

Reseach on a high performance and circular application of biobased composite on a facade

First mentor: Ir. A. Bergsma Second mentor: Ir. R. Gkaidatzis External mentor: Ir. C. de Wolf

DGMR Bouw TU DELFT Building Technology

Marijn Flore Verlinde 4076982

Introduction

Biobased composite

Circularity

Durability

Shadowcosts

Design parameters

Case studies

Conclusions

Recommentations

INTRODUCTION | Problem statement

"The building industry produces annually twice as much waste as all the Dutch households together"

INTRODUCTION | Problem statement

"Most construction waste goes into landfills, increasing the burden of landfill loading and operation"

INTRODUCTION | Problem statement

Material scarcity

Copper

Lead

Zinc

Aluminum

38 years

8 years

34 years

510 years

INTRODUCTION | Research goal

Explore whether a more environmental friendly composite material could be offered to designers while retaining the same design options current materials offer

INTRODUCTION | Approach

"What is possible with biobased composite when used for a circular facade design?"

BIOBASED COMPOSITE

Pigment, solvent, binder Organic **Protective Fibre UV-radiation** Resin Water Fire Coating Decorative Paint Laquer

FORMER PROJECTS | WORLDS FIRST BIOBASED COMPOSITE FACADE

FORMER PROJECTS | EXTERNAL WALL PANEL - THE BIOBUILD PROJECT

FORMER PROJECTS | EXTERNAL WALL PANEL - THE BIOBUILD PROJECT

FORMER PROJECTS | EXTERNAL CLADDING KIT - THE BIOBUILD PROJECT

FORMER PROJECTS | BIOBASED COMPOSITE PEDESTRIAN BRIDGE

CIRCULARITY | Introduction

"At this moment, in the Netherlands 50% of the national raw material consumption is caused by the construction industry and 40% of this amount refers to demolition waste"

CIRCULARITY | Introduction

1. Reduce resources

2. Reuse resources

3. Circular solutions

CIRCULARITY | Approach

"Keep materials performing as long as possible"

"Avoid waste"

"Regard waste as resource"

CIRCULARITY | Connections

CIRCULARITY | Connections

CIRCULARITY | Recycling

DURABILITY | Tests

- Establish the durability of biobased composite
- Estimate the lifetime

DURABILITY | Tests

Warmth-Cold cycles

5 days: -20°C to 70°C

DURABILITY | Tests

Freeze-thaw cycles One month: Water/ -20°C

DURABILITY | Tests results - Visual

DURABILITY | Tests results - Tensile strength

Warmth-cold: Coated +7% Uncoated +0.7%

Freeze-thaw: Coated +15% Uncoated +4.4%

DURABILITY | Tests results - Youngs modulus

Warmth-cold: Coated -3% Uncoated -1%

Freeze-thaw: Coated -13% Uncoated -13%

DURABILITY | Tests results - Breaking pattern

DURABILITY | Conclusions

When the material is coated and the bending stiffness is designed including a safety margin, the lifetime is estimated to be similar to other common facade materials

Breaking pattern changes after freeze-thaw cycles

SHADOWCOSTS | Introduction

"Shadowcosts are the cost for the preventive measures which must be taken to reduce the emissions to a sustainable level"

SHADOWCOSTS | Different materials

/laterial	S-c (€)	per
<u>eel</u>		
Cladding	€ 0,17	kg
Light construction steel	€ 0,17	kg
Stainless steel	€ 2,12	kg
Coatings		
Powdercoating	€ 1,54	kg
Wetpainting	€ 0,97	kg
Galvanising (zinc)	€ 1,09	kg
<u>Aluminum</u>		
Aluminum (47% secondary)	€ 2,65	kg
Coatings		
Anodising	€ 0,58	<i>m</i> 2
powder coating	€ 1,52	m2
Wood		
Hard, sustainably managed	€ 0,02	kg
Hard, not-sustainably managed	€ 0,02	kg
Soft, sustainable managed	€ 0,04	kg
Soft, not-sustainably managed	€ 0,07	kg
Soft, laminated	€ 0,07	kg

SHADOWCOSTS | Shadowcosts per m₂

Material	Density (kg/m3)	Shadowcosts (€)	Youngs modulus	Shadowcosts/m2
Wood	530	€ 0,02	13	0.17
Steel	7870	€ 0,17	210	1.33
Aluminum	2700	€ 2,65	69	21.47
Glassfibre-reinforced composite	2000	€ 0,76	69	4.56
Biobased composite	1115	€ 0,23	11,4	4.61

DESIGN PARAMETERS | Production techniques

Avoid:

- An autoclave
- Additional material like molds, vacuum bags, etc
 - Emissions evaporating during the process

DESIGN PARAMETERS | Safety requirements - Fire-safety

- ☐ Apply a fire-retardant coating
- □ Use a fire retardant resin
- □ Apply the material only to low-rise buildings

DESIGN PARAMETERS | Thermal transmittance

Wood: 0.16 W/m²K Biobased composite: 0.056 W/m²K

Material	λ (W/m*K)	d (mm)	Rd (m)	Density (kg/m3)	Weight (kg/m2)
Gypsum board 0,95 cm	0,16	9,5	0,0059375	7,62 (kg/m2)	7,62 (kg/m2)
Gypsum board 1,25 cm	0,16	12,5	0,0078125	10,2 (kg/m2)	10,2 (kg/m2)
Steel reinforced concrete per dm	1,7	100	0,06	2400	240
Steel per mm	50	1	0,00002	7870	7,87
Aluminum per mm	200	1	0,000005	2700	2,7
Wood (Fir) per cm	0,18	10	0,06	530	5,3
Balsae wood per cm	0,048	10	0,21	1600	16
Biobased composite (flax-supersap)per cm	0,056	10	0,18	1115	11,15
Biobased composite (hemp-supersap)per cm	0,056	10	0,18	1148	11,48
Fibreglass-polyester composite per cm	0,015	10	0,67	1522,4	15,22
Aircavity (stationary, 15°) per cm	0,026	10	0,38	1,225	0,01
Glass	1,05	4	0,0038095	2500	10
Ceramic	0,8	40	0,05	2200	110

DESIGN PARAMETERS | Geometry - Bending stiffness

Bending stiffness = Moment of Inertia * Youngs modulus

Moment of inertia

$\begin{array}{c} 1 = \frac{BH^2}{12} \\ A = BH \\ W = \frac{BH^2}{0} \\ A = BH \\ W = \frac{BH^2}{0} \\ A = \frac{BH^2}{12} \\ A = \frac{BH^2}{12} \\ A = \frac{BH^2}{12} \\ A = \frac{BH^2}{0} \\ A = \frac{BH^2}{0} \\ A = \frac{BH^2}{0} \\ A = \frac{BH^2}{0} \\ A = \frac{BH^2}{12} \\ A = \frac{BH^2$

Youngs modulus

	Y-M (Gpa)	Density (kg/m3)
Steel	210	7870
Aluminum	69	2700
Biobased composite	11,4	1115

DESIGN PARAMETERS | Geometry - Bending stiffness

CASE STUDIES | Facades

What is possible with biobased composite, when used for a facade design?

CASE STUDIES | Products - Approach

CASE STUDIES | Element Facade

CASE STUDIES | Element Facade

CASE STUDIES | Curtain wall

CASE STUDIES | Curtain wall

CASE STUDIES | Parapet facade

CASE STUDIES | Parapet facade

CASE STUDIES | Timber frame

CASE STUDIES | Timber frame

CASE STUDIES | Results

CASE STUDIES | Results

Concept	Weight (kg)	Shadowcosts (€)	Circular scenario
	46.63 113.58 65.37	26.17 41.99 35.83	
	213.22 18.65	2.87 2.73	
	29.09 11.32	4.01 2.60	
	42.11 27.41 20.72	2.20 4.75 3.16	

CONCLUSIONS | Shadowcosts

Material	Youngs modulus	Bending stiffness	"Needed" shadowcosts
Steel	3.5	1.3	0.17
Wood	27	22.5	0.01
GRP	1.01	-2	X
Aluminum	-4.7	X	X

CONCLUSIONS | Durability

The expectation is that when the material is coated and the bending stiffness is designed including a safety margin, the lifetime will be similar to other common facade materials

CONCLUSIONS | Circularity

Concept	Circular scenario	Concept	Circular scenario

CONCLUSIONS | Material scarcity

Environmental impact still quite high

□ Opportunity in replacing scarce materials

CONCLUSIONS | "Best concept"

"The aim is to explore whether a more environmental friendly composite material could be offered to designers while retaining the same design options current materials offer"

CONCLUSIONS | "Best concept"

Is biobased composite an environmental friendly alternative?

Does biobased composite offer the same design options current materials do?

CONCLUSIONS | "Best concept"

"What is the best concept for a design with biobased composite?"

1. Share information

2. Shadowcosts & Coating

Material	Youngs modulus	Bending stiffness	"Needed" shadowcosts
Steel	3.5	1.3	0.17
Wood	27	22.5	0.01
GRP	1.01	-2	X
Aluminum	-4.7	X	X

3. Testing Durability

3. Testing Recycling

RECOMMENDATIONS | Concepts

- 6. Further design/elaboration of the concepts
- Improve circular scenario

RECOMMENDATIONS | Certification

7. Define a European/ Worldwide test method for new, innovative materials

RECOMMENDATIONS | Further research

(Bio) Chemical:

- Possibility of recycling (on large scale)
 - Resin improvement
 - Coating improvement

RECOMMENDATIONS | Further research

Facade technical:

- Structural calculations
- Circular building concepts

☐ How can the circular scenario of the concept facades be improved?

HOW TO DESIGN AND MANUFACTURE A CIRCULAR BIOBASED COMPOSITE FACADE

