
Discovering the topics of Continuous Integration Projects on GitHub

Lukas Ostrovskis1

Supervisor(s): Sebastian Proksch1, Shujun Huang1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 28, 2023

Name of the student: Lukas Ostrovskis
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Shujun Huang, Fenia Aivaloglou

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Continuous Integration (CI) is a software develop-
ment technique that enhances software quality and
development efficiency, but its implementation usu-
ally depends on the project’s context. This creates
an opportunity for studying real-world CI projects
on GitHub, focusing on their CI metrics and best
practices. In this paper, we explore various meth-
ods to extract the topics from CI software projects
on GitHub. This data can then be used to group
projects and facilitate an in-depth analysis within
specific contexts and application domains, such as
CI build success rates in machine learning or Re-
act Native projects. We explore the definition of
a software topic, as it shows significant granular-
ity variations in related studies. We examine ex-
isting tools and other potential topic modeling ap-
proaches, compare varying types of textual data
from GitHub that could be used as inputs for these
tools, and report on interesting insights from initial
trials with the developed tool. Our research led us
to use GitHub topic labels as topic definitions due
to their relevance and prior research focus. We also
evaluated three topic extraction tools - LASCAD, a
Multi-label Linear Regression classifier, and Chat-
GPT - incorporating the last two into our CI project
mining tool. Additionally, we included two tool-
independent approaches: GitHub’s search function
with the ability to filter repositories by topics and
existing project topic labels. Lastly, to test the prac-
ticality of the tool, we mined 4899 public reposi-
tories and briefly investigated workflow metrics of
projects grouped into six arbitrary topics.

1 Introduction
Continuous Integration (CI) is a software development prac-
tice that involves merging code changes into a shared repos-
itory on a frequent basis. This practice ensures that each
change is tested and verified promptly, allowing developers to
quickly identify and fix issues. CI can improve software qual-
ity, efficiency, and reduce the likelihood of errors [1]. While
there are various approaches to implementing CI, it is chal-
lenging to provide a general guideline since effectiveness can
depend heavily on the context of each project, as highlighted
in previous studies [2, 3]. Therefore, there is a broad configu-
ration of project settings where specific execution of CI could
be analyzed, comparing the various compromises made to ac-
commodate project execution and contextual factors.

Analyzing CI software projects can yield valuable insights
into best practices for Continuous Integration. It enables a
better understanding of effective CI implementation in di-
verse contexts and thus provides guidelines for maturing Con-
tinuous Integration processes. Further research in this domain
can assist organizations in enhancing their context-dependent
software development processes, resulting in improved soft-
ware quality, increased efficiency, and reduced error risks.

This research focuses on open-source software projects
that utilize CI on GitHub, a widely used hosting service for

software development. With over 40 million public reposito-
ries1, GitHub provides an ideal platform for large-scale data
analysis. This study draws inspiration from previous research
that extracted data from GitHub to analyze software engineer-
ing practices [4, 5, 6].

The main goal of this study is to cluster software projects
according to their topics, enabling the analysis of the corre-
lation between CI implementations and different topics, and
the discovery of emerging best practices in various domains.
To achieve this, the research intends to define relevant topics
for CI analysis in open-source software projects and propose
effective methods for categorizing projects on GitHub. Al-
though software categorization has lately attracted significant
attention from researchers, the focus on GitHub projects in
this study enables the utilization of additional methods and
approaches which can make the analysis more efficient.

More specifically, the main research question is: “What
data can be extracted from GitHub to effectively classify
Continuous Integration projects by topic, and what CI prac-
tices emerge from these topic clusters?” In order to provide
a complete answer to the main question, the following sub-
questions have to be answered:

Q1: Which categories or domains should be used for clas-
sifying CI projects?

Q2: What approaches exist for categorizing GitHub
projects based on their topics?

Q3: How does the inclusion of various extracted data im-
pact the effectiveness of an external software classifier tool?

Q4: What is the relationship between certain project topics
that are identified through extracted data and the underlying
CI practices?

The structure of this paper is organized as follows. Section
2 provides a concise background and related work discussion,
briefly presenting related work in CI, exploring the definition
and characteristics of a software project topic, and examin-
ing previous studies on software project topic analysis and
categorization. In Section 3, we present our methodology,
which is organized around five main components aimed at
addressing the research questions. Section 4 presents the data
analysis and results, covering the answers to the subquestions
and providing insights into the categorization of CI projects,
GitHub project categorization approaches, the impact of ex-
tracted data on classifier effectiveness, and the relationship
between a chosen subset of project topics and CI practices.
Section 5 presents a discussion of the interesting observations
and insights we gained about the problem during the research,
going beyond the specific results we obtained. Following this,
Section 6 discusses the reproducibility of the research and the
ethical implication. Finally, the paper concludes with Section
7, summarizing the research findings, addressing limitations,
and offering suggestions for future research.

2 Background and related work
This section provides a concise overview of the background
and related research. The first group of studies focuses on
CI implementations and emphasizes the arguments motivat-
ing our research. The next set of studies focuses on the do-

1Information retrieved using GitHub Search

https://github.com/search


mains and topics utilized for describing the context of soft-
ware projects. The final set of works examines various exist-
ing tools for topic recommendation and extraction.

2.1 Continuous Integration implementation
differences

Multiple studies have highlighted the complexities and dif-
ficulties associated with implementing CI and noted the ab-
sence of a universally applicable solution as a concern. The
primary inspiration for our research is based on these pre-
ceding studies. As a result, a couple of them, that have an-
alyzed CI implementations, are mentioned in the following
paragraphs.

Elazhary et al. analyzed the strategies employed by orga-
nizations to implement CI practices and explored the advan-
tages and drawbacks they experienced [2]. Their findings em-
phasize the significance of project context in the execution of
CI. The authors focused on project type, testing strategy and
CI infrastructure, which all varied greatly among the investi-
gated organizations. They also further highlight the implica-
tions of these contextual factors and the absence of a univer-
sal solution in CI implementation for practitioners. The au-
thors suggest prioritizing the CI methodologies that suit the
project’s workflow and deliver the necessary functionality.

A subsequent study [3] conducted a systematic litera-
ture review to perform an analysis of the differences in CI
practices across the industry. Their conclusions align with
Elazhary et al., reiterating the lack of a universal approach to
CI implementation. Attempting to improve understanding of
CI practices, they also offered a descriptive model for CI vari-
ations as a result of their research. Importantly, the authors
noted the potential value of exploring the connection between
contextual differences and CI in further research. They iden-
tified it as an opportunity to provide valuable insights in this
field.

2.2 Granularity of software project topics
Various research has utilized different levels of specificity to
characterize software projects. These definitions range from
broad application areas, such as web libraries and frame-
works or software tools, to more specific topic tags, offer-
ing insights into a project’s function and content type (e.g.,
{c,vim,api,text-editor}). By analyzing the different papers,
we can arrive at an informed choice regarding the suitable
level of detail for classifying CI software projects.

Initial studies aiming to classify software often opted for
wider topic categories. One of the pioneering works, MUD-
ABlue [7], proposed a dataset of projects written in C and
divided into 6 categories (boardgame, compilers, database,
editor, videoconversion, xterm). Later efforts, such as LACT
[8] and [9] offered new datasets of projects classified un-
der SourceForge2 categories, comprising 6 (game, editor,
database, terminal, e-mail, chat) and 22 categories, respec-
tively.

Recent studies used and proposed new datasets of projects
hosted on GitHub. Although GitHub launched its own repos-

2https://sourceforge.net/

itory classification system - topic labels - in early 20173, the
level of granularity in academic research remained variable.
ClassifyHub [10], for instance, used the InformatiCup 20174

dataset, segregating GitHub repositories into 7 categories
(dev, hw, edu, docs, web, data, other). A language-agnostic
categorization tool, LASCAD [11], introduced a dataset clas-
sified into 6 categories (machine learning, data visualization,
game engine, web framework, text editor, web game), built
from GitHub Collections. Most recent research focusing on
topic recommendations, however, leverages refined GitHub
topic labels for model training. The authors of MNBN [12]
and TopFilter [13], for example, used a dataset of repositories
tagged with 154 different featured topics. Repologue [14]
introduced a massive dataset of around 152K GitHub repos-
itories annotated with 228 featured topics. Their work also
includes meticulous topic processing, as these 228 topics are
derived from an initial collection of over 29K user-defined
topics, which were grouped into a set of 335 topics, and fur-
ther trimmed to ensure a fair representation of each topic.

Efforts have also been made to consolidate different classi-
fication levels into comprehensive software classification tax-
onomies. GitRanking [15], for instance, is “a framework for
creating a classification ranked into discrete levels based on
how general or specific their meaning is”. The authors col-
lected 121K topic labels from GitHub, resulting in a com-
pilation of 301 application domains linked to Wikidata for
term disambiguation. The hierarchy contains topics that be-
come increasingly specific as one moves down the list, start-
ing from ‘science’, ‘mathematics’, and ‘physics’, and go-
ing down to ‘image segmentation’ and ‘convolutional neu-
ral networks’ at the lower levels. The authors of [16] uti-
lized StackOverflow5 post tags to build a large-scale software
programming taxonomy, resulting in around 38K concepts
and 68K relations in total (e.g. “neural network”→“deep
learning”→“word2vec”). Lastly, the authors of [17] im-
proved upon the previous work on topic recommendation [14]
by supplementing the topic dataset with semantic relation-
ships between them and encoding this data into a knowledge
graph6. This graph contains 2234 relationships across 13 dif-
ferent types (is-a, is-based-on, works-with, etc.) between 863
community-curated GitHub topics.

2.3 Existing tools for topic extraction and
recommendation

Several studies have focused on the automated categorization
of software application domains. Various tools, utilizing dis-
tinct techniques, have been developed to undertake this task.
Through an analysis of these tools, we can identify suitable
ones for integration into our own research. This discussion
presents an overview of different studies employing different
techniques for extracting and recommending software project
topics. These range from earlier contributions utilizing La-
tent Semantic Analysis, later works combining Latent Dirich-
let Allocation with other approaches, to more recent research

3https://github.blog/2017-01-31-introducing-topics/
4https://github.com/informatiCup/informatiCup2017
5https://stackoverflow.com/
6https://www.ibm.com/topics/knowledge-graph

https://sourceforge.net/
https://github.blog/2017-01-31-introducing-topics/
https://github.com/informatiCup/informatiCup2017
https://stackoverflow.com/
https://www.ibm.com/topics/knowledge-graph


leveraging modern multi-label classifiers and transformers.
One of the earliest software categorization tools is the pre-

viously mentioned MUDABlue [7]. This model employs La-
tent Semantic Analysis (LSA) solely on a project’s source
code. It generates a set of concepts linked to the documents
and terms and develops category clusters through the analysis
of cosine similarities. Following MUDABlue, LACT [8] was
developed, adopting an alternative Information Retrieval (IR)
approach, Latent Dirichlet Analysis (LDA). It uses identifiers
and comments in the source code to form category clusters
with a cosine similarity exceeding 0.8.

Later tools built upon the potential of the IR technique
LDA, merging it with other advanced techniques. For exam-
ple, LDA-GA [18] combined LDA with Genetic Algorithms,
improving the hyperparameters configuration for LDA and
thus enhancing accuracy on the software labeling dataset.
Additionally, LASCAD [11], a language-independent soft-
ware categorization tool, merged LDA and hierarchical clus-
tering. This eliminates the need to fine-tune the LDA pa-
rameter for determining the number of latent topics, reduc-
ing the manual efforts required by developers in parameter
tuning. LASCAD is also one of the earliest tools evaluated
using a dataset spanning projects in different programming
languages, making it valuable for large-scale research in soft-
ware project contexts, even though it only used source code
as input.

The most recent research focuses not only on topic extrac-
tion but also on recommendations based on the expanding
set of GitHub topic labels. MNBN’s [12] authors created a
probabilistic model named Multinomial Naive Bayesian Net-
work (MNBN) to suggest new relevant featured topic labels
for a project by using README files and source code en-
coded via TFIDF. Repologue [14] assessed several methods,
ranging from traditional multi-label classifiers to advanced
methods like FastText (a library developed by Facebook for
sentence classification) [19] and a transformer model, Distil-
BERT [20]. Notably, among the evaluated methods, a lin-
ear regression model (one of the traditional classifiers) was
among the 2 best-performing methods, demonstrating eval-
uation scores comparable to the state-of-the-art transformer
model, DistilBERT.

3 Methodology
The methodology for this research was organized around
five main components, each designed to address the research
questions stated in the introduction. The components are il-
lustrated in Figure 1 below.

Figure 1: The 5 stage methodology of this research

The initial step was conducting a comprehensive literature
review, targeted at resolving questions Q1 and Q2. After pos-
sible approaches for categorizing software projects based on
their topics were identified, chosen tools were analyzed fur-
ther and evaluated using diverse data extracted from GitHub,
which ultimately helps answer Q3. Finally, the selected cat-
egorization methods were incorporated within our CI project
mining tool, allowing us to cluster the examined projects ac-
cording to their topics. This facilitated the analysis of correla-
tions between various project topic domains and the emerging
details of their CI implementations.

The literature review was focused on two main aspects.
Firstly, we explored the definition of a software project topic
by examining existing works that have attempted to create a
coherent set of topics or even topic taxonomies related to soft-
ware projects. The goal was to gain an understanding of the
relevant topics to consider during the analysis of CI projects
and determine the most suitable representation in this partic-
ular context. In the second part of the review we investigated
existing topic classification tools in the field of software cate-
gorization. The objective was to select a small subset of tools
that could be further analyzed and potentially integrated into
our own tool.

To select an appropriate classification tool, we evaluated
different software categorization tools based on their per-
formance with varying textual data extracted from software
projects. The comparative analysis considered criteria such
as accuracy, clustering evaluation metrics such as macro-
precision and macro-recall, processing time, and ease of inte-
gration into our existing tool. This analysis was particularly
important as the nature and volume of the data might signif-
icantly influence the performance of the selected tool. Com-
parative analysis tables were prepared, mapping the perfor-
mance metrics of each tool against our criteria, thus enabling
an informed decision.

Following the decisions related to the relevant topics, suit-
able categorization tools, and the optimal textual data to ex-
tract from software projects, we integrated the chosen solu-
tions into our existing mining tool7. This integration allowed
for the clustering of the mined CI software projects based on
their respective topics, thus establishing a foundation for the
subsequent analysis of the clustered CI implementations in
various application domains and contexts.

Finally, an initial exploration was conducted to investigate
differences between CI utilization in projects across a set of
topics. While a comprehensive correlation analysis is a time-
consuming effort and was mainly deferred to future research,
a carefully selected set of topics, manageable for the current
analysis, was examined. The focus was placed on analyzing
CI metrics within the context of these chosen topics.

4 Data Analysis and Results
In this section, conclusions drawn from the literature review
and the experimental setup are presented, focusing on the
complex aspects of topic modeling for CI software projects
on GitHub. As defined in the methodology, the initial phase
involves discussing the results of the literature review, where

7https://github.com/raduConstantinescu/Descriptive-CI-Metrics

https://github.com/raduConstantinescu/Descriptive-CI-Metrics


insight is provided into the definition of a software project
topic and existing methodologies for topic extraction, thereby
addressing research questions Q1 and Q2. Subsequently,
research question Q3 is addressed by evaluating the perfor-
mance of various models, identified in the previous phase,
using different textual data obtained from software projects.
The evaluation is performed based on several metrics includ-
ing Accuracy, Macro-Recall, Macro-Precision, Macro-F1
score, and processing time. Finally, research question Q4 is
approached by investigating differences between a set of 6
arbitrary software project topics and their CI metrics.

Definition of a software topic (Q1)

As observed in related work, the definition of a software
project topic is a matter of ongoing debate due to the absence
of a general consensus on an appropriate granularity level.
Consequently, previous research has aimed to formulate soft-
ware topic taxonomies, yet these efforts were predominantly
focused on the establishment of a coherent hierarchy rather
than developing a framework to model software project topics
based on a given set of inputs [16, 17]. The complexity and
time constraints related to training a model based on these hi-
erarchies, coupled with potential compromises on model per-
formance, render this approach not entirely suitable for the
purposes of our study. On the other hand, the scope of topic
definitions in the work focused specifically on topic extrac-
tion frameworks varies greatly, ranging from broad applica-
tion domains [10, 11] to highly specific topic labels [14]. We
will thus discuss this definition span and explain the choice
we deem appropriate in the context of this research.

Firstly, some of the broader domains, in ClassifyHub [10],
for instance, such as dev, hw, and docs, are hardly useful due
to insufficient contextual information since the majority of
the software repositories with CI would be categorized into
the dev category, rendering the categorization useless. Fur-
thermore, while SourceForge categories, which are the base
of multiple early works [8, 9] provide a viable option, their
application to GitHub projects - lacking native SourceForge
categorization - may not be easily achievable, and could thus
lead to limited training accuracy. The importance of precision
cannot be overstated in the current study context, where the
role of topic modeling is not evaluated in isolation but rather
as an instrumental tool integrated into the broader research.
Any inaccuracies resulting from suboptimal selections could
jeopardize the validity of the overall research findings.

Secondly, as shown in multiple studies, the role and ap-
plication of CI can be highly context-dependent [3]. For in-
stance, it is not only the implementation of CI in mobile apps
that could be of interest to a reader but also the specific frame-
works employed, such as React Native or Flutter. Conse-
quently, a more nuanced and multifaceted approach to topic
labeling may be beneficial.

Therefore, considering the primary focus of this study -
mining GitHub projects - the topic labels provided by GitHub
offer a practical solution. A notable concern with this ap-
proach, however, lies in the customizable nature of these la-
bels. Users have the ability to create unique labels, leading
to the existence of over 1M distinct topic labels employed to

tag repositories on the platform8. Nevertheless, several points
suggest that this challenge can be effectively conquered:

1. GitHub maintains a list of topic labels that have been
curated by the community9. While the number of these
labels remains substantial (exceeding 850), further anal-
ysis revealed a power-law distribution, illustrated in
Figure 2, whereby approximately 80% of repositories
linked to these curated labels use only about 20% of
them. This effectively reduces the number of labels as-
sociated with a significant number of repositories to un-
der 200.

2. The authors of Repologue [14] managed to condense the
GitHub labels into a more manageable set of 228. The
reduction process not only relied on statistical signifi-
cance but also included manual, human-assisted topic
mapping to generate a coherent and granular set of top-
ics that are as concise as possible. Additionally, they
provided extensive models and training datasets for ex-
tracting and recommending topic labels, establishing a
promising foundation for our research.

Figure 2: Power law-like distribution of repositories associated with
GitHub community-curated topic labels. The x-axis displays a sub-
set of topics (every 50th topic), as the full dataset comprises over
850 labels.

Consequently, despite the complexity and diversity of
GitHub topic labels, prior research methods and the intrinsic
distribution characteristics of the labels suggest that they can
be effectively used in our study. This indicates the feasibility
of employing GitHub topic labels for contextual-dependent
CI project research, providing a promising approach for
further exploration.

Tools and approaches (Q2)

As outlined in Section 2, numerous frameworks have been
developed to facilitate the clustering of software projects
based on topics. In the majority of instances, these frame-
works are used together with topic categories of author-
determined granularity. It is essential to emphasize that our

8Information retrieved using GitHub Search
9https://github.com/github/explore

https://github.com/search
https://github.com/github/explore


decision on the appropriate topic definition may also consid-
erably influence and even limit the usability of existing tools.
However, the utilization of GitHub labels as topics for clus-
tering repositories introduces approaches independent of ex-
ternal topic modeling tools, thereby reducing the potential for
incorrect project categorization. The subsequent paragraphs
explore these approaches and the relevant existing topic mod-
eling tools highlighted in Section 2.

Firstly, the adoption of GitHub labels enables the utiliza-
tion of the GitHub search function to conveniently retrieve
projects of specific topics. While this approach restricts the
capacity to mine arbitrary repositories, it proves valuable
when specific topics are of interest. The tool users can eas-
ily compile a collection of GitHub repositories labeled with
the selected topic. This strategy simplifies the task of gather-
ing a statistically meaningful quantity of repositories related
to a particular topic, concurrently minimizing the chances of
incorrect categorizations.

Secondly, pre-existing topic labels can be exploited for
clustering. Contrasting with the GitHub search, this strategy
is unrestrictive, allowing the user to mine random repositories
and offering an optional use of their pre-existing labels for
aggregate analysis. Notably, doubts may arise regarding the
efficacy of this approach given that the majority of projects on
GitHub lack topic labels. Nevertheless, we hypothesized that
CI projects are more likely to feature at least one topic label
compared to non-CI projects, adding value to this approach.
In a study of 4109 repositories, it was observed that 421 out
of 2499 (24.24%) non-CI repositories had at least one topic
label, while 1029 out of 2299 (50.49%) CI repositories had
at least one. The null hypothesis was consequently rejected
with a p-value of 0.01, applying the chi-squared test.

Lastly, the generation of topic labels for clustering can be
achieved through existing topic modeling tools. While these
tools are essential for the remaining projects that lack topic
labels, they can also be utilized to enhance the topic set for
each mined project, although with the risk of incorrect cate-
gorizations. The tools identified through the literature review
for further analysis include:

• LASCAD [11]: this tool, based on Latent Dirichlet Al-
location (LDA) and hierarchical clustering, is language-
agnostic, making it suitable for categorizing projects of
any language and thus expanding the scope of our re-
search.

• Multi-label Linear Regression Classifier [14]: a promis-
ing tool based on GitHub topic labels with a large
dataset10 and encouraging performance.

• ChatGPT: although requiring payment for the use of
API, this state-of-the-art technology offers a quick setup
without the necessity for training. It represents a bench-
mark against which tools specifically designed for topic
modeling can be compared.

Several other tools were not considered for further analysis
due to various reasons such as having a narrowly focused re-
search scope (e.g., focusing solely on Java projects), employ-

10https://drive.google.com/drive/folders/
1HdY3ykFSRdIqv91Ej6w0e-5Pov3Cg0O4

ing SourceForge categories (which were dismissed as out-
lined in the preceding subsection), or exhibiting poorer per-
formance relative to the selected approaches. All the afore-
mentioned tools were evaluated on the LASCAD [11] dataset
of 103 software projects with a diverse configuration of tex-
tual data. The best results achieved by these tools (regardless
of the textual data used) are presented in Table 1.

Table 1: Comparison of 3 tools used for software categorization by
topics with a dataset of 103 GitHub repositories

LASCAD Multi-label LR
Classifier ChatGPT

Accuracy 0.72 0.57 0.95

Macro-Precision 0.72 0.78 0.95

Macro-Recall 0.62 0.62 0.92

Macro-F1 score 0.67 0.69 0.94

Processing time 2079.1 11.9 186.4

The table illustrates that the large language model Chat-
GPT outperforms other tools, achieving an impressive
accuracy of 0.95 in classifying projects into six categories.
However, further testing with a broader range of topics would
be necessary to verify whether it is generally applicable. The
second-best tool, LASCAD, had longer processing times,
mainly when using source code as input. However, as seen
in Table 4, LASCAD performed worse than the multi-label
classifier in the majority of the metrics with all other subsets
of textual data. Notably, the realistic accuracy for specialized
topic-modeling tools seems to be below 70%, so we have to
be cautious about overutilizing them in further research.

Impact of various extracted data on the effective-
ness of a categorization tool (Q3)

GitHub repositories encapsulate a wide range of informa-
tion beyond source code, including, such as README files,
wiki pages, repository names and descriptions, and filenames
along with their extensions. Previous research has already
leveraged these diverse data types for topic extraction and
even discussed their necessity for topic modeling [14]. How-
ever, in addition to accuracy-focused categorization metrics,
the total processing time for topic extraction - from data col-
lection to topic modeling - is of crucial importance for our
tool. Given the multimodal nature of our tool, it is necessary
to ensure that topic modeling does not induce a bottleneck
and thus constrain the capabilities of CI project analysis.

We also hypothesize that the textual data, excluding source
code, from CI projects could potentially be more informative
on average than that from non-CI projects. The reasoning be-
hind this hypothesis is that developers who have invested ef-
fort into setting up a CI pipeline are likely to also put in more
effort in the proper project documentation. Consequently, this
could enhance the performance of the topic extraction tools,
leading to more accurate results. To validate this hypothesis,

https://drive.google.com/drive/folders/1HdY3ykFSRdIqv91Ej6w0e-5Pov3Cg0O4
https://drive.google.com/drive/folders/1HdY3ykFSRdIqv91Ej6w0e-5Pov3Cg0O4


we mined data from 4109 arbitrary projects and assessed the
length of the README files in these repositories. Our find-
ings revealed a statistically significant difference (p = 0.01)
between the average README file length for CI software
repositories (5012.99) and those without CI (2590.14), lead-
ing us to reject the null hypothesis. Therefore, we decided
to conduct our evaluation of the tools selected in the prior
subsection using the same set of projects, utilizing different
combinations of textual data retrieved from each repository.

We first identified the potential sources of textual data for
categorization:

• Source code
• Repository name and

description
• README files

• Commit messages
• Pull request titles and

bodies
• Issue titles and bodies

It is important to acknowledge two significant constraints
when retrieving data from GitHub repositories via the pro-
vided API: retrieval time and the number of API requests re-
quired to obtain the necessary data. GitHub provides 5000
API requests per hour, strongly limiting the volume of data
that can be mined, thus affecting the types of data appropriate
for mining in the context of our tool. After extracting data
from the same 103 repositories used in the LASCAD study
[11], we computed the average retrieval time and the average
number of requests per repository for each data type. These
results are summarized in Table 2.

Table 2: Comparison of different textual data mining from GitHub
repositories, in terms of retrieval time and the number of used API
requests

Source code Repository Name
and Description README

Avg. Retrieval
Time (s) 89.5 1.2×10−5 0.23

Avg. # of used
API requests 0 1 1

Commits Pull Requests Issues

Avg. Retrieval
Time (s) 89.2 98.4 115.6

Avg. # of used
API requests 406.8 76.9 164.8

As evident in the table, the most resource-intensive data
types include source code, commits, pull requests, and issues,
with an average retrieval time per instance approximating or
exceeding 90 seconds. Furthermore, the API requests across
these data sources exceed 600 requests per repository, which
would restrict us to mining an average of approximately 8
repositories per hour. Given that this would be a severe bot-
tleneck to future empirical research requiring large volumes
of observed data, we propose to restrict the data used for topic
modeling to README files, along with the repository name

and description. Nevertheless, in the interests of comprehen-
siveness, we have assessed the impact of each of these data
types on the chosen tools and will present it as well.

After determining the potential data types for extraction,
we conducted an evaluation using three selected tools on
the same dataset of 103 repositories. The metrics employed
for this evaluation included Accuracy, Macro-Precision,
Macro-Recall, and Macro-F1 score, commonly used in
multiclass clustering performance analyses. Moreover, we
included processing time as an evaluation metric, given its
importance to our study. Tables 4 and 5 present the results of
the evaluation for the LASCAD tool [11] and the Multi-label
Linear Regression Classifier [14], and ChatGPT, respectively.

Analysis of CI metrics in projects with a set of hand-
picked topics (Q4)

To evaluate the practicality of our newly developed CI
project mining tool, we collected data from 4899 public
repositories utilizing GitHub Action workflows11. Our inves-
tigation was focused on six arbitrary topics: Application Pro-
gramming Interface (API), Android, iOS, JavaScript, Type-
Script, and Docker. After identifying projects related to these
topics, we also mined over 112K workflow jobs executed in
those projects. Our goal was to aggregate the workflow met-
rics across projects within these topics, calculating the aver-
age workflow count per project, the mean number of work-
flow runs triggered by both pull request submissions and di-
rect code pushes to the repositories, and the success rate of
workflows’ jobs. The results are presented in Table 3.

Table 3: GitHub Actions workflow metrics of repositories with dif-
ferent topics

api android ios

Projects with workflows (%) 64.1 59.8 53.1

Avg. workflow count 1.88 0.82 0.65

Avg. pull request runs 1437 215.6 7.4

Avg. push runs 586.4 63.3 6.7

Job success rate 0.81 0.83 0.69

javascript typescript docker

Projects with workflows (%) 56.1 73.8 80

Avg. workflow count 1 1.54 1.04

Avg. pull request runs 179 121.6 30.4

Avg. push runs 148 127 60.9

Job success rate 0.81 0.81 0.93

The findings offer valuable insights into the utilization of
11https://docs.github.com/en/actions/using-workflows/

about-workflows

https://docs.github.com/en/actions/using-workflows/about-workflows
https://docs.github.com/en/actions/using-workflows/about-workflows


workflows across diverse project categories. For example,
Docker and TypeScript projects are more inclined toward the
use of workflows. Notably, API projects exhibit the highest
average workflow count per repository, indicating that devel-
opers within this domain find value in combining multiple
workflows. API projects also utilize the workflows signif-
icantly more than other categories, with roughly six times
more average workflow runs than the next most active topic,
JavaScript. This could imply a higher level of complexity in
API projects, where frequent workflow runs are necessary to
avoid critical problems.

An interesting anomaly is observed in the triggering of
workflow runs. While most projects primarily initiate work-
flow runs upon pull request submissions, Docker projects
contradict this trend by favoring code push triggers, as evi-
denced by the 2:1 ratio. Lastly, the data reveals an increased
inclination towards workflow use in TypeScript projects com-
pared to JavaScript ones. However, TypeScript projects show
fewer average workflow runs, possibly due to TypeScript’s
inherent type safety, which may reduce the need for external
validation.

5 Discussion
In this section, we discuss new insights and our deeper under-
standing of the research problem, that we think are particu-
larly interesting and could influence future research direction
and methodologies.

One of the significant challenges we encountered is the is-
sue of software topic granularity, which varies greatly across
works related to topic modeling. Existing research has mostly
focused on the generation of software domain hierarchies
and the development of topic extraction tools as separate
challenges. Although there are recent efforts to incorporate
semantic relationships into topic modeling to boost perfor-
mance, no evident attempts have been made to integrate eas-
ily configurable hierarchies into such models.

Moreover, topic modeling has seen significant advance-
ments over the years, with research employing increasingly
sophisticated techniques. However, the accuracy of such
methods is not perfect. It is important to be cautious when
utilizing these tools in broader research, as inconsistencies in
the extraction of topics may skew the results. Future research
could explore how different topic modeling tools impact the
outcomes of controlled, context-dependent empirical analy-
ses.

Our research also showcased the promising capabilities of
large language models (LLMs) in topic modeling, although
our experiments were limited to only 6 topics for classifica-
tion. We remain uncertain about how LLMs, such as Chat-
GPT, would perform with larger lists of topics. However,
the massive datasets that these models are trained on could
be the main advantage over specialized topic modeling tools.
Therefore, given the rapid advancement of LLMs, this is an
approach that should be considered in further research.

Finally, while our research focused on mining random
projects and extracting their topics for empirical CI analysis,
we argue that leveraging GitHub’s search function could be a
useful strategy for investigating specific topics. For instance,

in random analysis, only a small percentage of total mined
projects will belong to a specific topic. Conversely, GitHub
Search allows users to create a list of projects related to a sin-
gle topic, enabling more efficient results when investigating
specific domains. This approach also reduces the risk of in-
correct classifications by external topic modeling tools, thus
minimizing threats to the validity of future work.

6 Responsible Research
Conducting research in a responsible manner is critical, es-
pecially when the results are expected to contribute signifi-
cantly to the field of study. The process of mining CI software
projects from GitHub to model their topics inherently im-
plies potential ethical and reproducibility challenges, which
are discussed in the following paragraphs.

Firstly, the act of mining repository data from GitHub,
which is a form of data mining, elicits a few ethical con-
cerns. The exploration of the ethics of software repository
mining is covered in great detail in [21], with emphasis on
numerous ethical issues that should be considered. One par-
ticularly relevant issue is the ”Identification of Stakeholders
and Informed Consent”. Stakeholders comprise individuals,
entities, or institutions that might have an interest in being
informed about the data collection process. In the context
of our study, the primary stakeholders would be GitHub and
the developers involved in the software repositories that were
mined as part of this research. GitHub’s ”Acceptable Use
Policies”12 explicitly permits the usage of public information
for research purposes, provided the resulting research is avail-
able via open access. Additionally, the repositories mined
for this study were open-source, which we deem a conscious
decision made by the repository maintainers to share their
projects with the public. These factors, combined with the
stated policy of GitHub, reasonably support our conclusion
that the act of mining repositories for this research is not in-
herently unethical.

Secondly, there exists an ethical dimension in relation to
the use of topic modeling as a building block in the research
of CI projects. As shown in previous sections, topic extrac-
tion tools are known to be imperfect in terms of accuracy, and
therefore their outputs should ideally be treated as suggestive
rather than being considered as the ground truth. This could
potentially compromise the validity of future research if the
limitations of these tools are not properly evaluated and dis-
cussed. To address this, we aimed to minimize reliance on
these tools in general, opting instead to use GitHub’s native
topic labels whenever feasible and making the use of topic
modeling tools optional and user-adjustable. Furthermore,
we have tried to maintain transparency regarding the accuracy
of these tools to enable readers to draw their own conclusions
on this matter.

Lastly, in order to follow the principles of research repro-
ducibility and transparency, only original experimental data
has been included in this paper. We have ensured that all
used and generated datasets and models, as well as the de-
veloped CI project mining tool, are accessible to the reader.

12https://docs.github.com/en/site-policy/acceptable-use-policies/
github-acceptable-use-policies

https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies


The methodology employed in the study is described in a
clear, step-by-step manner to enable readers to replicate the
research process and reproduce the results using the provided
code and datasets.

7 Conclusions
This study aimed to answer the question ”What data can be
extracted from GitHub to effectively classify Continuous Inte-
gration (CI) projects by topic, and what CI practices emerge
from these topic clusters?”. Our research focused on explor-
ing the best approaches for categorizing CI projects by topic,
evaluating topic modeling tools, analyzing the impact of dif-
ferent extracted data on external software classifiers, and ex-
amining the correlation between identified project topics and
underlying CI practices.

Our findings led us to use GitHub’s topic labels, as given
their relevance, support for, besides external tools, additional
repository clustering methods, and prior focus in research,
they prove to be hugely convenient. Furthermore, regarding
the approaches for categorizing GitHub projects, three tools
were evaluated - LASCAD [11], a Multi-label Linear Regres-
sion classifier [14], and ChatGPT. As we were satisfied with
the balance between their clustering performance and pro-
cessing time, the latter two were incorporated into our own
CI project mining tool.

With respect to the type of data extracted from GitHub, we
discovered that the combination ”repository name, descrip-
tion, and README” offer the best balance between classifier
performance and processing time. Conversely, the combina-
tion ”commits, issues, and pull requests” demonstrated disap-
pointing performance. Source code, while useful with appro-
priate preprocessing, significantly prolonged processing time,
which could limit the scale of future research.

Lastly, after developing our CI project mining tool13, we
briefly examined data from 4899 public repositories using
GitHub Action workflows across six topics, aiming to test
and showcase the usability of our developed tool. Despite
their limited scope, our results, as shown in Table 3, offer in-
teresting insights into the differences in CI utilization across
different contexts. For instance, we observed a higher work-
flow count in API projects and a deviation from the standard
trend in Docker projects, where workflow triggers due to code
pushes surpassed those from pull requests. Thus, we believe
that our developed tool can be successfully employed in fu-
ture research focusing on context-dependent CI implementa-
tions, further exploring the variation of CI practices across
diverse software domains and methodologies. This could,
consequently, improve our understanding of CI optimization
across various development scenarios.

7.1 Limitations
This study was bounded by certain constraints, primarily
time, which led to several limitations affecting its scope and
depth.

One of the limitations was the evaluation of only a small
subset of existing topic modeling tools. We did not have the
capacity to assess all of the recent state-of-the-art tools, hence

13https://github.com/raduConstantinescu/Descriptive-CI-Metrics

our selection might not represent the truly optimal tool for
topic discovery of CI projects. With an extended timeline, a
broader exploration of related tools could be conducted, po-
tentially leading to different results and revealing the most
effective tools.

The time constraint also impacted the size and breadth of
the dataset that the tools were evaluated on. The relatively
small set of 103 projects clustered into 6 different topics could
undermine our findings’ generalizability. A more extensive
dataset could have increased the validity of our performance
evaluations and allowed for deeper understanding of how dif-
ferent tools perform across a broader range of both projects
and topics.

7.2 Future Work
This study paves the way for a variety of opportunities related
to empirical analysis of context-dependent CI implementa-
tions. Subsequent research can focus either on improving our
developed CI software project mining tool or utilizing it for
large-scale empirical analysis.

Firstly, comparison of existing topic modeling tools could
be improved. This can be achieved by increasing the number
of compared projects and including a broader range of tools,
even those initially discarded in this study. Retraining models
on the actual subsets of utilized textual data, instead of relying
solely on models pre-trained on a predetermined subset of
data, may offer further improvements in performance.

In addition to improving tool comparison, extending the
performance evaluation to compare the differences in effec-
tiveness of textual data in CI and non-CI projects could pro-
vide valuable insights. This could uncover useful correlations
between CI usage and the informativeness of project’s textual
data, leading to more informed decisions regarding the most
effective data subsets for CI research.

Exploring the integration of semantic relationships into
topic modeling is another promising direction. The introduc-
tion of topic hierarchies into CI analysis in software projects
could provide a better understanding of the influence and in-
teractions between different topics and CI practices. It would
also simplify the process of analysis, since easily configurable
hierarchical models would bring flexibility, allowing topic
predictions to be as detailed or as broad as needed, suiting
the unique requirements of each study.

Finally, employing the mining tool developed in this study
to analyze a wide range of projects across different contexts
could uncover new insights into Continuous Integration. This
extensive analysis has the potential to form concrete guide-
lines for future CI implementation strategies and improve-
ments.

https://github.com/raduConstantinescu/Descriptive-CI-Metrics


A Textual data and topic modeling tool
evaluation tables

Table 4: Comparison of different textual data from GitHub repositories using LASCAD and a Multi-label Linear Regression Classifier
(MLRC) for clustering repositories by topics

Source code README Repository Name,
Description, README

Commits, Issues,
Pull Requests

All but
source code All

LASCAD MLRC LASCAD MLRC LASCAD MLRC LASCAD MLRC LASCAD MLRC LASCAD MLRC

Accuracy 0.72 0.4 0.46 0.52 0.53 0.57 0.2 0.19 0.54 0.52 0.71 0.42

Macro-
Precision 0.72 0.59 0.63 0.76 0.56 0.78 0.3 0.19 0.62 0.76 0.77 0.62

Macro-
Recall 0.62 0.45 0.4 0.57 0.47 0.62 0.17 0.25 0.52 0.57 0.64 0.48

Macro-
F1 score 0.67 0.51 0.49 0.65 0.51 0.69 0.22 0.22 0.56 0.57 0.7 0.54

Time (s) for
103 repos 2079.1 3586.17 46.3 11.2 46.8 11.9 14.2 5.5 54.5 12.7 2132.4 3613.3

Table 5: Comparison of different textual data from GitHub repositories using ChatGPT for clustering repositories by topics

README Repository Name,
Description All

Accuracy 0.94 0.94 0.95

Macro-Precision 0.94 0.96 0.95

Macro-Recall 0.9 0.89 0.92

Macro-F1 score 0.92 0.92 0.94
Time (s) for
103 repos 183.7 167.2 186.4



References
[1] Bogdan Vasilescu et al. “Quality and productivity out-

comes relating to continuous integration in GitHub”.
In: Proceedings of the 2015 10th joint meeting on foun-
dations of software engineering. 2015, pp. 805–816.

[2] Omar Elazhary et al. “Uncovering the benefits and
challenges of continuous integration practices”. In:
IEEE Transactions on Software Engineering 48.7
(2021), pp. 2570–2583.

[3] Daniel Ståhl and Jan Bosch. “Modeling continuous in-
tegration practice differences in industry software de-
velopment”. In: Journal of Systems and Software 87
(2014), pp. 48–59.

[4] Chris Brown and Chris Parnin. “Understanding the Im-
pact of GitHub Suggested Changes on Recommenda-
tions between Developers”. In: Proceedings of the 28th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering. New York, NY, USA: As-
sociation for Computing Machinery, 2020, pp. 1065–
1076. ISBN: 9781450370431. DOI: 10.1145/3368089.
3409722.

[5] Daye Nam, Youn Kyu Lee, and Nenad Medvidovic.
“EVA: A Tool for Visualizing Software Architec-
tural Evolution”. In: Proceedings of the 40th Inter-
national Conference on Software Engineering: Com-
panion Proceeedings. New York, NY, USA: Associa-
tion for Computing Machinery, 2018, pp. 53–56. ISBN:
9781450356633. DOI: 10.1145/3183440.3183490.

[6] Baishakhi Ray et al. “A Large Scale Study of Pro-
gramming Languages and Code Quality in Github”. In:
Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering.
New York, NY, USA: Association for Computing Ma-
chinery, 2014, pp. 155–165. ISBN: 9781450330565.
DOI: 10.1145/2635868.2635922.

[7] S. Kawaguchi et al. “MUDABlue: an automatic cat-
egorization system for open source repositories”. In:
11th Asia-Pacific Software Engineering Conference.
2004, pp. 184–193. DOI: 10.1109/APSEC.2004.69.

[8] Kai Tian, Meghan Revelle, and Denys Poshyvanyk.
“Using Latent Dirichlet Allocation for automatic cat-
egorization of software”. In: 2009 6th IEEE Interna-
tional Working Conference on Mining Software Repos-
itories. 2009, pp. 163–166. DOI: 10.1109/MSR.2009.
5069496.

[9] Mario Linares-Vásquez et al. “On using machine
learning to automatically classify software applica-
tions into domain categories”. In: Empir. Software Eng.
19.3 (June 2014), pp. 582–618. ISSN: 1573-7616. DOI:
10.1007/s10664-012-9230-z.

[10] Marcus Soll and Malte Vosgerau. “ClassifyHub: An
Algorithm to Classify GitHub Repositories”. In: Sept.
2017, pp. 373–379. ISBN: 978-3-319-67189-5. DOI:
10.1007/978-3-319-67190-1 34.

[11] Doaa Altarawy et al. “Lascad : Language-agnostic
software categorization and similar application detec-
tion”. In: Journal of Systems and Software 142 (2018),
pp. 21–34. ISSN: 0164-1212. DOI: https://doi.org/10.
1016/j.jss.2018.04.018.

[12] Claudio Di Sipio et al. “A Multinomial Naıve Bayesian
(MNB) Network to Automatically Recommend Top-
ics for GitHub Repositories”. In: ResearchGate (Apr.
2020), pp. 71–80. DOI: 10.1145/3383219.3383227.

[13] Juri Di Rocco et al. “TopFilter: An Approach to Rec-
ommend Relevant GitHub Topics”. In: ResearchGate
(Sept. 2020). DOI: 10.1145/3382494.3410690.

[14] Maliheh Izadi, Abbas Heydarnoori, and Georgios
Gousios. “Topic recommendation for software reposi-
tories using multi-label classification algorithms”. In:
Empir. Software Eng. 26.5 (Sept. 2021), pp. 1–33.
ISSN: 1573-7616. DOI: 10.1007/s10664-021-09976-2.

[15] Cezar Sas et al. “GitRanking: A Ranking of GitHub
Topics for Software Classification using Active Sam-
pling”. In: ResearchGate (May 2022). DOI: 10.48550/
arXiv.2205.09379.

[16] Jiangang Zhu et al. “Building a Large-scale Software
Programming Taxonomy from Stackoverflow”. In: Re-
searchGate (July 2015), pp. 391–396. DOI: 10.18293/
SEKE2015-135.

[17] Maliheh Izadi, Mahtab Nejati, and Abbas Hey-
darnoori. “Semantically-enhanced Topic Recommen-
dation System for Software Projects”. In: arXiv (May
2022). DOI: 10.48550/arXiv.2206.00085. eprint: 2206.
00085.

[18] Annibale Panichella et al. “How to effectively use topic
models for software engineering tasks? An approach
based on Genetic Algorithms”. In: 2013 35th Inter-
national Conference on Software Engineering (ICSE).
2013, pp. 522–531. DOI: 10 . 1109 / ICSE . 2013 .
6606598.

[19] Armand Joulin et al. “Bag of Tricks for Efficient Text
Classification”. In: Proceedings of the 15th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Volume 2, Short Papers. Valen-
cia, Spain: Association for Computational Linguistics,
Apr. 2017, pp. 427–431.

[20] Victor Sanh et al. “DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter”. In: arXiv
(Oct. 2019). DOI: 10.48550/arXiv.1910.01108. eprint:
1910.01108.

[21] Nicolas E. Gold and Jens Krinke. “Ethics in the min-
ing of software repositories”. In: Empir. Software Eng.
27.1 (Jan. 2022), pp. 1–49. ISSN: 1573-7616. DOI: 10.
1007/s10664-021-10057-7.

https://doi.org/10.1145/3368089.3409722
https://doi.org/10.1145/3368089.3409722
https://doi.org/10.1145/3183440.3183490
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1109/APSEC.2004.69
https://doi.org/10.1109/MSR.2009.5069496
https://doi.org/10.1109/MSR.2009.5069496
https://doi.org/10.1007/s10664-012-9230-z
https://doi.org/10.1007/978-3-319-67190-1_34
https://doi.org/https://doi.org/10.1016/j.jss.2018.04.018
https://doi.org/https://doi.org/10.1016/j.jss.2018.04.018
https://doi.org/10.1145/3383219.3383227
https://doi.org/10.1145/3382494.3410690
https://doi.org/10.1007/s10664-021-09976-2
https://doi.org/10.48550/arXiv.2205.09379
https://doi.org/10.48550/arXiv.2205.09379
https://doi.org/10.18293/SEKE2015-135
https://doi.org/10.18293/SEKE2015-135
https://doi.org/10.48550/arXiv.2206.00085
2206.00085
2206.00085
https://doi.org/10.1109/ICSE.2013.6606598
https://doi.org/10.1109/ICSE.2013.6606598
https://doi.org/10.48550/arXiv.1910.01108
1910.01108
https://doi.org/10.1007/s10664-021-10057-7
https://doi.org/10.1007/s10664-021-10057-7

	Introduction
	Background and related work
	Continuous Integration implementation differences
	Granularity of software project topics
	Existing tools for topic extraction and recommendation

	Methodology
	Data Analysis and Results
	Discussion
	Responsible Research
	Conclusions
	Limitations
	Future Work

	Textual data and topic modeling tool evaluation tables

