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ABSTRACT

In conventional migration velocity analysis methods, a ve-
locity model is estimated that results in flattened events in
common-image gathers. However, after this process, no in-
formation is available on the accuracy of this velocity model.
A statistical analysis of velocity-model parameters is very
difficult because of the integrated nature of the process. In
common-focus-point technology, velocity estimation is split
into two processes: a first step to estimate one-way focusing
operators from the seismic data and a second step to translate
these one-way propagation operators into a velocity-depth
model. Because the second step does not involve seismic data
and uses a hands-off model parameterization, a statistical
analysis of the inversion result becomes rather straightfor-
ward. We developed a methodology for obtaining a suite of
possible solutions, from which statistical measures can be ex-
tracted. By varying initial settings, the inversion of one-way
traveltimes provides a space of solutions. Rather than having
a single estimated model, we can obtain an ensemble of mod-
els. By performing statistical analysis of this ensemble, the
error bars of the estimated velocity model can be retrieved.
The procedure was tested for a 2D synthetic and field data set,
for which the latter compares favorably to a conventional
two-way traveltime tomography approach. The information
provided by such an analysis is important because it shows
the reliability of the final estimated model and could provide
feedback for acquisition geometry design. More or better
data might be needed to obtain a model to which a smaller de-
gree of ambiguity is associated.

INTRODUCTION

The estimation of a velocity model is an important step in seismic
maging. Seismic data interpretation is based on this model. Thus,
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he velocity model influences important conclusions such as size and
hape of the reservoir and the expected volume of producible hydro-
arbons. In conventional migration-velocity analysis �MVA� �Al-
ahya, 1989; Stork, 1992; Kosloff et al., 1996� the flatness of the
vents in common-image gathers �CIGs� is the criterion in an inte-
rated-velocity model-estimation process. In each iteration, ob-
erved residual moveouts are translated into an update of the veloci-
y model. The parameterization of the velocity model is often user
efined, such as a layered one �van der Made, 1988; Hegge, 2000� or
ell-based methods �Vesnaver et al., 1995�. When CIGs show mostly
at events, the velocity model is considered to be final and the image
an be produced.

However, during this updating process, little information is avail-
ble and is analyzed on the reliability of this model. The model is the
esult of parameters chosen at each iteration update.Another param-
terization could have led to another model that also shows mostly
attened events in CIGs. Thus, the resulting image is only one of a
omplete ensemble of images that all satisfy the seismic data within
certain tolerance.
Alternatively, two-way traveltime tomography methods use

icked seismic events in the two-way data �i.e., shot records� as the
nput �Bishop et al., 1985; van der Made, 1988�. The first disadvan-
age of this method is that traveltimes need to be picked in the raw
eismic data, which in some situations suffer from low signal-to-
oise ratio �S/N� and complex interference patterns. Furthermore,
wo-way traveltime tomography requires the description of reflec-
ion paths, which might not be obvious in complicated subsurface
tructures.

In common-focus point �CFP� technology �Berkhout, 1997a and
997b; Thorbecke, 1997�, the estimation of the velocity-depth mod-
l is split into two separate processes. First, one-way focusing opera-
ors are estimated from the seismic data. This results in a set of one-
ay traveltimes originating from reflection points toward the sur-

ace locations. Second, these one-way traveltimes are translated into
velocity-depth model via tomography �Cox and Verschuur, 2001�.
his step resembles the earthquake tomography problem, with each
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VE224 Chiţu et al.
eflection point being a virtual earthquake source. The main advan-
age of this two-step approach is that decisions on parameterization
f the velocity-depth model can be postponed to the second stage,
hich no longer involves seismic data. Another major advantage is

hat the second step can be subjected easily to multiple trials, result-
ng in a statistical analysis of the tomographic inversion result.

In this paper, we discuss the statistical analysis of the tomographic
nversion. After a short review of tomographic inversion, we show
ow to assess the accuracy of the velocity-depth model using a syn-
hetic data example. We then link acquisition parameters of the seis-

ic data and the accuracy of the velocity-depth model. Finally, we
emonstrate the complete CFP workflow on a 2D field data set from
he Middle East.

OVERVIEW OF TOMOGRAPHIC
OPERATOR INVERSION

Within CFP technology, the principle of equal time is used to de-
ermine focusing operators �Rietveld, 1995; Berkhout, 1997b; Bolte
nd Verschuur, 1998�. These focusing operators can be seen as the
esponse of a secondary source �a focal point� in the subsurface to-
ard receivers at the surface. Therefore, they can be considered one-
ay Green’s functions of the subsurface. The tomographic inversion

akes the estimated one-way traveltimes from focal points toward
urface locations and finds a velocity-depth model that satisfies
hese traveltimes. The estimated model consists of velocity values
nd locations of focal points.

Figure 1 presents the strategy for focusing operator inversion
Cox and Verschuur, 2001; Cox, 2004�. An initial model is intro-
uced in which one-way traveltimes are computed by forward mod-
ling. The difference between these modeled and observed one-way
raveltimes becomes the data to be inverted. The optimization refers
o minimizing traveltime differences to optimize model parameters.
he output is updates of model parameters. These updates are added

o initial model parameters, and an updated model is obtained. In this
odel, one-way traveltimes can be recomputed. This is an iterative

rocess; when the differences between observed and modeled trav-
ltimes are small enough, an accurate model is obtained.

igure 1. Flowchart describing the tomographic inversion of focus-
ng operators.
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to S
The relationship between the one-way traveltime data and model
arameters is not linear. We assume this relationship to be linear un-
er the condition of small model-parameter updates. This is repre-
ented as

�t � A�m . �1�

he matrix A describes the linear relation and therefore contains de-
ivatives of differences in traveltimes with respect to model-parame-
er updates. Note that �t is a vector with differences between the

odeled and true one-way traveltimes, and �m is a vector with de-
ired updates of model parameters.

Estimation of a subsurface model requires parameterization. In
wo dimensions, this is done with a Delaunay triangulation �Sam-
ridge et al., 1995; Böhm and Vesnaver, 1999�. Velocity values are
efined at grid points that are totally independent of the focal points.
his ensures continuity across interfaces and an optimum number of
arameters. The parameterization is modified in a data-driven man-
er. The density of grid points is higher in regions where more data
oints are available, compared with regions with less data. The data-
riven aspect of this process is given by the fact that these regions are
hosen based on resolution values, which are computed along with
he inversion �Cox and Verschuur, 2001; Cox, 2004�. Thus, no user
ntervention is required in this process.

Finally, the matrix inversion required to solve equation 1 is done
teratively, using the LSQR algorithm �Paige and Saunders, 1982�.
his algorithm is a type of conjugate gradient method similar to sin-
ular value decomposition �SVD� because it computes approxima-
ions of singular values of A and corresponding eigenvectors. The
lgorithm tries to fit the data using a limited number of vectors, so it
s a subspace method.

The rank of the inversion A enters our approach through a resolu-
ion matrix. This matrix indicates the resolved part of the system and
he part yet to be solved. The resolution value connected to each pa-
ameter tells how well that parameter is determined. Thus, new pa-
ameters can be included in regions that are well covered by the data
r removed from regions with poor data coverage. In this way, regu-
arization is performed.

STATISTICAL ANALYSIS OF THE ESTIMATED
VELOCITY-DEPTH MODEL

The inherent nonuniqueness in the recorded data is a very impor-
ant factor that deteriorates the accuracy of estimates. Usually, there
re features of the true model that cannot be resolved, even if no er-
ors are obtained in one-way traveltimes and the inverse problem is
ruly linear. This leads to many models fitting the data equally well.
he CFP approach is well suited to obtain such an ensemble of mod-
ls because it involves only the inversion of traveltimes, which have
een extracted from the seismic data in a separate process.

Each run of the tomographic inversion with unique initial settings
eads us toward a different estimated velocity-depth model. This es-
imated model explains the true one-way traveltimes within a given
olerance. When starting with different models or changing optimi-
ation parameters, different final models are obtained.All final mod-
ls explain the input data within the predefined tolerance. Thus, rath-
r than having a single final model, we can obtain several models
ithin the same desired misfit. These models have associated error
ars on velocities and depths. We also can answer the question about
he amount of velocity and depth information we can get from only
EG license or copyright; see Terms of Use at http://segdl.org/
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Quantifying error in velocity estimation VE225
eismic data �without interpreting structures or without a priori
nowledge�. This is very important in ranking prospects before drill-
ng in areas with no hard velocity-data control.

The basics of this statistical analysis are presented in Figure 2.
rom a set of initial conditions, we obtain a set of estimated velocity-
epth models. Statistical analysis of this set yields six important ele-
ents: mean-velocity model, standard deviations of the set of veloc-

ty models, mean depths and lateral location of the focal points and
tandard deviations of the depth, and lateral location of the focal
oints. Analysis of the set of final models results in four displays:
ean-velocity model, velocity standard deviation, mean location of

he focal points, and standard deviation of focal points in depth and
ateral location.

The optimization involved in the tomographic process is the first
haracteristic of this approach that enables us to build the space of
ossible solutions. The performance of a gradient-based method
epends strongly on initial values. Therefore, two initial models
rogress toward two final models. Several optimization runs, each
ith a different starting point, can lead to different minima, which

xplain the input data equally well. Although this can be seen as a
isadvantage when looking for the global minimum, all final results
orresponding to local minima should not be neglected if they ex-
lain the data within a reasonable misfit. In our analysis, we do not
ake possible errors in the input data explicitly into account. To ac-
ommodate the effect of errors in the input data, we have chosen a
arge enough reasonable misfit. In all of our examples, the chosen
hreshold was 4 ms.

Another item of our approach is data-driven parameterization.
his can be used to our advantage when obtaining the space of possi-
le solutions.At each step, model parameterization is based on reso-
ution values of parameters computed in the inversion. Thus, at each
tep, different grids determine different raypaths and traveltimes. So
he initial choice of gridding influences not only the final estimated

odel but each new data-driven regridding has an impact on the final
esult. The inversion of new traveltimes leads to a different model,
hich determines the new regridding. This data-driven model pa-

ameterization is the main cause for the existence of local minima.
herefore, the parameterization approach is beneficial because it is
ata driven and does not need decisions from the user. This approach

igure 2. Flowchart describing the statistical analysis for the CFP-
ased tomographic inversion.
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to S
rovides more means of obtaining various estimations of the true
odel.
We illustrate this statistical analysis on synthetic and field data.

or the synthetic data, we chose a model with low- and high-velocity
nomalies. For the field data, we used a data set acquired in the Mid-
le East that contains a shallow, high-velocity layer.

The subsurface is governed by geologic laws. Hence, the space of
ossible subsurface models is restricted as well. Although there are
any ways we can arrange layers in the subsurface, some of them

isregard geologic constraints. Therefore, the space of models
hould be confined by geologic rules. For a thorough statistical anal-
sis, the set of input models should span the entire space of models.
n our analysis, this is unrealistic because of the enormous computa-
ion effort implied. Additionally, complex initial models often lead
o nonconverging solutions. Therefore, we start with a wide enough
et of initial models containing only homogeneous models and
ertical gradients. We include reasonable high- and low-velocity
alues, letting the data dictate where velocity anomalies exist. We
onsider this to be the best approach for performing a reliable statis-
ical analysis.

SYNTHETIC EXAMPLE

Our synthetic example is based on a turbidite model �Cox, 2004�.
t contains a salt dome, fault structures beneath the dome, lateral and
ertical velocity gradients within the layers, and a turbidite velocity
tructure with low velocities �see Figure 3�. Representations of these
omplexities indicate the quality of estimated models.

We first demonstrate our approach to tomographic inversion using
his synthetic model. We estimate a velocity-depth model within a

isfit of 4 ms starting from a coarse-grid initial velocity model grad-
ng vertically from 1.5 to 3.0 km/s and mispositioned initial focal
oints �Figure 4a and b�. The input data are obtained with the maxi-
um offset of 2000 m for the deepest reflector and the focal-point

pacing of 300 m along interfaces.
The final estimated velocity-depth model is shown in Figure 4c

nd d. The salt dome and low-velocity region are visible, although at
ow spatial resolution. The final estimated focal points follow the
tructures quite well. However, the deepest boundary is less straight
han the true reflector. This first experiment gives us one estimated
elocity-depth model that explains the one-way traveltimes within a
ertain tolerance �4 ms rms difference�.

We want to analyze the space of possible models. For this synthet-
c example, it is easy to obtain real data with various spacings of

igure 3. The turbidite velocity model, containing high- and low-
elocity anomalies.
EG license or copyright; see Terms of Use at http://segdl.org/
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VE226 Chiţu et al.
ocal points or various offsets for traveltime operators. In this way,
e analyze the impact of various data sets on the tomographic result.
e consider three scenarios: operator spacing of 300 m and maxi-
um offset �for the deepest operators� of 2000 m, operator spacing

f 150 m and maximum offset of 2000 m, and operator spacing of
00 m and maximum offset of 3000 m. More scenarios were tested,
ut these three choices appeared to be the most conclusive. The den-
ity of the focal points can be chosen independently of the seismic
ata. However, the maximum offset of focal operators is coupled di-
ectly to the offset in the seismic data. The offset in focal operators
orresponds to roughly half the maximum offset in the seismic data.

To compute statistics on estimated models, we need an appropri-
te number of these models. Therefore, we vary initial velocity mod-
ls and initial gridding; each such setting corresponds to a final esti-
ated velocity-depth model. The range of initial velocity models

ontains homogeneous models and vertical velocity gradients. The
nitial triangulation is based on smaller or bigger grid cells, oriented
n various manners; initial focal points are randomly distributed.

perator spacing 300 m, maximum offset 2000 m
The first experimental data were obtained with a maximum offset

f 2000 m and focal-point spacing of 300 m. The final velocity-
epth model from Figure 4 is one possible model. Figure 5 shows
wo other possible velocity-depth models to illustrate how dissimilar
stimated models can be, even under the constraint of an rms error in
raveltimes below 4 ms, which is met by 52 of 64 estimated models.

Figure 6a and b gives the statistics of the velocity-model ensem-
le: mean velocity model and standard deviation. Rather than repre-
enting one possible model, the mean velocity model in combination
ith standard deviations represents the ensemble of final models re-

ulting from data with 2000 m offset and 300 m focal points separa-
ion.

a)

c)

igure 4. �a�Initial velocity model. �b� Initial focal-point locations. �c
al-point locations.
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to S
Figure 7 provides statistics of estimated focal-point locations. The
lots give the mean locations of focal points, with the color repre-
enting the standard deviation of the vertical and lateral location of
ocal points. Resolution decreases with an increase in depth, as does
he occurrence of artifacts at edges of the model. The contour of the
alt dome is quite well defined apart from errors in the location of
teeply deeping flanks, whereas the low-velocity region is not well
epresented, especially its shape.

Corresponding errors in the depths of focal points are generally
maller than 30 m. The lateral locations of focal points also have
ariations, but they are smaller than their variations in depth, except
or flanks of the salt dome that show the biggest errors. The latter in-
ormation is useful because it provides estimates on the lateral loca-
ion of features.

perator spacing 150 m, maximum offset 2000 m

The second scenario corresponds to a denser sampling of focal
oints and the same maximum offset. We again have various combi-
ations for initial conditions that finalize into 64 estimated models,
rom which 47 correspond to an rms error of less than 4 ms.

From the resulting set of velocity-depth models, we compute sta-
istics and present the mean and standard deviations. Figure 8 gives
tatistics of the velocity-model ensemble: mean velocity model and
he standard deviation. The statistics of estimated locations are in
igure 9. Plots giving these statistics are not too different from the
nes obtained when data corresponding to a lower density of focal
oints were used, failing to show a substantial improvement. We
onclude that in this situation, the 300-m density of focal points is
nough to obtain this accuracy and a denser sampling will not trans-
ate into smaller errors. This means, for this model, that estimates of
ocal operators need to be completed for a density of 300 m only.

b)

d)

nal estimated model after tomographic inversion. �d� Estimated fo-
� The fi
EG license or copyright; see Terms of Use at http://segdl.org/
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igure 5. Two examples of estimated velocity-depth models resulting from the tomographic inversion with different initial settings.
a) b)

igure 6. Statistics for estimated velocity models in scenario 1 �maximum offset � 2 km, focal-point spacing � 300 m�: �a� mean velocity

odel; �b� standard deviation of velocity models.
a) b)

igure 7. Statistics for focal-point locations in scenario 1 �maximum offset � 2 km, focal-point spacing � 300 m�. Color represents standard
eviation of a focal-point location: �a� vertical; �b� lateral.
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/
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VE228 Chiţu et al.
perator spacing 300 m, maximum offset 3000 m

The third scenario corresponds to the reference density of focal
oints �one every 300 m� and a larger maximum offset of 3000 m.
his mimics the acquisition with 6-km-long instead of 4-km-long
ables.

Statistics of the 63 estimated velocity models that met the chosen
raveltime misfit are presented in Figure 10. Figure 11 presents

)

igure 8. Statistics for estimated velocity models in scenario 2 �ma
odel; �b� standard deviation of the velocity models.

)

igure 9. Statistics for focal-point locations in scenario 2 �maximum
eviation of a focal-point location: �a� vertical; �b� lateral.

a)a)

igure 10. Statistics for estimated velocity models in scenario 3 �m
odel; �b� standard deviation of velocity models.
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to S
tatistics of the estimated locations. We notice a much better delinea-
ion of the salt dome and region of low velocity. Even depths of esti-

ated focal points have smaller errors, mostly below 30 m. We can
onclude that data obtained from wider operators improved the ac-
uracy of estimated velocity models and focal-point depths. This is
ery important for the acquisition design phase of seismic surveys.
his analysis can be completed before seismic data acquisition with
n estimate of the velocity-depth model �Al-Ali, 2007�.

)

offset � 2 km, focal point spacing � 150 m�: �a� mean velocity

b)

� 2 km, focal points spacing � 150 m�. Color represents standard

)

offset � 3 km, focal-point spacing � 300 m�: �a� mean velocity
b

ximum
offset
b

aximum
EG license or copyright; see Terms of Use at http://segdl.org/
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FIELD DATA EXAMPLE

We demonstrate the CFP approach to prestack migration by pre-
enting a complete work flow. First, the one-way-time focusing op-
rators are estimated from two-way-time seismic data. Using these
perators, the velocity-depth model is obtained via tomographic in-
ersion of focusing operators. Finally, prestack depth migration
PSDM� is performed using the estimated velocity model. Further-
ore, we compare the final velocity model with the one obtained us-

ng a commercial two-way traveltime reflection-tomography pack-
ge. The comparison proves the superiority of our approach based on
he data-driven parameterization and global inversion, as opposed to
he layer-stripping approach and restricted-layered parameterization
nherent in the commercial-tomographic package approach.

The data used consist of a 2D line extracted from a 3D data set ac-
uired in Saudi Arabia. Figure 12 presents a stack resulting from
onventional NMO velocity analysis, showing a layer-cake subsur-
ace model. Nine reflectors were chosen to estimate corresponding
ne-way-time operators, indicated by arrows. Static shifts were ap-
lied to account for surface elevation.

elocity estimation using one-way
raveltime tomography

The first step of transforming two-way-time data into one-way-
ime data is based on Fermat’s principle �Al-Ali et al., 2007�. This
rinciple states that the wave path between two points is a path of sta-
ionary time. The one-way operators, in this case, were inverted si-

ultaneously per boundary from tracked two-way reflection times
sing a preconditioned conjugate gradient method. The inverted op-
rators were validated using differential-time-shift �DTS� gathers.
n some locations, these operators were updated further using resid-
al times of DTS gathers �Bolte and Verschuur, 1998�. We use 103
perators per reflector, which is a focal-point spacing of approxi-
ately 120 m, and only the reliable offsets for operators, varying

rom 400 m for the shallow one to 1100 m for deeper ones. �For
ore details on this part of the experiment, see Al-Ali and Vers-

huur, 2006.�
Estimated focusing operators �see Figure 13� form the input for

he tomographic inversion. The velocity-depth model obtained with
ocusing-operator tomography is presented in Figure 14a and it cor-
esponds to a final rms error of 3.2 ms. The estimated nine reflectors
lso are present in the plot; the velocity varies between reflectors
ithin the limitations of a smooth model. We expect further im-
rovement by including extra boundaries below the deepest one.

a)

igure 11. Statistics for focal-point locations in scenario 3 �maximum
eviation of a focal-point location: �a� vertical; �b� lateral.
b)

offset � 3 km, focal-point spacing � 300 m�. Color represents standard
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to S
igure 12. Stacked section of the field data. Arrows indicate the nine
igure 13. Estimated focusing operators for the nine reflectors in
igure 12. These operators form the input of one-way traveltime to-
ography.
EG license or copyright; see Terms of Use at http://segdl.org/
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VE230 Chiţu et al.
his will provide better illumination of the bottom of the model and
herefore an improved estimate of depths and velocities, especially
oncerning the low-velocity region below the seventh reflector.

a)

b)

igure 14. Velocity model for the field data estimated with �a� one-
ay common-focal-point traveltime tomography and �b� a commer-

ial two-way traveltime tomography package.

a)

igure 15. Histogram of time residuals after �a� one-way CFP trave
ackage.
Downloaded 04 Oct 2012 to 131.180.130.198. Redistribution subject to S
elocity estimation using two-way
raveltime tomography

We compare a result obtained with the tomographic inversion of
ocusing operators �Figure 14a� with the result of a two-way travel-
ime reflection-tomography software package �Figure 14b�. The lat-
er result clearly shows the disadvantages of a layer-stripping ap-
roach. Moreover, there were some problems inverting the third re-
ector, which translated into higher and poorly concentrated travel-

ime residuals, shown in Figure 15b. The error distribution obtained
ith the one-way traveltime tomography is presented in Figure 15a.
rrors are well concentrated and mostly fall between �5 and 5 ms.

alidation of estimated models via PSDM

Next, a PSDM was applied using both models. The two plots in
igure 16 present the resulting depth images. There are differences

n both images, but it is difficult to judge the quality of each. Howev-
r, CIGs generated from both models �Figure 17� show flatter events
orresponding to the model estimated with one-way traveltime to-
ography.
We conclude that in terms of residuals and the quality of CIGs, the

FPapproach to tomographic inversion gave better velocity-estima-
ion results. The method is superior because of the data-driven pa-
ameterization �versus restricted-layer parameterization� and the
lobal-inversion approach �all boundaries together versus the layer-
tripping approach�.

valuating uncertainty from an ensemble of models

We performed the same statistical analysis done on the synthetic
ata for the field data. To obtain the space of models, we used differ-
nt initial velocity models �with various vertical gradients or homo-
eneous values� with variable initial gridding. We also used various
nitial-focal-point distribution, either concentrated mostly around
nitial boundaries or spread randomly. We ran the tomographic in-
ersion for each such combination of initial settings. Of 96 solutions,
9 met the desired criterion of a final rms error of less than 4 ms
ithin a given maximum number of updates.
Estimated models present variations in velocity values and

epths. The reasonable misfit of less than 4 ms allows for a large
pace of models. Figure 18 presents an idea of the amount of varia-

omography and �b� a commercial two-way traveltime tomography
b)

ltime t
EG license or copyright; see Terms of Use at http://segdl.org/
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Quantifying error in velocity estimation VE231
ion possible. These variations might have a large impact on deduced
roperties, such as pressure-prediction values. Figure 19 gives sta-
istics of the velocity-model ensemble — mean velocity model and
he standard deviation. As mentioned, when analyzing the synthetic
xample, the mean model is not a possible model. However, along
ith the obtained standard deviation, it can give an indication about

he space of models and obtained variations. Values are as much as
00 m/s for the standard deviation. However, biggest variations are
t the edges and bottom of models �note the high-velocity layer at the
ottom of the model�. These areas contain a limited number of ray-
aths, which results in fewer grid points and translates into a less-sat-
sfactory estimate of those regions. In the shallow part of the model,
he maximum variation is 200 m/s; in deep parts, it is smaller than
30 m/s. Generally, the resolution decreases with depth following
he decrease in the angle coverage caused by the limited surface-re-
ording geometry.

a)

igure 16. PSDM of the field data using the velocity model estimate
ay traveltime tomography package.

a)

igure 17. CIGs for the field data after migration using velocity mod
ercial two-way traveltime tomography package. Note the improved
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Statistics of estimated depths are given in Figure 20a. The first
lot gives the mean locations of focal points, with color representing
he standard deviation of the depths of focal points. The same de-
rease in resolution is observed as we go deeper. We reemphasize the
eed for a new boundary, below the last one, to better illuminate the
ottom of the model. However, the accuracy in estimating depths is
uite good, with values above 50 m only in expected regions of less
nformation.

Another important attribute is the variation in layer thickness.
uch data can be used to assess the uncertainty of reservoir volume.
igure 20b gives the coefficient of variation �the ratio between the
tandard deviation and the mean� reported as a percentage, or what is
alled relative standard deviation. This result can be interpreted as
he accuracy of the thickness of estimated layers. Despite large vari-
tions in the velocity depth, the thickness of layers is quite robust
variations smaller than 10 m�, except for the last one.

�a� one-way CFP traveltime tomography and �b� a commercial two-

)

mated with �a� one-way CFP traveltime tomography and �b� a com-
es of events in �a� around 1300 m depth.
b)

d with
b

els esti
featur
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a) b)

c) d)

igure 18. Two examples of estimated velocity-depth models that fit input traveltimes within 4 ms rms. Note large differences with possible
arge impact on deduced properties, such as pressure-prediction values.
a) b)

igure 19. Statistics for velocity models: �a� mean velocity model; �b� standard deviation of velocity models.
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CONCLUSIONS

Estimating velocity models via tomographic inversion is a very
omplex problem. Ideally, such an inversion should consist of two
arts: a model estimate followed by an assessment of solution accu-
acy. Often, only the first part is completed. We have concentrated on
he second part, considered to be at least equally important as the first
ne.

We performed several tomographic inversions for focusing oper-
tors modeled for a synthetic data set, and estimated from field data
n the Middle East by varying initial settings to obtain an ensemble
f possible models. All obtained models fit the input data within the
ame reasonable misfit. Estimates of the error bars associated with
olutions are presented by performing a statistical analysis of all ob-
ained models. The mean velocity and depth models, along with the
tandard deviations, can be evaluated to establish the accuracy of es-
imates. Leaving aside edge effects, we conclude that our estimates
ave reasonably good accuracy. One of the most important results
hows the coefficient of variation in the thickness of different veloci-
y layers for the field data.Again, with the exception of the edges and
he thickness associated with the last layer, we obtain values of about
%, proving that a small fraction of models varies significantly from
he mean.

All obtained results can help identify areas in which it is necessary
o add extra information. This might provide important feedback for
cquisition-geometry design. If the analysis shows uncertainty val-
es larger than acceptable, new data are needed to decrease this am-
iguity. This could be either reacquiring seismic data with more off-
ets or including hard information, such as well logs.
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a)

igure 20. Statistics for focal-point locations: �a� mean and standard
eviation of the depth of the focal point; �b� standard deviation of lay
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