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1. INTRODUCTION  

The importance of scale effects in rock engineering 

design is well recognized. It is possible to directly study 

scale-effects associated with randomly distributed flaws 

in an otherwise intact rock specimen at the laboratory 

scale. For instance, Bieniawski and Van Heerden (1975) 

indicated that the unconfined compressive strength of 

different rock materials such as iron ore, quartz diorite 

and coal decreases with size, reaching constant values for 

samples of approximately 1.5 m edge length. This 

behaviour was initially explained in terms of the larger 

sample containing more flaws in so-called critical 

locations (Goodman, 1980). Cundall (2008) summarised 

the effect of size on strength by referring to studies by 

Bažant and Chen (1997) and mentioning examples of 

basic theories of scaling that may be responsible for the 

observed size effects. 

However, the problem of scale-effects become quite a 

complex problem when dealing with larger rock mass 

volumes containing natural discontinuities, since it is not 

possible (or at least not economical) to perform field tests 

at different scales. In this context, numerical models 

provide a useful alternative to test the variation of rock 

mass strength with increasing sample size, as 

demonstrated by Elmo (2012) and Elmo et al. (2016) for 

compressive, indirect tension and shear loading 

conditions. However, numerical models may introduce an 

indirect form of scale effects due to the simplification 

required when modelling fractured rock masses, 

independently of whether a continuum or discontinuum 

modelling approach is used.  

The simplification process has a significant impact when 

considering rock engineering problems that rely on 

estimates of intact rock bridges, i.e. the size of the intact 

rock portion in between natural fractures which, if failed, 

may contribute to the formation of a continuous failure 

surface, Figure 1. Jennings (1970) defined the overall 

failure surface as an Equivalent Discontinuity and 

provided a measurement of its continuity (K) as a function 

of fracture persistence, with K is equal to 1 for a fully 

continuous surface.  
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ABSTRACT: Numerical methods and computing techniques are now integrated components in rock mechanics and rock engineering 

design, providing an opportunity to increase our fundamental understanding of the factors governing rock mass behavior. It is 

increasingly evident that models of rock mass behavior should incorporate realistic representation of fracture networks as well as 

should constitute an effective aid for the evaluation of scale-effects for those engineering problem where performing field tests at 

different scales is not technically or economically viable. This paper provides a discussion on proposed theoretical approach broadly 

adopted to study the stability of slopes that include intermittent joints. Limitations of the approach are demonstrated by showing the 

results of numerical analyses carried out with discontinuum (ELFEN) and continuum (PLAXIS) codes applied to the study of 

conceptual slope and foundation problems in fractured rock masses. The paper highlights the importance in rock engineering design 

of applying numerical modeling for rock bridge related problems, and emphasis is given to methods to account for rock bridge 

strength at the desired engineering scale. 

 

 

 

 

 
 



 

 

Fig. 1: Example of co-planar and step-path rock bridge 

problems. 

The coefficient K is used to estimate equivalent cohesion, 

(ceq) and friction angles (eq) of the Equivalent 

Discontinuity (Equations [2] and [3] below, in which c 

and  are the cohesion and friction of the intact rock, cj 

and j are the cohesion and friction of the joint surface).  

 

𝑐𝑒𝑞 = (1 − 𝐾)𝑐 + 𝐾𝑐𝑗                                                  [1] 

 

𝑇𝑎𝑛𝜙𝑒𝑞 = (1 − 𝐾)𝑇𝑎𝑛𝜙 + 𝐾 𝑇𝑎𝑛𝜙𝑗                         [2] 

 

Note that In Jennings (1970), Equations [1] and [2] were 

developed on the hypothesis that the intermittent joints 

are co-planar. Nonetheless, researchers and engineers 

have continued over the years to apply Equations [1] and 

[2] to the study of slope stability and step-path problems 

despite the fact those Equations pertain to a very simple 

case, which is seldom encountered in the field (co-

planarity of joint surfaces). Furthermore, the approach 

neglects two fundamental scale effects problems: 

• Type 1. The same measurement of rock bridges (1-

K) could be obtained for different problems. In other 

words, according to Equation [1] and [2], a single 

(larger) rock bridge and many (smaller) rock bridges 

may yield the same equivalent cohesion and friction 

angles if the total length of rock bridges is the same 

for the two problems (Equivalent K). 

• Type 2. Because the fracture intensity parameter 

would determine what portion of the naturally 

occurring fractures could be explicitly modelled, 

any simplification process would necessarily 

introduce some form of implicit rock bridges, the 

size of which would depend on the model resolution 

or size of the representative elementary volume 

(REV) for the rock mass. 

As shown in Elmo et al. (2018), the definition of K can be 

modified to include the height of the slope H and the dip 

of the joint segments. Therefore, the strength of a rock 

bridge would be a function of its size and whether the load 

applied is mostly compressive, shear, tensile, or a 

combination of those. For the Type 1 problem, it is 

reasonable to assume that larger intact rock bridges in the 

field would contain micro flaws, therefore he same basic 

scale effects theories (e.g. Bažant and Chen, 1997) could 

be applied to determine the intact cohesion and friction 

angle of each specific rock bridge. Those parameters 

would also change with the location of the rock bridge, 

since the degree of confinement would be different.  

Type 2 problems are relatively more complex since there 

would be the need to scale up rock mass properties rather 

than intact rock properties. Using synthetic shear box 

texts at 2, 5, 10 and 20 m scale, Elmo et al. (2012) 

demonstrated that synthetic rock mass models could be 

used to obtain equivalent GSI ratings scaled to the 

problem under consideration. More recently, Fadakar and 

Elmo (2018) have developed a new method to address 

Type 2 problems and quantify the effect of rock bridges 

in terms of rock mass quality using Graph Theory. 

This paper use discontinuum and continuum codes to: i) 

demonstrate the role that scale effects play in Type 1 

problems; and ii) to discuss the limitations of current step-

path analyses. To do so, failure of rock bridges is 

simulated by considering a slope problem (55 m high 

slope) with intermittent joints, and a foundation load 

applied to the crest of the slope to generate enough 

induced stresses to overcome intact rock strength since 

gravitational induced stresses alone within the slope 

would not be sufficiently large to overcome intact rock 

strength.  

 

2. NUMERICAL ANALYSIS OF STEP-PATH 

AND FOUNDATION STABILITY PROBLEMS 

Rock masses are typical inhomogeneous and 

discontinuous media. The strength and deformability of a 

rock mass can be viewed as a combination of the 

mechanical properties of the intact rock material and 

weaknesses in the form of discontinuities; the associated 

reduction in strength and deformability is ultimately 

dependent on the frequency and mechanical properties of 

the discontinuities.  Although the rock mass strength can 

be much less than that of the intact rock, load bearing 

capacity of rock masses is typically greater than that of 

soil material. This paper does not comprise a review on 

settlement and bearing capacity failure of foundations in 

rock; principal literature sources on the subject include, 

amongst the others, Goodman (1980), Kulhawy and 

Goodman (1980), Wyllie (1992), Serrano and Olalla 

(1996), Merifield et al. (2006) and Prakoso and Kulhawy 

(2006). The presence of a single discontinuity oriented in 

a given direction may critically affect the apparently 

favorable stability of a structure founded on rock. 

Intersecting discontinuities can also form blocks whose 

movement can ultimately result in the failure of the 

foundation, hence jeopardizing the stability of the entire 



structure.  In particular circumstances, however, the 

stability analysis should be extended to include the 

strength of the intact rock. Whereas the rock strength may 

be sufficient to support the load imposed onto it by the 

structure, fracturing of the intact rock may favour rock 

bridging between discontinuities, with the creation of 

rock blocks/wedges, which in turn may become unstable.  

2.1. Model Set Up 
The model consisted of three different geometries, as 

shown in Figure 2. Intact rock and joint material 

properties (Table 1) were consistent with those used in 

rock bridge analyses by Vyazmensky et al. (2009), whilst 

geometrical parameters were consistent with those used 

in step-path simulation in rock slopes by Yan et al. (2007). 

A foundation load of 3 MN/m (slightly extending past the 

intersection of the top joint segment with the slope crest) 

was gradually applied in the model after the equilibrium 

stage. 

 

 

Fig. 2: Model geometries and loading conditions.   

 

 

Table 1. Material Properties (After Vyazmensky et al., 2009) 

Property Unit Value 

Fracture energy, Gf J m-2 60 

Tensile strength, σt MPa 10 

Young's modulus, E GPa 60 

Poisson's ratio, ν - 0.25 

Density, ρ kN/m3 26 

Internal cohesion, ci MPa 20 

Internal friction, i Degrees (°) 50 

Fracture cohesion, cf MPa 0 

Fracture friction, f Degrees (°) 30 

Normal stiffness, kn GPa/m 5 

Tangential stiffness, kt GPa/m 0.5 

 

The analysis focused on simple fracture geometries and a 

scenario in which the Factor of safety (FoS) of the slope 

would still be greater than 1 even after failure of all rock 

bridges. This scenario was chosen as to introduce 

controlled conditions that could be easily back-analysed 

using simple limit equilibrium equations and 

approximating the applied foundation load to an 

overburden weight, Figure 3.  

 

Fig. 3: Simplification considered in the analysis to consider the 

problem from a limit equilibrium perspective and calculating a 

factor of safety for the slope. 

 

For the geometries shown in Figure 2, it could be easily 

demonstrated that the length of the Equivalent 

Discontinuity (LED) and the forces involved (summation 

of the weight of the block and the foundation) would not 

change. Therefore, for friction angle less than 30 degrees, 

the cohesion required for the slope to yield a factor of 

safety (FoS) of 1 would be the same for all the 3 different 

scenarios, independently of the size of the rock bridge. 

Similarly, since the rock bridge percentage does not 

change, the same ceq and eq would apply to all modelled 

scenarios, even if in the presence of 1, 2 and 5 rock 

bridges. These points raise some important limitations of 

both using a limit equilibrium approach to study the 

stability of a slope that includes intermittent joints and 

using equivalent strength parameters that do not account 



for the actual size of the rock bridges. The authors argue 

that the number, location and size of rock bridges should 

not be described using a single scale independent 

parameter like the term K in Equation [1] and [2].  

Those limitations above could be further demonstrated 

using numerical analysis, as discussed in the following 

Section. 

 

2.2. FEM-DEM Approach to Analyze Rock Bridge 

Problems 
The hybrid Finite Element/Discrete Element FEM-DEM 

code ELFEN (Rockfield, 2017) has been successfully 

used for step-path simulation in rock slopes by Stead et 

al. (2004), Eberhardt et al. (2004) and Yan et al. (2007). 

The numerical capability of the code ELFEN to simulate 

fracture initiation, extension and coalescence was applied 

to the case where a rock-bridge exists in between pre-

inserted discontinuities. The code ELFEN can simulate 

crack formation under tensile (i.e. Mode I) conditions. A 

Rankine rotating crack material model is implemented in 

the code and fracturing is controlled by tensile strength 

and fracture energy parameters. A new fracture is 

introduced when a limiting tensile stress is reached. For 

tension/compression stress states, the Rankine model is 

complemented with a capped Mohr-Coulomb criterion in 

which the softening response is coupled to the tensile 

model. Fracturing due to dilation is accommodated by 

introducing an explicit coupling between the inelastic 

strain accrued by the Mohr-Coulomb yield surface and 

anisotropic degradation of mutually orthogonal tensile 

yield surfaces of the Rankine rotating crack model. 

Detailed descriptions of these constitutive material 

models can be found in Klerck (2000), Klerck et al. 

(2004) and Owen et al. (2004).   

 

2.3. FEM Approach to Analyze Rock Bridge 

Problems 

As previously described, the purpose of this study is to 

show how the FEM and DEM could be used for the 

assessment of step-path failure for slope stability 

problems. The FEM numerical analyses are carried out 

using the code PLAXIS (Plaxis, 2017). The input for the 

geometrical conditions is based on the description 

provided in Section 2.1, and 3 scenarios (one, two and five 

rock bridges) are developed for intermittent joints dipping 

at 30°  

The model is defined by "clusters", areas fully enclosed 

by lines, in which the intact rock and joint material 

properties consistent with the material parameters (Table 

1) as well as the initial state of stress conditions. As far as 

the discontinuities are concerned, they are modeled by 

using interface elements available in PLAXIS (van 

Langen and Vermeer, 1991), which simulate the behavior 

of a thin intensely shearing material.  

The geometry is thus populated with a 2D finite element 

mesh, using 15-node triangular elements, refined along 

the pre-inserted discontinuities and in correspondence of 

the insertion of the rock bridges in between the 

discontinuities. The proper local refinement is obtained 

by specifying a local "Coarseness factor" for each 

selected geometry entity and by using the "Enhanced 

mesh refinement" option available in PLAXIS. The 

stability of the slope is then assessed by applying a 

foundation load on the crest of the slope, gradually 

increased up to a value that induce a loss of integrity of 

the rock bridges.  

 

2.4. Modelling Results and Discussion 
Figure 4 shows the results of the FEM-DEM simulations. 

The results are presented in terms of the maximum 

foundation load that cause failure of the rock bridges; 

additionally, Figure 4 presents the changes in the induced 

1 within the rock bridge area (RB1 to RB5, from toe to 

crest) as the foundation loading is progressively 

increased. The rock bridges not necessarily fail at the 

same time and for the same applied stress level.   

The results obtained in the FEM models are shown in 

Figure 5. Note that to evaluate the integrity of the rock 

bridges in PLAXIS, the principal stresses are investigated 

during the loading procedure. Failure of the intact rock 

bridges is triggered when a limiting tensile stress (tension 

cut-off) is reached and, in turn, a clear progressive 

damage zone is established in correspondence of the 

existing rock bridge. It is thus reasonably assumed that 

the rock bridge is completely damaged when it is inferred 

that the minimum principal stress σ3 within the rock 

bridges is equal to the tensile strength and thus tensile 

yield is occurred - by plotting plastic points.  

Tables 2 and 3 presents a summary of the loads at failure 

and induced 1 at failure for the FEM-DEM and FEM 

models, respectively. 



 

Fig. 4: Results for the FEM-DEM simulations; models with 1, 

2 and 5 rock bridges, respectively.   

 

Table 2. summary of the loads at failure and induced 1 at 

failure for the FEM-DEM (RB1 to RB5). 

Model 
Load 

(MN/m) 

Average 

(MN/m) 
1 (MPa) 

1 Rock 

Bridge 
2.7 2.7 11.08 

2 Rock 

Bridges 

1.8 
1.7 

9.34 

1.6 5.96 

5 Rock 

Bridges 

0.75 

0.95 

4.31 

1.0 8.24 

0.9 5.51 

1.1 8.20 

1.0 13.41 

 

 

 

 

 

Fig. 5. Results for the FEM simulations; models with 1, 2 and 

5 rock bridges, respectively 

 

Table 3. summary of the loads at failure and induced 1 at 

failure for the FEM model (RB1 to RB5). 

Model 
Load 

(MN/m) 

Average 

(MN/m) 
1 (MPa) 

1 Rock 

Bridge 
2.10 2.10 7.30 

2 Rock 

Bridges 

1.85 
1.80 

7.50 

1.75 14.50 

5 Rock 

Bridges 

1.70 

1.60 

8.80 

1.60 8.00 

1.50 15.30 

1.55 22.10 

1.55 27.50 

 

The results indicate that the model with one single rock 

bridge (5 m long) would be able to withstand a much large 

foundation load than the model with five rock bridges 

(each one 1 m long). Interestingly, the relationships 

between the size of the rock bridge and the applied 

foundation load at failure would have an opposite trend to 

the ones provided by basic scale effects theories (e.g. 

Bažant and Chen, 1997). In the models, the largest rock 

bridge withstands the highest load, which contradict the 

wisdom that intact rock strength decreases with 

increasing sample size. However, the contradiction is 



only apparent, and the results could be explained 

considering the assumptions that are made in the models: 

the models do not contain (nor indirectly account for) 

micro-flaws in the rock bridge region. In other words, the 

rock bridge material in the models has no defects, thus 

basic rock scale effects theories would not apply. 

This has clear implications for modeling of rock bridge 

problems. Additional research required to carry out a set 

of parametric analyses enabling a comprehensive 

comparison of the two numerical techniques with the final 

aim to establish guidelines for the numerical assessment 

of slope stability and step-path problems. 

Differences between the results obtained with the two 

numerical methods are imputable to the intrinsic 

differences in the approaches of the two techniques. 

However, similar trend is obtained and this premises the 

good conditions for the definition of a proper reduction 

factor to be applied to FEM results through the 

comparison with FEM-DEM. The assessment of 

damaging rock bridges for many scenarios by means of 

FEM-DEM, capable to simulate crack formation and 

propagation under tensile conditions but time consuming, 

along with FEM ones would provide a sufficient amount 

of data for the reliable definition of reduction factors for 

FEM by preserving the proper degree of conservativeness 

obtained with FEM-DEM. This would thus allow the use 

of the more expeditious FEM analyses only for 

engineering practice (at least at preliminary stages of 

design). 

 

3. CONCLUSIONS 

In this paper the study of slope stability and step-path 

problems is assessed through different two numerical 

codes (discontinuum and continuum) which analyze a 

slope with embedded intermittent fractures dipping at 30° 

and a foundation load applied to the crest of the slope. 

Three different geometries are simulated in order to 

demonstrate the limitation of well-known equations 

(Jennings, 1970), commonly applied in research and 

engineering practice, for step-path failure problems. 

Emphasis is placed on scale effects and to methods to 

account for rock bridge strength at the desired engineering 

scale. The approach proposed by Jennings (1970) neglects 

fundamental scale effects problems. Moreover, for this 

kind of engineering problems the evaluation of scale-

effects through field tests at different scales is not 

technically or economically viable. The above 

consideration along with the results reported highlight the 

usage of numerical modeling for rock bridge related 

problems is paramount of importance in rock engineering 

design. 
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