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Large Variability in Dominant Scattering from
Sentinel-1 SAR in East Antarctica: Challenges and

Opportunities
Shashwat Shukla, Bert Wouters, Ghislain Picard, Nander Wever, Maaike Izeboud, Sophie de Roda Husman, Thore

Kausch, Sanne Veldhuijsen, Christian Mätzler, and Stef Lhermitte

Abstract—Assessing the Surface Mass Balance (SMB) of the
Antarctic Ice Sheet is crucial for understanding its response
to climate change. Synthetic Aperture Radar observations from
Sentinel-1 provide the potential to monitor the variability of SMB
processes through changes in the scattering response of near-
surface and internal snow layers. However, the interplay between
several factors, such as accumulation, wind erosion, deposition,
and melt, complicates the interpretation of changes in the scatter-
ing of the microwave signal. Additionally, lack of reliable ground
truth measurements of the snow surface limits our capability to
associate the SMB processes with dominant scattering mecha-
nism. In this study, we aim to quantify the dominant scattering in
Sentinel-1 signal and evaluate the changes in scattering in drifting
snow-dominated regions of East Antarctica. We introduce a
scattering indicator, αscat,ε, derived from scattering-type and
entropy descriptors. This provides a measure of the dominant
scattering between volume and pure scattering. By relating the
field measurements to αscat,ε, we establish that the evolution of
dominant scattering in the presence of snowdrift is complex. First,
αscat,ε strongly correlates with surface roughness (R2 = 0.92,
RMSE = 2◦). Spatially variable erosion patterns significantly
increase the roughness and result in a strong affinity towards
pure scattering despite net accumulation. Second, high surface
densities also tend to influence pure scattering; however, the effect
is dependent on the accumulation rate. With more accumulation,
we observe an increasing dominance of volume scattering from
internal snow layers. Long-term trends in αscat,ε (2017/2023)
further suggest that it is challenging to address the causes behind
the scattering source based on a single snow surface process. We
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thus demonstrate the potential and limitations of αscat,ε to infer
the variability in dominant scattering from changes in surface
processes.

Index Terms—Sentinel-1, Scattering, SMB processes, Antarc-
tica.

I. INTRODUCTION

SURFACE mass balance (SMB) is a critical component
in evaluating the Antarctic Ice Sheet mass balance and

its resulting contribution to global sea level change [1],
[2]. SMB includes the sum of surface processes, such as
snow accumulation (addition of snow to the firn layer), wind
erosion, deposition (accumulations originating from drifting
snow, i.e., snow transport by wind in the lowermost 2 m of
the atmosphere), sublimation and runoff [1]. Positive SMB
occurs when snow accumulation exceeds erosion and runoff of
surface meltwater, contributing to ice sheet growth. Negative
SMB, where meltwater runoff or sublimation exceeds snow
accumulation, contributes to ice loss. However, the properties
of near-surface layers are known to be highly spatially and
temporally variable, which is challenging to reproduce for
regional climate models (e.g., Regional Atmospheric Climate
Model; RACMO2) [3] and the SNOWPACK model [4]. This
variability is mainly caused by snow accumulation, sublima-
tion, wind-driven deposition, and erosion of snow layers.

One potential way to characterize the local variations of
SMB is the use of satellite remote sensing due to its data
acquisition capabilities at high spatial and temporal resolution,
covering large areas of the ice sheet year-round [5], [6].
This complements field measurements at shorter timescales,
which are, in turn, extremely important for evaluating the
satellite products. Sentinel-1, a Copernicus Synthetic Aperture
Radar (SAR) mission, consists of two polar-orbiting satel-
lites Sentinel-1A and Sentinel-1B, equipped with a phase-
preserving C-band dual-polarization (hereafter called dual-pol)
system operating at approximately 5.405 GHz [7]. This system
transmits a signal in either horizontal (H) or vertical (V)
polarization and then receives in both H and V polarizations.
The polar orbits of the Sentinel-1 satellites provide a high
revisit time over Antarctica. Moreover, the C-band frequency is
known for its sensitivity to surface roughness and can penetrate
into a snowpack in the order of several meters (∼15 – 20 m
depth) [8], [9]. Furthermore, the data is acquired at day and
night with a frequent revisit time (∼6 or 12 days), while the
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radar is not impacted by cloudiness, the presence of drifting
snow, or other weather conditions [8].

When the radar signal interacts with the snowpack, scat-
tering occurs from two primary sources: a) surface layers,
where surface roughness controls the radar return (or sur-
face scattering), and b) internal layers, where density varia-
tions and individual grains contribute to volume scattering.
Field measurements in regions of East Antarctica that are
dominated by drifting snow have revealed the formation of
erosion/deposition patterns on the surface, exhibiting spatial
variations with typical length scales of a few meters [4].
Notably, low-density snow accumulation layers have been
observed during periods of low wind conditions, which are
subsequently eroded by high wind speed events [4], [10],
potentially impacting the roughness. In such a scenario, the
dominant signal return to the sensor increasingly stems from
the surface layer, with the internal layers contributing less. On
the other hand, with snow accumulation, snow height increases
and a larger part of the radar signal travels through the snow
column [11]. A main reason for this behavior is the changing
impedance match at the snow surface. Even a very shallow
layer of 1/4th of a wavelength (∼1 cm) of soft snow is able
to form a nearly perfect impedance match, especially for HH
and HV polarization, which eliminates surface scattering and
increases volume scattering [12]. Thus, it could be possible
to gain qualitative insights to the surface processes such as
accumulation or erosion based on volume or surface scattering,
respectively. However, quantifying dominant scattering mech-
anism, between surface and volume, from the radar signal is
challenging. In this study, we aim to quantify the dominant
scattering from Sentinel-1 as a proxy for changes in snow
surface processes in East Antarctica.

Various methods have been developed to determine the
dominant scattering based on the analysis of dual-pol SAR
data [13], [14], [15]. One reliable technique involves eigen-
decomposition of the 2 × 2 covariance matrix derived from
dual-pol single-look complex (SLC) data, which enables iden-
tification of specific scattering [13]. Here, the average scat-
tering angle is calculated by weighting the two orthogonal
polarization states using their corresponding pseudo probabil-
ities, which are also utilized to compute entropy. Ainsworth
et al. [15] extended this technique by introducing a scattering-
type parameter. However, the processing of SLC data has
several limitations: a) it is computationally intensive, time-
consuming, and comes with large data volumes as it contains
both amplitude and phase information, and b) it has lim-
ited interpretability and is less user-friendly due to complex
phase information that requires further processing to obtain
meaningful information such as coherence or interferometric
products. In contrast, Ground Range Detected (GRD) pro-
cessing addresses the aforementioned limitations by providing
calibrated, geo-located, and amplitude-only data, making it
more straightforward to interpret and store. Bhogapurapu et al.
[16] proposed pseudo scattering-type and entropy parameters
within an unsupervised clustering framework applicable for
Sentinel-1 GRD data in assessing different stages of crop
growth. The approach in itself is qualitative and constrained
by the discrete scattering classes, from low entropy pure scat-

tering to high entropy volume scattering [16]. Here, the pure
scattering term can be used analogous to surface scattering, as
it determines the response from deterministic surface targets
[16].

Based on the work of Bhogapurapu et al. [16], we introduce
a new quantitative parameter derived from Sentinel-1 GRD
data that includes the pseudo scattering-type and entropy infor-
mation while differentiating the pure scattering from volume
scattering. To support our observational findings, we utilize the
repeated in-situ measurements of snow surface acquired during
the Mass2Ant 2018-2019 and 2021-2022 field campaigns at
Hammarryggen and Lokeryggen ice rises in the Dronning
Maud Land region, specifically focusing on surface conditions
under wind and precipitation events. The goal of this study is
twofold: a) to understand how snow surface processes relate to
the changes in the dominant scattering from Sentinel-1 signal
at the field-scale, and b) to examine the long-term variations
in scattering and interpreting the physical processes driving
the scattering response of study sites. For the first goal, we
derived the surface roughness from field data and used the in-
situ snow height calculations from Wever et al. [4] to relate
this with surface and volume scattering, respectively. We then
computed their respective changes in specified periods during
the field campaign and evaluated them against the changes in
our proposed Sentinel-1 parameter. For the second goal, we
looked at the long-term changes (2017/2023) in the proposed
parameter and compared them with the data products of the
regional climate model, RACMO2 (for snowdrift erosion and
snowfall), and firn model, IMAU-FDM (for surface density).
In this way, we are able to investigate the extent to which
surface processes can explain the variability in dominant
scattering from Sentinel-1.

II. STUDY AREA AND DATA

A. Field sites
Our study focuses on two sites near the Belgian research sta-

tion Princess Elisabeth Antarctica within the Dronning Maud
Land region of East Antarctica (Fig. 1). Here, we have ex-
tensive in-situ measurements acquired during Mass2Ant field
campaigns. This includes detailed snow surface measurements,
such as surface roughness, snow height, and surface density,
augmented with information on the surface mass balance [4].
The first study site, Hammarryggen (HAM) ice rise, is located
at 70.502◦ S, 21.874◦ E, approximately 360 m above sea
level, where a field campaign was conducted in 2018/19.
The second study site is situated on the Lokeryggen (LIR)
ice rise, located at 70.536◦ S, 24.070◦ E, ∼350 m above
sea level, where a field campaign was executed in 2021/22.
LIR borders the Roi Baudouin Ice Shelf from the east, and
the site is located in the accumulation zone. Both HAM and
LIR are located in the confluence zone and is subjected to
frequent drifting and blowing snow (i.e., snow transport by
wind in the above 2 m of the atmosphere) along with high
wind speeds [17], [18], [19]. Consequently, spatially variable
erosion/deposition patterns emerge in these areas. We thus
explicitly exploit the field measurements of near-surface layers
as a way to understand the changes in the dominant scattering
from Sentinel-1.
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Fig. 1. Study sites on Hammarryggen (HAM) and Lokeryggen (LIR)
ice rises marked over the hillshade of the Reference Elevation Model of
Antarctica (REMA) of the Roi Baudouin Ice Shelf, Dronning Maud Land,
East Antarctica. The red box in the base map of Antarctica represents the
study site location.

B. In-situ roughness measurements

The spatial and temporal variations in snow surface rough-
ness at the HAM and LIR sites were determined through
repeated terrestrial laser scanner (TLS) scans. TLS provides
a relatively robust method for the derivation of roughness
products from the surface scans and serves as a reliable
alternative to traditional methods like profilometer, which are
typically labor-intensive and prone to misinterpretation [20],
[21], [22]. The TLS acquisitions were conducted on multiple
days (i.e., 4 days for the HAM site and 2 days for the LIR site),
thereby employing a unique field setup to capture the changes
in surface roughness and snow height as a consequence of
wind and precipitation events.

During the acquisition phase, the maximum effective range
of the scanner was limited to ∼250 m. The azimuth angles
covered during scanning encompassed a range of about 230◦,
corresponding to a scanned area of ∼125,000 m2. We used
four reflectors that were installed on bamboo poles as reference
points for each scan. The scans were registered with respect to
the reflectors in such a way that the successive scans show the
spatial patterns of erosion and deposition of snow. Moreover,
multiple scan positions were used to create one combined
point cloud. The registration of multiple point clouds was
accomplished using Leica Cyclone software [23]. To eliminate
the effects of tilt and slope of the surface on the roughness
calculation, a detrending process was applied by fitting a
plane to the registered point cloud data. This also ensured
more accurate comparison between scans from different dates.
Ultimately, a 3D surface of ∼200×200 m2 was generated by
rasterizing the detrended point cloud at a spatial resolution
of 1 mm, which was necessary to characterize small-scale
roughness features sensitive to SAR wavelengths.

At the HAM site, four scans were performed using a Riegl
VZ-6000 TLS on 27 Dec 2018, and on 2, 4, and 11 Jan 2019,
respectively. The VZ-6000 operates in the infrared region
with a wavelength of 1064 nm and an angular measurement

resolution over 0.0005◦ [24]. Further details on the scan
acquisition process and accuracy at the HAM site can be found
in Wever et al. [4]. At the LIR site, a 3D surface topography
was obtained using a Leica P40 ScanStation operating at
a wavelength of 1550 nm, which is suitable for surface
roughness measurements of snow due to its limited penetration
of less than few a millimeters into the snowpack [25]. Two
scans were conducted on 25 Dec 2021 and 5 Jan 2022.

During the fieldwork, we observed melt-freeze crusts near
the surface due to warm weather during the days before the
actual scan day [4]. At the HAM site, the air temperature
reached up to 271 K with distinguishable melt features on
Dec 27, and the surface also experienced a limited amount of
melt in the period Jan 2 – Jan 4. At the LIR site, the surface
exhibited similar melt-freeze crusts on Dec 25, whereas the
surface was very smooth with soft snow on Jan 5. Two days
before the first scan, i.e., on Dec 23, patches of wet snow
indicating moderate melt were observed in the vicinity of the
scan location. Weather conditions during the scan days for
both sites were mostly characterized by cloud cover, overcast
skies, and low wind speeds. The minimum temperature during
the acquisition period remained above the minimum operating
temperature of both the VZ-6000 and P40 (i.e., 258.15 K).

C. Meteorological conditions and accumulation observed dur-
ing Mass2Ant field campaigns

At the HAM site, three precipitation events were observed
during the Mass2Ant 2018/19 field campaign [4]. The first
event started by the end of Dec 29 and lasted until Jan 1,
and was accompanied by high wind speed, exceeding 10 m
s−1. On Jan 3, a second event was observed with snowfall
and calm wind conditions [4]. From TLS data, these two
events resulted in mostly accumulation in the scanned area
[4]. On the contrary, we noticed patches with both net erosion
and net accumulation as a result of the third high wind
speed precipitation event that started on Jan 9. Moreover,
the calculation of surface height increase from TLS data
resulted in a 5 cm accumulation during the third precipitation
event, averaged over the area [4]. Interestingly, this was found
to be slightly above the first accumulation pattern (4 cm)
and slightly below the accumulation that occurred between
Dec 27 and Jan 4 (7.7 cm). Additionally, the SnowMicroPen
(SMP) measurements show that the accumulation that occurred
between Dec 27 and Jan 2 has a higher density compared to the
accumulation in the period Jan 4 – Jan 11 (see Figures 7 and
8 in Wever et al. [4]). Also, relatively lower densities were
observed in the period Dec 27 – Jan 4. These observations
suggest that already existing low-density, snow layers were
eroded by strong winds and are redeposited as high-density
snow [4].

Similarly, two high wind speed precipitation events were
observed during the Mass2Ant 2021/22 field campaign at the
LIR site: a) the first event began at the end of Dec 27 and
continued until early Dec 29, and b) the second event occurred
between Jan 1 and Jan 2. These events were accompanied by
wind speeds exceeding 10 m s−1. In the period Dec 25 –
Jan 5, we observe a net accumulation of 7.3 cm computed
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from TLS (see appendix, Fig. A.1). The net accumulation is
calculated in similar way as that of the HAM site, i.e. averaged
over the area. The observations during the field campaign
period suggest the surface and accumulation conditions at the
LIR site resemble that of the HAM site. Although the SMP
measurements were not acquired at the LIR site, we use the
inferences made at the HAM site as a reliable source for the
LIR site.

D. Sentinel-1 SAR observations

The variability in radar return signal (or total backscatter) at
the HAM and LIR sites is assessed using active microwave ob-
servations obtained by SAR onboard the Copernicus Sentinel-
1 satellite constellation. In this study, we utilize the Level-
1 GRD product of Sentinel-1 Extra Wide (EW) swath mode
SAR images, featuring a spatial resolution of 40 m, and an
incidence angle ranging from 18◦ to 40◦. For the HAM and
LIR site, we selected Sentinel-1 images between Dec 15 and
Jan 15, for the 2018-19 and 2021-22 period, respectively, to
coincide with the time of field measurements. Moreover, to
examine the long-term changes, all the Sentinel-1 images in
the period 2017-2023 are collected for both locations.

Pre-processing of the Sentinel-1 GRD data was done on
the Google Earth Engine (GEE) platform, to which thermal
noise removal, radiometric calibration, terrain correction us-
ing ASTER DEM is applied. First, we filtered the Level-
1 GRD Sentinel-1 data (dB scale) using metadata attributes
(i.e., bands: HH, HV, and incidence angle, orbits: ascending
and descending, instrument mode: Extra Wide (EW) swath),
temporal range, and the spatial bounds (i.e., the region of
interest at HAM and LIR sites). Second, a masking operation
was applied (i.e., σ0

HV ≤ σ0
HH ) given the monostatic antenna

configuration of Sentinel-1. Finally, the masked backscatter
intensity values were converted to a linear scale.

E. Regional climate and firn models

In order to understand the changes in surface density,
snowdrift erosion and wind-driven snow deposition processes
at long time scales, we use output data from regional climate
and firn models. The regional atmospheric climate model
(RACMO2) [3] is a product of the Royal Netherlands Mete-
orology Institute (KNMI) and combines the High Resolution
Limited Area Model (HIRLAM) numerical weather prediction
model with the European Centre for Medium-Range Weather
Forecasts Integrated Forecast System (IFS) physics [3]. Here,
we employ the latest version, RACMO2.3p2, for Antarctica
that includes a multilayer snow model and a bulk snowdrift
model, forced by ERA5 reanalysis data every 3 hours from
1979-2022, which has been extensively validated over Antarc-
tica [3]. In the absence of continuous roughness measurements
for prolonged periods, we use the data of monthly averaged
snowdrift erosion and snowfall variables at 27 km resolution
for the period between 2016 and 2022 at the HAM and
LIR site [26]. These variables are chosen as they represent
the erosion/deposition (analogous to surface roughness), and
accumulation conditions, respectively.

IMAU Firn Densification Model (IMAU-FDM) is a semi-
empirical 1D model that simulates the transient evolution of
a vertical firn column subject to firn and SMB processes [27].
We use the latest version, IMAU-FDM v1.2A, which is forced
at its upper boundary by three-hourly fields of instantaneous
surface temperature, 10-m wind speed, snowfall, sublimation,
snowdrift erosion, snowmelt, and rainfall from RACMO2.3p2
[27]. The horizontal resolution of IMAU-FDM is determined
by the resolution of RACMO2 (i.e., 27 km), whereas the
temporal resolution is 10 days. For our analysis, we calculate
the average density of upper 10 cm for the period 2016 – 2022,
representing the variability in the snow surface density at the
study sites.

III. METHODS

A. Quantification of roughness from TLS data

Surface roughness can be quantified from two parameters:
Root Mean Square height (RMSh) and Autocorrelation length
(Lauto), representing vertical and horizontal roughness com-
ponents, respectively [22]. RMSh is the standard deviation
of surface height variations, while Lauto measures the lag
distance at which the value of the autocorrelation function
of profile surface heights reaches e−1/2 ∼0.606 [22], [28]. To
evaluate the horizontal component of roughness, we employ
a 2D power spectrum analysis of topographical information
derived from the in-situ TLS data [29]. This analysis utilizes
the power spectral density (PSD) to decompose the surface
into contributions from different spatial frequencies, providing
an assessment of roughness and the lateral distribution of
height variations [29]. By applying Fourier transformations,
we compute the 2D PSD [29], [30]. The resulting PSD is
then radially averaged to simplify computational complexity
and characterize roughness by spatial frequency and angular
averaging [31]. From the radially averaged PSD, we derive
the autocorrelation function (ACF) through the inverse Fourier
transform, allowing us to quantify spatial correlation and
determine the Lauto.

For the HAM site, we calculated Lauto and RMSh over
1×1m2 patches at a spatial resolution of 1 mm, corresponding
to the location of SMP measurements [4]. A total of 42 patches
are used for Dec 27, Jan 2, and Jan 4, and 26 patches for
Jan 11. All the patches are separated by ∼90 cm regular
spacing. This is done in order to make reliable inferences
on roughness analysis in combination with accumulation and
surface density calculations from Wever et al. [4]. Since
no SMP measurements were acquired at the LIR site, we
calculated Lauto and RMSh over a 15 × 15 m2 area from
the scanned field to capture variations in roughness on 25
Dec 2021 and 5 Jan 2022. Further, dividing this larger area
into 225 patches of 1 × 1 m2 allows for comparability with
the HAM site. Using MATLAB, we compute the PSD and
ACF for the sampled patches at different temporal instances
during the measurement period and then, Lauto and RMSh
are calculated for each sampled patch.
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B. Scattering descriptors from Sentinel-1 GRD data

We use the pre-processed GRD data to compute the ratio of
cross-pol (HV) to co-pol (HH) backscatter intensity, denoted
as qr, and defined in linear scale (equation 1).

qr = σ0
HV /σ

0
HH ; 0 ≤ qr ≤ 1 (1)

Note that for the snow surface and a monostatic antenna
configuration (similar to Sentinel-1), the cross-pol channel
is usually less than the co-pol channel [32], [33], hence
we assume σHV ≤ σHH . Using qr, we calculate θc which
describes the type of the scattering as per Bhogapurapu et al.
[16]:

tan θc =
(1− qr)

2

1 + q2r − qr
; 0◦ ≤ θc ≤ 45◦ (2)

The scattering-type parameter, denoted as θc, serves as an
indicator of dominant scattering scenarios. Based on Bhoga-
purapu et al. [16], when θc = 45◦, a pure scattering scenario
arises primarily from rough surface features, detectable at the
radar wavelength. On the contrary, θc = 0◦ suggests a complex
scattering scenario, mainly because of the dense and complex
geometry of the canopy that makes the scattering increasingly
unpredictable [16], due to the mixture of different types of
scattering mechanisms (as highlighted in [34]).

We also derive the polarimetric scattering entropy (or
pseudo-scattering entropy in dual-pol case), Hc, that quantifies
the randomness or disorder in the polarization responses of the
target [16]:

Hc = −
2∑

i=1

pi log2 pi; 0 ≤ Hc ≤ 1 (3)

Here, p1 and p2 are pseudo probability measures given by
1/(1+qr) and qr/(1+qr), respectively. A low Hc corresponds
to a more ordered and uniform scattering behavior, wherein a
single scattering (or isotropic scattering) is expected. A high
Hc value indicates a more complex and diverse scattering
environment with a random mixture of scattering mechanisms
having equal probability of occurrence and, thus, a depolariz-
ing target.

Both Hc and θc parameters offer comprehensive insights
into the target’s scattering characteristics [16]. For instance,
low entropy in pure scattering means single surface scattering
due to more uniform roughness scales compared to the high
entropy case, wherein pure scattering would mean multiple
scattering at the surface caused by multi-scale rough surface
features. Thus, the scattering-type parameter (θc) helps iden-
tify the dominant scattering mechanism, thereby providing a
foundation for understanding the primary physical processes
at play [16]. The entropy parameter complements this infor-
mation by assessing the overall complexity and variability
of the scattering behavior (i.e., whether single scattering is
present or more than one scattering mechanisms co-exist).
Bhogapurapu et al. [16] describe an unsupervised clustering
framework where the Hc/θc plane is divided into six discrete
clusters, from a low entropy pure scattering to a high entropy
complex scattering scenario. The curve is determined from

the relationship of Hc and θc in the 2D clustering plane (Fig.
2(a)). For crop growth assessment, we see the potential of
scattering parameters, Hc and θc, in providing complementary
information about the separation between pure scattering and
volume scattering [16]. However, with discrete clusters, it is
hard to quantify the dominant scattering from total backscatter.
To avoid a subjective discretization of different clusters, we
introduce a continuous angular variable, αscat:

αscat = tan−1 θc/45

Hc
; 0◦ ≤ αscat ≤ 90◦ (4)

Before calculation, θc is scaled to a 0–1 range by dividing it
by 45°, thereby making it comparable to the range of Hc. We
note that in the context of ice sheets, complex scattering can
be treated interchangeably as a high entropy volume scattering
scenario. This is because internal snow layering plays a
predominant role in shaping the scattering response of the
snowpack and, thus, contributing to volume scattering. More
importantly, the occurrence of helix scattering, oriented dipole
scattering, and compound dipole scattering is negligible, which
forms a basis for complex scattering scenarios [34]. We thus
use αscat to represent a complete scenario from the occurrence
of volume scattering (i.e., αscat = 0◦, Hc = 1, θc = 0◦) to
pure scattering (i.e., αscat = 90◦, Hc = 0, θc = 45◦).

The scattering indicator, αscat, is derived from Hc and θc,
which are in turn a function of qr (Equation 4). Although
the relationship between the two parameters exhibits some
correlation (Figure 5 in [16]), the physical interpretations for
targets differ significantly due to their fundamental formu-
lations [16]. Bhogapurapu et al. [16] utilized a relation for
the scattering of a polarized wave to express Hc in terms
of the number of scattering events, n. This calculation is
consistent with the derivation of Shannon entropy [35], [36].
With the increase in the number of scattering events, high
order scattering (i.e., when n > 3) saturates the Hc at ∼ 0.7.
In such scenario, the scattering is found to originate potentially
from randomly oriented cylindrical scatterers [16]. On the
other hand, a similar relationship is observed between the
order of scattering and θc [16], [13]. In this regard, we can
approximately translate these physical interpretations to αscat,
as it uses both the scattering-type and entropy information,
thereby providing a comprehensive quantitative understanding
of the dominant scattering mechanism.

With both Sentinel-1A and Sentinel-1B in operation, the
revisit time for any point is considered to be approximately
6 days. However, the ground coverage is often more frequent
over high latitudes, such as Antarctica, due to the geometry
of their orbits. This means multiple orbits having different
incidence angles, ranging from 20◦ to 40◦, provide different
perspective of the same location, thereby influencing the scat-
tering characteristics and interpretation of Sentinel-1 signal.
In Figure 2(b), we observe a strong relationship between
incidence angle and αscat, with low values (or a tendency to-
wards volume scattering) associated with low incidence angles
and high incidence angles increase the tendency toward pure
scattering. The normalization method applied to αscat values
for the entire period (2017/2023) considers this variability,
ensuring that the interpretation remains robust across different
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Fig. 2. a) 2D clustering plane (Hc/θc), with different scattering zones represented in orange color (adapted from Bhogapurapu et al. [16]). PS stands for Pure
Scattering, DS stands for Distributed Scattering, VS stands for Volume Scattering, and CS stands for Complex Scattering [16]. Blue-white color space in the
background represents the continuous transition of αscat with low and high values as a tendency to VS and PS, respectively. b) Incidence angle normalization
using linear regression between αscat and incidence angle at the HAM and LIR site. The entire range of incidence angle in Sentinel-1 EW mode (18.9◦ to
47◦) is depicted in the X-axis.

orbits. For this, we first consider a circular buffer of radius
between 0 m and 1 km at a step of 200 m from the HAM
and LIR station positions. Different buffer radii are mainly
used to consider a broader area around the study sites and
to make sure at least five orbits cover the region, thereby
enhancing the incidence angle variability. We then average
the αscat values derived from each buffer and plot them as a
function of the incidence angle. Figure 2(b) depicts a linear fit
with an R2 value of 0.77 between the incidence angle and the
averaged αscat at the HAM and LIR sites. Ultimately, we use
the residuals of linear regression, αscat,ε, to effectively explore
the variability in dominant scattering mechanisms caused by
changes in surface conditions. Analyzing the residuals enables
us to focus on the variation that is not explained by incidence
angle, thereby providing a more homogeneous understanding
of the causes of scattering variability.

C. Evaluation of Sentinel-1 αscat

In-situ measurements, such as roughness, surface density,
and accumulation [4], are used to evaluate the αscat obser-
vations at the field scale. The focus is on examining changes
in αscat,ε and roughness during designated periods between
scan days. First, we calculate the ratio of vertical (Lauto)
to horizontal (RMSh) component for each sampled patch
at different temporal instances in the HAM and LIR sites
respectively. This ratio, Lauto/RMSh, captures the roughness
condition: high when the surface is smooth and low for a
rough surface. Second, we systematically explore the temporal
dynamics by considering all possible pairwise combinations
of the scan days. Moreover, for every period, the change in

roughness ratio, averaged over the site, and the change in
αscat,ε are calculated. We then compare the respective changes
in every period throughout the entire field campaign to ensure
the robustness of αscat, as we now utilize all the observations
after incidence angle correction. Third, upper 10 cm snow
density and accumulation rates [4] are linked to the observed
change in αscat,ε.

For evaluating the long-term changes in αscat,ε, we analyze
snow surface variables from RACMO2.3p2 and IMAU-FDM.
The snowdrift erosion and snowfall variables are visualized
at the temporal resolution of one month [26]. We derived
monthly snow density in the uppermost 10 cm of the firn
layer from IMAU-FDM to match with the RACMO2.3p2
products (i.e., one month). For more details on the accuracy
of regional climate and firn models in simulating the snow
surface conditions, we refer to [1], [3], [27]. To be consistent
with the temporal resolution of snow surface variables, one-
month moving average of αscat,ε is also considered.

IV. RESULTS

A. Surface roughness

Fig. 3 shows the evolution of RMSh and Lauto for all
sampled patches at the HAM and LIR sites discussed in
Section III-A. The box plots express the spatial variability
in roughness conditions. This variability is found to change
over time both in magnitude, as well as in spread. Following
accumulation and snow erosion patterns (as in figure 2 of
Wever et al. [4]), we observe a gradual decrease in RMSh
(i.e., a smoothening effect) between Dec 27 and Jan 4 at the
HAM site. However, the changes in Lauto are variable during
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these accumulation phases: a decrease of 4.51 cm after the
first high-wind speed accumulation pattern and an increase of
2.15 cm after the second, low-wind speed accumulation event,
resulting in a net decrease of 2.37 cm in the period Dec 27 –
Jan 4 (Fig. 3(b)).

Based on in-situ measurements, we observe almost similar
accumulation amounts (4 cm and 3.7 cm) and similar higher
temperatures (between 270 K and 273 K, from Figure 4 in
Wever et al. [4]) for the periods Dec 27 – Jan 2 and Jan 2
– Jan 4 respectively. This suggests the primary differentiating
factor driving the changes in RMSh and Lauto between the
two periods is the wind speed. Strong winds can impact the
density of the snow when there is saltation [37], contributing
to compaction in the snowpack. This results in the newly
deposited snow having higher density in the form of crusts,
while the density of the snow that was not mobilized remains
more or less constant. In the absence of saltation, the density
variations can also be caused by higher temperatures. When
temperatures rise, snow grains may begin to melt slightly,
leading to a process called sintering [10]. During this process,
the grains bond together, which can increase the surface
density of the snowpack. A similar observation was made
in the field, wherein high-density layers were identified as
discontinuous melt-freeze crusts and also captured by the
SMP profile in the period Dec 27 – Jan 2 characterized by
strong winds (see section II-C). Moreover, the wind-driven
compaction tends to smooth out irregularities in the surface,
reducing the vertical height, and hence, lower RMSh. On
the other hand, the force of the wind can also redistribute
the snow particles horizontally. While this redistribution may
not always necessarily lead to visible patterns of erosion, it
contributes to a less uniform snow surface at shorter scales,
resulting in a decrease in Lauto. Between Jan 2 and Jan 4, we
witness snowfall under calm wind condition. The newly added
snow resulted in a further decrease of RMSh and increased
the spatial wavelength of the surface (Lauto), as there were
no wind-induced alterations present.

In the period Jan 4 – Jan 11, a positive change of 0.15
cm in RMSh is observed with a negative change of 2.16 cm
in Lauto (Fig. 3), suggesting an increase in surface roughness.
We attribute these changes to the presence of spatially variable
erosion patterns even though there is a net accumulation of 5
cm. In the field, we noticed erodible snow near the surface.
This indicates strong winds erode the short-lived low-density
snow layers and re-deposits with higher density [4].

At the LIR site, we see a rapid transformation of the surface
from very rough on 25 Dec 2021 (0.9 cm mean RMSh)
to very smooth on 5 Jan 2022 (0.14 cm mean RMSh).
This is also marked by an increase in Lauto of 3.7 cm. The
smoothening effect is due to the high accumulation of 7.3
cm, as observed during the fieldwork in the period Dec 25
– Jan 5. Furthermore, the changes in roughness at the LIR
site are found to be more pronounced than the HAM site.
This is mainly because of stronger winds at the LIR site,
Overall, when accumulation dominates erosion, we witness
longer Lauto with reduced RMSh and, hence, a decrease in
surface roughness. On the other hand, local erosion increases
the roughness despite a net accumulation in the area, wherein

Fig. 3. Temporal variability of surface roughness at the HAM and LIR sites,
represented by box plots. a) RMSh and b) Lauto are derived from the TLS
data acquired during field campaigns. Wind speed and accumulation/erosion
conditions are also described (from Wever et al. [4])

the variations in RMSh are more important.

B. Sentinel-1 αscat,ε observations during Mass2Ant field cam-
paigns

Fig. 4 illustrates the αscat,ε from Sentinel-1 observations
for the field campaign period. An increase in αscat,ε indicates
a tendency towards pure scattering, whereas a decrease is
associated with a shift towards a volume scattering medium.
There are no αscat,ε values for certain scan days: i.e., Jan 2 and
4 for the HAM site and Dec 25 for the LIR site. We thus use
the values from Jan 1 and 5 for the HAM site and Dec 24 at
the LIR site, i.e., with a maximum difference of one day. This
substitution is justified by the field observation that surface
conditions during the selected days closely resemble those of
the scan days, ensuring that our inferences remain unaffected.
At the HAM site, we first see a decrease in αscat,ε from Dec
27 to Jan 5 from -1.01◦ to -12.18◦. This suggests a greater
tendency towards volume scattering. The in-situ measurements
showed higher snow accumulation of 7.7 cm in the period Dec
27 – Jan 5.

In contrast, the increasing trend that follows between Jan 5
to Jan 11 indicates a growing importance of pure scattering
over volume scattering in the Sentinel-1 signal. Even though
this period suggests a net accumulation, clear spatially variable
erosion and deposition patterns cause complexity in the scat-
tering behavior. Our interpretation is that initially, increasing
wind speeds with only low precipitation amounts mostly
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Fig. 4. Temporal variability of αscat,ε for the field campaign period at: a)
HAM and b) LIR site. The light blue color in background is the period when
precipitation occurs. Wind speed and precipitation are from the ERA-5 hourly
dataset. TLS scan days are represented by a red line. Red dots are the αscat,ε

values considered closest to field measurements, whereas blue dots represent
the usual timeseries.

caused erosion and, associated with the erosion, an increase
in pure scattering. The increased precipitation between Jan 9
– Jan 11 resulted in a net accumulation in the area, albeit in a
variable pattern as indicated by the scans (Figure 2 in Wever
et al. [4]). Yet, the net accumulation caused an associated
decrease in αscat,ε values from 5.15◦ to -2.67◦ in this period.

Although there are only three αscat,ε values at the LIR
site corresponding to the field campaign period, one of them
coincides with the scan days in the field. Fig. 4(b) shows a
decline of αscat,ε (and thus, affinity towards volume scatter-
ing) in the period Dec 24 – Jan 5 with high accumulation.
Moreover, the LIR site exhibits a rougher surface compared
to the HAM site, with only positive αscat,ε, and higher RMSh
values (Fig. 3(a)), compared to the HAM site. In this regard,
we see consistent behavior about the variations in αscat,ε due
to changes in surface conditions both at HAM and LIR sites.

C. Evaluation of αscat,ε from in-situ measurements

In Fig. 5, we observe a relationship between αscat,ε and
roughness ratio (Lauto/RMSh) where the change is calcu-
lated for each specified period at the HAM site. There is a
very strong correlation between the change in roughness ratio
and the change in αscat,ε (R2 = 0.92, p-value = 0.002). A
negative change in roughness ratio indicates that the surface
is relatively rougher in that specific period, whereas a posi-
tive change is associated with smoother surfaces. We recall
here that positive and negative changes in αscat,ε represent
a tendency towards pure scattering and volume scattering,
respectively.

The periods characterized by a positive change in roughness
ratio (i.e., Dec 27 – Jan 4 and Jan 2 – Jan 4) correspond to a
negative change in αscat,ε. A similar, yet more pronounced
effect is observed at the LIR site. Here, the change in

roughness ratio between Dec 25 and Jan 5 is notably high
(i.e., 96.86), accompanied by a significantly negative change
in the αscat,ε value (i.e., -10.46◦). This indicates a strong
tendency to volume scattering as roughness decreases due to
higher accumulation rates. At the same time, low accumulation
densities can also lead to increased volume scattering. Such
a relationship was observed during the period Jan 2 – Jan 4
at the HAM site, where a much lower density of <200 kg
m−3 was recorded [4], showing the most negative change in
αscat,ε.

On the contrary, a negative change in roughness ratio
contributes to a positive change in αscat,ε (i.e., during the
periods Dec 27 – Jan 2, Dec 27 – Jan 11, Jan 2 – Jan 11,
and Jan 4 – Jan 11). We postulate that the dominant pure
scattering mechanism is strongly influenced by the degree of
surface roughness; thus, we anticipate a rougher surface to be
a major source of pure scattering. Similar observations are also
made in the work of Bhogapurapu et al. [16], where they found
that the dominant variations in surface roughness contribute
to the pure scattering mechanism. However, during the period
Dec 27 – Jan 2, the surface is found to be relatively smooth
yet there is a very slight positive change in αscat,ε. This can
be explained by higher surface density from the accumulation
pattern (∼350 kg m−3) observed in the SMP profile [4], which
resulted in a decreased tendency towards (expected) volume
scattering behavior. Moreover, we also notice the behavior
in increasing trend of αscat,ε in the period Dec 30 – Jan 1
despite accumulation (Fig. 4). On the other hand, although the
accumulation in the period Jan 4 – Jan 11 (5 cm) is greater
than that in Dec 27 – Jan 2 (4 cm), we observe that the change
in αscat,ε is most positive, while the roughness ratio is most
negative. Our analysis highlights that both surface density and
roughness, influenced by erosion patterns, play crucial roles
in determining pure scattering. However, the impact of these
factors is further modulated by accumulation rates.

Fig. 5. Evaluation between change in αscat,ε, and roughness ratio for the
HAM site. R2 is the coefficient of determination, RMSE is the root mean
squared error in degree, and p-value shows the statistical significance of the
analysis.
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D. Assessing the long-term changes in αscat

Fig. 6 shows the long-term (2017/2023) timeseries of
αscat,ε, smoothed with a one-month moving average, along
with snow surface variables such as snowdrift erosion and
snowfall simulated from RACMO2.3p2 and upper 10 cm
density from IMAU-FDM. In the snowdrift erosion variable,
positive values are associated with erosion, whereas negative
values occur when there is wind-driven snow deposition [38].
At the HAM and LIR sites, there is a large temporal variability
in both the snow properties and αscat,ε, and hence the dom-
inant scattering mechanism, at seasonal to inter-annual time
scales.

At the HAM site, we see an overall decrease of αscat,ε

(from positive to negative) in the period 2017/2022, suggesting
a gradual shift in the dominant scattering towards volume
scattering (Fig. 6(a) and (b)). Moreover, we also notice a
seasonal variability: an increasing tendency to volume scat-
tering especially during winters, whereas the pure scattering
mechanism remains dominant in summers. Furthermore, in the
period 2022/2023, the αscat,ε values tend to recover, i.e., a
slight increase after declining in the period 2017/2022.

In an attempt to understand the causes of the variability in
αscat,ε, we examine the links between near-surface density and
the dominant scattering. Looking at the summer periods, we
see a rapid increase in density, which is typically accompanied
by a seasonal maximum in the αscat,ε time series, indicating
the increased tendency to pure scattering. The spike in surface
density from ∼400 kg m−3 to ∼650 kg m−3 can be attributed
to melt-related events, which could result in the formation of
a high-density melt-freeze crust. Melt can further enhance sur-
face roughness due to channeling and snow-albedo feedback,
consequently increasing scattering from near-surface layers.
Such crusts were also observed in the field at the HAM site
in the period Dec 27 – Jan 2. It is important to note that due
to resolution, the elevation of the RACMO2 grid point (i.e.,
166 m for the HAM site and 194 m for the LIR site) is lower
than the top of the ice rises where the actual field sites are
located. This may mean that the effect of melt on density is
higher in the simulations than in the field locations.

In years with pronounced density jumps (summers of
2017/2018 and 2019/2020), αscat,ε is found to increase more
strongly than in years with limited density changes dur-
ing summer. Additionally, deposition events (i.e., negative
snowdrift values) are observed after the αscat,ε reaches the
peak. These events add fresh snow to the surface, thereby
decreasing the upper 10 cm density (also in Figure 6(a)) and
increasing the tendency towards volume scattering. This is
indicated by a decrease in αscat,ε values after the summer
peak. Interestingly, the transition is variable, i.e., steeper in the
summers of 2017/2018, 2018/2019, and 2019/2020 whereas it
appears to be more gradual thereafter. These differences can
be attributed to the intensity and duration of the deposition
event. In the summers of 2017/2018 throughout 2019/2020,
we observed relatively stronger deposition events lasting for a
few months (represented by the wider and darker blue lines).
However, from 2021 onward, a lower intensity of deposition
events is depicted, leading to a gradual transition. In the

period 2022/2023, we observe positive values of snowdrift
with almost no deposition. Such a scenario could indicate a
tendency to pure scattering potentially caused by increased
roughness (as observed in the period Jan 4 – Jan 11 in the field)
and explain the recovery of αscat,ε values after a continuous
decline until 2022.

Fig. 6(c) and (d) show that the variations in αscat,ε values
at the LIR site show more complex behavior. As for HAM,
we notice an increase in αscat,ε following rapid, melt-induced
density changes in the summers of 2017/2018 and 2019/2020,
followed by a decrease associated with snowdrift deposition
and accumulation events, leading to more volume scattering.
However, in the summer of 2018/2019, at the LIR site, the
increase in αscat,ε cannot solely be explained by a near-surface
density change, which shows a relatively small increase in
this period. We note that the accumulation rates in the winter
months (May – Sep) of 2019 were anomalously low (78.29
kg m−2) and coincided with extended periods of snowdrift
erosion. This could additionally contribute to an increased
tendency towards pure scattering. On the contrary, during
the period 2020/2021, a strong deposition event followed by
higher accumulation rates (153.95 kg m−2) in winter results
in the drop of αscat,ε. Moreover, we observe an increase
in αscat,ε after the summer of 2020/2021 compared to the
period 2018/2021, mainly due to positive values of snowdrift
(indicating strong erosion). Interestingly, even though the
winter of 2021 experiences the highest accumulation (200.5
kg m−2), snowdrift erosion remains a dominant source of pure
scattering. This can also be clearly seen while comparing the
αscat,ε time series in Fig. 6(a) and (c), wherein mostly positive
values of snowdrift makes the LIR site a better pure scattering
medium compared to the HAM site. We further notice that
the total accumulation in the period 2017/2023 at the LIR site
(∼2050 kg m−2) is greater than that of the HAM site (∼1325
kg m−2), which supports the inferences made from the field-
scale analysis, i.e., strong erosion patterns result in an increase
in αscat,ε despite net accumulation.

V. DISCUSSION

Our analysis highlights the role of snow surface processes
such as accumulation and snowdrift erosion in influencing the
Sentinel-1 αscat,ε. The addition of low-density snow layers
during precipitation events results in a greater tendency to
volume scattering, similar to the observations made by Lievens
et al. [11]. Our findings align with the recent tower-mounted C-
band radar experiments of alpine snowpacks, which show that
volume scattering predominates during dry snow accumulation
[39]. However, we demonstrate that strong winds can erode
the low-density surface layers [4], thereby increasing the
roughness and the tendency towards pure scattering despite
net accumulation. This suggests that there is a complex re-
lationship between accumulation rates and surface roughness,
akin to Studinger et al. [40]’s explanation. Such a scenario
makes it challenging to explain the causes behind the changes
in αscat,ε based on a single snow surface variable, where the
interplay between different variables needs to be considered.

At seasonal time scales, surface density and αscat,ε at
the HAM site exhibit a consistent pattern, in line with field
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Fig. 6. Long-term evolution of αscat,ε, upper 10 cm surface density from IMAU-FDM (kg m−3), snowdrift erosion, and snowfall from RACMO2.3p2 (kg
m−2). The shaded region denotes 1 standard deviation of αscat,ε from the mean.

measurements. This indicates that surface density, along with
roughness, contributes to the increase in αscat,ε despite net
accumulation. Similar inferences are also found in Brangers
et al. [39] stating that the presence of melt-freeze crusts (and
thus, high density surface layers) have a strong effect on
the observed backscatter even when the snow depth remains
constant. A contrasting behavior is, however, observed at
the LIR site. One potential explanation could be the higher
accumulation rates at the LIR site, which may suppress the
effect of surface density given their role in enhancing the
volume scattering. Moving forward, further work needs to
establish the combined effect of roughness, surface density,
and accumulation rates on the dominance of pure scattering
from αscat,ε.

It remains unclear whether the relationship between αscat,ε

and snow surface processes identified in this study can be
generalized beyond the specific area examined here. Both the
study sites fall in an accumulation zone characterized by con-
sistent katabatic winds [18]. Other sites, associated with high
melting, may behave differently. Moreover, a point-by-point
linear regression approach for incidence angle normalization
may not always yield robust results due to the variability in
correlation strength across different locations. This variability
could pose challenges for consistent and accurate normaliza-
tion, potentially leading to weak positive, weak negative, or
even no correlation in some areas. While the current approach
works effectively for regional-scale analysis, its application at
an Antarctic-wide scale may necessitate a more robust and
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generalized approach.
One of the main advantages of our study sites is the

unique repeated in-situ data of roughness, which, however,
is not readily available elsewhere. We thus highlight the
importance of our study as a proof-of-concept to quantify
the dominant scattering mechanism from near-surface layers
(pure scattering) and internal snow layers (volume scattering).
This provides new opportunities to understand the sensitivity
of the C-band radar signal to the seasonal patterns of snow
accumulation and erosion, similar to Brangers et al. [39]. Our
study further demonstrates the potential of Sentinel-1 SAR: a)
to capture the complex interaction of accumulation, erosion,
and surface density in a drifting snow environment, and b)
as a proxy to changes in snow surface properties. At the
same time, more repeated in-situ measurements of roughness
and surface density from multiple locations in Antarctica are
required to calibrate our proposed parameter αscat,ε. How-
ever, obtaining down-scaled climate model parameters then
also becomes important, to remove the uncertainty from grid
point representativeness for the field locations. This could for
example be obtained with higher model spatial resolutions than
currently used in RACMO2, or using statistical downscaling
methods [41] as a viable alternative.

While the current study focuses on Antarctic snow surfaces,
the method could also be applied to mountain glaciers (e.g., in
the Himalayan and Alps regions) and ice caps with certain con-
siderations. These regions may experience different climatic
conditions, such as higher temperatures and variable precip-
itation patterns, which can affect snow density and surface
roughness differently. For instance, higher temperatures may
lead to more frequent melt-refreeze cycles, altering the snow
microstructure and potentially affecting the scattering mecha-
nisms observed by Sentinel-1 [42]. Additionally, the influence
of topography on wind patterns, subsequent snow deposition
and erosion processes, and incidence angle normalization
needs to be considered, as these factors can vary significantly
between polar and mountainous regions. Adaptations in the
methodology may involve incorporating local climate data and
topographical influences to accurately capture the scattering
behavior in these environments.

In addition to expanding field data, we emphasize the
importance of utilizing radiative transfer (RT) models to
comprehend the sensitivity of αscat,ε to surface properties
and snow microstructure variations. Currently, the state-of-
the-art models, such as Snow Microwave Radiative Transfer
(SMRT) [43], and Advanced Integral Equation Model (AIEM)
[44], do not include the multiple scattering events caused
because of surface roughness, thereby restricting the model
capability to simulate the cross-pol backscatter (HV), which
is an important component in αscat,ε. Moreover, the RT
simulations can provide further evidence for the importance
of αscat,ε over qr, as it is virtually impossible to demonstrate
this empirically. We thus encourage future modeling efforts
to assess the current challenges in understanding the αscat,ε

variations.
We note that the spatial scales of surface roughness, the

snow structure, and the wavelength of the sensor are signif-
icantly different. This suggests that the sensor’s wavelength

(i.e., C-band) could not be ideally matched with either surface
roughness or snow structure, posing challenges in accurately
capturing changes in surface snow processes. Different radar
frequencies offer varying penetration depths, which could
lead to a better separation of changes induced by roughness
and internal snow layers in αscat,ε. However, integrating
multi-frequency SAR data into the analysis pipeline presents
practical challenges. One major challenge is the development
of sophisticated algorithms capable of effectively combining
data from different frequencies, which requires addressing
differences in spatial resolution, temporal alignment, and
signal-to-noise ratios. Another challenge is the need for exten-
sive sensor calibration to ensure consistency across datasets,
as variations in calibration and acquisition geometries can
introduce discrepancies in the data. Additionally, handling
large volumes of data from multiple frequencies necessitates
significant computational resources and storage capacity. De-
spite these challenges, the use of multi-frequency observations
holds great potential for advancing our understanding of snow
surface dynamics and improving the accuracy of snow process
monitoring.

Looking ahead, future SAR missions such as ESA ROSE-
L and NISAR, which operate in L/S-band, offer promising
opportunities to enhance our understanding of snow surface
processes. These missions will provide quad-pol data, which
can yield additional information on backscatter mechanisms
influenced by varying surface conditions. For instance, the
cross-polarized channels (HV and V H) are particularly sensi-
tive to volume scattering from internal snow layers, while the
co-polarized channels (HH and V V ) provide insights into
surface roughness and density variations [33]. By integrating
these diverse polarization measurements, it becomes possible
to better isolate and understand the contributions of different
scattering mechanisms to the observed backscatter signal.
Incorporating data from advanced missions could significantly
improve the methodological framework of αscat,ε as a parame-
ter for monitoring snow surface properties by disentangling the
complex interplay between surface roughness, accumulation,
and density.

VI. CONCLUSION

In this study, we focused on the relationship between
surface processes and the dominant scattering mechanism from
Sentinel-1 in East Antarctica. We introduced a new parameter
derived from scattering-type and entropy descriptors based on
[16] and normalized for incidence angle effects, αscat,ε. This
parameter quantifies the continuous scattering response from
near-surface layers (i.e., pure scattering) and from internal
snow layers (i.e., volume scattering). The changes in αscat,ε

are evaluated from the repeated in-situ surface measurements
acquired during Mass2Ant field campaigns, which include
roughness and accumulation derived from terrestrial laser
scanner (TLS), and surface densities from Wever et al. [4]. At
the field-scale, our analysis shows a strong correlation between
roughness and αscat,ε. During periods associated with erosion,
the vertical component of roughness (RMSh) is found to
be more important than the horizontal component (Lauto) in
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changing the scattering response. This is also marked by an
increase in αscat,ε value (or tendency towards pure scattering).
In contrast, accumulation patterns lead to surface smoothening
with dominant scattering from internal snow layers. From
long-term changes in αscat,ε, high surface densities are found
to be related to an increase in pure scattering. A similar
correspondence is also observed in the field. However, in-
creasing (decreasing) accumulation rates potentially contribute
to suppressing (enhancing) the effect of surface density on
dominant scattering. We need more field data, especially the
repeated measurements, from multiple locations and radiative
transfer model simulations to quantify the combined effect of
roughness, surface density, and accumulation rates on domi-
nant scattering mechanisms from Sentinel-1. This will lead to a
better separation between pure and volume scattering, thereby
providing an effective framework to assess the connection
between SMB processes and dominant scattering mechanisms
in Sentinel-1 observations.

APPENDIX

For the field site at LIR, the difference between TLS scans
on 25 Dec 2021 and 5 Jan 2022 is shown in Fig. A.1. We see
that the surface is mostly dominated by a positive change in
snow depth and that the erosion and accumulation patterns are
spatially variable.

Fig. A.1. Snow depth change between Dec 25 and Jan 5, calculated from
laser scans obtained on both days in the 2021–22 field season on the LIR site
(15× 15 m2).
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Lenaerts, S. Lhermitte, S. R. M. Ligtenberg, B. Medley, C. H. Reijmer,
K. Van Tricht, L. D. Trusel, L. H. van Ulft, B. Wouters, J. Wuite, and
M. R. Van Den Broeke, “Modelling the climate and surface mass balance
of polar ice sheets using RACMO2 : Part 2: Antarctica (1979-2016),”
Apr. 2018.

[4] N. Wever, E. Keenan, C. Amory, M. Lehning, A. Sigmund, H. Huwald,
and J. T. M. Lenaerts, “Observations and simulations of new snow
density in the drifting snow-dominated environment of Antarctica,”
Journal of Glaciology, pp. 1–18, 12 2022.

[5] T. Nagler, H. Rott, E. Ripper, G. Bippus, and M. Hetzenecker, “Advance-
ments for snowmelt monitoring by means of sentinel-1 sar,” Remote
Sensing, vol. 8, no. 4, p. 348, 2016.
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