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Abstract

Wireless sensor networks of the type discussed in this MSc project play a crucial role
in many envisionings of the Internet of Things, a trend that is thought to play a major
role in the technological innovations of the near future. These wireless, ad-hoc, scalable
mesh networks provide the infrastructure for numerous sensing and control applications.
A key requirement for such networks is energy efficiency. Synchronization of nodes can
significantly improve energy efficiency by enabling a tighter communication schedule.

In this MSc project an improved synchronization algorithm for an existing MAC protocol
is developed. After establishing a clock model and surveying the literature for existing
algorithms, the synchronization problem is modelled from a control theoretic viewpoint.
It is shown that the synchronization problem closely resembles the consensus problem,
which is extensively covered in literature. This insight is used to prove stability of a class
of synchronization algorithms – including the existing algorithm – under requirements on
the communication topology that are easily satisfied.

A set of improved algorithms is developed, and their performance is assessed in simulations.
The best performers were tested experimentally on networks with up to 300 nodes.

In conclusion, we have been able to create a substantial improvement over the existing
synchronization algorithm, attaining a higher throughput and longer network lifetime. Ex-
periments have shown however, that very large networks (>150 nodes) are not adequately
described by our models and can display unexpected dynamics.
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Chapter 1

Introduction

Over the last couple of decades, the technological advancement of our society has enabled
a world that is increasingly connected. The internet – possibly the most influential recent
invention – has moved from an academic novelty in the early nineties to a technology that
approximately 97% of Dutch people have access to today[10]. The trend to exchange data
in networks is continuing. It is expected that the Internet of Things (IoT), connecting all
kinds of devices to each other and the internet, will be a defining movement in technology
in the coming years [73, 6]. World-renowned firms and consortia are competing with
different standards and protocols to get into these markets early [56]. This also sparks
debate about the role these technologies and firms will have in our lives [50, 31]. Wireless,
ad-hoc, scalable mesh networks such as the Wireless Sensor Networks mentioned in the
title of this thesis are a category of networks in this broad field of ‘connected things’, and
can provide an infrastructure for numerous sensing, control and automation applications.

1-1 Wireless Sensor Networks

A Wireless Sensor Network (WSN)1 typically consists of small, energy efficient sensors,
communicating wirelessly with each other, that can be deployed in large numbers to sense
or actuate a physical phenomenon in a spatially distributed way. Typically, these networks
form their own infrastructure (ad-hoc), are robust to failure of individual nodes or links,
and are scalable to hundreds or thousands of nodes. This places high demands on all
aspects of hardware and software design, and it wasn’t until the start of this century
that it became possible to construct these networks. The potential of these possibly
ubiquitous networks was immediately recognized by academia [71], and a new field of
research emerged.

Nowadays, applications with WSNs start to become commercially viable. Products are
developed for markets as diverse as street lighting control, robotic networks, asset tracking,
indoor climate monitoring and wearable sensors for health and safety tracking.

An important demand in all those applications is energy efficiency. If the nodes are
battery-powered, the cost of a network is determined in part by the lifetime of these
batteries. If the nodes are mains-powered, attaining a high throughput while using a

1A WSN can often control some actuators too, and in that regard it would be more correct to talk
about a Wireless Sensor and Actuator Network (WSaN). The term WSN is more often used however, even
for actuating networks.

Master of Science Thesis Bouke N. Krom



2 Introduction

Figure 1-1: Application areas for wireless sensor networks: track and trace and climate
monitoring (promotional pictures from www.chess.nl)

negligible amount of energy is very desirable. One way to improve the energy efficiency
is by improving the synchronization. A tight synchronization can make the timing of the
communication protocol more accurate, requiring less slack and thus less energy spent
on operating the wireless link. In the same manner, the amount of data that can be
communicated in a certain timespan can be increased by having an accurate timing.

In this MSc project, an improved synchronization algorithm is developed for an existing
WSN infrastructure: MyriaWise, a product of Chess Wise.

1-2 Chess Wise

Chess Wise is a firm specializing in the creation of WSN backbones for diverse applica-
tions. A multi-purpose hardware platform running specialized embedded software serves
as the wireless interface for many different products. The software stack, called Myria-
Ned, already contains a synchronization protocol. This heuristic protocol stems from the
early days of MyriaNed, and engineers at Chess Wise expect that improvement in terms
of performance is possible.

MyriaNed is built on several core principles, and this limits the number of viable synchro-
nization approaches. These core principles include a globally synchronous Time Division
Multiple Access (TDMA) communication scheme, no single point of failure (any node
should be able to fail without breaking the network) and lifetime predictability.

Bouke N. Krom Master of Science Thesis



1-3 Synchronization 3

1-3 Synchronization

The study of synchrony has a very long history. One of the first written accounts is that
of Christiaan Huygens, who noticed that two pendulum clocks on the same table would
synchronize their swinging pendulums over time (albeit in antiphase), in 1756.

With the advent of distributed computing systems in the 1970’s and 80’s, methods for
synchronizing events over these systems were invented. Around the same time, the math-
ematically elegant Kuramoto model of synchronized oscillators was published, from which
synchrony could emerge in seemingly mysterious ways (just as Huygens clocks). The model
has since then been intensively studied, and continues to provide new insights to this day.

The phenomenon of synchronization has also garnered renewed interest in more recent
years. The synchronization methods for wired distributed systems were not suitable for
wireless networks, prompting the development of numerous new synchronization algo-
rithms. The study of complex network theory emerged contemporaneously, and finding
the boundary between success or failure in attaining synchrony on these networks has been
a major research topic.

1-4 Goal

The goal of this graduation is to develop a new synchronization algorithm for Myria-
Ned, that can more effectively synchronize nodes on a large scale, dynamic, probabilistic,
switching topology network.

In such networks there is a need for specialized algorithms. Wired network synchroniza-
tion protocols, like the Network Time Protocol (NTP) [41] or the Precision Time Proto-
col (PTP) [15] are not suited to the challenges of wireless networks. NTP is not precise
enough, achieving milliseconds or tens of milliseconds accuracy, whereas an accuracy of
at least one order of magnitude higher is wanted. Moreover, it is a centralized protocol
relying on one reference node, which defeats the robustness inherent in the distributed
nature of MyriaNed. PTP is designed for enabling sub-microsecond synchronization in
local networks for measurement and control, but requires diverse clocks (which are not
commonly found in WSNs) and is not robust against failure of nodes, uncertain commu-
nication channels and dynamic topologies [15]. Dedicated per-node solutions such as GPS
receivers or other high-precision clocks consume too much energy. Algorithms specifically
for WSNs have been developed, but they are strongly dependent on the specifics of the
other network components (specifically the MAC protocol). Moreover only very few of
these algorithms have been tested in a large scale, realistic experimental setting.

The environments in which WSNs are deployed are varying, and often extreme. The com-
munication topology and wireless link reliability (which both influence the performance of
a synchronization algorithm) are hard to predict and recreate in experiments or simula-
tions. In order for improved algorithms to be included in MyriaNed, a thorough confidence
concerning their performance and reliability in all possible deployments must be attained.
It is therefore interesting to investigate the stability and convergence properties of al-
gorithms from a mathematical perspective: this might lead to guarantees of a minimal
performance under broad conditions that can be satisfied in practice. Since experience has
shown that large wireless sensor networks sometimes behave quite differently than pre-
dicted by models, doing experiments will be a crucial part of the assessment of algorithms
too.
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4 Introduction

1-5 Research Approach & Outline

In order to achieve the goal stated above, the following items have been pursued:

• A literature survey to gain insight in tools and methods for analysis of synchroniza-
tion algorithms on wireless mesh networks.

• An analysis of stability, convergence, robustness and/or precision of synchronization
algorithms on the class of networks that encompasses MyriaNed.

• A simulation of suitable algorithms.

• A series of experiments, including a large-scale experiment (200+ nodes), to verify
claims from analysis and simulation.

This thesis starts by introducing the fundamental components of the synchronization prob-
lem in chapter 2: the characteristics of oscillators, the clock model that is adopted and
some terminology surrounding synchronization and wireless networks. In chapter 3, the
role of synchronization in MyriaNed is discussed, eventually leading to an estimation of
the possible improvements in throughput (section 3-5) and battery lifetime (section 3-6).
In the next chapter the requirements on algorithms are made explicit, and the literature
on synchronization algorithms is surveyed for possible improvements. We conclude the
chapter with a short feasibility study on using rudimentary temperature sensing as a feed
forward add-on to the synchronization algorithms. In chapter 5, a mathematical model the
synchronization problem is defined. This model is then used in an analysis of requirements
for stability. Returning to the algorithms of chapter 4, chapter 6 introduces three candi-
date synchronization algorithms, using the notation that was introduced in chapter 5. Two
of these algorithms are adaptations of published algorithms, and one is a new algorithm
that builds on the foundations of the existing synchronization protocol. The temperature
compensation rule is described too. These new algorithms are then tuned and compared
to each other and the current situation in a simulator in chapter 7. One of the candidates
drops out in this stage. The two remaining algorithms are evaluated in experiments in
chapter 8, and these results are compared with the simulations. Of course the last chapter
lists the conclusions of this project, along with recommendations for further inquiry.

1-6 Prior Work

Before this MSc project was started, the author did an internship at Chess Wise about
the same topic. This internship will sometimes be mentioned, and has largely functioned
as an orientating study into the synchronization problem and the parameters of influence.
The first part of this MSc project consisted of a literature study, for which a separate
report was delivered. This report is not publicly accessible. In the interest of readability,
we have not referenced that study in this report, but instead reproduced the results where
applicable. Especially in the chapter on algorithms (4) large parts are copied from the
literature study.
The synchronization of MyriaNed has been investigated before. Synchronization with a
larger granularity (the joining of networks) is a major subject in [14], which is a prerequisite
for all the work done in this project. The more fine-grained synchronization was studied
before in another MSc project [4], but unfortunately the very limited documentation made
it impossible to build on these results. In addition, the main conclusion of that work
received serious criticism by peers [29]. Furthermore, a study has been done on model-
checking the synchronization in MyriaNed [30]. The conclusion of that study is that the
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1-6 Prior Work 5

synchronization can be instable in a very specific three-node network, but this has little
relevance for real deployments. Larger networks were too computationally intensive to be
analyzed with these methods.

To our knowledge, this is the first study applied to MyriaNed in which (1) a literature
survey for synchronization algorithms is done, (2) a mathematical model with a control
theoretic perspective is developed and (3) large scale experiments are done with new
synchronization algorithms.

Master of Science Thesis Bouke N. Krom
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Chapter 2

Fundamentals of Synchronization

Synchronizing is defined as follows by the Merriam-Webster dictionary:

syn·chro·nize

: to cause (things) to agree in time or to make (things) happen at the same
time and speed

: to happen at the same time and speed

In a wireless network context, this will necessarily mean that time needs to be measured
by clocks. Moreover, the above definition leaves room for interpretation and refinement.
In this chapter we will introduce a clock model and explore the scope of the initial problem
statement by defining some of the assumptions and principles surrounding synchronization.

2-1 Oscillators

Electronics keep track of time by using oscillators. The number of cycles of a regularly
oscillating device is counted, leading to an estimation of time elapsed. A very common
oscillator is a quartz oscillator, since they have a nice balance between price and perfor-
mance. MyriaNodes are equipped with a 32 kHz quartz crystal that can run on very little
energy when the node is idle, and that can wake up the processor (which also involves
turning on a 16 MHz oscillator) when a period of activity should be started.
It is the accuracy of this 32 kHz quartz oscillator that is crucial for the synchronization
in MyriaNed, as will become clear in chapter 3. The actual momentary frequency of an
individual quartz oscillator differs from the nominal frequency due to several effects [70]:

• Calibration: due to manufacturing variability, the frequencies of crystals will not
be exactly the nominal frequency.

• Aging: since a crystal oscillator is essentially a mechanical device, it will wear over
time. Stress relief and small contaminations of the materials lead to a small change
in frequency over the years of use.

• Temperature: the temperature of the crystal has a large influence on its frequency.
There is a turnover temperature at which the oscillator has its nominal frequency,
and the crystal oscillates slower as it is further removed from this temperature.

Master of Science Thesis Bouke N. Krom



8 Fundamentals of Synchronization

Calibration (±20 ppm)Aging (±3 ppm/year)

Temperature (moderate) (-50 ppm)

Temperature (extreme) (-180 ppm)

0 ppm 30 ppm 50 ppm 180 ppm

Shocks (±5 ppm)

Figure 2-1: The magnitude of different influences on oscillator frequency. Moderate temper-
atures are at −15 ◦C or 60 ◦C. Extreme is at the outer operating range; −25 ◦C. (sources:
[58, 25])

• Other effects: there are several other influences on quartz oscillators that create
variability, but these effects are usually not persistent, and thus the effect will not
accumulate over time. These influences include mechanical vibrations, radiation,
magnetic fields and noise processes in surrounding circuitry.

The typical magnitude of common effects is shown in Figure 2-1. Deviations are commonly
expressed in parts per million (ppm).

Quartz oscillators are available in many varieties. Different calibration accuracies can be
ordered, but there are also types with a temperature compensation circuit (TCXO) or even
oven-controlled (OCXO) ones. Since cost per unit is important, the variety commonly used
in MyriaNodes has a reasonable calibration, but no integrated compensation mechanisms.

2-2 Clock Model

The largest disturbing effects on oscillators vary only slowly over time, especially when
compared to the frequencies involved. It is therefore very common to model an oscillator-
driven clock linearly:

τ(t) = at+ b

Here τ is the value of the clock, t is the real time and a and b are the drift (frequency
deviation) and offset (startup difference) respectively. This affine clock model will be
extensively used in chapter 5. It is good to keep in mind that although a is considered
a static parameter over short time spans, it will vary considerably over the lifetime and
environmental temperature of a node.

These drift and offset effects with respect to a perfect external time are displayed in Figure
2-2a. The (varying) drift and offset, together with possible noise effects are sometimes
called jitter. Because the oscillator has a frequency of 32 768 Hz, one tick is 30.5 µs, the
time granularity. From the point of view of the nodes, the difference between a tick that
just started and a tick that is almost finished is indistinguishable. This quantization effect
is further discussed in subsection 5-1-4. In Figure 2-2b a similar diagram is shown for the
clocks of two nodes in the network. As will become apparent in chapter 3, it is especially
important that two nodes are able to count the same time duration. By making the clocks
as identical as possible, this can be achieved.

During our literature research, we found only one publication that uses a different clock
model. In [20], τ is denoted as the integral of previous values of drift a until time t, where a
itself is varying over time according to the exponential of an Ornstein-Uhlenbeck process.
An Ornstein-Uhlenbeck process is related to a Brownian motion random process. Although
this model manages to capture the inherent variability of a, its physical foundations remain
unclear. For our research, this model would introduce complications without providing a
clear benefit, so we will not use it.
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Exact Time
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Time
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Clock with offset

Clock with drift
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(a) Different deviations a clock can have with
respect to ‘real time’.

Node i Perfect Sync

Offset

Drift

Jitter

Node j

(b) Deviations that might occur be-
tween clocks. The quantity of inter-
est here is the difference in perceived
time length.

Figure 2-2: Time deviations of clocks

2-3 Terminology

The topic of ‘Synchronization in Wireless Sensor Networks’ is a very broad one, and both
the meaning of synchronization as well as the network specifics can vary greatly. This
section will give an overview of the variability within synchronization and within wireless
networks, and we will define the limiting choices made for this thesis work. Most of this
section is also described in the surveys by Faizulkhakov [17], Rhee et al. [54] and Karl and
Willig [33].

Synchronization Concepts

Internal or External Internal time is a network-specific notion of time. All nodes in a
network can be synchronized, but this internal time might not be exactly synchronized to
an external time standard. As long as there is no access to this external time standard
– which is usually the case with MyriaNed – synchronizing to this time is impossible.
Moreover, it is not needed for most network functions: an approximate correspondence
with external time is sufficient.

Permanent or By Request In some applications, a synchronization ex post suffices.
Several nodes may observe a sudden phenomenon for example, and only after this data is
gathered the timestamps need to be adjusted to a common time scale. This can be done
with a synchronization-by-request scheme. In most applications, including the TDMA-
timing of MyriaNed, a priori or permanent synchronization needs to be kept. Specific
events (like the transmission of a message) need to happen simultaneously.

Partial or Total Some algorithms keep synchronization only in different regions (usually
broadcast neighbourhoods) of the network, which could then be translated into one an-
other. This might lead to problems when a network has a dynamic topology, and MyriaNed
thus demands a network-wide common time scale.

Interval or Absolute A common way to define synchronization is by defining a certain
correction of the hardware clock value, and attempting to have all these software clocks
display the same value at the same time instant. This is an absolute synchronization. In

Master of Science Thesis Bouke N. Krom



10 Fundamentals of Synchronization

MyriaNed however, the most important entity is the duration of the idle interval. The
absolute clock value is not important, as long as a specific duration of time is counted
equally throughout the network. The round number plus the time interval since the start
of the round can be used to retrieve an absolute clock value if needed. A similar distinction
is made by Werner-Allen et al. [72], coining it synchronization (absolute time agreement)
and synchronicity (agreement on synchronized action). It is noted that these notions are
complementary: synchronized nodes can achieve synchronicity, and synchronicity can be
used to attain synchronization.

Correction or Translation Synchronization usually translates into the task of correcting
a local clock to approximate a common network time. Some proposals (most notably RBS
[16], section 4-2) circumvent this issue by construction a translation table, where a node
keeps information about its own clock with regard to its neighbours. When communication
or comparison with one of the neighbours is needed, the node can move to the time scale
of its neighbour by using the translation table. Taking into account the possibly very
dynamic networks of MyriaNed, and the fact that one broadcast needs to address many
different neighbours, such a translation scheme is not suitable for our purposes.

Network Properties

The second factor that distinguishes synchronization schemes in wireless networks is the
network itself. Even within the class of wireless networks, several choices can be made
that lead to different solutions.

Unicast, multicast or broadcast When all communication in a network is done in a
point-to-point fashion, with a single sender and a single receiver, this is a unicast network.
Algorithms for wired networks usually operate in this fashion. In a multicast network
multiple, specified receivers are present. MyriaNed is strictly a broadcast network, where
a single sender transmits messages to an unknown number of anonymous nodes. The
receivers can know the identity of the sending node however.

Distributed or Centralized Every algorithm in a WSN is in some sense distributed, since
it will have to be executed by nodes. We can make a distinction between fully distributed
algorithms, where every node operates independently with local information and no special
roles are present, and more centralized algorithms, where for example a reference node
is elected. In the MyriaNed philosophy, there is a strong preference for fully distributed
algorithms. The demands on scalability and robustness, and the diversity in deployments
leave little room for successful centralized algorithms.

Symmetric or Asymmetric A network is said to be symmetric when a connection from
node A to node B implies that communication the other way around is possible as well.
Asymmetry can be caused by different broadcast power of nodes for example. This is
not customary in MyriaNed, but due to the relatively high collision probability, strict
symmetry can by no means be guaranteed.

Determinacy of delays The sending of a message is not instantaneous, and introduces
a certain delay in time measurement. In some publications this delay is assumed to be
a random variable, or unknown altogether. For CSMA-based MAC protocols this is a
required assumption, but for gMAC it is too strong. The fixed message size and efficient
handling of MyriaNed make this delay predictable.
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2-3 Terminology 11

Explicit or Implicit For some synchronization schemes, a dedicated exchange of messages
is needed. A synchronization period is defined using the desired accuracy, and synchro-
nization procedures are periodically triggered. This might hamper the functionality of
an application however, and the architecture of MyriaNed demands an implicit synchro-
nization scheme. Messages that are used primarily for applications need to be used for
synchronization purposes as well.
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Chapter 3

Synchronization in MyriaCore

The software of the wireless sensor networks produced by Chess Wise can be viewed as
consisting of two parts: a set application-specific functions and a set of basic functions
that maintain the network infrastructure. The software responsible for the infrastructure
is called MyriaCore, and this is also where synchronization takes place. In addition to the
network connection, MyriaCore provides services for routing and sharing data (e.g. [24]),
and some interfaces with hardware and gateway equipment.

In this chapter the parts of MyriaCore that are relevant to synchronization will be intro-
duced. The existing synchronization algorithm is described first. The various degrees in
which synchronization can fail are listed in section 3-4. In order to explore the improve-
ments that a better synchronization algorithm might yield, a model of the probabilistic
features of MyriaCore is made in section 3-5, and the gains in efficiency are sketched.
Finally in section 3-6 an estimation of the possible lifetime increase is done.

3-1 The MAC layer: gMAC

The architecture of a network protocol is commonly described with the OSI model [76],
using layers. Not all layers from the OSI model are relevant to MyriaCore, but the lowest
levels are. The actual radio communication in the physical layer is taken care of by
the radio platform. The synchronization of nodes takes place in the Medium Access
Control (MAC) layer, which is provided by MyriaCore’s gossip MAC (gMAC) protocol.
This protocol forms the basis of MyriaCore, and is described most recently in [14]. It is
documented in [4, 24, 13] too, and will shortly be reproduced here.

gMAC is a Time Division Multiple Access (TDMA) protocol that attempts to coordi-
nate the communication between nodes. Two considerations are of importance: collision
avoidance and duty cycling.

Since all nodes use the same medium, only one node within ‘hearing distance’ should
broadcast at the same time. If a node receives the messages of multiple nodes at the
same time – called a collision – it cannot decipher the packets and no information is
transmitted1. This has to be avoided to maintain a network throughput. In addition,
nodes cannot receive when they are transmitting, so both uses of the radio should be
balanced.

1The capture effect [37], where the slightly earlier message is heard if it is powerful enough, is ignored
here
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t

Node 1
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Frame/round

Join message

Collision

Figure 3-1: An example of the scheduling of gMAC, with some terminology. The amount of
inactive slots is usually much higher than displayed, up to duty cycles of 0.5%.

In order to conserve energy, the nodes do not communicate continuously. Short periods
of communication are alternated with long periods without radio activity. In gMAC each
node periodically wakes up to communicate, and enters a period of sleep afterwards where
no radio signals can be received. This sequence is then repeated.

Figure 3-1 gives a visual overview of the protocol. Each node executes a sequence con-
sisting of periodic rounds or frames, typically between 0.5 s to 20 s long. Such a frame
is subdivided into slots: short periods of about 1 ms. The majority of slots is spent in a
sleeping or idle state, without radio communication. At the start of each frame there is an
active period, where nodes power up their communication equipment. In the slots of that
active period a node either listens (RX; receiving mode) or broadcasts (TX; transmission
mode). This scheme can only be successful if each node has the same active period as the
other nodes in the network, and if collisions of TX slots are avoided.

Per node there is only one TX slot per round, and this slot is chosen at random, effectively
implementing a variation on the Distributed Slotted ALOHA protocol [55, 2]. Collisions
are not deterministically avoided (such as in CSMA protocols) but only made statisti-
cally unlikely. This method is robust in the sense that given enough cycles, successful
communication will eventually take place.

In areas where there are many nodes within each other’s communication range however,
collisions will be frequent and communication may even break down completely. To di-
minish the likelihood of this event, slot allocation strategies can be employed. A strategy
called DistributedSlot [3] for example uses information about the number of perceived
neighbours to adapt the number of active slots. Here also lies a possibility for tuning
the network: if low densities are expected, less active slots will suffice and lengthen the
lifetime of the network (before batteries need to be renewed). If high performance in high
density topologies is demanded, a higher number of active slots is paramount, at the cost
of increased energy usage.

The timing of a protocol like this needs to be precise. Even when the nodes agree on a
time schedule, there will be individual differences due to the clock jitter (see chapter 2).
These small time differences might lead to collisions between messages in different slots,
see Figure 3-2, limiting the ratio of successful message transmissions even further. To cope
with these time differences, slots are made slightly larger than the time it takes to transmit
a message, see Figure 3-3. The transmission starts a small time after the start of a slot to
allow nodes that are lagging behind to still receive the messages, and ends early to prevent
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Collision

time

node 1

node 2
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Figure 3-2: The same situation as in Figure 3-3, but without guard times. This causes
collissions between messages sent in different slots.

time

node 1

node 2

node 3

Transmission

Guard times

Active period

Figure 3-3: The function of guard times in gMAC: even when nodes are slightly out of sync,
consecutive messages can be transmitted successfully. The case without guard times is shown
in Figure 3-2

fast nodes from moving to the next slot too early. A transmission slot thus consists of a
transmission time with what is called a guard time before and after it, together equalling
the length of a receiving slot. If nodes are more accurately synchronized, the guard times
can be made smaller. This decreases the energy spent per data byte transmitted, and thus
can be used to increase the maximum data rate or decrease the energy use.

An important part of the gMAC protocol is aimed at making new nodes attain the same
rhythm as an existing network, and achieving synchronization between two networks with
a phase difference between their frames that is so large that the active periods do not
overlap. This includes a special startup procedure to achieve initial synchronization, and
the sending of a ‘join’ message (mentioned in Figure 3-1) during the inactive period. The
scope of this project is limited to small phase differences, and the joining of nodes and
networks will not be part of the research. The join procedure as it is works well, and thus
we can assume for our work that nodes are already synchronized to within the bounds of
the active period at the initial time.

3-2 Median Algorithm

Currently the synchronization of slots is done using an algorithm called Median. This
algorithm, described by Assegei [4] and Heidarian [30], is used for keeping nodes that are
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node 1

node 2

node 3

node 4

time

idle time

δτ1 δτ2 δτ3

Figure 3-4: A node that receives three messages infers the time differences with those
neighbours: δτ1, δτ2 and δτ3. These time differences are used to change the length of the
idle time, in the Median algorithm by kp Med(δτi), with kp = 0.5.

able to communicate with each other (by having an overlapping active period) synchro-
nized. This algorithm corrects small time differences, and we seek to improve this. The
algorithm is a legacy from the more experimental days of MyriaNed, and has proven itself
robust, but the performance is lacking.

Nodes compare the time of receiving a message from another node with the time at which
this message was expected. This difference can be used to infer the time difference of
the clocks (for a detailed description about this inference and the errors introduced see
subsection 5-1-4). In each frame, a node corrects its own phase difference by taking kp
(set to 0.5) times the median of the differences with all neighbours that it received. This
correction is done once: in the next frame, a new correction for the standard idle time is
used, based on the newly received messages.

This process is visualised in Figure 3-4. In each slot, the node has an expected arrival
time of the messages, based on the guard time and message size. The actual arrival times
are recorded, and this leads to a set of time differences (one for each node received) per
round. The messages that are sent between nodes always contain their slot number. This
allows nodes to synchronize with Median even if messages are received in a different slot,
since the correct time difference can still be recovered.

If all time differences are positive (messages arrived later than expected) this node is a
little early, and should lengthen its idle time. If all time differences are negative (messages
arrived too soon), the node lags behind and should shorten its idle time. Usually, the
time differences will be mixed. To adapt to the majority of neighbours, the median time
difference is chosen to adjust the idle time with. Moreover, initial experience showed that
this prevents single outliers from skewing the rest of the network, as would happen if nodes
would use the average.

The adjustment based on this median value can be tuned by the gain kp ∈ [0, 1). This
gain is needed to prevent oscillations between nodes. If kp = 1, two nodes could correct
their idle time by the same amount of ticks in opposite directions indefinitely. To prevent
such an exchange from happening, both should limit their adjustment by an appropriate
kp. In MyriaCore, kp has been set to 0.5 heuristically, and this has proven to work well in
practice.

Bouke N. Krom Master of Science Thesis



3-3 Choice of Guard Times 17

Table 3-1: Guard ticks needed for certain frame times under a frequency difference of 100
ppm.

T [s] Tg[ticks]
0.1 d0.33e = 1
0.5 d1.64e = 2
1 d3.28e = 4
2 d6.55e = 7
5 d16.4e = 17
10 d32.8e = 33

3-3 Choice of Guard Times

Controlling the energy consumption of the network starts with choosing the right guard
times Tg. This is a difficult choice however. If Median is used, assuming that two nodes
achieve perfect synchronisation in a frame, their perceived time difference at the start of
the next frame will be determined by the combined clock drift. The accumulated time
difference, expressed in clock ticks, is the drift factor, times the amount of ticks in a round:

δτ [ticks] = ∆f [ppm] · fn[Hz] · T [s]

Here fn is the nominal frequency, T is the round time and ∆f is the expected drift. If we
want to experience no lost messages because of synchronization errors, the amount of ticks
lost in a frame must be less than the guard time. We ignore the effect of messages being
sent in different slots, which might make the exact time of drifting a little more or less
than the frame length (but the difference will be nowhere near the time granularity). The
maximum frequency difference between two nodes caused by calibration (40 ppm), ageing
(6 ppm) and reasonable temperature (50 ppm) adds up to about 100 ppm. In Table 3-1
the guard times needed under these circumstances for different frame times are listed. It
seems that 9 ticks guard time (the default) is an overly conservative parameter setting for
frame times below 2 seconds, and far too little for longer frame times.

It should be noted that although the drift is chosen as an extreme, this calculation assumes
perfect synchronization in the previous round, which is optimistic. Moreover, it can happen
that nodes fail to communicate in one round, allowing the drift to build up over two rounds.
Then again, compensating all possible drift buildups between nodes with guard times will
generally be too costly, and incidental errors will have to be allowed. Another factor
that should be considered in this decision is the expected temperature range in which the
network operates.

3-4 Desynchronization

As shown above (section 3-3), even with a synchronization algorithm synchronization
errors will be a fact of life. Various degrees of synchronization errors affect the network in
different ways. From small to large:

1. Within-slot differences: A typical slot consists of tens of clock ticks. As long as
these differences are within the tolerance of the guard time, no serious consequences
occur. This is the tolerable, and partly inevitable range of errors.
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18 Synchronization in MyriaCore

Figure 3-5: A small, fully connected network: the simplified situation in section 3-5. A
transmission from the green node to the red node is considered.

2. Slot errors: A larger synchronization may cause messages to traverse the slot
boundary: a node broadcasts a message in slot 2 for example, but several neighbours
are already in slot 3 at the time of arrival. This has little consequence for the basic
functioning of the network, but the data throughput will be smaller because collisions
are more likely: one messages occupies two slots in which other transmissions will
lead to failure. Moreover, the total window of communication is smaller because the
active periods overlap only partially.

3. Frame desynchronization: The most serious form of desynchronization is when
active periods of nodes do not overlap anymore. This can happen when nodes
function a relatively long time without correction of their clocks (because no com-
munication was possible), or when two networks that were started independently
first meet. In this situation the nodes are unable to communicate, and the network
is broken. Normal synchronization procedures can not cope with this, and we’ll have
to rely on secondary means of network unification (the join procedure).

The scope of this thesis is limited to counteracting the effects of within-slot differences and
slot error (situation 1 and 2). Note that although there is a conceptual difference between
within-slot differences and slot shift, a synchronization algorithm can therefore treat both
cases equally.

As already apparent from the descriptions of failure modes above, the final objective
of synchronization is allowing the maximum amount of data to be transmitted robustly
through the network, requiring as little energy as possible. So an improved synchronization
has two objectives: saving energy, thus lengthening the network lifetime, and working more
efficiently. This optimization of data and energy efficiency is commonly called throughput,
and in the next section we will model this tradeoff for MyriaCore. The lifetime increase
will be the topic of section 3-6.

3-5 Throughput

Throughput is a performance measure that indicates how much energy is expended per
message transmission: an efficiency. Since the number of messages sent and the energy
expended are both constant settings of gMAC, the throughput is closely related to the
probability of successful message transmission. Links in MyriaNed are highly unreliable:
the probability of a sent message being received by a neighbour is far from 1. A large
part of the uncertainty is caused by the mechanics of gMAC. To see where a synchroniza-
tion algorithm might be of use in optimizing the success ratio, gMAC will be analyzed
probabilistically in this section.
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3-5-1 Probability of Successful Transmission

We simplify a deployed network (or a broadcast neighbourhood) to a group of N nodes
that are all connected, as displayed in Figure 3-5. The effect of unreliable radio channels
will be neglected for now, focussing solely on the effects of gMAC.
Each frame there are Ns active slots, and the number of neighbours for each node is
mi= N − 1. We focus on the transmission of a message between two individual nodes.
Each node i has a probability of broadcasting in a slot k

Pr(Ti = k) = 1
Ns

With Ti a random variable denoting the transmission slot chosen.

Single link

If the network consists of two nodes, the probability of having a successful transmission
is 1 minus the probability of a failure. This failure happens when two nodes broadcast in
the same slot. The odds of two nodes choosing an identical slot k for broadcasting are:

Pr(Ti = k ∩ Tj = k) = Pr(Ti = k) · Pr(Tj = k) = 1
N2
s

since the choice of slot is independent. However, this can happen in all Ns of the slots:

Pr(Ti = Tj = k | k = 1..Ns) = Ns · Pr(Ti = k) · Pr(Tj = k) = Ns

N2
s

= 1
Ns

In other words, there are N2
s possible combinations of broadcast choices, of which Ns lead

to a collision. The probability of successful transmission from node 1 to node 2 without
considering any other nodes is:

Pr(Ti 6= Tj) = 1− Pr(Ti = Tj) = 1− 1
Ns

Fully connected network

When there are more nodes in the neighbourhood, the odds of transmission become lower.
Let C symbolize the event of a collision. If each of the mi nodes around node i picks a
transmission slot at random, the chance that each of those node picks a transmission slot
other than the one picked by i is:

Pr(¬C) = Pr(T1 6= Ti ∩ T2 6= Ti ∩ ... ∩ TN−1 6= Ti)
= Pr(T1 6= Ti) · Pr(T2 6= Ti) · ... · Pr(TN−1 6= Ti)

=(1− 1
Ns

)N−1 = (1− 1
Ns

)mi (3-1)

In Figure 3-6a and b the probability described by equation 3-1 is plotted for various values
of Ns and mi. Note that the lines between points are purely there as a visual aid, in reality
there are no values between the discrete points. The conclusions are as was expected: more
neighbours and less slots decrease the probability of transmission.
These probabilities are not very encouraging: under quite ordinary circumstances (Ns =
8,mi = 7 for example), the success ratio is under 40%. Luckily, there are two mecha-
nisms that enable robust networking: nodes will send a message every round, increasing
the cumulative probabilities, and there is a technique called ‘scheduling’ for very dense
neighbourhoods. These effects are further analysed in appendix B.
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Figure 3-6: The probability of non-collision for different numbers of slots, and different
neighbourhood degrees.

3-5-2 Comparison with Slotted ALOHA

Now that the probabilities are approximately known, we will try to compare throughputs.
gMAC is inspired by the well-known Slotted ALOHA protocol [1, 55]. In that protocol,
nodes use slots for transmission of messages, and every node has a certain probability of
sending within a slot. This probability is Poisson distributed over the group of nodes:
there is an average amount of messages transmitted per slot L, such that the probability
of messages being ‘on-air’ X is exactly x in a slot is:

Pr(X = x) = Lx
e−L

x!
Pr(X = 1) = Le−L = SA

For X = 1 the transmission succeeds, since there is no collision. This probability is
commonly interpreted as the throughput S: the fraction of slots that contain a successful
transmission. This function has a maximum for L = 1, being 1

e ≈ 0.36. So under the most
ideal circumstances, about 36% of the slots contain a successful transmission. Other slots
are either empty (also 36%) or contain a collision (the remaining 28%).
L corresponds to the number of messages per slot, which would be N

Ns
in gMAC. There is

the subtle but important difference however, that the number of messages sent per node
is a stochastic variable in Slotted ALOHA, while it is a set number in gMAC (where
only the moment of sending is randomized). For gMAC, the throughput (and thus the
probability that exactly one message is sent in a given slot) is the probability of successful
transmission, multiplied by the number of messages that might be sent m+ 1, divided by
Ns:

gMAC: Pr(X = 1) = mi + 1
Ns

· (1− 1
Ns

)mi

Slotted ALOHA: Pr(X = 1) = Le−L = mi + 1
Ns

· e−
mi+1
Ns

These functions are very similar, see Figure 3-7a. In the limits of m to infinity and Ns to
infinity, the functions are equal, see appendix B-4.
In Figure 3-7b the throughput of both methods is compared for a common Ns, varying
m to achieve a range of values for L. There is a slight difference between the curves:
in sparser neighbourhoods gMAC performs better, and in dense neighbourhoods slotted
ALOHA is a little more successful.
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Figure 3-7: gMAC and slotted ALOHA compared on throughput.
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Figure 3-8: The modes of collision of pure ALOHA.

Alternative: Continuous gMAC

Although the throughput of gMAC seems on par with slotted ALOHA, it should be noted
that a slot is not spent entirely on communicating. In fact, under default settings, when
the usual 9 guard ticks are observed and there are 32 bytes per packet at 2Mbps (leading
to 10 ticks transmission time), roughly two thirds of the slot is spent waiting. So compared
with a perfect slot alignment, two thirds of the energy is wasted, drastically reducing the
actual throughput. Pure ALOHA (the unslotted, original version) is only half as efficient,
and does not require strict timing. Would a pure ALOHA yield better throughput?

To investigate this, we can devise a pure ALOHA-like variant of gMAC, called continuous
gMAC. Slots are not used in communication, and every node picks a random clock tick
to start transmitting. The time a transmission takes is Tm. Obviously it’s useless to start
a transmission less than Tm ticks before the end of the round, so for a fair comparison
to normal gMAC there are Ns(Tm + 2Tg)− Tm ticks (Tg being the guard time) to choose
from. The complete active period Ta is Ns(Tm + 2Tg).

The weakness of pure ALOHA is that whenever another node starts transmitting during
the transmit time of the sending node, or had started transmitting less than the duration
of a transmit before it, both transmissions fail. That is, the ‘vulnerable period’ during
which no other node should send is two times the duration of sending, see Figure 3-8.

The chance of picking an arbitrary tick x as transmission tick Ti for node i is:

Pr(Ti = x) = 1
Ns(Tm + 2Tg)− Tm

In the case of a two node network, a collision occurs if the receiving node broadcasts in the
2Tm period indicated in Figure 3-8. If the start of the transmission Ti happens to be in
the first Tm ticks, this probability is lower, since the receiving node is not allowed to send
before the active period begins. Since this will lead to a different probability for every
possible choice of Ti < Tm, this will complicate the analysis. We adopt the conservative
assumption that the probability of collision remains the same in the whole active period.
As the fraction of message length to active period duration (TmTa ) becomes larger, this
assumption will become more restrictive.

In this scenario, the probability that the receiving neighbour sends in one of ticks in the
2Tm period is:

Pr(Ti ∈ 2Tm) = 2Tm
Ns(Tm + 2Tg)− Tm

This is the chance of collision between two nodes.
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Figure 3-9: The throughput per tick instead of per slot, comparing gMac with its pure
ALOHA counterpart: continuous gMac. With increasing guard times, gMac becomes less
efficient.

When there are m neighbours, the chance that none of them sends in a given period of
2Tm slots is:

Pr(Ti 6∈ 2Tm∀i ∈ N) =
(

1− 2Tm
Ns(Tm + 2Tg)− Tm

)m

To get to the throughput, we should normalize this probability again. Because slots are a
meaningless concept to continuous gMAC, we want to compare on the metric ‘successful
messages per energy spent’. If we multiply the probability of successful transmission with
(mi+1)∗Tm
Ns(Tm+2Tg) (number of ticks spent on sending divided by total number of ticks) for both
cases, we arrive at a comparable number.

The results are shown in Figure 3-9. In the hypothetical scenario without guard times,
gMAC is clearly more efficient. When the guard times are half the time taken by message
transmission (so half the slot is filled with guard times), gMAC is still slightly better than
the continuous version over the whole range of densities. When the guard times become
more than half of the slot, gMAC loses against continuous gMAC in throughput, and
continuous gMAC maintains a maximum around 1

2e ≈ 0.18.

The guard times serve a goal of course: when synchronization errors are present, the
guard times prevent loss of throughput. In a continuous version of gMAC however, the
loss of throughput due to synchronization errors is caused by the decreased overlap of
active periods only. In the normal, slotted gMAC, every slot loses throughput (via a lower
transmission success probability) when a synchronization error is present. So we expect
that even in the presence of synchronization errors, the results from Figure 3-9 hold up.

Designing a new MAC protocol is not the aim of the thesis. Continuous gMAC might
be a good principle in some situations, but there are many details and pitfalls that are
yet to be further investigated before drawing rash conclusions. What we can conclude
from the preceding analysis however, is that preventing synchronization errors is a crucial
part of the current MAC protocol. A synchronization protocol should limit the maximum
synchronization error to at most half the time needed for sending a message, or else using
gMAC is a very suboptimal decision!
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Transmission sequence Reception sequence

Command: TX enable

TX enable: 132us

Transmission: variable

TX disable: 10/4/3 us*

* Depends on datarate: 250/1000/2000 kbps

RX enable: 130 us

Reception: variable

Interrupt: TX done

Command: RX enable

Interrupt: RX done

Figure 3-10: The timing of the sequences to transmit and receive messages. Source: [46]

Table 3-2: The maximum shortening of a slot under different system settings. Lifetimes are
estimates from Chess Wise’s energy balance calculator.

Length of a slot [ticks]
Package size Datarate Tg = 9 Tg = 1 Decrease Typical lifetime increase
32 bytes 2 Mbps 27.65 11.65 58% 54%
32 bytes 1 Mbps 33.04 17.04 48% 43%
32 bytes 0.25 Mbps 65.38 49.38 24% 20%
64 bytes 2 Mbps 31.84 15.84 50% 45%
64 bytes 1 Mbps 41.43 25.43 39% 33%
64 bytes 0.25 Mbps 98.94 82.94 16% 13%

3-6 Lifetime Increase

In the previous section the influence of synchronization on throughput was sketched, in this
section we will quantify the lifetime increase that is possible with better synchronization
algorithms. The measure of interest here is the ratio between guard time and message
transmission time, as demonstrated in the previous section. The transmission time is
largely dependent on the message size, and can be determined via the following formula:

Time on air = bits to be sent
datarate [bits per second]

= preamble + message size [bits]
datarate [bits per second]

Transmission time = Time on air + Radio enable time

The radio TX enable time is 132 µs, so roughly 5 ticks. This time is spent on ramping up
the radio. Switching back from TX to RX takes 130 µs for the same reason, see Figure
3-10 for an overview. If we want nodes to transmit and receive successfully in consecutive
slots, we will need to account for this switching in the transmission time. Because the
oscillators have a slightly different phase, the best attainable result would be to drive the
guard time to 1 tick.

The increase in energy efficiency, and thus lifetime, is attained by shortening the length of
a slot, thus shortening the active (energy consuming) period. The exact amount of saving
depends on system settings, as displayed in Table 3-2. The most common setting would
yield the highest savings, but even in a more conservative setting the gains are significant.
The increase in lifetime (with a frame length of 1 second) is somewhat lower because there
is a constant overhead energy use. It is obvious, however, that a tighter synchronization
could yield very big benefits.
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Chapter 4

Algorithms

The main part of this chapter, section 4-2, gives an overview of synchronization algorithms
that can be found in literature. Since the aim is to find algorithms and approaches
that can be applied to MyriaNed, we will first outline the requirements in section 4-1.
Finally, the possibility of using a temperature measurement for improving synchronization
is investigated in section 4-3.

4-1 Algorithm Requirements

In chapter 3, it has become clear that the MAC protocol of MyriaNed requires a synchro-
nization algorithm to take a set of phase difference measurements as an input, and produce
a correction of the idle time as an output. These are used to reduce the phase differences
in the next round. Many algorithms try to compute a translation of the local clock value
τ to arrive as close as possible to the reference t (the synchronization versus synchronicity
distinction, see section 2-3). Although it presents an extra step, it is possible to use an
approximate clock to compute a better idle time.

The features of the network imply more demanding requirements. Because an essential
property of MyriaNed is that there can be no single point of failure, this should be respected
by an algorithm. Thus schemes where a single node is appointed as a master clock are
excluded. The large diversity of network deployments means that topology should not
be critical to the algorithm. In any wireless network links are unreliable, but algorithms
should also be able to cope with dynamic networks (moving nodes) and the extremes of
density and sparsity. Moreover, additional nodes should be able to start up, join the
network and become synchronized at any moment. Ideally, a synchronization algorithm
has only a single mode of operation (as opposed to solutions where first an initialization
phase has to be performed before other processes can start).

Of course, a protocol should fit the hardware (e.g. clock granularity), and achieve an
accuracy that is useful to us: maxima of hundreds or preferably tens of microseconds.

Since the overarching goal is to improve energy efficiency, the overhead of algorithms in
terms of computations and extra message content should be minimal. As noted by Elson
[16], there is no single best algorithm: each algorithm occupies a part of the solution
space, and represents a trade-off between resource consumption and performance. The
difficulty of picking or designing a suitable algorithm lies in finding the most efficient
trade-off while attaining the performance needed. Since experimental results are rarely
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available (and even then those results never mention energy consumption) an objective
optimization can not be done. Still, we might keep this trade-off in mind when considering
algorithm candidates.

4-2 Literature

Achieving synchronization is not a problem unique to MyriaNed. Synchronization of clocks
in distributed systems has been a topic of academic interest since the 70’s, see for example
the classic [36]. With the advent of wireless sensor networks – posing their own set of
challenges – scientists have shown renewed interest [65, 16, 60]. A literature study was
done to survey the solutions and algorithms previously published, and an overview will be
reproduced here. Algorithms typically differ on three measures:

1. The goal definition: what is meant by synchronization, and when a synchronization
is reached.

2. The network properties: what assumptions can be done about the nodes and links,
what information is available to the nodes.

3. The approach of the researchers: the reasoning behind the model, and how the
proper functioning can be demonstrated.

The first two measures were discussed in chapter 2. The variance in the third, very
subjective measure will be outlined here.

The problem of synchronizing wired networks is traditionally cast as a parameter esti-
mation problem. The synchronization problem is stated in the unknown clock drifts and
message delays, which are to be estimated. Strategies for attaining a Maximum Likeli-
hood or Minimum Variance estimate were discovered. These algorithms always operate in
a point-to-point fashion: two nodes enter a synchronization procedure, and after sending
messages back and forth, come out synchronized to a certain degree. This scheme can
involve a central reference to get external synchronization. The Network Time Proto-
col (NTP) is the exponent of this class. Because of their point-to-point and centralized
nature, and assumptions (about link certainty for example) they work fine for a wired
network, but are inefficient or even impossible to employ on a wireless network.

This was recognized by the Computer Science community when the first practical WSNs
were developed [16]. The challenge sparked several proposals that approached the problem
in a pragmatical way, but most still relied on the traditional concepts of reference nodes
and point-to-point synchronization. Some of these algorithms are quite successful, and
remain in use and the performance benchmark today (most notably FTSP).

Control scientists proposed new algorithms shortly after, relying on more distributed tech-
niques. From distributed control concepts such as consensus protocols were known, and
could be applied to this problem. By taking the perspective of individual nodes trying
to infer their own state from noisy measurements, or by viewing the time keeping in
the network as one large switching dynamical system, new roads to synchronization were
discovered.

Quite independently from all this, the topic of oscillator synchronization unrelated to
WSNs is a mathematical field of study with a long history. The Kuramoto model for
coupled nonlinear oscillators was proposed in 1975, and has received widespread attention
[65]. With the interest of mathematicians in complex networks starting at the end of the
century, the interest in oscillator coupling revived. The synchronized behaviour of fireflies,
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Figure 4-1: A collection of synchronization algorithms from literature roughly positioned on
two axes: the degree of distributedness, and the pragmatism vs. analysis leading up to the
algorithm. The different approaches are grouped together.

heart muscles and firing neurons in the brain all have been successfully modelled using
these techniques. This field of study seeks to understand emergent behaviour of large
networks. These algorithms commonly require phase information of individual oscillators,
which is not available in the MyriaNed hardware.

In Figure 4-1, the different algorithms are plotted along two axes: their distributedness
and the approach taken in their development (analytic or pragmatic). Centralized algo-
rithms rely on a reference node, or construct clusters of local time. We demand a fully
distributed algorithm, in which every node fulfils the same role. Pragmatic algorithms
are predominantly early solutions that are constructed heuristically, focussing on specific
hardware issues, and supported by experiments. Analytical algorithms have a mathe-
matical basis, and analytic substantiation of their performance claims. They often need
translation to a hardware platform before they can be deployed.

The current Median algorithm essentially falls in the upper right corner of the field, being
fully distributed but mostly pragmatic in nature. The aim of this graduation project is to
improve the MyriaNed solution by drawing inspiration from the more analytic algorithms,
while retaining its distributed nature.

In the following, algorithms from each category will be briefly described, and their merits
discussed.
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Pragmatic and Traditional Approaches

Since we aim for a fully distributed (and therefore scalable and robust-to-dynamics) al-
gorithm, the traditional and pragmatic approaches are mostly not very suitable. They
represent important views on the synchronization problem however, and for completeness
we will mention some of the landmarks of these approaches here.

In the traditional approach, applied to a Wireless Sensor Network (WSN) in [12, 59, 74],
algorithms revolve around the pairwise synchronization of nodes. Three communication
models are commonly distinguished:

• Sender-receiver: in the most basic model, two nodes exchange messages: node A
sends, node B replies, etc. Given the broadcast nature of a wireless medium, this is
rather inefficient. The following two models aim to resolve this.

• Receiver-only: in this model, one node is considered the master node, and sends
messages. Other nodes receive these messages and synchronize to the master clock.
Note that the master node never receives messages nor adjusts its clock.

• Receiver-Receiver: a hybrid between the two: again one node is a sender, but this
time the nodes receiving its messages note the time of reception. By exchanging
these perceived times, they synchronize to each other.

Remarkably, none of the three can describe the broadcast-and-local-correction model
MyriaNed uses. Receiver-receiver is a broadcast protocol, but in MyriaNed it is the re-
ceiver that should be synchronized to the sender, not the receivers to each other.

Reference Broadcast Synchronization (RBS) One of the first algorithms tailored to
the needs of synchronization in Wireless Sensor Networks is RBS [16]. The concept is a
receiver-receiver synchronization: one node sends a broadcast message, and other nodes
note the time of reception. Since this moment will be almost equal for all nodes, they
can then exchange their perceived times at the moment of the reference broadcast to
know their time differences. There are three drawbacks to this approach. Firstly, the
time difference information is used to construct a translation table, which is unfeasible for
large scale and/or dynamic networks. Secondly, the node sending a reference broadcast
does not participate in the ensuing synchronization, so the procedure must be repeated,
consuming resources unnecessarily. And finally, the communication overhead of comparing
and communicating all the pairwise differences in reception time is quite large.

Other Reference Node and Pairwise algorithms Many popular schemes for synchroniza-
tion involve the election or definition of a reference node, which is supposed to keep the time
that all other nodes try to follow: a centralized approach. The most notable in this class
is the Flooding Time Synchronization Protocol (FTSP) [40], the default synchronization
protocol in TinyOS [39]. Other algorithms using this approach are Delay Measurement
Time Synchronization Protocol (DMTS, [52]), Lightweight Time Synchronization (LTS,
[69]), Time Diffusion Synchronization (TDS, [66]) and Timing-sync Protocol for Sensor
Networks (TPSN, [22]), and the algorithms proposed in [60, 38, 67, 12]. Although the
performance is experimentally shown to be good, the construction of a network-wide syn-
chronization takes considerable time, and the network becomes vulnerable to node failure
(of the reference node or a node in a critical path in the tree). What’s more, two neighbour-
ing nodes stand the chance of being in two different branches of the spanning tree, making
their synchronization possibly very poor due to synchronization errors accumulating per
hop [64].
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Control Approaches

A concept in WSNs that garnered interest over the last decade is consensus. The consen-
sus problem is simple: all nodes in a network need to agree on a value. Under weak as-
sumptions (eventual or periodic connectedness), the convergence of a very simple average-
over-all-neighbours algorithm can be proven (see chapter 5). This convergence property,
combined with the fully distributed and broadcast-based nature makes it an attractive
avenue for synchronization research. Some exponents:

Average TimeSync (ATS) Average TimeSync (ATS) [57] is an algorithm with a cascaded
consensus architecture. Based on a broadcast scheme, every node estimates its relative
drift and offset towards all its neighbours. A drift estimate and an offset estimate with
regards to a virtual reference clock is communicated between nodes. It is this virtual
reference clock about which consensus needs to be reached. The exact value of the reference
clock depends on initial conditions of the nodes, and the communication topology. The
algorithm is proven to converge for topologies similar to those generated by gMAC, using
positive products of stochastic matrices and a Lyapunov function. A conservative lower
bound on convergence is provided. The algorithm is shown to be on par with FTSP
performance-wise, but more robust.
In reaction, He et al. [26, 27, 28] proposed Maximum Time Synchronization (MTS), oper-
ating along the same lines but always picking the maximum instead of a weighted average
to reach consensus. The algorithm is proven and shown experimentally to converge faster
than ATS. In [27] a comparison with DCS (an algorithm from [11]) is made for networks
with probabilistic links. There is one crucial drawback: since the maximum is a biased op-
eration, the network will continuously speed up, making it infeasible in the long run. This
can be counteracted by including a minimum as well, but this increases the communication
overhead.

Gradient Time Synchronization Protocol (GTSP) In [64], GTSP is proposed. The
resulting algorithm is very similar to ATS, and has a consensus-like logic: an internal state
is updated regularly by taking the average of all the neighbours’ states. The theoretical
background to this solution, mostly drawn from [18], is completely different. In that paper
Fan and Lynch [18] introduce the Gradient Clock Synchronization problem. Noting that
minimizing differences between neighbours is the most important goal in synchronization
for e.g. TDMA schedules, they formalize this into a gradient of time differences over
the network that is to be minimized. Using a timed automata model, a lower bound
on the time difference between nodes that depends on the network diameter is derived.
Interestingly, this would mean that the diameter of the network as a whole limits the
performance of an algorithm on a pairwise basis. The assumptions made do not hold
up very well for MyriaNed: a crucial part in the formal analysis is the ‘hiding’ of time
differences by varying message delays. Since the message delays are known and constant in
MyriaNed, this is not applicable. Nonetheless, the Gradient Problem is very close to our
problem statement, and the timed automata present an interesting alternative perspective.

Model-Based Clock Synchronization (MBCS) In [20], an advanced clock model is used
as a basis for a synchronization algorithm: Model-Based Clock Synchronization (MBCS).
The proposed system model leads to an optimal filter for estimation of parameters over
links. This Kalman-Bucy filter is not very practical: it has trouble with the asynchrony in
the network, the distribution of computations and discretization, and requires integration
with respect to the (unknown) reference time. These hurdles are overcome by the au-
thors to arrive at a suboptimal, distributed solution that can be enhanced by the Spatial

Master of Science Thesis Bouke N. Krom



30 Algorithms

Smoothing method. The clock model is broad enough to be applicable to our network, but
perhaps too broad to assume that a model-optimal approach will be optimal in reality.

Spatial Smoothing Also known as Distributed Time Synchronization Protocol (DTSC).
In the same group as Freris et al. [20, 21], a distributed protocol was proposed by Solis
et al. [63]. Starting from a pairwise scenario, parameters are estimated using a linear
regression over exchanges. It is noted that for any cycle in the network, the offsets (and the
logarithms of the drifts) should add up to zero. Via a quadratic optimization the optimal
adjustment of estimates to enforce these constraints is calculated. Via a smart distribution
of computations, this optimization leads to a consensus-like protocol of averaging the
neighbours’ estimates, as also noted by Schenato and Fiorentin [57].
This protocol is designed for a bidirectional, symmetric network, which is strongly con-
nected. The clocks are linear, but the analysis is done only for driftless (only offset) clocks
(with hints on how to do it for drift as well). These assumptions are still quite far removed
from MyriaNed, and no experimental results are reported.

PISync The research group behind Carli and Zampieri [7], Carli et al. [9] has been
viewing the problem from the nodes’ point of view, and proposed an proportional-integral
(PI) controller for various settings. Using the time differences with neighbours recorded
after reception of a message, nodes correct their clocks. A proportional correction is done
to reduce the clock offset, and an integral part is used to diminish the frequency differences.
Since all nodes communicate their own state only, and agree on a common virtual clock,
the dynamics of the algorithm are again very much like a consensus protocol.
For known and fixed topologies, the choice of gains can be formulated as a convex opti-
mization problem, shown in [8]. In [7], the inherent slight asynchrony of the algorithm
execution is tackled for a pseudo-synchronous scheme: nodes update their clocks after a
round in which (almost) all neighbours are heard – exactly what MyriaNed does! In [75]
(by the authors of ATS and PISync as well) a pragmatic version with error-dependent
integral gain is used in hardware experiments, and compared to benchmark algorithms
FTSP and GTSP, with good results.

Emergent Behaviour Approaches

The spontaneous synchronization of coupled oscillators is a phenomenon that has fasci-
nated mathematicians in recent years [65, 47]. The behaviour of swarms of birds and
insects, schools of fish or flocks of animals is modelled and imitated. The distributed char-
acteristic of WSNs, and the need for simple local behaviour that should spark intelligent
global behaviour has led researchers to look at the results from these studies for solutions.

Reachback Firefly Algorithm (RFA) In the context of synchronization protocols, this
has led to RFA[72], inspired by synchronously flashing swarms of fireflies. The algorithm
works by having every node ‘flash’ (broadcast) periodically. If a flash is received by a
node at a different time than its own flashing, the duration before its own next flash is
shortened. The amount of shortening is subject of a ‘firing function’. Following the work
of Mirollo and Strogatz [42], convergence of the algorithm is proven under assumptions
on the firing function that are easily met. The implementation of the algorithm prompts
adjustments that limit this convergence however, and the experimental performance is not
outstanding. Although the concept of the paper is novel, the algorithm does not use drift
estimation, limiting its accuracy in the long run, and moreover it demands that all nodes
listen continuously, which is not acceptable due to energy consumption.
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Other pulse-coupled methods In [62], the synchronization problem is viewed from a
similar perspective of pulse-coupled oscillators. The overview starts out with continuous-
time sine waves that are coupled by interchanging pulses, a process controlled by the
physical layer. After the transition to discrete time, the problem is similar to the gMAC
synchronization, since pulses do not contain time information (like the MyriaNed packets),
and the time difference has to be inferred. Aside from the integrate-and-fire methods (like
RFA) that Simeone et al. [62] admit are hard to adjust for practical implementation, and
leave little degrees of freedom for tuning, the theory of Phase-Locked Loops (PLLs) is
mentioned. In [61], the WSN synchronization problem is framed in terms of PLLs. The
proposed solution demands access to the physical layer however, which we do not have.

4-2-1 Conclusion

As demonstrated in this chapter, there is no shortage of synchronization protocols. A
technique that is commonly used but not yet employed in MyriaNed is to find a way of
estimating a node’s own drift, and compensate for that in the long run.

Within the confines of MyriaNed, very few algorithms can be applied however. The ap-
proach taken by control scientists seems most promising, since it yields fully distributed
algorithms with an analytical basis. Most interesting are ATS and PI-based methods, no-
tably PISync. In chapter 6, two algorithms will be adjusted to be applicable to MyriaNed,
accompanied by an algorithm which we devised ourselves.

4-3 Temperature

Clearly the largest influence on oscillator drift is temperature. The current hardware
platform – the Nordic nRF51 – is equipped with a temperature sensor. Although this
sensor has very limited accuracy, it might be useful for correcting a node’s idle time as a
function of temperature. In this section we investigate whether it is indeed an improvement
to use this temperature signal in a feed forward correction.

4-3-1 Measuring Temperature

The internal temperature sensor of the Nordic nRF51[45] has a range of −25 ◦C to 75 ◦C.
From 0 ◦C to 60 ◦C it has an accuracy of ± 4 ◦C, outside that center range it is ± 8 ◦C. The
resolution is 0.25 ◦C. During operation, the sensor draws 185 µA, and one measurement
takes 35 µs, so one measurement takes a negligible amount of energy. On many hardware
platforms, an external temperature sensor is available that provides a better accuracy. We
will work with minimal means first.

4-3-2 Correction

Typically, 32 kHz quartz oscillators have a calibration offset of ±20 ppm[25], and a temper-
ature coefficient of −0.04 ppm ◦C−2. The turnover temperature lies somewhere between
20 ◦C and 30 ◦C.

Using the specifications of the temperature sensor and the oscillator, we can assess the
validity of a drift estimate if we used a measured temperature value and a typical oscil-
lator characteristic, see Figure 4-2. The range of values that a node might infer from its
temperature measurement (in blue), assuming that it has a typical oscillator, are always
well within the range that the oscillator drift can have given the variability in calibration
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(a) For a real temperature of 50 ◦C (b) For a real temperature of −15 ◦C

Figure 4-2: The shaded areas indicate the uncertainty regions, taking into account the inac-
curacy of the temperature measurement and the oscillator. The blue lines indicate the range
of values that can result from a calculation assuming a typical oscillator and a measurement
from the temperature sensor. The red lines indicate the range of values that an oscillator can
have given the temperature and variability between oscillators.

(in red). In other words: the blue range is always within the red range, and thus it is
never an impossible estimate.

In order to see whether using this estimation is always better than doing nothing, another
comparison is made. For both actions, we compute the worst case error (the real drift is
removed as far as possible from the estimate) and the best case error (the real drift is as
close as possible to the estimate), see Figure 4-3. Some observations:

• The worst case estimate with temperature compensation is always better than the
worst case zero estimate.

• The worst case estimate with temperature compensation is always worse than the
best-case of a zero estimate.

• Below 0 ◦C and above 50 ◦C, the zero estimate is guaranteed to be wrong.

Although the second statement seems to be worrisome, it is a matter of statistics. The
average error between best and worst case is always considerably lower for the temperature-
based estimate than for the zero estimate. Therefore, doing a feed forward compensation of
the measured temperature in the synchronization algorithm might make the synchroniza-
tion more robust to temperature changes. This feed forward compensation is evaluated
with experiments, which are treated in subsection 8-3-3.
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Figure 4-3: The best and worst case drift estimates when using temperature or estimating
0.
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Chapter 5

Stability

In previous chapters, the essence of the synchronization problem has been laid out. The
requirements posed by the hardware and software context for possible algorithms have
been clarified, and solutions proposed in literature are surveyed. The algorithms executed
by nodes individually are often fairly simple from a control point of view. Nevertheless,
providing guarantees of stability of the algorithm executed over a whole network proves
to be less trivial. Since the integrated disturbance caused by different drift factors is
unbounded, controllers that are stable for a single node may lead to dissynchronization in
the network. In this chapter, we will introduce the mathematical model of synchronization
algorithms in MyriaNed, which can be framed as a consensus process. Methods to prove
stability of synchronization algorithms will be introduced, and a proof of stability for a
class of synchronization algorithms will be given.

5-1 Modelling

5-1-1 Clocks

Each node in the network keeps its local time using a clock. As noted before in chapter 2,
these clocks are commonly modelled as linear clocks:

τi(t) = ait+ bi

Where the local clock value τi of node i, is expressed as a function of reference time t.
The reference time, sometimes called a wall clock time, is the same for all nodes1. The
local clock value, which is a measurement of time in a sense, is distorted by drift factor
ai and offset bi. The drift factor is the deviation of the oscillator’s frequency from the
nominal frequency, usually expressed as parts per million (ppm). We’ll denote the nominal
frequency as fn, and the actual frequency as fi(t). The difference is generally small, and
ai will be close to 1. The drift is partly constant due to miscalibration, and partially
time-varying due to external influences and ageing. It is assumed to change very slowly
– allowing us to model it as a constant. The offset is caused by different startup times
of clocks, and is constant. The three variables τi, t and bi should be in the same unit of
time, usually seconds.

1We’ll ignore effects of light speed and relativity. Light travels about 300 meters in a microsecond. The
transmission range of nodes is usually smaller than that. Moreover, the accuracy that we’re striving to
achieve (tens of microseconds) is one order of magnitude lower.
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The gMAC protocol in which the algorithms under consideration will be executed operates
in rounds. To make the considerations in this chapter independent of round time T , and
to get rid of clock values growing unbounded over time, we can express the clock values
of nodes as the difference with the reference time for that round. We subtract t from the
clock value, and get a phase offset for every node:

xi(t) = τi(t)− t = (ai − 1)t+ bi

Discretize into rounds: t = kT

xi(k) = (τi(kT )− kT )
= (ai − 1)kT + bi

xi(k + 1) = (ai − 1)kT + bi + (ai − 1)T
= xi(k) + T (ai − 1)

Where xi(k) is the phase offset of node i at the very start of round k. A requirement for
the validity of this description is that synchronization errors do not grow so large that
the active periods of different rounds start to overlap, and communication between rounds
happens. Long before this unmodelled processes like the join mechanism start working
however, so this is of no concern.

If we choose a derived drift value di = T (ai − 1) ≈ 0 for this description, and realize that
bi = xi(0) the evolution of clocks in a network of N nodes can be expressed as a linear
system:

x(k) =

x1(k)
...

xN (k)

 d =

d1
...
dN


x(k + 1) = x(k) + d, x(0) = b (5-1)

Note that the system matrix is I (identity), so the eigenvalues are all 1, with orthogonal
unit eigenvectors, representing the ideal clocks. The vector d can be seen as a disturbance
acting on the system, which is bounded and small. In reality, d contains a stochastic
component as well [70]. The system without disturbance is marginally stable (a discrete-
time system with eigenvalues of magnitude 1), so d acts as a destabilizing force.

To stabilize the system, information must be exchanged between nodes, coupling the
states. This network model will be introduced in the next section.

5-1-2 Network

A convenient way to model wireless mesh networks is by describing the network as a
graph. The graph of a wireless mesh network consists of a set of N nodes or vertices
V= {1, . . . , N}, and a set of edges E , consisting of (i, j) pairs to denote communication
from node i to node j. Note that the graph of the network is directed, so the existence
of (i, j) does not imply (j, i). When a node i receives messages from another node j, j is
said to be a neighbour of i. The set of neighbours for a node i is Ni.

We must consider dynamic networks however, and under gMAC many sent messages will
fail. We therefore define a switching network topology, where E(k) is the set of successful
connections in round k. This edge list can be turned into an adjacency matrix A(k) for
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every round:

A(k) =

a11(k) · · · a1N (k)
... . . . ...

aN1(k) · · · aNN (k)


wij(k) =

{
1, (j, i) ∈ E(k)
0, else

The links are indicated by a weight wij . As a matter of convention, the network does not
contain self-links. That is, (i, i) can not occur in E and the diagonal entries of A are 0.
Because the network is directed, wij(k) does not equal wji(k) in general. In some network
representations wij can be any value, and is used to indicate the weight of a link. We have
opted to make wij a binary variable describing the possibility of communication. Apart
from this physical property, an algorithm can choose to weigh or even ignore links. This
will be indicated later on by (variations of) aij and bij , which are related to wij but not
identical.

5-1-3 Synchronization Action

With a network and node model in place, the missing piece is the synchronization algo-
rithm. A synchronization algorithm should turn a collection of phase differences {(xi(k)−
xj(k))|(i, j) ∈ E(k)} into a single correction of the idle time εi(k) for this round. Of course
it is possible for a synchronization algorithm to maintain some internal state. In general:

εi(k) = f({(xj(k)− xi(k)) : j ∈ Ni(k)})
= f(θi(k))

Note that a node i knows phase differences with nodes from which it has received a
message, thus the links (j, i) towards i are of importance. For ease of notation, we define
the set of differences with neighbours available to node i at time k as θi(k)
In Figure 5-1 the position of the synchronization controller is clarified using a block scheme
representing one round of a four node network. A single node i takes a set of phase
differences with neighbours as an input, and produces a phase difference for the next
round. This path goes via the controller, which specifies how the idle time should be
adjusted (by a correction εi(k)), and the clock that counts this idle time and is disturbed
additively by di(k). Depending on the network topology for the next round, the resulting
phase xi(k) is subtracted from zero or more phases from other nodes in the network. All
these phase differences are collected in a set, and these present the input for the next
round. If no other nodes are heard, the set of phase differences will be empty, but the
controller could still propose an εi(k).
Augmenting the complete system model from Equation 5-1 with the controller, we now
have:

x(k + 1) = x(k) + ε(k) + d, x(0) = b (5-2)

ε(k) =


...

εi(k)
...


The block diagram visualisation barely works for four nodes: the network part is already
quite cluttered, and intuitively representing an operation that combines several scalars
into sets of scalars that are different in every time step is difficult. For the network scales
that are of interest to us, this approach is impractical. It has provided some insight into
the interaction between local (node-level) systems and the global scale however.
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ClockController

Network

di

+
{xj-xi} εi xi

-

Node i

-

-

-

Node

Node

Node

Figure 5-1: Framing the synchronization problem as a classical control problem using a block
diagram. The block diagram represents a single round in a four node network. Node i receives
one other node and is received by two others, but this changes every round. Each node has
the same internal structure but a different disturbance di and a different initial condition. The
local plants (nodes) are easily expressed, but for larger networks it is impossible to generate
a sound block diagram.
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Figure 5-2: An inference of the time difference (xj − xi) between node i and j, by node i.

5-1-4 Quantization

As briefly touched upon in chapter 3, the phase differences that nodes can use for synchro-
nization are not calculated by exchanging timestamps, but inferred based on the arrival
time of a message. The timestamping and triggering of these events is done using the
internal 32 kHz crystal. Because the granularity of this crystal is rather large compared
to the time scale involved, this mechanism introduces several distortions to the phase
difference estimation. Additionaly, there is a deterministic misestimation of parameters.
If we perceive phase offset of a node with respect to reference time as a continuous variable
xi, the difference between two phases xi and xj can be any real value. There are three
effects that disturb the estimation of this number:

1. Because the oscillators provide this phase only in discrete ticks, the estimation of
xj − xi is a round number of ticks as well. These ticks are large compared to the
difference to be estimated: in simulations with one second frames and worst case
drift conditions, phase differences are between -10 and 10 ticks.

2. The time taken for transmission of a message is saved and used in computations as
a round number of ticks, while it might take a fraction of a tick more or less.

3. The interrupt mechanism in the processor, and the time it takes to do calculations
is not completely deterministic: the timestamping of the receive moment can vary
stochastically. This variation has experimentally been shown [35] to be less than a
microsecond; about an order of magnitude lower than the accuracy we are trying to
achieve.

The quantization has the largest influence on the estimation.
In Figure 5-2, the process of estimating the time difference between i and j, by node i is
schematically drawn. The block shown is one slot, and the side bands of the block indicate
guard times. The real time difference xj − xi is indicated by δxij . Node j starts sending
its message after the guard ticks in its slot. Some time Ta later (not a round number of
ticks per se), the message is finished and has arrived at i, upon which the interrupt is
raised and node i timestamps the arrival. This timestamping is a rounded down number
of ticks. Let q(x) = bx · fnc/fn be the quantization operator. This operation rounds the
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time down to the nearest number of ticks. The timestamp of arrival is q(xj + Tg + Ta).
The expected time of arrival is computed as xi+Tg+Toa, which are all a round number of
ticks by definition. Toa is the precomputed ‘time on air’, in whole ticks. As noted before
[35], usually Ta 6= Toa. Now the estimated time difference can be rewritten into:

δqxij = q(xj + Tg + Ta)− (xi + Tg + Toa)
= q(δxij + xi + Ta)− (xi + Toa)
= q(δxij + Ta − Toa) (5-3)

We first cancel out the guard times (which are always round numbers), then substitute
δxij + xi for xj , which allows us to cancel out xi. This yields the final quantization rule,
showing that the misestimation of the phase difference is influenced by the quantization
operator itself and the difference between the (precomputed) Toa and the real Ta.
In an unfortunate case such as displayed in Figure 5-2, where δxij = 2.2, Ta = 5.1, Toa = 6
(all in ticks) the perceived time difference is δqxij = 7 − 6 = 1, which is wrong by more
than a tick. This is not unrealistic: the computation of Toa is more accurate but is cast
to an integer at the end, which amounts to a round down operation.
Since this quantization effect severely complicates most attempts at modelling the syn-
chronization, it will initially be ignored. A common approach to quantization operators
is to treat them as a disturbance, frequently taking the form of zero-mean additive noise
[19]. It is clear however that the quantization in this case cannot be cast aside so easily
since it contains a fixed term (the deterministic part) and is very dependent on the value
of δxij itself. In section 5-5 we will briefly revisit quantization.

5-1-5 Objective

As was noted in chapter 2, synchronization is an elusive objective. In the strongest sense,
synchronization is reached when all clocks achieve perfect timing with respect to some
absolute time:

τ1(t) = τ2(t) = . . . = τN (t) = t

In the typical network setting of MyriaNed, an external or real time t is not available, so
the strongest desired synchronization must be somewhat relaxed:

τ1(t) = τ2(t) = . . . = τN (t) ≈ t

In addition, if nodes are not neighbours their clocks being out of sync is no trouble for
gMAC. The only measure that influences the eventual energy consumption is the (maxi-
mum) absolute difference between the phases of neighbours. Perfect synchronization for a
single round in this context can be defined as:

In a round k :
xj(k)− xi(k) = 0 ∀(i, j) ∈ E(k) (5-4)

Achieving this perfect synchronization is impossible, because it would require instanta-
neous compensation of the unknown and partially stochastic clock variation d. The per-
formance of a synchronization algorithm in the context of MyriaNed is measured by the
minimal maximum phase difference over all rounds and connections: this defines appro-
priate guard times. The trivial solution, where there are no links and thus no errors, is
not allowed.
In the case of connected networks (networks for which there is a chain of links between any
two nodes in the network), the objective stated in Equation 5-4 implies x1(k) = x2(k) =
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. . . = xN (k). This problem is in fact a consensus problem: the problem of having all nodes
in a network agree on a common value.
Note that this is a slightly stronger problem statement than we initially had. To solve
our synchronization problem, it is sufficient to keep the difference between neighboring
nodes small. In consensus, we want all nodes to have an identical value. The problem of
keeping differences between neighbouring nodes small has been named a gradient problem
for obvious reasons [18, 64], but that term does not seem to have caught on. In the next
section, we will detail the connection to consensus.

5-2 Consensus

In [49] a good survey of consensus processes is given. We will reproduce the most relevant
theory here to familiarize the reader with basic consensus. The most straightforward and
classic node-level algorithm of solving the consensus problem is:

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t)), xi(0) = bi (5-5)

where x(t) is a continuous-time state of the node, which is more general than the phase.
The weighting aij ∈ [0, 1] is related to the connections wij previously mentioned by the
fact that when wij is 0 (no connection), aij is necessarily 0 too. The aij terms can be used
for tuning of the algorithm however, with the limitation that ∑j aij = 1. In the coming
descriptions of algorithms, we will reuse aij for algorithm-defined weights of links, but its
role may change subtly between algorithms.
In the continuous-time form, the system’s consensus process can be conveniently written
as:

ẋ = −Lx (5-6)
L = [lij ] (5-7)

lij =
{
−aij , j ∈ Ni∑
j 6=i aij , j = i

(5-8)

L is the graph Laplacian, which is characteristic of the graph and has many interesting
spectral features. As long as the directed graph is strongly connected – that is, there is a
path from any node to any other node in the network – this consensus process converges.
This is easily proven via analysis of the spectrum of L. If the graph is undirected or
balanced (every node has as many incoming as outgoing links), the equilibrium value is
the average of the initial states.
More relevant to our case is the canonical discrete-time consensus process:

xi(k + 1) = xi(k) + kp
∑
j∈Ni

aij(xj(k)− xi(k)) (5-9)

where the similarity to Equation 5-2 is obvious. The factor kp> 0 is a gain, and aij ∈ [0, 1]
are weights that can be defined in the algorithm. The collective dynamics under this rule
are:

x(k + 1) = Px(k)
P = I − kpL

where P is commonly called the Perron matrix. In [49], it is proven that as long as
0 < kp < ∆, where ∆ is the maximum degree (∑j∈Ni aji) in the network, consensus is
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reached by this rule on a strongly connected network. Again, if the graph is balanced or
undirected, the equilibrium is the average of initial states.

The synchronization algorithm that is currently used by MyriaNed (Median, introduced
in chapter 3) is closely related to this consensus algorithm, albeit on a changing network
topology, using quantized values, with an operator that is not very common in control
systems. By discretizing the synchronization process into rounds of communication, the
discretized consensus model fits perfectly: the change between two time steps is what is
specified by the controller. The influence of the network topology will be a topic in the
following section.

First the correspondence between the median operator and a general consensus algorithm
will be made more explicit. The median operator can be seen as a linear operator in two
ways: treating it as a weighted sum, or treating it as an approximate average.

Median as Weighted Sum The Median control algorithm takes the median of the in-
coming set of phase differences and corrects its own phase with half of that value:

εi(k) = 1
2 Med(θi(k)) (5-10)

where the Med function is defined as follows. Let z ∈ Rn be a sorted column vector,
where z1 ≤ z2 ≤ . . . ≤ zn.

Med : Rn → R, such that Med(z) =


zn

2
, n even

zn+1
2
, n odd

0, n = 0 (empty vector)

In essence, this is a selection. We can rewrite Equation 5-10 as a weighted sum:

εi(k) = 1
2 Med(θi(k))

= 1
2

∑
j∈Ni(k)

aij(k)(xj(k)− xi(k))

aij(k) =
{

1, if j is the median node of i
0, else

Now the state update equation per node is:

xi(k + 1) = xi(k) + di + 1
2

∑
j∈Ni(k)

aij(k)(xj(k)− xi(k)), x(0) = b

which is the general discrete-time consensus process from Equation 5-9 with time-varying
links, weights and a constant added per round, and kp = 1

2 . Integrating this into the
general model of Equation 5-2 yields:

x(k + 1) = Am(k)x(k) + d (5-11)
where:
Am(k) = [aij(k)]

aij(k) =


1−∑j 6=i aij(k) = 0.5, i = j

0.5, if j is the median neighbour of i
0, else

Here we are using the subscript m to median selection, as opposed to average.
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Median as Approximate Average Instead of a selection, one could also choose the aij
weights in Equation 5-9 so as to compute the average difference with neighbours and
correct the state with that. This is a more common approach to the consensus problem
[57, 32]. To compensate the difference between the average and the median, the extra
term v(k) is introduced.

x(k + 1) = Aa(k)x(k) + v(k) + d (5-12)
where:
Aa(k) = [aij(k)]

aij(k) =


1−∑j 6=i aij(k), i = j

1
|Ni| , if j ∈ Ni
0, else

This v(k) is a stochastic vector that is zero-mean, as proven by the following lemma:

Lemma 5-2.1. If the underlying distribution is symmetric and has a mean, the sample
median is an unbiased approximator for the sample mean.

Proof. Let X1, . . . , Xn be the sample of a symmetric distribution with mean µ. Let Yi =
Xi − µ be samples corrected for that mean. Now take µ̂ = E( Med(Y1, . . . , Yn)). By
symmetry of the samples Yi around 0, −µ̂ = E(− Med(Y1, . . . , Yn)) = E( Med(Y1, . . . , Yn)).
Since −µ̂ = µ̂, it must be 0. Now

E( Med(X1, . . . , Xn)) = E( Med(Y1 + µ, . . . , Yn + µ))
= E(µ+ Med(Y1, . . . , Yn)))
= µ

The symmetry assumption is satisfied by the phase differences in the network, since the
process that generates these differences is perfectly symmetric. For any increased proba-
bility of a positive time difference between node i and j, an equal increase in probability
of a negative time difference between node j and i arises. This guarantees that the un-
derlying global distribution of time differences is symmetric. This means that v(k) in
Equation 5-12 is zero-mean.

Consensus algorithms of this form, where the controller acts as a single integrator with
some modified input, are called first order consensus algorithms. In the next section,
ways of proving stability of such algorithms on discrete, switching, directed networks will
be introduced. Improved synchronization algorithms will involve drift estimation (see
chapter 4), which can not be expressed by first order consensus algorithms: a second state
(and thus a second order) is needed. A general description of second-order linear consensus
algorithms is:

xi(k + 1) = xi(k) + kp
∑
j∈Ni

aij(xj(k)− xi(k)) + kiαi(k) + di (5-13)

αi(k + 1) = αi(k) + f(θi(k)) (5-14)

Where f is a linear function, and ki a tuning factor. Analysis of stability of these algo-
rithms proves to be very difficult, and some attempts will be made in section 5-4.
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Figure 5-3: A visualization of the condition for convergence of discrete consensus on switching
undirected graphs.

5-3 First Order Algorithms

This section will provide an overview of the techniques available to prove stability and
convergence of consensus algorithms as described by Equation 5-9, with an application to
synchronization protocols in MyriaNed. Proving convergence under ideal circumstances
can be done using several techniques from literature. When we consider a disturbed
consensus process on a switching, directed network however, most techniques are of limited
value.

Matrix Theory

In [32], one of the earlier publications on consensus, a discrete time consensus process on
switching undirected networks is treated. Using the ergodicity of the system matrix and
its products, Wolfowitz’s Lemma (see Appendix A-1-2) is invoked to prove convergence
towards a consensus value. Using this technique, it can be concluded that (paraphrasing):

• If every (undirected) topology that occurs is connected, the system converges to
consensus.

• If there is an infinite sequence of contiguous, nonempty, bounded, time-intervals
[ti, ti+1), starting at t0 across each of which the union of topologies is connected, the
system converges. This is visualized in Figure 5-3.

Especially the second conclusion, which implies the first one, is very interesting. If we
would accumulate all the links that occur over the rounds of gMAC, and after some time
these links form a connected network and we could repeat this process again, consensus
will converge. Since the links in MyriaNed are probabilistic, this will be the case as long
as all nodes are close enough to form one network. It is very unlikely that one round will
contain all links to create a connected network, but it is bound to happen over multiple
rounds. As long as the links that are needed to make the network connected have some
probability of happening, it will happen eventually and the condition is satisfied.
MyriaNed is a directed network however. The first conclusion can be extended to the
directed case by using the Geršgorin Circle Theorem (see Appendix A-1-1) to limit eigen-
value locations, but this does not suffice for extending the second, more useful result. This
is generalized to directed networks with arbitrary varying positive weights by [53]. This
framework comes closest to proving the stability of the Median algorithm in the case of
perfect, identical oscillators. Consider the system:

xi(k + 1) = 1∑n
j=1 aij(k)Gij(k)

n∑
j=1

aij(k)Gij(k)xj(k)
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Figure 5-4: A visualization of the condition for convergence of discrete consensus on switching
directed graphs.

Where Gij is 1 or 0 according to the existence of link (i, j) (Gii=̂1), and aij > 0 are weights
given to certain neighbours. Within this model we are still free to apply the ‘median as
average’ an ‘median as selection’ interpretations. In matrix form:

xi(k + 1) = D(k)xi(k) (5-15)
D = [dij ]

dij = aij(k)Gij(k)/
n∑
j=1

aij(k)Gij(k)

The main theorem of [53] is as follows (paraphrased): The system (5-15) achieves consensus
asymptotically over a sequence of topologies G(k) if there exists an infinite sequence of
uniformly bounded (see Definition A.5), nonoverlapping time intervals [tj , (tj + lj)), j =
1, 2, . . ., starting at t1 = 0, with the property that each interval [tj + lj , tj+1) is uniformly
bounded and the union of graphs across each interval [tj , (tj + lj)) has a spanning tree.
This condition is visualized in Figure 5-4.

In other words: all the nodes in the network will agree on a common value (not necessarily
the average) as long as the network topology forms a spanning tree over intervals that occur
often enough, are short enough and are separated by intervals that are not too long. A
network is said to contain a spanning tree if every node in the network except for one
(the root node) has at least one incoming connection, and the network is connected. A
strongly connected network has a spanning tree.

The consensus rule is not exactly equal to either (5-12) or (5-11). What matters for the
proofs is that the system matrices are all stochastic, nonnegative, square and positive
on the diagonal. In practice this means that the weights aij used in an algorithm must
be between 0 and 1, and the sum ∑

j 6=i aij < 1, in order to keep the diagonal entry
positive. The proof is then produced by first establishing that if a sum of matrices (union
of graphs) contains a spanning tree, the product of matrices will contain a spanning tree
as well. Secondly, matrices describing graphs with a spanning tree are shown to have
a single maximum eigenvalue at 1. This is quite intuitive, since in order to create a
spanning tree, at least N − 1 nodes will need to have at least one incoming link, so there
will be only one row at most with all zero off-diagonal entries. Via Geršgorin, the single
maximum eigenvalue at 1 follows naturally. Finally, stochastic matrices with this spectral
property are ergodic, and then via an ordering of the union intervals and Wolfowitz again,
convergence is proven.

If looking at all transmissions, spanning trees occur very regularly in MyriaNed deploy-
ments. In a network where all nodes are within each others range, a spanning tree will
occur as soon as one node broadcasts successfully to all others, which is bound to happen
very quickly. To proceed with the above analysis, we would need to consider only the
median neighbours as connections, and look at the occurrence of spanning trees. Since
the variety of networks and possible phase differences is very large, it is impossible to
reasonably estimate the likelihood of spanning trees analytically.
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This analysis was done using experimental data from the two-group experiment from [35].
The topological information and measured time differences from this experiment were
preserved over 300 rounds. This data was parsed, starting at the first round. ‘Median
connections’ from rounds were added to the topology until a spanning tree is formed. When
this is the case, rounds are removed from the start of this interval until the spanning tree
disappears. The lengths of the intervals were averaged, showing in the blue line in Figure 5-
5b, with the standard deviation. To make sure that this is not a lucky result, the topology
information per round was bootstrapped: new sequences of topologies were generated by
randomly picking rounds (with replacement) from the existing dataset. Doing this 100
times, and calculating the average every time shows that the result is not statistically
surprising: spanning trees always occur frequently.

(a) Topology over the whole experiment
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(b) The average number of rounds to a spanning tree, and its likelihood

Figure 5-5: Results from a two-group experiment carried out earlier. The data was analyzed
to get an impression of the frequency of occurrence of spanning trees.

Lyapunov Theory

A second promising approach is Lyapunov theory: attempting to construct a Lyapunov
function for the global system, which proves stability (see Appendix A-1-3). A continuous
time consensus process is studied in [48]. The network under study is a directed, weighted,
switching topology, and follows the process described by Equation 5-5. This leads to a
network dynamic model such as Equation 5-8, but with a time-variable Laplacian matrix.
The graph is assumed to be strongly connected and balanced. There are several limitations
to this model that keep it far from describing MyriaNed: it has a continuous-time state,
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every instance of the graph has to be strongly connected in itself, and it needs to be
balanced.
The balanced property is needed because it makes the Laplacian positive semi-definite,
allowing the following Lyapunov approach. A disagreement vector δ(t) = x(t) − xss is
defined, where xss is the consensus value, which happens to be the average of x(0) under
the above assumptions. It has dynamics:

δ̇(t) = −L(k)δ(t)

It is then proven that a valid Lyapunov function is

V (δ) = 1
2‖δ‖

2

which is smooth, positive-definite, so asymptotic stability with a performance bound is
proven.
In [43] the Lyapunov approach is taken too, but on a level of extreme abstraction. A very
general nonlinear discrete-time system on an Euclidian space is investigated:

x(k + 1) = f(k, x(k))

A sequence of directed graphs (N ,A(k)) (the node set and adjacency matrix) determines
what information is available to each node at a specific time. If f is such that for every
node the updated state xi(k+ 1) is a strictly convex combination of its current state xi(k)
and the current states of its neighbours, the convex hull of states Ṽ (x) = conv{x1, ..., xn}
does not grow along the solutions of the system: Ṽ (f(t, x)) ≤ Ṽ (x). Thus, the system is
(Lyapunov) stable.
Convergence towards the equilibrium requires conditions on the topology. The system is
uniformly globally attractive if and only if there is an interval T ≥ 0 such that for all time
instances t0 there is a node connected to all other nodes across the interval [t0, t0 +T ]. In
essence, this is a similar requirement as the spanning tree requirement from [53]. A node
being connected to another node across an interval does not place demands on the order
of links between these nodes. It is again just the union of the graphs that occur in the
interval that matters.
Note that xk does not have to be a scalar per node in this case, and certain second-order
processes can be analyzed as well. We will attempt this in the following section.
The median operation for node i can be simplified to:

xi(k + 1) = 1
2xi(k) + 1

2xj(k)

Where j is the index of the median for this round. This is always strictly within the
convex hull of the states of i and its neighbours (see appendix A-2). Only when a node
has no neighbours, this rule is violated.
In conclusion, we have been able to establish two subtly different results via the two
approaches:

1. The Median algorithm is convergent if just the connections formed by the median
selection operation form a spanning tree in the network accross bounded time in-
tervals that form an infinite sequence. It is even allowed that there are bounded
intervals in between the spanning-tree-containing intervals. This result is valid for
all algorithms where the new state of a node is a weighted sum of its own and its
neighbours’ states, and the weights sum up to 1.

2. The Median algorithm is convergent if the network forms a spanning tree within a
bounded interval starting at any time. This result is valid for any process where a
node’s new state is a convex combination of its own state and that of its neighbours.
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Figure 5-6: The controller formulated in a way that encompasses Median, MemoryMedian
and PISync.

5-4 Second Order Algorithms

Out of chapter 4 we concluded that drift estimation is key to improving synchroniza-
tion performance. As we will see in chapter 6 and chapter 7, two drift-estimating algo-
rithms emerge as serious contenders for an improvement over Median: MemoryMedian
and PISync. The algorithms are very similar, and we will first try to formulate them in
the same framework in order to analyze their properties and differences.

5-4-1 Framework

The controller structure for Median, MemoryMedian and PISync as it would fit into
Figure 5-1 is shown in Figure 5-6. The set of measured time differences is first accumulated
in a weighted sum (for PISync, two different weighted sums). Unfortunately, these sums
are not time-invariant but different per round number k. The resulting values are used
for proportional correction (β multiplied by kp) to ensure a good enough synchronization
in the next round. Additionally, another value weighted sum is fed through a low pass
filter (integrator) to contribute to the long-term error estimate. This estimate α is used
for correction via ki. A special case is when no time differences are received, then only
the latest value from the low pass filter is used for correction.

5-4-2 Median

For Median, the diagram in Figure 5-6 simplifies a good deal. The weighted sum becomes
the median operation (thus one aij coefficient is 1, the others 0), and ki = 0, cancelling
the drift estimation branch. kp is commonly 0.5.

5-4-3 MemoryMedian

In Figure 5-7, the extension of Median to MemoryMedian is shown. The weighted sum has
become a median operation. The filter that results in α can be used in two ways, c = 1 and
c = 1− ρ. For c = 1, the time-domain filter equation is αi(k+ 1) = αi(k) + ρ Med(θi(k)).
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(a) MemoryMedian

(b) PISync

Figure 5-7: The general controller from Figure 5-6, specified into MemoryMedian and PISync.

For c = 1−ρ, it is s αi(k+ 1) = (1−ρ)αi(k) +ρ Med(θi(k)). αi(k) is the state and output
of the filter; the long-term estimate of the drift or the correction.

The first implementation (c = 1) is most truthful: the error gets integrated with a certain
gain, and as long as the measured error stays zero, this integrated value stays constant.
This filter is susceptible to windup (any small error gets added) and has the drawback
that its granularity is determined by ρ. The granularity determines the accuracy of the
output and the convergence speed. We might want to pick a large value for ρ to make the
filter adjust quickly to changing errors, but this implies a low precision in the values that
αi can take.

The other option is setting c = 1 − ρ. This filter does not have the coupled convergence
and granularity problem of the other implementation because a large ρ means 1 − ρ is
small and vice versa. Since this filter needs a persistent input to keep αi at a constant
level, it does not wind up easily. It has a drawback as well: since it needs an error to keep
its level, there will always be a residual error while using this filter. A measured error of
0 will change the value of αi, and in the next round this will create a new time difference.
In simulations, this filter turned out to perform best however.

5-4-4 PISync

For PISync, the block diagram is specified in Figure 5-7b. The weighted sum block has
become a bit more complicated: there is a different set of weights for the proportional and
integral correction. In the algorithm as it is ported to MyriaNed, the time differences are
first multiplied by a number as they come in, and then the average is taken. Of course
this can be described in one step by a weighted sum as well.

For the proportional correction a constant factor is used, bc, so bij(k) = bc
Nj(k) , where Nj(k)

is the number of neighbours in round k. The factor kp is now redundant, and is set to 1.

For the integrating filter, the same reasoning as above holds. The gains in the weighted sum
are extremely small however, so even with c = 1 and ρ = 1 the granularity of the estimate
is fine enough, because the input is a very small number. It was noted in simulations that
the integration of the transmission time estimate error still leads to integrator windup,
and thus an overall speedup of the network. A filter structure with ρ = 1 and c < 1 will
prove most useful, see section 7-3-4.
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In the following section we will try to apply techniques from first order algorithms to these
second order algorithms.

5-4-5 Stability

The system matrix approach is difficult to apply to these algorithms. In addition to the
single state per node (the phase error), the filters add another local state. The system per
node is now:

xi(k + 1) = xi(k) + di + kp
∑

j∈Ni(k)
bij(k)(xj(k)− xi(k)) + kiαi(k)

αi(k + 1) = cαi(k) + ρ
∑

j∈Ni(k)
aij(k)(xj(k)− xi(k))

The state αi has the purpose of compensating the persistent disturbance (di), and thus it
is not required that it should go to 0 or be in agreement with all other α’s. This is a very
different objective than defined in the proportional algorithms. Even if solve this problem
by doing a state transformation γi(k) = di + kiαi(k) such that the new state γi needs to
approach 0, the resulting system matrix will have row sums of more than zero, since x is a
consensus process plus some other process. This violates a basic assumption in all matrix
approaches: that the system matrix is stochastic.

The Lyapunov approach seems more promising, since it allows for multiple states naturally.
Unfortunately, the convexity constraint is violated: there is no process that ensures αi(k+
1) is in the convex hull of αi(k) and the α’s of its neighbours. Although commonly c < 1,
all neighbours might have an α that is farther removed from 0, and in that situation the
convex hull might become larger (if all phase differences are 0 for example). If c = 1 (or
larger), the strict convexity is violated as well, if αi(k) happens to be on the convex hull.

5-5 Error Bounds

In the analysis of first order algorithms and their stability we have ignored the effect
of drift. Since we conceive of this drift as a disturbance instead of a characteristic of
the plant, this is allowed, and Median could be proven to converge. When adding the
disturbance, this will drive the states of nodes away from perfect consensus. In such a
process, an equilibrium will be found between the convergence of the controlling algorithm
and the divergence of the disturbance. Finding the position of this equilibrium would be
extremely useful, because it would allow us to analytically predict the guard times that a
network needs.

The diverging properties of the disturbance are easily modelled using assumptions on the
drift values and round time. Providing bounds on the convergence of consensus processes
is much more involved. The dynamics of the topology are quickly complicating matters for
networks other than fully connected, undirected networks. No results have been published
for all but the most simple networks [34, 5], and bounds are often found to be overly
conservative when compared to numerical results [23].
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Chapter 6

Candidates

In chapter 4, multiple promising algorithms that are compatible with gossip MAC (gMAC)
were found. In this chapter, their MyriaNed-specific versions will be introduced. Every
algorithm will first be repeated as it was designed originally. Then the steps for adaptation
will be described, and a pseudocode version will be provided. The notation will be the
same as in 5-1

6-1 MemoryMedian

6-1-1 Median

The original Median algorithm does only proportional correction, based on the Median of
time differences. We have already introduced the algorithm in words (chapter 3) and in a
block diagram (section 5-4), but to be consistent with the other sections of this chapter,
it is reformulated in pseudocode in Algorithm 1.

Algorithm 1 Median, as executed by a node i
for every round k do . After receiving messages

for every received message j do
Infer phase difference (xj − xi)
Add it to θi(k)

end for
Compute εi(k)← kp Med(θi(k))
Ti,k ← T + εi(k) . Correct the coming idle time

end for

6-1-2 MemoryMedian

As concluded in chapter 4, the inclusion of drift estimation would likely be an improvement.
We adhere to the heuristic that the median of phase differences is a good representative
of the group of phase differences.

By integrating the median values, the drift can be compensated in the long term. Two
filters were considered:

Master of Science Thesis Bouke N. Krom



52 Candidates

Table 6-1: MemoryMedian properties

Parameter Range Use
Message None
Tuning parameters ρ (0, 1) Lowpass of time difference integration

kp (0, 1) Gain of proportional correction
ki (0, 1) Gain of integral correction

1. a cumulative one:

αi(k + 1) = αi(k) + ρ Med(θi(k))

2. a balanced one:

αi(k + 1) = (1− ρ)αi(k) + ρ Med(θi(k))

In the simulations that will be treated in chapter 7, these two filters are compared. The-
oretically, the cumulative filter works better. It keeps integrating errors until a perfect
estimate is reached, and then keeps its estimate as long as the error is zero. The balanced
filter on the other hand needs a constant error input to retain its estimate, and this a
steady-state error is unavoidable. It turns out however that even in a small, unchallenging
topology the cumulative filter suffers from windup. The second balanced filter is a more
robust alternative, and is therefore preferred.

The MemoryMedian algorithm is described in Algorithm 2. For kp = 0.5 and ki = 0, this
equals Median.

Algorithm 2 MemoryMedian, as executed by a node i
for every round k do . After receiving messages

for every received message j do
Infer phase difference (xj − xi)
Add it to θi(k)

end for
βi(k)← Med(θi(k))
αi(k)← (1− ρ)αi(k − 1) + ρβi(k) . Integrate the time difference
εi(k)← kiαi(k) + kpβi(k)
Ti,k ← T + εi(k) . Correct the coming idle time

end for

6-2 PISync

In [9, 75], a PI controller for time synchronization is proposed, specially designed for a
network with asynchronous, directional gossip communications. The same authors had
published some previous iterations of this approach, but the algorithm described in [9] is
reportedly most useful for real-life deployments.

6-2-1 Original

A linear clock model is again the starting point. The offset is not an initial quantity, but
instead the time progression since the last update is used. Let tu,i denote the time instant
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update u on node i. In addition let t′u,i be the time instant just before the update is
applied. Then the clock of node i is

τi(t) = τi(tu,i) + âi(tu,i)[t− tu,i]

Where âi is a drift estimate that is used to compensate the real drift ai. In the next
update instant both quantities characterizing the clock readout are updated:

τi(tu,i)← τi(t′u,i) + u′(tu,i)
âi(tu,i)← âi(t′u,i) + u′′(tu,i)

Both inputs u are conveniently already functions of the time difference with a neighbouring
node:

u′(tu,i) = bij(τj(t′u,i)− τi(t′u,i))
u′′(tu,i) = aij(τj(t′u,i)− τi(t′u,i))

The values of aij and bij vary across publications. In [9] bij = 0.5 is not even considered
tunable. For fixed values of aij , bij , [8] proves convergence of the algorithm when bij ∈
(0, 1], and aij ∈ (0, āij), where āij depends on some properties of the graph Laplacian. In
[75] an adaptive scheme is proposed, where the value of aij is dependent on the differential
of the measured error:

aij(k) =


0 if |τj(k)− τi(k)| > emax
amax if |τj(k − 1)− τi(k − 1)| > emax and |τj(k)− τi(k)| ≤ emax
λi(k)aij(k − 1) otherwise

λj(k) =


1 if τj(k − 1)− τi(k − 1) = 0 or

τj(k)− τi(k) = τj(k − 1)− τi(k − 1)
min

(
| τj(k−1)−τi(k−1)
(τj(k)−τi(k))−(τj(k−1)−τi(k−1)) |,

amax
ai(k−1)

)
otherwise

(6-1)

Foreshadowing the MyriaNed implementation, the update instants tu,i are represented by
k here for ease of notation.

The logic behind this approach is as follows. To prevent integrator windup, errors that
can not reasonably stem from drift accumulation should not be integrated. This leads
to a choice for emax. This situation is expected at the start of a synchronization, when
offset is the main contribution to time differences. Then as soon as the offset is diminished
sufficiently, and the emax-boundary is traversed, the maximum integral gain amax should
be used to promote fast correction. A large aij is thought to be causing a large steady
state error due to noise integration. Thus, when closer to a noise-disturbed steady state,
aij should be smaller. If there is a time difference caused by offsets, the error is typically
quite constant, and the magnitude is large compared to the difference over rounds. In
(6-1), this is translated into suitable values for λ, where division-by-zero anomalies and
exceeding of amax are prevented.

6-2-2 Adaptation

The communication strategy of MyriaNed fits this protocol precisely, and there is no
need for extra communication overhead. One discrepancy is however that the original
PI controller updates after every received message, whereas MyriaNed can only update
after a series of messages has been retrieved. Updating between different messages would
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aij

xj-xi
emax-emax

ac

amin

amax

adaptive

constant

Figure 6-1: Different strategies for determining aij for PISync

inevitably lead to timing issues: the processing of a message might not finish in time, and
negative corrections are very limited. We will solve this issue as shown in Algorithm 3:
messages are collected over a round, and the corrections are applied all at once.

This makes the adaptive gains hard to replicate precisely. The rules are designed by the
authors for the case when every received message is followed by a correction, not a ‘batch’
correction. As a compromise, we propose two schemes: a constant ac, which is only applied
for |τj(k)− τi(k)| ≤ emax, and an ‘adaptive’ scheme, where aij is varied between amax for
|τj(k) − τi(k)| = emax and amin for τj(k) − τi(k) = 0, see Figure 6-1. This scheme was
proposed by the authors of [75] before, in an unpublished version of their paper.

Since the amount of correction done to the clock and drift estimate should not grow
when more messages are received, the average correction that follows from the individual
corrections is used.

In this algorithm αi is not a direct estimate of the drift value, but an estimate of 1
fi
, the

inverse of a node’s frequency. To preserve units and gain magnitudes, this convention is
kept. The update equation looks slightly different. Let α̃i be an estimate of the node’s
drift, then 1

α̃i
= fn

fi
= fnαi, fn being the nominal frequency.

Algorithm 3 PISync for MyriaNed, as executed by a node i
αi = 1

fn
. The initial estimate is 1/32kHz

for every round k do . After receiving messages
for every received message j do

Infer phase difference δxij = xj − xi
Compute aij(δxij) . The (optionally) adaptive value of a
Record bδxij . Aggregate u′
Record aijδxij . Aggregate u′′

end for
βi(k)← Mean({bδxij})
αi(k)← αi(k − 1) + Mean({aijδxij}) . Update drift estimate
εi(k)← (fnαi(k)− 1)T + βi(k)
Ti,k ← T + εi(k) . Correct the coming idle time

end for

6-3 ATS: Average TimeSync

The most different algorithm that still fits MyriaNed is ATS [57], which relies on two
simultaneous consensus processes to have all nodes agree on the time.
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Table 6-2: PISync for MyriaNed, properties

Parameter Range Use
Message none
Tuning parameters ac or amin, amax (0, T/2) Drift estimate update speed

emax > 0 (function of T ) Maximum error to integrate
b (0, 1] Proportional gain

6-3-1 Original

ATS is different from the other protocols because it does not permanently correct its clock,
but continuously estimates the parameters needed to translate its hardware clock value,
τi, to a time estimate via t ≈ τ̂i = âiτi + b̂i. The protocol consists of three parts: drift
estimation, drift compensation and offset compensation.

Drift estimation Every node keeps estimates of the relative drift between itself and its
neighbours. The drift factor of the neighbouring node in terms of node i’s clock is ηij :

τi(t) = ait+ bi

τj(t) = ajt+ bj = aj
ai

(τi(t)− bi) + bj

= aj
ai
τi(t) + bj −

aj
ai
bi

= θijτi(t) + bj − ηijbi

In round k, node i receives a timestamped message of node j at time instant tk,j , and
records the time of arrival. Assuming negligible transmission delays, this leads to two
values at node i (the perceptions of tk,j by i and j): τi(tk,j), τj(tk,j). Repeating this a
round later, τi(tk+1,j) and τj(tk+1,j) are retrieved. This is already sufficient to calculate
the drift between the two nodes. Due to (quantization) errors and time variability, the
estimate is smoothed by a low pass filter with a tuning parameter ρη ∈ (0, 1):

ηij ← ρηηij + (1− ρη)
τj(tk+1,j)− τj(tk,j)
τi(tk+1,j)− τi(tk,j)

(6-2)

Drift compensation These drift estimates are used to apply a consensus protocol on the
drift value of the network as a whole. Every node tries then to correct towards a reference
drift ā. Neighbouring nodes communicate their own drift estimate âj , and node i uses
those to update its own estimate (again smoothed):

âi ← ρvâi + (1− ρv)ηij âj

This is essentially a consensus process, and is proven to converge to a common estimate ā
along those lines, such that for every node asymptotically âiai = ā.

Offset compensation The offset compensation works very similarly, and is executed at
the same time as the drift compensation. The difference between the two corrected times
is used to converge towards a common offset b̄.

b̂i ← ρob̂i + (1− ρo)
(
(âiτi(tk,j) + b̂i))− (âjτj(tk,j) + b̂j))

)
(6-3)

Note that this requires the sending of b̂j as well. This process makes every node’s estimate
converge such that b̂i = b̄− âibi asymptotically.
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Table 6-3: ATS for MyriaNed, properties

Parameter Range Use
Message â 1±O(10−4) Estimate of node’s inverse drift

such that âiai = ā

b̂ N Estimate of node’s inverse offset [ticks]
such that b̂i − âibi = b̄

τi N+ Current hardware clock value
Tuning parameters ρη (0, 1) Lowpass of relative drift estimate

ρv (0, 1) Lowpass of reference drift estimate
ρo (0, 1) Lowpass of offset estimate

6-3-2 Adaptations

The protocol as proposed above needs to send three items per round: the time stamp,
drift estimate and offset estimate. In ATS, it’s important that the τ timestamp sent is
the uncorrected clock, whereas the τ̂ is the corrected clock value. In other algorithms, the
most recent version of the clock is always used, so corrections can be applied at any time,
and readouts are always correct. Here we need to keep track of two clocks, the hardware
and the (corrected) software clock.

ATS can be executed as intended, using every received message for updating the estimates.
At the end of each round, the best clock estimate τ̂ can be used to determine the next
wakeup time. Since τ̂ is the best estimate of the reference time, we should wake up at

τ̂i = (k + 1)T
âiτi + b̂i = (k + 1)T

τi = (k + 1)T − b̂i
âi

Since the gap between the current wake up time and the next is dependent on the estimates
up to now, it can not be expressed as a simple correction of T . Via τi, the wakeup time
of node i can be expressed as tk+1,i = ai

(k+1)T−b̂i
âi

+ bi. The time difference that will be
used as a performance measure for the synchronization is τ̂j − τ̂i, since if this difference is
zero, both nodes have possession over the same clock, and are perfectly synchronized.

Algorithm 4 ATS for MyriaNed, as executed by a node i
for every round k do . After receiving messages

for every received message j : (τj , b̂j , âj) do
if node j was heard before then

ηij ← ρηηij + (1− ρη)
τj−τ ′j
τi−τ ′i

. Update relative drift estimate
end if
(τ ′i , τ ′j)← (τi, τj)
âi ← ρvâi + (1− ρv)ηij âj . Update reference drift and offset
b̂i ← ρob̂i + (1− ρo)

(
(âjτj + b̂j)− (âiτi + b̂i)

)
end for
Wake up again when τi = (k+1)T−b̂i

âi
end for
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6-4 Temperature Compensation

Already introduced in section 4-3, we will also include the pseudocode for the temperature
compensation algorithm here for future reference. In Algorithm 5, Tt is the nominal
turnover temperature, and h is the temperature dependency in ppm ◦C−2.

Algorithm 5 Temperature compensation, as executed by a node i
for every round k do . After receiving messages

Retrieve temperature Ti . From measurement or memory
ξi(k)← h(Ti − Tt)2 · T
Ti,k ← T + εi(k) + ξi(k) . ε comes from the synchronization algorithm

end for

Master of Science Thesis Bouke N. Krom



58 Candidates

Bouke N. Krom Master of Science Thesis



Chapter 7

Simulations

A closer look at the algorithm candidates’ potential performance compared to Median was
taken by simulation. A special-purpose simulator was built, and MemoryMedian, ATS and
PISync were tuned and compared to each other on different networks and settings. This
chapter will first treat the implementation of the simulator, and then present results from
simulations in section 7-2.

7-1 Implementation

7-1-1 Introduction

The simulator is written in the Python 3.4 programming language, using the SciPy stack
which provides routines for numeric and matrix-vector calculations (NumPy) and plotting
(matplotlib). Python was chosen over previously used tools like Matlab and Octave to
explore the potential of SciPy, and to see how well it compares to the established tools for
these types of applications. Additional benefits are that it’s free (both in the monetary and
in the Open Source sense), and the blend of object-oriented programming and scripting
lends itself well for simulation of communicating objects like nodes.

In the simulator, the progression of time is represented by the changing of each clock’s
phase. The process to replicate per node is one already familiar from chapter 5:

xi(k + 1) = xi(k) + (ai − 1)T + ui(k)

Where xi(k) is node i’s deviation from the reference time in round k, ai is the drift factor
of the node and T is the round time. In every round, a node can apply a clock correction
ui(k), which is a function of the current and previous quantized time differences with its
neighbours and information passed on in messages. For memoryless algorithms (Median),
only information from the current round can be used.

In Figure 7-1, an outline of the simulator modules and their interaction is provided. The
simulator is based on rounds. The active period of a round is simulated as if it were instan-
taneous; slots are not simulated, and the time differences are assumed to remain constant
over the active period. An active period consists of the exchange of messages dictated by a
certain topology. Afterwards, every node has a routine in which it executes the correction
algorithm, and the clock is progressed to the next round. The join message and related
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Figure 7-1: An overview of the modules that are used during a simulation.

functionality is beyond the scope of this simulator; the network can never dissynchronize,
because communication takes place regardless of the time differences between nodes.
In the following, every module will be treated in detail separately, starting with the main
simulator driver script.

7-1-2 Main Coordination

The execution of a simulation is done by running the SimDriver file. It is a Python script
that sets up the settings for the classes (the optional quantization of the clocks, and the
range of offsets for example), and instantiates N nodes (containing clocks).
When the nodes and settings are set up, the simulation is carried out for a prespecified
number of rounds, by calling Simulator.simulate with the topology and the node list
(the number of rounds is implicit in the number of topologies provided).
Finally, when the full number of rounds is simulated, the script calls routines from the
Plotter to generate plots or output data. The data to plot is contained in local logs of the
Node objects themselves, so just passing a reference to those object suffices. For example,
to plot a graph of the time differences in the network, the list of nodes is passed, and the
Plotter retrieves the data from the Node objects.

7-1-3 Simulation

The Simulator module contains only one method, simulate. By calling this routine with
a topology generator and a list of nodes, the simulation is run (resulting in the logs of
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nodes being filled). Every round a topology is requested from the TopologyGenerator.
This topology, in the form of a directed adjacency matrix with ones and zeroes, is used
for the routing of messages. For every node, the TX message is requested from the Node
object with the specified ID (get_TX). This message is then fed to the receiving nodes
(put_RX), which are inferred from the adjacency matrix.

After all the message exchanges are done, every node’s next_round method is called,
prompting them to calculate the clock correction from this round, and progressing the
clock to the next round. When the topology generator runs out, the simulation is done.

7-1-4 Defining Topologies

The TopologyGenerator creates adjacency matrices for the network for every round.
Although in reality the time differences influence the topology, it is assumed for now
that the synchronization remains tight enough to provide no problems for gMAC. The
possibility to generate topologies using time differences remains open in this architecture
however.

There are roughly two types of topologies that can be generated: artificial and experimen-
tal ones. Experimental topologies are created from the logfiles of previous experiments.
The number of nodes is fixed, but the number of rounds can be extended by bootstrapping
(selecting randomly with replacement) from the previous sequence of topologies. Provided
of course that the topology is static and the original number of rounds is large enough.
Artificial topologies are created from theory, and can be as simple or advanced as desired.

Artificial

random_topology(N, p, Nrounds) The simplest of topologies is a directed Bernoulli
random network: for Nrounds rounds, each of the N nodes has an independent propability
p of connecting with a neighbour. By picking p ≈ 0.25, the topology is somewhat realistic.

gmac_fully_connected(N, Nrounds, Ns, maxSched) In reality however, a tranmis-
sion either fails or succeeds, and if it succeeds, it reached all neighbours (as long as no
schedules are active). This topology more like gMAC is produced by this method. It takes
the number of nodes N, the number of slots Ns and a maximum number of schedules to
add, and generates topologies for Nrounds according to gMAC logic. In Figure 7-2, these
artificial topologies are compared to topologies that were measured in the experiments
that we will treat later. For a fully connected, 10 node network the match is very good.
For the 20 node network the simulated topology has less neighbours. The experimental
network was spread out, so it was not purely a single hop network. The densities were
lower, and thus the number of received messages can be expected to be little higher.

There is also a _withpause variant, that takes arguments specifying a moment and dura-
tion that no communication takes place.

gmac_topology_from_static(A_static, Nrounds) This method, used by the subse-
quent topology generators, creates a realization of the gmac protocol on the basis of a
static A-matrix. This static matrix describes the topology of allowed connections. This
method then figures out how many neighbours each node has, how many schedules it will
thus run, and picks a random schedule to start on. Per round, every node picks a send
slot, and based on the collisions, schedules and successful transmissions, an A matrix for
the current round is created, and returned.
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Figure 7-2: The histograms of number of neighbours per round over all nodes for experimental
and simulated topologies of 300 rounds, with 10 nodes (a) and 20 nodes (b).

grid_gmac(Nx, Ny, Nrounds) Creates a pure grid topology (the 4-neighbour kind, not
the 8-neighbour) of Nx by Ny nodes and feeds it into the gmac-realization method to create
a sequence of topologies.

random_geometric_gmac(Nnodes, Nrounds, average_neighbours) The last of the ar-
tificial topologies is a random geometric network: a network where all nodes are scattered
uniformly over an area, and have a fixed transmission range. Since the number of nodes
within range is Poisson distributed (assuming a unit square as total area), a parameter for
the average number of neighbours can be passed that defines the transmission range. Since
the Poisson distribution holds for nodes on an infinite plane and this is only a unit square,
the real average number of neighbours will likely be smaller. The random geometric graph
is generated as a static topology, and converted into a dynamic gmac one per round.

Experimental

From previous experiments, log files are available which contain topology information. A
logfile is a comma-separated file in which every line represents a transmitted message, with
the following info: frame number, sender, receiver, time difference. By collecting
all the sender and receivers for a round, and marking those combinations in a connection
matrix, this information can be fed into the simulator. The experiments are of limited
duration. If more rounds are requested, a bootstrap is done. For every extra round, a
random entry from the basic dataset is drawn (with replacement) to serve as new data.

7-1-5 Nodes

The Node class represents a node. Every node is instantiated with an ID and a clock,
which has a drift and offset as specified, or randomly taken from an interval if nothing
is provided. Furthermore, every node has some local variables that may be used by the
different algorithms. There are three main methods for a node:

• get_tx: this produces a message containing the node ID and the clock’s phase for
the current round, plus parameters required by the algorithm.

• put_rx(msg): the message msg is received by this node. In this method the phase
of the local clock is subtracted from the phase recorded in the message to get the
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time difference (optionally lengthened by the transmission time estimate error). This
value is saved for later use (plotting), and added to the message to be processed in
next_round.

• next_round: at the end of each round’s active period, this method is called to let
the node proceed to the next round. The clock correction for this round is calculated
(using the logic in the Algorithms module), and the clock’s next_round method is
called to compute next round’s phase. Finally, the round number is increased and
the message list is cleared.

7-1-6 Timekeeping

Every node has a clock object, that imitates an oscillator. All clocks share a frequency,
round time (which must be a round number of ticks) and a setting for quantization or not.
Clocks are instantiated with a drift and offset, which can either be specified or drawn at
random from a range. Internally, the continuous time (_phase) is kept in microseconds
to avoid floating-point inaccuracies. To the outside, times are communicated as seconds.
To accomodate for the timestamping in ATS, a property that converts the round number
and phase to a time is provided.
The only method of Clock is next_round(correction), where the phase of the clock in
the next round is computed using drift, offset, round time and correction. The phase for
the round is stored for use in plotting later, and is made accessible to the Node for use in
the TX message. If the quantize setting is on, the correction needs to be in whole ticks,
and the phase exposed to other classes is rounded down to the nearest tick. The value of
the offset determines the start time, so ticks do not happen simultaneously at clocks.

7-1-7 Synchronization Methods

The Algorithms module contains the logic of the different algorithms, their message
structures, the values of the tuning parameters and one property which selects the al-
gorithm currently used. Nodes call methods from this module to construct standard mes-
sages (get_dict(algorithm)) and to get the right correction (for example get_median
(message_list)).

7-1-8 Quantization and Transmission Time Estimate

In subsection 5-1-4, the quantization and time inference are shown to lead to significant
errors. To simulate this as well, a transmission time misestimation can be added by calling
Node.compute_transmission_time(message_size_bytes, slot_time_us, datarate_mbps),
which performs the same calculations as are done by MyriaNeds node programming utility
makeNwParam to get the estimated transmission time:

Ttransmit = int(((TTXenable[ticks] + Toa[ticks]) + 1) (7-1)

TT imeonAir[us] = 8 · (1 + 5 + message_size[bytes] + 2) + 9
datarate[mbps] (7-2)

In (7-1), the time it takes to turn on the radio (specified by the manufacturer to within a
microsecond) plus the time spent on sending the message, both expressed in fractions of
ticks, are increased by 1 and cast to an integer, which is a round-towards-zero operation in
C. Thus this combination is always sufficient ticks to transmit the message. The time to
transmit, calculated in (7-2), is the total message size divided by the datarate. The message
size contains the payload and some overhead (like the preamble and WSN domain).

Master of Science Thesis Bouke N. Krom



64 Simulations

If we want to include both quantization and transmission time estimate errors, we can
do εq = q(ε + (Ta − Toa)), since Toa is a whole number of ticks by definition, and does
not influence the quantization action. (Ta − Toa) can be precomputed and added before
quantization.

Both effects are not independent. If we still want to ignore the effect of transmission
time estimate errors while keeping quantization, we could do εq = q(ε). If we want no
quantization but only transmission time errors εq = ε+ (Ta − Toa) would suffice.

Quantization has influence on more aspects. Every readout of a node’s clock should be
quantized, which is handled by the Clock.phase property. It checks the setting and re-
turns the quantized value if needed. Internally, the Clock._phase variable keeps track of
the continuous phase. Time differences recorded by the Node.put_rx method are quan-
tized, and the correction applied in Node.next_round are whole ticks. To these ends,
there is one method to quantize a clock value: round_down_to_tick(phase, b).

7-2 Tuning

Here the results from the simulations done to get insight into different synchronization
algorithms operating on MyriaNed are shown. Unless otherwise specified, the simulations
are carried out with quantization and transmission time estimate errors enabled, a round
time of 1 second, a 32 768 Hz oscillator, initial offsets between 1 and 20 ticks and drift
values between −100 ppm to 20 ppm. First each algorithm will be tuned on a fairly simple
network. Afterwards, the algorithms will be compared on various aspects. For a com-
plete description of the implementation of each algorithm and the role of the different
parameters, we refer the reader to chapter 6.

7-2-1 Median

To investigate the effect of different settings on the results of the simulator and to cre-
ate reference results, we first present some simulations done with the Median algorithm.
Throughout this section a topology of 10 nodes in a simulated gMAC-topology will be as-
sumed, where all nodes are within each other’s range. Although the topology is generated
stochastically, the topology is the same for every experiment by resetting the random seed
before every simulation.

Quantization and transmission time estimates

Apart from the clocks’ own dynamics, the two most prominent sources of error are quan-
tization and transmission time misestimations. In Figure 7-3, the four possible scenarios
are displayed. There is virtually no effect of adding the transmission time misestimations
when no quantization is present. The misestimation, which depends on the message size,
is generally very small (about 3 µs for standard settings, up to tens of µs worst case) so this
was to be expected. When quantization is present, this small effect leads to differences in
the long run, because at a certain moment the small misestimation triggers a difference
of a full tick. There are slightly more positive differences, and slightly less negative: the
effect of a small, positive, constant misestimation.

The influence of quantization is more drastic. Because time readouts are always rounded
down, the corrections are later and smaller than without quantization, allowing for slightly
larger maximum errors overall, and a distinctive dip around 0 error. Because the gain is
0.5 and the correction is cast to an integer, errors of 1 tick do not lead to a correction.
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(a) No quantization (b) With quantization

Figure 7-3: The median algorithm simulated on a 10 node network, round time 1 second,
with and without quantization and transmission time misestimation. The histograms show
the frequency of measured time differences.

(a) No drift, only offset (b) No offset, only drift (c) Drift and offset

Figure 7-4: Three simulations with the Median algorithm in a 10 node, fully connected net-
work, with 1 second round time. Each experiment has the same topology, but different clocks.
The maximum, minimum and average time difference recorded every round is displayed.

Only when a 2 tick error is measured, a correction is done. As such, if two nodes are in
perfect sync, this will never be kept.

Drift and Offsets

In Figure 7-4, the effect of having clocks with offset, drift or both is shown. When only
offset is present, the Median algorithm corrects quickly for these offsets (in about 5 rounds),
and the time differences are kept within 1 and -1 tick in the steady state. The small
remaining difference is due to the transmission time misestimation.
Drift is clearly harder to tackle. Since nodes accumulate a difference during rounds, the
Median algorithm has to apply large corrections every round. When both effects are
present, the initial offset is still corrected for, and the steady state is very similar to
the drift-only situation. With the assumed drift values, we would expect drift-induced
differences of up to 4 ticks per round. Because there is an initial offset to start with, and
because not every round yields perfect correction, the actual maximum time differences
can run up to 7 ticks.

Gain

Although the gain of 0.5 used in the Median algorithm is tried and proven, there might
be a better value. A value higher than 1 is known to create an instability (at least in the
case of two nodes), but anything in the range (0, 1] might be suitable.
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In Figure 7-5 some simulation results of varying this gain are plotted. The graphs again
depict a histogram of the measured time differences during an experiment. The first one,
depicting a generated gmac topology of 10 nodes within range, shows that low gains (0.1,
0.3) do not correct sufficiently strong, and lead to higher time differences. From 0.5 and
higher, performance is good. The graph even suggests that a gain of 1 might perform even
better. Intuitively, this might create an oscillatory effect of nodes simultaneously adapting
to each other and doing the reverse in the next round. It seems that the randomness of
communication in MyriaNed prevents this from happening – at least in this 10 node,
well-connected network.
To test whether higher gains are indeed beneficial, the same simulation was done on a
topology from an experimental log file, see Figure 7-5b. The performance is slightly worse
for all gains: the peak around 0 is lower, and the tails are wider. The higher gains are still
better than 0.5 however. A more challenging, realistic topology is depicted in Figure 7-5c,
the two-group experiment. Again, all the results are worse (0.1 has been left out since
it distorted the graph too much). The differences between the gains are smaller, but the
higher gain proves to be the best again. This surprising result could be worth pursuing
further.

7-2-2 MemoryMedian

The most straightforward alternative to Median is MemoryMedian, where the median time
differences are integrated into a long-term correction estimate, and this is used for extra
correction or correction when no neighbours are heard.
For MemoryMedian, there are three parameters to tune:

• kp ∈ (0, 1), the proportional gain. To make a fair comparison to Median, this was
initially kept at 0.5. After the other parameters where tuned, changing kp yielded
no improvement.

• ρ ∈ (0, 1) the parameter determining the lowpass behaviour of the error integration:

αi ← (1− ρ)αi + ρ Med(θi(k)) (7-3)

• ki, the gain that is used to apply the error accumulation in the idle time correction:

Ti,k = T − kiαi − kp Med(θi(k))

Initially a purely cumulative filter was used:

αi ← αi + ρ Med(θi(k)) (7-4)

Theoretically, this filter would work better since it accumulates errors until the phase
difference is zero, and then maintains that correct drift estimate. The alternative, Equa-
tion 7-3, needs a residual error to maintain its drift estimate, which will therefore never
be perfect. The ρ value makes a tradeoff between adaptation speed and noise sensitiv-
ity of the integrated error. Since there is no noise in the simulator to deteriorate the
estimate, the filter can be more aggressive in simulation than in reality. However, only
median values are used for the estimate update, and the median already acts as a filter for
noise and outliers. A relatively high value for ρ ([0.5, 1)) will most likely be acceptable in
realistic circumstances as well. Since we still want to retain a memory effect, ρ should be
sufficiently smaller than 1. A third consideration is, since the median is always a round
number of ticks, ρ essentially controls the granularity with which the estimate of α is
updated. The larger this granularity, the more inaccurate the estimate will be.
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(a) An artificial 10 node gmac topology

(b) A logged 10 node fully connected topology

(c) A logged 13 node, two-group topology

Figure 7-5: The measured time differences over a 300 round simulation, round time 1 second,
using the Median algorithm with different gains.
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(a) A histogram of the time differences for different val-
ues of ρ (ki = 1)

(b) The evolution of αi with ρ = 0.1.
Dashed lines indicate the values that
correspond to the drifts used.

Figure 7-6: MemoryMedian in a 10 node gMAC topology, with 1 second round time and
update equation (7-4)

(a) A histogram of the time differences for different values
of ρ (ki = 1)

(b) The evolution of αi with
ρ = 0.1. Dashed lines indicate
the optimal values.

Figure 7-7: MemoryMedian in a 10 node gmac topology, with update equation (7-3)

Comparing Figures 7-6b and 7-7b, where the simulations were identical except for the
update equation, this seems not to be the case. The first update equation does not settle
on a perfect value but keeps increasing. The second update equation yields more stable
estimates, but at the cost of a worse performance (Figure 7-7a). It seems from that Figure
that ρ can be even smaller: the estimates overshoot and contain too many high frequencies.
In Figures 7-8a and 7-8b, even lower values of ρ are tried out. The performance stays
roughly equal. When ρ is lower, the synchronization takes more time to compensate the
comparatively large initial differences, and thus a slight increase in standard deviation
is to be expected. The estimates displayed in Figure 7-8b give a better impression than
before. We will stick with ρ = 0.05 for now.
The value of ki determines how strongly the error estimate is used for correction. If we trust
the error estimate sufficiently, a value close to 1 could be used. Ideally, this would lead to
perfect synchronization in the long term. Changes in drift values, drift noise, quantization
noise and transmission time estimate errors will prevent this from happening.
The results in Figure 7-9 confirm this reasoning, as ki = 1 indeed leads to the best results.
Since ki = 0 implies the unextended Median algorithm, this graph already indicates that
MemoryMedian is indeed an improvement over Median.

7-2-3 PISync

The next algorithm to compare is PISync, proposed by [75]. The algorithm uses a PI
controller in every node for local correction, leading to global synchronization.
The parameters of interest in this algorithm are:
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(a) A histogram of the time differences for lower values
of ρ (ki = 1)

(b) The evolution of αi with
ρ = 0.05. Dashed lines indicate
the optimal values.

Figure 7-8: MemoryMedian in a 10 node gMAC topology, with update equation (7-3), and
much smaller ρ values.

Figure 7-9: The performance of Memory Median in a 10 node gmac topology, 1 second
round time, for different values of ki.
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• b: The gain with which to add time differences to the proportional correction:

• amin, amax, ac: The gain used to integrate errors, either adaptive (using values be-
tween amin, amax) or constant (using ac).

• emax: the maximum error that is used for integration. Higher errors are considered
to be caused by initial offsets or disturbances, and should not be used for drift
compensation.

In [75], suggestions are done for tuning the parameters. By doing an assumption on the
maximum drift difference in the network, emax can be computed:

emax ≈
∆fmax
fn

Tf

Which is the maximum frequency difference that can occur (∆fmax = max(fi − fj)),
divided by the nominal frequency fn times the frame time. For the assumptions in our
model (maximum 120 ppm difference, 1 s frame time), this is ≈ 3.93 ticks, so emax should
be 4 ticks per 1 s frame time.

For b, a gain of 1 is said to provide best convergence results. However, this is when
correction is done immediately after reception of a message. In MyriaNed, messages are
accumulated. We could opt for b being 1 over the expected number of messages. This
is dangerous, since if by chance the number of received messages is unusually high, the
proportional correction will be as well. The most faithful reproduction would be to use
the average phase difference multiplied by b.

The maximum value for a should be amax = 1
fnT

for the fastest convergence of the local
controller, as claimed in [75]. Taking amin = 0, and ac = 1

2fnT , right in between seems
sensible.

The graphs displayed in Figure 7-10 tell a different story. Starting out with the simplest
scenario, Figure 7-10a shows the performance in the static case for different values of ac.
For ac = 0 (only proportional correction), the results are reasonable. The errors increase
unacceptably for ac = 1

fnT
, and only start to get better for much lower values. A value of

ac = 1
8fnT performs best (lower values were tried to no avail). In Figure 7-10b the adaptive

version is tested. This indeed performs better than a consstant gain, and again needs a
lower value than analytically expected. Perhaps the inaccuracies caused by quantization
cause the estimates to vary too much with high gains, and a more conservative approach
leads to better results.

The remaining two Figures 7-10c and 7-10d explore the settings for emax and b. For emax,
4 ticks seems about right, but one more or less is not critical. Even higher values were
tried, with no dramatic effects. The value of b is more influential: a value of 0.8 or 0.5
is better than 1. Since the process is very much like the Median algorithm, it could be
expected that the ideal value would be in this range. Perhaps it is again the quantization
that make less aggressive values perform better than the theoretical optimum. We will
stick with 0.8.

7-2-4 ATS

Average TimeSync (ATS) is another one of the fitting candidates from literature. It
involves more analytic parameter estimation, and good experimental results are reported.

There are three parameters to be tuned in ATS:
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(a) ac (nonadaptive), for emax = 4

(b) amax (adaptive), for emax = 4 and amin = 0

(c) emax in the adaptive case, with amax = 1
8fnT

.

(d) b in the adaptive case, with amax = 1
8fnT

and emax = 4.

Figure 7-10: Tuning a, b and emax for PISync, again on a 10 node, 1 second round time
network.
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• ρη ∈ (0, 1): the low pass filter parameter for updating the relative drift estimate
towards neighbours.

• ρv ∈ (0, 1): the low pass filter parameter for updating the reference drift estimate.

• ρo ∈ (0, 1): the accumulative low pass filter parameter for updating the reference
offset estimate.

These three parameters are similar in function (the offset filter is accumulating instead of
averaging is the only exception), and are of the same magnitude. The authors of the ATS
algorithm intended both the offset and drift estimation to happen simultaneously. The
estimates of ηij have less input than the other two estimates, since they need multiple
messages to be received. They could be tuned more aggressively to converge fast enough.
On the other hand, outliers or errors could then have too big an influence. In the original
paper Schenato and Fiorentin [57] propose the following gains: ρo = ρv = 0.5, ρη = 0.2.
A later publication by other authors [28], where ATS is compared to another algorithm
uses: ρη = ρo = ρv = 0.5. Note that – contrary to the formulation of MemoryMedian – a
lower value for ρ corresponds to a faster filter. A quick test shows that ρη = 0.5 performs
better than 0.2, so this will be used as a starting point.
In Figure 7-11, the three parameters are varied independently, keeping the others at 0.5.
The influence of parameter values is very large: for some, the algorithm even seems un-
stable. For ρη and ρv high values (leading to conservative filters) are better. Since the
drift to be estimated is a quantity very close to 1, a small step size makes sense. ρo can be
more aggressive: lower values seem optimal. An iterative process, where every parameter
in turn is varied in a range around its previous value and set to the best result leads to
ρη = 0.8, ρv = 0.9 and ρo = 0.05. The drift estimates are slow, but the offset estimate
corrects almost without memory. The results are good, with a standard deviation of the
time differences of 1.17.
The parameter estimates produced by ATS are displayed in Figure 7-12. The consensus
and estimation of ā works very well, drastically reducing the drift variability in the network.
The b estimates are much more variable (but we were not able to improve this with the
filter parameter), yet this leads to the best synchronization behaviour. The cause of this
variability is not entirely clear, but there is a tradeoff: to get good synchronization we
want to act quickly on time differences (aggressive filter), but to reject inaccuracies and a
more stable estimate we would want a slower filter. Apparently the first cause is dominant
for performance. Removing the quantization and transmission time estimates leads to
completely constant âia and b̂i estimates for all nodes after about 100 rounds (graphs not
shown).

7-3 Comparison

The four contending algorithms, with the parameters tuned to the optimal values, are
compared in this section while varying different external parameters of influence: topolo-
gies, frame times, network size and density, their correspondence to external time and the
recovery from extreme disturbances will all be treated in the following subsections.

7-3-1 Topologies

As mentioned in section 7-1, the simulator can generate several artificial topologies and
read in previously retrieved experimental topologies. In this section those topologies will
be fed into simulations using the different algorithms. The experimental data stems from
small-scale experiments performed before this thesis work [35].
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(a) Varying ρη

(b) Varying ρv

(c) Varying ρo

Figure 7-11: ATS on a 10 node gMAC network, 1 seconds rounds, with the tuning parameters
varied.

Master of Science Thesis Bouke N. Krom



74 Simulations

(a) âi ·ai for all nodes, ρη = 0.8, ρv = 0.9, ρo = 0.05, which
should approach the same value (ā) for all nodes.

(b) bi − b̂i (in ticks) for all nodes, ρη = 0.8, ρv = 0.9, ρo =
0.05, which should be driven to the same value (b̄) for all
nodes.

Figure 7-12: The parameter estimates of ATS.

10 Node Networks

First three different topologies with 10 nodes are compared, as displayed in Figure 7-
13. All algorithms were tuned to perform optimally on the first topology displayed: an
artificial gmac topology. The standard deviations are similar as in the tuning stages. Any
differences with previous results stem from a different random seed leading to a different
topology (but results in the same figure have exactly the same topology). It is clear that all
three new proposals are an improvement over Median, but their respective performances
vary.

The second figure displays a group of 10 from experimental data. All algorithms have
more difficulty with this topology, perhaps because other factors (interference, radio prop-
agation) influence the number of messages successfully received. Indeed, for the artificial
topology the average number of messages received per node per round is 2.7, where it is
2.4 for the experimental topology, and 1.1 for the line topology.

The third figure is a dramatically more different topology: a real world line topology.
All distributions are considerably flattened out, and the maximum number of spot-on
synchronizations (0 ticks difference) is less than a third of before. Strangely, PISync has a
very bad performance suddenly, while MemoryMedian is the best in these circumstances.

Grid Network

A canonical (but unrealistic) topology is the grid topology. Nodes are arranged in a grid,
and can only communicate with their four orthogonal neighbours. This topology can
provide insight in the per-hop deviation that an algorithm allows, and how large the time
differences within a network can grow.

By simulating this topology with a gMAC process the results in Figure 7-14 were generated.
In the meshes, every intersection corresponds to a node in the grid. The height of the
intersection displays the average time difference with the node at (0,0) over the whole
simulation. Drifts and offsets were randomly picked from the ranges mentioned at the
start of this document, but were the same in each experiment (just as the topology). The
histogram shows the time differences actually measured, so only between neighbouring
nodes.

The meshes show the same pattern as in the first topology: all three contenders improve
on Median. The drift estimation of MemoryMedian makes the differences of Median less
pronounced, but an identical pattern is present. PISync and ATS are almost unbelievably
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(a) In a group, artificial gMAC

(b) In a group, experimental data

(c) In a line, experimental data

Figure 7-13: Topologies of 10, 1 second round time, where the different algorithms are
compared. Notice the much smaller y-axis in the third figure.
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flat by comparison, with no average errors larger than two ticks, instead of the 15 or
more ticks in the Medians. In the histogram, a different pattern is present: ATS is only
slightly better (standard deviation-wise) than Median, and worse than MemoryMedian.
Apparently the average (over rounds) difference between nodes is small, but its variance
is large. The third graphs shows that this is because ATS has trouble converging at first.
With so many hops in the network, the consensus processes take longer. Although the
variance is large, the average difference with node (0,0) is not affected: ATS has similar
internal time differences, but does a better job keeping all nodes at approximately the
same pace.

Random Geometric Network

Another often-used topology is a random geometric network. Such a network is generated
by randomly deploying nodes over an area, following a uniform distribution. The radio is
then assumed to have a constant range, leading to a disc in which nodes are connected.
This gives a network where the number of neighbours per node is Poisson distributed.
In Figure 7-15, two realizations (with the same random seeds) are shown. In simulation,
these ‘allowed’ connections were used to generate a gMAC topology, including scheduling
in dense areas.

To arrive at a relatively topology-independent result, every algorithm was simulated on a
variety of these random geometric networks. All the networks consist of 50 nodes deployed
in a unit square, and by varying the radio transmission range, the average node degree
was varied. On 120 different topologies (but again the same 120 for each algorithm), each
simulation lasted 300 rounds. The standard deviations of the measured time differences
are plotted in Figure 7-16.

There is a large spread in values, showing that topology has a large impact on synchro-
nization performance. To show the overall trend, a running average filter of 16 samples
was applied, denoted by the solid lines.

The time differences are only measured between nodes that are connected. For very low
densities, many nodes will be isolated (such as in Figure 7-15a), and will not contribute to
the errors. This explains the generally low values for low densities. With increasing density
(around 3 neighbours on average), more time differences are measured by all algorithms,
but they seem to have trouble consolidating these differences. As density increases even
further, the time differences decrease again. With more and more diverse neighbours, the
algorithms get a less biased input, and use the extra information to converge more tightly.
PISync performs best and is least affected by node density. ATS is good overall, but has
some sudden bad performances. Median and MemoryMedian follow a very similar curve,
with MemoryMedian being always slightly better.

7-3-2 Frame Times

Synchronization algorithms should be able to perform with various frame times. For small
frame times, measured differences and correction should be small, while long frame times
lead to large drift accumulation and correspondingly large corrections. It is expected that
drift estimation pays off especially for large frame times.

As before, simulations were carried out on numerous random geometric networks. For
frame times between 0.5 and 10 seconds, 20 different random geometric networks with
around 8 neighbours on average were simulated for 300 rounds for all four algorithms. The
results, in terms of minimum, maximum and average standard deviations are displayed in
Figure 7-17. All four algorithms seem to be roughly linearly dependent on the frame time.
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(a) Average time difference with the node indicated by the red dot over 500 rounds,
in ticks. Every coordinate corresponds to one node, drifts and offsets are distributed
randomly. The z-axis has a very different magnitude for ATS and PISync.

(b) The corresponding histogram of measured time differences

(c) The phase of all nodes with respect to reference time. Colors are the same as in the
histogram.

Figure 7-14: Results of the grid topology, 1 second round time.
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(a) Average degree 4 (b) Average degree 10

Figure 7-15: The allowed connections in an arbitrary random geometric topology, for average
degree 4 and average degree 10.

Figure 7-16: The time difference standard deviations for different topologies with varying
average node degrees. Each marker represents a simulation, the lines are 16-sample moving
averages over the data points to indicate trends. Every simulation lasted 300 rounds of 1
second, on a 50 node topology. The four algorithms were tested on the same set of topologies.
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Figure 7-17: The effect of frame times on algorithm performance. Each algorithm was
run 10 times for 300 rounds on a 50 node random geometric network with approximately 8
neighbours on average, for frame times between 0.5 and 10 seconds. The lines indicate the
average standard deviation, and the areas the minimum and maximum standard deviation of
measured time differences.

For Median this was expected: double the time to accumulate errors will lead to double
the measured error. For drift-estimating algorithms it’s somewhat surprising: apparently
the drift estimation leads to a lower error variance, but still one that grows linearly with
frame time. MemoryMedian and PISync are about equal in terms of average performance,
but MemoryMedian has a larger diversity in standard deviations: it can perform better
than PISync, but might just as well perform worse. The same holds for ATS, but in a
very extreme way: its best runs are the best of all, but it has the worst runs as well; even
worse than Median (although on average it is a little bit better).
The measured time differences – the synchronization error – is always an equilibrium be-
tween the accumulating differences making it larger on the one hand, and the convergence
speed of the algorithms on the other. With increasing frame times, the accumulating error
becomes larger, while the algorithms react in the same way. In Figure 7-18, the conver-
gence of the algorithms for different frame times is shown by plotting the minimal and
maximal time difference between neighbouring nodes over time. The simulations were
started with a large initial offset in the range (-30, 30). For frame times of 0.5 and 1
second, the algorithms converge to a steady state within a smaller range than the initial
offsets. The weakness of ATS shows: its convergence takes much longer than the other
algorithms. The other algorithms converge faster and have the same steady state range.
It shows that advanced algorithms do not have a clear advantage for frame times below 1
second.
For larger frame times the error is larger, as expected. Estimating drifts shows its ad-
vantage. MemoryMedian is consistently better than Median. Since there is not much
convergence to be done, ATS does not underperform at the start, but it manages to con-
verge in the long run, and reach the smallest error bound of the algorithms. PISync is
very disappointing, and seems to increase its errors in the long run. It is possible that this
is an effect of (not) tuning, since PISync’s gains (emax and α) are theoretically dependent
on the frame time, but were kept constant here. These results seem strange compared to
the findings in Figure 7-17, where PISync was the most consistent performer. Apparently,

Master of Science Thesis Bouke N. Krom



80 Simulations

(a) (b)

(c) (d)

Figure 7-18: The minimum and maximum measured time differences in a random geometric
network for different frame times, and different algorithms when starting with an initial offset
evenly distributed over (-30, 30).

this specific realization is unlucky for PISync, and lucky for the others.

7-3-3 Network Size

Some authors (for example Fan and Lynch [18]) suggest that the network size or network
diameter influences the local synchronization error negatively. To explore this for the
different algorithms, simulations were carried out again on random geometric networks.
For several network sizes from 10 to 500 nodes, 20 random geometric networks with average
degree around 8 were generated. On these networks, a simulation of 300 rounds was run
for every algorithm. The graphs in Figure 7-19 show the minimum, maximum and average
standard deviation of measured time differences in the network.
The first thing to remark is that apparently the specifics of each topology are of larger
influence than the network size. The average standard deviations seem to increase steadily
with network size up to about 100 nodes, but the maximum standard deviations (worst
cases) vary much more wildly. In short, the network size is not critical: if an algorithm
can run successfully on challenging networks of 100 nodes, these results indicate it will
not have more trouble with larger networks.

7-3-4 External Time

A secondary interest of the synchronization protocols is their correspondence with external
time. Although a strict adherence to some external time standard is not needed (nor
possible without communication), the deviation from ‘real’ time should remain reasonable.
To gain insight in the algorithms’ properties in this respect, simulations were run where
the absolute phase was tracked. On a random geometric network, each of the algorithms
was run for 300 rounds. In an attempt to control the deviation, simulations where one
node does not correct its clock were run as well. These results can be used to assess the
feasibility of equipping a single node with a very precise clock in order to make the whole
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(a) (b)

(c) (d)

Figure 7-19: Standard deviations of time differences for various network sizes, 1 second
round times.
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Figure 7-20: The network used for external time simulations. The green node (#0) is used
as an anchor node. Nodes 2 and 24 (blue) are disturbed in a second experiment.

network synchronize with external time. In Figure 7-20 the (base) network used for these
simulations is shown. In Figure 7-21 the results are shown.
Without anchoring Median, MemoryMedian and ATS have a drift that corresponds to the
average drift in the network. PISync has a somewhat tighter line (less internal differences),
but seems to continually speed up. If no countermeasures are taken, this can lead to a
shortening of the network lifetime or even breakdown when the round time becomes too
short for calculations.
With the use of an anchor node, matters only become worse. Each of the algorithms
follows the anchor node, but reluctantly. The time differences within the network are
considerably larger for all algorithms, and in practice this would prompt much larger
guard times. With Median, it is clear that the anchor node has some periods where it is
median neighbour to no one, and the network proceeds without taking the anchor into
account. When it is a single neighbour by chance, it will trigger a large time shift, and
drag most nodes with it. In MemoryMedian something similar happens. Because there is
a lowpass-like behaviour in the correction that is applied, the disturbing effect is less on
the short term but leads to a different pace on the long term. In a sense, the nodes’ clocks
have some inertia. ATS adapts its pace over time as well, but the time differences within
the network are larger. PISync is similar to MemoryMedian: it follows the anchor but
keeps a distance. Simulations have been done where the anchor node was given a positive
drift, but this only worsened matters since the drift gap to bridge was even larger.

Preventing Speedup

In most cases, PISync performs best when it comes to the phase differences between nodes.
In Figure 7-14 and Figure 7-21 it also becomes apparent that PISync continually speeds
up: its drift estimate is increased indefinitely, making round times ever shorter. In practice
this is unacceptable. Networks have to run for years on end and their frame time should
be roughly equal to external time.
The cause for this can be found by considering the synchronization algorithm as a PI
controller: there is a steady-state error that the controller can not remove, and the integral
will wind up. In this case the error is caused by a small but systematic misestimation of

Bouke N. Krom Master of Science Thesis



7-3 Comparison 83

(a) (b)

(c) (d)

Figure 7-21: The absolute phase (with respect to ideal reference time) behaviour of the four
algorithms. If the algorithm is run with an anchor, one node does not correct its clock in an
attempt to dictate the pace of the network.

the transmission times. If we remove this misestimation from simulations, the speedup is
gone as well, see Figure 7-22.

In the series of pilot experiments it quickly became clear that this ‘speedup problem’ was
present in the real network as well, see Figure 7-23.

This Figure shows experimental results from a group of 10 nodes laid out on a desk, all
around room temperature. This is not a very challenging situation, and we would expect
at most 40 ppm drift between the nodes. The estimates by PISync keep on increasing far
beyond that point, presumably because there is a small constant error in the transmission
estimates. The measured time differences between the nodes remain small and consistent.
In Figure 7-24, the receive time of messages modulo the frame time is plotted. Application
messages are colored dots, and the time between active periods becomes a little smaller
each round. After 1000 rounds, about 2.5 s are lost. The experiment was run for a
total of about 5000 rounds, and the speedup was confirmed to continue all that time. This
indicates the exact problem we were expecting: although the network itself is not hindered
by it, the frame times become smaller and smaller.

In hindsight, this problem was not very unexpected. PISync integrates in the most naive
of ways, by just summing a number derived from the measured time differences. If these
measured time differences are non-zero even when the real time difference is zero (as is
the case), then this integrated number will inevitably grow unbounded. A likely solution
for the problem is thus to introduce a force that draws the integrated error towards zero,
in the form of a filter.

We will now use the simulator to evaluate different options for this filtering. One possibility
would be to use the same filter as in MemoryMedian:

αi(k + 1) = (1− ρ)αi(k) + ρεi (7-5)

A drawback of this approach is that it introduces a trade-off between having a strong
memory, but not reacting very quickly (low ρ), or reacting quickly but forgetting easily

Master of Science Thesis Bouke N. Krom



84 Simulations

Figure 7-22: The experiment from Figure 7-21, only for PISync, without transmission time
misestimation.

(a) Minimum, maximum and average time dif-
ferences per round

(b) The algorithm state

Figure 7-23: Experimental results from a network of 10 nodes using PISync, at a frame time
of 1 s. Clearly the filter values are decreasing all the time, while the time differences remain
stable.
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Figure 7-24: The timing of communications in a real life 10 node network using unfiltered
PISync, at a frame time of 1 s. Coloured dots are application messages, gray crosses join
messages. The empty space is a period in which the sniffer was accidentally turned off.

(high ρ). In the case of PIsync we want both, only not a memory that is so strong it grows
unbounded. Another candidate solution could therefore be:

αi(k + 1) = καi(k) + εi (7-6)

Where the integral value is reduced by a factor κ every update, but the new value is added
as a whole. For the sake of easy referencing we’ll name this the cumulative filter. Note
that we mentioned a cumulative filter relating to MemoryMedian as well, but there the
weight of αi(k) was 1.

To assess the effect these filters have on PISync performance, we did some simulations.
In Figures 7-25 and 7-26 the results are shown. The filter from (7-5) solves the speedup
problem, regardless of the filter parameter. In all cases however, the performance was
considerably worse than without the filter. This degrades PISync from a serious contender
to an average performer, so we will not consider this filter for experiments.

The second filter is more useful. With different values for κ, the effects of the speedup
problem are lessened, at the cost of a reasonable performance loss. A good tradeoff seems
to be κ ≈ 0.97.

7-3-5 Recovery from disturbances

A final comparison of the algorithms was done with disturbances. To create something
similar to a step-response, the same network as before (external time comparison) was
run, but at round number 50, node 0 suddenly shifts 100 ticks backwards in time. In
round 200 node 2 and 24, both very centrally located (Figure 7-20) are shifted +200 and
-200 ticks respectively. The results are displayed in Figures 7-27, 7-28.

A disturbance by a single node has only small effects. In Figure 7-27 the responses of the
different algorithms in terms of the phase with respect to reference time are plotted. The
disturbance is added to the phase after a round, and the next round’s phase is recorded
after correction, so the visible portion of the disturbance does not equal 100 ticks. The
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Figure 7-25: Simulation results of PIsync with the filter from (7-5). Introducing the filter
solves the speedup problem, but at the cost of a large performance penalty in all cases.
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Figure 7-26: Simulation results of PIsync with the filter from (7-6). There seems to be a
trade-off between performance and speedup prevention here.
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Figure 7-27: The response of the network to one node shifting -100 ticks at round 50, with
respect to external time.
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Figure 7-28: The response of the network to two nodes shifting -200 and +200 ticks at
round 200, with respect to external time.

Median algorithm rejects the small disturbance completely: there is one round in which the
phase of the disturbed node is large, but it is not a median for any neighbour, so the rest
of the network proceeds exactly as without the disturbance. MemoryMedian reacts more.
Due to the inertia in the protocol, the disturbed node takes longer to return to normal
values, and has some overshoot because the node integrates its previous corrections. When
it is close to the other nodes, it is the median neighbour of some, and the disturbance
has a lasting influence in the network: it speeds up a little. Internally, there is little
effect: the undisturbed nodes remain within a tight bound. The effect on PISync is more
pronounced. Because the proportional correction of PISync is more aggressive and uses
information from all neighbours, the disturbed node instantly drags some neighbours with
it. ATS does not show any larger errors due to the disturbance, and even gets a little
better after round 75.

The larger disturbances are more severe. Median again reacts best, but the disturbed
nodes have some influence on others, leading to a brief period of large time differences.
Not every node in the network is effected heavily, and the effect on the network as a whole
is small. The reaction of MemoryMedian is similar to the previous one, but of larger
magnitude: the disturbed nodes take longer to adapt back, overshoot a little and drag
several other nodes with them. PISync does similar as before, but a slow oscillation is
triggered that dampens out only slowly. ATS can not handle disturbances this large. The
network is swept out of equilibrium and creates large time differences in the network, that
do not settle anymore before the end of the simulation.

In Table 7-1 the (manually read) settling times are recorded. The drift-estimating algo-
rithms take longer to settle since they are not memoryless.
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Table 7-1: The approximate settling times of algorithms after disturbance. After the noted
number of rounds the internal time differences are back to the level of before the disturbance.

Algorithm Settling time [rounds]
Single small disturbance Dual large disturbance

Median 3 10
MemoryMedian 9 15

PISync 13 30
ATS 1 ...

A last disturbance is one that is less severe, but more realistic: no communication at all
for several rounds. The results are show in Figure 7-29. Median – not having any memory
– represents the largest time divergence. MemoryMedian keeps the errors smaller, but
follows a very similar trend. It’s estimation capabilities are not so strong. ATS shows
what it does well: the drift estimation is spot on, and the situation does hardly worsen
during the second silent period. The first pause comes too early, and the error buildup
takes a while to be resolved again. PIsync is somewhere halfway when it comes to error
buildup, but is the fastest one to converge to within reasonable bounds after the large
period of silence.

7-4 Conclusions

Based on the simulations carried out, we can draw the following conclusions:

• Improvements to the synchronization performance must come from handling the
drift and/or quantization, since these two effects currently have the largest impact.
A transmission time misestimation of the size currently encountered has no dramatic
consequences, and initial offsets are easily solved by Median already.

• The naive way to predict time differences based on a drift range are too optimistic:
the measured time differences tend to be larger when no drift compensation is em-
ployed.

• Median seems to perform better for slightly higher gains than 0.5. This was on a
relatively easy network however.

• In MemoryMedian, the best drift estimation does not lead to the best performance.
A better (more stable) estimate is preferred however, since a noisy and easily-changed
estimate could lead to strange results in difficult topologies.

• ATS has the highest potential, but also the highest sensitivity: slowest convergence,
varying performance, sensibility to disturbances and parameter values. It has both
the best and worst results, but is fragile. Moreover, it is the only algorithm that
requires extra message content to be sent.

• MemoryMedian and PISync both improve on Median. PISync achieves lower time
differences – both between neighbours and over the whole network – but is less robust
to disturbances, needs different settings for different frame times and has a tendency
to speed the network up. MemoryMedian offers the least improvement but seems to
be most robust as well.
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Figure 7-29: The experiment from section 7-3-4, but in round 50-70 and round 150-200
there’s no communication.

Table 7-2: The algorithms scored against one another on the different comparisons done in
this chapter.

Algorithm Topologies Frame Times Network Sizes External Time Disturbance
Median - - - ◦ ◦ ++
MemoryMedian ◦ ◦ + ◦ ++
ATS + - - - ◦ - -
PISync ++ + ++ - ◦
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Chapter 8

Experiments

To test the validity of the insights and conclusions drawn in previous chapters, experiments
are invaluable. To complete the work of this thesis, several experiments on real life Wireless
Sensor Network (WSN)s were done. This chapter describes the setup and implementation
of these experiments, and shows the results. In section 8-4, the experimental results are
compared with the results from simulations.

8-1 Setup

8-1-1 Hardware

Experiments were carried out with the wireless modules used for in-house development at
Chess Wise. These modules consist of a Nordic nRF51822 chip and the bare minimum of
extra hardware: some capacitors, resistors, two crystals and an antenna, see Figure 8-1.
Via a set of pins these modules can be places on carrier boards, which provide power (via
batteries or wires), a LED and connectors for programming and debugging.

(a) (b)

Figure 8-1: A MyriaModule, compared to a Euro coin (a), and on a standard carrier board,
providing a power interface, LED and connectors for programming and debugging (b).

The Nordic nRF51822 has an ARM Cortex-m0 processor at its core, and is programmed
in C. The 32kHz oscillator is a Seiko Epson FC-255, which has the same specifications as
assumed in section 4-3 [58].
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Figure 8-3: A map of the large scale experiments, with pictures of some regions. Sniffer
locations and reception ratios are shown. Due to limited sniffer coverage, the number of nodes
that was sniffed is slightly lower than the number that was present. Some of the nodes are
visible in the pictures by their green light.

Figure 8-2: The climate
chamber used for the tempera-
ture experiments. Some nodes
are visible inside the chamber
and on the ground in front of
it.

For the experiments involving a controlled ambient tempera-
ture, a climate chamber was used, depicted in Figure 8-2. The
machine can bring the temperature to levels between −30 ◦C
and 120 ◦C. The operating conditions for the nRF51822 are
between −25 ◦C and 75 ◦C [45], so the whole range is cov-
ered by this instrument. Wireless transmission through the
metal walls of the climate chamber is somewhat hampered,
but enough messages come through to form a network. To
have sufficient coverage with the data gathering (see subsec-
tion 8-1-2), a sniffer was placed both inside the chamber (via
a cable hole) and outside.
The large-scale experiments were done in a large basement
beneath Chess Wise’ offices, see Figure 8-3. Nodes were
spread out in a grid over the ground with distances of 1 or
2 meter between them. In the center of the basement we set
up a large wooden board with a maximum of 105 nodes, nor-
mally used for demonstration purposes. Hopefully, the large
network will have dense as well as sparse neighbourhoods.

8-1-2 Data Retrieval

For retrieving this data, two possibilities were considered:
local logging or over-the-air reporting. Local logging guaran-

tees complete data collection, but has disadvantages as well: the hardware to save data to
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Figure 8-4: The expected success rate of join messages for a single sniffer over a one-hop
network of different sizes.

has to be bought and interfaced with, and reading out all the data after the experiment
means extra work and a slower iteration speed.

The alternative is to send the data contained in the ‘join’ messages of the network. This
method is often used within Chess Wise to retrieve data from the network without in-
terfering in its normal operation. The join mechanism is not influenced by it either. As
long as the network under test remains reasonably synchronized, none of the nodes will be
listening during the join messages. Any information contained in these messages will not
influence the network operation. A ‘sniffer’ node – one that continuously receives mes-
sages and never sends – can collect the contents of the join messages for further analysis.
It is possible to send out this message at maximum strength, while sending the network
messages at considerably lower strength1. In this way information of the whole network
can be collected even when the nodes do not perceive the network as fully connected.

This is an attractive option because the infrastructure is already present and the data is
gathered at a central point. It is available for analysis immediately after the experiment,
allowing for quick feedback on the results. The drawbacks of over-the-air data collection
are a limited bandwidth, and missing data due to collisions or interference. In the following
part of this section, the feasibility of over-the-air data collection is investigated.

If every node chooses a broadcast slot for the join message randomly, we can approximate
the probability that a message is successfully sent by the probability of not colliding (see
section 3-5):

Pr(¬C) = (1− 1
Ns

)d

For frame times of 1, 5 and 10 seconds, using the network settings that will be introduced
in a moment, these numbers are displayed in Figure 8-4. The amount of data lost can be
considerable, especially for short frame times and large networks.

The message loss could be prevented by assigning every node a unique slot to send its
join message. This introduces a dangerous periodicity in the network and most likely
all join-related functionality will be broken. Since we are not too self-assured about the
performance of the proposed synchronization algorithms, and manually resetting hundreds
of nodes is a lot of work, we will accept the limited data loss.

1This turned out to be theoretical, since a bug in MyriaCore prevented the join messages from being
sent at full power.
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Table 8-1: The contents of an experiment data logging message (for 8 active slots)

Item Size [bytes] Max occurrences per round
Identifying Token 1 1
Algorithm state 4 1
Temperature 2 1
Number of neighbours 1 1
Neighbour ID 2 7
Phase difference 2 7
Slot difference 1 7
Standard header 17 1
Total max 59

For the large scale experiments, sniffers were positioned at strategic points to capture
the data. This data was logged on laptops and later collected, merged and deduplicated
into one logfile. Given the number of nodes that were heard and the number of rounds
logged, we can calculate the the amount of messages expected. In Figure 8-3, this ratio is
plotted. Some parts of the basement were used as storage, others were completely empty.
Perhaps surprisingly, the empty rooms had the worst sniffer coverage. Overall, the sniffer
coverage was well above 80% for many nodes. Only in the really large experiments (200+
nodes), some regions were seldomly heard and we will have to assume that the logged
data is representative for those regions too. More sniffer coverage percentages can be
found further on in Table 8-3.

8-1-3 Settings

For the experiments, the round times, size of the network, outside temperature and of
course the algorithm used were varied. In this section the settings of the network that
were not varied are listed.

Per node, the following information was captured per round:

• its neighbours heard in this round;

• the phase differences with those neighbours;

• its algorithm state;

• the temperature measured by the node.

This requires a message size of at least 59 bytes, see Table 8-1. A multiple of 16 is required
by MyriaCore, so the message size was chose to be 64 bytes.

We want to take very broad guard times for our experiments, to make sure there are no
messages lost due to timing errors. When something irregular like that happens, we want
to see it. The guard times are listed in Table 8-2. Since the time a message of 64 bytes
takes to transmit at 2 Mbps is about 15 ticks, these settings are clearly not advisable for
any other application. The number of active slots every round was 8, and scheduling was
allowed.
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Table 8-2: The guard times chosen for different frame times

Frame time [s] Guard time [ticks] Equivalent drift [ppm]
1 6 183
2 9 137
5 21 128
10 41 125
20 80 122

Figure 8-5: A floating point and fixed point implementation of the filter for PISync compared
in simulation. The differences are extremely small.

8-2 Implementation

Moving algorithms from the simulator environment to embedded code required some ad-
justments to the algorithms, most notably the implementation of fixed-point filters. Since
the processor on a MyriaNode does not possess a floating point processing unit, doing op-
erations on decimal numbers is quite expensive in terms of time and energy consumption.
The filters in MemoryMedian and PISync are of the following two forms:

αi(k + 1) = (1− ρ)αi(k) + ρ Med(θi(k)) MemoryMedian
αi(k + 1) = καi(k) + εi PISync

Since ρ and κ are between 0 and 1, both involve decimal calculations. A way to circumvent
these calculations is by implementing the filter in a fixed-point manner. The internal state
of the filter is represented by a set of bytes, where the lowest bit does not represent 1 but a
2−kth fraction of 1, where k determines the precision and range of the filter. Because the
negative power of two, the filter state can be efficiently transformed back to the number
in the correct units by bit-shifting.

There are two limitations to this implementation: the filter parameters have to be a
negative power of 2, and the output of the filter will always be an integer, even when the
state is between two integers. Since any correction will always be an integer too, this is a
minor problem. To see if this change is allowable, the effect was evaluated in the simulator,
see Figure 8-5. The differences are extremely small, as should be the case.

To be sure that the implementation functioned as intended, the algorithms were unit-
tested: the outcome of sequences of time differences was compared with output from the
simulator.
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8-3 Results

The three series of experiments that were done, varying round times, network scale and
temperature, will be presented in their own subsections here.

8-3-1 Round times

All three algorithms were run on small-scale, single-hop networks (11 nodes) for increasing
round times. The results are shown in Figure 8-6, in the histogram form that was also used
to assess simulation performance. All three algorithms show the same trend: for round
times of 1 s and 2 s, synchronization is easy and all time differences are well between -5 and
5 ticks. All three algorithms have a roughly symmetric distribution of time differences,
but also show a slight offset: negative time differences are more common than positive
ones. This is the effect of quantization and misestimation of time differences: differences
close to zero will be interpreted as negative.

Above the 2 s mark, performance starts to degrade in all cases. PISync and MemoryMedian
hold up much better than Median however, an effect which is especially evident for the
60 s experiments. In Figure 8-7, the standard deviations and maximum of each algorithm
per roundtime is plotted. Median is linear in both measures, as can be expected from a
proportional algorithm. Both drift-estimating algorithms seem fairly linear as well, but
with a smaller angle. PISync struggles a little with very small round times, and has the
worst maximum errors there. It is the best performer in terms of maximum errors for
the highest two round times, and otherwise competes with MemoryMedian for the lowest
standard deviation. This is positively surprising, because the tuning of the algorithm was
not changed (apart from emax), even though this was required in its original form.

In Figure 8-8, the minimum, maximum and average time differences per round are plotted
for the three algorithms with the 20 s round times. The improved performance of Memo-
ryMedian and PISync is once again clear. In MemoryMedian, one can see the algorithm
converging on the first couple of rounds, distorting the maximum a bit. PISync does not
have this transition period, but there are some unexpected outliers in the minimum and
maximum.

The filter behaviour of both algorithms is shown in Figure 8-9. MemoryMedian has smooth
transitions, and the algorithm states remain very steady. Due to the quantization of
corrections, the filters are attracted by integers. If a node measures similar time differences
over time, the filter will increase in value until it has reached an integer value and the
time differences become smaller. The filter values of PISync are more variable. Sudden
increases in the value are intermixed with slow decreases in between; characteristic of the
filter structure chosen. Lines with the same color belong to identical nodes, and one can
see that there is some consistency in the drift estimates: both algorithms have node 3 and
4 approach negative values and 2 and 6 positive.

A remarkable result is shown in Figure 8-10, the histogram of time differences for Median
at 60s round time. This experiment was done with only six nodes. At first the histogram
seems wrong; it is completely different from the gaussian-like histograms we have seen so
far. A possible explanation could be that this network is so small that in the absence
of drift correction there is only a limited number of time differences that is possible. A
node has a fixed ratio of drifts with all its neighbours. It will accumulate the same time
difference with each of these neighbours every round, and will pick one of these neighbours
as a median. If there are only five neighbours, there are a limited number of corrections
that can be done. The stochastic parts of this process are not sufficient to satisfy the
central limit theorem, leading to these large fluctuations in likelihood of errors. If the
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(a) Median (b) MemoryMedian

(c) PISync

Figure 8-6: The histograms of time differences for all algorithms, for different round times.

Figure 8-7: The standard deviation and maximum of time differences compared between the
algorithms for different round times.
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(a) Median (b) MemoryMedian

(c) PISync

Figure 8-8: The time differences over the 20 second round time experiments.

(a) MemoryMedian (b) PISync

Figure 8-9: The algorithm states over the 20 second round time experiments. Since the
states use very different representations, their values can not be directly compared.
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Figure 8-10: The histogram of time differences for Median at 60 seconds, for all nodes (a)
and between three pairs (b).

time differences between pairs of nodes are plotted (the second graph in Figure 8-10), this
theory is confirmed: some extremes are unique to certain pairs of nodes. It is only at a 60
second round time that the granularity cannot mask this effect.

8-3-2 Scale

The series of experiments with increasing scale was conducted on a network running at
a frame time of 10 s. The connections in the largest network deployment are shown in
Figure 8-11. The network is well connected, and counting all connections the maximum
distance is 4 hops. This involves some low-probability links however, so the diameter is
perhaps higher. Note that the connection ratios were not corrected for sniffer coverage,
so connections between two nodes that were seldomly sniffed are underrepresented. The
central board clearly functions as a hub in the network.

In Figure 8-12 the histograms for all three algorithms are shown. Median and MemoryMe-
dian are hardly influenced by network size, and there is no pattern in the variability that
remains. PISync on the other hand breaks down for the network sizes above 113 nodes!
The histogram maxmimum is much lower for the experiments of 190 and 285 logged nodes,
and it is much wider. There is still a small majority of near-zero time differences, but there
are also many time differences of hundreds of ticks (still remaining in the active period).
It seems like the network size has an influence on the local synchronization in this case.

To investigate the matter further, the logs of the leftmost sniffer are plotted separately
in Figure 8-13. This sniffer is situated in a room that is well-connected, and has a few
links to nodes outside the room. This log is one of the more interesting ones, because the
instability is only intermittently present here. In the time differences over time, there are
clearly moments in which the network is well-synchronized, and larger periods in which this
equilibrium is disturbed. These effects correlate with the drift estimations of the nodes:
time difference lead to large drift estimations, leading to even larger time differences.

In the third figure, which is a transpose of the plot in Figure 7-24 zoomed in on the active
period, this process is more visible. During the instable periods, the algorithm struggles
to keep the nodes together, presumably because some of them are ‘dragged away’ by
nodes that were not heard by the sniffer. At a certain moment around round 17100, the
conflicting nodes break off the rest of the group, actually improving the synchronization,
but separating this part of the network in three parts. This situation stays intact, with
some disturbances along the way. By the end of the experiment, the original group has

Master of Science Thesis Bouke N. Krom



100 Experiments

Figure 8-11: The same map as Figure 8-3, with the connections indicated. The thickness of
lines is a measure for the average reception ratio over an experiment.

grown quite small and the number of schedules is decreased. This leads to a shorter active
period.

From these figures, we can conclude that there are groups of nodes concurring on a com-
mon drift, but that these groups are conflicting. The network splits up into regions that
disagree. When looking at individual node data, there is significant difference in the av-
erage time difference with neighbours and the standard deviation of time differences, see
Figure 8-14. The nodes on the center board, where node density is extremely high, have
the largest and most variable time differences. Although the differences in the rest of the
network are smaller, they are still very large when compared to a good synchronization.
When the differences and variance for a well-performing algorithm are plotted on the same
scale, the circles would not be visible.

The last figure for PISync only solidifies our understanding of the problem. In Figure 8-15
the average absolute time difference per node is plotted against the number of unique
neighbours. There is a strong correlation: nodes from the very dense neighbourhood have
extreme time differences, and nodes from more sparse neighbourhoods are increasingly
influenced by this. As long as the critical density of about 100 nodes is not crossed, the
algorithm remains stable.

The fact that MemoryMedian does not suffer from this effect suggests that it is not just
the drift estimation that is hampered by extreme density, but perhaps also using the
average for proportional correction is risky. In any multihop network, time differences are
likely to increase over several hops. Taking incidental long-range (and thus large-error)
messages into account for the synchronization might reduce these differences, but could
also be risky: too many outliers will only introduce instability in the network, as happened
with PISync. Another possible cause could be that PISync is tuned too aggressively, and
should be more conservative in estimating drifts.
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(a) Median

(b) MemoryMedian

(c) PISync

Figure 8-12: The histograms of time differences for all algorithms, for different network sizes.
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Figure 8-13: The time differences, states and timing information measured by one sniffer in
the 300+ node PISync network. In the last figure, colored dots are messages from the active
period and gray crosses are join messages. The moment of reception by the sniffer in the 10
second rounds is folded on the y-axis, thus showing the timing of different nodes.

Figure 8-14: The average of absolute time differences and the standard deviation of time
differences measured by every node of the 300 node experiment running PISync. The sizes of
circles in the legend correspond to 200 ticks.
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Figure 8-15: The average of absolute time differences measured by every node, plotted
against the number of unique neighbours over the whole experiment.

8-3-3 Temperature Compensation

As was concluded in section 4-3, the rudimentary temperature sensor that is integrated
in the hardware platform might be used for a feedforward temperature compensation.
Experiments were done to see whether this works in practice too.

Validation of Internal Temperature Sensor

Apart from having a terrible accuracy, the internal temperature sensor is riddled with
anomalies. There are 5 different Product Anomaly Notices (PANs) [44] for this component
that luckily can be worked around with software. Nevertheless, it’s no wasted effort to
validate the internal temperature sensor ourselves. We used MyriaNed nodes equipped
with a TMP112 [68], which has an accuracy of ± 0.5 ◦C, much better than the ± 4 ◦C (or
even ± 8 ◦C in extreme cases) of the nRF51. We ran experiments with multiple sensors,
doing measurements of both sensors simultaneously.

In Figure 8-16, the result of the experiment is shown. The internal temperature sensor is
quite precise: there is very little noise and it detects very subtle changes in temperature.
It has a very large offset however. The offset is usually around 13 ◦C, but one node has
an offset of about 10 ◦C. When the offset is subtracted, the variability in between nodes
is within the ±4 ◦C as expected.

This offset of about 13 ◦C is not expected, but does not vary much over environmental
temperatures. This data has been communicated to Nordic, but no satisfactory explana-
tion was received. To circumvent the issue, a rudimentary calibration was done were all
nodes determine their offset at startup, which has to be done at a known temperature.

Synchronization Improvement

The results of the experiment done using the climate chamber are shown in Figure 8-
17. The temperature inside the chamber was quickly raised to 65 ◦C after the start of
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Figure 8-16: A temperature experiment with eight nodes. Half of the nodes has a TMP112
sensor (dashed lines) in addition to the internal sensor (crosses) on every node. The second
graph shows the difference between both sensors, and the average difference.

the experiment. Over the course of several hours (the round time is 15 seconds) the
temperature was decreased in steps of 10 ◦C until −25 ◦C. Finally the temperature was
raised suddenly towards 65 ◦C again and then the door of the climate chamber was opened
to have natural cooling.

The results are very convincing. With just the Median algorithm, the temperature depen-
dency shows nicely, with the time differences even following an approximately quadratic
curve for linear increases in temperature. Adding a temperature compensation tempers
the time differences and increases the operational range for a given guard time. Surpris-
ingly, using MemoryMedian without temperature compensation works better than Median
with temperature compensation. The adaptive drift estimation can better compensate for
persistent time differences than the feedforward temperature compensation, which is neces-
sarily inaccurate. Indeed, when looking at Figure 8-18, MemoryMedian’s state estimations
(without temperature compensation) follow the temperature differences. Combining both
methods yields best results, and with that method there is almost no effect visible in a
range from 50 ◦C to −15 ◦C.

8-4 Comparison

To see whether we could have predicted the results of the experiments with our models,
a comparison is made in this section between the simulations and the experiments. To
avoid the complications of a radio model (which is a field of study in itself), we will use the
topological information from the experiments and feed them into our simulations. This
information is not complete however, as is inherent with the over-the-air data retrieval
method. In Table 8-3 an impression of the coverages for experiments is given as the ratio
between successfully received messages and the expected number of messages based on
the number of nodes heard and the number of rounds of the experiment. As expected, the
coverage becomes lower with increasing network size, especially around 300 nodes.

One unknown parameter remains, and that is the drift per node. The temperature of
the experimental setup was not far from room temperature. A reasonable assumption is
therefore that the drifts of the nodes are uniformly drawn from a range. To ‘calibrate’ the
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Figure 8-17: The performance of Median and MemoryMedian on a 10 node network at 15
seconds round time, under extreme temperature differences, with and without temperature
compensation. The temperature in the first graph was measured with the internal sensor.
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Figure 8-18: The algorithm state of MemoryMedian in the uncorrected temperature experi-
ment.

Table 8-3: The data coverage of the experiments. Since some nodes were never heard, this
is an overestimation.

Experiments Coverage
min mean max

Round times (11 nodes) 88.65% 96.02% 99.74%
20 nodes 86.82% 90.52% 92.74%
50 nodes 87.51% 90.42% 92.19%
100 nodes 88.72% 90.36% 91.99%
200 nodes 89.41% 90.63% 91.73%
300 nodes 68.79% 74.45% 77.83%
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Figure 8-19: The histograms of time differences from simulation and experiment, both with
11 nodes and a frame time of 1 second.

Table 8-4: The maximum simulated time difference minus the maximum measured time
difference for round time experiments

Round time [s] 1 2 5 10 20 60
Median 4 0 -2 5 -1 -17
MemoryMedian -2 -2 -3 -4 -1 -14
PISync -1 -4 -2 -4 -4 10

range to use in our simulations, the simple 11 node, 1 second experiments were compared.
In Figure 8-19, the histograms are shown after tuning the range of drifts in the simulator.
A range of ±8 ppm was found to fit the results best. This is smaller than the ±20 ppm
that might be expected from the data sheets, but that is an upper bound of course. The
performance of Median is a bit better than predicted, and PISync a bit worse. In both
simulation and experiments, the differences between the algorithms are small.

Using this distribution of drifts, the simulator was used to reproduce the synchronization
process on networks with increasing round times. In Figure 8-20, the same graph as
Figure 8-7 is displayed. The graphs look similar: all algorithms have an approximately
linear dependency on frame time in both the standard deviation of time differences. Only
the standard deviation of PISync on 60 s is not as expected, and higher than in reality.
PISync and MemoryMedian are generally better than Median, whose performance is often
worse in simulations than in reality. If we disregard the unusually high frame time of 60 s,
the predictions of maxima by the simulations are quite good: they are mostly within two
to four ticks of the actually measured maximum, see Table 8-4. There is no guarantee that
this result is consistent however, since the distribution of drifts is random in the simulator.

The simulation results for different network sizes are displayed in Figure 8-21. Those
plots should be compared to Figure 8-12. Due to the scaling this is not visible, but the
extremes of time differences for the simulations are much larger. This is probably caused
by limited sniffer coverage: some nodes are heard just a few times, and thus will have very
few communication instants in the simulation. In between this communications the drift
can accumulate without correction.

Aside from these extremes, all three algorithms perform better in simulation than in
reality: the variability in differences is lower, and the frequency of near-zero errors is
much higher. The differences in performance between different scales are quite large in
the simulations, but there seems to be no trend: 19 nodes perform well, 53 nodes is terrible,
113 nodes is among the best performances again. It’s striking that the order from best to
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Figure 8-20: The simulator’s results for the algorithms on different round times, using
topology information from the experiments with 11 nodes. This figure can be compared to
Figure 8-7.

worst (19, 113, 190, 285, 52) is almost the same for all three algorithms. This indicates a
common influence on performance, perhaps the communication topology as it is logged.

Unfortunately, the breakdown of PISync is not predicted by the simulations, even though
the network density is almost the same. Due to limited sniffer coverage, the simulation
cannot be done under the exact same circumstances. The performance of the simulation
of 285 nodes is the worst, but nowhere as bad as the experimental one. In any case, this
discrepancy between the simulations and reality is an interesting problem that prompts
further research. Unfortunately it is out of the scope of this MSc project, which can be
thought of as a first iteration.
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Figure 8-21: The histograms of time differences generated by the simulator on different
network sizes, for the three algorithms, at a round time of 10 seconds.
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Chapter 9

Conclusions

The goal of this MSc project has been to develop a better synchronization algorithm for
an existing MAC protocol (gMAC) that is used in a commercial WSN called MyriaNed.
An improved synchronization has the potential to dramatically increase energy efficiency.
We have first explored the problem and established the solution space in chapters 2 and
3. It has been shown that if the synchronization in gMAC is insufficient (requiring guard
times that are more than half the transmission time of a message), it is a rather inefficient
protocol, and there are most likely better alternatives.
There is a need for specialized algorithms due to the unique challenges of wireless mesh
networks, and the intimate coupling with the MAC protocol. In chapter 4 an overview
of algorithms available in literature is presented. Most algorithms use a form of clock
drift estimation, and this technique is likely to enable improvement upon the current
synchronization algorithm (Median). We propose three candidates: two adapted from
published algorithms (ATS and PISync) and one inspired by Median (MemoryMedian).
The performance of these algorithms has been evaluated in simulations and experimentally
with networks of up to 302 nodes.
Average Time Sync (ATS) uses two cascaded consensus protocols to establish the drift and
offset of a network-wide virtual reference clock that all nodes try to follow. In simulations
this algorithm shows the best drift estimation properties, but its performance is volatile:
both the best and the worst results are produced by this algorithm. It is not robust
against sudden errors, and is the only algorithm that requires information to be included
in messages. For these reasons it was not considered for the experimental evaluation.
PISync implements a PI controller for every node. A correction of the clock consists
of the average of the measured time differences, and a value that was integrated over
time. This integration is done using some heuristics to prevent integrating errors that
can not be caused by drift. Its performance looks extremely promising in simulation,
but suffers from a speedup due to nonzero-mean error integration, a form of integrator
windup. To circumvent this, a filter is introduced that sacrifices some performance for
improved reliability. Experiments have shown however that extreme node density leads to
instability in this algorithm. Our simulations can not reproduce this instability, and thus
the mechanism from which it arises remains largely unclear. Aside from the instability
of PISync, network size has no influence on synchronization performance of the tested
algorithms.
MemoryMedian builds on the existing synchronization algorithm by taking the median
of measured time differences to apply a correction every round. The median value is fed
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through a simple low pass filter as well, providing an additional correction that is a form of
drift compensation. The performance of MemoryMedian is better than that of Median in
simulations and experiments alike. MemoryMedian proves to be more robust than PISync
and ATS, since it does not suffer from problems with network density. It provides a steady
improvement over Median in all cases.

In addition, a feed forward temperature compensation rule based on available low-quality
temperature measurements has been shown to reduce the influence of temperature con-
siderably. This feed forward rule works well in combination with MemoryMedian. Using
both temperature compensation and MemoryMedian increases the temperature range that
can be covered without additional guard times from 15 ◦C to 35 ◦C to −5 ◦C to 45 ◦C.

An important part of this thesis has focused on providing analytical insight into the
dynamics of synchronization processes on networks like MyriaNed. We have been able to
model a class of synchronization algorithms (first order algorithms) as a consensus process.
For this class of algorithms it can be proven that the synchronization process converges if
the union of links in the network forms a spanning tree often enough – a condition that is
satisfied by MyriaNed.

In an attempt to extend these results into proofs of stability for drift estimating algorithms
(second order algorithms) we have constructed a framework in which Median, Memory-
Median and PISync can be described. Unfortunately, the techniques used for first order
algorithms can not readily be applied to this framework.

9-1 Recommendations & Future Work

Based on the results of this thesis we would recommend Chess Wise to work on incorpo-
rating MemoryMedian in MyriaCore. There are still some aspects to be addressed. The
tuning of the gains of the algorithm was only done in simulations, and perhaps there are
more optimal values. This should be investigated by doing a series of experiments with
varying gains. Secondly, the algorithm was not tested on dynamic networks, where the
neighbours change frequently. Since the drift estimation has to change accordingly, this
could lead to degraded performance. On the other hand, having more neighbour diversity
could enable nodes to be less biased in their estimation.

In addition, using the temperature compensation technique has clear benefits and works
both with Median and MemoryMedian. The implementation could be made more robust
(by rejecting impossible values or changes) and a solution has to be found for the large
offset of the internal temperature sensor.

When these algorithms are incorporated, the guard times could be reduced to the values
in Table 9-1. Note that this table suggests that even with only Median, the default guard
times (9 ticks) are not needed in most situations.

In our experiments, we have always made sure that guard times were more than sufficient.
Experience shows that throughput does not gradually lessen with decreasing guard times.
At a certain point, the shortage of guard time leads to so many collisions that only very
few messages remain. These messages are not sufficient for nodes to correct their clock
adequately, and the next round the time differences are even larger, leading to even more
collisions. This point of breakdown could be investigated experimentally. Ideally one
would like to predict such a point, but our models do not incorporate this effect. Perhaps
theory on crystallization or epidemics on networks can provide insight.

Another important aspect in which our models fall short is the failure to reproduce
PISync’s breakdown in high-density regions. Finding the mechanism for this failure,
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Table 9-1: Recommended guard times, in ticks, for various round times, at room temperature.

Round time Median MemoryMedian
1 s 4 4
2 s 4 4
5 s 7 5
10 s 12 7
15 s 14 8
20 s 16 9
60 s 50 14

whether it is the averaging action, tuning or something else, can yield valuable insights in
the influence of network communication dynamics on synchronization.

Further improvements that could be worthwhile to investigate are:

• Adaptive guard times: the guard times are currently static, and set for the worst case.
This might not always be necessary. If mechanisms can be found to reliably predict
time differences, guard times might adapt to circumstances, increasing efficiency
even further.

• Multirate networks: in some infrastructures, it could be beneficial to have different
round times in one network. This would influence synchronization, and can be both
beneficial (perhaps the nodes on longer round times can use the shorter round times
to attain sync before communicating) or detrimental (the shorter round nodes have
to accommodate for the longer rounds with their guard times).

• Network slowdown: in experiments, MemoryMedian showed a transient at the start
in which filter values had yet to settle. For very long round times this can be
troublesome, since the initial errors might lead to less throughput, and the network
might break before the estimations had a chance to attain a good value. To get
networks to run at very long round times with small guard times, a scheme can be
devised where the nodes start communicating in short rounds, and once the estimates
are settled transition to very long rounds.

Finally, continuing the analysis of chapter 5 and finding conditions for convergence of
second-order algorithms on directed, switching topologies in general could be a valuable
result for far more applications besides synchronization. It would mean a serious extension
to the already valuable theory on consensus algorithms. Another possible extension to this
theory would be to find more conservative error bounds for consensus processes, or bounds
for convergence on advanced topologies.
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Appendix A

Theorems and Definitions

A-1 Theorems

A-1-1 Geršgorin Circle Theorem

The Geršgorin Circle Theorem provides bounds on the regions in which eigenvalues of
square matrices may lie. It finds a special application in determining the eigenvalues of
Laplacian matrices. The following is reproduced from [51].
Every eigenvalue λ of an m×m matrix A = [aij ] lies in at least one of the discs

|λ− aii| ≤ Pi =
∑
j 6=i
|aij |, i = 1, 2, . . . ,m (A-1)

That is, every eigenvalue lies in at least one of the n discs in the complex plane with
centers |aii| and radii equal to the row sums of off-diagonal terms.

A-1-2 Wolfowitz’s Lemma

Let M1,M2, . . . ,Mm be a finite set of ergodic matrices with the property that for each
sequence Mi1 ,Mi2 , . . . ,Mij the product MijMij−1 . . .Mi1 is ergodic too. Then for each
infinite sequence of those sequences:

lim
j→∞

MijMij−1 . . .Mi1 = 1c

Where c is a row vector.

A-1-3 Lyapunov Theorem

Lyapunov theory can be used to establish stability properties of dynamical systems. This
formulation of the theorem is taken from the course slides of SC4025 Control Theory, TU
Delft.
Consider a dynamical system ẋ = f(x) with f : D → R defined on D ⊂ Rn and an
equilibrium point f(xe) = 0. A function V (x) is a Lyapunov function if d

dtV (x(t)) ≤ 0
(which implies [δxV (x)] f(x) ≤ 0 via the chain rule), and V (xe) = 0. A Lyapunov function
can be seen as a ‘potential function’ of state trajectories. If this function is monotonically
decreasing, the states will converge to the lowest potential: the equilibrium. Formally:
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• If V (x) > V (xe) for all x ∈ D\{xe}, then xe is stable (the state trajectories stay
bounded).

• If V (x) > V (xe) and [δxV (x)] f(x) < 0 for all x ∈ D\{xe}, then xe is asymptotically
stable (the state trajectories converge).

So loosely speaking, if a positive definite function V (x) can be found that is monotonically
non-increasing for all trajectories of the dynamical system f(x), stability is proven. If the
function is monotonically decreasing for all trajectories, asymptotic stability is proven.

A-2 Definitions

Definition A.1 (Stochastic Matrix). A matrix A is stochastic if and only if (i) its entries
are nonnegative, (ii) its row sums are 1.

The product of two stochastic matrices is again stochastic.

Definition A.2 (Primitive Matrix). A square, nonnegative matrix A is called primitive
if Am is all-positive for m sufficiently large.

A sufficient condition is for the matrix to be a nonnegative, irreducible matrix with a
positive element on the main diagonal.

Definition A.3 (Ergodic/SIA Matrix). A square, nonnegative matrix A is called ergodic
if the rank of limi→∞A

i is 1. Ergodic matrices are also called stochastic, indecomposable,
aperiodic (SIA) matrices.

Stochastic, primitive matrices are ergodic [32].

Definition A.4 (Irreducible Matrix). A matrix A is irreducible if there is no permutation
P TAP that makes it upper block triangular. The adjacency matrix A corresponding to a
directed graph is irreducible if the graph is strongly connected.

Definition A.5 (Uniform Boundedness). A group of values or functions is uniformly
bounded if all values or functions are bounded, and there is one bound within which all of
them fall.

Definition A.6 (Balanced graph). A graph where every node has as many incoming as
outgoing links. An undirected graph is balanced by definition.

Definition A.7 (Convexity). Any value e lies within the convex hull of values {x1, . . . , xn}
if e can be expressed as:

e =
n∑
i=0

λixi

where:
λi ∈ [0, 1]

n∑
i=0

λi = 1

In the case of xi and e being scalars, e lies within the strictly convex hull of {x1, . . . , xn}
if it’s in between (and not equal to) min({xi}) or max({xi}).

Definition A.8 (Spanning Tree). A graph in which there exists a path from at least one
node to all other nodes is said to contain a spanning tree. The spanning tree is the minimal
subgraph (containing all nodes) for which the property holds.
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Additional gMAC Statistics

In section 3-5, the transmission probabilities of gossip MAC (gMAC) in a single neigh-
bourhood were analyzed. This line of thought can be continued by looking at the success
rate over multiple attempts, the influence of a scheduling strategy and trying to make pre-
dictions of expected message reception ratios. This has little to do with synchronization
(since it all assumes a well-synchronized network), but provides insight in the dynamics
of MyriaNed.

Note: in this appendix di is used for the number of neighbours instead of mi.

B-1 Multiple attempts

The probabilities of a single transmission succeeding for reasonable choices of parameters
are not very encouraging, see Figure 3-6. For a realistic ratio (Ns = 8, di = 10) the
probability of transmission is around 30%, slowly decreasing with increasing node density.
Luckily a node can attempt to transmit in multiple consecutive rounds, increasing the
odds. A straightforward way to model this is viewing it as a binomial process. In every
round the node has a transmission success of p = (1 − 1

Ns
)di , as modelled in section 3-

5. Assuming that the chances of success are independent over nr successive rounds, the
probability of getting exactly k successful transmissions is

Pr(X = k) =
(
nr
k

)
pk(1− p)nr−k

where X is the number of messages successfully transmitted. In order to determine the
chances of success, it suffices to have at least k = 1 successful transmissions over all the
attempts.

Pr(X ≥ k) =
nr∑
i=k

(
nr
i

)
pi(1− p)nr−i (B-1)

Note that this is the ‘inverse’ of the cumulative distribution function of the binomial
distribution, where the sum runs from 0 to k.

To our relief, the probabilities of success quickly approach 1 after several rounds (Figure
B-1). As long as the number of slots for Ns is larger then the number of neighbours, the
network does not hamper transmission too much.
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Figure B-1: The probability of a successful transmission over one hop over multiple rounds,
in different settings for Ns, di, and the number of rounds needed for a specific confidence of
success, for the same settings.
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Figure B-2: Scheduling in MyriaCore.

B-1-1 Strategy

When a network (or a neighbourhood in a network) is very dense, the number of neigh-
bours might exceed the amount of active slots. The probability of successful transmission
becomes very low, and much energy is wasted. This issue is known, and countermeasures
are taken. An extended version of gMAC is used, that employs a strategy for shifting
the transmit and receive slots, effectively broadening the active period. This is called
‘scheduling’, and has its basis in the MSc thesis by Anemaet [3].

Two types of scheduling are done: Rx scheduling and Tx scheduling, see Figure B-2. Each
node keeps a list of recently-heard neighbours to estimate its local density, and based on
this neighbour count, schedules are increased or decreased.

Rx Scheduling If the neighbour count is larger the number of active slots minus 1, the
number of Rx schedules is increased (up to a prespecified maximum). The active period
of a frame is lengthened by one set of Ns slots, but the number of Rx and Tx slots is kept
the same, to keep the energy usage predictable. In every frame, the Rx slots are shifted
one schedule forward. The Tx slot is chosen randomly from all active slots, and may or
may not coincide with an Rx slot.

Tx Scheduling The number of Rx schedules is limited (usually 3). If this limit is reached,
and the number of neighbours is still larger than the active slots (the number of Rx
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schedules times the number of receive slots) minus 1, a node tries to reduce wireless
collisions skipping transmission every other round: transmit scheduling.

If the neighbour count is lower than half the number of active slots, both schedules are
decreased by one.

Tx scheduling seems a last resort for extremely dense neighbourhoods, and might not
occur very frequently. Rx scheduling on the other hand is triggered easily. Consider the
same scenario as before: a fully connected network of size N , where we are interested in
the probability that one node received the message from another node in the network after
a certain number of rounds. Assume that all nodes have the correct neighbour count from
the start of the experiment. If di ≥ Ns, a second receive schedule is added, if di ≥ 2Ns, a
third. Under the assumptions, every node in the network has the same strategy, although
we assume that the round in which the scheduling was started is random. That is, there
is no correlation between the receive periods of nodes in a given frame1.

There are two effects at play: the probability of reception becomes lower (because the
transmit and receive slots might not overlap), and the probability of collision becomes
lower (because two transmit slots have a lower probability of overlapping). In the analysis
without schedules there were only two possible situations each round: success or collision.
With the addition of schedules, the absence of collisions does not guarantee success, since
the goal node might not be listening.

First analyse only the first round of communication. We now differentiate between the
nodes: the node initially transmitting the message under consideration will be the source,
the intended destination node the sink, and the other nodes are just neighbours. There
are four possible scenarios:

1. The transmission fails due to a collision

2. There is no collision, but at the instant of transmission none of the nodes has an
active Rx schedule.

3. There is no collision, but at the instant of transmission the sink node has no active
Rx schedule. Some or all of the other nodes do have that.

4. There is no collision, and the sink node has the right Rx schedule

Of these situations, number 1 and 2 lead to an identical scenario in the next round. Number
4 is the situation we are interested in. Number 3 leads to a different set of probabilities
in the next round, since each of the nodes that received the message will try to send it in
the next round. If any of them succeeds, the transmission is successful.

Let Nrx the number of Rx schedules per node (which is assumed to be equal), Rj the Rx
schedule for node j in this round, C be the collision event, Ns the number of slots in one
schedule, and Ti the transmission slot for node i in this round.

The first possibility is that of a collision. The probability of a collision is reduced by the
number of Rx schedules, since the amount of slots that a Tx slot is randomly picked from
has increased to Ns · Nrx. To avoid enumerating all the combinations, we formulate the
probability of no collision:

Pr(¬C) = (1− 1
NsNrx

)di

1It would be interesting to verify that this in fact happens in MyriaNed. The scheduling benefits would
be ruined if neighbours have a high chance of picking the same sequence of Rx schedules.
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Now consider the second case, where there is no collision, but none of the neighbours has
an active Rx schedule in the transmission slot. Each neighbour has a chance of (1− 1

Nrx
)

of listening in a wrong period:

Pr(¬(T0 ∈ Rj)∀j ∈ d0 ∩ ¬C) = (1− 1
Nrx

)d0 · (1− 1
NsNrx

)di

The chance of a direct success (the fourth case) given no collision is the chance that the
sink node picks the correct receive schedule, which is the probability that both the sender
and receiver have picked the same schedule ( 1

Nrx
) times the number of schedules.

Pr((T0 ∈ Rj) ∩ ¬C | j = sink) = Nrx · (
1
Nrx

)2 · (1− 1
NsNrx

)di

= 1
Nrx

(1− 1
NsNrx

)di

The remaining chances are when one or more of the neighbours receives the message but the
sink node does not. With larger neighbourhoods there are many different combinations
of successes and failures, and the probabilities become cumbersome. A more feasible
approach is looking at the different paths leading to success. We know the success rate
for one round. In two rounds, we should also consider the success rate of two-hop paths.
Let Si,j,k denote the event of a successful transmission over the path i → j → k. The
probability of a two-hop path via an arbitrary neighbour is:

Pr(S0,i,j | j = sink) = Pr(¬C) · Pr(T0 ∈ Ri) · Pr(T0 /∈ Rj)︸ ︷︷ ︸
First round

·Pr(¬C) · Pr(Ti ∈ Rj)︸ ︷︷ ︸
Second round

Multiply this by the number of non-sink neighbours (d0 − 1) to get the two-hop success
rate. In two rounds, with scheduling, the total probability of success is thus (1st round
success + 1st round failure but 2nd round success + two-hop success).
In Figure B-3a a comparison is made between success probabilities of scheduling and
nonscheduling schemes, for one and two rounds, for a maximum of two hops. The prob-
abilities for nonscheduling are steadily decreasing, as expected from Figure 3-6b earlier.
The scheduling scheme clearly shows improvement for node densities higher than 7. In-
deed, for one round the probability of successful transmission becomes lower, but there
is a larger gain in confidence for two rounds. The decision boundary used in MyriaCore
is perhaps too high: adding a schedule the first time leads to a sudden jump in success
over two rounds. We tried shifting the decision boundary to a lower position (Figure
B-3b). This makes the transition of the two-round probabilities smoother, but leads to a
significant loss of success in the first round. The first option seems to be the better one.
Taking matters to the extreme, we compared the scheduling success with a network that
has double the amount of active slots (and thus double the amount of energy consumption!)
in Figure B-4. Of course the 16-slot network performs better in most cases. Scheduling
seems to be a more efficient approach however, and in extreme cases even works better
than just adding more slots.

B-2 Reception Ratios

Now that chances of successful transmission of a single message have been investigated,
a second question is the amount of messages that can be expected to be received by a
node (possibly the gateway) in a dense neighbourhood. Predicting these number has very
practical applications, in judging the packet reception ratios reported by a network, and
in estimating the amount of gateways needed for a certain data capacity.
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(a) Add Rx schedule for d > (NrxNs) − 1

(b) Add Rx schedule for d− 1 > Nrx·Ns
2

Figure B-3: The transmission success probabilities for different scheduling regimes, for one
or two rounds.
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Figure B-4: Comparing success probabilities of a scheduling network with a network with
double the amount of slots.

B-2-1 No Scheduling

Consider a fully connected network as before, with N nodes, where for every node the
amount of neighbours is d = N − 1. There are Ns slots in a round, and each node picks
one slot at random in every round to transmit in.
Denote one node in the network as the sink or gateway node. Every slot there is a chance
that a message arrives. The message arrival occurs if exactly one neighbour is transmitting
in that slot, and the node itself is not sending. In all other cases there is no message arrival.
As calculated earlier, the chance of a successful transmission in a round, by any node in
the network is

(1− 1
Ns

)N−1

There are N nodes trying to send, so on average the number of successful messages in the
network is N(1− 1

Ns
)N−1. One of those node is the sink itself however, and can not deliver

messages at the sink. So the expected number of received messages by the sink per round
is:

(N − 1)(1− 1
Ns

)N−1 (B-2)

B-2-2 Scheduling

Now we can try to include the influence of scheduling. Assume that all nodes somehow have
arrived at all the same number of schedules2, and their initial schedules are distributed with
a uniform likelihood. For example, all nodes have 3 active schedules, and the probability
of being in schedule s in a round is 1

3 .
For sending, every node can pick any of the active slots, thus the probability of a message
succeeding (the probability of noncollission) is

(1− 1
NsNrx

)N−1

2If not, the situation will most likely be worse: nodes are listening when no one is sending, and/or
sending when no one is listening
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Figure B-5: The reception ratios (top) and expected number of messages per round (bottom)
for Ns = 8, in scheduling mode. The experimental values were retrieved by doing simple
simulations of the process.
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Figure B-6: The influence of the number of schedules on the amount of messages at the
sink

This is again done by (N − 1) nodes of interest, but there is only a 1
Nrx

chance that the
sink is listening. The expected number of messages per round at the sink is now:

N − 1
Nrx

(1− 1
NsNrx

)N−1

This formula is identical to equation (B-2) for Nrx = 1, as expected. It is visualised in
Figure B-6.

B-3 Concluding

Looking at Figure B-5, we can conclude the following:

• Under optimal circumstances, Ns = 8, d = 8, the reception ratio is indeed around
the infamous 36%, but it can be higher when less nodes are around (but that is less
efficient). The number of messages received seems to have a maximum somewhere
below 3, as confirmed by Figure B-6. In low densities there are not enough neighbours
to exceed this, in high densities there are too many collisions.

• In dense neighbourhoods, packet reception ratios are commonly between 10% and
30%.

• The number of messages received at the gateway can be used as a performance
indicator for the scheduling decision. In Figure B-6, this measure is plotted for
different numbers of schedules, for 8 slots. The crossover points are at 10, 19, 28
and 35 nodes.

B-4 Limits of Throughputs of gMAC and Slotted ALOHA

The probabilities of exactly one message being sent in a slot for gMAC and Slotted ALOHA
are:

gMAC: Pr(X = 1) = mi + 1
Ns

· (1− 1
Ns

)mi

Slotted ALOHA: Pr(X = 1) = Le−L = mi + 1
Ns

· e−
mi+1
Ns
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Table B-1: The number of neighbours at which point adding an extra schedule will be
beneficial.

Ns 2 Schedules 3 Schedules
6 7 13
8 10 18
10 12 23
12 15 28
14 18 33
16 21 38

≈ 1.4Ns − 1.4 = 2.5Ns − 2

These functions are very similar, towards the point that in the limits of d to infinity and
Ns to infinity, the functions are equal:

L = d+ 1
Ns

→ Ns = d+ 1
L

(1− 1
Ns

)d = (1− L

d+ 1)d

The exponential function can be defined by the following limit:

ex = lim
n→∞

(1 + x

n
)n

thus: lim
d→∞

(1− L

d+ 1)d = e−L

A similar argument can be made for Ns to infinity.
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Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering

ATS Average TimeSync

DCSC Delft Center for Systems and Control

FTSP Flooding Time Synchronization Protocol

gMAC gossip MAC

GTSP Gradient Time Synchronization Protocol

IoT Internet of Things

MAC Medium Access Control

MBCS Model-Based Clock Synchronization

NTP Network Time Protocol

PTP Precision Time Protocol

RBS Reference Broadcast Synchronization

RFA Reachback Firefly Algorithm

TDMA Time Division Multiple Access

WSaN Wireless Sensor and Actuator Network

WSN Wireless Sensor Network

List of Symbols

∆f The drift as a ratio of frequencies (in ppm)
α The result of a filtered weighted sum of time differences that functions as a

drift estimate (but in different units) in MemoryMedian and PISync
β The general symbol for the weighted sum of errors used for proportional

correction in Median, MemoryMedian and PISync
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134 Glossary

∆ The maximum degree in the network
εi(k) The correction of node i’s idle time for round k
τi The value of clock i
θi(k) The set of phase differences with neighbours measured by node i in round k

E Set of edges in a network
Ni The set of nodes that node i receives; its neighbours
V Set of nodes in a network
A(k) Adjacency matrix in round k
ai Drift factor of clock i
bi Offset of clock i
C The event of a collisions, a random variable.
di Derived drift value of node i : T (ai − 1)
fi(t) The actual frequency at time t of the oscillator in node i
fn The nominal frequency of oscillators
ki The integral gain for a synchronization algorithm
kp The proportional gain of a synchronization algorithm
L The graph Laplacian
mi Number of neighbours of node i
N Number of nodes in a network
Ns Number of active slots
P The Perron matrix, I − kpL.
T The round time, also called frame time of a network
t Reference time
Tg The guard times
Ti The transmission slot for node i, a random variable
v(k) The difference between the median and average at time k
wij Weights of links in the adjacency matrix. Indicates a link from j to i if it is

nonzero
xi(k) The phase offset of node i at the start of round k
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