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Abstract

EU carbon emission targets related to climate change has set in motion a process of
transition towards an environmentally clean and sustainable power system. A central focus
on this process is the transition from fossil fuel based energy sources to clean Renewable
Energy Sources (RES). However, the intermittency of RES (e.g. solar and wind) presents a
formidable challenge to achieve a stable and reliable supply-demand balance in grid oper-
ations. To achieve high levels of RES deployment, increasing the power system flexibility
will be central to accommodate large fluctuations in supply and to cope with peak demand.
Prospects of electricity storage technologies have emerged as a potential key technology
to manage high levels of RES in the power system.

Recent projections on the cost of electricity storage show a high decrease in the next
five years ([1],[2], [3]). As the commercial maturity of batteries might become a reality
within the next decade, many questions remain on the role of batteries in the power system,
where batteries should be located? What capacity will be optimal? What kind of battery
services are the most valuable? How do batteries contribute to the large deployment of
distributed RES installations? Significant research has been done on estimating sizing and
sitting of storage in power systems. Yet, most of this research treat storage capacity as
continuous instead of discrete, i.e. allocating storage by percentages of a total allowed
capacity, wherever necessary in the grid. Despite these previous studies have provided
interesting contributions on the value of storage in the power system, many of them lack
the modelling of power flows, technical limits, or voltage considerations.

This thesis focuses on battery flexibility in medium voltage grids. Specifically, how
to define cost-effective strategies to deploy batteries in a medium voltage grid? What is
the optimal battery location in a distribution grid? And how do the technical limits of the
power grid influence the allocation of storage? To address these questions, an optimization
model was developed to simulate half-hourly operational decisions for a distribution grid.
The model is multi-period and includes: power flows, diverse technical consideration for
different battery sizes, high RES penetration levels, time of use electricity prices (half-hour
dynamic prices), load data of actual customers and battery costs. To decide on the battery
location, the model employs binary variables to determine the investment and sitting of
the battery in a distribution grid. That is, the model is a mixed integer linear program with
multi-period features which provides an investment analysis for the cost-effective sitting
of batteries in a time horizon of 10 years. The model is implemented to the IEEE 33 bus
test system. Results show that in general battery location and size strategies are driven by
multiple factors, which can be either fixed or dynamic, like thermal limits and power load
consumption, respectively. Some relevant findings are: First, flexibility in terms of power
arbitrage delivers costs reductions of around 4% when RES production is low, compared
to a No-Batteries case. Moreover, when RES production is high, the reductions in total
costs can ramp up to 12% below the No-Batteries case. Also, this model decides to al-
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locate batteries only if they are economically feasible for a 10-year time horizon. These
results indicate a potential revenue up to 2.1 million pounds (GBP) based on the investment
in batteries. And they are based on battery cost prices from 2008, together with several
optimistic projections for the next decade. Furthermore, depending on battery size, RES
penetration, RES generation and technical limits, batteries tend to be located for buses at
the entrance of branches with high loads. Likewise, line limits and voltage limits proved
to be decisive in the election of buses and the number of batteries placed.

On one hand, results show that optimal allocation strategies depend on grid topology
features and technical limits, on the other hand, they also have a high dependency on time-
varying and unsteady factors (e.g. power generation and loads). The optimal location
strategies tend to change and adapt to the dynamics of the system. Moreover, with the
exception of the slack bus, every bus in the system turned out to be an optimal location,
at least once. These results indicate that batteries might be useful in every bus of the dis-
tribution grid, but only if each battery is operated in coordination and cooperation with
one another. These insights support the idea of designing local electricity markets. Based
on a reflection of this work, we recommend a market design that retrieves day-ahead and
intraday DSO-reports of the battery operations and the flexibility that is available in the
distribution grid. And also a subsequent structure of market incentives and penalties that
maximizes the value of flexibility while keeping non-optimal operations to a minimum.

In short, this thesis contributes with a novel modelling approach that can shed some
lights on the optimal battery allocation problem for distribution grids. Moreover, it pro-
vides insights on how location affects the value of storage, how optimal locations are
affected by multiple technical factors. And finally, it also provide some reflections on the
need to collectively, cooperatively and coordinately operate the storage resources in the
grid by considering market-based solutions.
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Chapter 1
Introduction, Motivation and
Research Questions

1.1 Introduction

Climate change is a pressing global issue with transcendental consequences for the planet,
the ecosystem and humankind. It is the result of decades of increasing green house gas
emissions without much regard of the effects on the enviroment. Ergo, many nations have
shaped their energy policy strategies so to transition between a carbon-based energy in-
frastructure, into a sustainable one. In this sense, the EU has committed to reduce their
Greenhouse Gas (GHG) emissions up to 80% of 1990 levels by 2050. This ambitious goal
will require that by 2020, the EU energy system consumes 20% of its energy from renew-
able sources [4]. If these goals are to be achieved, the share of RES in the power system
has to increase substantially in the next decades. This transition is happening at a faster
rate than expected in some parts of EU. For example, the penetration of RES in power
grids is now large enough to supply the total demand of a small country, like Denmark, for
a complete day [5]. Nevertheless, the principal challenge associated to renewable energy
generation is the uncontrollable nature of the energy output, leaving the energy scheduling
and demand supply at the mercy of uncertain wind and solar generation patterns.

The success in the implementation of this new energy infrastructure opens the door
to new challenges, mainly, the ability of the future power system to maintain a stable
supply-demand balance. The main question is, how to handle the lack or excess of energy
generation? To address this technological challenge, many alternatives are being consid-
ered to integrate and balance RES. Due to its rapid decreasing costs, battery storage has
emerged as a potential flexibility source to deal with RES. Batteries have experienced a
rapid decrease on its cost, with some predictions noting that it will be a commercially vi-
able technology by 2025 (costing around 200USD per kWh).
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Storage deployment will be essential to reach a high level of RES supply in a future
low carbon energy system. However, many questions surround the operations, deploy-
ment, value, services and benefits of battery technologies. For example, what type of
battery? what size? where the battery should be located in the distribution grid? The use
of batteries in the distribution grid has been investigated (in [6] [7] [8] ), with promising
results. It is also expected that the use of batteries would help to reducing power bottle-
necks in distribution grids. From the end-user perspective, the use of batteries allows to
leverage from more energy coming from RES and also to reduce the electricity expenses
for prosumer households [6].

From the distribution grid perspective, batteries bring benefits but also challenges. The
biggest challenge comes from battery costs, mostly because their fabrication is highly de-
pendent on costly raw materials. Also, as a collateral consequence, the use of electrical
batteries requires the use of Power Electronics (PE), meaning extra costs but also, higher
harmonic pollution in the power system. Nevertheless, the prices of batteries, as any other
technology, are expected to drop significantly according to [1], [2] and [3]. And the use
of storage allows a higher use of renewable energy surpluses, that otherwise would have
been wasted without batteries. Finally, the use of PE components gives the opportunity to
provide reactive power control to the grid, which is already a highly desirable feature.

Since the large deployment of RES will likely be widespread in many distribution
grids, and storage is vital to integrate RES, solving this questions and gaps in knowledge
is critical. In this project, our goal is to try to resolve some of the key gaps presented here.

1.2 Motivation and problem statement
As noted before, the main concern of any power system is to assure the supply-demand
balance, but now it will face the challenge of having intermittent sources as suppliers. To
make this possible, it seems clear that battery storage could play an important role, but
what is yet to be known is what kind of storage technology, and storage deployment strat-
egy will offer the optimal solutions. Therefore, many research efforts have focused on
the type of storage to use, the size of the storage, the distribution of the storage and its
economical advantages/disadvantages.

In [6] a standard model of an average UK home was made to evaluate the value of the
storage for different scenarios, involving wind energy leverage and water heating. There, it
was found that even with some conservative assumptions, the combination of storage and
wind could increase wind energy utilization up to 20% and lead to electricity costs reduc-
tions up to 15%. Yet, the paper uses a stylized model to represent the energy system that
only considers the energy exchanges with no focus on the power flow, the internal home
circuit, the battery dynamics, efficiency limitations, and so on. This approach reduces
substantially the computational effort needed for simulation but also leads to slightly un-
realistic results since the power flow math is key to describe practical problems.
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In [7] its is shown how storage accounts for even more value when distributed gen-
eration units are present (as wind, solar, biomass, etc). Although, this study focus on a
University Campus, which is a rather large user compared to a typical household.

In [8], a detailed battery model that allows real time control, is presented. Here, the
results show that the battery losses can be reduced up to 30% just by considering the de-
tailed model of the battery. This model was used to analyze the performance of a central-
ized predictive-control scheme, for distributed battery storage. However, a decentralized
strategy was not covered.

Moreover, there are still many approaches to try and that are yet not found in the the
literature. There are gaps to cover in the mentioned papers, for instance, could a more
detailed grid model that contains power-flow features and other technical details, reach
the same conclusions? Or, how optimal sizing and sitting for storage would affect these
results? Also, how much of the storage value was underestimated due to simplifications?
These questions are some of the many still unanswered in the literature.

In this project, we try to address similar questions but with strong focus on having
a more detailed model to find the sizing and sitting of batteries in a distribution grid.
In such a manner, it is our desire to retrieve valuable knowledge from our efforts and
substantially contribute to take us one step forward in the construction of a sustainable,
green and prosperous future, for generations to come.

1.3 Research Questions and Objectives
The objective of this thesis is to understand the role of battery storage in increasing the
penetration of RES in distribution grids. It seems that sooner or later, more users might
install, or increase the capacity of, their own storage. Yet, unplanned deployment of stor-
age might not be the best scenario for DSO. User-own storage operated on a single-sided
way, with its own objectives and with no cooperation with the rest of the system can lead
to more congestion, voltage imbalance and low energy quality. On the other hand, stiff
regulations for storage will prevent the full exploitation of storage value, leading to the
under-utilization of RES and stagnation of the transition process. Both scenarios are un-
wanted and preventable. The first step to avoid them, consist on executing research that
provides a deep understanding of the problem. With such groundwork established, DSOs
will be able to design business models, policies and markets that benefit all players and
the environment.

Ergo, this project’s goal is to address some of the research gaps in the literature within
battery location for distribution grids. Exciting answers may appear by looking for optimal
and cost-effective strategies to deploy batteries while taking into account power flows. The
complexity of such a study requires a breaking-down approach to tackle it appropriately.
As a result, this thesis, was designed to: First, carry out these studies in a small and simple
distribution system, to understand how the battery operates and how much value it adds.
For this, we built our own python-based tool, which describes a linear optimization model
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that minimizes the operational costs for the DSO, considering power flows and other tech-
nical constraints. Second, to extend this model-software infrastructure to fit a larger IEEE
33-bus system, from which the most important and final remarks of this project will be
extracted.

Research question
In this sense, the following research questions are devised as steps and orientation points
to guide this investigation:

How to define cost-effective strategies to deploy batteries in a
medium voltage grid?

Sub-questions:

1. What influences the battery location and sizing decisions in a distribution grid?
What is the role of battery services for RES balancing and energy arbitrage in sit-
ting/sizing decisions?

2. How do the technical limits of the power grid influence the allocation of storage?

3. From the DSO perspective, which are the implications of widespread battery storage
deployment in the power grid?

Concerning these questions: First, it is expected that batteries will improve the per-
formance of the system, mainly because batteries will schedule charging and discharging
to store and discharge power whenever is the cheapest, optimizing the utilization of en-
ergy. Nevertheless, investment in batteries is taking time partially because batteries are
expensive. Despite the recent and projected drop in prices, investing in batteries requires
certainty over the return on investment. So, measuring how much savings batteries can
provide in the long term is a straightforward way to find this out. Second, we know from
the literature that when deploying batteries, there are optimal solutions and they depend
on size as well as location. But, a remaining question is what makes certain buses optimal
locations? And, for different circumstances, is there a familiar pattern among the optimal
solution strategies?

Third, batteries are not only going to operate with the goal to achieve revenues but
also, to make sure the grid operates under its security limits. Therefore, batteries will
be subscribed to the same constraints as the system, and that raises the question of how
these constraints will affect the solution. Are optimal locations determined solely by loads,
generation and prices or, also by technical limitations? And fourth, with the drop in stor-
age prices, improving battery technology and economical governmental incentives, the
chances are that end-users quickly become prosumers and storage holders. That, com-
bined to the increased presence of EVs and other flexibility options make possible the idea
of flexibility markets, where these flexibility services will be traded among all the players
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involved, thus optimizing the resources available and increasing the economical and soci-
etal value of flexibility. That said, DSOs have to asses the impact of thousands of players
stepping in and exchanging power with the grid or effectively disconnecting from the grid
whatsoever, which are, so far, highly undesired scenarios. Then, which are the ramifica-
tions of these developments for the DSO ? what are the best strategies the DSO can take
to adapt? These are some of the multiple inquiries yet to answer and it is the objective of
this thesis project to solve them.

Thesis Structure

As an outline, the order of chapters goes as follows:

• Chapter 1: Motivations and Research Questions (this chapter).

• Chapter 2: The literature review is developed.

• Chapter 3: The problem formulation and definition of the small 3-bus example is
carried out.

• Chapter4: The implementation of the optimization model to the IEEE 33-bus system
and the main results.

• Chapter 5: A sensitivity analysis of the IEEE 33-bus system is carried out with
discussion of the results.

• Chapter 6: Conclusions.
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Chapter 2
Literature Review

As mentioned before, the ongoing integration of RES in power systems make essential
the diversification of flexibility services. To provide this, demand side response, load
shedding, curtailment, energy storage and other strategies are being discussed as poten-
tial options. Moreover, battery storage is on its way to become one of the key solutions
to supply flexibility in the future grid, yet there still are many considerations to be taken
before its fully implementation. One of the most important questions to be solved is how
to optimally place and size storage; a problem that can be referred as Optimal Distributed
Storage Placement (ODSP). To find answers for the ODSP, several studies with different
angles of approaches have been carried out. This literature review presents an overview of
relevant previous work in this field and discusses the different approaches to the problem,
with a summary of the research gaps covered in this thesis shown at the end of the chapter
in Figure 2.1.

2.1 Previous Approaches

Importance of Electricity Storage
This section covers related literature on why storage is so important and must be used.
Literature shows consensus around the ideas that: first, in the near future there will be
need for storage. Second, batteries are rather expensive, so benefits from them system
will be achieved only if battery sizing and sitting is optimal. This optimal solutions have
been shown to exist, and the methods to achieve them are various and different in approach.

As an example of the importance of storage, in [9] it is shown that the value of
storage increases with tighter carbon emission policies. Also, that under strict carbon-
emission limits, storage enables greater penetration of low-cost carbon-free resources and
that longer duration storage increases the share of wind more than the share of solar. Con-
cluding that, effective storage implementation will notably benefit the integration of RES
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(Renewable Energy Sources) in the power grid. Furthermore, in [10] an infinite horizon
average cost stochastic dynamic program to find the optimal sizing of energy storage to-
wards RES integration. Results show that the optimal storage management policy has a
simple dual threshold structure and that storage marginal value decreases with size. This
study presents useful insights and suggests that the system will obtain the most benefit
from storage when optimal sizing is in place.

Similarly, in [11] the impact of stochastic wind generation and DBS (distributed bat-
tery storage) in the distribution grid is studied. Stochastic wind generation and storage
participation influenced an improvement of the voltage profile and also a significantly pos-
itive impact on the resistive losses and expected system cost. This study suggests a strong
correlation between an improved power system performance, RES leverage and storage
participation.

Storage Technologies

There are many storage technologies available, and they can be basically divided based
on their capacity to provide energy services, or power services. For instance, storage in-
stallations based on Flywheel perform very good when providing ’power services’, i.e,
releasing or absorbing large amounts of power in little time. Whether batteries, are much
better on providing energy services, i.e. absorbing, storing and releasing large amounts of
energy for longer periods of time. Power services are fundamental to control frequency
and maintain stability; energy services are vital to ensure grid balance in the long term.

Nevertheless, it was shown that the type of technology is not a compulsory constraint
for the election of the storage, and that optimal sitting and sizing solutions can remain
valid for a diverse portfolio of technologies. Likewise, in [12] storage sizing and siting is
optimized for a a given portfolio of storage technologies in two cases, with fixed-function
portfolio and with optimal-function portfolio. It was found that storage allocation depends
not only in the network properties but also in the storage technology. For example, de-
pending on the congestion in the grid and the storage technology mix, optimal solutions
can be found where storage technologies perform both, energy and power services. Hence,
storage allocation and sizing should not be strongly limited by the type of technology to
be used.

Allocation Based on Topology Options

This section reviews papers regarding allocation options for storage. Storage can be al-
located either in a centralized or a distributed way. Centralized approaches allows easier
control from the TSO/DSO, but decentralized approach results in more renewable energy
utilization and less congestion. To find which approach brings up the most advantage sev-
eral papers have been done, as for example in [13] an interesting approach pro-centralized
allocation have been done, proposing an interval model to quantitatively analyze and asses

16



the impact boundaries of uncertainties on node voltages and further applying it to central-
ize storage optimal location. This model can accurately map the relationships between
uncertainties and node voltages. Optimal solutions for centralized storage allocation can
be found when these uncertainty-voltage relationships are taken into account. Also, in [14]
a Multi Period OPF to optimize sizing and sitting of storage in LV grids is made, resulting
in distributed allocation of storage as the best topology in comparison with centralized
allocation. This is due mainly to the greater utilization of DG resources like PV or Wind.

The ODSP problem might be new, but similar problems have been studied before. The
problem to optimally size and allocate distributed generation is rather similar to the ODSP
and from there, relevant knowledge can be obtained. For instance, in [15] a review of the
most relevant studies for DG sizing/placement is done, with an analysis of contributions
of each study and evaluation of their advantages and disadvantages. There, it is shown that
in the ODGP (Optimal distributed generation placement) problem, the strategies used are
either Analytical, Numerical or Heuristical. For instance, in [16], [17] and [18] an heuris-
tic, analytical and numerical approach were carried out respectively to solve the ODGP
problem. Consequently, in the ODSP the trend is very similar and so far it can be observed
the predominant abundance of heuristic methods, just like happened in the ODGP problem.

Sitting and Sizing Approaches
On the grounds of this, one interesting question to be asked is: What are the optimal lo-
cations and capacities for storage in a power system?. The way to answer that question
depends on the objective desired and there can be many different objectives to aim for
the optimization, like voltage control, minimal losses, maximum RES utilization, among
others. This section reviews relevant sitting and sizing optimization approaches within the
literature.

In the literature, the are three main approaches: First, to find the optimal size regardless
of location. Second, to find optimal sitting and/or sizing by means of setting a global
storage capacity and then allocate this capacity in a distributed manner among the nodes
of the system. Then, when sizing is required, the size of each ESS is chosen based on
the optimal percentage of the total capacity assigned to each node. Third, to find optimal
sitting/sizing, first defining a given battery size and then changing the battery position
on every simulation run, either manually or by means of heuristic approaches until all
the available solutions are covered or a certain tolerance is fulfilled. The three methods
are sub-categorized as ’Sole-Sizing’, ’Optimal Capacity Allocation’ and ’Try and Error
Allocation’ respectively.

Sole Sizing

The sole-sizing approach is not so common but it accounts for several works. For instance,
the study made in [19] presents a model for determining the optimal size of an ESS in a
microgrid (MG). An expansion planning problem is proposed to consider the investment
cost of ESS, as well as operating cost of the MG. The numerical studies reveal that a larger
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storage system does not necessarily provide larger economical benefits. This study gives
clear remarks regarding storage size and the need for finding models to optimize it.

Optimal Capacity Allocation

This is a very common approach, found in most of the literature, due to its easy imple-
mentation and somewhat low computational requirement. For example, in [20], show the
influence of the local marginal prices (LMP) on the charging and discharging dynamics,
finding that storage allocation and operation is driven by the incremental profit that an
ESS installation can amass at a location for a given operating horizon. In such manner,
this contribution consists in displaying how dynamic geographically-dependant pricing
structure shape storage value, optimal size and optimal allocation. Furthermore, in [21]
an unit commitment (UC) heuristic approach is proposed in 3 stages for a transmission
network. It is demonstrated that the heuristic resulting from the decomposition used, does
not cause a significant loss of optimality. The contribution of this method is to take into
account both, the economic and the technical aspects of the sizing and sitting problem.
This is a prudent approach knowing that energy storage feasibility will be dependent on
both aspects. It is noteworthy to remember that this study considers only HV networks,
leaving room for similar studies in MV/LV networks. As it can be noted, the complexity
of the problem made the use of heuristic approaches very common, as in [22], where an
optimal energy storage control algorithm is proposed to develop a heuristic procedure for
energy storage placement and sizing.

Moreover, in [23] an optimal placement of storage is performed, within the full AC-
OPF framework with both conventional and wind generation. Results show that changes
in optimal storage siting congurations remain fairly consistent regardless of the generation
mix and these outputs are robust to changes in total storage capacity and transmission line
limits. Also, results might indicate that siting decisions made for the current (or planned)
transmission grid may remain valid even if the generation portfolio or total storage capac-
ity changes over time.

In [24] a compelling approach is made, where the optimal placement of storage is pur-
sued. A continuous tree definition of a distribution radial grid with DistFlow model is
used to locate the optimal locations and the value of storage in the system with the ob-
jective to minimize energy losses. There, it is shown that optimal storage locations tend
to be at the ”leaves of the tree” (edges of the structure, away of the substations) and that
the storage placement strategy allocates storage only after a certain threshold point in the
grid is reached, from which storage is allocated in every node. Also, the value of storage
increases from the substation towards these threshold points, and then it equalizes from
those points onward everywhere in the grid. This suggests the existence of structural prop-
erties regarding storage allocation and value, that can be later studied in deep.

Also, in [25] it is proposed and discussed the use of the alternative direction method of
multipliers in order to define an efficient algorithm capable to treat large-scale networks
whilst finding an optimal solution. From the results it is noted how the proposed process is
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capable to allocate each ESS by distinguishing their influences on various network param-
eters. It can be concluded that the proposed process can be used by DNOs to evaluate the
possible use of ESSs as a valid alternative to investments in grid reinforcement or massive
telecom infrastructure for direct DG control.

Try and Error Allocation

This method is also common because it finds locations based on many simulations and
less computational effort. The investigation done in[26] uses Optimal placement of the
energy storage units within a deregulated power system to minimize its hourly social cost.
A business model is developed to evaluate the economics of the storage system based on
the energy time shift opportunity from wind generation. Results show that optimal storage
distribution allows the effective utilization of the transmission capacity for wind power
integration while satisfying the transmission constraints of the lines connected to the wind
generating bus. The case studies demonstrate that distributed storage systems increase net
arbitrage revenues. For the present overview, it is noted that this study makes a valuable
contribution for ODSP but from the transmission level perspective, leaving room for sim-
ilar research from LV and MV perspectives.

Storage experiences at the Grid Level
In the literature, most of the storage sitting and sizing is done for transmission grids. For
instance, in [27] a method for storage sizing and siting is developed for a transmission net-
work, using heuristic approximations to find feasible but not necessarily optimal solutions.
Here, three stages are defined, first the optimal locations are found. Second, the ESS are
located accordingly and the optimal sizes for these locations are found. Third, simulations
are an and a comparison is made with stage one. An example for MV grids is found in
[28], where a methodology is proposed for optimally allocating ESS in distribution sys-
tems with a high penetration of wind energy. Results show that integrating ESS units for
the proposed application is economically feasible when the least expensive ESS is used,
although this approach does not take into account other ESS services that might lead to
more promising results. In addition, there was no use of adequate variables (like binary,
for instance) to allocate ESS optimally in that approach. What’s more, there are many
more examples of ODSP studies on transmission ([12]) and distribution ([6][13][15]) but
there are not as many studies for MV or LV grids. One of the few is shown in [29], where
a Model Predictive Control (MPC) strategy is used to create strategies for optimal storage
placement and sizing in Low voltage grids. As longer prediction horizons lead to better
storage placement but higher computational complexity, benders decomposition is used
to reduce this complexity. With the aim to maximize PV utilization, and given that MPC
exploits better the value of forecast information, it is found that the economic value of
battery storage is higher when using MPC rather than heuristic storage control strategies.
Nevertheless, most of the available publications on LV or MV have focus on brute force
approaches or capacity allocation rather than proper ESS sitting.
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2.2 Proposed Approach
Finally, it is important to know that all these approaches and strategies return meaning-
ful and useful insights, but they also have weaknesses. In the sole-sizing approach, the
allocation is assumed regardless of any optimality consideration. In the optimal capacity
allocation the main disadvantage lies on the impossibility for the industry to size storage
in accordance to any given percentage, at least not for the application intended. In the
try-and-error approach, the disadvantage lies on the computational time it takes to change
the battery in every node, and the infinite possibilities when considering a group of opti-
mal batteries instead of just one. In this project, the aim is to find a midpoint between the
two main approaches listed before, meaning that the intention is to allocate any number of
pre-sized batteries in a system in order to optimize the objective function.

Binary Sitting
This objective can be achieved by means of binary variables used to allocate the batteries,
an approach that has not been fully explored before in the field. Moreover, another goal
in this project is to pursue a sensitivity analysis with the proposed sitting method for a
distribution grid and thoroughly analyze the results. A summary of the main ideas and
conclusions collected in this review can be seen in figure 2.1

Figure 2.1: Summary

In this sense, it is the goal and the intended contribution of this work to formally de-
fine an analytical approach that optimally allocates pre-sized ESS with real capacities in
a MV grid. With a solution method based on binary variables functioning as decision
variables for locations, a local linearization for the power flow equations, local marginal
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dynamic prices, physical and economical constraints within a multi-period mixed integer
linear programming problem. The results of this work will be thoroughly analyzed to shed
some lights in the ODSP problem.
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Chapter 3
Problem Formulation and Small
Example

The thesis will employ the IEEE 33-bus system with some modifications to test the op-
timization algorithms for battery sitting decisions and operations. To initially understand
the sitting problem and the operations of the battery in a multi-period setting, the first for-
mulation will be done for a smaller system, comprised by just 3 buses. The insights and
experiences attained with the 3 bus ’toy’ system will be used to later tackle the 33 bus sys-
tem. In this chapter, the theoretical and mathematical formulation of the toy problem are
described in detail. For those purposes, the toy system was mathematically modeled at first
with energy-based expressions and later the toy system was slightly modified and modeled
with power flow expressions. All the modeling in this project is done using python-based
optimization scripts. The details of both models are described in this chapter.

3.1 Energy-based Formulation

The toy problem scheme can be seen in Figure 3.1. The energy exchange with the grid
results in costs or revenues for the system, as the import of energy produces a cost and
the export produces a revenue. The goal of this optimization is to minimize the imported
energy from the grid and to maximize the exported energy. The model formulation is a
mixed integer non-linear integer problem with multi-period optimization features. The
planning horizon is one day or one week.
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Figure 3.1: Toy System scheme 1

Toy Problem Components
Grid

The grid consist of the slack bus that will provide or absorb any imbalance in the system.
All the energy imported from the grid will result in costs, and all the energy exported will
result in revenues. The optimization function is designed such as to minimize imports and
maximize exports.

PV System

The PV system is located at bus 3 and with the aid of the battery it provides the energy to
the load when solar power is enough. When there is not enough solar power, the battery
and the power coming from the line feed the load. The solar energy provided by this
PV system is a dynamic parameter that will variate according to a deterministic forecast
for a given scenario. This behavior will force the battery to schedule its charging and
discharging operations according to the availability of solar energy and the needs of the
load. It is defined as PPV gen(t).

Battery

The Battery stores PV energy surplus for later use. The optimization will be done period
by period, resulting in a set with the optimal battery charging and discharging decisions.
The battery charging and discharging dynamic depends upon the equation 3.8 which de-
scribes the relation between the state of charge (SoC) of the current period, the SoC of the
previous period, the charging rate (Batin), discharging rate (Batout) and minimum state
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of charge (SoCmin). State of Charge is limited to the maximum battery capacity, as well
as the charging and discharging rates are limited by physical constraints (3.9, 3.11 and
3.12 respectively). This equation is energy-wise, which is the reason why the time period
t is multiplied by the power quantities.

SoC(t) = SoC(t−1) −Batt(t)disch ∗
1

ηdisch
+Batt

(t)
ch ∗ ηch (3.1)

SoC(t) ≤ BattMaxCapacity (3.2)

SoC(t) ≥ SoCmin (3.3)

Batt
(t)
charge ≤ BatChmax (3.4)

Batt
(t)
discharge ≤ BatDchmax (3.5)

Line

The function of the line is to transfer the energy between buses. Hence, two variables will
describe the line, one to represent the flow from node 2 to node 3 and one to represent the
flow from node 3 to node 2.

Flow
(t)
L23 ≤ LineLimit (3.6)

Flow
(t)
L32 ≤ LineLimit (3.7)

∀t ∈ T

Energy Balance Equations

Therefore, taking the above equations, the energy balance equations are derived for both
nodes, as seen in Eq. 3.8 and 3.9.

For Node 2,

G
(t)
import + Flow

(t)
L32 +Batt

(t)
discharge = G

(t)
export +Batt

(t)
charge + P

(t)
LoadA + Flow

(t)
L23 (3.8)

And Node 3,

P
(t)
PV gen + Flow

(t)
L23 = P

(t)
LoadB + Flow

(t)
L32 (3.9)

∀t ∈ T
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Optimization Definition

Now the optimization function can be defined, with all the above equations as constraints.
As aforementioned, the objective is to maximize the benefits from the energy exchange
with the grid, as mathematically expressed in equation 3.10.

Fopt =Min

T∑
t=1

[
Price

(t)
Import ∗G

(t)
import − Price

(t)
Export ∗G

(t)
export

]
(3.10)

s.t.

SoC(t) = SoC(t−1) −Batt(t)disch ∗
1

ηdisch
+Batt

(t)
ch ∗ ηch (3.1)

SoC(t) ≤ BattMaxCapacity (3.2)

SoC(t) ≥ SoCmin (3.3)

Batt
(t)
charge ≤ BatChmax (3.4)

Batt
(t)
discharge ≤ BatDchmax (3.5)

PLine
(t)
23 ≤ LineLimit (3.6)

PLine
(t)
32 ≤ LineLimit (3.7)

G
(t)
import+Flow

(t)
L32+Batt

(t)
discharge = G

(t)
export+Batt

(t)
charge+P

(t)
LoadA+Flow

(t)
L23 (3.8)

P
(t)
PV gen + Flow

(t)
L23 = P

(t)
LoadB + Flow

(t)
L32 (3.9)

The expected outcome of this optimization is a set of multi-period variables that define
the optimal schedule that the battery has to follow in order to maximize revenues from the
energy exchange with the grid.

3.2 Power-Based Formulation
Here, the power flow equations of the system will be added to upgrade the previous prob-
lem formulation. Now, with the addition of power flow equations the problem evolves in
complexity and the quantities have to be power-based instead of energy-based. To adapt
the previous formulation to power flow considerations, several constraints will go through
minor changes as it will be shown below. The power flow equations to be used are the
classical power system’s analysis equations described in the literature [30]. Also, as the
IEE 3-bus system served as an inspiration and a source of data, the toy problem scheme
went through some topology changes, which can be seen in Figure 3.2.
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Table 3.1: Parameters used in Formulation

Parameter Description Units
t Time Period of Simulation Hours,Half-hours, Minutes
T Time Horizon of Simulation Hours,Half-hour, Minutes
ηCh Battery Charging Efficiency %
ηDisch Battery Discharging Efficiency %

BattMaxCapacity Battery Maximum Energy Capacity kWh
SoCmin Battery Minimum Allowed State of Charge kWh

Price
(t)
Import Price to pay for kWh imported from the grid NOK/kWh

Price
(t)
Export Price earned per kWh exported to the grid NOK/kWh

BattChmax Battery Maximum Charging Rate kWh
BattDchmax Battery Maximum Discharging Rate kWh
LineLimit Maximum Line Energy Thermal Limit kWh
P

(t)
LoadA Dynamic Load in Bus 1 kWh

P
(t)
LoadB Dynamic Load in Bus 2 kWh

P
(t)
PV gen Solar PV System Generated Power kWh

Table 3.2: Variables used in the Formulation

Variable Description Units
G

(t)
import Energy Import from the grid per period kWh

G
(t)
export Energy Export to the grid per period kWh

SoC(t) State of Charge of the Battery for each period kWh
Batt

(t)
charge Battery Charging Energy per period kWh

Batt
(t)
discharge Battery Discharging Energy per period kWh

Flow
(t)
L23 Line Energy Flow from node 2 to node 3 per period kWh

Flow
(t)
L32 Line Energy Flow from node 3 to node 2 per period kWh

Toy Problem Components

Bus 1

Bus 1 represents the slack bus. Here is where we exchange power with the grid, whether
importing or exporting. P1 is the net injected power in bus 1; Pimport and Pexport are the
total imported and exported power between the system and the rest of the grid. When P1

is positive, the system is importing power from the grid. When it is negative, the system is
exporting power to the grid. Pimport and Pexport are both always positive and limited by
the thermal limits of bus 1. Also, the reactive load required by the system will be supplied
by the slack bus.

P
(t)
1 = P

(t)
import − P

(t)
export (3.10)
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Figure 3.2: Toy System scheme 2

Pmin ≤ P (t)
1 ≤ PMax (3.11)

Qmin ≤ Q(t)
1 ≤ Qmax (3.12)

Bus 2

The battery is placed in this bus. Also, an active and a reactive load are located here. Thus,
the total injected power in bus 2 is shown below. Pch and Pdisch represent the charging
and discharging power flows coming in and out of the battery, respectively.

P
(t)
2 = P

(t)
disch − P

(t)
LoadB − P

(t)
ch (3.13)

Q
(t)
2 = −Q(t)

Load (3.14)

Bus 3

Bus 3 has a PV system and a load. The total injected power equation is shown below.
P

(t)
pv is the power injected by the solar PV system at any given time. Zero reactive power

generation or consumption is assumed in this bus.

P
(t)
3 = P (t)

pv − P
(t)
LoadA (3.15)

Q
(t)
3 = 0 (3.16)
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Battery

The battery is located at bus 2 and its modeling is described with the equation shown
below. SoC(t) represents the state of charge of the battery and ηch, ηdisch represent the
efficiencies of charge and discharge respectively.

SoC(t) = SoC(t−1) − P (t)
disch ∗ (t) ∗

1

ηdisch
+ P

(t)
ch ∗ (t) ∗ ηch (3.17)

SoC(t) ≤ BattCapacity (3.18)

SoC(t) ≥ SoCmin (3.19)

P
(t)
ch ≤ P

(ch)
max (3.20)

P
(t)
disch ≤ P

(disch)
max (3.21)

Power Flow

P(t)
i =

∑N
j=1 Yij

[
V

(t)
i ∗ V (t)

j cos (δ
(t)
i ) ∗ cos (δ(t)j + θij) + V

(t)
i ∗ V (t)

j sin (δ
(t)
i ) ∗ sin (δ(t)j + θij)

]
(3.22)

Q(t)
i =

∑N
j=1 Yij

[
V

(t)
i ∗ V (t)

j ∗ sin (δ(t)i ) ∗ cos (δ(t)j + θij)− V (t)
i ∗ V (t)

j ∗ cos (δ(t)i ) ∗ sin (δ(t)j + θij)

]
(3.23)

Subject to voltage limitations,

Vmin ≤ V (t)
1 ≤ Vmax (3.24)

Vmin ≤ V (t)
2 ≤ Vmax (3.25)

Vmin ≤ V (t)
3 ≤ Vmax (3.26)

Linearization of Power Flow Equations
Since the computational solving of the given equations can be quite demanding, it is com-
mon practice to approximate them into a linear form. Here, this is done using local lin-
earization. In other words, using first order Taylor series. Hence, Taylor series mathemat-
ical expression can be seen in equation 3.27.

F (x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0) (3.27)

F (x) : The linear version of the original function
f : The function to be linearized
n : The order of the derivative
x : The variable of the function f
x0 : The operational point of the linearization
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Now, if we reshape the power flow equations 3.13 and 3.14, grouping a set of variables
and making them linear, the result will look like equations 3.28 and 3.29,

P
(t)
i =

N∑
j=1

Yij

[
f
(t)
ijA + f

(t)
ijB

]
(3.28)

Q
(t)
i =

N∑
j=1

Yij

[
g
(t)
ijA + g

(t)
ijB

]
(3.29)

Where,

f
(t)
ijA = Vi(t) ∗ V (t)

j ∗ cos (δ(t)i ∗ cos (δ
(t)
j + θij)

f
(t)
ijB = V

(t)
i ∗ V (t)

j ∗ sin (δ(t)i ∗ sin (δ
(t)
j + θij)

g
(t)
ijA = V

(t)
i ∗ V (t)

j ∗ sin (δ(t)i ) ∗ cos (δ(t)j + θij)

g
(t)
ijB = −V (t)

i ∗ V (t)
j ∗ cos (δ(t)i ) ∗ sin (δ(t)j + θij)

Therefore, we want f1i, f2i, g1i and g2i to be linear around the working point x0 which
is represented by the following per unit values:

(Vi0, Vj0, δi0, δj0) = (1, 1, 0, 0)

If the method proposed is applied, each linear equation can be generally named hm
and its linearization is solved as follows:

hm = h(Vi, Vj , δi, δj)

hm0 = h(Vi0, Vj0, δi0, δj0)

hm = hm0 +K1(Vi − 1) +K2(Vj − 1) +K3(δi) +K4(δj)

Where:

K1 =
∂h

∂Vi

∣∣∣
m=m0

K2 =
∂h

∂Vj

∣∣∣
m=m0

K3 =
∂h

∂δi

∣∣∣
m=m0

K4 =
∂h

∂δj

∣∣∣
m=m0

Hence, by applying the previous methodology we can linearize the power flow equa-
tions by linearizing the group of equations f1i, f2i, g1i and g2i, and the resulting equations
are:
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F
(t)
ijA = cos θij + cos θij ∗ (V (t)

i − 1) + cos θij ∗ (V (t)
j − 1)− sin θ

(t)
ij ∗ (δ

(t)
j ) (3.30)

F
(t)
ijB = sin θij ∗ (δ(t)i ) (3.31)

G
(t)
ijA = cos θij ∗ (δ(t)i ) (3.32)

G
(t)
ijB = −

[
sin θij + sin θij ∗ (V (t)

i − 1)+ sin θij ∗ (V (t)
j − 1)+ cos θij ∗ (δ(t)j )

]
(3.33)

Therefore, the linear power flow equations will be:

P
(t)
i =

N∑
j=1

Yij

[
F

(t)
ijA + F

(t)
ijB

]
(3.34)

Q
(t)
i =

N∑
j=1

Yij

[
G

(t)
ijA +G

(t)
ijB

]
(3.35)

Which, result in the linearized form of the power flow equations:

P(t)
i =

∑N
j=1 Yij

[
cos θij + cos θij ∗ (V (t)

i − 1) + cos θij ∗ (V (t)
j − 1)− sin θij ∗ (δ(t)j ) + sin θij ∗ (δ(t)i )

]
(3.36)

Q(t)
i =

∑N
j=1 Yij

[
cos θij ∗ (δ(t)i )− cos θij ∗ (δ(t)j )− sin θij − sin θij ∗ (V (t)

i − 1)− sin θij ∗ (V (t)
j − 1)

]
(3.37)

Optimization Definition
Now, the objective function to be defined will maximize the benefit from the power ex-
change with the grid at bus 1. This means that the idea is to minimize power import and its
resulting costs, and to maximize power export and its resulting revenues. In this sense, the
objective function is presented in equation 3.38. This definition resembles the one given in
the previous section, yet it is worthy to remember that the power flow now introduces new
variables and parameters (like voltages and admittance angles) and that all the relevant
output values and the given data are now defined as power and not energy. Moreover, all
these power variables and parameters are given in per unit values, for simplification.

Fopt =Min

T∑
t=1

[
P

(t)
import ∗ price

(t)
import − P

(t)
export ∗ price

(t)
export

]
(3.38)

s.t.

P
(t)
1 = P

(t)
import − P

(t)
export (3.1)
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Pmin ≤ P (t)
1 ≤ PMax (3.2)

Qmin ≤ Q(t)
1 ≤ Qmax (3.3)

P
(t)
2 = P

(t)
disch − P

(t)
LoadB − P

(t)
ch (3.4)

Q
(t)
2 = −Q(t)

Load (3.5)

P
(t)
3 = P (t)

pv − P
(t)
LoadA (3.6)

Q
(t)
3 = 0 (3.7)

SoC(t) = SoC(t−1) − P (t)
disch ∗ (t) ∗

1

ηdisch
+ P

(t)
ch ∗ (t) ∗ ηch (3.8)

SoC(t) ≤ BattCapacity (3.9)

SoC(t) ≥ SoCmin (3.10)

P
(t)
ch ≤ P

(ch)
max (3.11)

P
(t)
disch ≤ P

(disch)
max (3.12)

P(t)
i =

∑N
j=1 Yij

[
V

(t)
i ∗ V (t)

j cos (δ
(t)
i ) ∗ cos (δ(t)j + θij) + V

(t)
i ∗ V (t)

j sin (δ
(t)
i ) ∗ sin (δ(t)j + θij)

]
(3.13)

Q(t)
i =

∑N
j=1 Yij

[
V

(t)
i ∗ V (t)

j ∗ sin (δ(t)i ) ∗ cos (δ(t)j + θij)− V (t)
i ∗ V (t)

j ∗ cos (δ(t)i ) ∗ sin (δ(t)j + θij)

]
(3.14)

Vmin ≤ V (t)
1 ≤ Vmax (3.15)

Vmin ≤ V (t)
2 ≤ Vmax (3.16)

Vmin ≤ V (t)
3 ≤ Vmax (3.17)

In Figure 3.3 the operations for 24 days are given for the reference case, with and
without battery. And in Figure 3.4 the total cost reduction is shown. Clearly, the battery is
scheduling operations according to changes in price and thus enhancing the overall perfor-
mance of the system. By smoothing RES surplus and exerting net arbitrage, it is reducing
the operational costs of the system for about 25 %.

There are four major insights to recall from this chapter. First, breaking the problem
into smaller challenges allows its modeling with very simple equations that can easily be
upgraded to more complex, general versions. Second, a smaller version of the problem
provides deeper understanding of where the boundaries of accuracy for the equations are,
and what challenges might be encountered when modeling more complex systems. Third,
the linearization of power flow equations and any non linear constraint is of paramount
importance, since the computational effort to tackle non-linear equations is remarkably
high and requires powerful hardware. Fourth, the dynamic correlation between prices, load
profiles, generation profiles, topology and physical constraints is not easily observable in
big systems. A bottom-up approach like this will increase the capacity to understand how
these variables interact and influence the outcome. These insights will be applied in the
next chapter, where a similar problem definition will be constructed for the IEEE 33 bus
system, followed by results and further analysis.
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Figure 3.3: Operations for 24 hours
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Figure 3.4: Operational Costs for both cases
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Chapter 4
Implementation to IEEE 33-Bus
System: Sitting Definition and Base
Case

Using the procedures and lessons developed in the previous chapters, the model will be
now upgraded to the IEEE 33 bus distribution system.

Figure 4.1: Distribution Power System scheme

4.1 Model: IEEE 33 bus system
The IEEE 33 bus system is well known in the literature and its topology can be seen in
Figure 4.1. Some example studies using the same topology can be found in [31] and
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[32]. In this implementation, bus one will represent the slack bus, which is connected to
a strong grid. Then, renewable generation-like solar panels-, is added in different buses of
the system. Finally, a tailored made python script is used to find the optimal buses where
the installation of a ESS (energy storage system) will result in the largest revenues, taking
into account economic and physical limits.

4.2 Mathematical Formulation

Power Flows

The system topology is described in the admittance matrix and the power flow is described
using the classical equations shown below 4.1,4.2. This is for any system with any number
of buses. As explained in previous chapters, a linearized version of the power flow equa-
tions is needed, and their derivation was shown in Chapter 3. In 4.3 and 4.4 the linearized
versions used for the 33 bus system can be seen.

P(t,i)
i =

∑N
j=1 Yij

[
V

(t,i)
i ∗ V (t,i)

j cos (δ
(t,i)
i ) ∗ cos (δ(t,i)j + θij) + V

(t,i)
i ∗ V (t,i)

j sin (δ
(t,i)
i ) ∗ sin (δ(t,i)j + θij)

]
(4.1)

Q(t,i)
i =

∑N
j=1 Yij

[
V

(t,i)
i ∗ V (t,i)

j ∗ sin (δ(t,i)i ) ∗ cos (δ(t,i)j + θij)− V (t,i)
i ∗ V (t,i)

j ∗ cos (δ(t,i)i ) ∗ sin (δ(t,i)j + θij)

]
(4.2)

Which, result in the linearized version of the power flow equations:

P(t,i)
i =

∑N
j=1 Yij

[
cos θij + cos θij ∗ (V (t,i)

i − 1) + cos θij ∗ (V (t,i)
j − 1)− sin θij ∗ (δ(t,i)j ) + sin θij ∗ (δ(t,i)i )

]
(4.3)

Q(t,i)
i =

∑N
j=1 Yij

[
cos θij ∗ (δ(t,i)i )− cos θij ∗ (δ(t,i)j )− sin θij − sin θij ∗ (V (t,i)

i − 1)− sin θij ∗ (V (t,i)
j − 1)

]
(4.4)

Power Net Injections

As the equations used in the script are automatized and able to model any system with any
number of buses, the definition of power injection in all the buses is made by a general
equation. This is done by defining matrix variables and parameters, that are initialized, in-
dexed and/or computed in accordance with time steps, buses and even different scenarios.
The general equations for power injection in all buses can be seen below.

P
(t,i)
i = P

(t,i)
Gen − P

(t,i)
Load + P

(t,i)
RES + P

(t,i)
Battery (4.5)

Q
(t,i)
i = Q

(t,i)
Gen −Q

(t,i)
Load +Q

(t,i)
RES (4.6)
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Grid Connection
As in previous chapters, here the bus 1 represents the slack bus. The slack bus is connected
to the strong grid, thus serving as reference and power support for the system. P1 is the net
injected power in bus 1; Pimport and Pexport are the total imported and exported power
between the system and the grid. When P1 is positive, the system is importing power
from the grid, when it is negative, the system is exporting power to the grid. Pimport and
Pexport are both always positive and limited by the thermal limits at bus 1. In addition,
the system’s reactive power requirement will be satisfied by the grid, thus they will be
modelled as reactive generation at the slack bus. The equations describing this features
are,

P
(t)
1 = P

(t)
import − P

(t)
export (4.7)

Pmin ≤ P (t)
1 ≤ PMax (4.8)

Q
(t)
1 = Q

(t)
import −Q

(t)
export (4.9)

Qmin ≤ Q(t)
1 ≤ Qmax (4.10)

Battery
The battery’s modelling is described here. SoC(t) represents the state of charge of the
battery and ηch, ηdisch represent the efficiencies of charge and discharge respectively. The
batteries are theoretically allocated in every node, and it is the binary sitting variable the
one that will result with the best nodes to install a battery. The equations that describe the
battery are as follows:

SoC(t,i) = SoC(t−1,i) − P (t,i)
disch ∗ (t) ∗

1

ηdisch
+ P

(t,i)
ch ∗ (t) ∗ ηch (4.11)

SoC(t,i) ≤ BattCapacity (4.12)

SoC(t,i) ≥ SoCmin (4.13)

P
(t,i)
Battery = P

(t,i)
disch − P

(t,i)
ch (4.14)

Battery Sitting
The sitting of the battery is done by using binary variables that will be multiplying the
upper bounds of the charging and discharging variables of the battery. Thus, the power
injection coming from the battery in each node will be zero in the nodes where the binary
variable is zero, and will be non-zero where the optimal nodes (for battery sitting) happen
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to be. In this way, it is avoided the multiplication of the binary variable by another variable,
increasing the computational effort and time of resolution.

P
(t,i)
ch ≤ P (ch)

max ∗B
(i)
binary (4.15)

P
(t,i)
disch ≤ P

(disch)
max ∗B(i)

binary (4.16)

The Sitting variable b(i)binary is a binary vector indexed by buses and the optimization
will assign ones (1) and zeros (0) respectively, for the optimal and non optimal locations
for the batteries. Also, the total cost for batteries installed is computed by means of the
following equation:

CostBatteries =

n∑
i=1

B
(i)
binary ∗ PriceBattery (4.17)

Bounds and Constraints
All the above equations are subject to a series of equations and limits that connect them
one another. These limits are listed as follows.

Voltage Limits,

Vmin ≤ V (t,i)
i ≤ Vmax (4.18)

Slack bus Angle,

δ
(t)
1 = 0 (4.19)

Line Current Limits,

(V
(t,i)
i − V (t,i)

j ) ∗ Yij <= IMax
i−j (4.20)

4.3 Optimization Definition
Now, the objective function for the 33 bus system case will also seek to maximize the rev-
enues of the power exchange, but now considering dynamic pricing per kW and the cost of
every single battery. Ideally, the model will allocate from zero to n batteries in the system-
being n the number of buses- so to maximize revenues and keep critical constraints like
line and voltage limits under their respective bounds. In 4.21 the objective function defini-
tion, and the variables to minimize can be seen. There, the time factor FTime accounts for
the factors that have to be multiplied to the objective function when shorter time periods
are run. This can happen for convenience purposes, due to the long computational times
these simulations can take. In the other hand, the price factor FP is necessary to scale up
the power prices to a realistic value. This is because most of pricing data comes in terms
of spot prices and these are not the real prices the consumer pays, i.e. a factor is needed.
These quantities vary depending on data and time horizon and they will be specified when
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describing the study cases. Also, a factor for discount FDis was considered as first in or-
der to account for interest rates, yet it was finally assumed to be equal to 1 for the studies
presented in this project.

Fopt =Min
∑T

t=1

[
FTime ∗

(
P

(t,i)
import ∗ FP ∗ price(t,i)Import − P

(t,i)
export ∗ price

(t,i)
Export

)
+ CostBatteries

]
∗ Fdiscount (4.21)

s.t.

P(t,i)
i =

∑N
j=1 Yij

[
V

(t,i)
i ∗ V (t,i)

j cos (δ
(t,i)
i ) ∗ cos (δ(t,i)j + θij) + V

(t,i)
i ∗ V (t,i)

j sin (δ
(t,i)
i ) ∗ sin (δ(t,i)j + θij)

]
(4.1)

Q(t,i)
i =

∑N
j=1 Yij

[
V

(t,i)
i ∗ V (t,i)

j ∗ sin (δ(t,i)i ) ∗ cos (δ(t,i)j + θij)− V (t,i)
i ∗ V (t,i)

j ∗ cos (δ(t,i)i ) ∗ sin (δ(t,i)j + θij)

]
(4.2)

P
(t,i)
i = P

(t,i)
Gen − P

(t,i)
Load + P

(t,i)
RES + P

(t,i)
Battery (4.3)

Q
(t,i)
i = Q

(t,i)
Gen −Q

(t,i)
Load +Q

(t,i)
RES (4.4)

P
(t)
1 = P

(t)
import − P

(t)
export (4.5)

Pmin ≤ P (t)
1 ≤ PMax (4.6)

Q
(t)
1 = Q

(t)
import −Q

(t)
export (4.7)

Qmin ≤ Q(t)
1 ≤ Qmax (4.8)

SoC(t,i) = SoC(t−1,i) − P (t,i)
disch ∗ (t) ∗

1

ηdisch
+ P

(t,i)
ch ∗ (t) ∗ ηch (4.9)

SoC(t,i) ≤ BattCapacity (4.10)

SoC(t,i) ≥ SoCmin (4.11)

P
(t,i)
Battery = P

(t,i)
disch − P

(t,i)
ch (4.12)

P
(t,i)
ch ≤ P (ch)

max ∗B
(i)
binary (4.13)

P
(t,i)
disch ≤ P

(disch)
max ∗ b(i)binary (4.14)

CostBatteries =

n∑
i=1

B
(i)
binary ∗ PriceBattery (4.15)

Vmin ≤ V (t,i)
i ≤ Vmax (4.16)

δ
(t)
1 = 0 (4.17)

(V
(t,i)
i − V (t,i)

j ) ∗ Yij <= IMax
i−j (4.18)
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In general, the model will only allocate batteries if placing them is economically vi-
able. Hence, any battery placed by this algorithm will be paying its own price by taking
value of net arbitrage, RES surplus leverage, overall savings in operations, voltage sup-
port, etc. The way our objective function is designed, only the value of energy arbitrage
and RES surplus services will be the main services to asses the value the battery has to
increase savings. Nevertheless, voltage support plays a strong role in the location. As a
matter of fact, if voltage limits are tighten to limits unbearable for the Base Case simu-
lations (see next sections) then the allocation of batteries is ”forced” upon the system to
make it feasible. Yet, in this implementation we only asses the economical figures associ-
ated to net arbitrage and RES surplus smoothing.

4.4 Simulations
The given mathematical formulations define the model that was constructed in python
for the purpose of this project. The model comprises three main bodies: the software
infrastructure, the data and the output.

Software

The software infrastructure is simply the machinery that reads, process the data and deliv-
ers an intelligible output. The input of the software is basically made of ’xlxs’, ’cvs’ and
’raw data’ files. The output consist on excel files with all the relevant outcomes contained.

The language of choice is python due to its straightforward and object-oriented syn-
taxis, its popularity in the industry and its open source features. The model is built using
the framework and solving options offered by Pyomo, which is a collection of python
packages tailored to simulate optimization models. The solver chosen is Gurobi, due to
its powerful Mixed Integer Linear Programming (MILP for short) solving capacity, its
generous student license and the numerous python examples that use Gurobi and that are
available on the web.

Output

The python script has been designed to deliver all the results in excel files, where all the
voltage, power, angle and other variables can be seen and placed in graphs. Also the
locations of the battery, and the value of the objective function. In this way it is possible to
compare the influence that each case makes in the sitting of batteries and what conclusions
can be attained from it.

Data

The purpose of this study is to analyze where and how many batteries will be optimal for
a power distribution system, and to achieve that it is necessary to test it in a system as real
as possible. Hence, real data was used as input for the model. The necessary data was
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basically:

1. Load Power Consumption

2. Renewable Energy Production

3. Dynamic Electricity Prices

The load power consumption used is part of the London Low Carbon Project [33].
These data comprises kWh per half hour, which represents the power consumption of
5567 households in the greater London area, between November 2011 and February 2014.
Around 4467 of these households were subject to a flat tariff of 14.228 pence/kWh, and
the 1100 remaining went through an experimental three-level tariff structure that aimed
to change consumer behavior. The objective of the London Low Carbon Project was to
understand the response of consumers to dynamic pricing. In our case, the point is to
find optimal solutions for systems where consumers have not changed their behavior yet.
Hence the data was selected only among the households that paid a flat tariff. Additionally,
the consumers were divided in three groups according to a prosperity classification index:

• Affluent: Highly prosperous families

• Comfortable: Middle Class families and young professionals

• Adversity:Financially struggling families and students

For this project only 33 out of these 4467 houses were picked, based on their yearly
consumption and their prosperity group.

The Dynamic pricing structure data was initially retrieved from the former APX group
website [34]. The reference price data (RPD) accounts for only over a third of the actual
price consumers pay. Thus, the price had to be scaled up using a price factor FP = 3.70 as
defined in the objective function. Based on this assumption, we scaled up the spot prices
to a real purchase value that in average is equivalent to the flat tariff paid by households in
in London. This flat tariff is around 142.28 £/Mwh. The profile of the RPD spot price can
be seen in Figure 4.2.

Wind power generation data depends on three main factors: wind speed, height of na-
celle and swept area of blades. Wind speed data was taken from an UK meteorological
Office from a climatological station near London and power output was calculated by fit-
ting a polynomial curve, to the wind speeds and the output power curve for a wind turbine.
A similar approach was taken in [6] and [7].

Similarly, solar power output depends mainly on solar irradiation, area of PV instal-
lation and tilt angle of panels. In this sense, global horizontal irradiation and temperature
data can be retrieved from [35] and meteorological data can be downloaded from [36].
Very similar methodologies to extract wind and solar energy were taken in [37].
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Figure 4.2: RPD spot price profile for the UK

4.5 Base case

Since batteries affect the distribution grid operational decisions and behavior, a control
Case of the system without battery sitting is setup as the reference case. This control case
is named Base case and It describes the elemental state of the grid. The Base Case delivers
relevant quantities to contrast with the next cases. These next cases will be based on the
Base case, so the data and assumptions elaborated here are valid in the following cases
unless the opposite is explicitly expressed.

The base case was intended to be studied for a planning horizon of one year. Yet, a
year of power consumption, wind production, solar production and spot prices data would
contain millions of rows and several gigabytes of information. Even more data if we use
an accuracy of half-an-hour time step, like we did in this project. This would result in
more accuracy but also, more simulation time. The computational effort required to carry
out a mixed integer multi-period optimization with such a vast amount of data pushes the
computational hardware capabilities we have, and the scope of this thesis.

Thus, a series of simplifications had to be made to make the simulation feasible, but
without affecting the one year time horizon. Specifically, our simulation works with two
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representative weeks, one week in summer and one in autumn. The weeks selected were
July 13th-July 20th 2012 for summer and October 13th-October 20th 2012 for Autumn.
After selecting the representative weeks, scaling up factors were added in the objective
function to make the output figures equivalent to a year long simulation. In this case,
the total 30 min time steps corresponding to a week are 337, so the optimization runs for
674 time steps. Experience has shown that despite these kind of reductions result in less
accuracy, the behavior of the system remains fairly valid and since the analysis of the op-
erations of the distribution grid is the objective of the study, this reductions will not affect
our results. The main reasoning is to be able to perform numerous sensitivity analyses
since taking a longer time horizon (e.g. four weeks) will create a long computational time.
For example, in a PC laptop with 8 GB ram and Intel Core Haswell i7 processor, it might
take up to 5 to 8 hours per case).

Battery
Although for the base case there will be no battery allocation, the following cases will
do and they will use the battery as it is described here. In this sense, in table 4.1 the
specifications of the battery are given. This is the same battery used in [37] but scaled up
to a capacity of around 3 MW-h for our standard tests, which is equivalent to 250 batteries
of the ones used there (1 per 4 households approx.). Coincidentally, the size obtained was
almost equal to 3.5 Mwh, which is the hourly consumption of the system. The price per
kW-h is based on several projections: One conservative projecting a price crossing the 200
USD (160 GBP) barrier by 2030 [1]. Another also published in 2017 projecting a price of
120 USD (90 GBP) for 2018 and 100 USD (75.5 GBP) by 2020 [2]. Recent reports inform
a price of 160 GBP (200 USD) for late 2017 and early 2018 [3]. So the chosen standard
price is very optimistic but they are in line with these cost projections..

Specification Value Units
Efficiency
Charge 0.95 %

Efficiency
Discharge 0.95 %

Battery
Capacity 3 MWh

Battery Price
per kWh 100 pounds per kWh

Battery Time
of Discharge 4 hours

Table 4.1: Specifications of the Battery

Scenarios: high RES vs low RES
Furthermore, to perform interesting comparisons, two scenarios are built within each case.
These scenarios are devised on the basis of the percentage of yearly load covered by RES.
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So, the High RES scenario corresponds to a system in which 60% of the yearly energy
demand is covered by RES. Similarly, the Low RES scenario corresponds to a system in
which 30% of its energy demand is covered by RES.

RES distribution and profile

This does not mean that RES provide 60% of power at any given time. Rather, it means
that from the total time horizon energy demand (10 years) of roughly 305 GWh, RES will
provide approximately 183 GWh for one scenario and 91.5 GWh for the other. Also, out
of the total energy produced by RES, 60% will come from solar PV and 40% from wind
parks. This percentage are not based in any especial example, but they rather fit what was
considered to be an interesting distribution of RES resources along the MV grid. In further
cases the distribution of RES will be due to change in order to test its effects on the optimal
locations result.

Moreover, Figure 4.4 shows the location of PV and Wind production on the system.
This location strategy follows the logic of feeding different types of branches with differ-
ent types of RES. A classification of the branches for this topology is shown in Figure 4.3.

Figure 4.3: Scheme of branches

The branches 1, 2 3 and 4 are considered to be away from large substations and gener-
ation clusters. The households that these branches supply are in their majority prosumers
with PV installations. The Central branch is considered to be the core of the distribu-
tion system and its closely located to large substation. Away from more urban areas, this
branch is connected to wind energy production through buses 2, 3 and 6.
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Figure 4.4: Distribution of RES in the grid

In Figures 4.5, 4.6, 4.7 and 4.8 the total power output profile of PV and Wind are
shown for each representative week. This is the total power produced in the whole system
for scenario High RES. For scenario Low RES the pattern is exactly the same but the am-
plitude is reduced 50%.

Figure 4.5: Total Solar power output for summer in scenario High RES

Load profile
The original load is in kWh per half hour so to simulate a distribution MV system this
data was scaled up as if 1000 thousand consumers of the same kind were connected to
each bus. This placed some challenges in the setting up and calibrating the system be-
cause these load profiles greatly differ from one another. So, to calibrate the system, each
load profile was then multiplied by an additional percentage of consumers factor, to make
some loads bigger than others and smooth as much as possible the overall load profile. In
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Figure 4.6: Total solar power output for autumn in scenario High RES

Figure 4.7: Total wind power output for summer in scenario High RES

total, a number of households with the same load profile was assumed in each bus; the
numbers assumed are shown in table 4.3. In Figure 4.10 the consumer distribution can be
graphically seen. In Figure 4.9 the load consumption of all buses in per unit (or for what
it matters, in MWh per 30 min) can be seen for the two representative weeks. One can
easily spot the load peak of bus 17, which will create a dip in voltage in this bus and ad-
jacent buses. Before using RES to feed part of the load, many infeasibility problems were
faced due to this unexpected and almost random load peaks. Voltage limits are constraint
from 0.9 and 1.1 per unit, so when load peaks struck the system at the edge of the longest
branch, the voltage drop was impossible to contain. Hence, reactive compensation had to
be installed. As it will be seen in the sensitivity analysis in the next chapter, batteries made
compensation unnecessary and in fact after the model was run with batteries there was no
need for compensation anymore. Moreover, for these two representative weeks the total
energy consumption is 1173 MWh. To assess the total load consumption for the whole
investment analysis, the load has to be scale up accordingly: The factor used to scale up
kWh per half hour data for 2 weeks to GWh for 10 years is: 2 for four weeks (original
time horizon), 13 for 1 year, and 10 for 10 years. The final figures are shown in Table 4.2.
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Figure 4.8: Total wind power output for autumn in scenario High RES

FTime = 2 ∗ 13 ∗ 10

2 Weeks System’s Energy Demand Yearly Energy Demand Total Energy Demand
1173 MWh 30.5 GWh 305 GWh

Table 4.2: Energy load demand scaling up figures

Hence, if the total energy demand for the time horizon is 305 GWh, then the average
consumption for an hour will be around 3.5 MWh per hour, or 1.75 MWh per half hour.
Thus, a power base of 1 MW was selected. Another interesting perspective to understand
the load profile consist on the yearly load consumption per bus, which can be seen in
Figure 4.11.

Voltage profile
In Figures 4.12 the voltage profiles of all buses are shown, for scenario high RES. This fig-
ure shows the voltage behavior for each representative week as a snapshot of the behavior
of voltages.

Scenario High RES

Clearly, there are two main disturbances in the voltage profiles, occurring around time step
200 in each chart respectively. These voltage alterations are related to the two large load
peaks in bus 17 during those same periods. Similarly, no major difference between the
three voltage profiles is observed.

Operational costs
In short, operational costs are the result of the objective function. As observed in Table 4.5,
the costs increase for Scenario Low RES. This is logical since in Scenario Low RES the
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Figure 4.9: Load profiles

PV and Wind supply for up to a third of the total energy. Thus, operational costs increase
due to greater electricity imports.

Line limits
The line thermal limits are the values that constraint the power flows to be higher than what
is thermally possible. It is basically a security limit. Yet, since it constraint the amount
of power that can flow to or from a bus, it is a key constraint that influence the sitting in
high degree. For instance, the impossibility to transport power from certain buses of the
system due to line restrictions will definitely define where the optimal locations to place
the battery will be. After all, one of the purposes of the battery is to leverage of surplus of
RES, and the line thermal limits is one of the first reasons for curtailment of RES.
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Figure 4.10: Amount of consumers connected to each bus

Figure 4.11: Yearly load consumption per bus

Figure 4.12: Voltage profiles for representative week in summer and autumn
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Consumers
Connected to each Bus

0
90
150
135
225
315
315
200
315
315

1350
225
225
225
315
315
900
225
225
315
315
180
315
315
315
315
315
315
135
315
315
270
225

Table 4.3: Number of consumers connected to each bus

Bus Prosperity Group Yearly Consumption (MWh)
2 Affluent 21.85
3 Affluent 34
4 Affluent 61.24
5 Affluent 77.38
6 Affluent 57.20
7 Affluent 12.68
8 Affluent 26.87
9 Affluent 25.39

10 Comfortable 42.46
11 Conformable 49.38
12 Comfortable 2117
13 Comfortable 43.04
14 Comfortable 23.69
15 Comfortable 45.56
16 Comfortable 29.80
17 Adversity 101.53
18 Adversity 19.96
19 Adversity 28.11
20 Adversity 22.19
21 Adversity 38.61
22 Adversity 27.63
23 Adversity 31.46
24 Adversity 22.49
25 Adversity 32.74
26 Adversity 77.43
27 Adversity 20.52
28 Adversity 53.43
29 Adversity 22.32
30 Adversity 25.49
31 Comfortable 17.05
32 Comfortable 48.41
33 Affluent 12.11

Table 4.4: Yearly consumption of each bus
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Scenario Total Operational Costs (GBP)
Scenario High RES 17,850,341
Scenario Low RES 27,451,314

Table 4.5: Operational costs for the two scenarios

Figure 4.13: Line current thermal limits in p.u

Figure 4.14: Topology of the system with the code names of each line
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Line Current limit (p.u)
c2 64
c3 54
c4 46
c5 44
c6 42
c7 24
38 22
39 20

310 18
311 16
312 16
313 16
314 16
315 16
316 12
317 10
318 6
c19 8
120 6
121 6
122 6
c26 8
227 6
228 6
229 16
230 14
231 12
232 10
233 8
c23 6
424 6
425 6

Table 4.6: Line current limits
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Chapter 5
Sensitivity Analysis, Results and
Discussions

Storage has to be steadily integrated into the grid in the most cost-effective way possible.
This will involve broad and thorough studies for every single case. There probably are
general properties and patterns governing the sitting and operation of storage in power
grids, and it is the objective of this chapter to unwind some of these attributes. Hopefully
that will provide insights on how to deploy storage and how the DSO can benefit from.

A sensitivity analysis was studied to the base case to test how the model solved the
problem of storage sitting when different conditions arose. In this way, we can challenge
the model’s ability to site batteries under changing scenarios and consequently reveal any
existing pattern among different scenarios. For this purpose, we have designed several
cases whose results will be presented and analyzed in the following sections. Each case
is built upon the Base Case described in the previous chapter, and any relevant difference
will be explicitly pointed out.

Also, it is noteworthy to remark that this model has -reasonable-limitations. It is built
upon certain assumptions and approximations that have an impact on accuracy. Besides,
the number of studies necessary to achieve absolute conclusions will require a length of
time unpractical for the scope of this work. Nevertheless, the model is reasonably accurate
and despite the computational limitations encountered, it worked very well on simulating
the dynamic behavior of power systems, considering many of its complexities.

5.1 Case 1

This Case is the base case but with the binary sitting activated. We find the optimal points
to allocate batteries in the system for different battery sizes, i.e., the rest of the parameters
are kept the same. To this end, we use batteries of 1, 2, 3, and 4 MWh for each scenario.
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Scenario High RES

In Figure 5.1 The four outcomes for each battery capacity size can be seen. For 1 MWh
there are 19 batteries all spread over the grid, with battery presence at every edge of each
branch. Whereas for bigger capacities, the number of batteries tends to be reduced and
allocated more scattered. As seen in Chapter 4, there are buses where lines with high ca-
pacity arrive and lines with much lower capacity leave. We termed these buses as threshold
buses and they usually appear at the border of the central branch with the outer branches
(1,2,3 and 4). These threshold points are important because there is a valve effect for
the power flows in these buses. It seems that batteries tend to be optimally allocated in
these buses, like in buses 3, 6, 23, 15 and 29. We have observed optimal storage locations
to ”oscillate” around these buses in several studies, as we will see in the following sections.

Also, it can be seen that as we increase the size, the batteries allocate where they can
extract the most surplus power possible, and perform services to the system where the line
limits make it more difficult. For example, for 1 MWh there are batteries in all branches,
for 2 MWh, central branch and branch four are empty, and instead, the batteries are placed
in branches 1, 2 and 3. For 3 MWh branch, 1 and two are empty and substituted by branch
4, in the threshold bus 23. In central branch, the number of batteries remains relatively the
same. Since for 4 MWh example, the price per battery is higher, and these batteries are
located at fewer but strategic buses. Like the battery placed at threshold bus 6, where not
only line limits change but also there is wind production. The rest of the batteries tend to
be located towards the edged of the other branches; this is perhaps due to the voltage/line
limits and complications that batteries help to alleviate.

Figure 5.1: Optimal Locations for each battery size in High RES scenario.
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Scenario Low RES

In Figure 5.2 the four outcomes for each battery capacity size can be seen. For 3 MWh
and 4 MWh, the trend observed in the High RES scenario seems to appear again. On the
other hand, for 2 MWh no batteries are allocated. This is rather interesting since the cost
is not the limitation, as we can see for lower and higher capacities. The reason for that
result is difficult to trace since, as we know, there are multiple factors playing part on the
final outcome. But it does tell us to what extent the ideal size of the battery depends on
every system, thus not just any battery can fit the requirements of a power system. Storage
is a discrete resource, which means it cannot be considered as ”fluid” or ”continuous” as
fuel is, for example. Therefore, considering the deployment of storage in units, like it is
done here with binary variables, provides a more genuine result. The increased number
of batteries for low RES scenario may be the result of the fact that less RES production
means higher operational costs, which are comparatively much higher than allocating 10
or more batteries. That result speaks for the ample value that storage brings to the system.

Figure 5.2: Optimal Locations for each battery size in Low RES scenario.
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Objective function outcomes
In Figures 5.3 and 5.4 the output of the objective function computations is shown for every
capacity of battery in both scenarios. Operational costs are the costs of the optimization
function, i.e., the expenditures related to the import and export of energy. Storage costs
account for the number of pounds invested in all the batteries of the system. Total Costs
is simply the sum of operational and storage costs. And finally, the number of batteries
shows how many batteries were used, so to make visible that the number of batteries can
change sharply without increasing too much the overall storage costs.

Figure 5.3: Objective Function Results for Scenario High RES

The pattern-filled bars correspond to the lowest total costs for each scenario. So to say
the ”optimal” sizes found for each scenario. Interesting enough, for a higher share of RES
the optimal size of battery turned out to be 3 MWh, whereas, for half of that share, the
optimal size is 4 MWh. This can be seen more clearly in figures 5.5 and 5.6. There, it is
shown for each scenario the cost savings that each battery size provides, as a percentage
of the Base case. The savings achieved for the high RES scenario are remarkably superior
to the case of Low RES, and this is consistent with previous findings in the literature [7].

Discussion
Wrapping up and elaborating on the analysis made before, we have identified some trends
and interesting outcomes from Case 1. First, regarding size, it seems that the optimal size
depends on the system topology, the RES share and the price per kWh. Although, we
observed that the system does well when the size of the battery is 1 MWh, which is a third
of the standard battery size. Also, the smaller the size of the battery is, the less its allo-
cation becomes relevant for the algorithm as it simply allocates batteries in all or almost
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Figure 5.4: Objective Function Results for Scenario High RES

all buses. It seems that, as the batteries become smaller, the optimal allocation strategy
comprises spreading the batteries all over the grid. The same happens in both scenarios.
Despite these battery sizes where not the optimal sizes for each case, they did surprisingly
good while providing the system with the higher total installed storage capacity, for both
cases. The higher the total installed capacity is, the higher the flexibility of the system is;
i.e., the ability to leverage from RES surplus, to perform congestion management, to carry
out net arbitrage, to enforce voltage and power limits, etc.

Second, regarding location, it seems that as the battery capacity increased the number
of batteries became less and their places more influenced by technical factors. One factor
that that appears to alter the location of batteries is the size of the loads. As the battery size
is higher and fewer batteries are affordable, the sites tend to switch to branch three which
is the longest and more prone to voltage disruptions. Moreover, the most significant load
is located on bus 17, and the vast majority of solar production is also distributed along
branch number 3. All this plays a role in the deployment of the batteries, and from the re-
sults, we see that the best solution located 3 MWh-batteries mostly along branch number
3. Moreover, for all of our studies, it did not matter how cheap or small in size the battery
was, there was never a battery located on the slack bus. At the slack bus, despite being the
source of all power import, there is no load. This result gives a hint on how important the
size and location of loads are for the optimization model.

Third, there is also another highly important factor: technical limits. As mentioned
before, voltage violations can quickly occur at the edges of long branches. Batteries and
curtailment (which is also activated but it remains in zero for all studies) can prevent volt-
age violations. So, the locations are also profoundly influenced by the technical limits
governing the system. Line limits for example, which are shown in Figure 4.13, dras-
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Figure 5.5: Reduction in Costs compared to Base Case for Scenario High RES

tically change as one approaches the edges of the system. Line limits decrease because
there are fewer buses to feed as we approach the end of branches (except for bus 26, where
a ”funnel” phenomenon takes place). Since some of the most significant loads, both in
energy and power requirements, are located at the edges or around the edges of the system
(17, 28 32 for instance), some optimal locations seem to be perfect to prevent sudden volt-
age drops due to peak demands, which always result in stress for the system and higher
losses. Additionally, this can also happen in the opposite direction, where high peaks of
power generated by PV resources along the 4 outer branches can sum up and overload the
lines. In the view of all this, it is not surprising that for the optimal solution (3 MWh) bat-
teries are allocated along the branch with both the highest load and the top PV production.
An exciting example comes from Scenario High RES, with 4MWh batteries: One of the
four batteries is placed at bus 6, which is a threshold point where the line limits of both
branch two and branch three change abruptly. And also, a point of Wind production, thus
a prosumer bus. Hence, this battery can serve as a buffer that stores energy from multiple
immediate sources and then provides power to the constrained branches when generation
or demand peaks occur.

Therefore, some recognizable behaviors seemed to appear. First, the higher the share
of RES the more value batteries can add. Second, the smaller the battery size is, the easier
it is to distribute storage all over the grid while creating quite good costs reductions. Third,
the bigger the battery size is, the fewer batteries that can be affordable, thus making the
ideal locations to be in the whereabouts of the most significant loads, RES production
clusters and the changes in line limits.
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Figure 5.6: Reduction in Costs compared to Base Case for Scenario Low RES

5.2 Case 2

In Case 2 the penetration of RES is reduced, leaving the total amount of power generated
by RES the same. So, there are fewer generation facilities but the ones remaining produce
more so that 60% or 30% of the total load is supplied by RES depending on the scenario.
The purpose of doing that, to measure how much the location of distributed RES affect
the potential locations of batteries. The results will be compared to equivalent results for
3 MWh batteries in Case 1.

Scenario High RES

In Figure 5.7 The four outcomes for each battery capacity size can be seen. It can be seen
that the reduction in solar penetration results in fewer batteries allocated compared to the
3 MWh results in case 1. As for a reduction in wind penetration, the result is the opposite;
more batteries are allocated.

59



Figure 5.7: Optimal Locations of batteries

Scenario Low RES

In Figure 5.8 The four outcomes for each battery capacity size can be seen. In this case,
there are more batteries allocated in the system when the less solar scenario is tested.
These batteries are allocated along branches 1 2 and 3, with the support of two batteries
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in the threshold point in bus 6 and bus 5. For less wind, there are also more batteries, and
they are allocated correspondingly. It seems that the algorithm is trying to reinforce the
branches in the best possible way, locating the batteries wherever necessary.

Figure 5.8: Optimal Locations of batteries
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Objective Function Outcomes

The total, operational and storage costs for Case 2 in its both scenarios can be seen as
follows. In Figure 5.9 the costs for the reference case and less wind case are almost the
same. The operational and the total costs rise for the less solar example, though. In Figure
5.10 the same results are shown for the low RES scenario. Apparently, for both less wind
and less solar, more batteries were allocated, and fewer costs were achieved.

Figure 5.9: Objective Function Results of Case 2, High RES

The result for less solar in High RES scenario results compelling. The software is using
fewer batteries than in the reference case, and the operational costs are higher than the
reference case. Of course, this makes sense because for High RES scenario the dependency
of the system on the renewable production is higher. Hence, any changes in the distribution
of the RES will instantly impact the overall behavior of the system.

Discussion

What is more interesting about the results of this case is the disparity of battery numbers
between less solar for Scenario High RES and Scenario Low RES. For less wind, the re-
sults show that more batteries are distributed all over the system. This strategy is probably
trying to benefit as much as possible from the PV installations that remain untouched and
that account for 60% of the total RES output.

For less solar another phenomenon takes place. The solar production is now intensi-
fied and concentrated on fewer buses. Then, comparatively big batteries can be allocated
in threshold buses and high load buses, to provide net arbitrage services. For the low RES
scenario, the result is the opposite: More batteries are allocated in a distributed manner
but keeping batteries in buses 5 and 6. It seems like when the share of RES is high, its
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Figure 5.10: Objective Function Results of Case 2, Low RES

concentration in some buses increases the operational cost, and reduces the value of using
batteries. So the more distributed generation is, the more value storage has and perhaps,
the more batteries that become economically feasible.

Another interesting outcome is that the trend seen in case 1 is followed here as well.
Batteries, in case 2 more than case 1. Tend to have an optimal location in large load buses,
RES production buses, threshold buses or, a combination of the these three like in bus 6.

5.3 Case 3

Figure 5.11: Schematics of Case 3
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To further investigate the behavior of optimal allocation, Case 3 proposes to allocate
all PV generation in only five buses, as observed in Figure 5.11. For only Scenario High
RES and the same distribution of wind resources, the simulations were run for 1 MWh
and 4 MWh. Location results are shown in Figure 5.12 and objective function results are
shown in Figure 5.13. A battery with 1 MWh achieved the higher cost reduction with 20
MWh installed all over the system.

Figure 5.12: Optimal Locations of batteries for Case 3

Discussion
The objective of Case 3 was to cluster most PV generation to a handful of buses and test
how much battery sitting locations are affected by this. On a broader sense, it was expected
to have batteries located as close as possible to big clusters of generation, like trying to
store the most surplus possible. Instead, we see batteries scattered over the system and not
necessarily where generation is taking place. For 1 MWh there were 20 batteries allocated
in all the branches, with special emphasis in the third branch where the solar PV is gener-
ated but also with multiple numbers in branch 2 and almost all the buses of branch 1 and 4.
Whereas for 4 MWh, there are no batteries allocated at any point where RES generation is
taken place; nor even in the same branch. This result is interesting because if we check the
output results, we can spot that the total costs for 1 MWh were lower but not dramatically
lower than for 4 MWh. In Short, two big batteries managed to find an optimal solution
while located away from generation.
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Figure 5.13: Objective Function Results Case 3

Figure 5.14: Energy Demand for Branches 1 and 4

Moreover, in the 4 MWh case, batteries are located on buses 19 and 27. But why not
in buses 23, at branch 4? Previously, we have seen the optimization software to have a
”preference” for branch one over branch three, why is that? In Figure 5.14 the energy
demand of these two branches can be seen. In Figure 5.15 the power demand of the same
branches can be seen. The energy demand of Branch 1 is higher but comparatively not so
much bigger than the demand in Branch 4. Nevertheless, the power demand of Branch 1
reaches peaks of consumption of more than double of the ones in Branch 4. Hence, the
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allocation of big batteries in bus 19 is probably because this power demand behavior will
stress the limits of the system.

Figure 5.15: Power Demand for Branches 1 and 4

Also, for branch two a similar scenario takes place. The battery is located on bus 27,
which has not a significant load connected but it is located next to some of the biggest
loads after Load 17, as we can see in Figure 4.11. And also, as we can see in Figure 4.13,
the thermal limits of line 6-26 (Central-26), 26-27, and 27-28 are among the lowest of
the system, despite the following lines in the branch have higher limits. Thus, there is a
”funnel” effected in these lines and buses 26, 27 and 28 are also threshold points. Hence,
it is probable that the location of batteries in these two buses would alleviate the system
enough to make it profitable. Otherwise, no batteries would have been placed.

5.4 Case 4

In Case 4 the price of the battery was increased, from 100 £/kWh to 200 £/kWh. The
RES penetration is as base case Scenario High, so the only difference lies in the price of
the battery. First, a battery capacity of 1 MWh was set, and then the price was changed.
Starting in 400 £/kWh and then going down, no batteries were allocated for 400, 300, and
200. If the size of the battery is decreased, 32 batteries of 500 kWh are allocated for 200
£/kWh, and 32 batteries of 250 kWh are allocated for 300 £/kWh.

The most relevant allocation results are shown in Figure 5.16 and the objective func-
tion results are shown in Figure 5.17. Also, the cost reduction from the Base Case (in
percentage) is shown in Figure 5.18. Current Lithium-Ion based batteries have reached a
price of approximately 160 £/kWh (200 USD) according to reports released in late 2017
[3]. Hence, the price for which sitting of 1 MWh batteries begins to be profitable, is the
current market price of batteries.
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Figure 5.16: Location Results for Case 4
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Figure 5.17: Objective Function Results Case 4

Figure 5.18: Cost Reduction for Case 4

Discussion
Regarding locations, a similar and repetitive trend is recognizable here. The battery size is
the same for all studies, but the price changes. For 100 and 160 pounds, almost the same
amount of batteries are placed (19 and 19 respectively). And it can be seen that the buses
of these batteries change, but the overall strategy remains: Batteries in all the branches,
at least one battery in the core (central branch), high concentration of batteries in branch
3 and batteries located in almost the same key buses: 17, 32 for example. There is one
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key learning here, and it is that the specific locations the software decides for batteries in
every simulation, depend on a wide variety of factors and change constantly, so the op-
timal strategies may also change with the circumstances. The overall strategy of sitting
seems to remain and its based on common sense: Large loads (like in 17), the edges of
branches (like in 18, 33, 25, etc), threshold buses (like 26, 19, 23) and ”Hub” buses where
production and load from different branches meet (like bus 6). The optimal locations tend
to be around these type of buses.

Regarding price, it is very promising to see that for current prices the system is show-
ing 17 1MWh-batteries as an optimal solution. And for even higher prices like 200 or 300
£/kWh, smaller batteries comprise a feasible option. If we check Figure 5.18, it might be
arguable that there is no profitability on placing batteries in the long term if the reductions
are only about four % after ten years. Yet, this investment analysis is not measuring and
considering other benefits of storage that would increase the reduction costs even more.
For instance, congestion management, voltage control, reserve storage services, etc. And
what’s more, battery prices are going down and will continue to go down. Therefore, de-
spite the limitations and assumptions that had to be made, these results seem to be quite
relevant, and their insights can provide much value for the ODSP.

5.5 Case 5

In recent years we have seen quick developments in the field of renewable energy, battery
storage, and smart grids. The current trend indicates a deeper integration of RES, and
thus, a deeper integration of storage. Companies like Tesla now offer household energy
storage solutions, that are already under use and that can make substantial parts of the grid
effectively disconnected. At least for long periods of time. This is especially a challenge
for DSOs because it changes the game rules. On this sense, Case 5 is a compilation of
several simulations done with different approaches, aiming to assess the implications of
widespread use of storage at end-user level and which are the best scenarios for the DSO
under these circumstances.

Capacity Allocation case

Assuming the aforementioned, widespread use of storage at every point of the system, e.g.
no binary sitting, this case intents to find out how the capacity should be distributed along
the system to provide the highest profits possible to the DSO. This was realized running
for 674 periods, at 100 £/kWh and with a maximum capacity of 10MWh per bus.
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Figure 5.19: Capacity Allocation Results

Bus Capacity (MWh)
2 2.98
3 2.78

14 0.80
16 1.99
17 2.11
27 5.53
30 1.34

Total 17.54

Table 5.1: Capacity allocated per bus

Power Rate case

The system may require sometimes to obtain power rather than energy services, e.g. the
capacity of batteries has less importance compared to the power rate of the battery. This
is especially true for loads that are small in energy terms but might reach high peaks
from time to time. This happens often and might result in oversizing of batteries just
to provide power services. Therefore, in this case the power rates have been changed to
provide quicker responses compared to the base case. That is done by changing the total
discharge/charge time of the battery, from the standard 4 hours down to 1 hour. To avoid
long computational times, the study was done for 100 periods and the results are shown as
follows.
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Figure 5.20: Capacity Allocation Results for 4 hours (standard) discharge time

Figure 5.21: Capacity Allocation Results 2 hours of discharge time

Integer Sitting case

As seen and mentioned before, the capacity of storage is not a malleable resource that
can be distributed so easily. Henceforth, this case makes use of very small battery sizes,
of about 0.1 MWh, so to ”granulate” the storage capacity and observe how the system
allocates it. To make it a sort of sizing simulation, the binary variable that results in the
sitting decisions was replaced by an integer variable. This means that the python tool can
allocate as many batteries as desired in any part of the grid. Additionally, a high price
of 200 £/kWh was set to challenge the solution further (For this price, no battery was
allocated in any of the previous studies).
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Figure 5.22: Capacity Allocation Results for 1 hour discharge time

Figure 5.23: Batteries allocated using integer variables

Discussion

Regarding Capacity Allocation

In Figure 5.19 it is noted that the optimal capacity in most of the buses turned out to be
zero. Whereas in only 7 buses the capacity was non-zero. The exact values where capacity
was no zero can be seen in Table 5.1. Interesting enough, the system allocates batteries
of more than 5 MWh when there is no binary sitting. Also, it allocates two considerable
amounts of storage in buses 27, 2 and 3. Overall, the total capacity allocated in the system
is 17.54 MWh.

These results show that even when the capacity is treated as a fluid resource, the python
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tool clusters the capacity in pretty much the same areas as before: buffer and threshold
buses, with some capacity at the end of highly demanding branches. This is contrary to
what might be expected: allocation of storage as spread out as possible. Therefore, despite
previous results show that spread out allocation of storage can result in optimal solutions,
it is not necessarily the most optimal in all cases.

Regarding Power Rate

As it can be seen in Figures 5.20, 5.21 and 5.22, the faster the battery can be discharged/charged-
thus, the higher the power rate- the lower the optimal capacities allocated are. Another
perspective of this phenomenon can be seen in Figure 5.24, where it is shown, for each
power rate case, the percentage of the total storage allocated that falls in one of the 5 ranges
of battery size shown in the horizontal axis. For example, for the 4 hours discharge time
we can see that most of the capacity is allocated using sizes ranging from 8 to 10 MWh.
Whereas for a discharge time of 1 hour, 77.3 % of the total capacity is allocated with sizes
ranging from 4 MWh to 6 MWh. Moreover, in Figure 5.25 the total installed storage ca-
pacity is shown, with the golden trend line decreasing as we decrease the discharging time.
That is a sign that the fastest the battery can deliver the energy, the smaller the needed bat-
teries have to be. Therefore, it seems that the optimal distributed storage capacity is being
in the system is determined-at least in part- by the need of power services throughout the
system. So in short, the higher the power capacity the battery can provide, the smaller the
energy capacity the battery has to have.

Figure 5.24
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Figure 5.25

Regarding Integer Sitting

As shown in Figure 5.23, even when using outdated, expensive battery prices with very
small maximum capacities per battery (0.1 MWh), the tool finds profitable strategies. In
this case, the strategy is to allocate 9 batteries in bus 2, making up to 0.9 MWh in total.
This gives a crucial view on which buses are the most important in the system. Bus number
2 has renewable generation and loads in situ (Prosumer bus), it connects the main grid to
the distribution system (Hub bus) and it is located between lines with sharply different
thermal limits (Threshold bus).
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Chapter 6
Conclusions

6.1 Concluding remarks

The Optimal Distributed Storage Placement problem a relatively not much explored area
of research. As seen in the literature, there are gaps concerning many areas. For instance,
there are not many studies where storage placement has been formulated as a mathematical
optimization. Also, not many studies made a thorough analysis of the influence of techni-
cal limits on the sitting problem. We need to cover these gaps if we intend to accelerate the
transition to a sustainable economy; a process currently under socio-economic pressure to
speed up. For that transition to take place, intermittent RES sources will have to become
the norm rather than the exception, which in conjunction to a deregulation of the electricity
market, will transform storage into a key technology to achieve power balance. Therefore,
the objective of this project is to cover these gaps by carrying out an investment analysis of
cost-effective battery placement for an MV grid, considering power flows, technical limits,
dynamic pricing as well as consumption, generation, and batteries real data. Results show
that batteries can indeed optimize the performance of the system and that their location
and size greatly affect how optimal these solutions turn out to be. Also, it shows that the
optimal locations are highly susceptible to dynamic changes in the system, like power and
generation profiles.

From the results, it seems that the optimal size for each system highly depends on
many inter-related parameters and variables, like technical limits, power demand, energy
demand, voltage limitations, and battery’s power rates, to name a few. All of these play a
role, and the extent of their singular influence on the location decision is hard to measure.
Yet we see that the smaller the battery becomes, the easier it is to place it cost-effectively.
This then makes storage affordable even for higher prices. A good reference for what
means ”big” or ”small” in this context is according to our standard battery capacity of 3
MWh which is close to the hourly average consumption of the system, which is around 3.5
MWh. Therefore, despite the optimal size changes from case to case and from scenario to
scenario, a size of a third of the total hourly system consumption seemed to have worked

75



very well for different prices, RES share and RES penetration. That makes sense since
the smaller the capacity of the battery, the more ”freedom” the python tool has to allo-
cate them in any way convenient. In Fact, smaller sizes, like 500 kWh, 250 kWh and 100
kWh (Case 5) did quite good for comparatively high prices, as shown in Case 4 and Case 5.

Even though battery with sizes of 3 or 4 MWh turned out to be more difficult to allo-
cate, they provided the optimal solutions for both scenarios in Case 1. That confirms many
previous findings in the literature, where there is a stark argument pledging for optimal
allocation in contrast to random, or equal distribution. However, the optimal locations and
sizes obtained in Case 1 depend not only on static system features like topology, but also
on dynamic features, like load and generation profiles. Among others, these factors are:

• Location of High Energy and High Power Loads

• Line Thermal Limits

• Penetration of RES

• Battery properties (Capacity, Power Rates, etc)

As for the type of buses, there are several types of buses, or groups of buses, where
batteries seemed to perform optimally for numerous scenarios and conditions. These buses
can be outlined as:

• Threshold buses: Buses connected or close to lines where thermal limits change,
especially if this lines constraint branches where large loads or considerable gener-
ation lies, thus complicating its supply. Batteries in these buses help to provide the
power while reducing congestion and help to prevent voltage violations in constraint
branches.

• Large-Load buses: As expected, batteries can be of much utility at buses where
large loads are located. As a matter of fact, in the results of cases 1 to 4, we found
that buses 17 and 18 were optimal locations for a total of 7 times each. Although in
general almost all buses appeared as optimal solutions at least twice, except for bus
one, where there is no load.

• Prosumer Buses: On these buses there is load and generation. It is understandable
that batteries are useful here, and it is not a surprising result given that it has been
mentioned before in the literature provided in chapter 1.

• Hub buses where multiple line connections, RES production, and high power con-
sumption make network arbitrage more effective.

• Dead-End buses: These buses are nothing but the ones located at the end or close
to the end of branches, where batteries are of utmost utility to keep technical limits
under check. Especially regarding voltage limits.
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Strategies that allocated batteries around these buses were the most successful, thus
giving the impression that the optimal strategies comprise an approach of allocating stor-
age in optimal ”areas” rather than optimal buses, but to affirm so more research needs to
be done, for several topologies with higher number of buses. Nevertheless, the best solu-
tion will always depend on the specific circumstances of the system and we have seen that
when these circumstances change, the optimal locations change. Hence, we recommend
making an extensive analysis of where these group of buses are located to give an initial
idea on what might be the best deployment strategies for a given system.

Furthermore, flexibility regarding power arbitrage and RES surplus leverage was proven
to have a decisive effect on overall costs. Every case where a battery was allocated had a
lower total operational cost than the base case. This effect was clearly shown in the objec-
tive function outputs for all cases. For instance, in Case 1 Scenario High RES, there was
a reduction in costs of 12.21 % of the Base case using six 3 MWh-batteries. Whereas for
the same case, but in the Low RES scenario the reduction in costs with five batteries of the
same size was of about 4.67 % only. That is precisely the result of the intervention of stor-
age in the system and the leverage it provides for RES utilization. Also, with sufficiently
small batteries or at a sufficiently low price of storage, allocation of batteries decrease the
system total costs, as seen in Case 4 where for 160 £/kWh (current prices for 2018 [3])
allocating 17 batteries of 1 MWh each reduced total costs up to 3.68 %. What’s more, our
studies did not consider the economic revenues associated with congestion management
or reserve storage services for purposes of control and stability. It is entirely possible that
if considered, the reduction in costs would have dropped even more.

Moreover, Case 5 showed that either by allocated capacity or sitting smaller batteries, a
handful of buses (of maybe 21% of the total buses for the Capacity Allocation Case) can be
enough to provide an optimal solution. It also showed that just by changing the power rate
capacity of batteries, the optimal locations changed sharply and the size of the batteries
used, decreased. Moreover, with current drop in prices, more efficient technologies, and
the advent of EVs, the trend seems to be one of an extended use of storage in the system,
both in industrial and user level. If we bridge those results with the previous 4 cases
and combined that with the observable trend for the following years, we can draw some
conclusions and recommendations for the DSO, which are listed and explained in the next
section.

Conclusions

From the presented studies, we can draw the following conclusions:

• We found that yes, the location of storage highly influences the revenues based on
a DSO perspective. And that these locations are influenced by fixed properties like
line limits, voltage limits, stability, topology, among others. But, these locations are
under even more influence of dynamic, constantly changing factors like load profile,
weather forecast, energy and power consumption, battery’s specifications, and more.

• We observed drastic changes on the solution just by changing battery specifications
or load profiles, for instance. Therefore, optimal locations for storage do not tend
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to be fixed over long periods of time, but rather tend to change with the changing
dynamics of the grid. Furthermore, it seems that all the buses in the system are going
to be part of an optimal solution at some point, depending on the grid dynamics.

• Consequently, planned deployment of storage only in some ”optimal” buses (like
prosumer, hub, large-load and threshold buses), might achieve good results but will
not be the best solution overall.

• When allocating capacity it was found that the sizes of the battery was, in large
part, influenced by the need to provide high rates of power to strategic loads. When
batteries with higher power limits were used, the resulting capacities decreased in
size. Although, the total installed capacity remained similar.

Recommendations

Based on the exposed analysis and conclusions, and with the intend to achieve a smooth
energy transition, where RES are finally integrated in the economy, consumers can benefit
and participate in the flexibility market and traditional system operators like DSOs can still
make a business model, we provide the following recommendations:

• The DSO has to be involved in the flexibility market design. Not only to establish
the fixed technical regulations that will rule the market, but also to design the mar-
ket such as it encourages battery operations in locations found optimal by the DSO.
The process to do this can be described as an optimization study, to find the optimal
locations for battery operations in the distribution grid. With day-ahead forecast
of load and generation, technical limits and information about the storage capacity
installed throughout the system, the DSO can develop a day ahead analysis to de-
termine which will be the optimal buses to perform energy arbitrage, RES surplus,
or any other desired service. With an array of the resulting hierarchy-arranged of
buses, graded on the basis of profitability, the DSO can set a structure of incen-
tives and penalties to favour and/or discourage storage operations where they are
considered convenient. In this way, the needs of the DSO can be made financially
visible without incurring in stiff regulations that will deprive everyone, of the soci-
etal benefits of storage and RES combination. That of course, will play a role in the
market clearance and in market prices, thus financially determining how to operate
and maximize the benefits of the flexibility resources available in the market.

• Also, given that the DSO optimal locations are highly influenced by the need of
power services and that residential end-user level batteries are not precisely the most
efficient to provide power services, perhaps the DSO can perform optimal storage
location and size planning studies for long horizons and invest, or encourage power
producers to invest, in power-service storage allocated in the best possible locations.
Those best possible locations probably being within one or several of the categories
stated before: Prosumer buses, Large-Load Buses, Hub Buses and Threshold buses.
This will avoid the need to use expensive polluting energy sources, prevent costly
grid expansions, maximize RES utilization, reduce long term operational costs for
the DSO, improve the grid’s power stability and provide a portfolio of flexibility
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resources the DSO (or any other party) can trade in the upcoming flexibility market.
These Power-assisting storage units provide a compulsory flexibility service that
the DSO has to be able to deliver to guarantee not only profit, but also stability.
Therefore the DSO can charge the users to finance these investments, and can also
profit from them in the long term.

• As well, the DSO can encourage the investment on storage at end user level in the
short term, given that under the current prices it is profitable and beneficial for both
the DSO and the end users. As we have seen, the optimal location of batteries
depend on a wide variety of factors and they hardly remain the same when these
factors change. Hence, these investments should start allocating storage in the lo-
cations best suitable for whatever the main goal of the DSO is at the beginning:
Congestion Management, Losses minimization, RES maximization, etc, but with a
plan to deploy storage as spread as possible. A business case on how to do this in a
way that benefits all the players is a good proposition for future work.

Overall, this research was intended to find useful insights for the DSOs that might
be facing challenges to integrate RES and storage in their systems. We hope the results,
insights, analyses and recommendations are beneficial for Distribution System Operators.

Limitations and Future Work
To study ”the battery allocation” phenomena in Power Systems means to study a very
complex problem. The amount of data and computational power that have to be done to
make these simulations without simplifications is something we leave for supercomputers
or for the elaboration of detail solution methods. Hence, to be able to gain some insights on
the ODSP problem without having had a sophisticated solution method, some assumptions
had to be made. The most relevant assumptions made in this work are associated with:

• Linearization of Power Flow Equations

• Reduction of Time Horizon down to two representative weeks. Therefore, the use of
time factors to scale up the magnitude of costs to resemble the figures of a ten-year
investment analysis.

• No degradation model for the battery.

• Load and RES profiles were considered to be deterministic instead of stochastic.

Even after implementing these assumptions, the computational efforts were still chal-
lenging. For instance, before the reduction of the time horizon, the four weeks of simu-
lation lasted for about 8.5 hours. Moreover, on average, the simulation times oscillated
around an hour. In the appendix, Figure 6.1 shows a wrapping up of simulation times for
each shown case, and in Figure 6.2 the total simulation time is shown. In short, if we find
a mistake in data and we have to re-run all simulations, it will take 15.5 hours just to run
these 4 cases. Ergo, the number of cases and scenarios to simulate are sharply limited
by computational times. Also, the time horizon we could simulate was constraint by this.
Regarding future work, some recommendations are made as follows:
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• Address the problem with more sophisticated methods to deal with the non-linearity
of power flow equations so that less compromise between feasibility and accuracy
has to be made.

• To simulate the problem for longer time horizons without the use of scaling up
factors and other assumptions aimed to reduce computational time. For this, it might
be necessary the use of more powerful hardware, more advanced methods, and more
efficient software design.

• A similar approach but with the use of stochastic data will provide great understand-
ing on how to develop the actual tools that will be used in the practice.

• A similar approach containing a detailed battery model that includes degradation
features.

• Regarding the best strategies that the DSO can take, there is need for further research
on how to design flexibility markets in a way that justly satisfies the needs of all
players and maximizes the societal value of the resources available.

• Also, as we understand it, the value of storage rest upon the assumption that it will
be operated in a collective manner, i.e. the operation of every battery will take
into account the location and capacities of each of the other batteries installed in
the system. This is more a requirement than an assumption, and its materialization
needs extensive research. For instance, more research is needed on the policies that
governments and DSOs can design to promote and finance the installation of storage
at end-user level, and the creation of a common platform to operate efficiently this
resource. A cloud-based solution is one plausible alternative, but more investigation
has to be made on this topic.

• Moreover, assuming the flexibility market will seek the optimization of the resources
available, more research is needed to determine which optimization objectives de-
liver the best results. Whether these objectives are maximizing the use of RES,
minimizing losses, managing congestion, etc; research on the advantages and dis-
advantages of each objective, is required to clarify which type of optimal operation
fits best our societal and economical needs.

Finally, we are very optimistic that the combined implementation of the approaches
covered in the literature, the ones in this very project and the ones listed on future work,
will strengthen the know-how of energy storage deployment and take us one step closer to
a sustainable, clean and environmentally friendly economy.
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Figure 6.1: Simulation Times for the project
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Figure 6.2: Total Simulation Times of the Project

87


	covertesistotal
	Masters_Thesis_Corrected
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction, Motivation and Research Questions
	Introduction
	Motivation and problem statement
	Research Questions and Objectives
	Research question


	Literature Review
	Previous Approaches
	Importance of Electricity Storage
	Storage Technologies
	Allocation Based on Topology Options
	Sitting and Sizing Approaches
	Storage experiences at the Grid Level

	Proposed Approach
	Binary Sitting


	Problem Formulation and Small Example
	Energy-based Formulation
	Toy Problem Components
	Energy Balance Equations
	Optimization Definition

	Power-Based Formulation
	Toy Problem Components
	Linearization of Power Flow Equations
	Optimization Definition


	Implementation to IEEE 33-Bus System: Sitting Definition and Base Case
	Model: IEEE 33 bus system
	Mathematical Formulation
	Power Flows
	Power Net Injections
	Grid Connection
	Battery
	Battery Sitting
	Bounds and Constraints

	Optimization Definition
	Simulations
	Software
	Output
	Data

	Base case
	Battery
	Scenarios: high RES vs low RES
	RES distribution and profile
	Load profile
	Voltage profile
	Operational costs
	Line limits


	Sensitivity Analysis, Results and Discussions
	Case 1
	Scenario High RES
	Scenario Low RES
	Objective function outcomes
	Discussion

	Case 2
	Scenario High RES
	Scenario Low RES
	Objective Function Outcomes
	Discussion

	Case 3
	Discussion

	Case 4
	Discussion

	Case 5
	Capacity Allocation case
	Power Rate case
	Integer Sitting case
	Discussion


	Conclusions
	Concluding remarks
	Limitations and Future Work


	Bibliography
	Appendix


