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Multirate Consensus-Based Distributed Control
for Large-Scale Wind Farms

Jean Gonzalez Silva , Twan Keijzer , Alexander Julian Gallo , Member, IEEE,
Riccardo Ferrari , Senior Member, IEEE,

and Jan-Willem van Wingerden , Senior Member, IEEE

Abstract— High penetration of wind energy is pushing wind
farms (WFs) to offer grid support capabilities, such as active
power tracking. One of the main challenges in active power
tracking for WFs is the interaction of wind turbines (WTs)
through their wakes. This reduces the available wind in down-
stream WTs, leading them to saturation, while also affecting
structural loading. With the increasing number of WTs in indi-
vidual WFs, the computational and communication complexity
of implementing centralized control architectures grows, posing
challenges for real-world applications. In this article, we present
a novel distributed control approach for active power tracking
for WFs, namely multirate consensus-based distributed control
(MCDC). The MCDC is designed to ensure that tracking errors
caused by WT saturation are equally compensated through-
out the WF, while only requiring local information exchanges
between WTs. Furthermore, the proposed controller ensures
that WT aerodynamic loading is balanced across the WF in
a distributed manner. Finally, the overall power reference is
distributed via a leader–follower consensus algorithm, resulting in
a fully distributed approach. Our control approach facilitates the
WF modularity and sparsity, which reduces the costs associated
with control design and its applicability. Throughout this article,
we demonstrate the effectiveness of the proposed MCDC through
high-fidelity simulations, presenting performance comparable to
the centralized control.

Index Terms— Active power control, average consensus,
distributed control, integral control, thrust balance, wake effects,
wind farm (WF) control.

I. INTRODUCTION

WITH the increasing share of renewable energy,
concerns about power system stability become more

pressing [1]. This demands further research in developing
control algorithms that enable wind farm (WF) owners
to effectively meet the requirements of future regulations.
These regulations are evolving to support the seamless
integration of WFs into power grids, moving from turbine
power maximization to tracking [2], [3]. Power tracking
controllers [4], [5] provide WF operators with tracking
capabilities that are closer to those of conventional energy
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sources, enabling them to offer ancillary services to the
grid [6], including frequency regulation, such as using
frequency droop control schemes [7]. The integration of wind
energy into the grid is stipulated by specific grid codes in
each country [8], [9]. In this work, we focus on active power
control, which enables the provision of these services.

Additionally, power tracking controllers can be designed to
simultaneously achieve secondary WF objectives, such as bal-
ancing structural loading [10], [11], thus permitting operators
to better manage the WF’s resources. We have proposed a
WF controller that enhances power tracking capability and
distributes the aerodynamic loading [12]. However, several
challenges in WF control stem from the large number of
involved wind turbines (WTs). Transmitting and receiving
information from hundreds of WTs in a single node at a
required rate is unfavorable. In addition, the computation effort
required by centralized controllers of large-scale WFs can be
significantly high, as observed in [13], [14], and [15]. There-
fore, facing applicability to large-scale WFs, we move from a
centralized to a distributed control. Benefiting from the current
turbine hardware, our proposed distributed control approach is
implemented in individual WTs and resolves WF objectives
by communicating only with neighbor WTs. Particularly, our
approach distinguishes itself from others by consolidating all
WF information at each WT before taking action.

A. WF Control and Its Reliance on Wake Modeling

As a WT extracts energy from the wind, it reduces the
downstream wind velocity and adds turbulence to the flow.
The altered flow is called the wake of a WT. Under the wake,
downstream WTs suffer from insufficient energy availability
and additional loads [16]. When WTs are not capable of
producing the required amount of power, that is, the maximum
power that can be produced is below the reference level set,
we have the so-called turbine saturation.

Several design methods for WF controllers have been pro-
posed in the literature, including those in [17] and [18], with
strategies focusing on power maximization being tested in the
field [19], [20]. Wake steering through yawing has been devel-
oped and utilized to maximize WF power output. However,
in the context of on-demand energy, yaw misalignment could
also be used to track a power demand, though it increases
structural loads at the yawed turbine. Research in this area
is still in its early stages [21], [22], along with emerging
strategies, such as wake mixing [23]. Here, we manage the WF
through the power distribution across the turbines, generally
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referred to as axial induction control, keeping the turbines
aligned with the wind.

To design WF controllers, engineers and researchers have
modeled the WF with analytical steady-state models [24].
However, these models can demonstrate low accuracy through
the validation by measurement data, as reported in [20].
The accurate modeling of wake effects is a nontrivial task
to achieve because of the dynamic time-varying nature and
uncertainty of the flow. The reliance on a wake model is,
therefore, compromised. However, it is crucial to account
for the wind flow interactions between WTs [25]. Instead of
relying on WF models in an open loop, we adopt a real-time
feedback WF control framework to ensure that the WF meets
its objectives according to its current conditions.

B. Shift From Centralized to Distributed WF Controllers

The implementation of centralized controllers in large-scale
systems poses challenges, such as communication overhead,
network topology constraints, and computation effort [26].
Additionally, central approaches are susceptible to a single
point of failure and often lack the flexibility to include new
agents or remove failed ones without redesigning the con-
troller, making them unsuitable for plug-and-play solutions.
On the other hand, distributed control approaches, where
networked local controllers are in charge of regulating parts
of the entire farm, achieve modularity and sparsity. From an
economic standpoint, distributed control systems are advanta-
geous for large-scale WFs mainly attributed to the fact that
each WT is not required to communicate to all other WTs,
that is, all-to-all communication, or a central computational
unit that might be far apart. Therefore, equipping WTs with
controllers capable of achieving global WF objectives can
reduce significantly the costs associated with the required
communication.

The future outlook for WF control envisions a shift toward
decentralization, resembling the applications seen in micro-
grids [27], [28] and power systems [29], [30]. Wald et al. [15]
and Bay et al. [31] proposed algorithms to integrate the con-
tribution of building energy systems and charging stations to
the grid in a distributed manner. Dörfler et al. [32] proposed
controllers for power systems going from a fully decentralized
to a distributed control that results in an improvement in
the damping of dominant oscillations. Moreover, robustness
against failures in the control system can be achieved with
distributed methods [33], in which local failures can be
detected [34] and compensated for.

Among the first works toward distributed control in WFs
are the works from Marden et al. [35] and Gebraad and van
Wingerden [36]. In their works, the WT actions take into
consideration their neighbor WTs. Avoiding a centralized
controller, [37] and [38] maximize power production of the
wind power plant using data-driven and learning approaches.
Annoni et al. [39] estimated the wind speed direction using
an average consensus algorithm. Finally, coalitional control,
a strategy where controllers are temporarily clustered into
alliances, so-called coalitions, jointly achieve a control objec-
tive [26], applied to WFs in [14]. Also, clusters of turbines are

identified in [40], which hinges on the correlation observed in
the measured power signals, for yaw control.

WF control is implemented with large sampling times
because WTs should respond gradually to wind conditions.
This approach helps prevent high-frequency signals from
impacting the WTs, ensuring stable WT controllers. Addition-
ally, the energy market generally does not demand immediate
adjustments. However, this poses challenges for distributed
WF controllers, as their convergence can be sluggish due to
the distributed network topology and the extended sampling
rates. As a result, responses to issues such as turbine saturation
or failures may be delayed and inefficient.

C. Our Contributions

In this article, we design a distributed WF controller to
achieve the following objectives.

1) O1: Regulate the WF’s active power generation to track
a time-varying set point.

2) O2: Distribute the WT power reference through the WF.
3) O3: Achieve aerodynamic load balancing as a surrogate

for structural loading.
To reduce the communication range while maintaining a

lower WF control sampling rate and still attaining perfor-
mance levels akin to centralized controllers [12], the WTs are
suggested to engage in high-rate communication based on a
multirate scheme [41], [42]. Our approach takes advantage of
the low WF sampling rate and employs average consensus
[43], [44] to estimate the entire WF information before taking
action. This contrasts with typical distributed methods, such as
the distributed averaging proportional and integral control [30]
and the distributed model predictive control [45], that consider
only the information of the neighbor turbines, that is, partial
information, to compute and implement local actions. Hence,
we refer to our novel framework as multirate consensus-based
distributed control (MCDC). The MCDC aims to achieve the
objectives O1–O3, thereby counteracting power losses mainly
attributed to wake effects and reaching balance in thrust forces
across the WF. With the entire WF information being estimated
through the communication network, this proposed method
enables a distributed framework to achieve performance com-
parable to that of centralized approaches while using a lower
WF control sampling rate.

To attain the WF objectives, the following steps are taken.
1) S1: Objective O1 is achieved by cooperatively com-

pensating for power losses stemming from low wind
availability caused by, for example, wake effects. The
rationale for the power compensation is to account for
this disturbance by altering the set-point of those WTs
with excess available power, thus achieving WF-level
reference tracking. The average of the WT power track-
ing errors is estimated by a high-frequency average
consensus algorithm, and compensated at a lower sam-
pling rate. By doing this, the total power tracking error
is estimated at each turbine and compensated throughout
the entire WF.

2) S2: To achieve O2, we implement a leader–follower
consensus algorithm to distribute the global power refer-
ence across the WF, solving the alignment problem. This
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power reference distribution eliminates the necessity of
a central connection point for the power distribution.

3) S3: Finally, O3 is attained by computing the aver-
age aerodynamic loads through a consensus algorithm
and then regulating the local aerodynamic loads to
the obtained average. Treating aerodynamic loads as
a surrogate of WT structural loading, the balance of
aerodynamic loads leads to uniform degradation of
WTs. Moreover, implementing thrust force balancing
can avoid WT saturation, which may, in turn, increase
the WF’s total available power, compared to uniform
power distribution.

The main contributions of this work include the develop-
ment of the MCDC framework, a distributed approach that
achieves the objectives outlined in O1–O3, the provision of
stability conditions for designing the proposed MCDC scheme,
and a comparison of MCDC with the centralized approach in
a high-fidelity environment.

The structure of this article is as follows. First, the WF
control problem will be formulated in Section II. Second,
the proposed distributed control, namely MCDC, for power
compensation, power distribution, and thrust balance is pre-
sented in Section III. In Section IV, simulation results will
be presented using a high-fidelity simulator to evaluate the
proposed controller. Lastly, conclusions and future works will
be discussed in Section V.

II. PROBLEM FORMULATION

In this section, before introducing the proposed MCDC,
we present the simplified WF model, followed by the WF con-
trol problem. Finally, the existing centralized control design.

A. WF Model

We model the WF as a linear time-invariant dynamic
system, composed of n WTs. Despite the nonlinear open-loop
dynamics of WT systems, each turbine is equipped with a
dedicated feedback controller designed to track a reference
power setpoint. This local controller leads the WTs to exhibit
predominantly linear and stable behavior. The WT controller
employs both blade pitching and generator torque to regulate
the power generation, as presented in [12]. Then, we take this
set of controlled WT as linear systems to be regulated by
the WF controller. A similar procedure has been utilized in
chemical processes [46], where a linear behavior is induced
in the closed-loop system, allowing for higher-level control
via linear methods. Linear controllers are widely used in the
industry. While the system may encounter disturbances and
exhibit nonlinear behaviors, linear control methods provide
robust performance and yield satisfactory results. Poor adher-
ence of the controller WT model to reality is compensated for
by the WF controller.

We applied system identification to obtain the linear
dynamic model of the controlled WTs based on numeri-
cal simulation data. Step responses of generator power and
thrust force to the reference power setpoint were used in the
gray-box model identification process. The models are defined

as single-input and multioutput (SIMO) systems, described by[
Pg,i (k + 1)

FT,i (k + 1)

]
=

[
aP aP,T

aT,P aT

][
Pg,i (k)

FT,i (k)

]
+

[
bP

bT

]
P ref

g,i (k) +

[
qP,i (k)

qT,i (k)

]
(1)

where k is the WF discrete-time index and FT,i , Pg,i , and
P ref

g,i are the thrust force, generator power output, and power
reference of turbine i , respectively. The six parameters aP , bP ,
aT , bT , aP,T , and aT,P ∈ R+ are identified from simulation
data. qP,i and qT,i represent the power and thrust force
discrepancies, respectively, caused by model mismatch and
possible turbine saturation of turbine i .

The first-order representation is adopted for both power
and thrust force dynamics, simplifying the turbine responses.
This choice is driven by our focus on the dominant transient
characteristics to design the WF controller. The identifica-
tion procedure utilized simulation data of the WT responses,
including inflow turbulence and wake effects. Anticipating
this, we propose WF controllers that incorporate an integral
term to provide robustness against fluctuations in system
parameters and model mismatches, as demonstrated in [47]
and [48]. Although using higher-order models with only
minor extensions in notation—by replacing the scalar model
parameters with matrices—could improve fitting with sets of
the responses, however, it may not provide a generalized
representation because of the significant variability due to
turbulence and wake effects.

At the WF level, there exists a time-scale separation
between the dynamics of WTs with the power tracking con-
troller, designed at sampling time ranging from 0.00125–0.1 s
and a response time of 5–10 s, and the dynamics of wake inter-
actions, of 100–300 s, depending on the turbine spacing and
wind speed. In our study case, with the average wind inflow of
10 ms−1, the rise time of the power tracking controller is about
8 s and the wake propagation takes between 120 and 225 s,
approximately. Due to this time-scale separation between the
WT dynamics and the wake flow dynamics, we make the
following assumption.

Assumption 1 (Decoupled WF Model): Model (1) for WT i
is decoupled from all other WTs. ◁

Note that, as a consequence of the definition of model (1)
and Assumption 1, the disturbance signals qP,i and qT,i

represent unmodeled behaviors. These include the effects
from the turbulence in the flow, as well as the effects of
the slow time-scale wake interaction, for example, induced
wake turbulence and turbine saturation caused by the wind
deficit [25], [49].

B. WF Control

As noted earlier, the WF controller must be designed to
meet objectives O1–O3. In this section, we present a solution
to achieve these objectives using feedback and feedforward
strategies. From our previous discussion on the WT modeling,
the generator power reference P ref

g,i acts as the sole input to the
i th WT, and it is set as

P ref
g,i (k) = P̂ ref

g,i (k) + ui (k) (2)
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where P̂ ref
g,i is the feedforward term, being the desired power

reference for each WT and ui (k) is the feedback term defined
to compensate for power tracking errors and to balance thrust
forces across the WTs. Note that, so long as their sum adds
to the global WF reference, there is some freedom in the
definition of the feedforward terms; here we suppose P̂ ref

g,i
are provided by the distribution of the power reference from
objective O2. Conversely, the feedback term ui (k) is defined
to achieve both objectives O1 and O3. Specifically

ui (k) = u P,i (k) + uT,i (k) (3)

where u P,i (k) is designed for power compensation and uT,i (k)

for thrust balance.
Following the electromechanical constraint of typical

turbines, the power reference signal (2), as the input of the
WTs, is saturated as

P ref
g,i (k) =


0, if P ref

g,i (k) ≤ 0
P ref

g,i (k), if 0 < P ref
g,i (k) < P rated

g,i

P rated
g,i , else

(4)

where P rated
g,i is the rated power of turbine i .

C. WF Control: The Centralized Case

As a benchmark solution to the design problem set in
Section II-B, we now summarize the centralized controller
proposed in [12]. There, an integral controller is used for the
power compensation, such that

u P,i (k) = u P,i (k − 1) + K P 11×neP(k) (5)

where K P is a scalar integrator gain, 11×n = [1 1, . . . , 1]

denotes a row vector of length n filled with ones, eP(k) =

[eP,1(k), eP,2(k), . . . , eP,n(k)]⊺, with the superscript ⊺ denot-
ing transpose, is a vector containing the power tracking errors

eP,i (k) = P̂ ref
g,i (k) − Pg,i (k) (6)

of all WTs. The wind-farm-wide power tracking error is the
aggregation of all WT errors, that is, etotal

P (k) = 11×neP(k) =∑n
i=1(P̂ ref

g,i (k) − Pg,i (k)). The utilization of feedback control
law (5) requires information from all WTs and ensures that
the effort for power compensation is distributed throughout
the entire farm. This even distribution is advantageous as it
results in a minor impact from the increased wake generated
by the compensating WTs, as proposed in [16], and overlooked
by Assumption 1.

Similarly, an integral control is utilized for aerodynamic
load balancing, in which

uT,i (k) = uT,i (k − 1) + KT eT,i (k) (7)

where KT is a scalar integrator gain for the thrust force balance
control and

eT,i (k) = Favg
T (k) − FT,i (k) (8)

is the thrust force error between the average of thrust forces
across the WF Favg

T and the thrust force FT,i acting on
WT i . To compute Favg

T the information of all thrust forces
is required, as in the case of the power errors in the

power compensation. We define the average matrix Wavg =

(1/n)1n×111×n and rewrite (5) and (7) in vector form, such
that

u P(k) = u P(k − 1) + K̄ P nWavgeP(k) (9)

where u P(k) = [u P,1(k), u P,2(k), . . . , u P,n(k)]⊺ and K̄ P =

diag(K P); and

uT (k) = uT (k − 1) + K̄ T
(
Wavg − In

)
FT (k) (10)

where uT (k) = [uT,1(k), uT,2(k), . . . , uT,n(k)]⊺, FT (k) =

[FT,1(k), FT,2(k), . . . , FT,n(k)]⊺, K̄ T = diag(KT ), and In is
the identity matrix of order n.

Instead of employing a centralized approach, we propose
that the average power tracking error vector eavg

P = WavgeP and
the average thrust force vector Favg

T = Wavg FT are obtained
from a consensus algorithm. Moreover, a consensus algorithm
is also proposed to distribute the power references P̂ ref

g,i ,
by aligning them to a leader turbine that has the information
of the WF power demand.

III. MULTIRATE CONSENSUS-BASED
DISTRIBUTED CONTROL

We propose the so-called MCDC. To meet objectives
O1–O3, the scheme consists of three control components: a
power compensator, a power distributor, and a thrust balancer.
The core idea is to reach a consensus estimate of the rel-
evant WF states for each of the control components. This
is accomplished by utilizing only neighborhood information,
requiring a substantially less complex and resource-intensive
WF communication network. Although local communication
is engaged at a high frequency, its rate would remain constant
and independent of the number of WTs on the farm. In a
centralized controller, the number of communications at the
central node increases with the number of turbines, eventually
surpassing the communication per second at a node in our
approach.

First, we introduce graph notation and the WF commu-
nication network in Section III-A, followed by the average
consensus conducted in the WF control sampling time in
Section III-B. Next, Section III-C delves into the distributed
power compensation. Subsequently, Section III-D presents
the power distribution as a fully distributed approach, and
Section III-E covers the distributed thrust force balance.
Finally, stability conditions for the entire control framework
are derived and discussed in Section III-F.

A. Graph Notation and WF Communication Network

As mentioned previously, the centralized controller from
Section II-C requires information on the entire WF to
compute the feedback terms, consisting of (9) and (10).
Moving toward distributed architectures, WTs no longer
require communication from hundreds of WTs to one con-
troller. Instead, they would only communicate with their
neighbor WTs. Additionally, it would avoid problems if that
one controller fails. In this section, we introduce some pre-
liminaries on graph theory, used in our design, as well as
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a critical assumption on the communication network linking
WTs in the WF.

A graph G is defined as G = (V, E), where V = v1, . . . , vn

is its vertex set, with |V| = n the number of agents, and
E ⊆ V × V its edge set. L is the Laplacian matrix, defined
by L = D −A, where D = diag(d1, . . . , dn) is the in-degree
matrix and A is the adjacency matrix. The diagonal elements
li, j of L are, therefore, equal to the in-degree of vertex vi and
the off-diagonal elements li, j are −1 if there is an edge from
vertex vi and v j , or 0 otherwise. The open neighborhood of
vi is defined by the set of neighbors Ni containing all the
adjacent vertices to vi excluding itself. A graph G is said to
be undirected if ei j ∈ E implies e j i ∈ E .

A communication network in a WF induces a graph G which
shares the same topology, that is, for two vertices vi , v j ∈ V ,
there exists an edge between them if the two can exchange
information. We assume the following.

Assumption 2 (Connected Network): The communication
network is such that the induced graph G is undirected and
connected. ◁

By Assumption 2, any two distinct vertices of the graph G
are connected through a path, meaning that there is always a
directed spanning tree from a vertex to all other vertices in
the graph. This assumption ensures that every agent can reach
average consensus [43] and that the leader–follower consensus
converges [44].

Consensus algorithms inherently provide robustness against
packet loss, as demonstrated in [50]. Additionally, incorpo-
rating communication redundancies is crucial in the network
design to enhance robustness and guarantee connectivity in
the event of a communication failure from a WT. This is
achieved by ensuring that each WT exchanges information
with at least two others, meaning each vertex vi has at least
two connecting edges. In this case, when a link fails, consensus
would still be achieved, yet the stability of the closed-loop
system should be verified as it also depends on the network
topology. Furthermore, switching network schemes [44] can be
implemented to address these failures and optimize operations
through reconfiguration. However, we assume that the turbines
have no issue in sharing information.

B. Average Consensus Within the WF Control Sampling Time

Our proposed multirate controller assumes that the data
exchange between WTs can occur at a higher rate than the WF
control. The WF control typically operates at a low time scale,
between 20 s and 10 min [6], being suitable for conducting
consensus algorithms [43], [44] to estimate the relevant WF
information before the WF control action’s execution. This
inherently leads to a unitary delay in the action, which will
be further discussed and assessed. This design consideration
is in line with the control of power systems, where different
time scales are accounted for [30]. In this section, we present a
general formulation of the consensus algorithm, used to obtain
the estimates for the power compensator and thrust balancer.

The average consensus of a state x ∈ Rn is to be achieved
at each WT in h ∈ N iterations, the consensus horizon. For
clarity, the average consensus algorithm is divided into three
stages: (re-)initialization; inner iteration; and final assignment.

In the (re-)initialization, the state variable of the average
consensus, xavg

i is initialized as

xavg
i (0) = xi (k). (11)

Then, the inner iteration is recursively conducted over the
consensus horizon, as follows:

xavg
i (c + 1) = wi,i x

avg
i (c) +

∑
j∈Ni

wi, j x
avg
j (c) (12)

for c ∈ {0, 1, . . . , h − 1}, where wi,i is the weight on xavg
i at

vertex i and wi, j are the weights on xavg
j at vertex i . As the

last stage, the final assignment is

xavg, final
i (k|k + 1) = xavg

i (h), (13)

where xavg, final
i is the final average value obtained after h steps

and utilized for defining the WF control action. The notation
(k|k+1) is utilized to highlight that the estimate of the average
of x(k) can only be obtained at k + 1. By setting wi, j = 0 for
j /∈ Ni , we can then rewrite (11)–(13) in a vector form

xavg(0) = x(k) (14a)
xavg(c + 1) = W xavg(c) ∀c ∈ {0, 1, . . . , h − 1}

(14b)

xavg, final(k|k + 1) = xavg(h) (14c)

where W = [wi, j ] is the average consensus weight matrix. The
matrix W is structured to respect the communication topology
and has to satisfy the following conditions:

λ1(W ) = 1 and |λi (W )| ≤ 1 for all i = 2, . . . , n (15a)
W 1n×1 = 1n×1 (15b)
11×n W = 11×n. (15c)

While average consensus is only reached in the limit,
as h → ∞, a suitable average can be achieved in finite
iterations, by choosing a sufficiently large h. Moreover, the
optimal design of W to achieve the fastest convergence rate
and enhance accuracy is obtained by solving the following
optimization problem, the so-called fastest discrete-time con-
sensus (FDTC) problem [51]:

minimizewi j ρ
(
W − Wavg

)
(16a)

subject to W 1n×1= 1n×1, (16b)
W= W ⊺, (16c)
wi, j= 0, if (i, j) /∈ E and i ̸= j, (16d)

where ρ(S) is the spectral radius of S, and the conver-
gence speed decreases with ρ(S); and, reiterating, Wavg =

(1/n)1n×111×n is the average matrix. Since we impose W
to be symmetric as a design choice, the spectral radius of
a symmetric matrix is also its spectral norm, then (16a) can
be cast as the minimization of ∥W −Wavg∥, where the operator
∥·∥ is the induced matrix 2-norm. This problem is convex and
can be solved globally and efficiently.

Notice that for plug-and-play capabilities, the optimization
problem should be reconsidered taking into account the new
addition or removal to keep overall optimality. Otherwise,
at least, the elements of W associated with their neighbors
should be changed accordingly to maintain the conditions
in (15).
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Fig. 1. Block diagram of the power compensator based on the consensus of the power errors.

C. Power Compensation

Let us now address the solution to objective O1 in a
distributed manner. The main idea is to utilize WTs with
enough wind resources to cooperatively compensate for power-
tracking errors. This ensures that overall power tracking at
the WF level can still be attained in the case of turbine
saturation. Fig. 1 illustrates our proposed distributed strategy
for power compensation. Each WT i initiates its consensus
protocol based on its own power error. Then, the average
power error across the entire farm is estimated through the
average consensus process that communicates the power errors
in a neighborhood at a high rate. Subsequently, the control
computes the feedback control signal u P,i at a low rate using
the estimates of the WF power error. This strategy is detailed
as follows, divided into Estimation and Control.

1) Estimation: The first step in our distributed power com-
pensation strategy is to estimate the WF power error. This
is accomplished by computing the average power error at
each WT using the average consensus algorithm, as presented
in Section III-B. The algorithm leverages the current power
error information at each WT and disseminates it by engag-
ing in high-frequency communication with neighboring WTs.
If Assumption 2 holds, and provided that h is sufficiently large,
the average consensus value is obtained in the subsequent
low-rate time step. Theoretically [43], [51], we have

lim
h→∞

W heP(k) = WavgeP(k)

= eavg, final
P (k|k + 1) (17)

where eP is the vector containing all power tracking errors of
each WT, W is the average consensus weight matrix, which
is structured to respect the communication topology, and Wavg
is the average matrix. The notation (k|k + 1) signifies that the
average of power losses eavg, final

P from k is only obtained at
k +1. This notation emphasizes the delay attained by utilizing
our proposed approach. Thus, the WF power error is estimated
to be neavg, final

P (k|k + 1).

During the design stage, a finite value for h is deter-
mined, constrained by the speed of the communication system
in transmitting information and the time required by the
local controller to execute the algorithm. Since communi-
cation speed and computation time are “hard” constraints,
the designer must account for some tolerance in the attained
average consensus. The choice of h affects the distribution of
the power compensation, moving from uniform, widespread
compensation across the farm with h sufficiently large, to a
more localized compensation with a low value of h. This
localized compensation is acknowledged without significant
prejudice, as (15b) guarantees that the sum of the vector of
node values is preserved and h is factored into the stability
conditions derived further in this work.

2) Control: We propose a compensation strategy following
the integral method derived for centralized controller in [12]
and presented in Section II-C. The integral method is demon-
strated to achieve stability even with the presence of the
additional step-time delay for the execution of the consensus
algorithm. The control law at each WT uses the final estimated
average power error eavg, final

P (k − 1|k) from the previous time
step k − 1 obtained at k, and it is defined as

u P,i (k) = u P,i (k − 1) + K P neavg, final
P,i (k − 1|k) (18)

where K P is the integrator gain for the power compensator.
In vector form, we can rewrite (18) as

u P(k) = u P(k − 1) + K̄ P WP eP(k − 1) (19)

where K̄ P is the gain matrix defined as K̄ P := diag(K P),
and WP = nW h a weight matrix. Notice that differing from
a central control law (9), the average depends on the value
of h and if h → ∞ then WP = nWavg. Importantly, the
computation of the average consensus adds a sampling time
delay to the power error signal in (19), compared to the
centralized controller in (9).

Remark 1: With the control law (18) utilizing the average
consensus with a sufficiently large h, the compensation equally
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spreads the additional power demand, as in the centralized
approach. This equal compensation across all turbines is
simple and effective. Furthermore, the compensation can be
expanded to take the intensity of the turbine interactions
into account in (18), for example, using a WF model-based
optimization [18], or estimations of available power [13].
A weighted approach across turbines considering the intensity
of the interactions is a direct extension. Our proposed con-
troller combines power compensation with aerodynamic load
balancing, accounting for interactions and promoting a power
distribution that leads to uniform degradation and prevents
turbine saturation. ◁

D. Power Distribution

In a fully distributed WF system, the desired power refer-
ences P̂ ref

g,i (k), as a solution of objective O2, should also be
obtained in a distributed manner. The information regarding
the desired power reference for each turbine can be dis-
seminated throughout the communication network by solving
the alignment problem [44], also known as leader–follower
consensus.

The alignment problem is accomplished by converging
all the desired power references to leader turbines. The
leader turbines leave their values unchanged, while all others
asymptotically agree with them according to the consensus
protocol, achieving alignment. The leader–follower consensus
is conducted between the WF control sampling time, so it also
follows the notations from Section III-B.

A widely employed benchmark approach is to divide the
WF power reference uniformly among all WTs [13]. As a
feedforward term, the desired power reference provides an
initial reference to the WTs, with the primary goal of sharing
implicit information on the total farm power demand, while the
feedback terms are also incorporated into the power reference
signals. For simplicity, we assume a single leader identified as
the WT i = m. The leader’s power reference is determined by
dividing the total WF power reference P ref

W F by the number of
WTs in the WF such that the (re)initialization of the leader
turbines is defined as follows:

P ref, align
g,m (0) = P ref

W F (k)/n (20)

while the (re)initialization of the other turbines is

P ref, align
g,i (0) = P̂ ref

g,i (k − 1) ∀i ̸= m (21)

for k ≥ 1, where P ref, align
g,i is the internal state variable.

Then, in the inner iteration stage, the leader’s power refer-
ence remains constant, being

P ref, align
g,m (c + 1) = P ref, align

g,m (c) ∀c = 0, 1, . . . , h − 1 (22)

where c is an internal discrete-time index. On the other hand,
the followers i ̸= m converge to the leader as

P̂ ref, align
g,i (c + 1) = ai,i P̂ ref, align

g,i (c) +

∑
j∈Ni \m

ai, j P̂ ref, align
g, j (c)

+ bi P ref, align
g,m (c) (23)

∀c = 0, 1, . . . , h − 1, where ai, j ∈ R and bi is either βi ∈ R
if agent i is connected to the leader, or 0 otherwise.

At the final assignment stage

P̂ ref
g,i (k|k + 1) = P ref, align

g,i (h) ∀i. (24)

For a single leader, without loss of generality, we can
assume that this agent is the one labeled with m = n. Then,
the multiagent system is said to achieve alignment between
the WF control sampling time when

lim
h→∞

||P̂ ref
g,i (k|k + 1) − P̂ ref

g,n(k|k + 1)|| = 0 (25)

∀i ∈ {1, 2, . . . , n − 1}. The inner iteration defined by (22)
and (23) can be written in state form as[

P ref, align
i=1:n−1 (c + 1)

P ref, align
n (c + 1)

]
=

[
Alf Blf

01×n−1 11×1

]
︸ ︷︷ ︸

L lf

[
P ref, align

i=1:n−1 (c)
P ref, align

n (c)

]
(26)

∀c = 0, 1, . . . , h − 1, where Alf = [ai, j ]n−1 × n−1, with
ai, j = 0 for j /∈ Ni , and Blf = [b1, b2, . . . , bn−1]

⊺. The
design of the parameters ai, j and bi ∈ R is conducted by
an equivalency with the alignment problem derived in [44].
It then follows:

Alf =
(
In−1 +Dn−1×n−1 + B ′

)−1
(In−1 +An−1×n−1) (27)

Blf =
(
In−1 +Dn−1×n−1 + B ′

)−1 B ′ (28)

where B ′ is an n − 1 × n − 1 diagonal matrix whose i th
diagonal element is 1, if i is the neighbor of the leader,
and 0 otherwise; Dn−1×n−1 and An−1×n−1 are the degree
and adjacency matrices removing the last column and row,
respectively. In this way, L lf in (26) is an stochastic matrix,
that is, L lf1n×1 = 1n×1 and L lf is square with all entries
nonnegative.

Utilizing this approach, the distribution of WF power refer-
ence is not made by a central workstation to each turbine,
as typically observed in the general centralized scenario.
Instead, the communication is distributed in exchange for a
time-step delay. This time-step delay, on the other hand, can
be designed to be as small as necessary, constrained by the
execution of the consensus algorithm.

E. Thrust Balance Control

Following objective O3, we aim to evenly distribute the
thrust forces throughout the entire farm in a distributed man-
ner. Our solution in this section also takes advantage of the
average consensus and the time-scale separation from the WF
and WT controllers to compute the average thrust forces.

For computing the feedback control signal uT,i (k), we use
the average thrust force across the entire farm obtained from
average consensus estimates.

1) Estimation: The thrust force errors are estimated by
computing the average thrust force across the WF at
each WT employing the average consensus algorithm from
Section III-B. The thrust force tracking errors eT,i is defined
as

eT,i (k) = Favg
T,i (k) − FT,i (k) (29)

where Favg
T,i is the average of thrust force known at the i th

WT and FT,i is the current thrust force. Different from the
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centralized controller, Favg
T,i is computed across the WF by

the average consensus algorithm from Section III-B, such that
the estimations of the thrust force errors are defined as

eT (k − 1|k) =
(
W h

− In
)
FT (k − 1) = −WT FT (k − 1) (30)

where WT = −(W h
− In). When h → ∞

eT (k − 1|k) =
(
Wavg − In

)
FT (k − 1). (31)

This indicates that the strategy introduces a sampling time
delay besides the consensus algorithm being conducted with
a finite h in practice. Similar to the power compensation, the
choice of h dictates the level of smoothness in the averaging
of the thrust forces across the WF.

2) Control: The control protocol that balances the thrust
force is proposed to be composed of pure integrators. The
sampling time delay originating from the computation of
the average consensus is embedded into the proposed con-
trol law (32) by considering the definition of the error
signals from (30), contrasting with the central control law
in (7)

uT,i (k) = uT,i (k − 1) + KT eT,i (k − 1|k) (32)

which can be rewritten in a vector form as

uT (k) = uT (k − 1) + K̄ T eT (k − 1|k)

= uT (k − 1) − K̄ T WT FT (k − 1) (33)

where K̄ T = diag(KT ).
Remark 2: Note that the weight matrix WT is a double-

stochastic matrix by definition, and, therefore, it guarantees
that

∑
i uT,i (k) = 0 ∀k. Indeed, from (33)

∑
i

uT,i (k) = 11×nuT (0) −

k∑
τ=1

11×n K̄ T WT FT (τ − 1). (34)

Thus, provided that uT,i (0) = 0 ∀i is established as the initial
condition for the integrators, 11×n K̄ T WT FT (k − 1) = 0 ∀k
is a sufficient condition for

∑
i uT,i (k) = 0 ∀k. Thus, by the

definition of WT

11×n K̄ T WT FT (k − 1) = 0 (35)

holds, where 11×n WT = 0n follows from the definition of
WT = −(W h

− In), as W h is a double-stochastic matrix. ◁

Remark 3: When turbine saturation1 occurs in one of the
WTs, the balancing of thrust forces would reduce the total WF
power generation. The saturated turbine cannot increase power
generation and it typically has a lower thrust force compared
to the remaining turbines. Consequently, the saturated turbine
affects the power generation of the other turbines by dimin-
ishing their power output and failing to compensate for their
reduced generation with its own increased power generation.
Hence, we exclude saturated turbines from the balancing of
thrust forces, departing from the previous practice in the
central approach in [11] and [12]. This prioritizes object O1
and is justified by the fact that the thrust forces of saturated

1Turbine saturation refers to a condition where a turbine operates at
maximum capacity and cannot produce any more power when demanded.
This condition is imposed by unavailable wind and/or high demand.

turbines are lower than the remaining ones. To accomplish this,
we define the consensus algorithm, such that W h reaches the
definition of the average matrix in (36) when h → ∞

Wavg, sat

=
[
wi, j

]
=


1, if i = j is saturated
0, if i ̸= j and i or j is saturated

1
n − nS

, otherwise

(36)

where nS is the number of saturated turbines. The satura-
tion information is also obtained through average consensus,
thereby maintaining distributed communication. Since this
follows directly from Section III-B, it is omitted for brevity.
The double-stochasticity property in (36) persists and the result
thrust force error of the saturated turbines is zero, granting an
anti-windup property for the integrators. ◁

Remark 4: In the event of a scheduled shutdown for main-
tenance at specific WTs, the power compensation and power
distribution, as discussed in Sections III-C and III-D, could
remain unchanged. In this way, the power error at the shut-
down turbine will be compensated by the other from the
feedback loop. The information about the turbine to be shut
down can be transmitted through the communication network
by the alignment consensus algorithm. The turbine undergoing
shutdown must be removed from the thrust force balancing
and this can be handled in the same manner as when turbine
saturation occurs, following (36). ◁

F. Stability of the Proposed MCDC Scheme

To start the discussions in this section, we consider the
concept of bounded input bounded output (BIBO) stability and
how it relates to turbine saturation in the farm. Here, exoge-
nous inputs, that is, the references P̂ ref

g , and the disturbances
qP and qT , are acknowledged as bounded, as substantiated by
the following assessments.

1) The contribution of the inflow turbulence or other
unmodelled effects is bounded, such that |qP,i | < K1
and |qT,i | < K2 for all i , where K1 and K2 ∈ R,
governed by the convergence of the dedicated feedback
controller at each WT.

2) Owing to potential saturation qP,i < 0 and qP,i ≥

−P rated
g,i , as a result of the constraints imposed by the

turbines and the reference signal, Pg,i ≥ 0, P ref
g,i ≥ 0,

and P ref
g,i ≤ P rated

g,i ; and, similarly, qT,i < 0, and
qT,i ≥ −Fmax

T,i , where Fmax
T,i is the maximum thrust force

admitted by an individual WT.
For the closed-loop system to be BIBO stable, meaning that

the norms of the power and thrust force errors remain bounded
for bounded inputs, a necessary condition is that the poles of
the closed-loop system must be in a stable region. From (1),
the dynamics of the power generation and thrust force are
rewritten in vector form as

Pg(k + 1) = AP Pg(k) + AT,P FT (k) + BP P ref
g (k) + qP(k)

(37)
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Fig. 2. Block diagram of the closed-loop system with both feedback loops. The communication is represented by WP and WT .

FT (k + 1) = AT FT (k) + AP,T Pg(k) + BT P ref
g (k) + qT (k)

(38)

where, given Assumption 1, AP = diag(aP), AT,P =

diag(aT,P), and BP = diag(bP); and AT = diag(aT ),
AP,T = diag(aP,T ), and BT = diag(bT ). Thus, we con-
vert (37) and (38) from their discrete-time description to the
z-domain [52] and reorganize them using matrix algebra

Pg = (Inz−AP)−1(AT,P FT + BP P ref
g + qP

)
(39)

= GT,P FT + G P P ref
g + G P,qqP

FT = (Inz−AT )−1(AP,T Pg + BT P ref
g + qT

)
(40)

= G P,T Pg + GT P ref
g + GT,qqT

where Pg , FT , P̂ ref
g , qP , and qT represent the Z -transform of

the respective vectors from this point, calculated as Z [x(k +

a)] = za x(z) with a ∈ Z; and GT,P = (Inz−AP)−1 AT,P ,
G P = (Inz−AP)−1 BP , G P,q = (Inz−AP)−1, G P,T =

(Inz−AT )−1 AP,T , GT = (Inz−AT )−1 BT , GT,q =

(Inz−AT )−1 are defined transfer functions. For simplicity,
we denote q̄ P = G P,qqP and q̄T = GT,qqT . Replacing (39)
and (40) into each other and rearranging the terms, we have
the following representation of the WF dynamics:

Pg =
(
In − GT,P G P,T

)−1

×
[(

G P + GT,P GT
)
P ref

g + GT,P q̄T + q̄ P
]

(41)

FT =
(
In − G P,T GT,P

)−1

×
[(

GT + G P,T G P
)
P ref

g + G P,T q̄ P + q̄T
]
. (42)

Furthermore, we also convert the power reference input
signal to the Z -domain, which incorporates the control laws
previously defined in (19) and (33), such that

P ref
g = P̂ ref

g + u P + uT (43)

u P = (Inz − In)
−1 K̄ P WP eP = CP WP

(
P̂g − Pg

)
(44)

uT = (Inz − In)
−1 K̄ T eT = CT WT FT (45)

where u P , uT , eP , and eT represent the Z -transform
of the respective vectors from this point forward, and
CP = (Inz − In)

−1 K̄ P , CT = (Inz − In)
−1 K̄ T are the

defined control transfer functions. To emphasize, these
control transfer functions represent a backward numerical
integration due to the delay inherent in our approach,

contrasting with the forward integration used in centralized
control.

The feedback system is illustrated in the block diagram
in Fig. 2. In this representation, the input disturbance di

includes the feedforward term, which is the reference power
P̂ ref

g , an exogenous signal. To assess stability, we close both
feedback loops using the system equations (41) and (42), along
with the control signal (43). Consequently, we can formulate
the following theorem.

Theorem 1: The closed-loop stability, utilizing both feed-
back control laws (44) and (45) simultaneously, is ensured
when the following matrix inequalities are satisfied:

A0 − A3 < 0, (46a)

A0 + A1 + A2 + A3 > 0 (46b)

A0 − A1 + A2 − A3 < 0 (46c)

and

A2
3 − A2

0 + A0 A2 − A1 A3 > 0 (47)

where A3 = In , A2 = −(In + AP + AT ), A1 = AP AT +

AP + AT + AT,P AP,T + BP K̄ P WP + WT BT K̄ T , A0 =

−AP AT + AT,P AP,T − AT BP K̄ P WP + AT,P BT K̄ P WP −

AP WT BT K̄ T + AP,T WT BP K̄ T , and |.| is the determinant
operation.

Proof: Taking (43), and replacing with the control laws
(44) and (45), and subsequently replacing with (41) and (42),
we have

P ref
g = P̂ ref

g + u P + uT (48a)

= P̂ ref
g + CP WP

(
P̂ ref

g − Pg
)
− CT WT FT (48b)

= (In + CP WP)P̂ ref
g − CP WP

(
In − GT,P G P,T

)−1[(G P

+ GT,P GT
)
P ref

g + GT,P q̄T + q̄ P
]

− CT WT
(
In − G P,T GT,P

)−1[(
GT + G P,T G P

)
P ref

g + G P,T q̄ P + q̄T
]

(48c)

=

[
In + CP WP

(
In − GT,P G P,T

)−1(G P + GT,P GT
)

+CT WT
(
In − G P,T GT,P

)−1(GT + G P,T G P
)]−1

{
(In + CP WP)P̂ ref

g − CP WP q̃ P − CT WT q̃T
}
. (48d)

From (48c) to (48d), we rearranged (48c) by isolating the
power reference P ref

g and we denote q̃ P = (In − GT,P G P,T )−1
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Fig. 3. Block diagram of the closed-loop system in a basic feedback loop representation.

(GT,P q̄T + q̄ P) and q̃T = (In − G P,T GT,P)−1(G P,T q̄ P + q̄T ),
having stable relationships with q̄ P and q̄T by the definitions
of G P,T and GT,P . Substituting the transfer functions accord-
ingly and utilizing algebraic manipulations, the inverse term
that includes the closed-loop characteristic equation becomes[

In + CP WP
(
In − GT,P G P,T

)−1(G P + GT,P GT
)
+ CT WT (In

− G P,T GT,P
)−1(GT + G P,T G P

)]−1

= [(Inz − AP)(Inz − AT )

(Inz − In) − (Inz − In)AT,P AP,T + (Inz−AT )K̄ P WP BP

+AT,P K̄ P WP BT +(Inz− AP)K̄ T WT BT + AP,T K̄ T WT BP
]−1[

(Inz − AP)(Inz − AT ) − AT,P AP,T
]
(Inz − In).

To ensure stability, we must guarantee that the solutions to
the characteristic matrix polynomial

det
(
(Inz − AP)(Inz − AT )(Inz − In) − (Inz − In)AT,P AP,T

+ (Inz−AT )K̄ P WP BP + AT,P K̄ P WP BT

+(Inz−AP)K̄ T WT BT + AP,T K̄ T WT BP
)

= 0. (49)

lie within the unit circle. To demonstrate this, we rely on
the multivariate extension of the Jury stability criterion [53],
as presented in [54]. Specifically, let us start by defining
Q(z) = (Inz− AP)(Inz− AT )(Inz− In)−(Inz− In)AT,P AP,T +

(Inz−AT )K̄ P WP BP +AT,P K̄ P WP BT +(Inz−AP)K̄ T WT BT +

AP,T K̄ T WT BP . Then, det(Q(z)) = 0 has a solution only
if ∃x ̸= 0 such that x⊤ Q(z)x = 0.2 Thus, solving (49) and
verifying its solutions is equivalent to evaluating

x⊤ Q(z)x

= x⊤[(Inz − AP)(Inz − AT )(Inz − In)

− (Inz − In)AT,P AP,T + (Inz−AT )K̄ P WP BP

+ AT,P K̄ P WP BT +(Inz−AP)K̄ T WT BT+AP,T K̄ T WT BP
]
x

= x⊤
[
Inz3

− (In + AP + AT )z2
+ (AP AT + AP + AT

+ AT,P AP,T K̄ P WP BP + K̄ T WT BT
)
z− AP AT + AT,P AP,T

− AT K̄ P WP BP + AT,P BT K̄ P WP

− AP K̄ T WT BT +AP,T WT BP K̄ T
]
x

= x⊤ A3xz3
+ x⊤ A2xz2

+ x⊤ A1xz + x⊤ A0x = 0 (50)

2For any matrix A ∈ Rn×n , det(A) = 0 is equivalent to rank(A) < n
and, therefore, nullity(A) = dim(ker(A)) ≥ 1. This latter fact implies that
∃x ̸= 0 ∈ Rn s. t. x ∈ ker(A) H⇒ Ax = 0 H⇒ v⊤ Ax = 0, ∀v ∈ Rn .
Taking v = x , x⊤ Ax = 0.

where A3 = In , A2 = −(In + AP + AT ), A1 = AP AT +

AP + AT + AT,P AP,T + BP K̄ P WP + WT BT K̄ T , A0 =

−AP AT + AT,P AP,T − AT BP K̄ P WP + AT,P BT K̄ P WP −

AP WT BT K̄ T + AP,T WT BP K̄ T . Then, it is possible to
exploit the Jury stability criterion [53]. Having solutions of
det(Q(z)) = 0 restricted to the complex unit disk is equiv-
alent to satisfying the stability constraints of the third-order
polynomial (50), such that

x⊺(A3 + A2 + A1 + A0)x > 0, (51a)
x⊺(A3 − A2 + A1 − A0)x > 0, (51b)
x⊺(A3 − A0)x > 0, and (51c)∣∣∣∣x⊺ A0x x⊺ A1x

x⊺ A3x x⊺ A2x

∣∣∣∣ −

∣∣∣∣x⊺ A0x x⊺ A3x
x⊺ A3x x⊺ A0x

∣∣∣∣ > 0. (52)

In turn, given that A3, A2, A1, A0 are symmetric by construc-
tion, the conditions in (51a) are equivalent to the linear matrix
inequalities in (46); and (52) equivalent to (47).

The stability conditions from Theorem 1 imply internal
stability for our proposed MCDC framework in our study
case, which we evaluate through the closed-loop system in
a standard MIMO feedback configuration [55], as illustrated
in the block diagram in Fig. 3. We define the vector signals r ,
di , and do as exogenous; ξ1, ξ2, ξ3, u, y, v as internal; and the
system transfer functions, G̃ P = (In − GT,P G P,T )−1(G P +

GT,P GT ) and G̃T = (In − G P,T GT,P)−1(GT + G P,T G P).
Following the approach in [55], the internal transfer functions
are obtained byξ1

ξ2
ξ3

 =

 I2n 02n×n F
−C In 0n×2n

02n −G I2n

−1 r
di

do

 (53)

where G = [G̃ P ; G̃T ], C = [CP WP CT ], F = [In 0n; 0n WT ].
Twenty-five internal closed-loop transfer functions from P̂ ref

g ,
r , di , q̃ P , and q̃T to eP , eT , P ref

g , Pg , and FT can be derived
from (53). For conciseness, these functions are not explicitly
presented. All transfer functions retain the characteristic matrix
polynomial shown in (49). Moreover, they are well-defined and
proper and have possible pole and zero cancellations inside
the unit circle when satisfying the stability matrix conditions
in (46) and (47). Consequently, Theorem 1 also ensures the
internal stability of the closed-loop system based on these
properties.

The robustness against output disturbances, which repre-
sents unmodeled effects and deviations from our identified
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Fig. 4. Zero and pole mappings of the sensitivity function in our study
case for the Central-WFC (upper subplots) and our proposed MCDC (down
subplots). Slight dislocations are observed due to the delay in the MCDC
formulation.

Fig. 5. Illustration of the communication range spanning 5(2)1/2 of the
turbine diameter. In each blue circle, centered on the turbine location,
communication is established with the enclosed turbines.

simplified WF model, is characterized by the output sensitivity
transfer function from do to ξ3, denoted as S and expressed as

S = (I2n + GC F)−1

=

[
In + G̃ PCP WP G̃ PCT WT

G̃T CP WP In + GT CT WT

]−1

. (54)

Norms are often employed for robustness analysis [55],
but this approach can be computationally expensive and sus-
ceptible to numerical issues as our MIMO system scales
with the number of turbines. As an alternative, we visually
inspect the locations of the zeros and poles of the output
sensitivity transfer function S. This process begins with the
inverse operation utilizing block matrix inversion in (54).
Then, the matrix polynomial equations are formulated from
the numerator and the denominator of the derived four transfer
functions as generalized eigenvalue problems [56] to find the
zeros and poles, respectively. This approach is scalable for
large numbers of turbines and higher-order system models.

In Fig. 4, we compare the zero and pole mappings of
the four transfer functions derived from S using the MCDC
formulation to those of the Central-WFC for our study case
of 32 WTs. Considering the same control gains, we can
see slight changes in the locations ofÂ the zeros and poles
due to the different approaches. All poles are situated within

Fig. 6. Scenario 1—wind speed direction perpendicular to the TotalControl
reference wind power plant [57].

Fig. 7. Scenario 2—wind speed direction of 26.565◦ to the TotalControl
reference wind power plant [57].

the unit circle, characterizing stability, along with all zeros
and possible cancellations. The greater the distance between
the poles and zeros and the unit circle, the more robust
the approach is. The poles of the MCDC shifted slightly
to the right-hand side, indicating a minor reduction in
robustness.

IV. SIMULATION RESULTS

The proposed MCDC presented in Section III is evaluated
in the high-fidelity large-eddy simulator SOWFA [58]. The
WF layout is based on the TotalControl reference wind power
plant [57] and the adopted set of neighbors Ni is set based
on the communication range of each WT as depicted in
Fig. 5. A low-wake interaction scenario (Scenario 1) and a
medium-wake interaction scenario (Scenario 2) are considered,
which differ in the prevailing wind direction, as illustrated
in Figs. 6 and 7, respectively. The WF power reference is
taken from a portion of the 40-min “RegD” test signal [59],
normalized to have an amplitude of 32 MW with an additional
persistent value of 112 MW. The simulations were set with
a 10-Hz sampling rate, which was utilized in each WT
power tracking controller, while a sampling rate of 2 Hz
was implemented for the WF control. To reach an average
consensus, we conservatively set the number of steps at
h = 400, acknowledging that the WF control’s sampling
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Fig. 8. WF active power generation in Scenario 1.

time does not necessitate the same level of swiftness as the
WT control. This results in a communication rate of 800 Hz
across the neighbor turbines, which is acceptable for typical
low-range wireless communication devices.

The controller gains were selected as K P = (1/4)(1/n)

and KT = 0.25 based on insights from previous works
[12], [16], and in accordance with theÂ stability conditions
outlined in Theorem 1. The same values were applied in both
the Central-WFC and the MCDC to assess the impacts of
the introduced delays and the finite number of interactions
to consensus from the MCDC approach.

We start by presenting the comparisons of the WF’s active
power generation, depicted in Fig. 8 for Scenario 1 and Fig. 9
for Scenario 2. The figures illustrate the power production of
the WF over time which is regulated by a power demand from
the operator. Both the central and the proposed distributed
control approaches maintain the track of the WF power refer-
ence without an offset, in contrast to the observed offset in the
absence of a WF controller (No-WFC). This offset results from
the combination of power losses, where turbines generate less
power than expected, caused by turbulence effects. Although
compensation strategies in the open loop can help reduce
this offset, turbine saturation further exacerbates this offset
in Scenario 2, significantly impacting total power generation.
A quantitative assessment of the WF’s power tracking has been
conducted and conveniently summarized in Table I. This eval-
uation is based on the root mean square error (RMSE) between
the desired power reference and the actual power generation,
as well as its peak error (PE). The key performance indicators
are calculated from the 300-s mark onward. Despite the added
delay from the average consensus computation, the MCDC
showcases comparable performance when compared to the
Central-WFC. Particularly, in Scenario 2, the MCDC achieves
a 96.25% reduction in the RMSE of power compared with the
No-WFC, which is comparable to the 97.65% reduction by
the Central-WFC relative to the No-WFC.

Shifting our focus to the structural loads, the mean and
standard deviation of the aerodynamic loads across the turbines

Fig. 9. WF active power generation in Scenario 2.

are depicted in Fig. 10. A reduction in the standard deviation,
illustrated by the shaded regions, is evident with the implemen-
tation of both the central and the proposed distributed control
approaches. Again, it demonstrates equivalence between the
approaches in balancing structural loads, in which the shaded
region is reduced compared to the results from the No-WFC.
The quantitative evaluation of the thrust balancers is addi-
tionally provided in Table I in terms of the mean and peak
of the computed thrust force variance across the turbines.
In Scenario 2, the MCDC achieves a 91.97% reduction in
the mean of the thrust force variance, compared to the
92.29% reduction observed with the Central-WFC. Interest-
ingly, in Scenario 1, with a reduction of 91.92% compared
to 88.31% the MCDC overperforms the Central-WFC in
the mean of the thrust force variance. This may seem
counter-intuitive and it is ascribed to the inherent addi-
tional delay introduced by the MCDC, where we adopted
the same gains in the controller from the Central-WFC.
While the delay negatively impacts power compensation,
it reflects positively on the thrust balancing, as the two
loops exert opposing effects on each other. However, the
control gains can be adjusted accordingly to balance these
effects.

Our high-fidelity simulations examine the WF’s ability to
meet power demand using the proposed WF control strategy
at an average wind speed of 10 ms−1 and a turbulence intensity
of 5%–6% in the inflow. Nevertheless, it is important to
acknowledge the limitations of our strategy in the following
remark.

Remark 5: Rapid wind condition changes in real settings
can affect the proposed design’s performance, with consensus
estimates diverging from current conditions. Reducing the
WF sampling time can mitigate this, but it demands faster,
yet feasible, communication. Low or no wind conditions can
compromise WF power generation despite the controller’s
efforts. Managing volatility requires complementary strategies,
such as energy storage and integrating wind with other energy
sources.
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TABLE I
PERFORMANCE OF WF CONTROLLERS

Fig. 10. Mean and standard deviation of thrust forces of all turbines in both Scenarios 1 and 2.

V. CONCLUSION

As wind parks transition toward large-scale systems, the
prominent future trajectory for WF control is toward decen-
tralization. However, this transformation introduces numerous
challenges in effectively controlling the WTs cooperatively.
This work presents the MCDC, a fully distributed control
approach for power compensation, power distribution, and
aerodynamic load balance. At a high rate, consensus is
obtained for the variables of interest, and, at a low rate,
the control takes place. This novel, practical approach inte-
grates the WF objectives using well-established control
methods, achieving effective results. The main advantages of
the proposed MCDC framework include as follows.

1) MCDC does not rely on explicitly modeling WT
interaction.

2) MCDC is both distributed and computationally tractable,
facilitating straightforward implementation.

3) MCDC achieves performance comparable to the
centralized controller.

Remarkably, the MCDC does not require a communi-
cation central point. This facilitates the implementation of
WF control, which can be embedded locally in each WT.
This paves the way for the production of WTs with WF
control capabilities. Moreover, it requires only the current
WT hardware and a short-distancing communication system,
minimizing associated costs. While the MCDC relies on more
frequent communication with neighboring WTs in comparison
to the alternative approaches in the literature of distributed
control, it is important to note that communication is limited
to the neighboring WTs, and its performance matches the
centralized controller.

As future venues of research, the proposed MCDC could
be broadened to encompass additional applications in oper-
ation and management, such as distributing critical local

structural information. Furthermore, the framework may prove
advantageous for detecting cyber-attacks and corrupted sig-
nals within the communication channels. The high-rate layer
utilized to reach consensus provides space to integrate
detection algorithms, thus enhancing security and robustness
against such malicious threats before actions are taken in the
lower-rate layer. Additionally, extensions of this work include
exploring strategies to accommodate link and node failures,
as well as communication rate limitations. In these scenarios,
consensus might not sufficiently converge within the sampling
time of the WF control. The use of strategies that enhance
convergence is of great value, such as robust network design
and restarting mechanisms. Moreover, sufficient conditions for
stability in the presence of extra delays are direct extensions
of this work.
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