FEniCS implementation of the reference output error estimates did not enable to consistently ob-
tain accurate error estimates for the output, it is not pursued here. Nonetheless, the reference error estimates
can be compared.

The use of p-refined fine space leads to a lower computational cost since the increase in the number of
DoF is less significant than the bisection of elements for instance. However, it is not feasible in methods other
than finite element analysis. Most of the CFD is still performed on finite volume codes and as such rely on
the use h-refined spaces. Thus the insights gained here using h-refined adjoints are expected to generalise to
finite volume methods.

In the following, the accuracy of the output error estimates are compared for various uniform mesh refine-
ment levels. Although this is not strictly representative of the behaviour of the error estimation behaviours
in the mesh adaptation process, it is considered to be the best comparison available in the absence of imple-
mentation of a mesh adaptation routine. Moreover, this allows for better interpretation of the performance of
the output-based error estimates since the mesh adaptation procedure would introduce complex dynamics
of cumulative local adaptation. The refinement levels are solely based on h-refinement of quadratic elements
based on the preliminary validation performed in chapter 4.
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(a) Snapshot of the Burger’s equation primal solution at t = 10.5s (b) Snapshot of the Burger’s equation adjoint solution at t = 10.5s

Figure 5.1: Snapshots of the instantaneous primal and adjoint solutions at t = 10.5s for the unsteady Burgers’ equation

Similar to the validation case presented in section 4.2, the flow appears to be well resolved at all mesh
refinement levels, as shown for example in Figure 5.1. However, the performance of the error estimation
methods is disparate, mostly in the coarsely resolved solutions. As expected all reference error estimates are
accurate enough in the reconstruction of the output error leading to increasingly accurate error estimations.
The adjoint residual formulation appears to be far more accurate in reconstructing the error made between
the fine and coarse QoI, as represented by d JH−h , as shown in Figure 5.2.

The true error between the coarse and fine primal solutions is shown in the grey and highlights the su-
perior ability of the adjoint residual remaining error formulation to accurately estimate the output error, in
particular for under-resolved solutions. The fine adjoint and primal residual remaining error formulation
give sensibly the same error estimates due to the fact that in this case the fine adjoint is not estimated but
solved for.

The error in output-based error estimation is presented in Figure 5.3. It can be observed that the accuracy
of the error estimates improves and then levels off. This is attributed to numerical errors and the accumu-
lation of errors added over the thousands of time-steps. This is found to be consistent with the addition of
errors of order of magnitude O (10−16) added about 103 times. The error in output error with respect to the
grid converged value of the QoI indicates the greater accuracy of the adjoint residual formulation. The con-
vergence rate of the error estimate is similar for both methods and for sufficiently fine meshes, near identical.
This highlights the trivial nature of the output error estimation in this test case. The non-linearity of the prob-
lem does not appear to add much complexity to the error estimators’ ability to remain accurate, even at low
refinement levels.

Apart from the levelling off of the output error estimate accuracy, the same behaviour as in the validation
chapter is observed. During the validation, the projection of the fine adjoint solution in a piece-wise con-
tinuous linear function space still enabled the accurate estimation of the output error. Thus, these findings
support the idea that a SRNN would be able to accurately estimate the output error. The proposed method
would require the sufficiently accurate reconstruction of the fine space adjoint solution.

5.4. Machine learning implementation
One of the simplest, yet robust method for primal solution super-resolution is the use of static Convolutional
Neural Networks (CNN). The architecture was inspired by the work of Fukami et al., Liu et al. where it was
applied to 2D primal reconstruction. The architecture is thus duly modified for the 1D problem considered
here. The architecture is shown in Figure 5.4 for a chosen upscale factor of 4. The Fully Convolutional Neural
Network (FCNN) enables the use of inputs and outputs of varying sizes where the amount of reconstructed
information is determined by a chosen upscale factor, here referred to as 2x or 4x for up-scale factors of 2
and 4 respectively. It does mean that separate networks need to be constructed for different upscale factors.
However, the same raw data-set can be used to generate the low resolution and high resolution training pairs.
The particularity of this specific architecture is the use of a PixelShuffle layer in the last layer which aims to
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Figure 5.2: output error estimates for the reference error estimators
for the Burgers’ equation

Figure 5.3: Comparison of the error in output error estimate for the
Burgers’ equation test case with respect to the discrete solution

Figure 5.4: Architecture of the 1D super-resolution neural network

interlace the final result with the depth information of the preceding layer [39, 49].

The training pairs were constructed by extracting random samples of the solution between the time in-
terval T = [10,20], such that both the primal and adjoint states are known. From these samples of differing
resolutions, a fixed interrogation window of 20 elements was sampled, the window is then sub-sampled in or-
der to form a high and low resolution pair. This did not yield a diverse and large enough data-set. It was thus
chosen to sample the higher resolution solutions randomly for the creation of new training pairs. The data-
set was also increased by taking mirrored solutions of the same problem, effectively doubling the number of
pairs and attempting to make the x position independent from the u values. The only positional information
was thus the relative position of data points. The training pairs were chosen to have three channels in input
(x,u,ua) and one channel in output (ua).

The training was done with a learning rate of 0.001 since it was found that beyond this, the training per-
formance would no longer improve and yield unsatisfactory results. The loss function is the same as the pre-
viously mentioned literature, namely the Mean-Square Error (MSE). This has limitations, which are explored
in [48, 68, 83]. These are related to the lack of physical meaning and the inability to evaluate the plausibility
of the flow. However, the MSE is a robust indicator and performs well with the existing machine learning
frameworks and requires little computational overhead.

The simplicity of the problem led to the rapid convergence in training of the SRNN. Beyond 150 epochs,
the convergence of the loss function became chaotic. This can be introduced by a large learning rate, and the
beginning of the model over-fitting the training data. Such an example for the loss function can be seen in
Figure 5.5. The loss function for the 2x super-resolution Convolutional Neural Network (CNN) can be seen in
Figure 5.6.
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Figure 5.5: Example of the impact of over-fitting and high learning rate on the loss function for the 1D Burgers’ equation super-resolution

Figure 5.6: Loss for the training of the 1D 2x CNN
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5.5. Assessment of the proposed method
Two CNN were compared, the first with an upscale factor of 2 and the second 4. The CNN was found to
be able to reconstruct the fine space information from the coarse space primal and adjoint solution. The
only major difference observed was due to the bias introduced in the creation of the training data-set. For
the higher upscale factor, the input used in training was quite small in size (5 cells up-sampled to 20). This
resulted in the network learning to reconstruct only small intervals of the solution. In the learning process,
the network was able to minimise the loss function by effectively reconstructing the entire solution on each
interval of data. This can be seen in Figure 5.7. This leads to a less smooth solution compared to the exact
fine space adjoint. This affects predominantly the higher up-sampling factor SRNN.

In Figure 5.8, one can observe that for low mesh resolution, the method is just as accurate as the reference
error estimation methods in estimating the output error. The main observed difference is the different rate
of change of the output error estimation. Being shallower for the proposed method, it indicates that it is
less accurate for a similar starting primal resolution. Nonetheless, it appears the SRNN is able to reconstruct
a sufficient amount of information of the fine adjoint from the coarse adjoint solution in order to estimate
the output error and as a consequence drive the mesh adaptation process. The only predictable outcome
of implementing this method for this problem would be the requirement for additional mesh adaptation
iterations such that the threshold of output error is achieved.

Finally, it can be noted that the proposed method, using 2x super-sampling for low resolution solutions
at 5 elements is more accurate or on par with the reference error estimators. This is a desired behaviour since
the accurate output error estimation is a notoriously difficult task for under-resolved flows [8, 64] . This is
not observed in the higher super-resolution case due to the inaccurate reconstruction of the fine adjoint,
resulting from a bias induced in the training process.

The error in output error estimation with respect to the grid converged solution is given in Figure 5.9. In
this figure, one can observe that the inaccurate reconstruction of the fine adjoint severely hinders the ability
to estimate the output error accurately. Moreover, the shallower rate of convergence is also observed for the
2 times super-resolution. This indicates that despite the small inaccuracies for finer resolution meshes, the
output error estimate using SRNN is able to improve its output error estimation, albeit at a slower rate than
solving the fine adjoint equations.

It must also be noted that the higher super-resolution factors also induce a higher computational cost
since they require the evaluation of the strong residual and projection of the coarse primal solution in a much
finer space. This increase computational cost is evaluated in the following section.

Finally, the error indicators, or adaptation parameters can be compared for this test case. Here the fine
mesh indicators are shown in figures 5.10 to 5.13. In these figures, one can see that some inaccuracies in the
reconstruction of the adjoint. This greatly affects the ability to estimate the output error accurately. Nonethe-
less, the error indicators are very well reconstructed for both the 2x and 4x CNN. This means that in a mesh
adaptation routine, the proposed method is expected to behave very similarly to the reference output error
estimators. And this not only solely due to the global behaviour of the reconstruction over the coarse mesh
but also at the level of the fine mesh where the error indicators are extremely similar.

The only difference observed is in 4x CNN where the low gradient region on the right of the adjoint solu-
tion is reconstructed poorly with the appearance of noise. This can be partly attributed to incomplete training
since it is expected that theoretically this can be learned as part of the super-resolution task.

5.6. Computational cost analysis
A metric for the cost of computing the error estimation is compared between all the aforementioned error

estimates. The proposed metric is the Computational Cost Metric (CCM), and aims at providing an adimen-
sional indicator of the computational cost of estimating the output error. It is computed according to Equa-
tion 5.6. The relation represents an effective operations count by weighting the number of Krylov iterations
by the DoF comprising the solution. Since a direct linear solver was used, the problem stiffness on iterative
convergence is not accounted for, only the number of times the non-linear solver iteration is called. The
metric is adimensionalised by dividing this operations count by the operation count required for the coarse
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Figure 5.7: Reconstructed fine adjoint solution with an upscale factor of 4 at t = 10.5s

Figure 5.8: Comparison of the output error estimate for the Burgers’
equation test case using CNN-based super-resolution

Figure 5.9: Comparison of the error in output error estimate for the
Burgers’ equation test case using CNN-based super-resolution

Figure 5.10: Comparison of the error indicators for the Burgers’
equation test case using 2x CNN-based super-resolution of the ad-
joint for n = 5 cells. Fine adjoint solution on top and CNN recon-
struction on the bottom.

Figure 5.11: Comparison of the error indicators for the Burgers’
equation test case using 4x CNN-based super-resolution of the ad-
joint for n = 5 cells. Fine adjoint solution on top and CNN recon-
struction on the bottom.
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Figure 5.12: Comparison of the error indicators for the Burgers’
equation test case using 2x CNN-based super-resolution of the ad-
joint for n = 20 cells. Fine adjoint solution on top and CNN recon-
struction on the bottom.

Figure 5.13: Comparison of the error indicators for the Burgers’
equation test case using 4x CNN-based super-resolution of the ad-
joint for n = 20 cells. Fine adjoint solution on top and CNN recon-
struction on the bottom.

Figure 5.14: CCM versus DoF of the coarse mesh for the unsteady
Burgers’ equation

Figure 5.15: Detail of the CCM versus DoF of the coarse mesh for
the unsteady Burgers’ equation

Figure 5.16: CCM versus the error in output error estimation for the unsteady Burgers’ equation
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primal solution. The CCM then provides an estimate total cost for the estimation of the output error.

CC M =
∑

i ni teri ·DoFsi

ni terpr i mal ·DoFscoar se
(5.6)

Figures 5.14 and 5.15 show the increase in computational cost with the increase in the number of degrees
of freedom of the coarse mesh. The first figure also shows the superior computational cost required for the
solution of the fine problem. For instance, the fine adjoint solution requires the solution of the fine primal
and as a result requires the most computational effort to estimate the output error. Similarly, the exact adjoint
residual also requires the solution of the fine primal. However, since the fine adjoint is not solved, the CCM
is lower. For the SRNN-based output error estimates, the 4x CNN also leads to an increase in computational
cost due to the evaluation of the reconstructed adjoint-weighted residual on a far finer mesh, containing
approximately four times more DoF than the fine mesh for the other methods.

Figure 5.15 focuses on the cheapest output error estimates. The cost of the adjoint and primal residual
output error estimates in this figure are obtained by assuming the primal and adjoint are solved on the coarse
mesh and that prolongation operators are used. Using this assumption, the reference output-based error
estimates have near equal CCM.

Although the CCM converges to a value with uniform mesh refinement, it must be emphasised that this
means the total cost of the primal solution and error estimation becomes proportional to the cost of the
primal solution, which is increasing with the mesh refinement.

The CCM is also plotted with respect to the corresponding error estimate accuracy. Since the CCM was
found to be superior for the fine adjoint output error estimate and the 4x SRNN, these are not present in this
figure. This indicates the relative cost of the output error estimation with respect to the accuracy of the esti-
mation. One can observe the increased computational cost required for the increased accuracy in the output
error estimation. Although the CCM is very similar for these three error estimation level at each refinement
level, this highlights the inability of the SRNN-based error estimate to provide increasingly accurate output
error estimation. For the most refined meshes, the same computational cost yields a less accurate than the
reference error estimation methods by more than two orders of magnitude. This, and the cheaper compu-
tational cost of the SRNN-based estimate for coarse refinement levels, strengthens the argument that this
approach would be very suitable for under-resolved solutions.

In practice, the approximations of the fine space solutions of either the primal or adjoint fields are made us-
ing prolongation operators, which further reduce the accuracy of the output error estimation [55]. However,
since these prolongation operators are no longer required for the use of the super-resolution reconstruction
of the fine field adjoint, it is expect that such an approach could yield superior performance improvements.

The increase in computational overhead induced by the use of higher up-scale factors could be addressed
in the future by performing super-resolution to a finer space before sub-sampling this solution to a simple
single refinement level. The sub-sampling would not require much additional computational cost but greatly
reduce, due to the curse of dimensionality, the cost of projecting the coarse primal into the fine space and
evaluate the adjoint-weighted residual on a less refined mesh.
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SRNN Adjoint Enrichment: Lid-driven

Cavity Flow at Re = 250, 500 and 900

The lid-driven cavity flow has been thoroughly studied as a benchmark for assessing numerical methods, ver-
ifying code accuracy and implementations [11, 30, 40, 47]. In this case, it is used as a more complex problem
to evaluate the performance of the proposed SRNN-based error estimation method. The steady lid-driven
cavity flow is considered here.

This chapter first describes the problem and the related adjoint equations in sections 6.1 and 6.2. The
performance of the reference output-based error estimates is then evaluated. This enables the comparison
of the proposed method, whose implementation is described in section 6.4, to be conducted in section 6.5.
The computational cost metric is used to further evaluate the performance of the proposed method. Finally,
section 6.7 concludes the chapter and assesses the performance of the proposed use of SRNN for the adjoint
solution.

6.1. Fluid equations
In this chapter, the Navier-Stokes equations were considered. This system of PDE describes the motion of
a viscous fluid and can be expressed as in Equation 6.1. The first equation represents the conservation of
mass whereas the second the conservation of momentum. In the momentum equation, it is apparent that
the pressure must now be determined, as well as the velocity field. In practice, this can be solved in two ways,
either by coupling the variables in a monolithic solver or by solving each independently and iterating until a
solution is found, as in a segregated solver.

∇·u = 0

u̇+ (u ·∇)u− 1

Re
∇·∇u+∇p = f

(6.1)

This implementation of the Navier-Stokes solver was performed using the finite element discretisation in
the problem solving environment FEniCS1, using a coupled approach.

As the steady problem is considered here the time dependent term in the momentum equation was set to
zero. The BT preconditioner and MUMPS direct Krylov subspace solver were used, being stable for Reynolds
numbers below 1200. The added computational cost of using a direct solver was outweighed by the robust-
ness of this approach for the considered range of Reynolds numbers. For simplicity the laminar case is con-
sidered here. FEniCS does not include turbulence models in its distribution, however, a development branch
in Oasis has implemented a few LES and Reynolds Averaged Navier-Stokes (RANS) models [10].

The implementation of the Navier-Stokes equations in FEniCS requires the formulation of the PDE in their
weak form as shown in Equation 6.2. The derivation can be found in literature [58]. In this relation, v and q

1https://fenicsproject.org/
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https://fenicsproject.org/
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are test functions associated with the velocity u and pressure p.

((u ·∇)u, v)+
(

1

Re
∇u, ∇v

)
− (∇·v, p

)− (f, v)+ (∇·u, q
)= 0 (6.2)

The continuous adjoint is derived using the same method as in [42, 58, 60]. The sensitivity of the residual of
Equation 6.1 to an arbitrary perturbation in the velocity field δu and pressure field δp is considered. However,
as in the Burgers’ equation, the non-linearity of the Navier-Stokes equations require the linearisation about a
given state u0, here the steady state primal solution. This residual sensitivity is shown in Equation 6.3.

r ′
mass [u0](δu) =∇·δu

r ′
momentum[u0](δu) = δ̇u+ (δu ·∇)u+ (u ·∇)δu− 1

Re
∇·∇δu+∇δp

(6.3)

This enables the derivation of the linearised continuous adjoint system of PDE, which results in the form
Equation 6.4, where the adjoint variable Ψ is decomposed into its adjoint velocity and pressure terms, Ψu

andΨp respectively.

−∇·Ψu = d J

d p

− (u0 ·∇)Ψu + (Ψu ·∇)u0 − 1

Re
∇·∇Ψu −∇Ψp = d J

du

(6.4)

The derivatives of the QoI are determined in the following section, where the choice of the QoI is made.
They are taken to be a Frechet derivative of the chosen QoI. The weak form is derived in a similar manner
as the primal solution and is obtained by multiplying by a test function and integration by parts [58]. The
problem was solved using Taylor-Hood elements, comprised of piece-wise continuous quadratic elements
for the velocity and linear for the pressure.

6.2. Case presentation
The computational domain of the lid-driven cavity flow consists in a square of unit length side where all but
one side are walls. The last side is considered to be the lid and, in the steady case, a unit velocity is applied in
the tangential directions of the lid. The geometry can be seen in Figure 6.1. The characteristics and history
of this problem are thoroughly described in [1, 40]. However, this test case is loosely based on [58], where the
choice and derivations of the QoI and associated boundary conditions are well documented, including the
derivation of the weak forms. In [58], the QoI is the drag over the lid, which is an indicator of how resolved
the field is near the boundary, J = ∫

ΓD

( 1
Re ∇nu−pn

) · jΓD d s.

The analysis in this chapter differs from the reference paper since it uses a QoI defined as J = ∫
Ω g [1, 1]T ·

udΩ. The additional weight g = exp(−100(x −0.5)2 + (y −0.5)2 is used in order to target specifically the res-
olution in the centre of the cavity. While this is less relevant to aerospace engineers than the measure of
drag for instance, it was found that the QoI chosen in [58] targeted the resolution of the near lid too strongly,
hindering the ability to evaluate the performance of the SRNN-based error estimates.

This QoI leads to the source terms of the adjoint equation being d J
d p = 0 and d J

du = [1, 1]T ·g . Since the exact
value of the QoI is unknown, it was estimated using a grid converged value of the QoI.

In an attempt to address the discontinuous boundary conditions encountered in the usual lid-driven cavity
flow. The chosen boundary conditions differ from the usual implementation. The lid velocity is not uniformly
distributed across the top boundary and instead follows the distribution from Equation 6.5. This is proposed
in [58] with δ= 0.05.
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Figure 6.1: Layout of the lid-driven cavity flow

s(x) =



0 if x = 0,
1

1+exp
( x
δ−1 + 1

δ

) if 0 < x < δ,

1 if δ≤ x ≤ 1−δ,
1

1+exp

(
1

(1−x)
δ

−1
+ 1

(1−x)
δ

) if 1−δ< x < 1,

0 if x = 1

(6.5)

The lid-driven cavity flow was studied for a range of Reynolds numbers from 50 to 1200. This chapter fo-
cuses on Reynolds numbers of 250, 500 and 900. The problem leads to the solution of more complex flow
features, such as the presence of re-circulation cells. These features increase the difficulty of the reconstruc-
tion task for the SRNN. In combination with a QoI describing a flow characteristic about which very little is
known, it is expected that this test case is more representative of the realistic behaviour of the reference and
SRNN output error estimates.

6.3. Reference error estimator performance
Similarly to section 5.3, an analysis of the reference error estimators was made. This helps in the comparative
evaluation of the SRNN-based error estimation, with respect to the reference error estimates.

First, the accuracy of the output-based error estimation is evaluated. This is seconded by the analysis
of the error in output-based error estimation. The comparison of the error indicators and the impact of the
proposed method on the mesh adaptation process is done in subsection 6.5.3.

6.3.1. Reference output error estimation
The reference error estimates of section 5.3 are also used here. Their output errors are shown in Figure 6.2 to
Figure 6.4. These figures also show the QoI difference between the coarse and once refined meshes, d Jh−H =
Jh − JH . This quantity is useful for explaining the converging behaviour of the estimations.

At the three Reynolds numbers considered, similar behaviours are observed. The absolute value of the
output error is plotted here in order to be able to be presented in a log-log plot. The kinks in the output er-
ror convergence can be explained by the QoI being overestimated and underestimated at regular intervals.
Nonetheless, the output errors decrease with refinement. This is the expected behaviour and greatly resem-
bles some of the behaviours seen in the unsteady Burgers’ equation and the advection-diffusion problem
albeit the convergence rate of the output error is smaller. The slope of 2 is observed for the true output error
in Figure 6.5. The output error in this figure is plotted against the characteristic cell size d x.

Moreover, one can see that both the primal and adjoint residual formulations are able to estimate quite
accurately the trend of the true output error, despite not being able to accurately reconstruct the oscillations
in the true output error. The accuracy of the reference error estimators is also noted in Figure 6.6 to 6.8. It
appears that while the output error is inaccurate, the error in output error estimation decreases at a similar
rate, should a trend-line be drawn.



38 6. SRNN Adjoint Enrichment: Lid-driven Cavity Flow at Re = 250, 500 and 900

Figure 6.2: Output error for the reference error estimators for the
lid-driven cavity at Re = 250

Figure 6.3: Output error for the reference error estimators for the
lid-driven cavity at Re = 500

Figure 6.4: Output error versus DoFs for the reference error estima-
tors for the lid-driven cavity at Re = 900

Figure 6.5: Output error versus characteristic cell size for the refer-
ence error estimators for the lid-driven cavity at Re = 900

It should also be noted that the increase in Reynolds number improves the performance of the reference
output error estimates. In the future, it should therefore be investigated whether the performance of the
reference error estimators further improves with respect to the QoI for higher Reynolds number flows since
the flow in the centre of the cavity appears to become less dependent on the mesh refinement.

Finally, the adjoint residual formulation of the remaining error seems to perform better for lower levels of
solution resolution, in particular for Re = 250. Beyond a uniformly refined grid of resolution 562 it appears
that the fine adjoint error estimator, and its approximation the primal residual form, are able to produce a
higher level of accuracy in the output-based error estimation. This further strengthens the argument to use
a hybrid approach using both the primal and adjoint residual forms proposed in [71]. The computational
cost of evaluating both of these residuals must be compared though, and this is partially addressed in the
discussion of the CCM in the closing sections of this chapter.

6.3.2. Reference error indicators
Figures 6.9 to 6.12 show the distribution in space and also in magnitude of the adaptation parameters ob-
tained for Re = 250 and Re = 900 for the fine adjoint-based error estimate. In these figures, the l og of the
adaptation parameter is taken. This highlights the complex nature of the interaction between the adjoint
solution and the strong residual which makes it difficult to determine a priori the areas which require adap-
tation.

In particular, the region near the lid requires refinement whereas the bottom wall region could benefit
from coarsening. This is mostly due to the strong residual being large and small, respectively, in those re-
gions. However, the main flow structures of the primal can still be observed near the right wall. The main
contribution of the adjoint appears to be in the centre of the cavity. This would be expected due to the strong
focus of the QoI to evaluate the solution in the centre of the cavity.

Finally, these figures also highlight the change in error indicator distribution with increased refinement.
For instance, the number of elements whose error indicator is the largest does not seem to decrease signif-
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Figure 6.6: Error in output error estimation for the lid-driven cavity
at Re = 250

Figure 6.7: Error in output error estimation for the lid-driven cavity
at Re = 500

Figure 6.8: Error in output error estimation for the lid-driven cavity at Re = 900
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Figure 6.9: Locations and error distribution for the fine adjoint error
estimate at Re = 250 for n = 162 elements

Figure 6.10: Locations and error distribution for the fine adjoint er-
ror estimate at Re = 250 for n = 482 elements

Figure 6.11: Locations and error distribution for the fine adjoint er-
ror estimate at Re = 900 for n = 162 elements

Figure 6.12: Locations and error distribution for the fine adjoint er-
ror estimate at Re = 900 for n = 482 elements

icantly on the right tail of the distribution. This would mean that for a number of regions, an increase in
refinement does not yield a large decrease in output error contribution. These are considered outliers and
make fixed fraction mesh adaptation algorithms less efficient in this particular case.

6.4. Machine learning implementation
Two SRNN architectures were implemented here. The first is the same as the one for the unsteady Burgers’
equation [48]. The detailed architecture for the an up-sampling factor of 2 is given in Figure 6.13. The last
layer is the same PixelShuffle layer. This step enables the growth of the neural network in depth and better
reconstruction, by focusing the conversion of deep data in the neural network to detail in the output in a
single step.

This architecture is very simple to train since the main, and only, hyper-parameter to consider is the
learning rate of the ADAMS optimiser implemented in PyTorch. This is due to the fact that the momentum
decay coefficients of the optimiser can be left at default values of 0.9 and 0.99 without greatly impacting
either the learning process or the outcome of the network. The chosen learning rate should be adjusted
dynamically in order to train faster. However it was found that a learning rate of 0.0005 worked very well
as it both enabled fast training and accurate reconstruction with respect to the MSE loss function. This loss
function has been the reference in literature for SRNN due to their roots in image processing. It should be
investigated whether using more physics-based loss functions would benefit the training and outcome of the
SRNN. The batch size was chosen to be 128 since this would be large enough to have statistically significant
batches and make the training faster in order to improve the network more regularly [73]. Moreover, the CNN
required significantly less tinkering and epochs to train than the other architecture considered, the cGAN.
This increase in robustness in training is expected to lead to a less accurate and generalisable reconstruction
than the cGAN [39].

The second architecture considered here was implemented in order to explore the potential benefits from
more complex, and more accurate SRNN [39]. The conditional Generative Adversarial Network (cGAN) [53]
makes use of two competing ANN: a generator tasked in performing the super-resolution, and a discriminator
tasked in determining the validity of the reconstruction. The conditional aspect of this network is that the
generator takes in additional information to reconstruct the fine space adjoint, here the Reynolds number
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Figure 6.13: Architecture of the 2D CNN

Figure 6.14: Architecture of the 2D cGAN generator

which is referred to as a label. Moreover, the discriminator is also provided with this label as well as the low
resolution input that the generator uses. As documented in [39], this approach gives much more accurate
reconstructions than the static CNN for HIT, in particular for higher up-sampling factors.

However, this architecture proved much more difficult to train since it requires that both the generator and
discriminator are competitive by ensuring that both ANN learn their task at similar rates. This required the
use of a far smaller learning rate l r = 0.00005 which made the training far slower. In addition to lowering the
learning rate, the decay of the momentum gradient was lowered to values of 0.5 and 0.99. This further slowed
the training process but ensured that neither the generator or the discriminator were able to outperform the
other ANN. The slower training is seen in the need for at least 1000 training epochs in order to reach an MSE
loss of O (10−3) whereas the CNN reaches a MSE of O (10−4) in fewer than 400 epochs.

The training data was obtained by solving the steady lid problem at the three Reynolds numbers Re =
250, 500, 900 for different levels of refinement with a random distribution of the data of 30% in the testing
data-set and 70% in the training data-set. A fixed interrogation window of size 32 was then sampled from the
solution. This extract of the solution was subsequently sub-sampled at the chosen super-resolution factor in
order to form the low resolution-high resolution training pair. For each solution, four samples were taken in
order not to introduce bias towards the amount of data at each refinement level. Moreover, each solution was
rotated and taken the symmetry in an attempt to create a larger, more diverse data-set where the ANN does
not learn the reconstruction of a specific lid-driven cavity problem but the generalised form.

In hindsight, this latter part was not necessary. While it did produce good results and should be able to
generalise better. It greatly increased the complexity of the learning problem and as such led to sub-optimal
results for the amount of computing power required to train the SRNN and reconstruct the fine adjoint.

Moreover, the restriction in the number of studied Reynolds numbers did not benefit the training of the
cGAN while it did help the CNN to produce better results. The training task was attempted for a larger range
of Reynolds numbers from 50 to 1200 and, for this variety and thus richer training data-set, the capacity of
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Figure 6.15: Architecture of the 2D cGAN discriminator

Figure 6.16: Example of the CNN erroneous reconstruction of the fine space adjoint

the cGAN to reconstruct the fine adjoint was significantly better than the CNN. The latter would misidentify
certain flow features in the coarse adjoint solution and result in erroneous reconstructions such as the ones
shown in Figure 6.16. In the figure, the right side of the cavity is erroneously reconstructed with the adjoint
solution seemingly not respecting the no-slip wall boundary conditions.

The losses for the CNN and cGAN are shown in figures 6.17 and 6.18, respectively. For the CNN, one can
observe that the higher up-scaling factor requires more training in order to reach the same loss level. More-
over, the learning rate should be lowered if one should desire to achieve a lower training and testing MSE loss
since similar signs of over-fitting and unproductive training were observed after more than 500 epochs were
performed with this learning rate. The signs are similar to the one observed in Figure 5.5.

For the cGAN, the training was more tedious and the plots show the generator and discriminator loss.
The actual MSE was measured with respect to batches of the testing data-set and was found to be in O (10−3).
While higher than for the CNN, it was desired to compare the two architectures also with respect to the com-
putational cost to train and with respect to this measure, the cGAN is outperformed by the CNN.

A more appropriate loss function could also be chosen, such as the ability to accurately estimate the
output error. However, this would require the evaluation of the adjoint-weighted residual in the fine space
for each element of the batch which is not trivial and can become computationally intensive. Other cheaper
physics-based loss functions could be considered, such as the evaluation of the vorticity or the conservation
of mass over the considered domain. This could potentially also enable the network to produce results that
are more consistent with the physics of the problem.

6.5. SRNN-based error estimate performance
The performance of the proposed method has to be compared on three points: the reconstruction of the fine
adjoint task, its impact on the output error estimation, and the impact on the error indicators. While the first
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(a) Training losses for the 2x CNN (b) Training losses for the 4x CNN

Figure 6.17: Losses of the super-resolution CNN for the 2D lid-driven cavity problem

(a) Training losses for the 2x cGAN (b) Training losses for the 4x cGAN

Figure 6.18: Losses of the super-resolution cGAN for the 2D lid-driven cavity problem

seeks to evaluate the ability of the ANN for the super-resolution tasks, the second provides an estimate for
the impact of the more global behaviour of the SRNN in the mesh adaptation process, whereas the ability to
identify the main sources of error ensures that the mesh adaptation process remains productive at difference
mesh refinement levels.

6.5.1. Fine adjoint reconstruction
First, the fine adjoint reconstruction is evaluated for the four ANN implemented in this chapter. The results
are shown in figures 6.19 to 6.22. One can observe that for sufficiently resolved coarse adjoint solutions, all the
methods are able to reconstruct the main features of the fine adjoint. The 2x up-scale factor SRNNs are able
to more accurately reconstruct the fine adjoint solution for under-resolved solutions. The 4x SRNNalready
shows an inability to reconstruct the fine adjoint accurately at a resolution of 162 cells

Nonetheless, the amount of information reconstructed for Figure 6.19 is remarkable and it is expected
that it could provide an accurate output error estimate since the main features are well reconstructed both in
direction and magnitudes. The performance is also expected to degrade for increasing levels of refinement
since the construction of the training data-set introduces great bias towards learning from coarse solutions.
This is due to the limited size of the interrogation window but also that the highest starting resolution in-
cluded in the training data-set is 1202, which is sub-sampled. For the reconstruction task, starting resolutions
of 882 are considered, meaning that the network is attempting to reconstruct sub-grid scale information that
it has never encountered in the training process. This problem is exacerbated for the higher up-sampling
ratios.

6.5.2. Output error estimation
The output error estimate and error in output error estimate is given in figures 6.23 and 6.24 for the case
Re = 250, figures 6.25 and 6.26 for Re = 500, and figures 6.27 and 6.28 for Re = 900. The accurate estimation
of the output error informs the user of the degree of accuracy of the current solution with respect to the finer
space solution. In the proposed method, the fine adjoint solution is reconstructed from the coarse adjoint
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Figure 6.19: Comparison between the reconstructed (right) and fine
adjoint solutions (left) for the CNN(2x) at Re = 900 and n = 482 ele-
ments

Figure 6.20: Comparison between the reconstructed (right) and fine
adjoint solutions (left) for the cGAN(2x) at Re = 250 and n = 482

elements

Figure 6.21: Comparison between the reconstructed (right) and fine
adjoint solutions (left) for the CNN(4x) at Re = 900 and n = 482 ele-
ments

Figure 6.22: Comparison between the reconstructed (right) and fine
adjoint solutions (left) for the cGAN(4x) at Re = 250 and n = 322

elements

solution, and then used to weight the strong residual for the output error:

δJ ≈−
∫
Ω
ΨN N Rh(U H

h )dΩ

For the lowest Reynolds number shown here, it can be seen that despite the inaccuracies in the recon-
struction of the fine adjoint mentioned in the previous section, the ability to estimate the output error is not
hindered. For low resolutions, all methods, apart from the 2x CNN are able to estimate the true output error,
within an order of magnitude. In particular the cGANs perform very well for the first three uniform refine-
ment levels. The CNN tend to underestimate the output error, which is not desired since it could lead to
the interruption of the mesh adaptation iterations prematurely. Moreover, despite the erroneous fine adjoint
reconstruction the 4x cGAN appears to accurately estimate the output error across the range of refinement
levels evaluated.

The two main under-performing ANN are the 4x CNN and the 2x cGAN. Throughout the range of meshes,
the former greatly underestimates the output error. Moreover, for the unseen range of refinement levels, it is
unable to produce output error estimates which outperform the 4x cGAN. The 2x cGAN performs the best out
of the four ANN for the first three refinement levels. However, it is then unable to estimate the output error in
a sensible way. This could be due to the inaccurate reconstruction of the fine adjoint and its interaction with
the residual field which leads to the inaccurate output error estimation. Figure 6.5 highlights the inaccuracies
of the output error estimation for the SRNN since the slope of 2 present in the reference methods is not
observed. However, the trend for the decrease of output error with increasing refinement is observed and the
CNN-based error estimates perform similarly to the fine adjoint error estimate.

When comparing the error in output error estimation in Figure 6.24, the 4x cGAN appears to perform far
worse for under-resolved adjoint solutions. This figure further highlights the 2x cGAN inability to provide an
accurate output error estimation for fine meshes. Other than this latter method, the three proposed SRNN are
able to perform on par with the fine adjoint-weighted residual output error estimate for sufficiently resolved
adjoint solutions. It must also be noted that the generalisation to finer scales than those used in training is
not successful as they all struggle to achieve an output error estimation accuracy below 10−5.
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Figure 6.23: Comparison of the output error estimate for the lid-
driven test case using SRNN at Re = 250

Figure 6.24: Comparison of the error in output error estimate for
the lid-driven test case using SRNN at Re = 250

Figure 6.25: Comparison of the output error estimate for the lid-
driven test case using SRNN at Re = 500

Figure 6.26: Comparison of the error in output error estimate for
the lid-driven test case using SRNN at Re = 500

For a Reynolds number of 500, much of the same observations can be made, as shown from Figure 6.3
and Figure 6.26. On the one hand, both the 2x SRNN perform very similarly for low mesh resolutions, albeit
notably underestimating the output error. However, the CNN is more apt in estimating the output error for
finer meshes than its cGAN counterpart. The 4x ANN, on the other hand, perform better for higher resolution
solutions, despite not having encountered them in the training process. At the lower resolution, only the
cGAN is able to reconstruct the adjoint accurately enough to lead to an accurate output error estimate.

For Re = 900, only the 4x cGAN stands out by being able to reproduce the true output error at an accuracy
of less than an order of magnitude. This is on par with the reference output error estimates for this case and
highlights the sufficiently accurate reconstruction of the adjoint in the regions of high values of residuals.
The other SRNN show great limitations in their ability to correctly estimate the output error. They all greatly
under-estimate the value of the output error, and although for finer meshes the 4x CNN is able to estimate
accurately both the trend and value of the output error, this inability to perform well for under-resolved and
sufficiently resolved solutions demonstrates an inaccurate fine adjoint reconstruction.

6.5.3. Cell indicator estimation
It is arguable that the localisation of the sources of output error is more important to the mesh adaptation
process than the output error estimation. However, like the output error estimation, it requires the accurate
reconstruction of the fine adjoint, in particular the global trend and relative contribution of each element.

The lid-driven cavity problem is dominated by the singular behaviour of the solution on the lid extremities
as well as the fractal-like behaviour of the flow patterns in the bottom corners [40]. For this reason, the actual
error indicators are dominated by near corner high values, despite the efforts being made in the choice of
the QoI to exclude these regions. It appears that the strong residual values are simply very large in these
regions, large enough to be flagged as main contributors to the output error. In order to make the plots more
insightful, the l og of the output error indicators is taken.
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Figure 6.27: Comparison of the output error estimate for the lid-
driven test case using SRNN at Re = 900

Figure 6.28: Comparison of the error in output error estimate for
the lid-driven test case using SRNN at Re = 900

Figure 6.29: Output error versus characteristic cell size for the SRNN error estimators for the lid-driven cavity at Re = 900
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An under-refined and well refined solution pair will be shown for each tested ANN. Figures 6.30 and 6.31
show the error indicators for the fine adjoint output error estimate and the 2x CNN at Re = 900. At this
Reynolds number, the features of the adjoint is limited to a main vortical structure in the centre of the cell
and a single high adjoint velocity magnitude area near the right boundary. This is recognised in both levels of
refinement in the error indicators, on top of the lid-corners, as being areas most sensitive to the flow resolu-
tion. These are thus flagged for refinement. The CNN identifies a too large region as being a large contributor
to the output error with respect to the reference error estimator.

With a starting mesh of 482, similar cells are flagged for refinement. However, a number of other cells in
areas contributing less to the output error also are flagged. This refinement level also allows highlighting of
the inability of the network to infer flow structures it has not seen in training. This can be seen in the erro-
neous estimation of the error indicators in the lower right corner, in which an additional circulation bubble
appears with refinement.

For a mesh of 162, the 4x CNN is unable to accurately estimate the locations of the largest sources of errors,
as shown in Figure 6.34. This is related to the erroneous reconstruction of the fine adjoint as previously
mentioned. However, beyond this issue, far too many cells are erroneously identified as large contributors to
the output error. This would be greatly problematic in a mesh adaptation iteration since this would greatly
increase the computational cost of the solution of the problem without necessary resulting in an increase in
output accuracy. Moreover, since the upper right corner is still identified correctly as a source of error, it is
possible to infer that the primal residual being correct is more important in this case than the accuracy of the
fine adjoint.

The finer mesh sheds a different light since a lower level of reconstruction is required. The reconstruction
is therefore more accurate, as would be expected from the more accurate output error estimate shown in the
previous section. At this refinement level, the problem is no longer the identification of the flow features
or the anticipation of flow features appearing in the finer solutions but the accurate reconstruction of the
present features. This is not performed extremely well in this case. The centre of the cavity is misidentified as
a region whose contribution to the output error is larger than in reality. This behaviour is observed across the
range of Reynolds numbers considered.

The 2x cGAN fairs better than its CNN counterpart for the low resolution reconstruction of the fine adjoint
for a mesh resolution of 162. This results in also a slightly more accurate reconstruction of the error indicators.
The main difference occurs in the swirl towards the centre of the cavity where the error contribution is under-
estimated. However, the main sources of error are identified both in location and magnitude. Moreover, the
example chosen here of Re = 250 is significantly more difficult due to the more complex flow structures in the
adjoint solution.

The improvement in accuracy generalises well to the finer starting meshes as seen in Figure 6.33. The
areas of low contribution to the output error are well identified as being most of the left boundary and the
lower left corner in general. Moreover, more complex areas of output error contribution are correctly iden-
tified, such as the segments radiating from the left lid extremity. These were not well identified by the CNN
and show the ability of the cGAN to outperform the static CNN.

Finally, the performance of the 4x cGAN is shown in Figure 6.36 and 6.37. In the first figure, the error indi-
cators for Re = 250 and a mesh of 162 cells is shown. In this configuration, The cGAN is able to perform very
well in the error indicator estimation, despite a less ideal output-based error estimation and fine adjoint re-
construction. This means that the regions of interest where the strong residual is large are well reconstructed.
It identifies the corners of the lid as being the main sources of error and the main swirl in the primal solution
to also be the most important area for refinement in order to increase the accuracy of the QoI. This specific
case would be very suitable for a mesh adaptation routine, as the error indicators follow the structure one
would expect in this problem. Since the QoI is the accurate representation of the velocity field in the centre
of the cavity, the upstream field must be well resolved.

Figure 6.37, shows the decrease in performance of the method as refinement levels tend to the upper
bound of the resolution seen in the training. Certain features are recreated in the error indicator field that do
not exist in reality. The best example is this line at the y = 0.35. It is unclear how such an artefact was com-
puted since this discontinuity is not as visible in the adjoint reconstruction. This highlights the interaction
between the adjoint and residual fields, which is not trivial and difficult to estimate.
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Figure 6.30: Error indicators for the CNN (2x)-based error estimate
Re = 900 for n = 162 elements. Fine adjoint on the left and SRNN
on the right.

Figure 6.31: Error indicators for the CNN (2x)-based error estimate
Re = 900 for n = 482 elements. Fine adjoint on the left and SRNN
on the right.

Figure 6.32: Error indicators for the cGAN (2x)-based error estimate
Re = 250 for n = 162 elements. Fine adjoint on the left and SRNN
on the right.

Figure 6.33: Error indicators for the cGAN (2x)-based error estimate
Re = 250 for n = 482 elements. Fine adjoint on the left and SRNN
on the right.

Figure 6.34: Error indicators for the CNN (4x)-based error estimate
Re = 900 for n = 162 elements. Fine adjoint on the left and SRNN
on the right.

Figure 6.35: Error indicators for the CNN (4x)-based error estimate
Re = 900 for n = 482 elements. Fine adjoint on the left and SRNN
on the right.

Figure 6.36: Error indicators for the cGAN (4x)-based error estimate
Re = 250 for n = 162 elements. Fine adjoint on the left and SRNN
on the right.

Figure 6.37: Error indicators for the cGAN (4x)-based error estimate
Re = 250 for n = 482 elements. Fine adjoint on the left and SRNN
on the right.
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The analysis of the error indicators is more optimistic than the output error estimation for the use of SRNN
of the adjoint. Out of the four demonstrated SRNN, only the 4x methods stand out as having a more diffi-
cult time with the estimation of the error indicators. While their performance for meshes of refinement 162

is at least on par with the lower upscale factors, this performance rapidly degrades compared to the more
consistent behaviour of the 2x networks.

This leads to the conclusion that the 2x SRNN would be suitable for implementing in a mesh adaptation
process. While the use of a finer adjoint solution could potentially lead to an increase in accuracy in output
error estimation, it is not observed here. Moreover, the additional cost of evaluating a finer adjoint-weighted
residual makes it more difficult to justify. The discrepancy of these results and the behaviour observed in [39]
is most likely in the different nature of the flow. [39] looks at HIT, while the problem here is anisotropic with
clearly identifiable features.

6.6. Proposed error estimate cost analysis
Finally, the same metric as in chapter 5 was used to evaluate the relative cost of SRNN-based output error

estimation with respect to the reference error estimates. Whereas the increase in DoF in the previous test
case was linear with mesh refinement, it is here quadratic and as such, is expected to further highlight the
increase in computational cost in the estimation of the output error when the fine solution is computed, or
when the 4x adjoint-weighted residual is evaluated.

Figures 6.38 and 6.39 show the evolution of the CCM with respect to the number of DoF of the coarse
problem for Re = 250. Similar to the unsteady Burgers’ equation, the error estimation methods employing
the solution of the primal or adjoint on the fine mesh are significantly more expensive, as shown by the CCM
ranging from 4 to 6 in Figure 6.38.

Looking specifically as the cheaper output error estimates, the reference and proposed output error es-
timation methods have similar CCM, as they are all overlapping in Figure 6.39. It increases greatly with the
uniform refinement of the mesh. This means that 2x SRNN-based estimates are more likely to be a com-
pelling case for the implementation in mesh adaptation due to the reduced cost, being on par or cheaper
than the current employed methods in literature.

The CCM is also presented with respect to the accuracy of the output error estimate. This is shown in
figures 6.40 to 6.42. These figures help highlight the complexity of the error estimation task for each method
but also shows the relative increase in computational cost between the presented methods. For the three
Reynolds numbers, all output error estimations methods have very similar computation costs and related
increase in error estimation accuracy. However, as the mesh is refined, the computational cost of the output
error estimation is similar to that of the primal solution. This means that the inaccuracy of the 2x cGAN would
lead to a far greater computational cost to reach a similar accuracy level to the other error estimates.

The 2x CNN is able to both provide error estimates of the same accuracy as the reference methods and
reduce the computational cost of the error estimation. It is able to reconstruct the fine adjoint output error
estimate accuracy at a fraction of the cost. This cost is similar to the methods implemented in practice. How-
ever, the approximations used in practice introduce more inaccuracies and as such would lead to a greater
computational cost in the form of additional mesh adaptation iterations [55].

6.7. Assessment of the proposed method
The lid-driven cavity flow with a QoI targeting the resolution of the flow in the centre of the cavity proved
a very complex QoI to estimate for both reference and SRNN-based error estimates. This highlighted the
reduction in cost in using SRNN but also the decrease in accuracy of the output error estimation due to the
error in adjoint reconstruction. Most importantly for mesh adaptation though, the error indicators could be
well estimated from the SRNN, fine adjoint reconstruction. This supports the idea that the 2x up-sampling
methods described here should be implemented in a mesh adaptation method in order to see if this ability to
estimate the correct adaptation parameters is reflected outside of uniform mesh refinement.

However since the value of the error indicators is incorrect, it would probably prevent the use certain
mesh adaptation algorithms such as the ones based on output error thresholds. Thus, a fixed fraction ap-
proach would be most relevant, despite its shortfalls and the mentioned lesser performance it would have in
this particular test case. This would most likely also require an architectural change of SRNN, since the mesh
adaptation would introduce a non-uniform mesh. This could be addressed through the use of a U-ResNet



50 6. SRNN Adjoint Enrichment: Lid-driven Cavity Flow at Re = 250, 500 and 900

Figure 6.38: Computational cost metric versus DoF for the lid-
driven cavity flow at Re = 250

Figure 6.39: Computational cost metric versus DoF for the lid-
driven cavity flow at Re = 500

Figure 6.40: Computational cost metric vs error in output error es-
timate for the lid-driven cavity flow at Re = 250

Figure 6.41: Computational cost metric vs error in output error es-
timate for the lid-driven cavity flow at Re = 500

Figure 6.42: Computational cost metric vs error in output error estimate for the lid-driven cavity flow at Re = 900
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[75, 78], which was specifically developed to tackle unstructured data while retaining the fully convolutional
nature of the ANN.

Due to the added difficulty of training the cGAN and the limited advantage of using far finer meshes for
the fine adjoint solution, the use of the cGAN is difficult to justify for the task of fine adjoint reconstruction.

Experience was also gained in the ability to construct an SRNN capable of accurately reconstructing the
adjoint for the estimation of adaptation parameters. The training process of the CNN in particular showed
that it was inexpensive to train,since large amounts of information could be generated from limited number
of samples. This was achieved by taking windows of data inside the solution. Moreover, while the use of
symmetries and rotations of the data did lead the network to misidentify certain flow features, it also allowed
greater generalisation for the unseen mesh refinement levels.

SRNN-based output error estimation is therefore a strong candidate for the reduction in computational
cost of adjoint-based error estimation. It appears to be particularly relevant for flows far from prescribed
boundary conditions. It could also be very powerful in helping to estimate the error in early mesh adaptation
iterations, when the solution is potentially under-resolved.

Finally, the proposed CCM demonstrated the increase in computational cost when higher super-resolution
is performed. This increase would make the adoption of 4x SRNN-based error estimation more difficult to
justify. However, an approach such as the one proposed in the previous chapter of super-resolution and sub-
sampling could enable higher accuracy in the output error estimation, while limiting the computational cost
of evaluating the adjoint-weighted residual. For the adjoint reconstruction task, it is thus advised to use lower
up-scaling factors and simpler, more robust SRNN architectures such as the 2x CNN.

Nonetheless, the performance in reconstructing the primal solution using SRNN shown in [39] would
make the use of 4x cGAN attractive for the reduction of the storage footprint of the unsteady primal solution.
In practice, the entire solution is stored during the forward in time solution of the CFD simulation. The indi-
vidual solutions are then retrieved during the adjoint solution. The SRNN would then enable the reduction
of the size of the primal solution by a factor 4n , with n the dimension of the problem.





7
Conclusion

This chapter aims to provide the conclusion to the findings of this thesis and answer the main research ques-
tions as well as the secondary research objectives as formulated in the opening chapters of the report. How-
ever, an emphasis is made on the recommendations and future work section, which highlights the necessary
steps to be conducted in the evaluation of the proposed method in order to implement it successfully in a
mesh adaptation process.

7.1. Conclusion
The thesis highlighted certain limitations in output-based mesh adaptation, in particular related to output
error estimation methods. This led to a proposal to use of Super-Resolution Neural Network (SRNN) to poten-
tially solve significant problems in adjoint-based output error estimation: the large storage footprint and the
computational overhead. The latter point is the focus of this thesis since the compression and reconstruction
of the primal data using ANN has shown already to be effective for primal flows [39]. The evaluation of the
use of SRNN for the reconstruction of the adjoint solution thus revolved around two main axes: accuracy and
computational cost.

First, FEniCS implementations of manufactured solutions for the Poisson and Burgers’ equation were used
to validate the output-based error estimate. This led to the choice of higher-order polynomial elements,
which were shown to provide a more accurate solution of the field as well as a consistent grid convergence of
the primal and adjoint solutions. The validation cases also allowed the testing of certain characteristics of the
output error estimate implementation. One such characteristic was the effect of using vertex-valued function
spaces to describe the solutions, instead of piece-wise continuous quadratic or cubic elements. This was seen
to affect the higher-order elements’ ability to provide accurate output error estimates. Consequently, the rest
of the results were generated using lower-order quadratic elements (Taylor-Hood elements for the Navier-
Stokes case).

In a second step, an advection diffusion problem described in [17] was used to investigate the impact of
considering different Quantities of Interest (QoI). The integral of the flux −ν∇u over the right boundary was
compared to the integral of the scalar variable u over the complete computational domain. The main effect
is on the adjoint system of equations. The flux QoI leads to discontinuous boundary conditions over the
boundaries of the computational domain whereas the domain integral introduces a unit source term to the
adjoint PDE. The discontinuity in the boundary conditions of the former leads to an ill-definition of the ad-
joint solution in the right corners. This prevents good estimations of the output error when the fine adjoint
solution is coarse, and for a twice more mesh to prevent the error in output error estimation to converging to
the grid-refined value of the output error. In [17] this circumvented by using a highly refined mesh. However,
this is not possible in practice. In this thesis, it was thus chosen to use global QoI relying over volume integrals
rather than boundary integrals.

The tests used to evaluate the proposed SRNN error estimation method were based on the 1D unsteady
Burgers’ equation and the lid-driven cavity flow. The Burgers’ problem, although similar to the validation
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problem, differed through the inclusion of the time dependence. This also enabled the creation of a larger
data-set by sampling randomly in time for the adjoint solution and corresponding instantaneous primal.
Although the 4x CNN in the super-resolution task was unable to provide an accurate output error estimate,
its lack of accuracy did not reflect on the error indicators. In contrast, the 2x CNN was able to provide a more
accurate output error estimate. It is expected that with more thorough training, it could match the fine adjoint
output error estimate. For under-resolved solutions, both SRNN were able to provide accurate output error
estimates. This could be the most promising in practice, due to the ability of the SRNN to provide sufficiently
accurate adjoint fields at low costs.

The second SRNN case was the steady lid-driven cavity. This proved to be far more complex due to the
solution of the Navier-Stokes equations, performed with a mixed-element function space, and the need to
devise a new QoI in order to limit the impact of the singularities and discontinuous boundary conditions
of the primal problem. The chosen QoI was J = ∫

Ω g udΩ, with g = exp(−100[(x − 0.5)2 + (y − 0.5)2]). This
focused on the evaluation of the primal in the centre of the cavity. This QoI proved difficult to estimate for
the error estimators. Nonetheless, the SRNN were able to reconstruct the fine adjoint field from the coarse
adjoint solution sufficiently to enable the identification of the main adjoint features of the solution. The
super-resolution task was particularly difficult in the near-wall regions and for lower Reynolds numbers. In
the lower Reynolds number range, the primal solution appeared to be far more dependent on the mesh re-
finement level since the area of large velocity gradients intersected the area of interest in the QoI. While it was
expected that the conditional Generative Adversarial Network (cGAN) would outperform the Convolutional
Neural Network (CNN) in the reconstruction task (based on the capacity of each method to super-resolve
Homogeneous Isotropic Turbulence (HIT)), this was not observed here. The anisotropic nature of the adjoint
solution may be the reason the cGAN could not perform significantly better.

The proposed method showed very promising results in the estimation of the adaptation parameter. In
particular for the 2x super-resolution, the main areas contributing to the output error were well identified.
In a mesh adaptation procedure, this method is expected to perform well in reducing the output error. The
performance of the mesh adaptation using these adaptation parameters will, however, be sub-optimal due
to the identification of additional cells requiring refinement which were not found in the fine adjoint output
error estimate.

A metric for the comparison of the relative computational cost of a combined primal and adjoint solution
was created. This Computational Cost Metric (CCM) was used on both the Burgers’ and lid-driven cavity
problems. In the former, the performance of the 2x SRNN was on par with the reference estimates for the
coarsely refined meshes. However, the CCM did not justify the use of this method for refined meshes due to
the lack of accuracy in estimating the output error.

For the lid-driven cavity flow, the main takeaway was the increase in CCM for the 4x SRNN. It performed
on par with computing the fine adjoint on a twice finer mesh, since the adjoint-weighted residual had to be
evaluated on a mesh containing 16 times more elements than the coarse mesh. The inaccuracy of the 2x
cGAN for fine meshes also made the use of cGANs difficult to justify. This was strengthened by the increased
difficulty in training the cGANs efficiently.

Nonetheless, the 2x CNN was able to perform as well as the reference error estimators both on its accuracy
of the output error estimation and the CCM. This would justify further exploration of the use of simpler and
more robust SRNN for the reconstruction of the fine adjoint.

Finally, the results indicate that the proposed method of using super-resolution neural networks for the
reconstruction of the adjoint would likely be successful in driving a mesh adaptation process. This is based
on the ability of the SRNN-based output error estimates to estimate accurately the error indicators. However,
this is accompanied by an error in the output error estimation of about almost an order of magnitude, which
could lead to a greater number of mesh adaptation iterations.

7.2. Future work and recommendations
This thesis tested the use of SRNN in the context of adjoint-based error estimation. Biases were found which
highlighted the importance of ANN training procedures. Further work could include the comparison of the
SRNN-based output error estimates to adjoint-based output error estimates making use of prolongation op-
erators.



7.2. Future work and recommendations 55

The framework for this comparison has been created in OpenFOAM, through the creation of a PISO-based
continuous adjoint solver, with unsteady turbulent adjoint stabilisation of the ATC term from [37]. This solver
highlighted the need for more robust prolongation operators in OpenFOAM since only nearest-neighbour,
linear and inverse distance interpolation are implemented. While this enables the implementation of the
method from [55], it is also found to be less accurate than using quadratic or cubic interpolation.

It also raised a number of issues requiring further research. Due to the unstructured nature of the data, a
U-ResNet was implemented, but it is far less efficient in training than conventional CNN. This would however
also enable the use of the ANN as is during the mesh adaptation process since it would not require additional
changes to be made to account for the change in number of degrees of freedom.

One of the issues for the implementation of the proposed method for three-dimensional problems is
the growth of the number of weights and biases as the dimension of the mesh increases. 3D FCNN are not
expected to be efficient based on the computational cost of training such a complex ANN. It must be explored
whether the use of 2D SRNN for each z-layer is more efficient. This is preferred implementation in [39] for
HIT.

It was also observed that the reconstruction was cheaper in training and more accurate with fewer vari-
ables to reconstruct. This resulted in the use of stream functions to be very attractive for the reconstruction
of the primal. Due to the ill-defined meaning of stream functions for turbulence functions, this was not pur-
sued in this thesis and would require additional analysis. However, the creation of a composite scalar field to
describe more complex field flow variables could form an interesting area of research.

Moreover, while the thesis mentioned the potential of SRNN to reduce the storage footprint of the primal
solution, this has to be implemented in practice in a mesh adaptation procedure in order to also quantify
the loss in accuracy resulting from the reconstruction of the primal from a sub-sampled stored solution and
the reduction in storage requirements. The cost of the primal reconstruction SRNN could also be lowered by
training the ANN on filtered, for LES, or sub-sampled DNS data.

The consequence of sub-sampling in order to create training pairs also has to be investigated. In practice,
it is expected that the coarse and fine solutions do not only differ on the frequency of the data in space but
also by the frequency of the phenomena they are able to capture. As a result, sub-sampling does not take into
account that the inputs to the ANN will differ from the sub-sampled fine solution. A potential solution would
be to filter the fine data before sub-sampling it at the correct rate.

Finally, in the training process of either the primal or adjoint SRNN, it was found that the Mean-Square
Error (MSE) loss function had great limitations. It lacks physical meaning and while it is effective for computer
vision problems, the development of a loss functions that inherits physical meaning could greatly benefit the
reconstruction ability of the ANN. An interesting path to investigate would be to use the QoI itself as a loss
function or the output error estimate. However, the former would prevent the generalisation of the method
to other functionals whereas the latter would lead to a larger computational overhead in the training process
of the SRNN. The generalisation of the ANN and sensitivity of the SRNN to hyper-parameters should also be
quantified.
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