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A B S T R A C T

The study presents deflation constraints that enable a systematic exploration of the design space during the
design of composite structures. By incorporating the deflation constraints, gradient-based optimizers become
able to find multiple local optima over the design space. The study presents the idea behind deflation using a
simple sine function, where all roots within an interval can be systematically found. Next, the novel deflation
constraints are presented: hypersphere, hypercube and hypercuboid; consisting of a combination of Gaussian
and sigmoid functions. As a test case, the developed constraints are applied to the optimization of a double-
cosine function, where all the 13 minima points could be found with 24 deflation constraints. It is shown that
a new optimum is encountered after each deflation constraint is added, with the optimization subsequently re-
started from the same initial point, or resumed from the last found minimum, being the latter the recommended
approach. The new deflation constraints are then used in heuristic-based direct search methods, where a genetic
algorithm optimizer is able to find new optimum individuals for straight-fiber composites. Lastly, variable-
stiffness composites were designed with the deflation constraints applied to the multimodal optimization
problem of recovering fiber orientations from a set of optimum lamination parameters.
1. Introduction

Structural optimization is a fairly vast subject in itself that is tightly
associated with the design of lightweight structures. Composite ma-
terials have been a major enabler of these designs, owing to their
superior specific material properties as compared to metals, and to
their significantly larger design space enabled by their anisotropy.
Both aeronautical and space industries have been continuously de-
veloping new concepts for composites to pursue these benefits, and
Fig. 1 shows the evolution of the use of composites in aeronautics
over the last 60 decades. Note that Boeing’s 787 Dreamliner was the
first large commercial aircraft have 50% of the structural weight in
composites [1].

1.1. Types of design space and optimization composites

Ghiasi et al. reviewed in detail different composite optimization
methods used for constant [3] and variable [4] stiffness laminates, clas-
sifying the techniques into four categories, being in order of relevance:
gradient-based, direct search and heuristic, specialized and hybrid
methods. Gradient-based methods can find a local minimum generally
faster than all the other methods, limited to contiguous problems with
first or second derivatives [3]. For problems that are large in dimension,

∗ Corresponding author.
E-mail address: S.G.P.Castro@tudelft.nl (S.G.P. Castro).

1 The two authors contributed equally to this manuscript.

with usually more than 30 variables [5], gradient-based methods may
be the only viable optimization method [6]. However, gradient-based
optimizers can find the global optimum with high accuracy only in
unimodal design spaces [7,8], whereas in multimodal spaces the final
solution largely depends on the initial point [3]. A convex design space
is a subset of a unimodal design space, as illustrated in Fig. 2, and
convexity requires that all line segments connecting any two points
in the function are above the function and do not intersect it. Hence,
not all unimodal functions are convex, but all multimodal functions are
non-convex [6]. As the design space becomes increasingly multimodal
or non-convex, finding a global minimum becomes more difficult and
would require special techniques that can evaluate multiple regions of
the design space to find the point that best minimizes the function.
These global search schemes involve different sampling or starting
point approaches [9,10] to increase the likelihood to converge to a
global optimum, despite it is never guaranteed that a global optimum
will be found, not even that the global search will converge onto a
solution that is different from those previously found [6]. In commer-
cial software such as Altair’s Optistruct, such global searches can be
activated with the ‘‘dglobal’’ user input [11].

Direct search methods do not require derivatives, and can be more
appropriately applied for composite lay-up design, handling a mixture
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Fig. 1. Utilization of fiber-reinforced composites in aircraft over the last decades, from Wang et al. [2].
Fig. 2. Unimodal and multimodal functions, from Martins & Ning [6].

of continuous and discrete variables. They can find the global optimum
of multimodal objective functions, although with a significantly lower
rate of convergence when compared to gradient-based methods [3].
Genetic algorithms (GA) has been the most popular class of direct
search method, according to Ghiasi et al. [3], with simulated annealing
ranking second. Haftka and his group have pioneered the application of
GA in composite design [12–14]. António [15] proposed a hierarchical
GA for multimodal optimization of hybrid composites with multiple
solutions. The sunflower algorithm is another relevant global optimizer
originally applied to inverse problem of structural damage detection in
laminated composite plates, proposed by Gomes [16].

Variable stiffness (VS) laminated composites can further increase
the design space and hence the potential for better structural perfor-
mance of composites [17], manufacturable by automated fiber place-
ment [18] and continuous two shearing [19]. However, the larger
design space created by VS laminates creates new challenges for the
optimization, due to highly non-convex design spaces associated with
the variable fiber angles [20].

Even in the design of constant stiffness laminated composites, the
use of ply-angles as design variables is often associated with non-
convexity [21]. Miki [22] proposed the use of lamination parameters,
introduced by Tsai & Pagano in 1968 [23], as design variables to render
2

a convex optimization. Scardaoni & Montemurro [24] proved non-
convexity of the feasible domain for both anisotropic and orthotropic-
membrane laminates, even when those are parameterized using lamina-
tion parameters. However, approximations that lead to convex feasible
domains have been proposed, such as the one for the in-plane and flex-
ural lamination parameters developed by Fukunaga & Sekine [25,26].
Even when the optimization of the lamination parameters is performed
in a convex design space, the next step of retrieving the fiber angles
involves a multimodal optimization that is ubiquitously done using GA
algorithms. In the present study, it is shown that this retrieval can
be done with gradient-based optimizers when deflation constraints are
used.

1.2. The deflation method

1.2.1. Deflation of scalar-valued functions
The first instance of the deflation methods were applied for sys-

tematic root finding in functions [27], providing an easy visualization
of the concept. Assume 𝑝(𝑥) to be a scalar-valued nonlinear function
having 𝑛 multiple roots 𝑥1, 𝑥2,… , 𝑥𝑛, with each root found using an
iterative method such as the Newton–Raphson [28]. After having eval-
uated the initial root of 𝑝(𝑥), more roots can be systematically found by
considering the following deflated function [29]:

𝑞(𝑥) = 𝑝(𝑥)
∏𝑛

𝑖=1(𝑥 − 𝑥𝑖)
, (1)

for which the already obtained roots can be effectively removed by
the multiplicative term in the denominator. Consider the sine function
𝑝(𝑥) = 𝑠𝑖𝑛(𝜋 𝑥) with 7 roots within −𝜋 ≤ 𝑥 ≤ +𝜋. Fig. 3 depicts 𝑝(𝑥) and
the two new functions 𝑞1(𝑥) and 𝑞2(𝑥), created after two consecutive
deflation steps, respectively after finding the roots at 𝑥 = −2 and
𝑥 = +1, given as:

𝑞1(𝑥) =
sin(𝜋 𝑥)
𝑥 − (−2)

𝑞2(𝑥) =
sin(𝜋 𝑥)

(𝑥 − (−2))(𝑥 − (+1))
(2)

Fig. 3 shows that the deflated functions have the specific roots
completely removed, i.e. the deflated functions no longer cross zero at
those points, while keeping all the other roots unchanged. This property
of the deflation technique can be exploited to remove selected minima
points from an arbitrary objective function, as demonstrated later in
the present study.
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Fig. 3. Deflated sine function obtained using Eq. (1).

1.2.2. Deflation applied to nonlinear equations
The idea behind polynomial deflation was generalized to partial dif-

erential equations (PDE) by Farrell et al. [29], extending the concept of
deflation matrix 𝑀 and deflation operator 𝑚 that had been previously
ntroduced by Brown & Gearhart [30], also with the intent of solving
DEs. Farrell proved that convergence to different solutions from the

same starting point was achieved after deflation. Consider the residuals
for a system of 𝑛 nonlinear equations 𝐹 (𝑥) such that:

𝐹 (𝑥) = 0 (3)

After solving the system of equations once, solution 𝑥1 is obtained,
uch that a deflation matrix can be calculated using a deflation opera-
or:
𝑀(𝑥; 𝑥1) = 𝑚(𝑥; 𝑥1)
(𝑥; 𝑥1) = ‖𝑥 − 𝑥1‖−𝑝 + 𝜎

(4)

where  is the identity matrix (𝑛 × 𝑛); 𝑝 is the pole strength or power
that dictates the rate at which the function approaches infinity; and 𝜎 is
n offset parameter that is reached when the norm distance ‖𝑥−𝑥1‖ →

[31]. The deflated nonlinear system of equations 𝐺(𝑥) becomes [31]:

𝐺(𝑥) ≡ 𝑀(𝑥; 𝑥1)𝐹 (𝑥) = 0 (5)

The system in Eq. (5) can be solved to obtain a new solution 𝑥2.
Here 𝐺 satisfies the following properties [31]:

1. The two system of equations, 𝐹 (𝑥) = 0 and 𝐺(𝑥) = 0 both have
the same solutions for all 𝑥 ≠ 𝑥1.

2. With the known solution 𝑥1, 𝐺 will not converge again to 𝑥1
under the assumption lim𝑥→𝑥1 ‖𝐺(𝑥)‖ > 0

After having found 𝐾̃ multiple solutions, the method in [29] pro-
oses multiplying the deflation matrices and solving the following set
f equations:
𝐾̃
∏

𝑘=1
𝑀(𝑥; 𝑥𝑘)𝐹 (𝑥) = 0. (6)

Farrell et al. in a recent study [32] have further extended this
method for semi-smooth equations. Deflation does not guarantee that
all the solutions to a problem are found; however, it provides a sys-
tematic method to explore a progressively larger number of nonlinear
solutions.
3

1.2.3. Deflation in global search
In the context of sizing optimization, the idea to apply deflation as a

ew constraint has been independently developed by the authors, with
he only literature reference using a similar approach for topology opti-
ization being the non-peer reviewed pre-print by Tarek & Huang [33].

Consider the nonlinear programming (NLP) problem for which multiple
olutions need to be evaluated:
minimize

𝑥∈𝑛
𝑓 (𝑥)

subject to 𝑐(𝑥) = 0
𝑙 ≤ 𝑥 ≤ 𝑢

(7)

where 𝑙 and 𝑢 are respectively the lower and upper bounds of the design
ariable 𝑥. This constrained minimization problem can be converted
nto an unconstrained problem by expressing the objective function as

the Lagrangian, expressed as [33]:

(𝑥, 𝜆, 𝑧+, 𝑧−) = 𝑓 (𝑥) + 𝑐(𝑥)𝑇 𝜆 + (𝑥 − 𝑢)𝑇 𝑧+ − (𝑥 − 𝑙)𝑇 𝑧− (8)

where 𝜆 ∈ 𝑚 is the Lagrange multiplier vector associated with the
quality constraints, 𝑧−, 𝑧+ ∈ 𝑛

+ is the Lagrange multiplier vectors
ssociated with the lower and upper bound. The Karush–Kuhn–Tucker
KKT) conditions are satisfied when [33]:
∇𝑥(𝑥, 𝜆, 𝑧+, 𝑧−) = 0

𝑐(𝑥) = 0
𝑙 ≤ 𝑥 ≤ 𝑢

𝑧+ ≥ 0

𝑧− ≥ 0

(𝑥 − 𝑢)𝑇 𝑧+ = 0
(𝑥 − 𝑙)𝑇 𝑧− = 0

(9)

A point 𝑥 that satisfies these conditions is therefore known as a
KKT point, and finding multiple solutions to the NLP consists of finding

ultiple KKT points. In the work of Tarek & Huang [33] two versions
of the deflation constraint were proposed. First, an additional variable
𝑦 is introduced into the optimization problem along with the deflation
constraint 𝑚. With 𝑦 ≥ 0, the deflation constraint is given as [33]:

𝑚(𝑥; 𝑥1) = ‖𝑥 − 𝑥1‖
−𝑝 + 𝜎 ≤ 𝑦 (10)

where 𝑥1 is the first optimum point that is found previously, 𝑝 is
 power (usually varies between 2–4), and an offset term 𝜎. After

this constraint becomes active, it is considered that if the new found
optimum point 𝑥2 is associated with variable 𝑦 such that 𝑦 is finite and
has a value in exact arithmetic, then 𝑥1 ≠ 𝑥2 (since lim𝒙→𝒙1 𝑚(𝑥; 𝑥1) =

). It can further be proved that every KKT point of the new NLP with
 finite value of 𝑦 is a KKT point of the original formulation [33]. A

proof of how (𝑥∗, 𝑦∗) would be a regular KKT point for the modified
problem after the introduction of the deflation constraint is provided
in Appendix A.

If it is assumed that 𝑚 > 0 and 𝑦 > 𝜎, the deflation constraint would
e equivalent to the distance constraint as follows [33]:

‖𝑥 − 𝑥1‖
𝑝 ≥ 𝑧 (11)

where 𝑧 = 1∕(𝑦 − 𝜎). Thus, it becomes clear that the deflation constraint
essentially puts a constraint on the known solutions. If at any point, the
optimizer approaches 𝑧 = 0 or 𝑦 = ∞, then the deflation operator is not
istancing the new points from the known optimum points sufficiently.
ence, in this case, the main hyperparameters that can be varied to
nsure that this distancing occurs are the offset 𝜎 and the power 𝑝, as
hown in Eq. (10).

The first deflation constraint defined in Eq. (10) can be modified by
omitting the additional variable 𝑦, and replacing it with a large finite
onstant 𝑀 , such that a second deflation constraint is obtained as [33]:

𝑚(𝑥; 𝑥1) = ‖𝑥 − 𝑥1‖
−𝑝 + 𝜎 ≤ 𝑀 (12)
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Because there are no additional variables to this second deflation
onstraint, a proof similar to what is given in Appendix A can be used

to conclude that the newly found point 𝑥∗ is a regular KKT point to
Eq. (7). So far, Eqs. (10) and (12) have been evaluated with a single
known solution, whereas for 𝐾̃ known solutions the deflation constraint
can be expressed as a summation, given by [33]:
𝐾̃
∑

𝑘=1
𝑚(𝑥; 𝑥𝑘) ≤ 𝑦 (13)

1.3. Contributions of the present work

Given the challenges related to performing systematic global search
in multimodal design spaces, the present study proposes a novel de-
flation constraint that is included in the optimization problem by
minimizing the Lagrangian instead of the main objective function,
thus being compatible with any algorithm that allows constrained
optimization.

The methodology of Tarek & Huang [33], similarly to the method-
ology initially attempted by Bangera [34], does not perform adequately
n a larger design space after the first few deflation constraints are
dded. This lack of robustness is mainly due to their deflation constraint
ot being differentiable at the deflated points, and due to the relatively
rbitrary offset parameter 𝜎. The deflation constraint herein proposed
ddresses these shortcomings, enabling a robust exploration of larger
esign spaces by guaranteeing the discovery of new distinct minima
hen the optimization is re-started or resumed, after a new deflation

onstraint is added. This new constraint is applied without altering the
ptimization algorithm, making it suitable to both gradient-based and
radient-free optimization methods.

2. Methodology

2.1. Interior-point optimization algorithm

Interior-point algorithms stems from interior penalty methods that
associate a penalization term with the constraints, being a key dif-
ference the fact that the constraints are not directly penalized. In
interior-point, the penalization acts on slack variables 𝑠 that are added
to the inequality constraints 𝑔(𝑥) to turn them into equality ones,
with the penalty term increasing as the optimizer moves towards the
boundary of the constrained domain. The formulation is written as [6]:
minimize

𝑥,𝑠
𝑓 (𝑥) − 𝜇𝑏

∑𝑛𝑔
𝑗=1 ln 𝑠𝑗

subject to ℎ(𝑥) = 0
𝑔(𝑥) + 𝑠 = 0

(14)

where 𝑥 contains the design variables; 𝜇𝑏 is a barrier parameter; and
ℎ(𝑥) represents the equality constraints.

Newton’s method can be applied to solve the KKT system of equa-
ions in Eq. (14), where the logarithm term associated with the slack

variables is only defined for positive 𝑠 values, acting as a barrier for
negative 𝑠 values (see Fig. 4). Owing to the positive 𝑠 values, 𝑔(𝑥∗) < 0
t the solution, hence satisfying the inequality constraints [6].

The interior-point formulation of Eq. (14) is equivalent to the orig-
inal constrained problem when 𝜇𝑏 → 0. Hence, a sequence of solutions
needs to be obtained such that 𝜇𝑏 → 0. A constrained problem can be
reformulated as an unconstrained problem by utilizing the Lagrangian
unction along with associated Lagrange variables, or Lagrange multi-
liers [6]. The Lagrangian for the interior-point optimization problem

can be written as [6]:

(𝑥, 𝜆, 𝜎 , 𝑠) = 𝑓 (𝑥) + 𝜇𝑏𝑒
⊤ ln 𝑠 + ℎ(𝑥)⊤𝜆 + (𝑔(𝑥) + 𝑠)⊤𝜎, (15)

where, ln 𝑠 is a vector having 𝑛𝑔 components being the logarithms of
ach value of 𝑠; 𝑒 = [1,… , 1] is a vector of length 𝑛𝑔 containing ones,
ntroduced to express the sum in vector form; 𝜆 is the Lagrange variable
4

Fig. 4. Plot of inverse barrier and Logarithmic barrier penalty functions [6].

vector associated with the equality constraints; and 𝜎 is the Lagrange
variable associated with the inequality constraints. The KKT conditions
can be derived by taking the derivatives with respect to 𝑥, 𝜆, 𝜎 and 𝑠,
leading to:
∇𝑓 (𝑥) + 𝐽ℎ(𝑥)⊤𝜆 + 𝐽𝑔(𝑥)⊤𝜎 = 0
= 0
+ 𝑠 = 0
𝜇𝑏𝑒 + 𝑆 𝜎 = 0

(16)

where 𝑆 is a diagonal matrix with its diagonal values given by the slack
ariable vector; 𝐽ℎ(𝑥) and 𝐽𝑔(𝑥) are respectively the Jacobians of the
quality and inequality constraints. With this set of residual equations,
ewton’s method can be applied. Taking the Jacobian of the equations

n Eq. (16), the following linear system is obtained:

⎡

⎢

⎢

⎢

⎢

⎣

𝐻𝐿(𝑥) 𝐽ℎ(𝑥)⊤ 𝐽𝑔(𝑥)⊤ 0
𝐽ℎ(𝑥) 0 0 0
𝐽𝑔(𝑥) 0 0 
0 0 𝑆 𝛴

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑥
𝑝𝜆
𝑝𝜎
𝑝𝑠

⎤

⎥

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∇𝑥(𝑥, 𝜆, 𝜎)
ℎ(𝑥)

𝑔(𝑥) + 𝑠

𝑆 𝜎 − 𝜇𝑏𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(17)

which should be solved for the minimization step vectors 𝑝𝑥, 𝑝𝜆, 𝑝𝜎 ,
𝑝𝑠; where 𝐻𝐿(𝑥) is the Hessian matrix; 𝛴 is a diagonal matrix whose
entries are given by the values of vector 𝜎; and  is the identity matrix.
For numerical efficiency, the system can be made symmetric after
multiplying the last rows in Eq. (17) by 𝑆−1, which can be calculated
s 𝑆−1

𝑘𝑘 = 1∕𝑠𝑘. This results in the following symmetric linear system
hat can be directly solved:

⎡

⎢

⎢

⎢

⎢

⎣

𝐻𝐿(𝑥) 𝐽ℎ(𝑥)⊤ 𝐽𝑔(𝑥)⊤ 0
𝐽ℎ(𝑥) 0 0 0
𝐽𝑔(𝑥) 0 0 
0 0  𝑆−1𝛴

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑝𝑥
𝑝𝜆
𝑝𝜎
𝑝𝑠

⎤

⎥

⎥

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∇𝑥(𝑥, 𝜆, 𝜎)
ℎ(𝑥)

𝑔(𝑥) + 𝑠

𝜎 − 𝜇𝑏𝑆−1𝑒

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(18)

The optimization algorithm developed in the present study, avail-
ble in a public dataset [35], fulfills the requirement of handling

versatile inputs, being applicable to constrained and unconstrained
optimization problems, while handling both equality and inequality
constraints. Therefore, four types of optimization problems are covered:

1. Fully unconstrained, which can be solved by applying Newton’s
method to the simple unconstrained conditions of optimality.

2. Only with equality constraints that can be solved by employ-
ing the method of sequential quadratic programming, which
involves a similar set of equations as the interior-point method
(Eq. (18)), but omits the equations associated with the inequality
constraints.

3. Only with inequality constraints, which can be solved using
the interior-point method (Eq. (18)), but omitting the equations
associated with the equality constraints.
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Fig. 5. Plot of deflation function given by Eq. (19), also proposed by Tarek &
Huang [33].

4. With both equality and inequality constraints, which can be
solved using the interior-point method.

2.2. Deflation constraint

Consider the deflation constraint of Eq. (4) evaluated at the design
point 𝑥 = 𝑥∗, where 𝑥∗ is a previously found optimum point:

𝑚(𝑥; 𝑥∗) = ‖𝑥 − 𝑥∗‖−𝑝 + 𝜎 (19)

Fig. 5 plots Eq. (19) using 𝑥∗ = 0 and 𝑝 = 2. Here, the offset parameter 𝜎
influences the ability to overcome saddle points created by the deflation
constraint when using gradient-based optimizers, but the use of 𝜎 keeps
the influence of the deflation constraint even far from 𝑥 = 𝑥∗. When
‖𝑥 − 𝑥∗‖ → 0, the constraint behaves as 𝑚(𝑥; 𝑥∗) → ∞, which is a
discontinuity of the deflation constraint that prevents its robust use in
gradient-based optimizers.

Aiming to reach a differentiable deflation constraint function that
as no influence outside the proximity of 𝑥 = 𝑥∗, the present study
roposes the use of the following Gaussian function as one of the main

components of the new deflation function:

𝑚(𝑥; 𝑥∗) = 𝑎𝑒−
(𝑥−𝑥∗)2

2𝑐2 (20)

where 𝑎 is the maximum amplitude; and 𝑐 is the standard deviation.
When adding the deflation constraint, it is desirable that only a finite
span around 𝑥 = 𝑥∗ is affected by the new constraint. Therefore, for the
ase of Eq. (20), it is proposed to utilize the total span of the desired

deflation divided by 6 as the standard deviation, such that 99.7% of
the Gaussian distribution is covered.

Fig. 6(a) depicts the Gaussian distribution using 𝑎 = 5 and 𝑐 =
1∕3. For both the original deflation function, depicted in Fig. 5, and
the proposed Gaussian deflation function depicted in Fig. 6(a), it can
e observed that the deflation constraint does not terminate to zero
eyond the deflation span −1 ≤ (𝑥− 𝑥∗) ≤ +1, nor it becomes negative,
aking it inappropriate to be used as a new equality or inequality

onstraint. This is because the deflation constraint function still has
 residual value 𝑚(𝑥; 𝑥∗) > 0 that extends way beyond the desired
eflation span. Therefore, it is suggested to use a differentiable decay
unction, being a sigmoid, that multiplies to the Gaussian function with
he aim to terminate the aforementioned residual value entirely beyond
he desired deflation span. Two one-sided sigmoid functions are used,
5

given as [36]:

𝑆 𝑖𝑔 𝑚𝑜𝑖𝑑𝐿(𝑥) = 1
1 + 𝑒−𝐾(𝑥−𝑥∗+𝑏)

(21)

𝑆 𝑖𝑔 𝑚𝑜𝑖𝑑𝑅(𝑥) = 1
1 + 𝑒𝐾(𝑥−𝑥∗−𝑏)

(22)

where 𝑏 is half of the required deflation span; 𝐾 is a parameter that
ontrols the steepness of how the sigmoid function goes from 1 to 0
t the required point of termination, i.e. at 𝑥 − 𝑥∗ = 𝑏. With the two
ne-sided sigmoid functions, Eqs. (21) and (22), it is possible to make

𝑚(𝑥; 𝑥∗) → 0 respectively for negatives and positives values of ‖𝑥−𝑥∗‖;
with the −𝑏 term becoming +𝑏 and 𝐾 becoming −𝐾, from Eq. (22)
to Eq. (21). Hence, within the desired deflation span, the product of
he two sigmoid functions results in 1, whereas outside the span this
roduct results in 0.

Fig. 6(b) shows how the Gaussian function is changed by the
multiplying sigmoid terms, resulting in the following deflation function:

𝑚(𝑥; 𝑥∗) = 𝑎𝑒−
(𝑥−𝑥∗)2

2𝑐2 ⋅ 𝑆 𝑖𝑔 𝑚𝑜𝑖𝑑𝐿(𝑥) ⋅ 𝑆 𝑖𝑔 𝑚𝑜𝑖𝑑𝑅(𝑥) (23)

where 𝑐 = 𝑏∕3. In Fig. 6(b), 𝑏 = 1 and 𝐾 = 100 and the resulting
eflation function terminates to zero beyond ‖𝑥 − 𝑥∗‖ = 1. Noticeably,
he deflation function value does not become zero immediately after
rossing 1, but this can be adjusted using a higher value of 𝐾 for
 steeper termination, or a parameter 𝑏 that is slightly smaller than
alf of the required deflation span. Note that, the associated Gaussian
nd sigmoid functions increase with the number of dimensions being
eflated in an optimization problem.

Three deflation constraint methods are herein proposed: hyper-
sphere, hypercube and hypercuboid; being the last two based on
Eq. (23), with their advantages and drawbacks discussed in the fol-
lowing.

2.2.1. Hypersphere approach
The hypersphere or n-sphere approach is a distance-based approach

in which the deflation span region is defined by a hypersphere. The
main advantage is that only one scalar parameter controls the size of
the deflated region, i.e. the radius of action 𝑟 that is the same over all
dimensions undergoing deflation within the optimization problem.

The distance constraint is given as:

‖𝑥 − 𝑥∗‖ ≤ 𝑟 (24)

which whether the current design point 𝑥 falls within the required
deflation span. Followed by that, the deflation constraint of Eq. (20)
can be directly applied, without requiring the sigmoid decay function.
Deflation is not applied when ‖𝑥 − 𝑥∗‖ > 𝑟.

2.2.2. Hypercube approach
Here, a hypercube is used to represent the required deflated span,

here each side of the hypercube has the same length represented by
he scalar 𝑟. The distance constraint is given as:

𝑥𝑖 − 𝑥∗𝑖 ≤ 𝑟 (25)

where 𝑖 = 1, 2,… , 𝑛; with 𝑛 being the number of dimensions of
the problem. For an 𝑛-dimensional problem, the deflation function
becomes:

𝑚(𝑥; 𝑥∗) =
𝑛
∏

𝑖=1

(

𝑎𝑒−
(𝑥𝑖−𝑥∗𝑖 )

2

2𝑐2 ⋅ 𝑆 𝑖𝑔 𝑚𝑜𝑖𝑑𝐿(𝑥𝑖)

⋅ 𝑆 𝑖𝑔 𝑚𝑜𝑖𝑑𝑅(𝑥𝑖)
)

(26)

Fig. 7a plots the hypercube deflation function of Eq. (26) for a 2-
imensional problem, showing the even spread across all dimensions,

here using a value of 𝑟 = 4.5.
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2.2.3. Hypercuboid approach
When the deflated region is represented by a hypercuboid, a differ-

ent length is attributed to each side of the cuboid, being the number
of sides equal to the number of dimensions being deflated within the
optimization problem. The 𝑛-dimensional vector of deflation spans is

𝑟 = {𝑟1, 𝑟2,… , 𝑟𝑖,… , 𝑟𝑛}; such that the distance constraint becomes:

𝑥𝑖 − 𝑥∗𝑖 ≤ 𝑟𝑖 (27)

where 𝑖 = 1, 2,… , 𝑛. The expression for the deflation function becomes:

𝑚(𝑥; 𝑥∗) =
𝑛
∏

𝑖=1

(

𝑎𝑒
−

(𝑥𝑖−𝑥∗𝑖 )
2

2𝑐2𝑖 ⋅
1

1 + 𝑒𝐾(𝑥𝑖−𝑥∗𝑖 −𝑟𝑖)

⋅
1

1 + 𝑒−𝐾(𝑥𝑖−𝑥∗𝑖 +𝑟𝑖)

)

(28)

with 𝑐𝑖 = 𝑟𝑖∕3 for 𝑖 = 1, 2,… , 𝑛, being compatible with the deflation
span vector 𝑟. Fig. 7b illustrates Eq. (28) for a 2−dimensional problem,

here deflation constraint is uneven across different dimensions, here
sing 𝑟 = {2, 4.5}.

2.2.4. Advantages and drawbacks
The idea behind having a deflation constraint is to have a simple ap-

proach that can be applied to any optimization method intuitively and
eamlessly to find different solutions in a multimodal design space. The
hree proposed deflation constraints can be applied to any optimization
roblem; however, there are certain cases in which some perform better
han others.

The hypersphere and hypercube approach have only one distance
parameter in the deflation problem, i.e. the scalar 𝑟, being therefore
dequate when all design variables should be equally deflated from
xisting minima points. Even though it is simpler to have a single

parameter to control the size of the deflated regions the chances osking
local minima throughout the design space. This scenario is shown in
Fig. 8, which could happen in any of the three proposed deflation
onstraints. The figure displays two local minima in green that were
asked due to 𝑟 being too large. Moreover, Fig. 8 illustrates that

at the point of termination of the deflation constraint, the objective
function intersects the deflated region creating false minima depicted
in red. These false minima become possible minima to be discovered
by the optimizer in subsequent searches after the deflation constraint
is applied and can be overcome when further deflation constraints are
added. Masking of minima points should be always avoided, which is
6

possible by using smaller values of 𝑟, with the side effect of increasing
he number of deflations that are necessary to move away from a local
inimum region to the next.

However, when it is desired that different design variables are
deflated differently, the hypercuboid approach provides flexibility in
selecting the required 𝑟𝑖 values along each dimension.

3. Results and discussions

The proposed deflation constraints are applied across various prob-
lems to evaluate the capabilities of the method. First, a test case study
based on a double-cosine function is presented. The next two case
studies represent different sizing problems encountered in the design
of composites.

3.1. Test case: double-cosine function

The double-cosine function of Eq. (29) is used to verify whether the
roposed deflation constraint can be used to obtain all the 13 minima

points within a bounded region of the objective function.

𝑓 (𝑥1, 𝑥2) = − cos(𝑥1𝜋) cos(𝑥2𝜋) (29)

The results below were generated for the three deflation constraint
pproaches herein proposed: hypersphere, hypercube and hypercuboid.
ere, the same starting point for the optimizer is used for all cases,
ven after deflation is performed. However, as shown in Appendix B, it

was observed with the double-cosine function that consistently fewer
deflation iterations are necessary if the starting point after deflation
is be set to the latest found solution, such that the search for a new
solution proceeds from there.

3.1.1. Hypersphere
The hypersphere deflation constraint is applied to the double-cosine

function within the bounded region −2.5𝜋 ≤ 𝑥1, 𝑥2 ≤ +2.5𝜋 and
using as starting point 𝑥1, 𝑥2 = −5.5,−5.5. The radius of the deflation
hypersphere is 𝑟 = 𝜋. Fig. 9 shows a plot of the double-cosine function,
where the dashed regions represent negative values; the red dot depicts
the starting point of the optimizer; whereas the black dots are the
obtained solutions. After deflating the function 29 times, all the 13
minima within the bound space have been discovered. Note the false
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Fig. 7. (a) Plot of Gaussian deflation function distribution using hypecube approach (Eq. (25)) (b) Plot of Gaussian deflation function distribution using hypercuboid approach
(Eq. (28)).
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Fig. 8. Masking of local minima (green) due to a large value of 𝑟, and creation of
alse minima (red) at the boundaries of the deflated region.

Fig. 9. Hypersphere approach applied to locate minima of the double-cosine function
Eq. (29)).
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Fig. 10. Hypercube approach applied to locate minima of the double-cosine function
(Eq. (29)).

minima points are created at the end of the regions intersecting with
the deflation radius, represented as red dots in Fig. 8. The presence of
false minima is not a problem for the overall optimization result given
that enough additional deflations are carried on, because when new
deflation constraints are added the false minima points are eventually
overcome. The value of deflation radius 𝑟 = 𝜋 has shown to be small
nough, preventing local minima of being masked, e.g. the green dots
n Fig. 8. Hence, to guarantee the robustness of the method, it is

recommended to use small values for the deflation radius 𝑟, despite
a possible increase in the number of deflation iterations needed to
discover the required solutions.
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Fig. 11. Hypercuboid approach applied to locate minima of the double-cosine function
(Eq. (29)).

3.1.2. Hypercube
For the hypercube, the bounds and starting point are the same as for

the hypersphere, with the side of the hypercube set to 𝑟 = 𝜋. As seen in
Fig. 10, 51 deflation iterations are required to find all 13 minima points,
as compared to 29 of the hypersphere. However, this difference is not
verified when the starting point for the new optimization, after each
deflation step, is set to be the latest minimum point (see Appendix B),
with both the hypersphere and the hypercube approaches requiring 24
deflation iterations to find all the 13 minima points.

3.1.3. Hypercuboid
For the hypercuboid, the double-cosine function is skewed in one

dimension, as follows:

𝑓 (𝑥1, 𝑥2) = − cos(𝑥1𝜋) cos(2𝑥2𝜋) (30)

where it can be seen that each sub-space in the whole design space is
now shaped like a rectangle, making a proper test for the hypercuboid
approach. The design space is bounded such that −2.5𝜋 ≤ 𝑥1 ≤ +2.5𝜋,
and −1.5𝜋 ≤ 𝑥2 ≤ +1.5𝜋. The dimensions used for the 2-sided deflation
hypercuboid (i.e. a rectangle in two-dimensions) are, 𝑟1 = 𝜋, along
𝑥1; and 𝑟2 = 𝜋∕2, along 𝑥2. As seen in Fig. 11, the function has to
be deflated 64 times to yield all the 13 minima within the bounded
region. When the starting point after each deflation is set to be the latest
minimum point, as shown in Appendix B, the hypercuboid approach
required only 44 deflations to find all the 13 minima.

3.2. Application to composite design

Case study 1 presents a genetic algorithm-based optimization seek-
ing minimum mass and constrained by buckling and strength, where
the laminate is parameterized using discrete ply orientations. Case
study 2 presents a gradient-based optimization, where the laminate is
parameterized using lamination parameters (LP) and the total thick-
ness, typically applied in the design of variable-stiffness (VS) laminates.

3.2.1. Case study 1: deflation in gradient-free discrete-based optimization
Riche et al. [12] presents optimum benchmark cases for composite

plates under bi-axial compression. As illustrated in Fig. 12, 𝑁𝑥 and
𝑁𝑦 are the loads acting along the 𝑥 and 𝑦 axes, and 𝜆 represents a
load amplitude parameter that affects all loads. The rectangular plates
are simply supported. The orthotropic material properties are 𝐸1 =
127.55 GPa, 𝐸2 = 13.03 GPa, 𝜇12 = 0.3 and 𝐺12 = 𝐺13 = 𝐺23 = 6.41 GPa.
The ply thickness is 0.127 × 10−3 [m]. Discrete fiber angles of each
layer are optimized, aiming minimum weight for a given design load,
8

Fig. 12. The geometry of laminated plate and applied loads [12].

and the laminate is considered to have variable number of plies while
remaining symmetric and balanced. It is assumed that only angles 0◦,
90◦, and ±45◦ can be used, and that all plies have the same thickness
ℎ𝑝𝑙 𝑦.

To account for a variable number of plies in this discrete opti-
mization, the thickness value associated with each ply ℎ𝑝𝑙 𝑦, becomes
an additional design variable. Schläpfer [37] introduced the concept
of ghost layers, which essentially is a layer that carries information
about material properties and also the ply fiber orientation but can be
associated with a zero thickness value. Here, every layer constituting
the laminates are allowed to become ghost layers.

In this optimization problem the objective is to minimize the volume
while being constrained by two margins of safety: critical buckling
(MS𝑐 𝑏) and material failure (MS𝑐 𝑠):

minimize
𝜃 ,𝑡∈𝑛

(
𝑗
∑

𝑖=1
ℎ𝑖)ab

subject to −MS𝑐 𝑏 ≤ 0

− MS𝑐 𝑠 ≤ 0

(31)

where a, b are the length and width of the plate, respectively; ℎ𝑖 the
thickness of the 𝑖t h ply; and 𝑗 the maximum number of plies. The
margins of safety for buckling MS𝑐 𝑏 and failure MS𝑐 𝑠 are defined as:
MS𝑐 𝑏 = (𝜆𝑐 𝑏∕𝜆𝑡) − 1
MS𝑐 𝑠 = 𝜆𝑁𝑦 = (𝜆𝑐 𝑠∕𝜆𝑡) − 1 (32)

where 𝜆𝑐 𝑏 and 𝜆𝑐 𝑠 are respectively the critical load factors for buckling
and failure, calculated as detailed in Appendix C. In the optimization,
these constraints are normalized using the design load factor (𝜆𝑡).

A genetic algorithm (GA) optimizer is selected given the discrete
nature of the optimization of Eq. (31). Adopting the ghost layer ap-
proach, the thickness of each ply can either be zero or ℎ𝑝𝑙 𝑦, and each
ply angle can assume one of the three values; 0◦, 90◦ or ±45◦. For
implementation, the GA present within the Python module pymoo [38]
is utilized. The deflation constraint herein proposed is applied to the
optimizer to support the claim that the developed methodology is appli-
cable in any optimization scheme that supports inequality constraints,
even heuristic optimization schemes based on discrete variables. For
this optimizer, nversion from continuous to discrete variables can
be done within the optimization, directly affecting the value of the
objective function. In gradient-based methods this conversion is done
after the optimization process is complete, in a post-processing step,
usually affecting the objective and constraints. Regarding the main GA
parameters, the population size herein utilized is 20, and the number
of generations is 30, being the termination criterion.

Table 1 shows 4 stacking sequences with 48 plies with their cor-
responding load factors, extracted from Riche et al. [12]. Their opti-
mization focused on maximizing the buckling and failure load factors
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Table 1
Results for the buckling load maximization problem obtained by Riche et al. [12]. (48
plies, a = 20 in, b = 5 in, 𝑁𝑥 = 1.000 lb, 𝑁𝑦 = 0.125 lb).

Stacking sequence Load factor

Buckling Failure

(902 ,±454 , 04 ,±45, 04 ,±45, 02)𝑠 14,168.12 13,518.66
(±453 , 02 ,±452 , 02 , 902 , 04 ± 45, 02)𝑠 14,134.76 13,518.66
(902 ,±453 , 02 ,±45, 02 ,±45, 04 ,±45, 02)𝑠 14,013.71 13,518.66
(±452 , 02 ,±452 , 902 , 04 ,±45, 02 ,±45, 02)𝑠 13,662.61 13,518.66

Table 2
Results for the mass minimization problem obtained using the GA optimizer and
consecutive hypersphere deflations with 𝑎 = 5 and 𝑟 = 1. Same case of Table 1 with
he constraints MS𝑐 𝑏 ≥ 0 and MS𝑐 𝑠 ≥ 0, for 𝜆𝑡 = 10, 000.
Stacking sequence Load factor

Buckling Failure

(±452 , 902 , 02 , 902 , 04 ,±452 , 04)𝑠 10,341.30 12,853.16
(±45, 902 ,±45, 02 ,±45, 04 ,±45, 902 , 04)𝑠 10,414.42 12,853.16
(±455 , 02 ,±452 , 06)𝑠 11,792.34 11,294.30
(±454 , 902 , 04 ,±45, 06)𝑠 11,355.02 13,063.60
(±45, 02 ,±453 , 02 ,±452 , 902 , 04)𝑠 10,442.18 11,426.20
(±45, 02 ,±452 , 902 , 02 ,±452 , 04 , 902)𝑠 10,248.57 11,308.34

Fig. 13. Cantilever plate with uniform load [39].

for a fixed amount of plies. Note the lowest load factor of 13, 518.66
orresponding to the failure constraint. Here, with the intent to allow

the optimizer to remove some layers, the design load factor is set to
𝑡 = 10,000. A total of 24 independent and discrete design variables
re utilized, being 12 for the ply angles and 12 for the thickness of

each ply. Note that due to the assumption of symmetric and balanced
aminated, this setup will allow a maximum of 48 plies in the laminate.

Table 2 contains the best individuals found with different GA op-
timizations using always the same random seed, as further detailed in
the dataset [35]. Each row adds a new hypersphere deflation constraint
based on the previously found optimum. Thus, the first row is the GA
optimization without deflation, whereas the following 5 rows add one
new deflation constraint per best individual previously found. Thus, the
result in the last row of Table 2 is obtained with 5 consecutive deflation
constraints. The deflation constraints added to the GA enabled finding
novel optimum solutions, with the third optimum having the highest
margin for buckling of MS𝑐 𝑏 = 17.92%, and the fourth optimum the
highest margin for failure of MS𝑐 𝑠 = 30.64%, both calculated using
Eq. (32).

The results show that applying deflation constraints to heuristic
lgorithms, such as GA, creates means to further explore the design

space.

3.2.2. Case study 2: deflation enabling gradient-based retrieval of fiber
ngles

Setoodeh et al. [40] discuss a method for generating curvilinear
iber paths for the manufacturing of VS laminates using AFP, where part
9

Fig. 14. Variation of the objective function plotted against 𝜃 for a node along the
laminate.

of the work consists of finding the fiber angles when the lamination
parameters (LP) are already known. Here, the deflation constraints
re applied to enable the use of gradient-based methods to solve the
ultimodal optimization problem of retrieving the fiber angles. The

antilever plate with uniform load of Fig. 13 is modeled using a mesh of
45 by 15 quadrangular finite elements (Quad4), available in the pyfe3d
Python module [41]. The dimensions of the plate are a = 1.8 [m] and
b = 0.6 [m], with the ply thickness of 0.14 × 10−3 [m]. The orthotropic

aterial properties are 𝐸1 = 181.00 GPa, 𝐸2 = 10.30 GPa, 𝜇12 = 0.28
nd 𝐺12 = 𝐺13 = 𝐺23 = 7.17 GPa.

A balanced and symmetric layup is assumed, and the objective
function is given by:
minimize

𝜃
|𝑉 − 𝑉 ∗

|

ubject to 0◦ ⩽ 𝜃 ⩽ 90◦
(33)

which minimizes the square distance between the LPs that are known
𝑉 ∗) and those calculated (𝑉 ), based on the fiber angles being opti-
ized. The calculated LPs use the relations in Eq. (D.7). The optimiza-

tion of Eq. (33) is already non-convex even for a single design variable,
s shown in Fig. 14.

The optimal set of lamination parameters 𝑉 ∗ is found through a
compliance minimization problem, where the feasibility constraints
of LPs allow for a convex design space according to Fukunaga and
Sekune [25,26]. The minimization problem is formulated as:
minimize

𝑉𝑖

1
2𝑁

𝑇
𝑖 ⋅ 𝐴−1(𝑉𝑖) ⋅𝑁𝑖

ubject to 2𝑉 2
1
(

1 − 𝑉3
)

+ 2𝑉 2
2
(

1 + 𝑉3
)

+

𝑉 2
3 + 𝑉 2

4 − 4𝑉1𝑉2𝑉4 ⩽ 1

𝑉 2
1 + 𝑉 2

2 ⩽ 1

− 1 ⩽ 𝑉3 ⩽ 1

(34)

where 𝑁𝑖 is the vector of the resultant forces for the 𝑖t h node; 𝐴 is
the in-plane stiffness matrix which is a function of 𝑉𝑖 calculated with
Eq. (D.8); and 𝑉𝑖 = {𝑉𝑖1 , 𝑉𝑖2 , 𝑉𝑖3 , 𝑉𝑖4}, the vector of in-plane LPs of the
𝑖t h node. For balanced VS laminates, LPs 𝑉2 = 𝑉4 = 0.

The results for the retrieved fiber angles can be verified by plotting
the distribution of LPs once again and comparing it with the optimal
LPs. In this case a non-dimensional compliance term is also utilized to
numerically compare the results of the retrieved angles and optimal
LPs. The non-dimensional compliance term is given as [39]:

𝐶̄ =
𝐸22ℎb3𝐶

2 5
(35)
𝑞0a
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Fig. 15. Distribution of fiber angles of balanced laminate. (a∕b = 3, and 45 × 15 nodes).
Fig. 16. Distribution of Lamination parameters obtained by applying gradient-based optimization method with upper images representing optimum LP values and lower distributions
obtained with retrieved angles shown in Fig. 15(c) and (d). (a∕b = 3, and 45 × 15 nodes).
where 𝐸2 is the transverse modulus of elasticity; ℎ, a and b are re-
spectively the thickness, length and width of the laminate; 𝑞0 is the
uniformly distributed load; and 𝐶 is the compliance obtained after
ptimization, given as:

𝐶 = 1
2
𝐹 𝑇 ⋅ 𝑈 (36)

where 𝐹 and 𝑈 are respectively the vectors of external forces and
isplacements.

For the sake of benchmarking, a standard GA algorithm [38] is also
used to retrieve the fiber angles. Table 3 shows normalized compliance
values obtained with the optimum LPs (𝐶̄∗); and with the retrieved
10
Table 3
Normalized compliance obtained with optimum LPs and retrieved stacking sequence.

Method used Normalized compliance % Difference

𝐶̄∗ 𝐶̄

Baseline from Ref. [40] 0.0374 0.0389 4.01
Gradient-based optimizer 0.0390 0.0410 5.13
Genetic Algorithm 0.0391 0.0412 5.37



Composite Structures 357 (2025) 118916S.S. Bangera and S.G.P. Castro

f
b
c
c
d

t
b
s
p
s
6

Fig. 17. Distribution of Lamination parameters obtained by applying GA optimization method with upper images representing optimum LP values and lower distributions obtained
with retrieved angles shown in Fig. 15(e) and (f). (a∕b = 3, and 45 × 15 nodes).
a
r

Fig. 18. Convergence of Normalized Compliance with increase in number of solutions
for deflation.

fiber angles (𝐶̄). For the baseline result, Setoodeh et al. [40] achieved
iber angles that led to just 4% difference in compliance, and this is
ecause the authors utilized a maximum curvature constraint for the
urved fibers of (𝜅 = 3.333 m−1) that further constrained the minimum
ompliance optimization of Eq. (34). Fig. 15 illustrates the fiber angle
istributions corresponding to Table 3.

The results for the gradient-based method using the deflation con-
straint are obtained after deflating the design space 7 times, such that a
otal of 8 solutions are obtained after finding the retrieved angles that
est minimizes the objective function of Eq. (33). In Table 3, it can be
een that the percentage difference between the non-dimensional com-
liances obtained with 𝑉 ∗ and 𝑉 is approximately 6.68%, achieving a
lightly better result than the benchmark GA that has a difference of
.88%.

Fig. 16 shows the distributions of laminations parameters obtained
with the gradient-based method constrained by deflation, whereas
Fig. 17 shows these distributions obtained with the GA. Again, the
11
Fig. 19. Hypersphere approach applied to locate minima of the double-cosine function
(Eq. (29)) with updated start points.

good agreement shows that the deflation constraints enabled global
search by the gradient-based optimizer. Fig. 18 shows the convergence
of the normalized compliance obtained with each optimization, after
progressive deflation steps, indicating convergence towards a global
optimum.

4. Conclusion

The present study proposed a novel set of deflation constraints
pplicable to gradient-based and heuristics-based optimization algo-
ithms. Virtually, the proposed constraints can be used in any optimiza-

tion algorithm that is compatible with constraints. Deflation constraints
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Fig. 20. Hypercube approach applied to locate minima of the double-cosine function
Eq. (29)) with updated start points.

Fig. 21. Hypercuboid approach applied to locate minima of the double-cosine function
(Eq. (29)) with updated start points.

force the optimizer to look for other optimal points, even if the opti-
ization is restarted from the same initial guess. Such behavior makes

it even possible for gradient-based optimizers to explore multimodal
design spaces and ultimately find a global minima, after an enough
number of deflation constraints are progressively added.

The three deflation constraint schemes herein proposed: hyper-
phere, hypercube, hypercuboid; were demonstrated in detail for a
ouble-cosine function. Thereafter, two case studies related to com-

posite design and optimization were investigated, where the first case
study demonstrated the minimization of the weight of a plate for a
given target design load, in which deflation is used to create new
constraints for a GA algorithm. The second case study covered the opti-

ization of LPs followed by the retrieval of fiber angles, with deflation
pplied only to the gradient based optimizer. The obtained results were
romising and showed the versatility of the developed methodology,

uncovering new paths for its application composite design.
Future studies could focus in design cases involving multi-objective

ptimizations, investigating how the use of deflation constraints could
12
improve the Pareto fronts obtained with gradient-based optimizers.
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Appendix A. Deflation constraint - KKT proof

This appendix provides a proof on how the modified problem, after
the introduction of the deflation constraint shown in Eq. (10), provides
 solution (𝑥∗, 𝑦∗) that also satisfies the stationary conditions of the
riginal problem. The modified problem is given as [33]:

minimize
𝑥∈𝑛

𝑓 (𝑥)

subject to 𝑐(𝑥) = 0
𝑚(𝑥; 𝑥1) ≤ 𝑦

𝑙 ≤ 𝑥 ≤ 𝑢

(A.1)

It is to be proved that, 𝑥∗ is a regular KKT point to the problem
iven in Eq. (7) and that 𝑥∗ ≠ 𝑥1. Let a new Lagrange multiplier 𝜂

be introduced in addition to the ones in Eq. (8) associated with the
eflation constraint. Therefore, the stationary conditions now will be:

∇𝑥𝑓 (𝑥) + ∇𝑥𝑐(𝑥)𝑇 𝜆 + 𝑧+ + 𝑧− + 𝜂∇𝑥𝑚(𝑥; 𝑥1) = 0
𝜂 = 0 (A.2)

It can be said that 𝜂 would be 0 at any KKT point, hence the sta-
ionary conditions for Eq. (7) would be satisfied. Since the constraints
iven in Eq. (7) are a subset to those in Eq. (A.1), 𝑥∗ must be a feasible
oint in the original problem (Eq. (7)) as well, and the complementary

conditions of those constraints must be satisfied.
Since the obtained 𝑦∗ is finite, (𝑥∗, 𝑦∗) is feasible to the deflation

constraint problem in Eq. (A.1) and 𝑚 is bounded from below, then
𝑚(𝑥∗; 𝑥1) must be finite, which implies that 𝑥∗ ≠ 𝑥1. This proof can
also be generalized to inequality-constrained NLPs, hence the proposed
deflation constraint approach is a generic and non-invasive way of
utilizing the deflation method for an optimization problem [33].

Appendix B. Using last optimum as starting point

After a new deflation constraint is added, the optimization is
estarted using as start point the last found minimum, which resulted

in a decrease of the number of deflations required to locate all minima
points of the double-cosine function. Figs. 19–21 show the evaluated
points.

Appendix C. Buckling and failure constraints

The critical buckling load factor can be calculated with the follow-
ing analytical expression [12]:
𝜆𝑏(𝑚, 𝑛)

𝜋2
=

𝐷11(
𝑚
𝑎 )

4 + 2(𝐷12 + 2𝐷66)(
𝑚𝑛
𝑎𝑏 )

2 +𝐷22(
𝑛
𝑏 )

4

(𝑚𝑎 )
2𝑁𝑥 + ( 𝑛𝑏 )2𝑁𝑦

(C.3)

where 𝑚, 𝑛 are respectively the half waves along the length and width
f the plate; and 𝐷𝑖𝑗 are the components of the bending stiffness matrix

of the laminate, from the classical laminated plate theory [1]. The
values of 𝑚 and 𝑛 need to be found such that it minimizes 𝜆𝑏 to yield
the critical buckling load 𝜆 ; and they vary with the number of plies,
𝑐 𝑏
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constitutive properties, plate dimensions and the load case.
The material failure constraints are given by the principal allowable

strains for each ply. The calculation of the principal strains are done
using the following relations:
𝜆𝑁𝑥 = 𝐴11𝜖𝑥 + 𝐴12𝜖𝑦
𝑁𝑦 = 𝐴12𝜖𝑥 + 𝐴22𝜖𝑦

(C.4)

𝜖𝑖1 = cos2 𝜃𝑖𝜖𝑥 + sin2 𝜃𝑖𝜖𝑦
𝜖𝑖2 = sin2 𝜃𝑖𝜖𝑥 + cos2 𝜃𝑖𝜖𝑦
𝛾 𝑖12 = sin2 𝜃𝑖(𝜖𝑦 − 𝜖𝑥)

(C.5)

where 𝜃𝑖 refers to the fiber angle associated with the 𝑖𝑡ℎ layer, with 𝜖𝑥
and 𝜖𝑦 being the global strains of the plate. The term 𝜆 in Eq. (C.4)
s the load amplitude and it becomes 𝜆𝑐 𝑠 for the lowest value of
𝜆 such that only one of the principal strains in one of the layers
exceeds the allowable strain. In the case herein considered, 𝛾𝑥𝑦 is not
present because the layers of the laminate are always balanced and
symmetric. The allowable strains for the adopted material, graphite
epoxy composite, are given as:
𝜖𝑖1 ≤ 0.008

𝜖𝑖2 ≤ 0.029

𝛾 𝑖12 ≤ 0.015

(C.6)

Appendix D. Lamination parameters

In this case study a few additional aspects need to be covered
for enabling the reader’s understanding. It is important to know the
relation for lamination parameters to understand how it relates to the
design variables and also the objective function. Lamination parameters
were first introduced by Tsai et al. [23,42] to represent the laminate
ayup configuration in a compact form. The transformation properties

are derived using trigonometric relations (sines and cosines) in terms of
multiple angles. The Lamination Parameters are non-dimensional and
can in turn be used to obtain the in-plane and bending properties (ABD
matrices) as they are related. A great advantage of using lamination
parameters is that the number of design variables is reduced and is
independent of the number of layers [20,40]. The 12 variables are given
as:
(

𝑉1𝐴, 𝑉2𝐴, 𝑉3𝐴, 𝑉4𝐴
)

= ∫
1
2
1
2

(cos 2𝜃 , sin 2𝜃 , cos 4𝜃 , sin 4𝜃)𝑑 𝑧,
(

𝑉1𝐵 , 𝑉2𝐵 , 𝑉3𝐵 , 𝑉4𝐵
)

= 4 ∫
1
2
1
2

𝑧̄(cos 2𝜃 , sin 2𝜃 , cos 4𝜃 , sin 4𝜃)𝑑 ̄𝑧,

𝑉1𝐷, 𝑉2𝐷, 𝑉3𝐷, 𝑉4𝐷
)

= 12 ∫
1
2

− 1
2

𝑧̄2(cos 2𝜃 , sin 2𝜃 , cos 4𝜃 , sin 4𝜃)𝑑 𝑧

(D.7)

where 𝑉𝑖𝐴, 𝑉𝑖𝐵 and 𝑉𝑖𝐷 are in-plane, coupling and flexural lamination
arameters. 𝑧̄ is the normalized z coordinate (𝑧̄ = 𝑧∕ℎ) through the

thickness and 𝜃 is the fiber orientation angle of that layer. The [A], [B],
and [D] matrices can be written as a linear function of the lamination
parameters and the parameters of Tsai and Pagano as [23],
𝐴 = ℎ

(

𝛤0 + 𝛤1𝑉1𝐴 + 𝛤2𝑉2𝐴 + 𝛤3𝑉3𝐴 + 𝛤4𝑉4𝐴
)

𝐵 = ℎ2∕4
(

𝛤1𝑉1𝐵 + 𝛤2𝑉2𝐵 + 𝛤3𝑉3𝐵 + 𝛤4𝑉4𝐵
)

𝐷 = ℎ3∕12
(

𝛤0 + 𝛤1𝑉1𝐷 + 𝛤2𝑉2𝐷 + 𝛤3𝑉3𝐷 + 𝛤4𝑉4𝐷
)

(D.8)

where the material invariant matrices 𝛤𝑖’s are given by the parameters
of Tsai and Pagano which are material invariants.

Data availability

Data will be made available on request.
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