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Abstract
Accurate and reliable lane detection is vital for the safe performance of lane-
keeping assistance and lane departure warning systems. However, under certain
challenging circumstances, it is difficult to get satisfactory performance in accu-
rately detecting the lanes from one single image as mostly done in current lit-
erature. Since lane markings are continuous lines, the lanes that are difficult
to be accurately detected in the current single image can potentially be better
deduced if information from previous frames is incorporated. This study pro-
poses a novel hybrid spatial–temporal (ST) sequence-to-one deep learning archi-
tecture. This architecturemakes full use of the ST information inmultiple contin-
uous image frames to detect the lanemarkings in the very last frame. Specifically,
the hybrid model integrates the following aspects: (a) the single image feature
extraction module equipped with the spatial convolutional neural network; (b)
the ST feature integration module constructed by ST recurrent neural network;
(c) the encoder–decoder structure, which makes this image segmentation prob-
lem work in an end-to-end supervised learning format. Extensive experiments
reveal that the proposed model architecture can effectively handle challenging
driving scenes and outperforms available state-of-the-art methods.

1 INTRODUCTION

The interest in developing automated driving functional-
ities, and in the end, fully automated vehicles, has been
increasing vastly over the last decade. The safety of these
automated functionalities is a crucial element and a pri-
ority for academic researchers, manufacturers, policymak-
ers, and their potential future users. Automated driving
requires a full understanding of the environment around
the automated vehicle through its sensors. Vision-based
methods have lately been boosted by advancements in
computer vision and machine learning. Regarding envi-
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ronmental perception, camera-based lane detection is
important, as it allows the vehicle to position itself within
the lane. This is also the foundation of most lane-keeping
assistance and lane departure warning systems (Andrade
et al., 2019; BarHillel et al., 2014;W.Chen et al., 2020; Liang
et al., 2020; Xing et al., 2018).
Traditional vision-based lane-detection methods rely on

hand-crafted low-level features (e.g., color, gradient, and
ridge features) and usually work in a four-step proce-
dure, that is, image pre-processing, feature extraction, line
detection and fitting, and post-processing (Bar Hillel et al.,
2014; Haris & Glowacz, 2021). Traditional computer vision
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techniques, for example, inverse perspectivemapping (Aly,
2008; B. F. Wang et al., 2014), Hough transform (Berriel
et al., 2017; Jiao et al., 2019; Zheng et al., 2018), Gaussian
filters (Aly, 2008; Sivaraman&Trivedi, 2013; Y.Wang et al.,
2012), and random sample consensus (Aly, 2008; Choi
et al., 2018; Du et al., 2018; Guo et al., 2015; Lu et al., 2019),
are usually adopted in the four-step procedure. The prob-
lems of traditional methods are: (a) hand-crafted features
are cumbersome to manage and not always useful, suit-
able, or powerful; and (b) the detection results are always
based on one single image. Thus, the detection accuracies
are relatively not high.
During the last decade, with the advancements in deep

learning algorithms and computational power, many deep
neural network-based methods have been developed for
lane detection with good performance. There are gener-
ally two dominant approaches (Tabeli et al., 2021b), that
is, (1) segmentation-based pipeline (Kim & Park, 2017; Ko
et al., 2020; T. Liu et al., 2020; Pan et al., 2018; Zhang et al.,
2021; Zou et al., 2020), in which predictions are made on
the per-pixel basis, classifying each pixel as either lane
or not; (2) the pipeline using row-based prediction (Hou
et al., 2020; Qin et al., 2020; Yoo et al., 2020), in which
the image is split into a (horizontal) grid, and the model
predicts the most probable location to contain a part of a
lane marking in each row. Recently, Lizhe Liu et al. (2021)
summarized two additional categories of deep learning-
based lane-detection methods, that is, the anchor-based
approach (Z. Chen et al., 2019; Li et al., 2020; Tabeli et al.,
2021b; Xu et al., 2020), which focuses on optimizing the
line shape by regressing the relative coordinates with the
help of predefined anchors, and the parametric prediction-
based method, which directly outputs parametric lines
expressed by curve equation (R. Liu et al., 2020; Tabeli
et al., 2021a). Apart from these dominant approaches,
some other less commonmethods were proposed recently.
For instance, Lin et al. (2020) fused the adaptive anchor
scheme (designed by formulating a bilinear interpolation
algorithm) aided informative feature extraction and object
detection into a single deep convolutional neural network
(CNN) for lane detection from a top-view perspective. Phil-
ion (2019) developed a novel learning-based approachwith
a fully convolutional model to decode the lane structures
directly rather than delegating structure inference to post-
processing, plus an effective approach to adapt the model
to new contexts by unsupervised transfer learning.
Similar to traditional vision-based lane-detection meth-

ods, most available deep learning models utilize only the
current image frame to perform the detection. Until very
recently, a few studies have explored the combination of
CNN and recurrent neural network (RNN) to detect lane
markings or simulate autonomous driving using continu-
ous driving scenes (Chen et al., 2020; Zhang et al., 2021;

Zou et al., 2020). However, the available methods do not
take full advantage of the essential properties of the lane
being long continuous solid or dashed line structures. Also,
they do not yet make the utmost of the spatial–temporal
(ST) information together with correlation and depen-
dencies in the continuous driving frames. Thus, for cer-
tain extremely challenging driving scenes, their detection
results are still unsatisfactory.
In this paper, lane detection is treated as a segmenta-

tion task, in which a novel hybrid ST sequence-to-one
deep learning architecture is developed for lane detection
through a continuous sequence of images in an end-to-end
approach. To cope with challenging driving situations,
the hybrid model takes multiple continuous frames of an
image sequence as inputs, and integrates the single image
feature extractionmodule, the ST feature integrationmod-
ule, together with the encoder–decoder structure to make
full use of the ST information in the image sequence. The
single image feature extraction module utilizes modified
common backbone networks with embedded spatial CNN
(SCNN; Pan et al., 2018) layers to extract the features in
every single image throughout the continuous driving
scene. SCNN is powerful in extracting spatial features
and relationships in one single image, especially for long
continuous shape structures. Next, the extracted features
are fed into ST-RNN layers to capture the ST dependen-
cies and correlations among the continuous frames. An
encoder–decoder structure is adopted with the encoder
consisting of SCNN and several fully convolution layers
to downsample the input image and abstract the features,
while the decoder, constructed by CNNs, upsample the
abstracted outputs of previous layers to the same size as
the input image. With the labeled ground truth of the very
last image in the continuous frames, the model training
works in an end-to-end way as a supervised learning
approach. To train and validate the proposed model on
two large-scale open-sourced datasets, that is, tvtLANE
(Zou et al., 2020) and TuSimple, a corresponding training
strategy has been also developed. To summarize, the main
contributions of this paper lie in:

1. A hybrid ST sequence-to-one deep neural network
architecture integrating the advantages of the encoder–
decoder structure, SCNN-embedded single image fea-
ture extraction module, and ST-RNN module, is pro-
posed.

2. The proposed model architecture is the first attempt
that tries to strengthen both spatial relation feature
extraction in every single image frame and ST corre-
lation together with dependencies among continuous
image frames for lane detection.

3. The implementation utilized two widely used neural
network backbones, that is, UNet (Ronneberger et al.,
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2015) and SegNet (Badrinarayanan et al., 2017) and
included extensive evaluation experiments on com-
monly used datasets, demonstrating the effectiveness
and strength of the proposed model architecture.

4. The proposed model can tackle lane detection in chal-
lenging scenes such as curves, dirty roads, serious vehi-
cle occlusions, and so forth, and outperforms all the
available state-of-the-art baseline models in most cases
with a large margin.

5. Under the proposed architecture, the light version
model variant can achieve beyond state-of-the-art per-
formance while using fewer parameters.

2 PROPOSEDMETHOD

Although many sophisticated methods have been pro-
posed for lane detection, most of the available methods
use only one single image resulting in unsatisfactory per-
formance under some extremely challenging scenarios, for
example, dazzle lighting, and serious occlusion. This study
proposes a novel hybrid ST sequence-to-one deep neural
network architecture for lane detection. The architecture
was inspired by: (a) the successful precedents of hybrid
deepneural network architectures that fuseCNNandRNN
to make use of information in continuous multiple frames
(Zhang et al., 2021; Zou et al., 2020); (b) the domain prior
knowledge that traffic lanes are long continuous shape line
structure with strong spatial relationship. The architecture
integrates two modules of two distinctive neural networks
with complementary merits, that is, SCNN and convolu-
tional long short-term memory (ConvLSTM) neural net-
work, under an end-to-end encoder–decoder structure, to
tackle lane detection in challenging driving scenes.

2.1 Overview of the proposed model
architecture

The proposed deep neural network architecture adopts a
sequence-to-one end-to-end encoder–decoder structure as
shown in Figure 1.
Here “sequence-to-one” means that the model gets a

sequence of multi-images as input and outputs the detec-
tion result of the last image (please note that essentially the
model is still utilizing sequence-to-sequence neural net-
works); “end-to-end” means that the learning algorithm
goes directly from the input to the desired output, which
refers to the lane-detection result in this paper, bypassing
the intermediate states (Levinson et al., 2011; Neven et al.,
2017); the encoder–decoder structure is a modular struc-
ture that consists of an encoder network and a decoder
network and is often employed in sequence-to-sequence

tasks, such as language translation (e.g., Sutskever et al.,
2014), and speech recognition (e.g., Wu et al., 2017). Here,
the proposed model adopts encoder CNN with SCNN lay-
ers and decoder CNN using fully convolutional layers. The
encoder takes a sequence of continuous image frames, that
is, time-series images, as input and abstracts the feature
map(s) in smaller sizes. To make use of the prior knowl-
edge that traffic lanes are solid- or dashed-line structures
with a continuous shape, one special kind of CNN, that
is, SCNN, is adopted after the first CNN hidden layer.
With the help of SCNN, spatial features and relationships
in every single image will be better extracted. Following
this, the extracted feature maps of the continuous frames,
constructed in a time-series manner, will be fed to ST-
RNN blocks for sequential feature extraction and spatial-
temporal information integration. Finally, the decoder net-
work upsamples the abstracted feature maps obtained
from the ST-RNN and decodes the content to the origi-
nal input image size with the detection results. The pro-
posed model architecture is implemented with two back-
bones, UNet (Ronneberger et al., 2015) and SegNet (Badri-
narayanan et al., 2017). Note, in the UNet-based architec-
ture, similar to (Ronneberger et al., 2015), the proposed
model employs the skip connection between the encoder
and decoder phase by concatenating operation to reuse fea-
tures and retain information from previous encoder layers
for more accurate predictions; while in the SegNet-based
networks, at the decoder stage, similar to (Badrinarayanan
et al., 2017), the proposed model reuses the pooling indices
to capture, store, andmake use of the vital boundary infor-
mation in the encoder feature maps. The detailed network
implementation is elaborated in the remaining parts of
Section 2.

2.2 Network design

1. End-to-end encoder-decoder: Regarding lane detec-
tion as an image segmentation problem, the encoder–
decoder structure-based neural network can be imple-
mented and trained in an end-to-end way. Inspired
by the excellent performance of CNN-based encoder–
decoder for image semantic-segmentation tasks in var-
ious domains (Badrinarayanan et al., 2017; S. Wang
et al., 2020; Yasrab et al., 2017), this study also adopts
the “symmetrical” encoder–decoder as the main back-
bone structure. Convolution and pooling operations are
employed to extract and abstract the features in every
image in the encoder stage; while in the decoder sub-
set, the inverted convolution and upsampling operation
are adopted to grasp the extracted high-order features
and construct the outputs layer by layer with regards to
the targets. By setting the output target size the same
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F IGURE 1 The architecture of the proposed model

as the input image size, the whole network can work
in an end-to-end approach. In the implementation, two
widely used backbones, UNet and Seg-Net, are adopted.
To better extract and make use of the spatial relations
in every image frame, the SCNN layer is introduced in
the encoder part of the single image feature extraction
module. Furthermore, to excavate and make use of the
ST correlations and dependencies among the input con-
tinuous image frames, ST-RNN blocks are embedded in
the middle of the encoder–decoder networks.

2. SCNN: The SCNN was first proposed by Pan et al.
(2018). The “spatial” here means that the specially
designed CNN can propagate spatial information via
slice-by-slicemessage passing. The detailed structure of
SCNN is demonstrated in the bottom part of Figure 1.

SCNN can propagate the spatial information in one
image through four directions as shown with the suffix
“DOWN,” “UP,” “RIGHT,” “LEFT” in Figure 1, which

denotes downward, upward, rightward, and leftward,
respectively. Take the “SCNN_DOWN” module for an
example, considering that SCNN is adopted on a three-
dimensional tensor of size C × W × H, wherein the lane-
detection task,C,W, andHdenote the number of channels,
image (or its feature map) width, and heights, respectively.
For SCNN_D, the input tensor would be split intoH slices,
and the first slice will then be sent into a convolution oper-
ation layer with C kernels of size C × w, in which w is the
kernel width. Different from the traditional CNN in which
the output of one convolution layer is introduced into the
next layer directly, in SCNN_D, the output is added to the
next adjacent slice to produce a new slice and iteratively
to the next convolution layer continuing until the last slice
in the selected direction is updated. The convolution ker-
nel weights are shared throughout all slices, and the same
mechanism works for other directions of SCNNs.
With the above properties, SCNN has demonstrated its

strengths in extracting spatial relationships in the image,
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which makes it suitable for detecting long continuous
shape structures, for example, traffic lanes, poles, andwalls
(Pan et al., 2018). However, using only one image to do
the detection, SCNN still could not produce satisfying per-
formance under extremely challenging conditions. And
that is why a sequence-to-one architecture with continu-
ous image frames as inputs and ST-RNN blocks to capture
the ST correlations in the continuous frames is proposed
in this paper.

3. ST-RNN module: In this proposed framework, the
multiple continuous frames of images are modeled as
“image-time-series” inputs. To capture the ST depen-
dencies and correlations among the image-time-series,
the ST-RNN module is embedded in the middle of the
encoder–decoder structure,which takes over the output
extracted features of the encoder as its input and out-
puts the integrated ST information to the decoder.

Various versions of RNNs have been proposed, for exam-
ple, LSTM together with its multivariate version, that is,
fully connected LSTM (FC-LSTM ), and gated recurrent
unit (GRU), to tackle time-series data in different applica-
tion domains. In this paper, two state-of-the-art RNN net-
works, that is, ConvLSTM (Shi et al., 2015) and convolu-
tional GRU (ConvGRU; Ballas et al., 2016), are employed.
These models, considering their abilities in ST feature
extraction, generally outperform other traditional RNN
models.
A general critical problem for the vanilla RNN model is

the gradients vanishing (Hochreiter & Schmidhuber, 1997;
Pascanu et al., 2013; Ribeiro et al., 2020). For this, LSTM
introduces memory cells and gates to control the informa-
tion flow to trap the gradient preventing it from vanish-
ing during the backpropagation. In LSTM, the information
of the new time-series inputs will be accumulated to the
memory cell 𝑡 if the input gate 𝑖𝑡 is on. In contrast, if the
information is not “important,” the past cell status 𝑡−1
could be “forgotten” by activating the forget gate 𝑓𝑡. Also,
there is the output gate 𝑜𝑡,which decideswhether the latest
cell output 𝑡 will be propagated to the final state 𝑡. The
traditional FC-LSTM contains too much redundancy for
spatial information, which makes it time-consuming and
computational-expensive. To address this, the ConvLSTM
(Shi et al., 2015) is selected to build the ST-RNN block of
the proposed framework. In ConvLSTM, the convolutional
structures and operations are introduced in both the input-
to-state and state-to-state transitions to do spatial informa-
tion encoding, which also alleviates the problem of time-
and computation-consuming.
The key formulation of the ConvLSTM is shown by

Equations (1)–(5), where ⊙ denotes the Hadamard prod-
uct, ∗ denotes the convolution operation, 𝜎(⋅) represents

the sigmoid function, and tanh(⋅) represents the hyper-
bolic tangent function;𝑋𝑡, 𝑡, and𝑡 are the input (i.e., the
extracted features from the encoder in the proposed frame-
work), memory cell status, and output at time 𝑡; 𝑖𝑡, 𝑓𝑡, and
𝑜𝑡 are the function values of the input gate, forget gate, and
output gate, respectively;𝑊 denotes the weight matrices,
whose subscripts indicate that the two corresponding vari-
ables are connected by this matrix. For instance,𝑊𝑥𝑐 is the
weight matrix between the input extracted features 𝑋𝑡 and
the memory cell 𝑡; "b" s are biases of the gates, for exam-
ple, 𝑏𝑖 is the input gate’s bias.

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖 ∗ 𝑋𝑡 +𝑊ℎ𝑖 ∗ 𝑡−1 +𝑊𝑐𝑖 ⊙ 𝑡−1 + 𝑏𝑖) (1)

𝑓𝑡 = 𝜎
(
𝑊𝑥𝑓 ∗ 𝑋𝑡 +𝑊ℎ𝑓 ∗ 𝑡−1 +𝑊𝑐𝑓 ⊙ 𝑡−1 + 𝑏𝑓

)

(2)
𝑡 = 𝑓𝑡 ⊙ 𝑡−1 + 𝑖𝑡 ⊙ tanh (𝑊𝑥𝑐 ∗ 𝑋𝑡 +𝑊ℎ𝑐 ∗ 𝑡−1 + 𝑏𝑐)

(3)
𝑜𝑡 = 𝜎 (𝑊𝑥𝑜 ∗ 𝑋𝑡 +𝑊ℎ𝑜 ∗ 𝑡−1 +𝑊𝑐𝑜 ⊙ 𝑡 + 𝑏𝑜) (4)

𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡) (5)

The ConvGRU (Ballas et al., 2016) further lightens the
computational complexity by reducing a gate structure but
could perform similarly or slightly better, compared with
the traditional RNNs or even ConvLSTM. The procedure
of computing different gates and hidden states/outputs of
ConvGRU is demonstrated by Equations (6)–(9), in which
the symbols have the same meaning as described before,
while additional 𝑧𝑡 and 𝑟𝑡 mean the update gate and the
reset gate, respectively, plus ̃ represents the current can-
didate hidden representation.

𝑧𝑡 = 𝜎 (𝑊𝑧𝑥 ∗ 𝑋𝑡 +𝑊𝑧ℎ ∗ 𝑡−1 + 𝑏𝑧) (6)

𝑟𝑡 = 𝜎 (𝑊𝑟𝑥 ∗ 𝑋𝑡 +𝑊𝑟ℎ ∗ 𝑡−1 + 𝑏𝑟) (7)

̃𝑡 = tanh (𝑊𝑜𝑥 ∗ 𝑋𝑡 +𝑊𝑜ℎ ∗ (𝑟𝑡 ⊙𝑡−1) + 𝑏𝑜) (8)

𝑡 = 𝑧𝑡̃ + (1 − 𝑧𝑡)𝑡−1 (9)

In ConvGRU, there are only two gate structures, that is,
the updated gate 𝑧𝑡 and the reset gate 𝑟𝑡. It is the update
gate 𝑧𝑡 that decides how to update the hidden represen-
tation when generating the ultimate result of 𝑡 at the
current layer as shown in Equation (9), while the reset
gate 𝑟𝑡 is served to control to what extent the feature infor-
mation captured in the previous hidden state is supposed
to be forgotten through an element-wise multiplication
operation when calculating current candidate hidden rep-
resentation. From the equations, it is concluded that the
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information of 𝑡 mainly comes from ̃𝑡, while 𝑡−1 as
the previous hidden-state representation also contributes
to the process of computing the final representation of𝑡;
thus, the temporal dependencies are captured.
In practice, both ConvLSTM and ConvGRU with differ-

ent numbers of hidden layers were employed to serve as
the ST-RNN module in the proposed architecture, and the
corresponding performances were evaluated. To be spe-
cific, in the proposed network, the input and the output
sizes of the ST-RNN block are equivalent to the feature
map size extracted through the encoder, which is 8 × 16
and 4 × 8 for the UNet-based and SegNet-based backbone,
respectively. The convolutional kernel size in ConvLSTM
and ConvGRU is 3 × 3, and the dimension of each hidden
layer is 512. The detailed implementations are described in
the following section.

2.3 Detailed implementation

1. Network design details: The proposed ST sequence-
to-one neural network was developed for the lane-
detection taskwithK (in this paperK= 5 if not specified)
continuous image frames as inputs. The image frames
were first fed into the encoder for feature extraction
and abstraction. Different from the normal CNN-based
encoder, the SCNN layer was utilized to effectively
extract the spatial relationshipswithin every image. Dif-
ferent locations of the SCNN layer were tested, that is,
embedding the SCNN layer after the first hidden con-
volutional layer or at the very beginning. The outputs
of the encoder network were modeled in a time-series
manner and fed into the ST-RNN blocks (i.e., ConvL-
STM or ConvGRU layers) to further extract more use-
ful and accurate features, especially the ST dependen-
cies and correlations among different image frames. In
short, the encoder network is primarily responsible for
spatial feature extraction and abstraction transforming
input images into specified feature maps, while the ST-
RNN blocks accept the extracted features from the con-
tinuous image frames in a time-series manner to cap-
ture the ST dependencies.

The outputs of the ST-RNN blocks were then trans-
ferred into the decoder network that adopts deconvolu-
tion and upsampling operations to highlight andmake full
use of the features and rebuild the target to the original
size of the input image. Note there is the skip concate-
nate connection (for UNet-based architecture) or pooling
indices reusing (for SegNet-based architecture) between
the encoder and decoder to reuse the retained features
fromprevious encoder layers formore accurate predictions
at the decoder phase. After the decoder phase, the lane-

detection result is obtained as an image in the equivalent
size to the input image frame. With the labeled ground
truth and the help of the encoder–decoder structure, the
proposed model can be trained and implemented in an
end-to-end way. The detailed input, output sizes, together
with parameters of the layers in the entire neural network
are listed in Appendix Tables A1 and A2.
For both SegNet-based and UNet-based implementa-

tions, two types of RNN layers, that is, ConvLSTM and
ConvGRU, were tested to serve as the ST-RNN block.
Besides, the ST-RNN blocks were tested with one and two
hidden layers. So there are four variants of in the proposed
SegNet-based models, that is, SCNN_SegNet_ConvGRU1,
SCNN_SegNet_ConvGRU2, SCNN_SegNet_ConvLSTM1,
and SCNN_SegNet_ConvLSTM2. SCNN_SegNet_Conv
GRU1 means the model is using SegNet as the backbone
with SCNN layer-embedded encoder and one hidden
layer of ConvGRU as the ST-RNN block. This naming rule
applies to the other three variants as well. Also, there are
four variants of the proposed UNet-based models, with a
similar naming rule.
In the proposed models with UNet as the backbone, the

number of kernels used in the last convolutional block of
the encoder part differs from the original UNet’s settings.
Here, the number of output kernels (channels) of the last
convolutional block in the proposed encoder does not dou-
ble its input kernels, which applies to all the previous con-
volutional blocks. This is done, similar to (Zou et al., 2020),
to better connect the output of the encoder with the ST-
RNN block (ConvLSTM or ConvGRU layers). To do so,
the parameters of the full-connection layer are designed
to be quadrupled, while the side lengths of the feature
maps are reduced to half, at the same time, the number of
kernels remains unchanged. This strategy also somewhat
contributes to reducing the parameter size of the whole
network.
A modified light version of UNet (UNetLight) was also

tested to serve as the network backbone to reduce the total
parameter size, increase the model’s ability to operate in
real time, and also further verify the proposed network
architecture’s effectiveness. The UNetLight has a similar
network design to the demonstration in Table A2. The
only difference is that all the numbers of kernels in the
ConvBlocks are reduced to half except for the Input in
In_ConvBlock (with the input channel of three unchanged)
and Output in Out_ConvBlock (with the output channel of
two unchanged). To save space, the parameter settings of
UNetLight-based implementationwill not be illustrated.

2. Loss function: Since the lane detection is modeled as
a segmentation task and a pixel-wise binary classifi-
cation problem, cross-entropy is a suitable candidate
to serve as the loss function. However, because the
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pixels classified to be lanes are always quite less than
those classified to be the background (meaning that it is
an imbalanced binary classification and discriminative
segmentation task), in the implementation, the loss was
built upon theweighted cross-entropy. The adopted loss
function as the standard weighted binary cross-entropy
function is given as in Equation (10),

Loss = −
1

𝑆

𝑆∑

𝑖=1

[𝑤 ∗ 𝑦𝑖 ∗ log (ℎ𝜃 (𝑥𝑖)) + (1 − 𝑦𝑖)

∗ log (1 − ℎ𝜃 (𝑥𝑖))] (10)

where 𝑆 is number of training examples, 𝑤 stands for
the weight, which is set according to the ratio between
the total lane pixel quantities and non-lane pixel quanti-
ties throughout the whole training set, 𝑦𝑖 is the true tar-
get label for training example 𝑖, 𝑥𝑖 is the input for train-
ing example 𝑖, and ℎ𝜃 stands for the model with neural
network weights 𝜃.

3. Training details: The proposed neural networks with
different variants, together with the baseline models
were trained on the Dutch high-performance super-
computer clusters, Cartesius and Lisa, using 4 Titan
RTX GPUs with the data parallel mechanism in
PyTorch. The input image size was set as 128 × 256
to reduce the computational payload. The batch size
was set to be as large as possible (e.g., 64 for UNet-
based network architecture, 100 for SegNet-based ones,
and 136 for UNetLight-based ones), and the learn-
ing rate was initially set to 0.03. The Rectified Adam
(RAdam) optimizer (Liyuan Liu et al., 2019) was first
used in this work for training the model at the begin-
ning. At the later stage, when the training accuracy
was beyond 95%, the optimizer was switched to the
stochastic gradient descent (Bottou, 2010) optimizer
with decay. With the labeled ground truth, the models
were trained through iteratively updating the parame-
ters in the weight matrixes and the losses on the basis
of the deviation between outputs of the proposed neural
network and the ground truth using the backpropaga-
tion mechanism. To speed up the training process, the
pre-trained weights of SegNet and UNet on ImageNet
(Deng et al., 2009) were adopted.

3 EXPERIMENTS AND RESULTS

Extensive experiments were carried out to inspect and ver-
ify the accuracy, effectiveness, and robustness of the pro-
posed lane-detection model using two large-scale open-
sourced datasets. The proposed models were evaluated
on different driving scenes and were compared with

several state-of-the-art baseline lane-detection methods,
which also employ deep learning, for example, UNet (Ron-
neberger et al., 2015), Seg-Net (Badrinarayanan et al.,
2017), SCNN (Pan et al., 2018), LaneNet (Neven et al.,
2018), UNet_ConvLSTM (Zou et al., 2020), and Seg-
Net_ConvLSTM (Zou et al., 2020).

3.1 Datasets

1. tvtLANE training set: To verify the proposed model per-
formance, the tvtLANE dataset (Zou et al., 2020) based
upon the TuSimple lanemarking challenge dataset, was
first utilized for training, validating, and testing. The
original dataset of the TuSimple lanemarking challenge
includes 3626 clips of training and 2782 clips of testing,
which are collected under various weather conditions
and during different periods. In each clip, there are 20
continuous frames saved in the same folder. In each clip,
only the lane marking lines of the very last frame, that
is, the 20th frame, are labeledwith the ground truth offi-
cially. Zou et al. (2020) additionally labeled every 13th
image in each clip and added their own collected lane
dataset, which includes 1148 sequences of rural driving
scenes collected in China. This immensely expanded
the variety of the road and driving conditions since the
original TuSimple dataset only covers the highway driv-
ing conditions. K continuous frames of each clip are
used as the inputs with the ground truth of the labeled
13th or 20th frame to train the models.

To further augment the training dataset, crop, flip, and
rotation operations were employed; thus, a total number
of (3626 + 1148) × 4 = 19,096 continuous sequences were
produced, in which 38,192 images are labeled with ground
truth. To adapt to different driving speeds, the input image
sequenceswere sampled at three strideswith a frame inter-
val of one, two, or three. Then, three sampling methods
were employed to construct the training samples regard-
ing the labeled 13th and 20th frames in each sequence as
demonstrated in Table 1.

2. tvtLANE testing set: Two different datasets were used
for testing, that is, testset #1 (normal) and testset #2
(challenging), which are also formatted with five con-
tinuous images as the input to detect the lane markings
in the very last frame with the labeled ground truth. To
be specific, testset #1 is built upon the original TuSimple
test set for normal driving scene testing; while testset
#2 is constructed with 12 challenging driving situations,
especially used for robustness evaluation. The detailed
descriptions of the trainset and testset in tvtLANE are
illustrated in Table 1, with examples shown in Figure 2.
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TABLE 1 Trainset and testset in tvtLANE

Trainset
Subset Labeled images num
Original TuSimple dataset (Highway) 7252
Zou et al. (2020) added (rural road) 2296

Sample methods
Labeled ground truth Sample stride Train sample frames
13th 3 First, fourth, seventh, 10th, 13th

2 Fifth, seventh, nine, 11th, 13th
1 Nine, 10th, 11th, 12th, 13th

20th 3 Eight, 11th, 14th, 17th, 20th
2 12th, 14th, 16th, 18th,20th
1 16th, 17th, 18th, 19th, 20th

Testset
Subset Labled images num Labled ground truth Sample stride Test sample frames
Testset #1 normal 540 13th 1 Ninth, 10th, 11th, 12th, 13th

20th 1 16th, 17th, 18th, 19th, 20th
Testset #2 challenging 728 All 1 First, second, third, fourth, fifth

Second, third, fourth, fifth, sixth
Third, fourth, fifth, sixth, seventh
⋯

F IGURE 2 Samples data in trainset and testset. (a) original
TuSimple dataset (Highway), (b) Zou et al. (2020) added rural road
situations, (c) testset #1 normal situations, and (d) testset #2
challenging situations. In each row, the first five images are the
input image sequence the last image is the labeled ground truth

3.2 Qualitative evaluation

Qualitative evaluation with the visualization of the lane
detection results is themost intuitive approach to compare
and evaluate the properties of differentmodels, and it helps
to find insights regarding their pros and cons.

1. tvtLANE testset #1: Normal situations

Samples of the lane-detection results on tvtLANE testset
#1 of the proposed models and other state-of-the-art mod-
els are demonstrated in Figure 3(1). All these results are
without post-processing.
In general, a good lane detection should include the fol-

lowing five properties:

1. The number of lines needs to be predicted cor-
rectly. A wrong detection or a misprediction might
cause the automated vehicles to consider unsafe
or unreachable areas as drivable areas resulting in
potential accidents. As illustrated in the first and
second columns in Figure 3(1), the proposed models
can identify the correct number of lane lines, while
the baseline models, especially the ones using a sin-
gle image, somewhat cannot detect the correct num-
ber of lines, compared with ground truth.

2. The positions of each lane marking line should
be predicted precisely accords with the ground
truth. As illustrated in Figure 3(1), the proposed
models in row (j) with the model named by
SCNN_SegNet_ConvLSTM2 and row (n) with the
model named SCNN_UNet_ConvLSTM2, could
deliver better lane location predictions with thinner
lines, compared with the baseline models. Superior
to scattering points around, thinner predicted lane
lines indicate a more precise model prediction of
the lane position.

3. The predicted lane lines should not merge or be
broken. As illustrated in the first, second, sixth,
seventh, and eighth columns of Figure 3(1), some
baseline models’ output lane lines either merge at
the far end or break the continuity with dashed
lines. The proposed models perform slightly bet-
ter although in a few cases the lines are also
discontinuous.
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F IGURE 3 Qualitative evaluation: Visualization of the lane-detection results on (1) tvtLANE testset #1 and (2) tvtLANE testset #2

4. The lanes should be predicted correctly even at
the boundary of the image. As can be found in
Figure 3(1), some baselinemodels, for example, rows
(c), (d), and (e), run across difficulties at the top
boundary of the image with merge lanes on the top.
This also accords with the aforementioned property.

5. The lane-detection models should deliver accurate
predictions under different driving scenes, even
under some challenging situations. For example,
in the second, third, fifth, and seventh columns
of Figure 3(1), vehicles are occluding the lanes. A
good lane-detection model should be able to han-
dle these. The proposed models perform well under
these slightly challenging cases, more challenging
situations are further discussed later.

2. tvtLANE testset #2: 12 challenging driving cases

Figure 3(2) shows the comparison of the proposed
models with the baseline models under some extremely
challenging driving scenes in the tvtLANE testset #2.
All the results are not post-processed. These challenging
scenes cover wide situations including serious vehicle

occlusion, bad lighting conditions (e.g., shadow, dim),
tunnel situations, and dirt road conditions. In some
extremely challenging cases, the lanes are totally occluded
by vehicles, other objects, and/or shadows, which could
be very difficult even for humans to do the detection.
As can be observed in Figure 3(2), although all

the baseline models fail in these challenging cases,
the proposed models, especially the one named
SCNN_SegNet_ConvLSTM2 illustrated in the row
(k), could still deliver good predictions in almost every
situation listed in Figure 3(2). The only flaw is that in
the third column where vehicle occlusion and blur road
conditions happen simultaneously, the proposed models
also find it hard to predict precisely. With the results in
the fourth, seventh, and eighth columns, the robustness
of SCNN_SegNet_ConvLSTM2’s property in detecting the
correct number of lane lines is further verified, especially,
one can observe in the fourth column, where almost all the
other models are defeated, SCNN_SegNet_ConvLSTM2
can still predict the correct number of lanes.
Furthermore, it should be noticed that correct lane

location predictions in these challenging situations are of
vital importance for safe driving. For example, regarding
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the situation in the last column where a heavy vehicle
totally shadows the field of vision on the left side, it will
be very dangerous if the automated vehicle is driving
according to the lane-detection results demonstrated in
the third to fifth rows.

3.3 Quantitative evaluation

1. Evaluation metrics: This subsection examines the pro-
posed models’ properties regarding quantitative evalu-
ations. When treated as a pixel-wise classification task,
accuracy must be the most simple criterion for the per-
formance evaluation of lane detection (Zou et al., 2017),
which represents the overall classification performance
in terms of correctly classified pixels, indicated in
Equation (11).

Accuracy =
Truly Classif ied Pixels

Total Number of Pixels
(11)

However, since it is an imbalanced binary classifica-
tion problem, where the lanes pixels are far less than
the background pixels, using only accuracy to evaluate
the model is not suitable. Thus, precision, recall, and F-
measure, illustrated by Equations (12)–(14), are commonly
employed.

Precision =
True Positive

True Positive + False Positive
(12)

Recall =
True Positive

True Positive + FalseNegative
(13)

F-measure =
(
1 + 𝛽2

) Precision ∗ Recall

𝛽2Precision + Recall
(14)

In the above equations, true positive indicates the num-
ber of image pixels that are lane marking and are correctly
identified; false positive means the number of image pix-
els that are background but are wrongly classified as lane
markings; false negative stands for the number of image
pixels that are lane marking but are wrongly classified as
the background.
Specifically, this study chooses 𝛽 = 1, which corre-

sponds to the F1-measure (harmonic mean) shown in
Equation (15).

F1-measure = 2 ∗
Precision ∗ Recall

Precision + Recall
(15)

The F1-measure, which balances precision and recall, is
always selected as the main benchmark for model evalua-
tion (e.g., Lizhe Liu et al., 2021; Pan et al., 2018; Xu et al.,
2020; Zhang et al., 2021; Zou et al., 2020).

Furthermore, the model parameter size, that is, Params
(M), together with the multiply-accumulate (MAC) opera-
tions, that is, MACs (G), are provided as indicators of the
model complexity. The two indicators are commonly used
to estimate models’ computational complexities and real-
time capabilities.

2. Performance and comparisons on tvtLANE testset #1
(normal situations)

As shown in Table 2, the proposed model of
SCNN_UNet_ConvLSTM2 performs the best when
evaluating on tvtLANE testset #1, with the highest
accuracy and F1-measure, while the proposed model of
SCNN_SegNet_ConvLSTM2 delivers the best precision.
Incorporating the quantitative evaluation with the qual-

itative evaluation, it could be easily interpreted that the
highest precision, accuracy, and F1-measure are mainly
derived from (i) the correct lane number, (ii) the accu-
rate lane position, (iii) the sound continuity in the detected
lanes, and (iv) the thinness of the predicted lanes with less
blurriness, which accords with (ii). The correct prediction
directly reduces the number of false positives, and a good
precision contributes to better accuracy and F1-measure.
Considering the structure of the proposed model architec-
ture, a further explanation of the high F1-measure, accu-
racy, and precision can be explained as follows:
First, the SCNN layer embedded in the encoder equips

the proposed model with better information extracting
ability regarding the low-level features and spatial rela-
tions in each image.
Second, the ST-RNN blocks, that is, ConvL-

STM/ConvGRU layers, can effectively capture the
temporal dependencies among the continuous image
frames, which could be very helpful for challenging
situations where the lanes are shadowed or covered by
other objects in the current frame.
Finally, the proposed architecture could make the best

of the ST information among the processed K continuous
frames by regulating the weights of the convolutional ker-
nels within the SCNN and ConvLSTM/ConvGRU layers.
All in all, with the proposed architecture the pro-

posedmodel tries to not only strengthen feature extraction
regarding spatial relation in one image frame but also the
ST correlation and dependencies among image frames for
lane detection.
Looking at the main metric, F1-measure, it is demon-

strated that increasing only precision or only recall will
not improve the F1-measure. Although the bassline
models of UNet, SegNet, and SegNet_ConvLSTM get
better recalls, they do not deliver good F1-measure
since their precisions are much lower than the
proposed model of SCNN_SegNet_ConvLSTM2 or
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TABLE 2 Model performance comparison on tvtLANE testset #1 (normal situations)

Test_Acc (%) Precision Recall F1-measure MACs (G) Params (M)
Models using a
single image
as input

Baseline models

UNet 96.54 0.790 0.985 0.877 15.5 13.4
SegNet 96.93 0.796 0.962 0.871 50.2 29.4
SCNN* 96.79 0.654 0.808 0.722 77.7 19.2
LaneNet* 97.94 0.875 0.927 0.901 44.5 19.7

Models using
continuous
images
sequence as
inputs

SegNet_ConvLSTM** 97.92 0.874 0.931 0.901 217.0 67.2

UNet_ConvLSTM** 98.00 0.857 0.958 0.904 69.0 51.1
Proposed models (SegNet-based)
SCNN_SegNet_ConvGRU1 98.00 0.878 0.935 0.905 219.2 43.7
SCNN_SegNet_ConvGRU2 98.05 0.888 0.918 0.903 221.5 57.9
SCNN_SegNet_ConvLSTM1 98.01 0.881 0.935 0.907 220.0 48.5
SCNN_SegNet_ConvLSTM2 98.07 0.893 0.928 0.910 223.0 67.3
Proposed models (UNet-based)
SCNN_UNet_ConvGRU1 98.13 0.878 0.957 0.916 77.9 27.7
SCNN_UNet_ConvGRU2 98.19 0.887 0.950 0.917 87.0 41.9
SCNN_UNet_ConvLSTM1 98.18 0.886 0.948 0.916 81.0 32.4
SCNN_UNet_ConvLSTM2 98.19 0.889 0.950 0.918 93.0 51.3
Proposed models (light version UNet-based)
SCNN_UNetLight_ConvGRU1 97.83 0.850 0.960 0.902 19.6 6.9
SCNN_UNetLight_ConvGRU2 98.01 0.863 0.950 0.905 21.9 10.5
SCNN_UNetLight_ConvLSTM1 97.71 0.830 0.950 0.886 20.4 8.1
SCNN_UNetLight_ConvLSTM2 97.76 0.840 0.953 0.893 23.4 12.8

Abbreviations: ConvGRU, convolutional gated recurrent unit; ConvLSTM, convolutional long short-term memory; MAC, multiply-accumulate; SCNN, spatial
convolutional neural network; UNetLight, modified light version of UNet.
*Results reported in Zhang et al. (2021).
**There are two hidden layers of ConvLSTM in SegNet_ConvLSTM and UNet_ConvLSTM.

SCNN_UNet_ConvLSTM2. Regarding the good recall of
UNet and SegNet, it could be speculated from the qualita-
tive evaluation, where one can find that UNet and SegNet
tend to produce thicker lane lines. With thicker lines and
blurry areas, the two models can somehow reduce the
false negative, which will contribute to better recall. This
also demonstrates that recall and precision antagonize
each other, which further proves that F1-measure should
be a more reasonable evaluation measure, compared with
precision and recall.

3. Performance and comparisons on tvtLANE testset #2
(challenging situations)

To further evaluate the proposed models’ performance
and verify the models’ robustness, the models were eval-
uated on a brand-new dataset, that is, the tvtLANE test-

set #2. As introduced in Section 3.1, tvtLANE testset #2
includes 728 images in highway, urban, and rural driv-
ing scenes. These challenging driving scenes’ data were
obtained by data recorders at various locations, outside and
inside the car front windshield under different road and
weather conditions. Testset #2 is a challenging and com-
prehensive dataset for model evaluation, fromwhich some
cases would be difficult enough for humans to do the cor-
rect detection.
Table 3 demonstrates the model performance compari-

son on the 12 types of challenging scenes in tvtLANE test-
set #2. Following the results and discussions in (2) per-
formance and comparisons on tvtLANE testset #1(normal
situations), here, Table 3 provides the precision and F1-
measure for the evaluation reference.
As indicated by the bold numbers, the proposed

model, SCNN_SegNet_ConvLSTM2, results in the best
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F IGURE 4 Visual comparison of the lane-detection results on
challenging driving situations for UNet_ConvLSTM and the
proposed model SCNN_SegNet_ConvLSTM2. All the results are not
post-processed. (a) Input images. (b) Ground truth. (c) Detection
results of UNet_ConvLSTM. (d) Detection results of
UNet_ConvLSTM overlapping on the original images. (e) Detection
results of SCNN_SegNet_ConvLSTM2. (f) Detection results of
SCNN_SegNet_ConvLSTM2 overlapping on the original images.
The upper part (1) is for challenging situation 8-blur&curve, while
the down part (2) is for situation 10-shadow-dark

F1-measure at the overall level and in more situations,
while the UNet_ConvLSTM results in the best precision
at the overall level and in more situations. Incorporating
with the qualitative evaluation in Figure 3(2), it is shown
that UNet_ConvLSTM tends to not classify pixels into lane
lines for uncertain areas under some challenging situa-
tions (e.g., the second and seventh columns in Figure 3(2)).
This might be the reason for its obtaining better precision.
To further confirm this speculation, Figure 4 compares
the lane-detection results of SCNN_SegNet_ConvLSTM2
and UNet_ConvLSTM under challenging situations 8-
blur&curve, and 10-shadow-dark, where UNet_ConvLSTM
delivers very good precisions.
As illustrated in Figure 4, truly UNet_ConvLSTM tries

not to classify pixels into lane lines under uncertain
areas as much as possible. This leads to fewer false neg-
atives, which helps for raising a better precision. How-
ever, in real application scenarios, this is not wise and
not acceptable. On the contrary, the proposed model
SCNN_SegNet_ConvLSTM2 tries to make tough but valu-
able detections classifying candidate points into lane
lines in the challenging uncertain areas with dirt, dark
road conditions, and/or vehicle occlusions. This may lead
to more false negatives and a worse precision but is
praiseworthy. These analyses further demonstrate that

F1-measure is a better measure, compared with preci-
sion. Finally, it can be concluded that the proposed
model, SCNN_SegNet_ConvLSTM2, delivers the best per-
formance on the challenging tvtLANE testset #2, which
verified the proposed model architecture’s robustness.
To sum up, the proposed model architecture demon-

strates its effectiveness in both normal and chal-
lenging driving scenes, with the UNet-based model,
SCNN_UNet_ConvLSTM2, beats the baseline models
with a large margin on normal situations, while the
SegNet-based model, SCNN_SegNet_ConvLSTM2, per-
forms the best handling almost all the challenging driving
scenes. The finding that, compared with UNet-based
models, SegNet-based neural network models are more
robust coping with challenging driving environments
accords with results in Zou et al. (2020).

3.4 Parameter analysis and ablation
study

1. The added value of SCNN

Regarding the neural network architecture, the effects
of SCNN were investigated by evaluating the perfor-
mances of the model variants with and without SCNN
layers. As demonstrated in Figures 3 and 4, together
with the quantitative results in Tables 2 and 3, the
proposed SegNet and UNet-based models with SCNN-
embedded encoder, that is, SCNN_SegNet_ConvLSTM,
SCNN_SegNet_ConvGRU, SCNN_UNet_ConvLSTM, and
SCNN_UNet_ConvGRU, outperform SegNet_ConvLSTM
and UNet_ConvLSTM, which are also SegNet or UNet-
based sequential model using multiple continuous
image frames as inputs but without SCNN. Especially,
SCNN_UNet_ConvLSTM2 obtains the best result in nor-
mal testing, while SCNN_SegNet_ConvLSTM2 delivers
the best performance in challenging situations.
For normal cases’ testing on tvtLANE testset #1, as

shown in Table 2, by adding SCNN layer in the encoder,
almost all the proposed models with SCNN-embedded
encoder outperform the baseline models with better
F1-measure. To be specific, SCNN_SegNet_ConvLSTM2
improves the lane-detection accuracy by around 0.3%
and F1-measure by around 1%, and these improvements
are from the already very good results obtained by
SegNet_ConvLSTM. Similarly, SCNN_UNet_ConvLSTM2
overperforms UNet_ConvLSTM with even larger margins
regarding both accuracy, precision, and F1-measure.
For challenging situations, adding the SCNN layer also

helps the proposed model, SCNN_SegNet_ConvLSTM2,
beat other baseline models, and deliver the best F1-
measure as indicated in Table 3.
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F IGURE 5 Visualization of the extracted low-level features at
Down_ConvBlock_1 for UNet-based models. (a) Original image. (b)
Results of UNet_ConvLSTM (without SCNN layers). (c) Results of
the SCNN_UNet_ConvLSTM2 (with SCNN layers)

Figure 5 visualizes the extracted features at
Down_ConvBlock_1 layer for UNet-based models,
with and without SCNN. Clearly, vast differences can be
witnessed between the baseline model UNet_ConvLSTM
and the proposed model SCNN_UNet_ConvLSTM2.
In Figure 5b, the CNN-based UNet layers identify the
low-level features in the images regarding the target lane
lines. However, the extracted features are not so clear,
that is, there are some interference signals, especially as
visualized in the third image of row (b), which is supposed
to affect the model training (i.e., updating weight param-
eters of the neural networks) and thus affect the model’s
performance regarding the marking detection results.
It might further influence the final detection results. In
contrast, with SCNN layers, the extracted features of the
lanes are more inerratic, clear, and evident as shown in
Figure 5c. There are fewer interferences surrounding the
detected lane features. This verifies SCNN’s powerful
strength in detecting the spatial relations in every single
image with its message passing mechanism.
All the above results demonstrate that the adding of the

SCNN layer embedded in the encoder does contribute to
the spatial feature extraction, with which the model could
better make the utmost use of the ST information among
the continuous image frames.

2. Different locations of SCNN layer

Results of testing different locations of the SCNN layer
in the proposed model architecture are shown in Table 4.
The results reveal that: (a) Compared with baseline mod-
els without SCNN layers, the embedding of SCNN layers
really help to improve themodels’ performance,which fur-
ther verifies the added-value of SCNNand accordswith the
aforementioned results in (1); (b) In terms of themain eval-
uation metric F1-measure, embedding SCNN layer after
the Conv1_1 (in SegNet-based model) or In_Conv_1 (in

UNet-based model) layer delivers better results, compared
with embedding it at the very beginning or early layers of
the encoder; (c) For UNet-based model, embedding SCNN
layer at the very beginning delivers quite good precision
and accuracy, but worse recall, which means there are
fewer false positives but more false negatives. This should
be related to the properties of the UNet-style neural net-
work. These results further confirm the effectiveness of the
proposed model architecture.

3. Type and number of ST-RNN layers

As described in Section 3, in the proposed model archi-
tecture two types of RNNs, That Is, ConvLSTM and Con-
vGRU, are employed to serve in the ST-RNN block, to cap-
ture andmake use of the ST dependencies and correlations
among the continuous image sequences. The number of
hidden ConvLSTM and ConvGRU layers were also tested
from 1 to 2. The quantitative results are demonstrated in
Tables 2 and 3, while some intuitive qualitative insights
could be drawn from Figures 3 and 4.
From Table 2, it is illustrated that in general models

adopting ConvLSTM layers in the ST-RNN block perform
better than those adopting ConvGRU layers with improved
F1-measure, except for the UNetLight-based models. This
could be explained by ConvLSTM’s better properties in
extracting ST features and capturing time dependencies
by more control gates and thus more parameters, com-
pared with ConvGRU. Furthermore, from Tables 2 and 3,
it is observed that models with two hidden ST-RNN layers,
for both ConvLSTM and ConvGRU, generally perform bet-
ter than those with only one hidden ST-RNN layer. This
could be speculated that with two hidden ST-RNN layers,
one layer can serve for sequential feature extraction, and
the other can achieve ST feature integration. The improve-
ments of two ST-RNN layers over one are not that signif-
icant, which might be due to (a) models employing one
ST-RNN layer already obtaining good results; (b) since the
length of the continuous image frames is only five, one ST-
RNN layer might be already enough to do the ST feature
extraction, sowhen incorporating longer image sequences,
the superiorities of two ST-RNN layers could be promoted.
However, longer image sequences require more computa-
tional resources and longer training time, which could not
be afforded at the present stage in this study. This could be
the future research direction.

4. Number of parameters and real-time capability

As shown in Table 2, the two proposed candidate
models, that is, SCNN_SegNet_ConvLSTM2 and
SCNN_UNet_ConvLSTM2, possess a bit more param-
eters, compared with the baseline SegNet_ConvLSTM and
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TABLE 4 Model performance comparison with different locations of SCNN layer on tvtLANE testset #1 and #2

Testset #1 (normal situations) Testset #2 (challenging scenes)

Models/testing datasets
Location of
SCNN

Test_Acc
(%) Precision Recall F1-Measure

Test_
Acc (%) Precision Recall F1-Measure

SegNet_ConvLSTM Without 97.92 0.874 0.931 0.901 97.83 0.756 0.765 0.761
SCNN_SegNet_ConvLSTM2 Conv1_1 98.00 0.884 0.921 0.902 97.92 0.757 0.757 0.757

Conv2_1 98.07 0.893 0.928 0.910 97.90 0.767 0.766 0.767
UNet_Conv LSTM Without 98.00 0.857 0.957 0.904 97.93 0.778 0.660 0.714
SCNN_UNet_ConvLSTM2 In_Conv_1 98.28 0.896 0.939 0.917 98.08 0.776 0.593 0.672

Conv1_1 98.19 0.889 0.950 0.918 97.95 0.778 0.640 0.702

Abbreviations: ConvLSTM, convolutional long short-term memory; SCNN, spatial convolutional neural network.

UNet_ConvLSTM, respectively. However, almost all of the
proposedmodel variants with different types and numbers
of ST-RNN layers outperform the baselines, and some
of them are even with low parameter sizes, for example,
SCNN_SegNet_ConvGRU1, SCNN_SegNet_ConvLSTM1,
SCNN_UNet_ConvGRU1, SCNN_UNet_ConvLSTM1.
Generally speaking, lower numbers of model parameters
mean better real-time capability.
In addition, four model variants were implemented

with a modified light version of UNet, that is, UNetLight,
serving as the network backbone to reduce the total
parameter size and improve the model’s ability to operate
in real-time. The UNetLight backbone has a similar
network design with UNet, whose parameter settings
are demonstrated in Table A2. The only difference is
that all the numbers of kernels in the ConvBlocks are
reduced to half except for the Input in In_ConvBlock
(with the input channel of three unchanged) and Out-
put in Out_ConvBlock (with the output channel of two
unchanged). From the testing results in Table 2, it is shown
that the model named SCNN_UNetLight_ConvGRU2,
with fewer parameters than all the baseline models, beat
the baselines exhibiting better performance regarding
both accuracy and F1-measure. To be specific, compared
with the best baseline model, that is, UNet_ConvLSTM,
SCNN_UNetLight_ConvGRU2 only uses less than
one-fifth of the parameter size but delivers better
evaluation metrics in testing accuracy, precision, and
F1-measure.
Regarding UNetLight-based models, models using Con-

vGRU layers in the ST-RNN block perform better than
those adopting ConvLSTM. The reason could be that
light version UNet cannot implement high-quality feature
extraction, which does not feed enough information for
ConvLSTM, while ConvGRU, with fewer control gates, is
more robust when low-level features are not that fully
extracted.
All these results further verify the proposed network

architecture’s effectiveness and strength.

4 CONCLUSION

In this paper, a novel ST sequence-to-one model frame-
work with a hybrid neural network architecture is pro-
posed for robust lane detection under various normal and
challenging driving scenes. This architecture integrates a
single image feature extraction module with SCNN, ST
feature integration module with ST-RNN, together with
the encoder–decoder structure. The proposed architec-
ture achieved significantly better results in comparison
to baseline models that use a single frame (e.g., UNet,
SegNet, and LaneNet), as well as the state-of-art models
adopting “CNN+RNN” structures (e.g., UNet_ConvLSTM,
SegNet_ConvLSTM), with the best testing accuracy, preci-
sion, F1-measure on the normal driving dataset (i.e., tvt-
LANE testset #1) and the best F1-measure on 12 chal-
lenging driving scenarios dataset (tvtLANE testset #2).
The results demonstrate the effectiveness of strengthen-
ing spatial relation abstraction in every single image with
SCNN layer, plus the employment of multiple continuous
image sequences as inputs. The results also demonstrate
the proposed model architecture’s ability in making the
best of the ST information in continuous image frames.
Extensive experimental results show the superiorities of
the sequence-to-one “SCNN + ConvLSTM” over “SCNN
+ ConvGRU” and ordinary “CNN + ConvLSTM” regard-
ing sequential ST feature extracting and learning, together
with target-information classification for robust lane
detection. In addition, testing results of the model variants
with the modified light version of UNet (i.e., UNetLight)
as the backbone, demonstrate the proposed model archi-
tecture’s potential regarding real-time capability.
To the best of the authors’ knowledge, the proposed

model is the first attempt that tries to strengthen both spa-
tial relations regarding feature extraction in every image
frame together with the ST correlations and dependencies
among image frames for lane detection, and the exten-
sive evaluation experiments demonstrate the strength of
this proposed architecture. Therefore, it is recommended
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in future research to incorporate both aspects to obtain bet-
ter performance.
In this paper, the challenging cases do not include night

driving, rainy, or wet road conditions, nor do they include
situations in which the input images are defective (e.g.,
partly masked or blurred). There are demands to build
larger test sets with comprehensive challenging situations
to further validate the model’s robustness. Since a large
amount of unlabeled driving scene data involving various
challenging cases was collected within the research group,
a future research direction might be to develop semi-
supervised learningmethods and employ domain adaption
to label the collected data, and then open-source them for
boosting the research in the field of robust lane detection.
Furthermore, to further enhance the lane-detectionmodel,
customed loss function, pre-trained techniques adopted in
image-inpainting task, for example, masked autoencoders,
plus sequential attention mechanism could be introduced
and integrated into the proposed framework.
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APPENDIX

TABLE A1 Parameter settings for each layer of the SegNet-based neural network

Layer

Input (channel
× hight ×
width)

Output
(channel ×
hight ×width) Kernel Padding Stride Activation

Down_ConvBlock_1 Conv_1_1 3 × 128 × 256 64 × 128 × 256 3 × 3 (1,1) 1 ReLU
Conv_1_2 64 × 128 × 256 64 × 128 × 256 3 × 3 (1,1) 1 ReLU
Maxpool1 64 × 128 × 256 64 × 64 × 128 2 × 2 (0,0) 2 —

SCNN SCNN_Down 64 × 1 × 128 64 × 1 × 128 1 × 9 (0,4) 1 ReLU
SCNN_Up 64 × 1 × 128 64 × 1 × 128 1 × 9 (0,4) 1 ReLU
SCNN_Right 64 × 64 × 1 64 × 64 × 1 9 × 1 (4,0) 1 ReLU
SCNN_Left 64 × 64 × 1 64 × 64 × 1 9 × 1 (4,0) 1 ReLU

Down_ConvBlock_2 Conv_2_1 64 × 64 × 128 128 × 64 × 128 3 × 3 (1,1) 1 ReLU
Conv_2_2 128 × 64 × 128 128 × 64 × 128 3 × 3 (1,1) 1 ReLU
Maxpool2 128 × 64 × 128 128 × 32 × 64 2 × 2 (0,0) 2 —

Down_ConvBlock_3 Conv_3_1 128 × 32 × 64 256 × 32 × 64 3 × 3 (1,1) 1 ReLU
Conv_3_2 256 × 32 × 64 256 × 32 × 64 3 × 3 (1,1) 1 ReLU
Conv_3_3 256 × 32 × 64 256 × 32 × 64 3 × 3 (1,1) 1 ReLU
Maxpool3 256 × 64 × 128 256 × 16 × 32 2 × 2 (0,0) 2 —

Down_ConvBlock_4 Conv_4_1 256 × 16 × 32 512 × 16 × 32 3 × 3 (1,1) 1 ReLU
Conv_4_2 512 × 16 × 32 512 × 16 × 32 3 × 3 (1,1) 1 ReLU
Conv_4_3 512 × 16 × 32 512 × 16 × 32 3 × 3 (1,1) 1 ReLU
Maxpool4 512 × 16 × 32 512 × 8 × 16 2 × 2 (0,0) 2 —

Down_ConvBlock_5 Conv_5_1 512 × 8 × 16 512 × 8 × 16 3 × 3 (1,1) 1 ReLU
Conv_5_2 512 × 8 × 16 512 × 8 × 16 3 × 3 (1,1) 1 ReLU
Conv_5_3 512 × 8 × 16 512 × 8 × 16 3 × 3 (1,1) 1 ReLU
Maxpool5 512 × 8 × 16 512 × 4 × 8 2 × 2 (0,0) 2 —

ST-RNN Layer1* 5* ConvLSTMCell(input = (512 × 4 × 8), kernel = (3,3), stride = (1,1), padding = (1,1)) or 5*
ConvGRUCell(input = (512 × 4 × 8), kernel = (3,3), stride = (1,1), padding = (1,1), dropout(0.5))

ST-RNN Layer2** 5 * ConvLSTMCell(input = (512 × 4 × 8), kernel = (3,3), stride = (1,1), padding = (1,1)) or 5 *
ConvGRUCell(input = (512 × 4 × 8), kernel = (3,3), stride = (1,1), padding = (1,1), dropout(0.5))

Up_ConvBlock_5 MaxUnpool1 512 × 4 × 8 512 × 8 × 16 2 × 2 (0,0) 2 —
Up_Conv_5_1 512 × 8 × 16 512 × 8 × 16 3 × 3 (1,1) 1 ReLU
Up_Conv_5_2 512 × 8 × 16 512 × 8 × 16 3 × 3 (1,1) 1 ReLU
Up_Conv_5_3 512 × 8 × 16 512 × 8 × 16 3 × 3 (1,1) 1 ReLU

Up_ConvBlock_4 MaxUnpool2 512 × 8 × 16 512 × 16 × 32 2 × 2 (0,0) 2 —
Up_Conv_4_1 512 × 16 × 32 512 × 16 × 32 3 × 3 (1,1) 1 ReLU
Up_Conv_4_2 512 × 16 × 32 512 × 16 × 32 3 × 3 (1,1) 1 ReLU
Up_Conv_4_3 512 × 16 × 32 256 × 16 × 32 3 × 3 (1,1) 1 ReLU

Up_ConvBlock_3 MaxUnpool3 256 × 16 × 32 256 × 32 × 64 2 × 2 (0,0) 2 —
Up_Conv_3_1 256 × 32 × 64 256 × 32 × 64 3 × 3 (1,1) 1 ReLU
Up_Conv_3_2 256 × 32 × 64 256 × 32 × 64 3 × 3 (1,1) 1 ReLU
Up_Conv_3_3 256 × 32 × 64 128 × 32 × 64 3 × 3 (1,1) 1 ReLU

Up_ConvBlock_2 MaxUnpool4 128 × 32 × 64 128 × 64 × 128 2 × 2 (0,0) 2 —
Up_Conv_2_1 128 × 64 × 128 128 × 64 × 128 3 × 3 (1,1) 1 ReLU
Up_Conv_2_2 128 × 64 × 128 64 × 64 × 128 3 × 3 (1,1) 1 ReLU

Up_ConvBlock_1 MaxUnpool5 64 × 64 × 128 64 × 128 × 256 2 × 2 (0,0) 2 —
Up_Conv_1_1 64 × 128 × 256 64 × 128 × 256 3 × 3 (1,1) 1 ReLU
Up_Conv_1_2 64 × 128 × 256 2 × 128 × 256 3 × 3 (1,1) 1 LogSoftmax

Abbreviations: ConvGRU, convolutional gated recurrent unit; ConvLSTM, convolutional long short-term memory; SCNN, spatial convolutional neural network;
ST-RNN, spatial–temporal recurrent neural network; ReLU, Rectified Linear Unit.
*Two types of ST-RNN, that is, ConvLSTM and ConvGRU are tested.
**ST-RNN blocks are tested with one hidden layer or two hidden layers.
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TABLE A2 Parameter settings for each layer of the UNet-based neural network

Layer

Input (channel
× hight ×
width)

Output
(channel ×
hight ×width) Kernel PaddingStride Activation

In_ConvBlock In_Conv_1 3 × 128 × 256 64 × 128 × 256 3 × 3 (1,1) 1 ReLU
In_Conv_2 64 × 128 × 256 64 × 128 × 256 3 × 3 (1,1) 1 ReLU

SCNN SCNN_Down 64 × 1 × 256 64 × 1 × 256 1 × 9 (0,4) 1 ReLU
SCNN_Up 64 × 1 × 256 64 × 1 × 256 1 × 9 (0,4) 1 ReLU
SCNN_Right 64 × 128 × 1 64 × 128 × 1 9 × 1 (4,0) 1 ReLU
SCNN_Left 64 × 128 × 1 64 × 128 × 1 9 × 1 (4,0) 1 ReLU

Down_ConvBlock_1 Maxpool1 64 × 128 × 256 64 × 64 × 128 2 × 2 (0,0) 2 —
Conv_1_1 64 × 64 × 128 128 × 64 × 128 3 × 3 (1,1) 1 ReLU
Conv_1_2 128 × 64 × 128 128 × 64 × 128 3 × 3 (1,1) 1 ReLU

Down_ConvBlock_2 Maxpool2 128 × 64 × 128 128 × 32 × 64 2 × 2 (0,0) 2 —
Conv_2_1 128 × 32 × 64 256 × 32 × 64 3 × 3 (1,1) 1 ReLU
Conv_2_2 256 × 32 × 64 256 × 32 × 64 3 × 3 (1,1) 1 ReLU

Down_ConvBlock_3 Maxpool3 256 × 32 × 64 256 × 16 × 32 2 × 2 (0,0) 2 —
Conv_3_1 256 × 16 × 32 512 × 16 × 32 3 × 3 (1,1) 1 ReLU
Conv_3_2 512 × 16 × 32 512 × 16 × 32 3 × 3 (1,1) 1 ReLU

Down_ConvBlock_4 Maxpool4 512 × 16 × 32 512 × 8 × 16 2 × 2 (0,0) 2 —
Conv_4_1 512 × 8 × 16 512 × 8 × 16 3 × 3 (1,1) 1 ReLU
Conv_4_2 512 × 8 × 16 512 × 8 × 16 3 × 3 (1,1) 1 ReLU

ST-RNN Layer1* 5 * ConvLSTMCell(input = (512 × 8 × 16), kernel = (3,3), stride = (1,1), padding = (1,1)) Or 5 *
ConvGRUCell(input = (512 × 8 × 16), kernel = (3,3), stride = (1,1), padding = (1,1), dropout(0.5))

ST-RNN Layer2** 5 * ConvLSTMCell(input = (512 × 8 × 16), kernel = (3,3), stride = (1,1), padding = (1,1)) Or 5 *
ConvGRUCell(input = (512 × 8 × 16), kernel = (3,3), stride = (1,1), padding = (1,1), dropout(0.5))

Up_ConvBlock_4 UpsamplingBilinear2D-1 512 × 8 × 16 512 × 16 × 32 2 × 2 (0,0) 2 —
Up_Conv_4_1 1024 × 16 × 32 256 × 16 × 32 3 × 3 (1,1) 1 ReLU
Up_Conv_4_2 256 × 16 × 32 256 × 16 × 32 3 × 3 (1,1) 1 ReLU

Up_ConvBlock_3 UpsamplingBilinear2D_2 256 × 16 × 32 256 × 32 × 64 2 × 2 (0,0) 2 —
Up_Conv_3_1 512 × 32 × 64 128 × 32 × 64 3 × 3 (1,1) 1 ReLU
Up_Conv_3_2 128 × 32 × 64 128 × 32 × 64 3 × 3 (1,1) 1 ReLU

Up_ConvBlock_2 MaxUnpool3 128 × 32 × 64 128 × 64 × 128 2 × 2 (0,0) 2 —
Up_Conv_2_1 156 × 64 × 128 64 × 64 × 128 3 × 3 (1,1) 1 ReLU
Up_Conv_2_2 64 × 64 × 128 64 × 64 × 128 3 × 3 (1,1) 1 ReLU

Up_ConvBlock_1 MaxUnpool4 64 × 64 × 128 64 × 128 × 256 2 × 2 (0,0) 2 —
Up_Conv_1_1 128 × 128 × 256 64 × 128 × 256 3 × 3 (1,1) 1 ReLU
Up_Conv_1_2 64 × 128 × 256 64 × 128 × 256 3 × 3 (1,1) 1 ReLU

Out_ConvBlock Out_Conv 64 × 128 × 256 2 × 128 × 256 1 × 1 (0,0) 1 —

Abbreviations: ConvGRU, convolutional gated recurrent unit; ConvLSTM, convolutional long short-term memory; SCNN, spatial convolutional neural network;
ST-RNN, spatial–temporal recurrent neural network; ReLU, Rectified Linear Unit.
*Similar to the SegNet-based network architecture, two types of ST-RNN, that is, ConvLSTM and ConvGRU, are tested.
**ST-RNN blocks are tested with one hidden layer or two hidden layers.


	A hybrid spatial-temporal deep learning architecture for lane detection
	Abstract
	1 | INTRODUCTION
	2 | PROPOSED METHOD
	2.1 | Overview of the proposed model architecture
	2.2 | Network design
	2.3 | Detailed implementation

	3 | EXPERIMENTS AND RESULTS
	3.1 | Datasets
	3.2 | Qualitative evaluation
	3.3 | Quantitative evaluation
	3.4 | Parameter analysis and ablation study

	4 | CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


